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Abstract In recent years, flame retardants (FRs) focused on eco-friendliness, eco-
viable and durable, are in great social demand and one of the most growing area of
research interest on account of increased awareness towards environmental concerns.
In this regard, strategies are considered ontoFRs for textiles aswell as other substrates
with their applicability and selectivity. Phosphorus-based FRs provide a foundation
for the directed design of nontoxic FRs mainly because of its versatility, for exam-
ple, it can act in both the condensed and gas phase, as an additive or as a reactive
component, in various oxidization states, and in synergywith numerous adjuvant ele-
ments. Various P-moieties make valuable contribution and combinations including
elemental, inorganic salts and organophosphorus compounds. This chapter highlights
general insight into phosphorus-based flame retardants for polymeric systems with
future R&D opportunities.
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1 Introduction

Flame-retardation ability to the polymeric substrates such as textiles (woven or non-
woven), plastics, rubber and others, is vastly needed because they have been applied
to a myriad of applications for general and engineering purposes. Specific chemical
bonding was shown in several polymeric materials (i.e. cotton, linen, hemp; silk and
wool; nylon; polypropylene; polyester etc.) acquired specificity towards implanting
flame-retardancy. Textile materials have been applied worldwide in both civilian
as well as military fields due to their inherent and excellent properties such as air-
permeability, softness, comfortableness, hydrophilicity etc. In a general opinion, fire
can be described as the combustion cycle which is illustrated by a fire triangle for
which three components are necessary to be fire to occur; one is heated, secondly
a combustible fuel and thirdly a combustive process. The most important factor in
the combustive process is the air (oxygen). According to the fact that fire or flame is
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often initiated from the burning of the textile materials which subsequently results
in burns and even loss of human life, causing serious damage to furniture, carpets,
upholstery, buildings, properties, etc. [1, 2]. Thus, flame retardant (FR) finishing of
textile substrates is extremely necessary for many applications for the prevention of
fire and for protection of human life. Most of the polymeric materials such as cellu-
losics, wool, nylon, polyesters, polyurathanes possess higher flammability [3], and
therefore, required high performance flame retardant finishes to overcome flammable
aspects.

FRs provide fire resistance ability to the textiles through the heat absorbing, the
covering effect, inhibition of chain reaction and gas dilution phase [4]. In general,
there are many chemical treatments that are commonly employed to impart flame
retardant finish for textile/polymeric materials. Main six categories of FRs are highly
discussed and accepted, for example; halogenated, formaldehyde-based, P-based, N-
based, Si-based and other mixed formulations [5]. However, the purpose of FR fin-
ishes is to reduce the amount of heat that is supplied to the polymer system to be below
the level for flame stability [6]. Halogenated, phosphorus and formaldehydes based
compounds such as Proban, THPC-TMM (Tetrakis(hydroxymethyl)phosphonium
chloride-Trimethylolmelamine) and Pyrovatex CP, have been widely employed as
the commonest FRs to impart durable fire-resistant ability to the cotton substrates
[3–7].

In early 1990s serious environmental concerns have been noticed concerning halo-
genated FRs, especially brominated flame retardants (BFRs). It is found that under
severe thermal stress or when they were burnt in accidental fires or uncontrolled
combustion, BFRs could form halogen-based dioxins and furan derivatives [8, 9].
Furthermore, it is noteworthy that the environmental and health concerns limited not
only of BFRs, but also of other types of flame retardants and have been studied exten-
sively at a global scale. Several scientific meetings and conversations were organized
in the late 90 s onto flame retardants: uses, risk assessments and safety globally until
the transition toRegistration, Evaluation,Authorisation andRestriction ofChemicals
(REACH), a European Union Regulation Authority came existence in 2006. In 2008,
REACH, [10] (REACH, 1907/2006/EC) entered “No data no market” slogan which
requires the basic health and environmental data to be submitted for all chemicals
before commercialization for their safety evaluation [10]. Halogenated FRs generate
poisonous substances on fire and combustion [2] whereas formaldehyde-based FRs
release formaldehyde which found carcinogenic [3]. They are found to have adverse
health effects in animals and humans, including endocrine and thyroid disruption,
immunotoxicity, reproductive toxicity, cancer, and adverse effects on fetal and child
development and neurologic function [9–13].

As a result, health and environmental hazards associated with these FRs driven
R&D for identifying and utilizing safer alternatives. Because of the social concerns
onto eco-preservation using eco-friendly FRs, the new FRs needs to be halogen-free
and formaldehyde-free. Phosphorus, nitrogen, and silicon-containing compounds
are generally considered as environment-friendly FRs, because they do not generate
harmful substances to human-ecosystem on burning with fire and their synergistic
effects [6, 14]. P-based FRs are found very effective inert towards fire (most effective
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in high oxidation states)mainly because of its characteristics such as (i) lowwater sol-
ubility, (ii) low volatility, (iii) low dose requirement, (iv) less degradation to possibly
hazardous substances, and (v) no toxic emissions [2, 6]. Mechanistically, phospho-
rous based flame retardants, during a fire form poly andmeta-phosphoric acids which
form an oxygen-barrier layer [15] and commonly used due to the environmental
scrutiny halogenated and formaldehyde-free FRs.

The flame retardant mechanism described for phosphorus containing flame retar-
dants includes both a condensed and a vapor phasemechanism depending on the type
of phosphorus compound and the polymer. Specific applications for red phosphorus,
organophosphates, chlorophosphates and bromophosphates are described. The use
of triarylphosphates in PVC,modified polyphenylene oxide, and polycarbonate/ABS
is described. The chlorophosphates are used in polyurethanes and the bromophos-
phates in engineering thermoplastics. Flammability and mechanical properties are
given for specific polymers [16].

Phosphorous based flame resistant materials have long been used since the 1940s–
1950s. P-based FRs exhibit excellent fire inertness ability and found effective both
in the vapour and condensed phases. They vary in oxidation states (0 to +5) and
can be classified into elemental, inorganic, and organic or organo-phosphorus [17]
categories.

1.1 Elemental Phosphorus as FR

Phosphorus (P0) has several allotropic forms [18] out of which white phosphorus
(WP) and red phosphorus (RP) are most common. WP is a white, soft, waxy solid
consists of tetrahedral P4 molecules, in which each atom is bound to the other three
atoms by a single bond. It ignites spontaneously and is very toxic and reactive in
nature, and therefore cannot be used as FR [17].

Samples ofWP always contain red phosphorus in a very little amount and accord-
ingly appear yellow. On heating, WP can be converted into RP in the absence of air.
It is harder, denser, more stable, less toxic, less reactive than WP and polymeric in
structure with P4 units [19]. Although, it ignites easily but possesses thermal stability
up to 450 °C (approx.) and thus, the ability to be used as sufficient FR agent [18]. RP
is observed as an efficient FR especially for oxygen-containing polymers that work in
the vapor and condensed phases [19, 20]. Among the high performance flame retar-
dants (HFFR) additives, RP is a type of powerful FR and has been significantly used
for polymeric moieties other than textiles such as polyethylene [21], poly(ethylene
terephthalate) [22], nylon [23, 24] etc.

Moreover, the combination of RP with other HFFR additives, metal hydroxide
or intumescent FR can improve the overall fire retardancy of highly flammable sub-
strates like polyolefins (PO) blends have been investigated and reported as effective
[25]. However, the main disadvantages of RP are because of poor thermostability,
the evolution of highly toxic phosphine (PH3) during the reaction with moisture
and the lack of compatibility with synthetic resins [26]. A novel technology was
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developed to prepare microencapsulated RP with suitable filling/supported agent
to minimize the associated problems. Wu et al. [27] investigated microencapsu-
lated RP as FR agent for synthetic polymers. In this study, they conclude that the
microencapsulation of red phosphorus efficiently improved itswater absorption, ther-
mostability, ignition point, and decrease the amount of phosphine evolution with 5%
amount [27]. A similar study was carried out by Liu and Wang [26]. In this study,
a composite system of RP encapsulated by N-based FR was used for polyamide
6 (PA6) due to higher N-P synergistic effects. The action and mechanisms of the
NFR-microencapsulated RPFR on PA6 were investigated in terms of limiting oxy-
gen index (LOI) by using vertical burning experiment (UL94), thermogravimetric
analysis (TGA), and scanning electron microscope (SEM) observations. It was con-
cluded that the NFR-microencapsulated RPFR combination possessed desired flame
retardancy because of effective char-formation of the condensed phase and it also
showed satisfactory mechanical properties as the result of the good compatibility
between flame retardant and PA6 resin.

1.2 Inorganic Phosphorus-Based FRs

Inorganic phosphorus-based FRs were developed and commonly used in the nine-
teenth century, mainly phosphates and polyphosphates. However, the great scien-
tist Gay Lussac in 1821 used ammonium phosphate solution to impart flame retar-
dancy of theater curtains [19, 20]. Ammonium phosphates (APs) possess fairly fire
retarding ability and prevent afterglow. Monoammonium phosphate (NH4H2PO4)
and diammonium phosphate ((NH4)2HPO4) or mixtures of these two phosphates
have good water solubility and found very effective for many substrates as FR, for
example, textiles, cellulosic fibers, wooden and paper products [19, 28].With respect
to susceptibility to bloom out of the material, matrix is a down-manner of APs. The
low susceptibility of APs introduces ammonium polyphosphates (APPs) which have
higher susceptibility. APPs are moderately soluble in water with several crystalline
forms that differ in molecular weight ratio and particle size. APPs have been heated
with a small amount of urea to enhance the solubility [19]. APPs are used as the
principal ingredients in intumescent FR coatings because of their decomposition
temperature (greater than 256 °C). The decomposition of APPs produces phospho-
rus acid that will interact with the carbon source to produce a carbonaceous char [19,
20]. APPs are cheaper, low toxic, quite thermally stable than their organic counter-
parts, and good thermal stability, and can be used for other non-textile materials such
as plastics, rubber, paper, epoxy resins and wood [29].
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1.3 Organic or Organophosphorus-Based FRs

Organophosphorus-based FRs gain increased attention preventing the risks of fire in
recent times because of their significant efficacy and environmentally safer nature
over halogenated and formaldehyde containing FRs [30]. Organophosphorus FRs
have been used from last few decades and widely used for several various poly-
meric consumer products like plastics, textiles, polyurathanes (PU), polyamides (PA),
polyethyleneterephthalate (PET), epoxy-materials etc. [31, 32]. Organophosphorus
compounds containing P–C bonds are developed extensively as FR additives due to
their excellent thermal and hydrolytic stability as well as ease of generation. In a
mechanistic pathway it was observed that during the fire, phosphorus compounds
break down to phosphorus acid which blocks polymer’s oxygen functionality, and
therefore lead to the char-formation in the high ratio [33].

Wendels et al. [34] has published an exhausted and comprehensive review on
organophosphorus compounds for the recent developments in organophosphorus
flame retardants (OPFRs) having P–C bonding with their synthesis pathways and
applications [34].

Nowadays, various products, large in numbers are commercially available based
on organophosphorous compound. On the basis of carbon unit/moiety OPFRs can
be broadly categorized into five main classes (Table 1) [17, 32–36]:

(i) organophosphates,
(ii) organophosphonates,
(iii) organophosphinites,
(iv) organoposphine oxide, and
(v) organophosphites.

1.3.1 Organophosphate FRs

Organophosphate FRs with a wide range in their polarity, solubility and persistence
have been produced and used as significant FRs in substitutes to the stringent regu-
lation in the use of brominated FRs. These FRs are widely used as flame retardants
in various consumer products such as textiles, electronics, industrial materials and
furniture to prevent the high risk of fire [1, 32]. A large number of OPFRs have
been fabricated with varied P–C assemblies. Some commonest OPFRs are shown in
Table 1.

Aliphatic: P–Caliphatic bond containing organophosphorus compounds have been
utilized as good FRs to polymeric materials such as Dimethyl phosphate (DMP),
Diethyl phosphate (DEP), Trimethyl phosphate (TMP), Tripropyl phosphate (TPP),
Tri-isopropyl phosphate (TIPP), Tri-n-butyl phosphate (TNBP) Tris(2-butoxyethyl)
phosphate (TBOEP) etc.

Cl-aliphatic: Chlorine-based P–Caliphatic bond containing organophosphorus com-
pounds have superior flame retardancy. Examples of this subclass include
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Tris(2,3-dibromopropyl) phosphate (TDBPP) and Tris(tribromoneopentyl) phos-
phate (TTBPP).

Br-aliphatic: Brromine-based P–Caliphatic bond containing FRs are found effec-
tive FRs, for example, Phenylpropan-2-ylhydrogen phosphate (PPHP), 2-
Ethylhexyldiphenyl phosphate (EHDPP), Isodecyldiphenyl phosphate (IDPP) etc.

Aromatic: In the previous few decades aromatic phosphates possess strong flame-
retardant properties [34]. Common examples are Triphenyl phosphate (TPP), Tri-
cresyl phosphate (TCP), Triisopropyl phosphate (TIPP), Cresyl diphenylphos-
phate (CDPP), 6H-Dibenz[c,e] [1, 2] oxaphosphorin,6-oxide (DOPO), Bisphenol-A
bis-(diphenylphosphate) (BPA-BDPP) etc.

1.3.2 Organophosphonate FRs

Organophosphonates were extensively developed and used as FRs. Many commer-
cially accepted compounds based on organophosphonate specification have been
generated and successfully employed as FRs and composed of two types:

Aliphatic: FRs with P–Caliphatic bond having phosphonate group are shown in
Table 1 and commonly include Dimethyl hydrogen phosphonate (DMHP), Diethyl
hydrogen phosphonate (DEHP), Dimethylethyl phosphonate (DMEP), Dimethyl-
methyl phosphonate (DMMP),Dimethylpropyl phosphonate (DMPP),Dimethylallyl
phosphonate (DMAP) as well as a Cyclic tert-butyl phosphonate (TBP).

Aromatic: FRs with P–Caromatic bond having phosphonate group FRs were derived
from the transformation of aliphatic moiety with aromatic units. A monosubstituted
phosphorus compound (Ar-Phosphonate derivative 1, m.p. 184–187 °C) and a disub-
stituted phosphorus compound (Ar-Phosphonate derivative 2,m.p. 258–260 °C)were
obtained as amixture usingmodified separation and purification steps [37]. The phos-
phonate product diethyl-(2-hydroxy-5-vinylphenyl) phosphonate (Ar-Phosphonate
derivative 4)was fabricated fromdiethyl-(4-vinylphenyl)phosphate (Ar-Phosphonate
derivative 3) using ethoxy-P-acid [38]. Su et al. [39] patented the P-enabled esteri-
fication of phenol or polyhydroxybenzenes to develop several OPFRs. one example
is compounds Ar-Phosphonate derivative 5 obtained from bisphenol A [39].

Another two phenolic white crystals/compounds (Ar-Phosphonate derivative 6,
m.p. 169–171 °C and 7, m.p. 216–217 °C) were prepared through [1, 3]-sigmatropic
rearrangement and were found to have high-performance against polymers [40].

1.3.3 Organophosphinites FRs

Recently, synthesis and applications of different phosphinic acid derivatives have
been reported excel flame resistant abilities [41]. Examples of organophos-
phinites FRs are Diethylphosphinic acid (DEPA), Phenylphosphinic acid (PPA),
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p-Methoxyphenylphosphinic acid (PMPPA), Carboxyethyl-phenylphosphinic acid
(CEPPA), Bis(2-cyanoethyl)phosphinic acid (BCEPA) etc.

1.3.4 Organoposphine Oxide FRs

Organoposphine oxide derivatives found to have limited FRs capabilities. Exam-
ples are Tris(hydroxymethyl) phosphineoxide (THMPO), Triphenylphosphineoxide
(TPPO) and Bis(4-carboxyphenyl) phenylphosphine oxide (BCPPPO). In addition,
Bis(4-aminophenyl) phenylphosphine oxide (BAPPO) was developed as a moder-
ate water-soluble compound that found effectiveness towards Polyurathane-based
materials with environmental susceptibility [42].

1.3.5 Organophosphites FRs

Like organoposphine oxide derivatives, organophosphites were also least responsive
FRs because of their cholinergic neurotoxicity [43, 44]. Examples are Triisopropyl
Phosphite (TIPP) and Tri-phenyl Phosphite (TPP).

2 Textile Applications of P-Based Flame Retardants

Organophosphorus compoundswith P–Cmoieties have shown awide range of design
and development of exciting organophosphorus FRs due their high thermal and
hydrolytic stability (P–C bond), ease of synthesis and suitability of processing even
at high temperature. Extensive works have been published regarding the creation of
P–C bond and their potential applications [1–6, 11–13, 22, 31–35]. These P–C con-
taining organophosphorus compounds have shown several applications along with
fire resistancy, for example, reagents, catalysts, pesticides, insecticides, herbicides,
surfactants, lubricants and even more [1–4, 45].

Textiles and clothing are prepared fromvarious fiber forming substrates either nat-
ural origin polymers such as cellulose and protein, or a wide variety of semi-synthetic
and synthetic polymers such as cellulose acetate, polyesters, polyamides, polyolefins,
polyacrylonitriles, polyaramids, polylactides, polyetherketones etc.All of these poly-
mers are allocate a frequent limitation, combustible under normal environmental
conditions and sometimes pose serious fire hazards in case of fire accidents.

In the present scenario, fire-caused deaths are a growing global problem. The
Fire Administration Authority of US, has reported recently on the basis of 24 indus-
trialized nations as the average rate of fire-related deaths and concluded that 10.7
per million populations every year have been observed [46, 47]. Additionally, The
National Fire Protection Association claims that home structure involved fires are
the main cause of fire-related death [47].
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Textile materials provide an excellent source of fuel during the burning process,
are found to be a rich source of inflammable or ideal fire carriers like hydrocarbons.
The potential hazards and risks associatedwith textiles are described in depth by vari-
ous researchers [1, 2, 7, 11]. In this prospect, textiles with lower flammability are still
experiencing some changes like the improvement in effectiveness and the replace-
ment of toxic chemical products with counterparts that have a low environmental
impact and, more sustainable [4, 5]. Health and environmental concerns associated
with halogenated as well as formaldehyde-based FRs driven R&D for identifying
and utilizing safer alternatives. Because of the social concerns onto eco-preservation
using eco-friendly FRs, the newFRs needs to be halogen-free and formaldehyde-free.
Phosphorus, nitrogen, and silicon-containing compounds are generally considered
as environment-friendly FRs, due to their safer-nature for human-ecosystem and
synergistic effects [6, 14]. The effectiveness of P-based FRs towards fire mainly
because of its characteristics, for example, low water solubility, low volatility, less
dose requirement, less degradation to possibly hazardous substances, and no toxic
emissions [2, 6, 31]. P-based FRs, play a key role possibly in combination with
silicon- or nitrogen-containing structures, to the design of new and efficient FRs for
textile substrates. Mechanistically, phosphorous based FRs, during a fire form poly
and meta-phosphoric acids which form an oxygen-barrier layer [15].

Phosphorus based FRs have been found very reactive to inhibit fire and are used
as thermosets for many substrates such as unsaturated epoxy resins, polyesters or
polyurethanes. These type of substrates contain activated functional groups (i.e.
halogens, alcohols, epoxy, amines etc.), which allow incorporation into the poly-
mer matrix during the process [42, 43]. In case of cotton fibre, organic assembled
phosphorus compounds (i.e. Pyrovatex CP and Pyrovatex CP New) can either with
the cotton fabric to form cross-linked adducts/linked structures with the fibers [48].
In a study, a formaldehyde-free, inorganic-organic hybrid FR was developed and
markedly found inferior FRperformance comparedwith conventional formaldehyde-
containing organic phosphorus FR. Lessan et al. [49] investigated the flame retar-
dant behavior of sodium hypophosphite (SHP)—nano-TiO2 hybrid on woven cotton
fabric through pad-dry-cure process. As a result, decreasing the flammability with
increasing the char formation of the treated fabrics was observed [49].

Despite the use of toxic and not environmentally-friendly chemicals, high-
molecular-weight proteins even DNA derived from animal or microbial sources
have been investigated as “green” FRs for cotton fabrics [42, 49]. Current trends
are made towards high-molecular-weight FRs based on P-moiety combined with
polymeric/complex textile substrates impart multifunctional structures will aid in
reducing flammability without a loss of their valuable properties. A novel organic
phosphorus-based flame retardant has reported the enhancement of flame retar-
dancy of cotton fabrics through the high-molecular-weight grafting of cellulose-
phosphonic acid by Gao et al. [50] as an alternative to halogen-formaldehyde-based
FRs [50]. In this study, an ammonium salt of hexamethylenediamine-N,N,N’,N’-
tetra(methylphosphonic acid) (AHDTMPA),was fabricated using the reaction of urea
with hexamethylenediamine-N,N,N’,N’-tetra(methylphosphonic acid) (HDTMPA).
Further, new P–O–C covalent bonds were formed by this ammoniated salt reacted
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with the O-6 hydroxyls of glucose residues of cellulose. The resulted hybrid FR con-
taining both P and N-moieties exhibited excellent flame retardant performance for
cotton fabrics (70 g/L hybrid FR with limiting oxygen index (LOI) value of 36.0%)
which remained relatively stable after 50 laundering cycles (70 g/L hybrid FR with
LOI value 28.0%).

Someparticular proteins such as phosphorus and sulphur-rich proteins (i.e. caseins
and hydrophobins) derived from animal or microbial sources have been under inves-
tigations as a novel as well as green flame retardants for cotton fabrics. Alongi et al.
[51] investigated caseins and hydrophobins as a novel and green flame retardants for
cotton fabrics [51]. As a consequence, P-based-polymer matrix was achieved with
improved flame retardancy, indicated by the increased total burning time as well as
by the decreased total burning rate. In this study, the change in the flammability
features of the fabric, favouring the dehydration of cellulose to form char as opposed
to the depolymerization with further production of combustible volatile species were
observed. The familiar results have been observed by the same research group when
whey proteins were employed that homogeneously deposited on cotton fabric to
impart FR properties, using the layer-by-layer technique [52].

In addition, bio-derived phytic acid exhibits the great potential to improve the
flame retardancy of textile materials, but with low washing durability. To overcome
the poor durability, Cheng et al. [53] investigated a reactive, efficient P-containing
flame retardant using phytic acid, pentaerythritol and 1,2,3,4-butanetetracarboxylic
acid [53]. The wool fabric treated with HPPHBTCA 0.14 mol/L HPPHBTCA had
self-extinguishing performance even after 20washing cycles during the vertical burn-
ing test, presenting good FR ability and resistance to washing with slight negligible
effect on the whiteness, tensile strength and handle of wool fabric.

Therefore, phosphorus-containing compounds offer a novel route to prepare so-
called green, eco-friendly and durable flame retardants for textiles or textile-based
materials that inhibit or resist the spread of fire.

3 Conclusion and Future Outlook

Flame retardants have been added to the polymer systems to prevent the risk of fire
and overall the use of FRs has substantially decreased the number of fires and fire
fatalities in our social wardrobe. With increased awareness towards environmental
concerns about FRs selectivity, phosphorus-based FRs provide a foundation for the
directed design of nontoxic FRs mainly because of its versatility, for example, it can
act in both the condensed and gas phase, as an additive or as a reactive component,
in various oxidization states, and in synergy with numerous adjuvant elements.

Various P-moietiesmake a valuable contribution and various combinations includ-
ing elemental, inorganic salts and organophosphorus compounds. Nowadays, vari-
ous products, large in numbers are commercially available based on organophos-
phorus compound. Although the use of a new generation of chemicals known as
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Organophosphorus FlameRetardants (OPFRs) is aworthy goal for controlling house-
hold fires, on one hand, the other hand, it is also important to control or prevent
their toxic effects. Based on carbon unit/moiety OPFRs can be broadly catego-
rized into five main classes; organophosphates, organophosphonates, organophos-
phinites, organoposphine oxide, and organophosphites. A vast variety of P–C bond
containing efficient FRs are being developed; however, further R&D works are
needed in terms of their economical, renewability and green synthetic pathways,
environmental impacts, long term durability, acute and chronic toxicity etc. without
a loss of valuable properties at laboratory as well as their possible larger exploration.
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