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Abstract. When a model learned in a domain is applied to a different
domain, even if in the same task, there is no guarantee of accuracy. This
is a very important issue when deep learning and machine learning are
applied in the field. In medical applications, there is a wide variety of
domain bias, making it very difficult to create a model appropriate for
all domains. Furthermore, semantic segmentation needs fine annotation
and its high labor cost makes its application difficult. Histopathological
image segmentation enables drug discovery and medical image analysis,
but it is expensive due to its annotation cost and the need for the skills
of histopathological experts. In this paper, we focus on a weakly super-
vised method using point annotation unique to histopathological image
segmentation, and tackled on weakly supervised domain adaptation to
suppress domain gaps. Providing point level annotation instead of fine
annotation decreases the high cost of labor normally required.

Keywords: Histopathology image segmentation · Semantic
segmentation · Weakly supervised domain adaptation · Medical image
analysis

1 Introduction

1.1 Domain Adaptation

Convolutional Neural Networks (CNNs) achieve great success in many tasks
such as image classification, object detection, and action recognition. However,
CNNs cannot guarantee performance in unseen data because of the variety of
environments (domain gaps). Thus, there is a need to annotate the data for new
domains and remake the models. There are, however, obstacles that arise. For
example, object detection and semantic segmentation require fine annotation,
which has a high labor cost. Annotation cost is an important issue when apply-
ing machine learning and deep learning to a social problem. The goal is to reduce
annotation cost and make proper models in a wide variety of domains. Domain
adaptation tackles such problems and aims to reduce domain gaps in training
data (source data) and testing data (target data). By using source data that is
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fully annotated and target data that is not annotated or not fully annotated (the
weakly supervised method), we are able to make an appropriate model in a new
domain for less cost. In domain adaptation (DA), supervision is defined by the
target data’s annotation level; essentially, where the source data is fully anno-
tated and the target data is not, the process is referred to as an unsupervised
domain adaptation (UDA). If some target data is annotated, it is considered a
semi-supervised domain adaptation (SDA). If the target data is not fully anno-
tate but some weak annotation exists, this is referred to as a weakly-supervised
domain adaptation (WDA). Several UDA methods have shown great progress
[7,9,13,27,30]; many such methods have been proposed for semantic segmen-
tation [17,18,32,34,36]. The UDA method is being suggested as more complex
method and the number of hyperparameters required is increasing. Hyperpa-
rameter tuning in medical application, which has several domains, is difficult
due to the shortage of experts. In this paper we introduce weak annotation into
a simple UDA method, creating a WDA. The result is a simple domain adap-
tation method that guarantees performance in the target data at a lower cost
when compared to previous methods.

1.2 Medical Image Analysis

Recently, there have been many studies on medical image segmentation, such
as those on histopathological image segmentation [8,10,37], MRI tumor image
segmentation [21], and retinal vessel image segmentation [12]. These studies
achieved significant progress, but wide domain gaps still exist in biomedical
image analysis (e.g., camera, organs, staining method). In medical applications,
it is particularly necessary to guarantee high performance, so a proper model
for each area must be made due to many domain gaps. Semantic segmentation
requires fine annotation that has a high labor cost. Experts are needed, making
the total cost of annotation higher and creating a serious problem in medical
applications.

1.3 Weakly Supervised Semantic Segmentation

Recently, weakly-supervised segmentation methods have been developed [1,3,
15,22,28,29]. Weak annotation involves items at the image level, point level and
at the level of the bounding box that are not fully annotation but provide help-
ful annotations. The UDA method has progressed, but the number of hyper-
parameters has increased, complicating the process accordingly. We use weak
annotation as the target label and aim to make an easy-to-handle model for
medical application. In histopathological image segmentation, point annotation
and bounding boxes are primarily used. We used point level annotation from the
viewpoint of the fineness of cell size and ease of handling point information in
histopathological images. This paper contributes to the literature by applying a
WDA to histropathological image segmentation, showing that by using a point-
level annotation, which is a low cost construct compared to full annotation, it
is possible to improve the accuracy in the target domain by combined it with a
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simple UDA method, such that the number of hyperparameters is low and it is
an easy-to-handle model.

2 Related Work

2.1 Histopathological Image Segmentation

Many histopathology image segmentation methods have been developed [4,5,
19,25,37]. Semantic segmentation addresses a wide variety of issues unique to
histopathology image segmentation. [25] treats regression in cell images, and [37]
focuses on a cell segmentation problem that requires finer classification. [14] is
weakly supervised method with point annotation. It processed pseudo-labels by
combining k-means clustering and Conditional Random Fields (CRF).

2.2 Medical Image Domain Apdaptation

Domain adaptation in medical image analysis has progressed [6,16,20,33]. In
many cases, there are multiple methods available to obtain common domain
representation to solve domain gaps. [20] deals with pneumonia classification
problems. This study uses Generative Adversarial Network (GAN), which gen-
erates images such that it is difficult to discriminate between the source and
the target, so the classification model is used for a common domain. Domain
adaptation is also progressing in the area of histopathological image segmenta-
tion. [6] prepared models for each source and target and used maximum mean
discrepancy (MMD) or correlation alignment (CORAL), which measure the dif-
ference between feature distributions in each model as a loss function to resolve
domain discrepancy. [33] transfered the source image to the target style by using
Cycle-GAN to solve domain gaps in image style using train data. [16] used an
adversarial learning method where the common segmenter and discriminator
were provided. The discriminator decides which domain is input from the com-
mon segmenter output, and common domain representation is obtained.

3 Weakly Supervised Domain Adaptation

3.1 Unsupervised Domain Adaptation

As an introduction to our method, UDA is explained. In UDA, it has been
experimentally shown that adversarial learning is effective, and many methods
have adopted it [11,17,30,34,36]. These methods commonly set the discrimina-
tor, which distinguishes whether input data is a source or a target and solves
adversarial loss Ladv, so generater get proper model for both source and target
domain. Figure 1 shows an overview of our method networks. The segmenter G
output is the segmentation result. Based on hidden layer outputs, discriminator
D distinguishes whether input data is a source image Is ∈ R

(H×W×3) (fully
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Fig. 1. An overview of our method. Segmenter G outputs the segmentation result.
Discriminator D distinguishes whether the segmenter’s softmax output is from source
data Is ∈ R

(H×W×3) or target data It ∈ R
(H×W×3). Then the adversarial loss is

optimize Ladv and the segmenter is given a good model for both domains, with which
the discriminator can determine whether an input is from the source or target. In UDA,
segmentation loss is only Lseg on source data, but in WDA, the weakly segmentation
loss Lweakseg on target data is added to this.

annotated by Ys ∈ R
(H×W )) or a target image It ∈ R

(H×W×3) (not annotated).
Domain adaptation for semantic segmentation [32] shows that low-dimensional
softmax output P = G(I) ∈ R

(H×W×C), where C is the number of categories,
is better for discriminator input than high-dimensional hidden layer outputs, so
this was adopted for this study. While segmenter outputs are difficult for the
discriminator to distinguish the domain of, in this case, the discriminator learns
from the segmenter outputs which domain they come from. Thus, after adver-
sarial learning, such an adapted segmenter match feature distributions between
source and target. So, UDA scheme can be written as follow.

Segmenter Training. We define the segmentation loss in (1) as the cross-
entropy loss for source data {Is , Ys}:

Lseg(Is) = −
∑

h,w

∑

c∈C

Y (h,w,c)
s logP (h,w,c)

s (1)

Discriminator Training. As discriminator input, we use segmenter softmax
ouput P = G(I) ∈ R

(H×W×C). And to train discriminator, we use discriminaor
loss in (2) cross-entropy loss LD for two class (source and target). So, it can be
written as:

LD(P ) = −
∑

h,w

(1 − z) log(D(P (h,w,0))) + z log(D(P (h,w,1))) (2)
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where z = 0 if input data is draw from target domain, and z = 1 if inuput data
from source domain.

Adversarial Learning. For target data, to make target prediction distribution
P t = G(It) ∈ R

(H×W×C) close to source prediction distribution P s, we use
adversarial loss Ladv in (3) written as:

Ladv(It) = −
∑

h,w

log(D(P (h,w,1)
t )) (3)

So, we formulate objective function for domain adaptation:

L(Is , It) = Lseg(Is) + γLadv(It). (4)

And optimizing min-max criterion:

max
D

min
G

L(Is , It), (5)

we aim to maximize the probability of predictions in target data while minimiz-
ing segmentation loss in source data. By optimizing min-max criterion 5, the
segmenter gets a common representation that solves the domain gaps.

3.2 Weakly Supervised Domain Adaptation

There are many weakly-supervised annotations. Image level annotation is given
only object identification, point annotation is given object position, bounding
box is given object rectangles and so on. For this paper, point annotation was
determined to be best in histopathological image segmentation because of its
fineness in a large number of cells. In addition, as shown in Fig. 2, we experi-
mented with three types of weak labels: point level annotation, gaussian level
annotation, and superpixel level annotation.

Point Level Annotation. Point level annotation give information by points
to each cells. In this paper, this weakly label expresses as point level weakly
annotations.

Point Annotation with Gaussian Function (Gaussian Level). In addition
to point level annotations, we give gaussian level annotation which gaussian
functions are center at each point annotations. In this paper, this weakly label
expresses as gaussian level weakly annotations.

Point Annotation with Superpixel (Superpixel Level). First, images is
divided into superpixel (we used SLIC algorithm [2]), and gives annotations to
superpixel which is given point level annotations. In this paper, this weakly lable
expresses as superpixel level weakly annotations.
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Fig. 2. An overview of the weakly labeling method on target data. A point level anno-
tation is given to each nuclei in the image. This is point level weakly annotation. In
addition, we used gaussian level annotation; gaussian functions are centered at each
point annotation. This is called gaussian level weakly annotations. Superpixel level
annotation is when images are divided into superpixels and annotations are given to
the superpixel at the point level annotations. This is called superpixel level weakly
annotation.

Segmentation Loss with Weakly Label. In weakly supervised segmentation,
[31] says partial cross entropy loss which uses only labeled points p ∈ ΩL with
ground truth is effective. So, we adopted it in our method.

Lweakseg(It) = −
∑

p∈ΩL

yi log p (6)

We add weakly-segmentation loss to unsupervised domain adaptation loss func-
tion (5). Thus we opitimize weakly domain adaptation loss function (7).

L(Is , It) = Lseg(Is) + γ1Lweakseg(It) + γ2Ladv(It)

max
D

min
G

L(Is , It) (7)

4 Experiments

4.1 Dataset

Source Data. The source data is the Monuseg dataset [24]. The dataset consists
of annotated hematoxylin and eosin (H&E) stained histology images captured
at 40 x magnification and made available by the Indian Institute of Technology,
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[a] original image [b] ground truth

Fig. 3. MoNuseg dataset

Guwahati. This dataset was selected from several patients at several hospital
and was extracted in a 1000 × 1000 patch. There are seven cancer types. An
example is shown in Fig. 3. This dataset consists of 30 images and 21623 nuclei
are annotated (Fig. 4).

Target Data. The target data is the TNBC dataset [23]. This dataset is anno-
tated H&E stained histology images captured at 40×magnification and made
available by the Curie Institute. All slides are taken from a cohort of Triple
Negative Breast Cancer (TNBC) patients and were scanned with a Philips Ultra
Fast Scanner 1.6RA. For eleven patients, we extracted 512× 512 patches from
different areas of tissue. This dataset consists of 50 images and 4022 nuclei are
annotated. Additionally, this dataset has been annotated by three experts, guar-
anteeing its annotation level. In this paper, in order to evaluate them in tandem
with the target data, the 50 images were divided into two groups so they could
be evaluated in a 2-fold cross validation.

4.2 Experiment Conditions

Segmenter Network and Pre-traning. As segmenter model, we used drc-26
[35] which has dilated convolution and pre-trained on ImageNet. To pre-train
segmenter for Lseg in (1), we use source data {Is , Ys} and used Adam optimizer
with learning rate 1.10−2.

[a] original image [b] ground truth

Fig. 4. TNBC dataset



134 S. Obikane and Y. Aoki

Discriminator Network. As discriminaor network, we use arcitecture similar
to [32]. It consists of 5 convolution layers (kernel size is 4 × 4 and stride is 2),
and channel number is {64, 128, 256, 512, 1}. Except for the last layer, a leaky
ReLU parameterized by 0.2 and batch normalization follows in each convolution
layer.

Network Traning in Domain Adaptation. In all experiments we set batch
size to 8 and random crop (512 × 512 in only source data), random 4 rotation 90
degrees for data augumentation. To train segmenter, we used Adam optimizer
with learning rate 1.10−4. And to train discriminaor, We used the momentum
SGD optimier with (momentum is 0.9 and weight decay is 5.10−4). The learning
rate is decreased with the polynomial decay with power of 0.9. For γ1 and γ2, the
optimum parameters were selected in the range of 0.01 to 0.5 respectively. We
implement our network using the PyTorch toolbox on a single NVIDIA GeForce
GTX 1080 Ti GPU. All source data 50 images were used as train data. Target
is divided into two groups for 2-fold cross validation, so finally thier score is
averaged.

4.3 Results

The results are shown in Table 1. These were evaluated by foreground
intersection-over-union (fIoU) and F-measure. The experimental conditions for
the comparative experiment follows.

Source Model. The source model is learned by using only 50 images from the
source data.

Target Model. The target model is learned by using only 25 images from
the target data. Domain adaptation aims at this value. Table 1 represents the
differences of fIoU in the target model as domain gaps.

DA only (unsupervised DA). This is the unsupervised domain adaptation
result. The source data with full annotation and the target data with no anno-
tation were used as training data.

Point Level (weakly Supervised DA). This is the weakly supervised domain
adaptation result. Source data with full annotation and target data with point
level weakly annotation were used as training data.

Gauss Level (weakly Supervised DA). This is the weakly supervised
domain adaptation result. Source data with full annotation and target data
with gaussian level weakly annotation were used as training data.
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Superpixel Level (weakly Supervised DA). This is our proposed weakly
supervised domain adaptation result. Source data with full annotation and target
data with superpixel level weakly annotation were used as training data.

Overall Results. Table 1 is list of evaluation values of fIoU, F measure, pixel
accuracy, and fIoU gap which shows difference from target. In domain adapta-
tion, target model result is the upper-bound result. So, in this experiment, the
upper bound is 0.682. For WDA with superpixel level annotation, although the
fIoU gap is 0.154, it has been reduced significantly domain gaps compared to
other methods.

Figure 5 shows the output results of the method used in these comparative
experiments. Looking at the output results, the source model does not give the
target information well, so there are many misidentified areas in which the anno-
tation is not given. Although the results of the unsupervised domain adaptation
have been improved, it was not possible to sufficiently reduce mis-recognition.
Our method, given the superpixel weakly labeling, can cause a reduction to a
level that can be mis-recognized. On the other hand, when compared to weakly
supervised methods, the result of point level annotation is the same as in an
unsupervised method. Gaussian level annotations are an improvement, but the
superpixel level is the best. Thus, it is important to give weakly annotations that
capture a certain shape.

Figure 6 is the output result of grad-CAM [26], which visualizes where the
discriminator focuses. The source data’s result remains unchanged because the
source data is fully annotated. It appears that the discriminator focuses on the
object area of the segmenter output and so tends to judge the target result using
the worse result and output good result for target data.

Table 1. List of evaluation values of fIoU and F measure. The difference from the
target model is shown as the fIoU gap.

Annotation level fIoU F-measure Pixel accuracy fIoU gap

Base model

Source model 0.441 0.584 0.893 −0.241

Target model 0.682 0.822 0.956 –

Unsupervised

DA only 0.472 0.611 0.909 −0.210

Weakly supervised

Point level 0.495 0.648 0.933 −0.187

Gaussian level 0.506 0.646 0.934 −0.176

Superpixel level 0.528 0.684 0.937 −0.154
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Input data

input image ground truth

Source model

Unsupervised domain adaptation

Weakly supervised domain adaptation

point level gaussian level superpixel level

Fig. 5. Output results. The top shows the input data and the ground truth. Next is
the result of the source model, which is trained-only source data. Third from the top is
the result of unsupervised domain adaptation, and the bottom is the result of weakly
supervised domain adaptation with point level, gaussian level, and superpixel level.
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source data

input image ground truth

source
model

unsupervised
DA

weakly-supervised
DA

target data

input image ground truth

source
model

unsupervised
DA

weakly-supervised
DA

Fig. 6. Output result of grad-CAM [26], which visualizes the focus of the discriminator.
The yellow region indicates a larger value and represents where the discriminator looks
to distinguish input data domain.
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5 Conclusion

In this paper, we showed that weakly supervised domain adaptation is useful in
histopathological image segmentation. Our method combines a simple unsuper-
vised domain adaptation method with weak labeling. In the weak label method,
the image is divided into superpixels and annotations are given to the super-
pixels at the point level annotations. The experiments show that this method
resolves domain gaps constract to unsupervised domain adaptation and shows
the effectiveness of weakly annotation. In the future, we hope to combine weakly-
supervised semantic segmentation method.
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microscopy image analysis. In: 2016 IEEE International Conference on Image
Processing (ICIP), pp. 3199–3203, September 2016. https://doi.org/10.1109/ICIP.
2016.7532950

5. Chidester, B., Ton, T.V., Tran, M.T., Ma, J., Do, M.N.: Enhanced rotation-
equivariant U-Net for nuclear segmentation. In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, June 2019
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23. Naylor, P., Laé, M., Reyal, F., Walter, T.: Nuclei segmentation in histopathology
images using deep neural networks. In: 2017 IEEE 14th International Symposium
on Biomedical Imaging (ISBI 2017), pp. 933–936. IEEE (2017)

24. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A
dataset and a technique for generalized nuclear segmentation for computational
pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)
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