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Preface

The 5th Asian Conference on Pattern Recognition (ACPR 2019), held in Auckland,
New Zealand, during November 26–29, 2019, was accompanied by a series of five
high-quality workshops covering the full range of state-of-the-art research topics in
pattern recognition and related fields.

The workshops consisted of one full-day workshop and four half-day workshops
and took place on November 26. Their topics diversely ranged from well-established
areas to novel current trends: computer vision for modern vehicles; advances and
applications on generative deep learning models (AAGM); image and pattern analysis
for multidisciplinary computational anatomy; multi-sensor for action and gesture
recognition (MAGR); and towards an automatic data processing chain for airborne and
spaceborne sensors.

All submitted papers underwent a double-blind peer-review process, where each
paper was reviewed by at least three area experts. Eventually, 23 oral presentations
were selected by the individual Workshop Committee with the average acceptance rate
of 50%. Additionally, 12 invited talks hosted by individual workshops greatly con-
tributed to the success of the ACPR 2019 workshops. We thank everyone involved in
the remarkable programs, committees, reviewers, and authors, for their distinguished
contributions.

We hope that you will enjoy reading these contributions, which may inspire your
research.

November 2019 Michael Cree
Fay Huang

Junsong Yuan
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Lane Detection Based on Histogram
of Oriented Vanishing Points

Shizeng Chen, Bijun Li(&), Yuan Guo, and Jian Zhou

State Key Laboratory of Information Engineering in Surveying, Mapping,
and Remote Sensing, Wuhan University, Wuhan 430079, China

{csz,lee,GuoYuan,JianZhou}@whu.edu.cn

Abstract. As an important role in autonomous vehicles or advanced driving
assistance systems, lane detection uses the onboard camera high up on the
windshield to provide the vehicle’s lateral offset within its own lane in a real-
time, low-cost way. In this paper, we propose an efficient, robust lane detection
method based on histogram of oriented vanishing points. First, the lane features
are extracted by symmetrical local threshold. Then, the lines are generated from
oriented vanishing points. The lines crossing most features are selected and
oriented vanishing points are updated by the overlap between features and
selected lines. Last step will be repeated for getting stable oriented vanishing
points. Therefore, the last selected lines are most likely to be lane lines. Finally,
Validate and select the best lane lines. The proposed method has been tested on
a public dataset. The experimental results show that the method can improve
robustness under real-time automated driving.

Keywords: Lane detection � Histogram � Oriented vanishing points

1 Introduction

Automated driving is considered to be effective in avoiding driving accidents and
improving traffic safety. The lane detection provides basic structural information,
guidance information of lane and the relative lateral offset of vehicle to lane [1], which
is an indispensable part of the automated driving.

Up to now, lane detection has been widely used in the advanced driving assistance
systems (ADAS) to implement lane departure warning systems (LDWS). These
products can obtain stable and reliable lane results from standard structured roads such
as highways with clear markings and good illumination conditions. However, in order
to apply this technology to autonomous vehicles, it must be ensured that it is able to
obtain stable and reliable results from roads with complicated illumination conditions,
shadows, stains, and various road shapes. Meanwhile, real-time processing is a must.

The typical lane detection algorithm can be divided into three steps: feature
extraction; estimating the geometric model of the lane; and tracking the model
parameters [2].

The reliability and robustness of feature extraction results directly affect the per-
formance of model estimation and tracking. The commonly used features are edge
features and line features. Most of edge point feature extraction is based on underlying

© Springer Nature Singapore Pte Ltd. 2020
M. Cree et al. (Eds.): ACPR 2019 Workshops, CCIS 1180, pp. 3–11, 2020.
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visual features such as color, gradient, grayscale and so on. Steerable filter [3], adaptive
threshold [4] or local threshold [5] in scanlines are all based on gradient and grayscale
to extract edge points. These methods utilize the fact that the lane markings have
significant gradients between the roads. Most of these methods can extract the edge
features in a linear time, but the edge features lost a large number of points on lane
markings, the information density is low, and the extraction results are susceptible to
noise. In the case of shadows or stains, the edge features may require a lot of works to
analyze the real edges of the lane lines which increase complexity. For suppressing
noises, the performance of the existing denoising methods depends heavily on the
accuracy of estimated noise parameters [6]. However, the various road environment
means various noises, the feature extraction or the lane detection method should be
robust enough.

Lane detection algorithms based on bird’s-eye view are also popular [3, 7–12]. In
the bird’s-eye view, compared with the perspective of monocular camera, the parallel
relationship of lane lines, lane position and lane width have obvious consistency, which
provides convenience for postprocessing [13]. However, with the pitch, roll or yaw
changed caused by road slope or vehicle motion, there may have some distortions of
lanes under bird’s-eye view. And the process of generating the bird’s-eye view is in a
high computational complexity.

Aim at the above problems, we propose a real-time and robust lane detection
method based on histogram of oriented vanishing points, which uses the orientations of
vanishing points instead of the bird’s-eye view.

This paper is organized as follows. Section 2 introduce the proposed lane detection
method. Section 3 shows the experimental results of our method and comparisons with
some other researches. Conclusion is in Sect. 4.

2 Our Method

The overall framework of our method is shown in Fig. 1. Firstly, the image is binarized
with the extracted features, and the feature points on the lane are preserved as much as
possible. Then, the image is divided into left and right parts according to the center of

Image

Oriented van-
ishing points

Lane width

Lane centerEvaluate

Fit model
Update

Extract lane marking points

Detect straight lines

Update oriented vanishing 
points

Candidate lane lines Estimate

Fig. 1. Overview of our method

4 S. Chen et al.



the lane and the oriented vanishing points. The oriented vanishing points of left and
right lines are respectively tracked. A statistical histogram is constructed based on the
oriented vanishing points to extract straight lines. Based on the rough extracted lines
which nearly cover the actual lane lines, the oriented vanishing points of the current
frame are searched and updated by the overlap between lines and features. Then, re-
detected the straight lines and re-updated oriented vanishing points until the oriented
vanishing points are stable. So that, the candidate lane lines are extracted based on the
detected lines. Finally, the lane lines are estimated and modeled as straight lines with
the lane width, the lane center and the oriented vanishing points.

2.1 Feature Extraction

In our method, the Symmetrical Local Threshold (SLT) [2] with lane width constraint
is introduced to extract the feature points of the lane markings.

Sleft xð Þ ¼ Sleft x� 1ð Þþ Iscan xð Þ � Iscan x� sð Þ
Sright xð Þ ¼ Sright x� 1ð Þ � Iscan xð Þþ Iscan xþ sð Þ

Gradleft xð Þ ¼ Iscan xð Þ � Sleft xð Þ
s

Gradright xð Þ ¼ Iscan xð Þ � Sright xð Þ
s

8>>><
>>>:

ð1Þ

The grayscale image is scanned line by line. Using Iscan xð Þ to indicate the image
row to be scanned now, Gradleft and Gradright are got by Eq. 1 which show the
gradients between the grayscale in index x and the average grayscales in x� s; x½ Þ,
x; xþ sð �. Commonly, the s is a multiple of the lane line width which is calculated in
proportion according to the perspective effect. Then, mark the binary values of pixel in
where Gradleft [ T and Gradright [ T as 1, otherwise as 0 and the binary image
Ibin row; colð Þ is constructed. The results are shown in Fig. 2.

To ensure the integrity of the lane information analyzed by the next histogram step,
more lane markings should be extracted. So that, the T selected is smaller than com-
monly used.

Fig. 2. (a) The grayscale image. (b) The result of feature image in binary.

Lane Detection Based on Histogram of Oriented Vanishing Points 5



2.2 Line Detection and Oriented Vanishing Points Update

It is a common practice in the bird’s-eye view [3, 7–10] to scan column by column to
locate the initial position of the lane lines or generate a probability map. Similarly, the
proposed method also scans image column by column, but in a camera perspective.
This step is completed by vanishing points.

The lane detection methods [15, 16] base on vanishing points usually assume that
the lane lines are parallel to each other, then extracting lines and voting in some way to
get the vanishing points. Although the lane lines are parallel to each other in many
environments, the lane lines will be in non-parallel state for some conditions such as up
and down ramps and lane narrowing in road intersection. Such vanishing estimation
methods are no applicable. However, the two boundaries of the lane line are parallel.
So, the propose method considers left and right lane lines respectively.

As Fig. 3(a) shows, there are two points defined as oriented vanishing points
xvl; yvð Þ, (xvr; yvÞ where horizon line yv is a constant value initialed by camera model
[14] to indicate the orientations of left and right lane lines. Then, lines are generated
from xvl and xvr to image bottom yb in range of x� xlanej j\wlane, where wlane is the
width of ego-lane and xlane is the center of ego-lane which will be updated by detected
lane lines.

The histogram is constructed for each column as shown in Eq. 2:

histx ¼
Pyb

h¼yh Ibin h; xþ bxv�x;yb�yh h� yhð Þ� �
; x� xlanej j\wlane

0; otherwise

(
ð2Þ

(a) (b)

Fig. 3. The diagram of line detections and oriented vanishing points update. (a) Extract lines by
histogram of oriented vanishing points. (b) Update oriented vanishing points according to the
overlap of lines and lane features. (Color figure online)

6 S. Chen et al.



where

xv ¼ xvl; x� xlane
xvr; x� xlane

�
ð3Þ

and the function bD;H is computed in advance to improve computational efficiency
which is a dy ! dx Bresenham’s line mapping space where D, H mean the width and
height of Bresenham’s line [14]. The required line set G is selected by Eq. 4 where
k 2 0; 1ð Þ is a proportional coefficient, and both ends of the line are xb; ybð Þ and xv; yvð Þ.
Using xb to represent the line. The result is shown in Fig. 3(a), the green blocks
indicates the selected lines.

xb 2 G; if histx [ k yb � yhð Þ ð4Þ

The lines in G go through lots of lane markings, the xb of most of them is located in
the actual lane lines. Then, we will update the oriented vanishing points through xb of
line set G.

O ¼
X

ðIbinðr; cÞ
^

Ilineðr; cÞÞ ð5Þ

The image Iline is drawn by connecting all the xb of Gleft to xvl, as shown in Fig. 3
(b). Define overlap degree O as shown in Eq. 5. O will become larger as the xv
approaches the actual oriented vanishing points. On the basis, we search for oriented
vanishing points in the form of regional gradient search. First calculate the maximum
overlap Omleft, Omright under a s width on both sides of xvl. Take the maximum value of
Oxvl , Omleft, Omright as Om. If the maximum position is the boundary of the largest side,
continue to search for the s width on the largest side until the maximum value is within
the width s, then the new xvl is obtained. Same for xvr.

(a) (b)

(c) (d)

Fig. 4. Comparison of results before and after process. (a) and (b) are origin and final results of
histogram; (c) and (d) are origin and final overlaps between lines and features.

Lane Detection Based on Histogram of Oriented Vanishing Points 7



In the above, there are two steps, one is to obtain straight lines through the oriented
vanishing points, and the other is to find the oriented vanishing points through the
straight lines. They form a process of mutual feedback. With multiple iterations, the
desired oriented vanishing point x̂v will be stable and obtained, as shown in Fig. 3. As
shown in Fig. 4, after iterations, the lines have been refined.

2.3 Candidate Lane Lines

Mðcleft; crightÞ 2 P; if
cleft þ cright

2 � xlane
�� ��� TDxlanej j

cright � cleft � wlane

�� ��� TDwlanej j
�

ð6Þ

The lines in Ĝ are classified according to the neighbor relationship, and the center
lines C are obtained. If c� xlanej j 2 wlane

4 ; 3wlane
4

� �
, the line is considered as a candidate

lane line.
The candidate lane lines are paired as M, and make up a pair set P, as shown in

Eq. 6 where TDxlane and TDwlane are the thresholds of lane center change and lane width
change selected as xlane

4 and wlane
4 in this paper. If there is no successfully paired left and

right candidate lane lines, the lane line which is closest to the ideal lane line xlane � wlane
2

is reserved, and another lane line is obtained by the lane width wlane. The pairs in P that
minimize the lane center and lane width change a cleft þ cright

2 � xlane
�� ��þ b cright � cleft�

��
wlanej are selected as the lane lines.

3 Experiment

This section shows the performance of the proposed method. We use C/C++ to
implement the proposed method. The algorithm is built on an Intel Core i5 @ 2.7 GHZ
based PC with 8G RAM. The approach is tested on image sequences from Caltech
Dataset [17]. The dataset contains four clips of urban streets.

The performance of the proposed lane detection method is shown in Table 1. And
some sample images and comparisons are shown in Fig. 5. Detection results show
robustness in presence of shadows, vehicles and pavements and low time cost in about

Table 1. Results in Caltech Dataset and comparisons

Scene Aly’s method [17] Niu’s method [18] Our method

AR(%) FP(%) AR(%) FN(%) AR(%) FN(%) Sec/frame

Cordova1 97.2 3.0 92.2 5.4 95.4 4.3 0.0037
Cordova2 96.2 38.4 97.7 1.8 96.8 3.6 0.0037
Washington1 96.7 4.7 96.9 2.5 97.6 2.0 0.0036
Washington2 95.1 2.2 98.5 1.7 99.8 0.2 0.0037
Total 96.3 11.6 96.4 2.85 97.4 2.5 0.0037

8 S. Chen et al.



4 ms per frame while Aly’s method in about 15 ms per frame. When the left and right
lane lines are in non-parallel, the proposed method also has great results.

The failure detection occurs at most in the lane width interruption or roadside as
shown in Fig. 6. The reason is that when the lane width suddenly changes, the lane line
will be ignored. For roadsides, some of them is selected in feature extraction step. As a
result, they may get high scores in histogram and be considered as lane lines. In
addition, the threshold applying to histogram to select possible lane lines leads to a
delay in response to lane lines that appear in the far distance.

4 Conclusion

In this paper, a real-time, efficient and robust method for lane detection is proposed.
The proposed method is based on the oriented vanishing points. The statistical his-
togram is constructed by the oriented vanishing points to detect the lane lines, and the
oriented vanishing points of the current frame are estimated according to the lane lines.
The mutual feedback process can get robust results of oriented vanishing points with
shadows or stains. The best straight lines are validated and selected as lane lines.
Experimental results show that the proposed method is robust, accurate and has a low
requirement for computing capabilities in different scenes which is meet the require-
ment of automated driving.

So far, the proposed method uses a straight line model to estimate the geometry of
the ego-lane. It is suitable for the roads with small curvature, such as highway and
freeway driving. To expand it for the complicated road environments, we will extend

Fig. 5. Detection samples in Caltech Dataset. The first row is the origin image. The second row
is result of Aly’s method. And the last row is ours, in where the green points are detected lines
covered with features and the red lines are selected lane lines. (Color figure online)

Fig. 6. Some failed samples of our method

Lane Detection Based on Histogram of Oriented Vanishing Points 9



the method with a curve or spline model to describe the lanes in a more accurate way in
the future work.
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Abstract. Pedestrian action recognition and intention prediction is one of the
core issues in the field of autonomous driving. In this research field, action
recognition is one of the key technologies. A large number of scholars have
done a lot of works to improve the accuracy of the algorithm for the task.
However, there are relatively few studies and improvements in the computa-
tional complexity of algorithms and system real-time. In the autonomous driving
application scenario, the real-time performance and ultra-low latency of the
algorithm are extremely important evaluation indicators, which are directly
related to the availability and safety of the autonomous driving system. To this
end, we construct a bypass enhanced RGB flow model, which combines the
previous two-stream algorithm to extract RGB feature information and motion
feature information respectively. In the training phase, the two streams are
merged by distillation method, and the bypass enhancement is combined in the
inference phase to ensure accuracy. The real-time behavior of the action
recognition algorithm is significantly improved on the premise that the accuracy
does not decrease. Experiments confirm the superiority and effectiveness of our
algorithm.

Keywords: Pedestrian action recognition � Autonomous driving � Bypass
enhanced

1 Introduction

In the field of autonomous vehicles, pedestrian action recognition and intention pre-
diction is one of the core issues to be solved urgently, which directly affects the process
toward a higher level for autonomous vehicles. In the field of pedestrian action
recognition and intention prediction, we can start from a variety of perspectives. And
behavior recognition is an important part. This paper studies how to improve the real-
time behavior recognition algorithm under the premise of ensuring accuracy.

Visual understanding is one of the core issues of artificial intelligence, and it has
been rapidly developed with the favorable promotion of deep learning technology. As
an important direction of visual understanding, action recognition is the basic work for
further application. Current methods to deal with the problem almost following three
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ways: (a) Two-stream frameworks that consider spatial and temporal information by
taking RGB and optical flow as input [1]; (b) 3D Network that use 3D convolution
kernel to extract the spatial and temporal features simultaneously [2]; (c) CNN+RNN
that process the visual input with a CNN whose outputs are fed into a stack of RNN
(LSTM is common) [3].

These approaches above all prove that the motion information in video plays an
essential role in action recognition. As a typical representation of motion information,
optical flow is calculated as a drift in a short time, meaning the moment velocity.
Moreover, 3D spatiotemporal CNN also found that RGB + optical flow boost their
accuracy, and achieve the state-of-the-art result [4] in UCF101 [5] and HDMI51
datasets [6].

There have been some attempts to describe the optical flow. Dense trajectories track
the feature points of frames based on displacement information from optical flow fields,
then train the classifiers with the encoded motion features extracted from trajectories
[7]. IDT improves the optical flow image by eliminating the camera motion and
optimizing the normalization, showing a superior stability but unsatisfactory speed [8].
TV-L1 method is appealing for its relatively good balance between accuracy and
efficiency, which iteratively calculates the displacements [9].

Since optical algorithms mentioned above are offline, Flownet was proposed.
Flownet is end-to-end trainable, including a generic architecture and a special archi-
tecture that contains a layer correlated feature vectors at different locations of image,
enabling the online predication of optical flow [10]. Regarding to the quality of flow,
Flownet2.0 fuses a stacked network with small displacement network in an optical
manner, resulting in a great balance between accuracy and speed on real-world datasets
[11]. However, although they were superior in terms of the accuracy, they suffered
from extremely expensive computation about time and storage.

In this study, we propose a novel architecture Bypass Enhancement RGB Stream
Model. This model leverages the prior information of complex model to obtain the
model parameters of motion information during training, and processes RGB infor-
mation through extended branches in the backbone. Moreover, the model reduces the
high computational consumption caused by optical flow, dynamically adjusts the ratio
of RGB information to motion information, and avoids over-reliance on optical flow
information when using the same ratio to process different dynamic video such as the
traditional two-stream model to infer static videos.

2 Related Work

Hallucination. Since the computation of optical flow is time consuming and storage
demanding, some attempts to learn other way to replace the flow to represent motion
information. [12] proposed that compressed video algorithms can decrease the
redundant information, so that can be used accumulated motion vector and residuals to
describe motion. Compared to traditional flow methods, motion vectors bring more
than 20 times acceleration although a significant drop in accuracy. Some methods
represent motion information only by RGB frame [13, 14]. [15] considered that a static
image can produce fake motion, thus predict optical flow fields through pre-trained
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Im2Flow network. [16] hallucinated optical flow images from videos. Monet models
the temporal relationship of appearance features and concurrently calculates the con-
textual relationship of optical flow features using LSTM [17]. All these approaches
describe motion information implicitly but achieve good performance in action
recognition.

Generalized Distillation. As a method of model compression [18], knowledge dis-
tillation can leverage a more complex model that has been trained to guide a lighter
model training, so as to keep the original accuracy of large model while reducing the
model size and computing resources [19, 20]. [20] minimized the linear combination of
loss functions that are cross entropy with the soft targets and cross entropy with the
correct labels. Human society have proved experimentally that interactions between
teacher and student can significantly accelerate the learning process. According to this
theory, [21] considered a model that supplies privileged information by paradigms
when training. [22] applied the privileged information to complex model during dis-
tillation to finish knowledge transfer. Recently, for its superior performance in some
supervised, semi-supervised and multitask learning tasks, more works derived from
distillation and privileged knowledge look forward to improve their tasks [23–27].

3 Our Approach

Two methods were proposed in literature [28], namely MERS and MARS. MARS
realizes the information fusion between the optical flow branch and the RGB branch by
constructing a two-part loss function. In the phase of model training, it is still necessary
to calculate the optical flow and extract the optical flow feature, and then realize feature
information transmission from the optical flow feature to the RGB feature branch
through the distillation method. In the inference phase, we only use the RGB model to
complete the recognition task. It is not necessary to use the optical flow branch,
avoiding the calculation of the optical flow. Inference phase can significantly reduce
the computational complexity and improve the real-time performance. However, it is at
the expense of proper sacrifice accuracy.

In order to solve the problem of this method in [28], we construct a Bypass
Enhancement RGB Stream (BERS) Model. It is hoped that the performance of accu-
racy can be ensured under the condition that the computational complexity is reduced,
and the model can infer in real time.

The BERS model structure is shown in Fig. 1. The performer of the model is
divided into two different operating states: training mode and inference mode. The
overall structure is inspired by [28]. The overall structure in Fig. 1 includes upper and
bottom parts. In the training mode, the RGB frames of the video are input into model.
RGB information is first sent to the bottom model, and the optical flow frames are
processed by the optical flow algorithm module, and then the flow-based action
recognition model training is performed. Training is completed to obtain the learned
feature weights. Then the global model training is performed, the input is still the RGB
frames of the video, and the bottom feature weights are used for the distillation
algorithm to assist in learning of the upper model. In the inference mode, the input is
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the RGB frames of the video, and only the upper model is activated to implement the
inference, and the bottom model does not work. The detailed description is as follows:

Training Phase
In the training mode, the bottom model and the upper model shown in Fig. 1 are all
involved in the operation, but the participating operations are sequential and not
involved simultaneously.

The first stage is the training of the bottom model. The role of the bottom model is to
extract and learn the motion information of the video. The input is RGB frames, which
pass through the optical flow algorithm module. Here we use the TV-L1 algorithm to
obtain optical flow frames. The optical flow frames are further sent to the deep con-
volution neural network for motion feature information extraction. We use the network
3D ResNeXt101 [30, 31], the output Feature1 of which is connected to class proba-
bility. Then the loss function is constructed according to the cross entropy of class
probability and the label y, optimized iteratively to completes the model parameter
learning. After the training of bottom model is completed, the valuable material we
need to use is the optical flow feature Feature1.

Next, it is the training of the upper model. In this training phase, we need to assist
with the pre-trained bottom model. Specifically, the RGB frames are simultaneously
input to the bottom model and the upper model, respectively. After the RGB frames
enter the pre-trained model in bottom, the optical flow feature Feature1 corresponding
to the adjacent RGB frames can be obtained since the parameters of the bottom model

Fig. 1. Bypass Enhancement RGB Stream Model. The bottom is the optical flow branch in
training phase, the upper is the enhancement RGB branch.
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have been fixed. At the same time, the RGB frames are input into the upper model, first
enter the backbone neural network to extract the appearance information, and then
divided into three branches to construct the first part of the loss function.

The first branch is output to a small residual network-1, then to average pool layer-
1, where the input of the first branch is taken from the penultimate ResNext block of
deep network 3D ResNeXt101. The second branch is output to another small residual
network-2, then to average pool layer-2, where the input point of the second branch is
taken between the last convolution layer of the 3D ResNeXt101 and Feature2. The
third branch is output to Feature2, then to average pool layer 3. Finally, we combine the
above three outputs from Avg pool-1, Avg pool-2, and Avg pool-3 through the fully
connected layer, and construct the first part of the loss function with the label y.

La ¼ CrossEntropy W Avgpoll � 1;Avgpoll� 2;Avgpoll� 3ð Þ; y½ � ð1Þ

Where W stands for the weights of the fully connected layer.
The second part of the loss function adopts a similar method in [28], and uses the

distillation method to realize the transmission of optical flow information to the upper
model, called Loss 1. The overall form of the loss function is:

L ¼ Laþ Loss1 ¼ Laþ k Feature1� Feature2j jj j ð2Þ

Where k is a hyper-parameter that used to adjust the effect of distillation.
The training of the upper model is completed with the loss function L.

Inference Phase
In the inference mode, the upper model is used while the bottom model does not work.
After the original videos are given, the model outputs the action category.

4 Experiment

Dataset. In this section, we will investigate the performance of the Bypass Enhance-
ment RGBStream framework on datasets Kinetics400 [29] andUCF101 [5]. Kinetics400
consists of 400 classes, including 246 k training videos, 20 k validation videos, and each
video are from YouTube, about 10 s. Kinetics is a large-scale dataset whose role in video
understanding is similar to ImageNet’s role in image recognition. Some works also
migrate to other video datasets using the Kinetics pre-trainedmodel. In this paper, we use
the validation dataset to test our trained model. UCF101 is a dataset containing 101
classes that belong to five categories: makeup brushing, crawling, haircutting, playing
instruments, and sports. 25 people perform each type of action. Following setting of [28],
we use the split1 during training and average 3 splits when testing.

Implementation Details. The novel architecture is composed with source optical flow
branch and target derived RGB branch. According to the spirit of distillation and
privileged knowledge, when training, we use TV-L1 method [9] to extract optical
frames, and save them in jpg format as the input for complex model. Due to the
performance of ResNext101 architecture [30, 31], we adopt it to extract the features
after inputting the RGB frames and optical flow frames. For the derived branch of
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RGB, we choose improved ResNext. Following the setting of [11, 28], we train the
model with the SGD optimization method, and use 64 frames clips both in training and
testing. As for the weights of loss, grid-search is applied to find the important hyper-
parameters. We train the model on Kinetics from scratch while finetune from the pre-
trained Kinetics400 model on UCF101.

Results. This part illustrates the superiority of our model from three perspectives. First
we compare our model with some single stream models and two-stream models.
According to Table 1, we can see that motion information is more accurate than RGB
information basically. And two-stream models perform better than single ones. Bypass
Enhancement RGB Stream Model is 3.5% higher than MARS while 0.9% lower than
MARS+RGB on Kinetics dataset, and 0.9% higher than MARS while 0.1% lower than
MARS+RGB on UCF101 dataset. Second in the case of videos that recognize static
actions, our model standout (see Table 2). Third we compare our model with some
state-of-the-art models (see Table 3). Apparently our model maintains a good accuracy
while reducing a large amount of computing resources.

Table 1. Single-stream model and two-stream models (Dataset: validation of Kinetics and split
1 of UCF101).

Stream Kinetics UCF101-1

RGB 68.2% 91.7%
Flow 54.0% 92.5%
MERS 54.3% 93.4%
MARS 65.2% 94.6%
RGB+Flow 69.1% 95.6%
MERS+RGB 68.3% 95.6%
MARS+RGB 69.6% 95.6%
OUR 68.7% 95.5%

Table 2. Recognition on video cases with static actions

Action MARS OUR

Making sushi 24% 35.2%
Eating cake 4% 14.1%
Reading newspaper 6% 17.7%

Table 3. Compare with state-of-the-art models (Dataset: validation of Kinetics and average 3
splits of UCF101)

Model Kinetics UCF101

Two-stream 69.1% 88.0%
ResNext101 65.1% 94.5%
I3D 71.1% 98.0%
MARS+RGB+FLOW 74.9% 98.1%
OUR 68.7% 97.2%
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5 Conclusion

In this paper, we propose a novel model, named Bypass Enhancement RGB Stream
Model, to distill the motion information from a complex model during training, avoid
expensive computation by only taking RGB images as input when testing. This model
combine the appearance features and motion feature through a linear combination of
losses, resulting a good balance of accuracy and time in dataset Kinetics and UCF101.
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Abstract. Semantic segmentation is essential for autonomous driving, which
classifies roads and other objects in the image and provides pixel-level infor-
mation. For high quality autonomous driving, it is necessary to consider the
driving environment of the vehicle, and the vehicle speed should be controlled
according to types of road. For this purpose, the semantic segmentation module
has to classify types of road. However, current public datasets do not provide
annotation data for these road types. In this paper, we propose a method to train
the semantic segmentation model for classifying road types. We analyzed the
problems that can occur when using a public dataset like KITTI or Cityscapes
for training, and used Mapillary Vistas data as training data to get generalized
performance. In addition, we use focal loss and over-sampling techniques to
alleviate the class imbalance problem caused by relatively small class data.

Keywords: Semantic segmentation � Class imbalance � Road type �
Autonomous driving

1 Introduction

Several global companies, including General Motors (GM), Audi, Google and Tesla,
are involved in the development of autonomous vehicles. In particular, the GM
Cadillac CT6 is equipped with the ‘Super Cruise’ feature which is level 3 autonomous
driving. While using the feature, the driver does not have to hold the steering wheel.
Because these kinds of autonomous driving features can provide convenience to cus-
tomers, autonomous driving technology is rapidly developed and commercialized.
However, since the malfunction of autonomous vehicles is a direct threat to human
safety, the autonomous driving requires to accurately recognize road and objects that
the vehicle have to avoid, such as people. To do this, when using the camera-based
autonomous driving feature, the boundary of objects in the image should be clearly
distinguished. Object detection based on bounding box such as YOLO [1], can provide
object class and location information, however the location is not highly accurate
because the result is displayed as bounding box. Semantic segmentation, on the other
hand, is pixel-level image classification that can be clearly distinguish the boundaries of
objects. This is the reason that semantic segmentation is more appropriate to autono-
mous driving than object detection. KITTI [2] and Cityscapes [3], which are
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representative of public driving datasets, provide ground truth (GT) for semantic
segmentation training and promote development of semantic segmentation model by
benchmark competition.

When driving a car, the driver controls the vehicle speed depending on type of
driving road for safety and riding comfort. Traffic law regulates maximum speed of
paved and unpaved roads differently. If you drive unpaved road like driving on pave
road, accidents such as vehicle rollover can occur and damage to human and property.
Therefore, autonomous driving feature should classify road types and control vehicle
speed according to road types for safety. There have been several related works to
predict road types or road condition. There is a work [4] to estimate the road type by
calculating shear strength with physical quantities such as friction coefficients and slip
angles acquired from on-board rover sensors. Since the method only measure the
physical quantities to the contact area between the ground and tire, the road surface
condition cannot be predicted before the vehicle passes. Wang et al. [5] proposed a
method to estimate road types by using LiDAR sensor. They reconstruct three
dimensional road surface by using LiDAR data and extract features from road surface.
And then, they classify road types with Support Vector Machines by using extracted
features. However, due to the characteristics of LiDAR sensor, it cannot acquire dense
information for the road surface and sometimes fail to collect data for the highly
reflective surface. LiDAR also has a disadvantage that the cost is much higher than a
camera. There have been several works using cameras [6, 7]. Slavkovikj et al. [6]
proposed a patch-wise road type classification method using K-means clustering. This
method can classify paved and unpaved road, but it cannot provide a pixel-wise
classification results and has the limitation that additional method is needed to dis-
tinguish road and non-road region. Roychowdhury et al. [7] proposed a method to
estimate road friction by predicting road condition such as dry, wet, snow and icy. The
method considers the front area of the vehicle on the image as road surface. Then, the
road surface area is divided into 5 by 3 patches. A three-layer convolutional neural
network is applied to each patch to recognize the type of road surface. However, this
method cannot guarantee that the patch is a real road surface in situations like curves or
corners.

This paper proposes a method to training semantic segmentation model by using
modified public dataset to distinguish paved and unpaved road from driving images.
Typically, deep learning-based semantic segmentation module requires a large dataset
to provide pixel-wise annotation of GT for training. For this reason, we use public
driving datasets to save effort and cost in creating such a large dataset. We compared
three public datasets, KITTI, Cityscapes, and Mapillary Vistas [8], as candidates for
training datasets, and decided to use Mapillary Vistas which provides various road
scenes. Since the dataset does not categorize roads by type, we subdivide the ‘roads’
label into ‘paved roads’ and ‘unpaved roads’. As a result, we confirmed that the number
of data of paved road class and unpaved road class is imbalance. To alleviate this
problem, over-sampling and focal loss [9] are applied.

The paper is organized as follows. In Sect. 2, we describe semantic segmentation
model, datasets and methods that used to alleviate class imbalance problem. In Sect. 3,
we present experimental results. Finally, conclusions and future direction of the
research are given in Sect. 4.
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2 Proposed Method

In this section, we introduce the semantic segmentation model used to classify road
types and the reasons for the selection. To determine appropriate dataset from public
dataset, each datasets is analyzed and experiments are performed. After modifying the
dataset, the ‘Road’ class is subdivided into ‘Paved road’ and ‘Unpaved road’, and it
cause class imbalance problem due to the small amount of ‘unpaved roads’ dataset. We
apply the over-sampling and focal loss to improve segmentation performance.

2.1 Semantic Segmentation Model

In this paper, we use AdapNet [10] as a segmentation module, which shows good
performance in the Cityscapes benchmark. The AdapNet consists of an encoder part
that contracts a segment and a decoder part that expands a segment. The AdapNet
adopt ResNet-50 [11] as an encoder to create a deeper network and proposed multiscale
blocks to reduce computational cost and dilated-convolution to acquire high resolution
features. There are some models outperform AdapNet, such as DeepLab [12], but these
models require a lot of memory, making them difficult to train on a single GPU.
Because deep learning systems installed in commercial vehicles are less cost effective if
they require multi-GPU platform, we choose AdapNet as a segmentation model, which
can be trained on a single GPU and showed high performance on the Cityscapes
benchmark.

2.2 Dataset

Training Dataset. Three candidate datasets were considered for training the seg-
mentation module: KITTI, Cityscapes and Mapillary Vistas. KITTI is a dataset con-
sisting of 200 images of 1242 � 375 resolution. Cityscapes is a dataset consisting of
approximately 5,000 images of 2048 � 1024 resolution and all images have the same
viewpoint as shown in Fig. 1(a) because all images were captured by a camera installed
on the same vehicle. Mapillary Vistas is a dataset created by collecting approximately
25,000 full HD road images of at least 1920 � 1080 resolution. Mapillary Vistas
images are captured from various types of vehicles, people, or CCTVs. Therefore, they
have various viewpoints as shown in Fig. 1(b). We exclude the KITTI dataset because
the number of data is too small to be used for training.
The remaining two datasets, Cityscapes and Mapillary Vistas, have following char-
acteristics: The Cityscapes dataset has the same viewpoint, and Mapillary Vistas has
different viewpoints. To determine which dataset is suitable for training, we train the
semantic segmentation module with the two datasets and the results are compared. We
have integrated objects labels into ‘Background’ label except ‘Road’ because the labels
provided by Cityscapes and Mapillary Vistas do not exactly match. Therefore, we
made datasets which consists of two classes, road and background. After refining
process, excluding images that do not include roads in the image, the training set of the
Cityscapes is 2,907 images and the Mapillary Vistas is 11,884 images. The excluded
image examples for Cityscapes and Mapillary Vistas are shown in Fig. 2(a) and (b),
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respectively. For the comparison, we randomly select 2,907 images from Mapillary
Vistas dataset equal to the number of Cityscapes and use them as training datasets.

Three test datasets were used for performance evaluation after the training. The first
is refined Cityscapes test dataset consisting of 492 images. The second was a road
driving dataset taken by us. We took images with a camera mounted on a Hyundai
Tucson ix2WD 2013 model during driving on a proving ground (PG) road. As with the
Cityscapes dataset, all images have the same viewpoint but the camera pose is different
from the Cityscapes data. PG dataset consists of 391 images of 2048 � 1536 resolu-
tion. The last one is the Mapillary Vistas dataset. Since the Mapillary Vistas dataset
does not provide validation data, we randomly extracted 500 images that were not used
as training data.

After training two segmentation modules, one is trained using the Cityscapes
training dataset, and the other is trained using the Mapillary Vistas training dataset,
segmentation performance was evaluated by calculating mean intersection over union

Fig. 1. Dataset example images: (a) Example images of the Cityscapes dataset. (b) Example
images of the Mapillary Vistas dataset. (c) Example images of the PG dataset.

Fig. 2. Excluded images from training: (a) Excluded images from Cityscapes. (b) Excluded
images from Mapillary Vistas.
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(mIOU) for road class of test datasets. As shown in Table 1, the module trained with
Cityscapes showed good performance on the Cityscapes test dataset, but was poor on
the other two test datasets. While, the model trained with Mapillary Vistas showed
almost constant generalized performance regardless of the test datasets. The module
trained using Cityscapes seems to occur overfitting due to the fixed geometric condi-
tions of the training images. Thus, we select the Mapillary Vistas dataset as the training
dataset for the segmentation module.

The original Mapillary Vistas has a ‘Road’ class, regardless of the type of road. We
subdivide this label into ‘Paved road’ and ‘Unpaved road’ to classify road types.
Therefore, the segmentation module outputs three probability map: background, paved
road, and unpaved road. As a result of the dataset modification, we got 11,810 paved
road class data and 74 unpaved road class data, and we divided them by a ratio of 7:3
for each class to create a training dataset of 8,267 paved and 52 unpaved road data and
a test dataset of 3,565 paved and 22 unpaved road data.

Test Dataset. Two test datasets were used to evaluate the trained model. One is
aforementioned Mapillary Vistas test dataset. The other is PG dataset captured from
Korea Automobile Testing & Research Institute in Hwaseong-si, Republic of Korea.
the PG dataset consists of 391 paved and 166 unpaved road data.

2.3 Class Imbalance

The term ‘class imbalance’ means that the number of each class in the dataset is
significantly different. Deep learning model can be trained without biasing particular
class when the class ratio of the training dataset is balanced. However, if the model is
trained with a class imbalanced dataset, the segmentation performance for classes with
fewer data is poor. The modified Mapillary Vistas has 8,267 paved road class data and
52 unpaved road class data. The difference in the number of data between the two
classes is very serious, resulting in low performance for the unpaved road class. We
apply over-sampling and focal loss to alleviate this problem.

Over-Sampling. Over-sampling changes the proportion of classes by copying the data
of a small number of classes. In this paper, we attempt to alleviate the class imbalance
problem by over-sampling the unpaved road class and find the appropriate ratio
between the number of pavement class and the unpaved road class.

Focal Loss. Focal loss is a proposed method to solve the problem that the background
rate of object candidates is much larger than objects in the field of 1stage object

Table 1. mIOU of the ‘road’ class for each of the training and test datasets

Training dataset Test dataset
Cityscapes PG Mapillary Vistas

Cityscapes 98.29% 91.22% 93.63%
Mapillary Vistas 95.54% 98.01% 95.26%
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detection. Focal loss improves the training contribution of features that are difficult to
classify by reducing the loss of features which are easy to classify. Focal loss is a
formula obtained by adding scaling factor to cross-entropy loss. If the predicted
probability for any t class is pt, we define the focal loss as:

FL ptð Þ ¼ �at 1� ptð Þclog ptð Þ: ð1Þ

The training contribution can be controlled by changing the values of at and c. In
this paper, we tried to mitigate the class imbalance problem by using focal loss in the
training process, focusing on the unpaved road class rather than the background and the
paved road class, which are relatively easy to training.

3 Experiment Results

We implemented AdapNet in Python Tensorflow environment and trained segmenta-
tion module for classifying road types. The parameters are set as follows: input image
size is 768 � 384, batch size is 8, max iteration is 1.5* 105, optimizer is Adam
optimizer, polynomial decay learning rate is used with 1* 10�4 initial learning rate and
1* 10�4 power. Focal loss parameter is set to at to 0.25 and c to 2, suggested as the best
in the original paper. The training data were over-sampled so that the number of
unpaved road images would be 10%, 25%, 50%, and 100% of the number of paved
road images. When the over-sampling was not applied, the ratio between the two
classes was 0.6%. The trained models were evaluated by calculating the mIOU for each
class using the PG test dataset and the Mapillary Vistas test dataset.

Table 2 shows the performance of models that using focal loss for training process
and not. The dataset used for training was not over-sampled. In the case of the PG test
dataset, the paved road class performance increased by 0.52% when focal loss was
used, but the unpaved road class performance decreased by 0.13%. In the case of the
Mapillary Vistas test dataset, the unpaved road class performance increased by 20.08%
when the focal loss was used, and the paved road class performance decreased by
0.3%. In both cases, the average mIOU is increased, and this result shows that the focal
loss is effective to enhance the segmentation performance.

Table 2. Segmentation performance of models using and not using focal loss

Test dataset Loss mIOU
(Paved)

mIOU
(Unpaved)

mIOU
(Average)

PG Cross entropy loss 93.48% 94.66% 94.07%
Focal loss 94.00% 94.53% 94.26%

Mapillary Vistas Cross entropy loss 93.15% 24.27% 58.71%
Focal loss 92.89% 44.35% 68.62%

Paved and Unpaved Road Segmentation Using Deep Neural Network 25



Table 3 shows the performance of the models trained with datasets which have
different class ratio by over-sampling the unpaved road. In the PG test dataset, per-
formance was best when the number of unpaved roads was 25% of the paved road, and
best when the class rate was 50% in the Mapillary Vistas test dataset. At 100% class
rate dataset which over-sampled too much, both test datasets showed low performance.

Table 4 shows the performance of the models trained with over-sampling datasets
and applied focal loss. Applying both over-sampling and focal loss to the training
process result in lower performance than just over-sampling alone.

The results show that the segmentation performance improved the most when only
over-sampling was used. However, depending on the test dataset, the optimal over-
sampling ratio changes, and the more over-sampling required the longer training time.
It is difficult to determine the best over-sampling ratio simply comparing the evaluation
results. On the other hand, focal loss does not require additional training time because

Table 3. Segmentation performance of models applied over-sampling

Test dataset Over-sampling rate mIOU
(Paved)

mIOU
(Unpaved)

mIOU
(Average)

PG 0.6% 93.48% 94.66% 94.07%
10% 95.07% 96.66% 95.86%
25% 95.26% 96.81% 96.03%
50% 94.27% 96.95% 95.61%
100% 84.21% 62.29% 73.25%

Mapillary Vistas 0.6% 93.15% 24.27% 58.71%
10% 93.07% 55.23% 74.15%
25% 91.78% 63.05% 77.41%
50% 92.66% 64.91% 78.79%
100% 93.11% 41.27% 67.19%

Table 4. Segmentation performance of models applied over-sampling and focal loss

Test dataset Over-sampling rate mIOU
(Paved)

mIOU
(Unpaved)

mIOU
(Average)

PG 10% 93.96% 93.96% 93.96%
25% 93.63% 93.99% 93.81%
50% 80.06% 73.11% 76.58%
100% 4.09% 27.92% 16.00%

Mapillary Vistas 10% 92.92% 50.65% 71.79%
25% 91.68% 51.55% 71.62%
50% 73.10% 3.27% 38.19%
100% 5.19% 0.72% 2.96%
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original training dataset is used, but the performance improvement when using focal
loss is relatively low compared to when over-sampling is used. In this paper, we use the
model trained using only 50% over-sampling as a segmentation module, and Figs. 3
and 4 show the results of predicting the PG test dataset and the Mapillary Vistas test
dataset using the segmentation module.

4 Conclusion

This paper proposed a method for training deep learning based segmentation module
that segment paved and unpaved roads for safe autonomous driving. We analyzed two
public dataset Cityscapes and Mapillary Vistas. The Cityscapes was taken with the
same camera pose, occurring overfitting. To prevent this, Mapillary Vistas which
consisting with various viewpoint data was used for training dataset. Since the Map-
illary Vistas did not distinguish road labels by road type, we subdivided road labels into
‘Paved road’ and ‘Unpaved road’, and removed images that did not include roads. The
modified Mapillary Vistas has very few ‘Unpaved road’ data, and it cause class
imbalance problem. To alleviate this problem, we applied over-sampling and focal loss

Fig. 3. Prediction result of 50 over-sampling model with PG test dataset, the left column is the
original image, the middle column is the GT, and the right column is the prediction: (a) Paved
road class prediction. (b) Unpaved road class prediction.

Fig. 4. Prediction result of 50 over-sampling model with Mapillary Vistas test dataset, the left
column is the original image, the middle column is the GT, and the right column is the prediction:
(a) Paved road prediction result. (b) Unpaved road prediction result.
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and confirmed that these techniques improve segmentation performance. As future
work, we plan to add other road types, such as ‘brick road’, and to acquire more
unpaved road data to improve the performance of the proposed model. Also, we will try
to overcome class imbalance problem through structural improvement of the seg-
mentation model.
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Abstract. This paper presents an image scene conversion algorithm based on
generative adversarial networks (GANs). First, the generator uses the generator
network with cross-layer connection structure to realize the sharing of image
structure information, so that the structure and edge of the generated image are
consistent with the input image as far as possible. Secondly, the multi-scale
global convolution network discriminator is used to determine different scales of
image. Then, the combinational loss functions including GAN, L1, VGG and
feature matching (FM) are designed. The network structure of the generator, the
number of multi-scale discriminator and the weighted combination of multiple
loss functions are evaluated and analyzed, and the optimized algorithm structure
is given. Finally, through image fogging and day-to-night conversion experi-
ment, the results show that the details of the converted image are more complete
and the generated image is more realistic.

Keywords: Image conversion � Generative adversarial networks � Deep
learning � Image generation

1 Introduction

Computer vision can be thought of as a “translation” input image, and a scene can be
represented by a map, a hand-drawn, or a photo. In unsupervised learning, image-to-
image conversion problems are difficult to achieve because training images do not
match, i.e., are not paired training sets. In the supervised learning, the corresponding
images can be trained and matched in different domains [1], which can make the
mapping relationship between the generated image and the input image pixels more
accurate, and avoid the phenomenon that the generated image is uncontrollable in the
unsupervised learning.
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The use of convolutional neural networks (CNN) for supervised learning is the
research direction of many scholars. When generating images using network prediction,
the L1 loss function is often used to calculate the Euclidean distance between the
predicted image and the real image, which may produce ambiguous results [2, 3]. GANs
[4, 5] uses training to generate models that attempt to determine whether the output
image is real or falsified, and its loss function can be applied to traditionally require very
different kinds of tasks. How to use the optimized GANs for supervised learning and
realize various transformations of images has gradually become a research hotspot.
Pix2pix [1] uses the condition GANs [6] for different image conversions. In the absence
of training pairs, various methods for image-to-image translation have also been pro-
posed [7]. Chen et al. [8] pointed out that due to training instability and optimization
problems, the conditional GANs training is difficult to generate high-resolution images,
and perceptual loss [9] is an idea that can solve this problem.

As a representative of the field of image conversion, image style conversion is
mainly divided into two categories, one is based on the global mean by matching the
mean [10] and variance of the pixel color or its histogram to achieve styling; the other
is based on local stylization of images by dense correspondence between content and
style photos based on low-level or high-level features [11]. These methods are slow in
practice and, in addition, they are usually for specific scenes (for example, day or
season changes). Gatys et al. [12] proposed an art-style transformation algorithm. The
main step is to solve the problem of extracting deep features from Gram matrix from
content image and style image. Although the performance and speed are further
improved by algorithm improvement [13, 14]. However, these methods sometimes
produce images that are not real enough.

Based on the above analysis, we proposes a novel image scene conversion algo-
rithm. There are three main contributions in this work: (1) a new generator with a cross-
layer connection structure is designed, which better preserves the structural information
of the image; (2) a multi-scale discriminator is designed, which can take into account
the details and structure of the image; (3) a new combined loss function is designed,
adding VGG loss and FM loss, and increasing the control of generating against the
network.

The remainder of paper is organized as follows. Section 2 analyzes the algorithm in
detail from three aspects: generator structure, discriminator structure and loss function.
The experimental details and evaluations are presented in Sect. 3. We finally conclude
our work in Sect. 4.

2 Image Conversion Algorithm Based on Generative
Adversarial Networks

The image scene conversion algorithm based on GANs proposed in this paper is mainly
divided into two stages of training and testing. The GANs model is optimized during
the training phase so that the input image is obtained through the GANs model during
the test phase. Optimize network parameters by iteratively generating networks and
decision networks. This section describes the generator, the discriminator and the loss
function.
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2.1 Generator Structure

This paper uses a cross-layer connection on the generator network G design because
there is a large amount of information shared between input and output in image
conversion, and it needs to transmit this information directly on the network. For
example, when scene conversion is performed, the input and output share the position
of the highlighted edge. The network structure is shown in Fig. 1.

As shown in Fig. 1, the network structure is bilaterally symmetric, with the con-
volution operation on the left and the deconvolution operation on the right. In the
Convolution layer, Batch Normalization and Prelu as a module, marked as a layer. The
input image is subjected to a multi-layer convolution operation to obtain an intermediate
layer. At the same time, the convolutional layer information corresponding to the right
side and the left side is directly connected, and finally the output of the image is obtained.

2.2 Discriminator Structure

Multi-scale Discriminator Network
Improving the network’s receptive field can use deeper networks or larger convolution
kernels, but both increase network capacity and can lead to overfitting. In addition, both
of these methods require more memory. So a multi-scale discriminator is used in this
paper, which used to determine each of the different scales. For high-resolution images,
multi-scale discriminator can improve the network’s receptive field.

This paper uses up to three discriminators, which are recorded as D1, D2 and D3.
When three discriminators are used, the images are downsampled twice and then
judged. A single discriminator downsampling layer and an output decision layer are
composed, except that the size of the input image is different.

In theory, the more discriminator, the better, but it is not. First, the more discrim-
inators increase the complexity and computation of the network; second, the number of
discriminator is related to the size of the input image itself. If the input size is
appropriate, not large or super large, the discriminator does not need to be excessive.
Therefore, it is appropriate to choose the number of discriminator, this paper conducts
test experiments on the fogging training set. The image input size is 256 � 256, when
the number of discriminator is 1, 2, and 3, the effect of 60 epoch is iterated, as shown in
Fig. 2.
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C
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Fig. 1. Generator network structure
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Overall, the number of discriminator has little effect on the content of the generated
image. But there will be differences in detail. It can be seen from Fig. 3 when
num_D = 1 and num_D = 3, the details of the scene will be missing, such as the
horizontal line of the building in the figure, and when num_D is 2, it can be retained. At
the same time, in the sky part of the figure, distortion occurs when num_D = 1. When
num_D = 2, the sky color is more uniform. Therefore, num_D = 2 for all experiments
in this paper.

2.3 Loss Function

Loss Function Composition
The loss function in this paper consists of four parts, namely GAN loss, L1 loss, VGG
loss and FM loss, the ultimate optimization objective of the total loss function of the
algorithm in this paper can be expressed as:

min
G

ðð max
D1;D2;D3

X

k¼1;2;3

LGANðG;DkÞÞþ k1L1ðGÞþ k2
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Each loss function is defined as:
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Fig. 2. Comparison of different number of discriminator
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Where x is the input image and y is the target image, T is the total number of layers
of the discriminator, and Ni is the number of elements in each layer, FðiÞ represents the
ith layer of VGG network, and Mi represents the number of elements in this layer.

In this paper, the total loss, no VGG loss, no L1 loss and FM loss were tested. The
experimental results in the three cases are shown in Fig. 3. When the VGG loss is not
used, image distortion occurs. In Fig. 3, the red frame area, in the sky, the track, etc.,
will appear as an irregular white oval “foreign object”. This situation may occur due to
data overflow. When there is no loss of L1 and FM, the image will not be distorted, but
the color of the image will be deviated.

3 Experimental Results and Discussion

3.1 Experimental Environment

The fogging training dataset [15] uses the software Adobe lightroom CC fogging
function to fog the Middlebury Stereo Datasets and the fog-free images collected
online. Add fog of 30, 40, 50, 60, 70, 80, 90, 100 to 76 fog-free images, and eventually
forming 608 pairs of foggy images with different concentrations of fog. A training set is
made with matching image pairs of the fog-free image. There were 17,112 day and
night conversion training dataset [16].

3.2 Subjective Results Analysis

Using fogging training dataset, the pix2pix [1], CycleGAN [7], DRPAN [5] algorithm
and software fogging scene conversion experiment are compared, and using day and
night training dataset, the algorithm of this paper performs scene conversion test. The
results are shown in Figs. 4.

Fig. 3. Comparison of different loss function results (Color figure online)
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It can be seen from Fig. 4a that the image after pix2pix processing has a fogging
effect. The content of the image is clear and the details are not lost, but the image is
fogged and the overall color of the image is blue. The content of CycleGAN is blurred
and the color is seriously distorted. The effect of software fogging is very similar to the
proposed method. The fogging is uniform, the color of the fog is not biased, and the
details of the image are well preserved. For the DRPAN, although the color of the
whole image has decreased, the image is blurred. Especially the trunk and leaves above
the image, without borders, which is very blurred.

In Fig. 4b, the content of the image is basically unchanged, and the brightness of
the generated night sky area is significantly different from that of the non-sky area.
Although it is different from the real night scene, the sky is darkened overall, and the
village and buildings are lit, which is more realistic. In summary, when the day-to-night
transition is performed, the converted image as a whole exhibits the characteristics of
the night, but sometimes an unreal situation occurs.

3.3 Objective Index Analysis

Analysis of Objective Index of Image Fogging
In this paper, the fog concentration (FADE) [17] is used to obtain the fog concentration
index, PSNR and SSIM objective indicators for 40 images in the test set. Table 1
shows the mean and mean square error of the three indicators, and compares the fog-
free image, CycleGAN, Pix2pix, DRPAN, and software fogging effects.

fogging Night scene synthesis

Fig. 4. Comparison of fogging results and night scene synthesis (Color figure online)

Table 1. Comparison of objective index of fogging

Fog-free image CycleGAN Pix2pix DRPAN Software
fogging

Proposed

FADE 0.230 � 0:116 0.736 � 0:431 0.689 � 0:348 0.459 � 0:250 0.670 � 0:412 0.634 � 0:410

PSNR 19.231 � 2:157 12.703 � 1:708 13.830 � 0:690 17.211 � 2:541 13.611 � 1:147 14.760 � 0:733

SSIM 0.789 � 0:052 0.349 � 0:084 0.752 � 0:074 0.809 � 0:082 0.782 � 0:075 0.725 � 0:062
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It can be seen from Table 1 that the FADE of the image significantly increased, with
the lowest fogging degree compared with DRPAN and the highest degree of Cycle-
GAN. Pix2pix is similar to the algorithm in this paper and the fogging degree of
software. The PSNR and SSIM values of the image basically maintain a small fluc-
tuation within a certain range, while DRPAN and CycleGAN have large fluctuations.
In addition, the PSNR value of CycleGAN is basically the lowest among several
fogging algorithms, which is also due to errors and deficiencies in the image content
generated by this algorithm. In contrast, the overall PSNR and SSIM values of DRPAN
are relatively high, because the structure content is well preserved, but the fogging
effect is not obvious.

Analysis of Objective Index of Day-Night Conversion
In this paper, the image quality after conversion is evaluated by image average
brightness (IAB) and image sharpness (IC). The IAB is obtained by reading the Y
channel value and performing normalization calculation. The IC is calculated using the
Leningrad gradient method. The correlation values for calculating the two sets of
images shown in Fig. 4b are shown in Table 2.

After the day-night conversion of the algorithm, the average brightness of the image
IAB indicator is significantly smaller than the average brightness of the daytime image,
which is similar to the average brightness of the real night image; the IC value of the
image is lower than the IC value of the real night scene, maintaining its basic char-
acteristics but blurring the texture details.

4 Conclusions

The content of image scene conversion algorithm based on GANs is introduced.
Firstly, the design of cross-layer connection generator network, multi-scale decision-
maker network and four combinations of loss function are introduced. Then the per-
formance of the network module is analyzed and the rationality of the algorithm design
is proved by experiments. Then it introduces the software and datasets of the experi-
ment, and analyzes the subjective effect and objective index respectively. This paper
implements fogging scenes and day to night scene transitions. Compared with sub-
jective effects and objective parameters, the algorithm in this paper achieves good
performance compared to other algorithms.
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Table 2. Comparison of objective index of day-night conversion

Day-top Proposed Night-top Day-bottom Proposed Night-bottom

IAB 154.8823 63.8774 68.4052 114.6836 62.1936 70.8118
IC 4.84964 2.69571 3.37494 2.33589 0.802856 1.17264
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Abstract. In this paper, we propose an Embedded Real-time Monocular SLAM
(Simultaneous Localization and Mapping) System for an autonomous indoor
mobile robot. Autonomous mobile robots must be able to estimate and maintain
the pose of the robot and the map of the environment at the same time. SLAM
performs those tasks using one or more external sensors (e.g., LiDAR, Camera,
and Inertial Measurement Unit). The previous SLAM system had problems with
a sensor size, high power consumption, and high cost. Thus, it is hard to
implement on a small indoor robot. We propose an Embedded (small size, low
power consumption, and low cost) Real-time Monocular SLAM System which
combines an ORB feature extraction-based SLAM (ORB-SLAM), a monocular
camera, and a dynamically reconfigurable processor (DRP). This system realizes
real-time (30 fps over) and low-power (less than 2 W) SLAM utilizing the
hardware accelerating function of DRP. In the future, we will examine the
speed-up of all processing and build it into a device.

Keywords: Visual SLAM � Dynamically reconfigurable processor � FPGA �
Monocular camera

1 Introduction

Autonomous mobile robots are expected to solve the social problems of the decrease of
workers and increase of aging population. According to a market trend report released
by Boston Consulting Group (BCG), the global robotics market will grow at CAGR (a
compounded growth rate) of 11.2% until 2025 [1], and the market size will be $67
billion. In this market report, BCG divides the robot industry into four segments
(military, industrial, commercial, and personal) and forecasts each growth. The most
growing segment is the personal segment at CAGR of 17.0%. The personal segment’s
robots are used for entertainment, cleaning, education, security, and household appli-
cations. Therefore, the indoor use robots will increase. The future personal robots that
help people need to be able to run autonomously and need to be built in small size.

When autonomous mobile robots are running, the robots must be able to estimate
and maintain the pose and the map of the environment at the same time. Recently,
many researchers are actively researching and developing SLAM (Simultaneous
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Localization and Mapping) technology for performing those tasks in real-time. SLAM
uses one or more external sensors (e.g., LiDAR, Camera, and Inertial Measurement
Unit). However, the conventional systems have a lot of problems; sensor size, high
power consumption, and high cost. Thus, it has been hard to implement on a small
indoor robot. We propose an Embedded Real-time Monocular SLAM System that
realizes real-time (30 fps over), low-power (less than 2 W), and small in size.

This paper is organized as follows: Section 2 presents a method of visual-based
SLAM. Section 3 shows the related works. The Embedded Real-time Monocu-
lar SLAM System is explained in Sect. 4. Sections 5 and 6 are analysis and evaluation
results of the method. This paper concludes and describes future works in Sect. 7.

2 Visual SLAM

Visual SLAM is one of the 3D SLAM algorithms using a camera image. Generally, the
Visual SLAM uses a monocular camera, stereo camera, RGB-D camera as external
sensors. The advantage of Visual SLAM is it enables to use a camera that is cheaper,
smaller, and lighter than the others (e.g., LiDAR). In addition, Visual SLAM can be
expected to generate a map including information of objects (e.g., chair, desk, and
light) by performing object recognition using deep learning. Thus, Visual SLAM is a
better fit for a small indoor robot system. However, the processing speed of the
Visual SLAM needs to be improved. If the complicated processing can be speed up, we
can use Visual SLAM in embedded devices.

Figure 1 shows an example of Visual SLAM. The upper left image is an input
image at time t, and the lower left image is an input image at time t − 1. In both
images, the green points are the extracted feature points of objects. The right image is
the generated map of the environment. The green line is a trajectory of the estimated

Fig. 1. An example of Visual SLAM (Color figure online)
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positions, the green square is the current position at time t, and the red points show the
positions of objects.

Visual SLAM processing is as follows: (1) Input an image from camera, (2) Extract
a feature point on the image, (3) Track the feature point, (4) Estimate the pose,
(5) Update the map of the environment, (6) Detect a Loop and Correct the map.

3 Related Works

In this section, we describe related works on real-time visual SLAM. Recently, many
researchers are actively researching and developing the real-time visual SLAM using
various devices and accelerators.

A GPU-Accelerated Real-time SLAM was proposed by Donald Bourque [2]. This
research realizes a speed increase of 33% by using GPU-acceleration with CUDA; it is
implemented on Nvidia Jetson TX2. However, the power consumption of the device is
7.5 W, and the price of the device is over $450.

Another research presents an energy-efficient accelerator for visual-inertial odom-
etry (VIO) that enables autonomous navigation of miniaturized robots [3]. The pre-
sented entire VIO system is fully integrated on a chip to reduce the energy consumption
and footprint. This system realizes 28–171 fps at 753 � 480 pixels and the average
power consumption of 24 mW. However, since this system is integrated on ASIC, it
cannot easily update parameters and processing algorithms. Additionally, it is difficult
to decrease the price because of the high production cost.

Some studies have already been conducted to speed up SLAM processing. For
example, an FPGA-based ORB feature extraction (the ORB feature extraction is a part
of ORB-SLAM) was proposed [4]. This research examines the speed-up of an ORB
feature extraction. The proposed method realizes 488 fps at 640 � 480 pixels.

To build on a small indoor robot, it is necessary to realize small, low-power
consumption and low-cost system. Thus, we propose the Embedded Real-time
Monocular SLAM System that is utilizing the hardware accelerating technology for the
whole of the processing.

4 Embedded Real-Time Monocular SLAM System

We propose an Embedded Real-time Monocular SLAM System. The proposed system
combines an ORB feature extraction-based SLAM (ORB-SLAM), a monocular cam-
era, and a dynamically reconfigurable processor (DRP). This system realizes real-time
SLAM utilizing a hardware acceleration and a dynamic reconfiguration of the DRP. In
this section, we explain the details of ORB-SLAM, DRP and Hardware Acceleration.

4.1 ORB-SLAM

In this research, we develop a SLAM system based on ORB-SLAM2. ORB-SLAM2 is
an open-source SLAM system for Monocular, Stereo, and RGB-D camera, and it is one
of feature-based visual SLAM [5]. The ORB (Oriented FAST and Rotated BRIEF) is a
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faster and efficient feature extraction than others [6]. Moreover, it is built on the FAST
keypoint detector and the BRIEF descriptor. The ORB-SLAM can realize the reduction
of data volume, speeding-up, and robust by adopting the ORB feature extraction.

Figure 2 shows the flow of ORB-SLAM2 processing. The ORB-SLAM2 is com-
posed of three main threads: tracking, mapping, and loop closing. Each thread is as
follows;

(1) The tracking thread has two tasks; Frame task and Track task. This thread performs
the image input, ORB feature extraction, and the pose estimation. After that, a
current map and the detected feature points are compared. If it finds a key point
above a threshold value, it generates a new keyframe.

(2) The mapping thread has six tasks; New Keyframe Process task, Map Point Culling
task, New Map Points Creation task, Searching in Neighbors task, Local Bundle
Adjustment task, and Keyframe Culling task. This thread performs the map gen-
eration or the map updating when a new key point is found.

(3) The Loop closing thread has three tasks; Loop Detection task, Sim3 Computation
task, and Loop Correct task. This thread performs the loop detection and the
correction.

Fig. 2. The flow of ORB-SLAM2 processing
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4.2 Dynamically Reconfigurable Processors

In this research, we conduct real-time SLAM processing utilizing a dynamically
reconfigurable processor (DRP). A DRP product is produced by Renesas Electronics
Corporation; it is called “RZ/A2M”. The DRP is programable hardware which has both
the flexibility of software and the speed of hardware. DRP can speed up some com-
plicated processing by hardware acceleration technology, and DRP can change the
hardware configuration at any time and at high speed (it is called “Dynamic Recon-
figuration”). Thus, even if the rewritable hardware size is small, the DRP enables to
implement the various and large hardware configurations (such as a hardware con-
figuration that include all SLAM processing) by using the dynamic reconfiguration.
Additionally, DRP can perform the DRP’s function (e.g., Dynamic reconfiguration)
energy-efficiently by providing a direct connected DMA controller. Therefore, DRP
enables to realize the embedded real-time monocular SLAM system by using the
hardware acceleration and the dynamic reconfiguration of DRP efficiently.

The primitive unit of DRP core is called “Tile”, and a DRP core consists of six
Tiles. The Tile has PEs (Processing elements), Mems (Memory elements), and
input/output FIFOs. The structure of a Tile is shown in Fig. 3. The PE has an 8 or 16-
bit ALUs (Arithmetic and Logic Unit) and a register. The Mem has a two-port data
memory and a register [7, 8].

Fig. 3. Structure of a Tile

Fig. 4. The flow of DRP functions
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The flow of DRP functions is shown in Fig. 4 and are as follows;

1. Compiling user application. Creating the DRP configuration by using HLS tools.
2. Loading a configuration file into the memory of the DRP.
3. Commanding from the CPU and starting of DRP functions when the user appli-

cation needs the acceleration.
4. Dynamic loading; Loading the configuration data from the memory to DRP core via

the DMA controller.
5. Dynamic Reconfiguration; Rewriting the hardware configuration of the DRP core at

any time. (e.g., config. 1 to config. 2)

4.3 Hardware Acceleration

Hardware acceleration is realized by using parallel processing and pipeline processing.
In this research, we examine to speed-up some complicated processing of the SLAM
tasks which is taking a lot of time. Table 1 shows the processing time of each SLAM
tasks from the prior art [9]. It was measured on the following experiment environment;
CPU: Intel Core i7-870@2.39 GHz, Memory: 12 GB, OS: Ubuntu16.04 (64-bit), and
Input image size: 376 � 1241 pixels. According to the survey, the heaviest task is the
Loop Correct task. However, the number of calls of the Loop Correct task is 4; it means
the Loop Correct task is performed only when the loop is detected. It does not affect the
real-time processing. To realize a real-time SLAM, acceleration of other tasks that are
always running need to be examined. The heavy tasks are Local Bundle Adjustment
task, Searching in Neighbors task, New Map Points Creation task, and Frame task. We
examine the hardware acceleration for those tasks and realize real-time SLAM.

Table 1. Processing time of each SLAM tasksa

Task name Number
of calls

Processing time
(second)

Tracking
thread

Frame task 4541 0.029
Track task 4541 0.012

Mapping
thread

New Keyframe Process task 1528 0.017
Map Point Culling task 1528 0.000
New Map Points Creation task 1528 0.041
Searching in Neighbors task 1528 0.047
Local Bundle Adjustment task 1528 0.097
Keyframe Culling task 1528 0.004

Closing
thread

Loop Detection task 1527 0.008
Sim3 Computation task 244 0.001
Loop Correct task 4 1.603

aCited from [9]
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5 Evaluation

The proposed Embedded Real-time Monocular SLAM System is realized utilizing the
hardware acceleration and the dynamic reconfiguration of DRP. Thus, our ideal next
step is to experiment it using a DRP product. However, the DRP development tools are
not ready yet. Thus, in this research, we implemented a prototype on a Xilinx
Zynq FPGA (field-programmable gate array); and simulated the function of
DRP. FPGA is a programmable processor as well as the DRP. The difference between a
DRP and an FPGA is a reconfiguration time and a rewritable hardware size. We
measure the difference and estimate the total performance.

5.1 Hardware Design

Figure 5 shows the hardware design of the evaluation device. In this device, we used
Digilent ZYBO-Z7-20 as a main board. ZYBO-Z7-20 is an embedded software and
digital circuit development board built around the Xilinx zynq-7020 [10]. The Zynq-
7020 is based on the Xilinx All Programmable System-on-Chip (AP SoC) architecture,
and it has a Processing System (PS) using Dual core ARM processors and a Pro-
grammable Logic (PL) using an FPGA block. The number of Look-up Tables (LUTs)
of PL is 53,200, the Flip-Flops (FF) of PL is 106,400, and the Block RAM is 630 KB.
This board mounts a USB Serial connector, an Ethernet Connector, and a MIPI CSI-2
compatible Pcam connector. This device is connecting a Sony IMX219PQ camera
module via MIPI CSI-2 IF as the monocular camera, and it is attached to Entaniya 165
wide-lens to realize a wide viewing angle.

5.2 Software Design

Figure 6 shows the software design of the evaluation device. This device uses a Linux
Kernel as a main OS. The reason for adopting the Linux kernel is that this device needs

(a)The evaluation device                             (b)Hardware design

Fig. 5. Hardware design of the evaluation device
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the function of a dynamic reconfiguration for simulating the DRP’s functions. The
Linux kernel version 4.10 or later supports the FPGA Region. The FPGA Region is an
FPGA management API, and it associates an FPGA Manager and a bridge with a
reprogrammable region of an FPGA. The FPGA Region can be reconfigured without
powering down. This device simulates a function of the DRP by using FPGA Region.

6 Evaluation Results and Discussion

In the current research status, we evaluated the proposed system and examined the
speed up of a part of SLAM processing. The evaluation results are as follows.

6.1 The Device Performance

We evaluated the performance of each device (DRP, FPGA and ARM) by performing a
Harris corner detection. The device performance is shown in Table 2. The clock fre-
quency of the DRP is 264 MHz, the processing time is 6.5 ms and the power con-
sumption is 1.22 W. The clock frequency of the FPGA is 100 MHz, the processing
time is 3.3 ms and the power consumption is 2.30 W. As a result, the DRP can reduce
power consumption less than the FPGA. However, the DRP’s processing time is twice
times longer than FPGA. The reason is that the difference between programmable
hardware had affected.

In addition, we measured the difference of programmable hardware (see Table 3).
As a result, the FPGA’s hardware size is 53,200 LUTs and the reconfiguration time is
44 ms. The DRP’s hardware size is as scale as 9,000 LUTs of FPGA and the recon-
figuration time is approximately 0.2 ms. Although the DRP has only one-sixth hard-
ware size of the FPGA, it can perform the large processing by using the high-speed
reconfiguration.

Fig. 6. Software design of the evaluation device
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6.2 Hardware Acceleration

We examined the speed-up of FAST (Features from Accelerated and Segments Test)
corner detection, which is a part of SLAM processing. Table 4 and Fig. 7 show the
results. The processing time of Hardware Acceleration is 0.94 ms and the throughput is
1064 frame per second. We compared the Hardware Acceleration with ARM Cortex-
A9 and Intel Core i7-4650U@1.70 GHz. Compared with ARM, the Hardware
Acceleration can speed-up by 12.6x. Compared with Intel, the Hardware Acceleration
can speed-up by 1.01x.

Table 4. Hardware acceleration of FAST corner detection

Processing time
(ms)

Throughput
(FPS)

Improvement

Hardware Acceleration 0.94 1064 –

ARM Cortex-A9 11.82 85 12.6x
Intel Core i7 0.95 1053 1.01x

Table 2. The device performance

Clock freq.
(MHz)

Processing time
(ms)

Power
consumptionb

(W)

DRPa 264 6.5 1.22
FPGA 100 3.3 2.30
ARM Cortex-A9 667 207.0 2.30
aUse the parallel processing and the dynamic reconfiguration.
bTotal board power.

Table 3. The deference of a programmable hardware

Rewritable hardware size
(LUTs)

Reconfiguration time
(ms)

DRP As scale as 9,000 About 0.2
FPGA 53,200 44a

aReference value that is cited from [11]

Input image (320x240 pixels) Detected feature point

Fig. 7. Input image and the results
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7 Conclusion and Future Work

Visual SLAM is a better fit for an autonomous indoor mobile robot system. However,
the processing speed needs to be improved. In this paper, we proposed the Embedded
Real-time Monocular SLAM System for an autonomous indoor mobile robot. The
proposed system consists of an ORB feature extraction-based SLAM (ORB-SLAM), a
monocular camera, and a dynamically reconfigurable processor (DRP). This system
realizes real-time SLAM utilizing a hardware acceleration and a dynamic reconfigu-
ration of the DRP. In the current status, we evaluated that the proposed system could
realize small and low-power consumption (less than 2 W). In future, we would
examine the speed-up of all processing and build into the DRP device.
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Abstract. In this paper, an efficient approach for text-independent writer
identification using bag of words model and the combination of multiple clas-
sifiers is proposed. First of all, a bag of words model is established by extracting
sub-images from the original handwriting image. Then, features are extracted by
moment method, direction index histogram method and simplified Wigner
method respectively to calculate the distance between the sub images having the
same labels. Finally, the handwriting classification task is completed by means
of feature fusion and multi-classifier combination. To evaluate this approach,
writer identification is conducted on IAM English database. Experimental
results revealed that the proposed writer identification algorithm with small
number of characters and unconstrained contents achieves interesting results as
compared to those reported by the existing writer recognition systems.

Keywords: Writer identification � Bag of words � Text independent � Multiple
classifiers combination

1 Introduction

Writer identification refers to a document identification technology that identifies the
writer’s identity through handwritten text information. Handwriting reflects the special
writing behavior of writers for a long time and handwriting identification technology
has played an important role in historical document analysis, identification of judicial
suspects and classification of ancient manuscripts for several decades.

At present, writer identification can be divided into two categories: online hand-
writing identification and offline handwriting identification. The former one relies on
real-time information acquired by specific terminal equipment for identification, such
as people’s writing speed, acceleration, pressures and stroke order. The latter one is
based on the text information written on the paper and uses the information such as
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handwriting shape, angle and texture to confirm the writer’s identity. Compared with
online writer identification, offline handwriting provides less information and is more
difficult to identify. This paper studies the offline handwriting writer identification
method.

There are two kinds of features that can be extracted in writer identification: local
features and global features. Scale Invariant Feature Transform (SIFT) or SIFT-like
descriptors [1, 2], Local binary pattern (LBP), Local Ternary Patterns (LTP) and Local
Phase quantization (LPQ) [3] are the most common local feature extraction methods.
Global features are extracted from an input image at the document level and paragraph
level. Moreover, there are several studies on combining local and global features.

The proposed approach deals with offline writer identification using the local
features. In fact, the number of sample characters required in most handwriting related
tasks is relatively small. In this case, increasing the number of samples will lead to a
decline in system performance. The experimental results show that the proposed
method can avoids the negative impact brought by increased number of writers.

The main contributions of this paper are reflected in three aspects:

(1) Extracting local features at the sub-region level to generate global features.
(2) Studying the text independent features based on text dependent bag of words

model.
(3) Combination strategy of multiple classifiers.

The remaining part of this paper is organized as follows: Sect. 2 reviews the related
work in the previously published articles. Section 3 describes in detail the flow of text-
independent writer identification algorithm based on bag of words model and multiple
classifiers. The performances and evaluations are given in Sect. 4. Conclusions and
outlook of future work are presented in Sect. 5.

2 Related Work

The growth of artificial intelligence and pattern recognition has greatly promoted the
development of writer identification technology [4]. Paper [5, 6] presents a survey of
the literature on writer identification schemes and techniques up till 2016, and sum-
marizes the current situation of offline text-independent writer identification methods.
This section briefly reviews related works about extracting local features and con-
structing codebooks.

As off-line writer identification requires writer-specific features, the typical bag-of-
words model with the SIFT feature have been used in ref. [7–9]. Recently, paper [10]
presents a texture based approach which divides a given handwriting into small frag-
ments and considers it as a texture. In order to describe the local features well, some
works attribute the extracted local features to various size of codebooks [11–13].

Recently, innovative approaches are being developed and published. In 2017, ref.
[14] proposed a robust offline writer-identification system using bagged discrete cosine
transform descriptors; ref. [15] proposed two curvature-free features: run-lengths of
local binary pattern and cloud of line distribution features for writer identification. In
2018, ref. [16] proposed an end-to-end deep-learning method and ref. [17] proposed
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writer identification method based on handwritten stroke analysis. The above-
mentioned approaches are more suitable for writer identification tasks with fewer
samples or many characters written on the sample. In the word bag generation phase in
this paper, the segmentation work of high-frequency sub-images is not affected by the
window size and shape transformation, and the number of sub-images to be extracted is
far less than that in the above papers. Obviously, the proposed algorithm has certain
advantages in sub-image segmentation, feature extraction and classification parts.

3 Proposed Approach

The proposed algorithm is implemented by two steps: preprocessing and testing. The
preprocessing part mainly includes binarization of the original image, sub-image
extraction, labeling and generation of bag of words. The testing part mainly completes
the operations of feature extraction, feature fusion and multi-classifier combination.
The implementation flow is shown in Fig. 1 below.

In this system, all scanned handwriting images are divided into two groups: ref-
erence samples and test samples. Then, all images are converted into binary images,
and removed various noises, rows and grids on it. Then, high-frequency sub-images are
extracted and labeled with symbols after normalization. All marked sub-images form a

Feature extraction

Distance calculation

Feature fusion

Testing sample

Multiple classifiers 

Testing

Writer’s list
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Segmentation 

Bag of words

Reference database
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Fig. 1. Writer identification flowchart
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writer specific “bag of words” model. In this part, the segmentation of sub-images is the
basis of the word bag model, and labeling is for easy retrieval. In the testing part the
system first retrieves sub-images with the same mark between the reference sample and
the testing sample. Then, for the sub-images matched by the labels, the moment
method, direction index histogram method and Wigner method are used to extract
features and calculate the feature distance respectively. Finally, the input image closest
to the test sample is determined by feature fusion and multi-classifier combination
approach.

3.1 Word Segmentation

The original image is converted into a binary image by Otsu transformation, and the
weak texture regions are selected by the thresholding function that is deduced based on
the normal distribution [18]. The sub-images are segmented by using a rectangular
window of any size. The previous experimental results showed that compared with sub-
regions at paragraph level and letter level, sub-images at word level can better reflect
personal writing style [12]. Therefore, the size of the sub-images are controlled at 1–6
bytes and normalized to a matrix with a size of 64*64. The word bag of reference
sample always includes redundant sub-images to increase the matching probability
with existing patterns in testing sample. When it comes to extracting sub-images, the
grammatical structure and writing characteristics of certain language should be studied.
Considering the small number of handwritten characters and the unconstrained contents
on samples, the bag of words contains prefixes, suffixes, syllables, simple words and
letters of sub-images. Inspired by the high-frequency writing mode proposed in paper
[11–13], this phase proposed a sub-image strategy with semantic information. After
segmentation, labeling and normalization process, all sub-images will generate a word
bag. The four steps are shown in Fig. 2 below.

(a) Binarised image                                             (b) Segmentation

(c) Labeling                                                     (d) Bag of words

Fig. 2. Bag of words models of different writers
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3.2 Feature Extraction

Three types of feature extraction algorithms used in this paper: moment method,
direction index histogram method and Wigner method.

3.2.1 Moment Method
Moment feature is a basic method used to represent the shape of objects and to identify
invariant objects in the fields of computer vision and pattern recognition [19]. In writer
identification, the contour, gradient and deviation of characters are important features
that reflect writing style. Various forms of sub-images are shown in Fig. 3 below

Geometric moments are widely used features in this field and the geometric features
are invariant under translation, scaling and stroke width. They are explicitly corre-
sponding to human perception of shape and distributing their values in small dynamic
ranges. For a digital image f x; yð Þ with a size of M*N, the formula for calculating the
p + q order geometric moment can be written as follows:

mpq ¼
XM�1

x¼0

XN�1

y¼0
xpyqf x; yð Þ ð1Þ

The center of gravity (X, Y) of an object can be obtained from the zero-order and
first-order geometric moments:

X ¼ m10
m00

Y ¼ m01
m00

(
ð2Þ

The center moment Upq can be obtained by taking the center of gravity as the origin
of coordinates:

Upq ¼
XM�1

x¼0

XN�1

y¼0
x� Xð Þp y� Yð Þqf x; yð Þ ð3Þ

There are U00 ¼ m00 and U01 ¼ U10 ¼ 0 for zero order moments and first-order
moments. The central moment is constant relative to the displacement and the low-
order moment has obvious physical meaning. The zero-order moment represents the
sum of the gray values of all pixels in the image or the number of black pixels for
binary images. The secondary moment refers to the variance, where U20 and U02

Fig. 3. Sub-images with different physical characteristics
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represent the extension of black spots in the image in the horizontal and vertical
directions respectively, and the secondary moment U11 represents the inclination of the
object. The third-order moments U30 and U03 represent the deflection degree of the
object in the horizontal and vertical directions. However, the third-order moments U21

and U12 represent the extension equilibrium degree of the object in the horizontal and
vertical directions. According to the above features, the overall shape of the sub-images
can be described. More importantly, the value range of other features can be mapping
in [0, 1] except the word position direction feature is in the range of [−1, 1].

3.2.2 Direction Index Histogram Method
This is a template matching method to extract sub-image grid features considering the
shape of the input image [5]. This method firstly divides the input image into 8 � 8 grids
evenly, then divides each grid into 8 � 8 sub-regions to calculate contour points in four
directions, and obtains 8 � 8 four-dimensional histograms nijk of the input image, where
i, j = 1, 2, … 8 represent grid positions, k = 0, 1, 2, 3 represent directions, and the
obtained histograms reflect contour shapes in the sub-regions. The method for deter-
mining the direction of local strokes in this algorithm is as follows: When one (three) of
the four adjacent points of the contour point is zero, take the vertical direction of the
neighborhood point relative to the current contour point as the stroke direction.When the
contour points have two four-neighborhood points of zero, if the two neighborhoods are
connected, their connection direction is taken as the stroke direction. Otherwise, the
vertical direction of their connection is taken as the stroke direction. The case where all
four neighborhood points are equal to zero will not be considered. Then, the Gaussian
function with mean square deviation of r2 ¼ 40 is used to perform spatial smoothing to
nijk on an 8 � 8 grid plane. At the same time, the values of 4 � 4 points are sampled as
features, and the chain code generates 4 � 4 � 4 = 64 bit feature vectors fuvk:

fuvk ¼
X

i

X
j
nijkexp

� xi � xuð Þ2� yj � yv
� �2

2r2

" #
ð4Þ

Where u; v ¼ 0; 1; 2; 3 and xu; yvð Þ represents the coordinates of the sampling point
in the character image and xi; yj

� �
is the coordinate of the 8 � 8 grid center point. After

obtaining the 64-bit feature vector f, the distance d f1; f2ð Þ between two feature vectors
can be calculated:

d1 f1; f2ð Þ ¼
P64

i¼1 f1i � f2ij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP64
i¼1 f1i

P64
j¼1 f2i

q ð5Þ

3.2.3 Simplified Wigner Distribution Method
Wigner distribution of images is a joint representation of Spatial/Spatial Frequencies
which suitable for representing texture features of images. However, the amount of
storage and computation required to calculate Wigner distribution is very large in
general, and simplification measures must be taken. Calculating a two-dimensional
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Wigner distribution function Wf x; y; u; vð Þ for the 64 � 64 character image f x; yð Þ as
handwriting features:

Wf x; y; u; vð Þ ¼ RR
Rf x; y; a; bð Þe�2pj auþ bvð Þdadb

Rf x; y; a; bð Þ ¼ f xþ a
2 ; xþ b

2

� �
f � x� a

2 ; x� b
2

� �(
ð6Þ

Where Rf x; y; a; bð Þ represents a local correlation function with the x; yð Þ as the
center and the a; bð Þ as the displacement. The strokes of the characters are roughly
distributed in horizontal, vertical and two diagonal directions. Then, in order to reduce
the resolution and offset the influence of stroke thickness, the local correlation coef-
ficient is smoothed and normalized in the spatial domain. Actually, the smoothing
process is to project 64 � 64 points of data to 4 � 4 = 16 spatially positioned
weighted windows. Finally, FFT is used to calculate the power spectrum for the cor-
relation coefficients in four direction,and the total feature dimension of a character is
16 � 4�4 = 256. This is the simplified Wigner distribution. The distance between the
two 256-dimensional feature vectors x1 and x2 is calculated by the following formula:

d2 x1; x2ð Þ ¼
P256

i¼1 x1i � x2ij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP256
i¼1 x1i

P256
i¼1 x2i

q ð7Þ

3.3 Feature Fusion and Multi-classifier Combination

Feature fusion refers to extracting features from a single sub-image in a word bag, and
then mapping local features to a common space to obtain global feature vectors of the
whole handwriting. The combination of multiple classifiers can be roughly divided into
three types: series, parallel and series-parallel hybrid combination. In this paper, series-
parallel hybrid combination is adopted. After the reference sample and the test sample
are replaced by the word bag model, the system extracts the three features of all sub-
images in the word bag and generates feature vectors. In the first step, the most of the
samples with small similarity are rejected by the moment based classifier. Then, sus-
pected samples are further classified by a parallel combination of directional index
histogram method and simplified Wigner distribution method.

Experiments show that the direction index histogram method is an identification
method with high accuracy and fast calculation speed. The Wigner distribution is not
easy to exclude similar patterns in order to reduce the verification error rate. Therefore,
the reasonable combination of the three algorithms can improve the recognition rate of
system.

4 Experimental Results

In the following sections, we will describe the data set and evaluation index used in this
paper, then analyzed the influencing factors and proposed the adjusting strategy of
parameters. The experimental results and the comparison with previous studies are
discussed at last.
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4.1 Data Set and Evaluation Metrics

The experiments will carried out on English benchmark datasets IAM [20], which are
publicly available and have been applied in many recently published papers. The
database contains handwritten samples from 657 writers. All of the images divided
roughly in half and one of them is used for referencing while the other is used for
testing.

The evaluation criteria widely used in image and information retrieval tasks include
mean average accuracy (mAP), Soft top-K (TOP-k) and hard top-k methods [6].
Furthermore, these testing methods have several typical comparison strategies such as
leave-one-out comparison, 2-fold metric [12] and dissimilarity calculation [3, 10], etc.
In this paper, we will use leave-one-out comparison strategy and Top-k evaluation
criteria.

4.2 Analysis of Influencing Factors

In the proposed algorithm, the factors that affect the test results include the number of
sub-images and writers. Experiments show that the number of samples does not cause a
dramatic change in the results. In this paper, a number of 150 handwritings are used to
extract sub images to observe the influence of the number of sub-images. Details are
shown in Fig. 4 below.

As can be seen from Fig. 4, when the number of sub-images is gradually increases
from 5 to 50, the identification accuracy increases from 20% to 90%, and keeps a
relatively stable value. Although the proposed algorithm does not require writers to
write a large page or many characters, the number of sub-images extracted from a
single sample required to reach 40 as far as possible. However, compared with papers
[12, 13], the proposed algorithm requires fewer sub-images. The main reason is that our
sub-images are extracted in units of letters, syllables and words and carry more
information about writing styles than character fragments.
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4.3 Experiments and Comparison

In this part, we first extract 40 sub-images from each sample on IAM dataset to
generate a word bag model. Then gradually increase the number of sub-images and
retest failed handwriting samples. In order to improve the stability and robustness of the
system, a complete extraction method is adopted for the repeated words and word
blocks on a sample. The identification results of the three classifiers and the combined
identification results of multiple classifiers are shown in Table 1 below.

As can be seen, the discrimination ability of the combination three classifiers far
exceeds the capability of a single classifier. Different classifiers have complementary
information for classification patterns. The fuzzy integral method is used to combine
the classifier results, and the list of writer is sorted by the highest sequence number
method. In order to compare the identification performance on IAM dataset with the
results of other papers, Table 2 is listed.

Table 2 showed that the identification results of Top-1 and Top-10 in IAM data set
of this method are only inferior to the reference [1], and the overall performance is
relatively high.

5 Conclusion

This paper proposes a novel writer identification approach based on bag of words and
multi-classifier combination models. In the preprocessing part, we extracted sub-
images based on words, letters and syllables, and established a word bag model. At the

Table 1. Performance comparison on IAM database (%) (650 person)

Classifiers Top-1 Top-10

Moment Features 82.5 87.4
Direction Index Histogram 86.8 92.1
Wigner Distribution 85.2 90.5
Multi-classifier combination 94.6 98.6

Table 2. Performance comparison of different approaches on IAM (%) (650 person)

Top-1 Top-10

Siddiqi [11] 91.0 97.0
Ghiasi [12] 93.7 97.7
Khalifa [13] 92.0 –

Hannad [10] 89.54 96.77
Wu [1] 98.5 99.5
Khan [14] 92.3 –

He [15] 89.9 96.9
Proposed approach 94.6 98.6
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classification decision-making level, three methods such as moment feature, direction
index histogram and Wigner distribution are used to extract local features, and the
combination model of the aforementioned three classifiers is used to implement writer
identification task. In this paper, IAM data set is used to evaluate the algorithm, and the
experimental results verified the feasibility and robustness of the proposed method.
Experimental results demonstrate that the proposed algorithm with low computational
complexity not only has better estimation results, but also outperforms the state-of-the-
art methods in most cases.
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Abstract. Automated driving is an inevitable trend in future transportation, it is
also one of the eminent achievements in the matter of artificial intelligence.
Deep learning produces a significant contribution to the progression of auto-
matic driving. In this paper, our goal is to primarily deal with the issue of
vehicle-related scene understanding using deep learning. To the best of our
knowledge, this is the first time that we utilize our traffic environment as an
object for scene understanding based on deep learning. Moreover, automatic
scene segmentation and object detection are joined for traffic scene under-
standing. The techniques based on deep learning dramatically decrease human
manipulations. Furthermore, the datasets in this paper consist of a large amount
of our collected traffic images. Meanwhile, the performance of our algorithms is
verified by the experiential results.

Keywords: Traffic scene understanding � Deep learning � Automatic driving �
Image segmentation � Object detection

1 Introduction

With the development of artificial intelligence, autonomous vehicles have already been
associated with the field of computer vision. Due to complex traffic environment, the
capability of traffic scene understanding has become a significant indicator of auton-
omous vehicles.

Scene understanding is a process of cognizing and inferring the environment based
on spatial perception [1]. In vehicle-related scene understanding, a scene is the envi-
ronment in which the vehicle is currently located including location, person, focus,
event, and relationships between them. Scene understanding mainly includes object
detection and recognition, semantic segmentation, toplogical relationship exploration
and discovery between objects.

Scene information in a video is extremely dense which has great discrepancy and
complexity. Recently, owing to the development of deep learning, the use of scene
understanding can significantly ameliorate the performance of video analysis, which is
a method of using machine perception [2].

In addition, deep learning has an active merit that a myriad of pretrained networks
and public datasets have provided benefits for training numerous traffic scenes [19–21].
For vehicle-related scenes, in order to understand the objects, scenes, and events in a
video, deep neural networks emulate high-level abstraction from the visual data and
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encode them using a robust representation [3]. Therefore, deep learning methods have
unique advantages in the field of vehicle-related scene understanding.

For an example, the end-to-end nature of deep learning is one of such advantages,
which achieves faster and universal information processing than traditional methods
under the premise of a particularly accurate recognition of specific scenes. For
autonomous vehicle that demands to understand the information in complex traffic
scene, the method of deep learning can effectively satisfy the accuracy and real-time
requirements [4].

Automated driving using deep learning is not mature yet to understand visual objects
in complex traffic scenes due to the diversities of global traffic rules and transportation
facilities [22]. Currently, it is difficult to apply all traffic scenes using only a single
algorithm [5]. The two essential branches of scene understanding give us inspirations,
object recognition identifies all objects of a predefined category on the image and posi-
tions through a bounding box. Semantic segmentation operates at a fine scale, its purpose
is to segment images and associate each region with class labels [6]. Albeit these are two
similar tasks, few studies currently merged the two categories of work together.

In this paper, automatic image segmentation and vehicle detection for vehicle-
related scene understanding are developed using deep learning so as to reduce human
workload. The datasets in this paper provide a great deal of traffic scenes. Simulta-
neously, adjustments and ameliorations have been implemented with the proposed
neural network for scene understanding.

In this paper, literature review will be provided in Sect. 2, our methodology is
shown in Sect. 3, the experimental results will be demonstrated in Sect. 4, our con-
clusion will be drawn in Sect. 5.

2 Literature Review

In this paper, we explain the reasons why the characteristics of deep learning play an
essential role in scene understanding and why high-quality scene understanding models
are often achieved through deep learning. First, the layer-by-layer processing of deep
learning enables the model to better express the information in the current traffic scene.
By simulating the structure of human brain and its gradual cognitive process, deep
learning models obtain higher-level expressions through a linear or nonlinear combi-
nation. Therefore, deep learning enables the models to analyze complex traffic scenes, it
has a hierarchical structure for information proceeding similar to our human brain, pro-
gressively extracts internal features and sufficient model complexity. These character-
istics of deep learning enable the proposed model to understand the high-level semantics
of traffic scenes (traffic event analysis, logical relationships of objects in traffic scenes).
Currently, deep learning can accurately segment lanes to understand road conditions in
the scene [7, 19–23]. It is also possible to predict overtaking, lane changing, and braking
events by dynamically detecting the positional relationship between the two vehicles [8].

Secondly, the end-to-end characteristic of deep learning has also made an extraor-
dinary contribution to the development of scene understanding. As the number of
vehicles globally increases, the complexity of traffic scenes continues rising. Therefore,
autonomous vehicles have higher demands in terms of real-time performance. The model
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of traffic scene understanding based on deep learning utilizes the end-to-end process to
optimize all tasks (vehicle detection, pedestrian detection, path planning, etc.). For
example, an end-to-end vehicle controller can detect obstacles in the scene and navigate
them accurately following the curved lanes [9].

Thirdly, deep learning algorithms have strong versatility [10]. Faced with the tasks
involved in scene understanding, deep learning models do not require redesigning new
algorithms for each task like traditional algorithms. Currently, each deep learning
algorithm is suitable for a variety of scene understanding. For example, Faster R-CNN
model achieves excellent results such as vehicle detection, pedestrian detection, and
lane detection.

Finally, deep learning models have active mobility. A mature scheme of autono-
mous vehicle must contain a large number of functionalities related to scene under-
standing which utilizes human experience to train a scene so as to understand the scene
from scratch. Deep learning models learn neural network parameters from one task and
can transfer them very well to another. For example, the deep learning parameters and
knowledge learned based on ImageNet dataset can achieve superior results in scene
understanding by using other datasets [11].

In this paper, the understanding of vehicle-related scenes is implemented in con-
junction with a deep learning-based vehicle detector and a semantic segmenter. Com-
pared with other machine learning methods, deep neural networks can improve the
accuracy by increasing the amount of training data and introducing sophisticated
methods to betterment efficacy and accuracy [12]. Additionally, deep learning naturally
is an end-to-end model, because the visual data is imported directly to the input layer, the
well-trained network can export excellent outcomes. Finally, the underlying concepts
and techniques using deep learning are universally transferable. Hence, deep learning
can be much adaptive to various datasets for vehicle-related scene understanding.

3 Methodology

In order to deeply discover the merits of deep learning in vehicle-related scene
understanding, we detail a computable method in this section based on deep learning
for semantic segmentation and vehicle detection.

3.1 Vehicle-Related Scene Understanding

For the understanding of vehicle-related scene, a high-performance model is not only to
detect and identify single isolated object, but also to understand advanced semantics in
the vehicle-related scenes. Therefore, we make full use of deep learning to simulate the
characteristics of our human brain. The high-level semantics in complex traffic scenes
are employed through layer-by-layer processing and a stepwise abstraction of the
feature map.

If we use a hierarchical system to emulate human cognition of the scenes, the entire
human cognitive process of information needs to be carried out through several levels.
At a lower level, our humans extract visual and auditory information as basic features,
which is similar to the idea of extracting concepts from the scene and forming the basic
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layer of the ontology; at a higher level, our human brain unifies these features and
makes judgement from these features. At the highest level, our human can obtain the
implicit semantics of the information through reasoning, which confirms to semantic
expression and semantic understanding [13].

Therefore, in vehicle-related scene understanding, the positional relationship
between objects in a scene is very useful for understanding the high-level semantics. It is
also one of the necessary steps to use deep learning to analyze traffic scenes. The end-to-
end nature of deep learning allows the model to handle multiple tasks. Deep learning
models can complete multiple progressive tasks, the results of the previous task are used
as an aid to the later. In order to explore the vehicle-related scenemore deeply, we explore
positional relationship of the objects in the scene for semantic segmentation.

Figure 1 utilizes topological relationships to correlate the classes in scene under-
standing. According to prior knowledge, visual objects such as trees and buildings
should normally appear on both sides of the road. Bus lanes are usually drawn on the
road. Most vehicles only travel on the road and do not appear on trees or in the sky. The
sky is always above all objects, this is the fact that it never changes.

The relationship in the topological map plays a decisive role in scene understanding
based on deep learning. According to the topological relationship between objects in
the scene, the model can be used to clarify the object positions in the traffic scene. Deep
neural network, as a typical ANN model, can achieve more human-like cognition by
learning the logical relationship between objects. Moreover, the topological map
constrains the range of the output, reduces the output of unrealistic scene, thereby
improves the accuracy of scene understanding.

Fig. 1. The topological relationships in the scene
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3.2 Methodology of Vehicle-Related Scene Understanding Model

Our model learns parameters by minimizing the value of the loss function. In order to
optimize the extremely complex nonconvex function of convolutional neural networks,
deep learning models typically exploit feedforward operations to abstract scene
information, utilize stochastic gradient descent (SGD), error backpropagation, and
chain rules to update the parameters of the model [14].

In the process of feedforward propagation, assume that input x, output y, and the
cost J(h) are given, the gradient during backward propagation is J( ) [15]

J hð Þ ¼ �E y� f x; hð Þk k2
h i

ð1Þ

According to the chain rules, if h ¼ g kð Þ; z ¼ f g kð Þð Þ ¼ f hð Þ then,

dz
dk

¼ dz
dh

dy
dx

¼ _z _h ð2Þ

The loss function of SGD is J hð Þ ¼ L fh kið Þ; hið Þ; ki; hið Þ are samples i ¼ 1; . . .; m with
regard to h in

@J hð Þ
@h

¼ 0 ð3Þ

If a is a learn rate, we can construct the weight decay function as

htþ 1 ¼ ht � a � rhJi hð Þ ð4Þ

In summary, we can describe the SGD algorithm in Fig. 2.

3.3 Methodology of Semantic Segmentation

We apply a combination of VGG19 and SegNet as a semantic segmentation model and
employ our datasets to train and test the model, our dataset consists of 91 images as
shown in Fig. 3. This paper reflects each image at a 50% probability level through data

Fig. 2. The algorithm of stochastic gradient descent (SGD)
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augmentation. The translation is performed in the unit of pixels from the horizontal and
vertical directions, the translation is randomly selected from the continuous uniform
distribution within the interval [−10, 10].

The structure of our neural network proposed in this paper utilizes a combination of
encoders and decoders to produce feature maps of images. The encoder of SegNet
includes convolutional layer, batch normalization, ReLU activation, and max pooling.
Max pooling is used for reducing the size of feature maps. Even though the object
boundary in the image may be blurred during the operation of max pooling, the pooling
is indeed the best way to reduce the size of the feature maps. For reducing the feature
map size while retaining the complete boundary information, SegNet extracts boundary
information from the feature maps before performing the downsampling. During the
decoding process, the upsampling operation of the decoder preserves the size of the
original input. The max pooling memory index stored in each encoder map is used for
upsampling the feature map. The last decoder is connected to the softmax classifier so
as to assign the label of each class for the image [16].

Assume a is an array received from the upper layer, ak is the k-th element in the
array, and i is the total number of the array [17]

softmax kð Þ ¼ exp akð ÞP
i exp aið Þ : ð5Þ

This paper created a SegNet network whose weight was initialized from the VGG-
19 network. The additional layer required for semantic segmentation replaces the last
pooling layer.

In summary, our semantic segmentation model takes advantage of the encoder-
decoder structure, which combines visual information with high-level features through
pooling to understand the surrounding scene in detail.

Fig. 3. The dataset of semantic segmentation
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3.4 Methodology of Vehicle Detection

Our vehicle detector is a Faster RCNN-based model as shown in Fig. 4, which uses
337 images from our traffic scenes as datasets as shown in Fig. 5. The size of the input
layer is 32 � 32 for better convolution operations. All convolutional layers of this
model use a 3 � 3 convolution kernel, we set the step size as 1. Moreover, in the
convolutional layer of the Faster R-CNN, all the convolutions are subject to one
padding expansion, resulting in an increase of 2 in length and width. This setup does
not change the size of the inputs and outputs.

Similarly, the convolution kernel size and step size of the pooling layer in the
model are both set to 2. Thus, the size of each matrix passing through the pooling layer
becomes one-half of the original. In other words, the convolutional layer and the ReLU
layer maintain the size of the feature maps, the pooling layer reduces the size of the
feature maps to 0.25.

Moreover, this model converts the collected proposals in the RoI Pooling layer into
7 � 7 proposal feature maps and sends them to the classification layer. Feature maps
are classified using the cross-entropy as a loss function in the classification layer.

By adjusting a series of network parameters, vehicle detector can better learn
semantics from shallow to deep and learn feature maps from abstract to specific.

Moreover, Faster R-CNN has two fully connected layers for classification and
regression, respectively. Similarly, the most usage of two loss functions is fine-tuning.
If i is assumed to be the index of an anchor in a mini-batch, pi is the probability that the
algorithm output, p�i is the ground truthing label of the anchor I, ti is a four-element
vector, which is bounded by the algorithm. The parameterized coordinates of the box t�i
are the ground truthing box associated with a positive anchor [18],

L pif g; tif gð Þ ¼ 1
Ncls

X
i
Lcls pi; p

�
i

� �þ k
1

Nreg

X
i
p�i Lreg ti; t

�
i

� � ð6Þ

where Lcls (pi, pi*) is the logarithmic loss of the classification

Lcls pi; p
�
i

� � ¼ � log pi; p
�
i þ 1� p�i

� �
1� pið Þ� �

: ð7Þ

The classification calculates logarithm loss for each anchor, which is summed and
divided by the total number of anchors Ncls.

In the regression loss,

Lreg t; t�i
� � ¼ R ti � t�i

� � ð8Þ

where R is defined as smooth L1 and r is 3, x ¼ ti � t�i ,

R ¼ smoothL1ðxÞ ¼
0:5x2 � 1=r2 if xj j\1=r2

xj j � 0:5 otherwise:

8<
: ð9Þ
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For each anchor, we calculate Lreg ti; t�i
� �

and multiply it by p*, then sum and
multiply it by using a factor k=Nreg. p

* has an object (+1) and no object (−1), which
means that only the foreground is used to calculate the cost, the background does not
calculate the loss. Nreg is the size of feature maps, k controls the weight for classifi-
cation and regression at a stable level.

4 Results

We use deep learning to achieve scene understanding. In order to verify the advantages
of deep learning, we explore semantic segmentation and vehicle detection through
experiments. As shown in Fig. 6, visually, the model in the semantic segmentation is
satisfactory for the segmentation of buildings, sky, bus lane, and vehicles.

However, visual objects such as pedestrians, lanes, and trees are not accurate. This
paper uses IoU to measure the amount of overlap for each class. Taken the first
segmentation result in Fig. 6, the IoU of each category shows that the building IoU is
up to 89% with the highest accuracy among the 11 classes. At the same time, the

Fig. 4. The network structure of vehicle detector
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proposed model scored higher accuracy on roads, sky, bus lane, and vehicles with 66%,
81%, 86%, and 66% respectively. However, the scores for segmentations of lane, tree,
and turning sign are lower. The reason why we get these results is that the objects in the
dataset lane and traffic sign are relatively smaller, the possibility of occurrence is rare.
In future, we will focus on collecting the visual data including lane, tree, and turning
sign images.

For each class, the accuracy is the ratio of correctly categorized pixels to the total
number of pixels in that class. The accuracy of sky detection is the highest among all
classes at 91%. Secondly, bus lane, road, lane, and building classes have achieved
satisfactory levels of accuracy 90%, 86%, 70%, and 81% respectively. Meanwhile, in
this paper we exploited IoU to measure the overlapping between the ground truth and
the detected regions, generated the results from the proposed model. The overlapping
rates of buildings, sky, and bus lane are 71%, 74%, and 76%, respectively. In contrast,
the accuracy and IoU of lane detection are worse than those of other classes, because
the labelled area is small, its occurrence is lower than other classes.

From the experimental results of vehicle detection, the detector can successfully
detect vehicles in multiple directions, sizes, and types under normal conditions, even
detect vehicles with only a half of the vehicle appeared in the imaging range.

However, if there is an interference in the detection environment, our detection
accuracy will be decreased. When a road tax sticker appears on the car windscreen, the
detector incorrectly detects the road tax sticker as a vehicle. On the other hand, the
detector can roughly detect the presence or absence of a vehicle in a particular area, but
the position of the label boxes is offset.

Fig. 5. The dataset of vehicle detection
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This paper takes advantage of average precision to measure the accuracy of the
detector. Both precision and recall are based on an understanding and measure of
relevance. The best training result of average precision for this paper is 81%, which is
based on a 22-layer Faster R-CNN network.

The log-average miss rate of the detection results is compared to the ground truth,
which is adopted to measure the performance of the object detector in this paper, miss
rate decreases as the false positive per image (FPPI) grows, and the log-average miss
rate is 0.4.

In the vehicle identification, the test results were up to 81%, the average error rate
was as low as 0.4. As shown in Fig. 7, compared with several models and models of
different deep networks of the same class, this model is better in the control of the
position and size of the bounding box.

Fig. 6. The segmentation results

Table 1. Comparison of VGG16-SegNet and VGG19-SegNet in IoU

Class VGG16-SegNet IoU VGG19-SegNet IoU

Sky 66% 74%
Building 70% 71%
Buslane 59% 76%
Road 59% 61%
Lane 50% 50%
Vehicle 67% 60%
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In the semantic segmentation, multiple evaluation indicators are taken as the
metrics. We compare the network performance using VGG16 and VGG19 as the basic
models shown in Table 1, respectively. The results of IoU show that segmentation
results of VGG19 on Sky and Buslane are significantly higher than VGG16-SegNet.
VGG16 is higher than VGG19 only in the segmentation result of the vehicle. After
measuring all the evaluation indicators in general, we choose VGG19 as the basic
model for our segmentation.

Through the exploration of vehicle detection and semantic segmentation, we find
that deep learning has a great positive effect on scene understanding which relies on a
layered processing mechanism and powerful transfer capabilities to improve the per-
formance of the model in scene understanding.

5 Conclusion

The goal of this paper is to achieve traffic scene understanding using deep learning
including semantic segmentation and vehicle detection. We fulfil each phase of the
paper such as dataset preprocessing, neural network design and training, model eval-
uation, resultant comparisons. This paper provides a large number of original images
and annotated images of our traffic environment for neural network computations,
including annotations for image segmentation and vehicle identification. Furthermore,

Fig. 7. Comparison of four models with the same image
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SegNet shows high accuracy with small datasets. Faster R-CNN adopts two sets of
convolution units to achieve high-precision segmentation and recognition. In future, we
will use ensemble learning to integrate our experimental results together so as to get
better results [24–27].
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Abstract. Human action recognition is a challenging research topic since
videos often contain clutter backgrounds, which impairs the performance of
human action recognition. In this paper, we propose a novel spatiotemporal
saliency based multi-stream ResNet for human action recognition, which
combines three different streams: a spatial stream with RGB frames as input, a
temporal stream with optical flow frames as input, and a spatiotemporal saliency
stream with spatiotemporal saliency maps as input. The spatiotemporal saliency
stream is responsible for capturing the spatiotemporal object foreground infor-
mation from spatiotemporal saliency maps which are generated by a geodesic
distance based video segmentation method. Such architecture can reduce the
background interference in videos and provide the spatiotemporal object fore-
ground information for human action recognition. Experimental results on
UCF101 and HMDB51 datasets demonstrate that the complementary spa-
tiotemporal information can further improve the performance of action recog-
nition, and our proposed method obtains the competitive performance compared
with the state-of-the-art methods.

Keywords: Action recognition � Spatiotemporal saliency map image � ResNet

1 Introduction

Human action recognition is a process of labeling video frames with action labels [1, 3,
27, 29]. It has a wide range of applications in real life such as intelligent surveillance,
virtual reality (VR), video retrieval, intelligent human-computer interaction and
shopping behavior analysis.

Conventional human action recognition methods based on handcrafted features
cannot fully extract efficient and robust features from videos, especially when there are
complex clutter backgrounds in the videos such as target occlusion, illumination
variation, and camera movement. To address this, deep convolutional neural network
(ConvNets) based human action recognition methods have been developed, which can
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be categorized into two categories: two-stream convolutional neural networks based
methods [1–3] and 3D convolutional neural networks based methods [5–7]. Typically,
a two-stream convolutional neural network consists of two streams: a spatial stream
and a temporal stream. The spatial stream is used to capture the appearance information
from a video, while the temporal stream is used to capture the motion information from
the video. Different from two-stream convolutional neural networks, 3D convolutional
neural networks can simultaneously learn the spatial and temporal information from
multiple consecutive video frames.

For the accuracy of human action recognition, the clutter backgrounds impose a
negative effect. To solve this problem, we propose a novel spatiotemporal saliency
based multi-stream ResNet (STS multi-stream model) for human action recognition,
which combines three different streams including a spatial stream, a temporal stream,
and a spatiotemporal saliency stream. Given a video, the spatial stream utilizes the
RGB frames of the video as input, and the temporal stream utilizes the optical flow
frames of the video as input. The spatiotemporal saliency maps, which is obtained by a
geodesic distance based video segmentation method [14], is used as the input of the
spatiotemporal saliency stream. This can capture the spatiotemporal object foreground
information in the video and suppress the background information.

The contributions of this paper include: (i) We propose a novel spatiotemporal
saliency based multi-stream ResNet for human action recognition, which consists of a
spatial stream, a temporal stream and a spatiotemporal stream. (ii) The novel spa-
tiotemporal saliency stream can reduce the background interference in videos and
provide the spatiotemporal object foreground information for human action recogni-
tion. (iii) We propose an averaging fusion for the outputs of the three streams.

The rest of this paper is organized as follows. Section 2 presents related work. The
proposed method is detailed in Sect. 3. Section 4 shows the results of conducted
extensive experiments. Section 5 provides the conclusions of the paper.

2 Related Work

2.1 Two-Stream Based 2D Convolutional Neural Networks

Recently, two-stream based 2D convolutional neural networks are widely applied for
human action recognition. Simonyan et al. [1] first proposed a two-stream ConvNet
architecture, in which spatial and temporal neural networks were developed to capture
spatial and temporal information of videos separately, and the output of these two
networks were combined by late fusion. Wang et al. [2] proposed the temporal segment
network (TSN) with four types of input modalities, which was based on the idea of
long-range temporal video structure modeling. Feichtenhofer et al. [3] proposed spa-
tiotemporal residual networks (ST-ResNet) to add residual connections between dif-
ferent layers and learned spatiotemporal features by connecting the appearance channel
and motion channel. Wang et al. [4] developed a spatiotemporal pyramid network to
fuse the spatial and temporal features. A spatiotemporal compact bilinear operator was
adopted to enable unified modeling of various fusion strategies. Jing et al. [12] com-
bined multiple streams with dynamic images, optical flow frames and raw frames as
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input to improve the performance of action recognition. Liu et al. [13] proposed a
multi-stream neural network by using RGB frames, dense optical flow frames and
gradient maps as the input, where different streams were responsible for capturing
various appearance and motion feature information.

2.2 3D Convolutional Neural Networks (3D CNNs) and Others

Since 3D convolution can process multiple consecutive images at the same time, 3D
convolution neural networks have the ability to extract temporal information between
video frames. Ji et al. [5] firstly developed a 3D CNN model that provided multiple
channels from adjacent input frames and performed 3D convolution for each channel.
Tran et al. [6] proposed Convolutional 3D (C3D) which used multi-frames as an input
of the network. Diba et al. [7] developed Temporal 3D ConvNets (T3D) by deploying a
3D temporal transition layer (TTL) instead of a transition layer in DenseNet [28]. Qiu
et al. [8] developed a residual learning model by using different convolution filters and
proposed the Pseudo-3D Residual Net (P3D ResNet). However, 3D CNNs based
networks need training much more parameters and cost expensive computation com-
pared with 2D CNNs based networks [6].

In addition to the development of two-stream networks and 3D CNNs, some
research contributes to the related fields (such as data input, model architecture, and
fusion) to address the challenges in human action recognition. Kar et al. [9] developed
AdaScan to dynamically pool the key informative frames and proposed a pooled
feature vector for human action recognition. Sun et al. [10] proposed a compact motion
representation which can be embedded in any existing CNN based video action
recognition framework with a slight additional cost. Xie et al. [11] combined top-heavy
model design, temporally separable convolution, and spatiotemporal feature gating
together to improve the performance of action recognition.

2.3 Residual Network

The deep residual network has obtained a good performance in image recognition [16].
Different from deep neural networks using multiple stacked layers F(x) to approximate
the desired underlying mapping H(x), residual networks consider using multiple
stacked layers F(x) to approximate a residual mapping H(x)-x. Figure 1 illustrates the
basic residual building block.

Fig. 1. The basic residual building block.
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Hara et al. [24] proposed a 3D CNN based residual network which was made up of
residual blocks with 3D convolutions and 3D pooling to extract spatiotemporal fea-
tures. Lei et al. [25] proposed a temporal deformable ResNet to analyze the most
suitable sampling intervals. Compared with conventional convolution neural networks,
deep residual networks add shortcut connections from the front convolution layers to
the later convolution layers. This can bypass the intermediate layers and propagate
information to the later layers directly [21]. By conducting experiments with different
numbers of layers, a 101-layer ResNet is chosen as the backbone network.

3 Proposed Method

In this section, we first introduce the spatiotemporal saliency map generated by [14].
Then we present the proposed spatiotemporal saliency based multi-stream ResNet for
human action recognition.

3.1 Spatiotemporal Saliency Map

The generation of spatiotemporal saliency map is based on a geodesic distance based
video segmentation method [14], which can distinguish the foreground object and
surrounded background areas by the corresponding spatiotemporal edge values. The
procedure can be summarized as the following steps:

(i) Obtaining a superpixel set for the input video frames by using k-means clus-
tering method [15];

(ii) Obtaining a spatial edge probability map by using edge detection approach [22];
(iii) Obtaining the temporal gradient magnitude of the optical flow frames [17];
(iv) Computing the spatial edge probability of each superpixel to obtain the spatial

superpixel edge maps;
(v) Computing the temporal gradient magnitude of each superpixel to obtain the

temporal superpixel optical flow magnitude map;
(vi) Obtaining the spatiotemporal edge probability map by combing the spatial

superpixel edge map and the temporal superpixel optical flow magnitude map;
(vii) Obtaining the spatiotemporal saliency map from the spatiotemporal edge prob-

ability map by calculating the probability of foreground object based on the
geodesic distance.

The results of the generated spatiotemporal saliency map by geodesic distance
based video segmentation method can be shown in Fig. 2. The spatiotemporal saliency
map contains human object foreground information and edge information which can
provide more prior spatiotemporal knowledge for human action recognition.
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3.2 STS Multi-stream Model

Architecture Framework
The architecture framework of our proposed spatiotemporal saliency based multi-
stream ResNet (STS multi-stream model) is illustrated in Fig. 3. It consists of three
streams with the input of RGB frames, optical flow frames, and spatiotemporal saliency
maps respectively. The spatial stream is responsible for capturing the appearance
information from raw RGB frames, the temporal stream is responsible for capturing the
motion information from optical flow frames, and the spatiotemporal saliency stream is
responsible for capturing the spatiotemporal object foreground information from spa-
tiotemporal saliency maps. The neural networks for the spatial stream, the temporal
stream, and the spatiotemporal saliency stream are trained individually. Finally, the
outputs of the softmax layers of the three streams are averaging fused to form a final
softmax score for human action recognition.

Fig. 2. Spatiotemporal saliency maps generated by geodesic distance based video object
segmentation. The top row shows 10 consecutive RGB frames sampled with a fixed time interval
in the Archery video from UCF101 dataset [18], and the second row illustrates the corresponding
spatiotemporal saliency maps.

Fig. 3. The architecture framework of our proposed spatiotemporal saliency based multi-stream
ResNet for human action recognition. It consists of a spatial stream with RGB frames as input, a
temporal stream with optical flow frames as input, and a spatiotemporal saliency stream as input.
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Training of Three Streams
The proposed spatiotemporal saliency based multi-stream ResNet consists of three
different streams: a spatial stream, a temporal stream, and a spatiotemporal saliency
network. We train the three streams separately to extract the appearance information,
motion information and spatiotemporal saliency information from videos. All training
details are summarized as follows.

Spatial Stream. The spatial stream with RGB frames as input provides the basic
appearance characteristics of the video, which is the most important stream in the
action recognition process [2].

The input of the spatial stream consists of multiple RGB frames obtained in a
random sampling interval from the extracted video frames. Similar to the temporal
segment network [2] training strategy, we randomly select three video frames from a
video for representing the video. Then a consensus among the selected frames is
derived as the video-level prediction. We input the three video frames separately into
the spatial stream and calculate the losses individually, then these losses will be added
as the final loss for backpropagation. The output of the softmax layer represents the
output of the spatial stream for this video.

Temporal Stream. The temporal stream with optical flow frames as input provides the
motion information of the action, which has been crucial for action recognition.

We use the Optical Flow Estimation [17] method to obtain optical flow frames from
the raw RGB frames of videos. Different from the input of the spatial stream, we
randomly select a series of stacked optical flow frames from the optical flow frames as
the input of the temporal stream. The outputs of the softmax layer represent the output
of the temporal stream.

Spatiotemporal Saliency Stream. The spatiotemporal saliency stream with spatiotem-
poral saliency maps as input provides the spatiotemporal object foreground information
and reduce the background interference.

We utilize a geodesic distance based video segmentation method [14] to obtain the
spatiotemporal saliency maps from the RGB frames and optical flow frames. Similar to
the input of the spatial stream, we randomly select five frames from the spatiotemporal
saliency maps, and we input the five spatiotemporal saliency maps separately into the
spatiotemporal saliency stream and calculate the losses individually. Then these losses
will be added as the final loss for backpropagation. The output of the softmax layer
represents the output of the spatiotemporal saliency stream.

Fusion of Three Streams. In order to verify the proposed multi-stream model, we
combine the outputs of all three streams to fuse spatial information and temporal
information of a video.

In the process of training the proposed multi-stream model, we use cross-entropy
loss uniformly in each stream. The loss function is shown in Eq. (1).

Hy0 yð Þ ¼ �
X

i
y
0
ilog yið Þ ð1Þ
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where y0 represents the prediction result, y represents the target label, and i denotes the
ith input image index.

After the ResNets in the three streams are trained separately, each stream can extract
the spatial features, motion features, spatiotemporal saliency features separately. The
final output prediction is fused with the weighted outputs of the softmax layers of all
the streams.

4 Experiments

4.1 Datasets

We evaluate the performance of our proposed STS multi-stream model on UCF-101
[18] and HMDB [23] datasets. The UCF-101 dataset consists of 101 action categories
with 13320 video clips. The HMDB-51 dataset includes 6849 video clips divided into
51 action categories, and each category contains a minimum of 101 video clips. We use
the pre-provided training/test split of the UCF-101, which divides the UCF-101 dataset
into 9537 training videos and 3783 testing videos. Similarly, we use the pre-provided
training/test split of the HMDB-51, which contains about 3750 training videos and
3099 test videos.

4.2 Learning Process

We use Pytorch to implement our proposed STS multi-stream model and train the model
on 4 Nvidia GTX 1080Ti GPUs. We set the learning rate to 0.001 and use a mini-batch
size of 32. We adopt 101-layer ResNet (ResNet-101 for short) for the spatial stream, the
temporal stream and the spatiotemporal saliency stream. We first use the pre-trained
ResNet-101 on the ImageNet dataset, which is a large-scale hierarchical image database
containing more than 1 million images [19], as the spatial stream model parameter
initialization. Then we finetune the pre-trained ResNet-101 on the UCF-101 and
HMDB-51 datasets. For the temporal stream, by averaging the weight value across RGB
channels and replicate this value by the channel number of motion stream input, we use
ImageNet pre-trained weights and modify the weights of the first convolution layer pre-
trained on ImageNet from (64, 3, 7, 7) to (64, 20, 7, 7), which contains 10 x-channel and
10 y-channel optical flow frames. Similar to the spatial stream, we use the pre-trained
ResNet-101 on ImageNet and finetune the spatiotemporal saliency stream.

4.3 Experimental Results

The experimental results are reported in Table 1. It is obvious that the accuracy of the
input with two modalities (such as RGB frames + Optical Flow frames) is higher than
the input with a single modality (such as RGB frames) on both UCF-101dataset and
HMDB-51 datasets. Further, we can find that the input with optical flow frames and
spatiotemporal saliency improves 0.7% and 2.2% than the input with only optical flow
frames on UCF-101 and HMDB-51 datasets, respectively. The addition of spatiotem-
poral saliency stream can provide the spatiotemporal object foreground information and
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reduce the background interference, which is beneficial for action recognition. A similar
phenomenon can be verified when we use RGB frames and spatiotemporal saliency
maps as input, the input with RGB frames and spatiotemporal saliency improves 1.2%
and 2.6% than the input with only RGB frames on UCF-101 and HMDB-51 datasets,
respectively. When we fuse all these three streams, we can obtain the best accuracy of
90.1% and 62.4% on UCF-101 and HMDB-51 datasets, respectively. The input with all
three modalities improves 2.9% and 1.9% than the input with RGB frames and optical
flow frames on UCF-101 and HMDB-51 datasets, respectively, which demonstrates that
the spatiotemporal saliency stream can further provide effective supplementary infor-
mation for improving the performance of action recognition.

Table 2 compares the experimental results of the proposed STS multi-stream
method and other state-of-the-art methods for human action recognition. The proposed
STS multi-stream model is superior to iDT [20], Two-stream [1], Two-stream + LSTM
[26], C3D [6] and RGB+OF+DI with 3D CNN [11]. Especially compared with other
two-stream based models such as Two-stream [1] and Two-stream + LSTM [26], our
proposed STS multi-stream model obtains better performance since the spatiotemporal
saliency stream can provide the spatiotemporal object foreground information and
reduce the background interference.

The loss scores and classification accuracies of two stream method and our STS
multi-stream method for human action recognition are illustrated in Fig. 4. As shown in
Fig. 4, the proposed fusion stream obtains better performance than two stream method.

Fig. 4. The loss scores and accuracies of two comparison methods on the UCF-101 dataset.

Table 1. The accuracy of different modalities on the UCF-101 and HMDB-51 datasets.

Input UCF-101 HMDB-51

RGB 81.3% 50.1%
Optical Flow 79.7% 55.6%
RGB + Optical Flow 87.2% 60.5%
RGB + Spatiotemporal Saliency 82.5% 53.7%
Optical Flow + Spatiotemporal Saliency 80.4% 57.8%
RGB + Optical Flow + Spatiotemporal Saliency 90.1% 62.4%
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5 Conclusion

In this paper, we propose a novel spatiotemporal saliency based multi-stream ResNet
for human action recognition, which combines three different streams: a spatial stream
with RGB frames as input, a temporal stream with optical flow frames as input and, a
spatiotemporal saliency stream with spatiotemporal saliency maps as input. Compared
with conventional two-stream based models, the proposed method can provide the
spatiotemporal object foreground information and reduce the background interference,
which has been verified effective for human action recognition. Experimental results
demonstrate that our proposed STS multi-stream model achieves the best accuracy
compared with the input with single modality or two modalities. In the future, we will
further explore sharing information between different streams to improve the perfor-
mance of human action recognition.
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Abstract. Unsupervised image-to-image translation such as CycleGAN
has received considerable attention in recent research. However, when
handling large images, the quality of generated images are not in good
quality. Progressive Growing GAN has proved that progressively growing
of GANs could generate high pixels images. However, if we simply com-
bine PG-method and CycleGAN, it must bring model collapse. In this
paper, motivated from skip connection, we propose Progressive Growing
CycleGAN (PG-Att-CycleGAN), which can stably grow the input size
of both the generator and discriminator progressively from 256× 256 to
512× 512 and finally 1024× 1024 using the weight α. The whole process
makes generated images clearer and stabilizes training of the network.
In addition, our new generator and discriminator cannot only make the
domain transfer more natural, but also increase the stability of training
by using the attention block. Finally, through our model, we can pro-
cess high scale images with good qualities. We use VGG16 network to
evaluate domain transfer ability.

Keywords: Cycle-Consistent Generative Adversarial Networks · Skip
connection · Attention block · Progressive growing strategy

1 Introduction

CycleGAN [1] makes a big progress in unpaired domain translation, which is
useful in industrial such as person re-identification [3] and video re-targeting [4].
Larger size pictures are appealing to all of them. With the development of the
high-tech camera, there are more and more high pixels images exited. It will be
a trend to do domain translation on large size pictures (1024 × 1024 pixels).

Progressive Growing GAN (PG-GAN) [5] presents progressive growing meth-
ods for GANs to process large images, but if we simply cite the progressive grow-
ing method in CycleGAN, increasing the layers progressively. However, the gen-
erated images are not in good quality, which is shown in Fig. 1. This is because
the span of the receptive field is enormous between the layers of CycleGAN,
c© Springer Nature Singapore Pte Ltd. 2020
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Input Ours CycleGAN[1] PG-CycleGAN

Fig. 1. The result of our GAN, CycleGAN [1], PG-CycleGAN (progressively growing
the layer of original CycleGAN), for translating a zebra with a size of 1024 × 1024 to
a horse and a horse to a zebra. By taking the details in the pictures, it is clear to see
our generated horse and zebra are more rounded and nature.

which will easily cause the model collapse. Shown in Fig. 1, they only change the
color of the whole images, but not the domain.

To prevent such a case, we re-design the generator, whose architecture uses
sampling to substitute the stride-2 convolution layers that are used in the original
CycleGAN. Besides, the kernel size of the first convolution layers of generators
changes from 7 × 7 to 1 × 1 to reducing the reconstruction damage caused by
encoding and decoding. Moreover, we replace all the transpose convolution layers
with bilinear interpolation upsampling layer to erase the checkerboard effect.
From Fig. 1, the results from our model have better-translated textures when
handling the 1024 × 1024 size images.

We begin training with the 256 × 256 size, and after fully trained, we dou-
ble the size to encourage on fine details. Besides, we use the attention block
that protects the high-frequency information to have a clearer image. Compar-
ing with the original CycleGAN and simply growing CycleGAN structure, we
qualitatively and quantitatively show that explicitly our new progressive model
can do well in domain translation for high pixels pictures.

2 Related Work

2.1 Cycle-Consistent Adversarial Networks

Cycle-Consistent Generative Adversarial Networks (CycleGAN) [1] introduced
by Jun-Yan Zhu et al. uses two adversarial processes with two generators and two
discriminators to realize two-way domain translation. The key to CycleGAN’s
success is the cycle-consistency loss, which represents cycle consistency and guar-
antees that the learned function can map an individual input to a desired output.
The structure of the generator consists of encoders, transformers, and decoders,
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which result in a serious problem: edge information will be damaged in the encod-
ing process and cannot be recovered in the decoding process. Therefore, some
parts of the generated images are blurry and indistinct. To improve the image
quality, we use skip-connection to connect encoder and decoder. Thus the archi-
tecture can prevent edge information from being damaged and will be directly
transmitted to generated image. Besides, we softly enlarge the generator, which
prevents the model collapse. These methods can get better results compared
with other models. Finally, our model based on the growing technology can well
handle the large scale images.

2.2 Skip Connection

Olaf Ronneberger et al. introduce U-Net [6] to make convolution networks could
work for bio-medical images. In terms of the high-quality images, which are
important in medical, they use the skip connection between the sampling and
upsampling layers. To increase the speed of the architecture, many structures
use the sampling to minimize the size of the processing images, which will throw
away the high-frequency information that includes the edge information. With
the help of the skip connection, the detail information directly transfers to the
upsampling layers, thus can have clearer images. We adopt the skip connection
between the encoder and decoder inside the generator. Besides, we will also
establish a new skip connection with the network growing. Though the network
is much deeper, it will still have good quality in generated pictures.

2.3 Progressive Growing of GANs

Progressive Growing of GANs (PG-GANs) [5] realizes size increase by using a
progressive growth strategy. In this training process, our model begins from a
small output size and gradually adds new layers in output end to expand size,
which is realized by weight α changing from 0 to 1. When α increases to 1 as
the training process, the new layer is completely added to the model and the
output size is expanded. Different from the PG-GAN, our model base on the
image input-output structure. Motivated by this progressive growing strategy,
we also use weight α to linearly add new layers in both input end and output end
to increase image size. Besides, we also increase the size of the discriminator, to
prevent model collapse caused by the situation when the discriminator is over
trained.

2.4 Artifact

Youssef et al. introduce Attention CycleGAN [7] to protect the background infor-
mation in datasets like horse2zebra and summer2winter. Using the attention
block that only focuses on the domain part, which won’t do superfluous trans-
lation on the background. Odena et al. [8] discover the checkerboard effect in
image processing, which is caused by transpose convolution layers. In this model,
we not only present an alternative attention block to keep the milieu but also
choose upsampling layers instead of transpose convolution layers to solve the
checkerboard effect.
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Input CycleGAN deeper CycleGAN Ours

Fig. 2. The result of CycleGAN, deeper CycleGAN (CycleGAN has more layers to
deepen the network), our model for translating the picture from winter to summer

3 Proposed Method

Image translation that aims to learn mapping function from source domain to
target domain with two sets of independent data, is realized by an Image Trans-
form Net [9]. Style change effect can be improved with more encoder and decoder
layers, but the reconstruction loss will increase due to the downsampling pro-
cess in encoder. Shown in Fig. 2, the deeper CycleGAN can change the color of
the tree, while it also causes the sky distorted. To solve this problem, we com-
bine the progressive growth strategy with CycleGAN to propose a new architec-
ture, which can smoothly add new layers to generators after adequate training.
Figure 3 visualizes this process.

3.1 Network Structure

Base Structure of Generator. In the generator, the first layer named from-
RGB is a convolution layer with 1 × 1 kernel size adopted from PG-GAN [5],
which has a good performance on generating high-quality images. The archi-
tecture of encoder is adopted from Image Transform Net [9] consisting of two
sampling blocks including two 1-stride convolution layers followed by Instance
normalization [10] and ReLU, average sampling to shrink images. Same as
CycleGAN [1], we use nine residual blocks as the transformer part. Besides,
before the transformer part, a skip-connection with weight transmits data skip-
ping the transformer to decoder. For the decoder part, motivated by Stack GAN
[11], we choose two bilinear interpolation upsampling layers integrated with two
1-stride convolution layers to expand image size instead of transpose convolu-
tion. Moreover, the input of the second upsampling layer is the integration of
output from the last layer and data from the first convolution layer in encoder
transmitted by a tunnel. Finally, the output is fed in a 1 × 1 convolution layer
named toRGB to reduce the dimension back to the RGB image.

Base Structure of Discriminator. We use three 2-stride convolution layers
followed by Instance Normalization and LeakyReLU to make quick judgments,
which is inspired by FCN [12]. Due to the flexibility of FCN, we can easily add
layers to achieve a progressively growing effect.
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Fig. 3. When growing the layers of the encoder of the generator (G-E), the decorder
of the generator (G-D) and discriminator (D), we fade in the new layers smoothly.
This example illustrates the translation of the deepening parts, (a) to (c). During the
transition (b), we grow α linearly from 0 to 1. fromRGB represents RGB to feature
vectors, using the 1 × 1 convolution layers. toRGB is feature vectors to RGB. Conv
means 2 stride-1 3× 3-convolution layers. Dconv is a stride-2 3× 3-convolution layer.
When training the discriminator, we feed in real images that are downsampled to
increase the judgement on semantic information

3.2 Progressive Growing Strategy

We adopted the progressive growing method of PG-GAN and modified it to
suit the encoder-decoder style since the PG-GAN only generates images from
random noise of 1 × 512 codes. The progressively added layers method is shown
in Fig. 3. When the network has been trained after adequate training epochs, the
progressive growing stage will begin. Firstly, the input image size needs to be
enlarged from the original 256 × 256 to 512 × 512. Since we softly add the layer,
we use two ways to gradually shade, shown in Fig. 3. For the original round, there
will be a new pooling layer before fromRGB to adjust the size because it can only
accept 256×256 images. For the other way, the growing layers, which consists of
a fromRGB layer of 512 × 512 and two 1-stride convolution layers with average
sampling, will be gradually added to the well-trained structure. There are two
weights α and 1 − α working on growing layers and original layers separately.
With α growing from 0 to 1, the original way will be gradually abandoned and
adding layers will progressively integrated well with other parts of this network
and a new architecture will be completed. In the decoder part, the process is
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similar to that in the encoder. Due to the above idea, our method has great
training stability.

3.3 Attention Block

Our attention block aims to find the target domain part and the source port in
the pictures. If we add layers into the attention block with the training growing,
it will destroy the well-trained attention block, which will need to train again in
turn. On the contrary, we keep input 256×256 size images, using bicubic [13] to
increase the size to maintain the stability. Like Wang et al’s work [14], we use
residual units in our network to increase the accuracy of an attention block.

3.4 Training

The work of domain translation is using a generator Gst that translates input
image s from a source domain into s’ in target domain which is based on a
possibility of P t. At first, we use an attention network As, which can locate the
source domain part in the images. For the output of the As, it is an attention
map with per-pixel [0, 1], allowing the network to learn how to compose edges.
After the attention block, we can get an image only with the domain part As(s)
and an image only with the background 1-As(s), and the other part is just pixels
with zero value. Finally, we put the domain part inside the generation and can
get the target domain image. We use ‘�’ to represent the element-wise product.
Thus, the mapping from the source domain to the target domain is:

s′ = (1 − As(s)) � s + As(s) � Gst(s) (1)

We use the progressively growing method to deepen the network, which can
handle the large scale images. Before adding a new layer, the model should be
fully trained. Through a lot of experiments, we observed that after 100 epochs,
it would change a little in the original model. Therefore, after 100 epochs, we
will grow the layers in the generation and attention block. We use the Gstnew

to represent the latest generation and use A*s (we do not change the attention
block after 30 epochs) as the latest attention block. Using α as weight in progress.
The progressively mapping is:

s′ = (1 − A ∗s (s)) � s + (αGstnew + (1 − α)Gst)(A ∗s (s) � s) (2)

We use F st and F ts to represent the domain translating. D t and Ds present
the process of discriminators. So the adversarial loss function can be shown as:

Ls
adv(Fst,As,Ds) = Et∼Pt(t)[log Dt(t)] + Es∼Ps(s)[log 1 − Dt(s′)] (3)

In addition, we enforce network by using cycle consistency loss: calculate the
difference between original image s and inverse mapping image s”, which is s
transferred back to original domain by F st and F ts. This process is shown below:

Ls
cyc(s, s ′′) = ||s − s ′′||1 (4)
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The cycle consistency loss can further reduce the space of possible mapping
functions and increase the attention block. Finally, we combine the attention
loss and cycle consistency as:

L(Fst,Fts,As,At,Ds,Dt) = Ls
adv + Lt

adv + λ(Ls
cyc + Lt

cyc)) (5)

The optimal parameters of λ e obtained by solving the minimax optimization
problem:

F*st,F*ts,A*s,A*t,D*s,D*t = argmin
Fst,Fts,As,At

(argmax
Ds,Dt

L(Fst,Fts,As,At,Ds,Dt)) (6)

For discriminator. At first, the attention block is not precise enough if we just
focus on the target part, which will cause the model collapse by combining the
information of the background, e.g., in the horse2zebra is the living condition of
zebra. To overcome this problem, we train the discriminator with the full image
before the first 30 epochs and switch to only the attention part after attention
block has developed.

Unpaired image translation generate the pictures will also influenced by the
background. Unlike traditional attention block, we should make the boundary
sharper to decrease the influence of background. We calculate the attention map
as follows:

tnew =
{

t if At(t) > τ
0 otherwise (7)

s′
new =

{
Fst(s) if As(s) > τ

0 otherwise (8)

tnew and s’new are masked versions of target sample t and translated source
sample s’, which only contain pixels exceeding a user-defined attention threshold
τ , which we set to 0.1.

Finally, we update the adversarial loss L of Eq. (3) to:

Ls
sdv(Fst,As,Dt) = Et∼Pt(t)[log Dt(tnew)] + Es∼Ps(s)[log 1 − Dt(s′

new)] (9)

When optimizing the objective in Eq. (8) beyond 30 epochs, real image inputs
to the discriminator is now also dependent on the learned attention maps. This
can lead the model to collapse if the training is not performed carefully. For
instance, if the mask returned by the attention network is always zero.

Ls
sdv(FstDt) = Et∼Pt(t)[log Dt(t)] + Es∼Ps(s)[log 1 − Dt(s′)))] (10)

Our model is based on the circulation from source domain to target domain,
and back. Which is shown as φs → φst → φsts, so the cycle consistency is same
as function (4). To combine them, the full object is:

L(Fst,Fts,Ds,Dt) = Ls
adv + Lt

adv + λ(Ls
cyc + Lt

cyc) (11)
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The solution is similar to the model with attention block, just without the atten-
tion part, which is:

F*st,F*ts,D*s,D*t = argmin(
F*st,F*ts

argmax
D*s,D*t

L(F*st,F*ts,D*s,D*t) (12)

4 Experiments

4.1 Training Setting

We use the ‘Apple to Orange’ (A2O) and ‘Horse to Zebra’ (H2Z) datasets pro-
vided by Zhu et al. [1] to train our model with attention block since such images
have exact foreground object. For our model without attention block, we choose
the datasets celeba datasets HD from Karras et al. [5], summer2winter(Yosemite)
and monet2photo, which are also from CycleGan [1].

We adopt CycleGAN’s notation [1], “c3s1-k -R” denotes a 3*3 convolution
with stride 1 and k filters, followed by a ReLU activation (‘R’), while Leaky ReLU
activation with slope 0.2 (’LR’). “ap” denotes an average pooling layer halving
the input layer. “rk” denotes a residual block formed by two 3*3 convolutions
with k filters, stride 1 and a ReLU activation. “up” denotes a upsampling layer
doubling the heights and widths of its input. A Sigmoid activation is indicated
by ‘S’ and ‘tanh’ by ‘T’. We apply Instance Normalization after all layers apart
from the last layer.

Final generator architecture is: c1s1-32-R, c3s1-64-R, c3s1-64-R, ap, c3s1-64-R,
c3s1-64-R, ap, c3s1-128-R, c3s1-128-R, ap, r128, r128, r128, r128, r128, r128,
r128, r128, r128, up, c3s1-64-LR, c3s1-64-LR, up, c3s1-32-LR, c3s1-32-LR,up,
c3s1-32-LR, c3s1-32-LR, c1s1-3-T.

Attention block architecture is: c7s1-32-R, c3s2-64-R, r64, up, c3s1-64-R, up,
c3s1-32-R, c7s1-1-S.

Final discriminator architecture is: c3s1-64-LR, c4s2-32-LR, c4s2-64-LR, c4s2-
128-LR, c4s2-256-LR, c4s1-512-LR, c4s1-1.

Similar to CycleGAN, we use the Adam solver with a batch size of 1. All
networks were trained from scratch with a learning rate of 0.0002. We keep the
same learning rate for the 200 epochs. Weights are initialized from a Gaussian
distribution N (0,0.02). Layers are added in 140, 170 epochs.

4.2 PG-Method and Attention Block

Observing the Fig. 5, we can see that the generated images are getting more
and more fine details through training, which means our progressively growing
method work. When it in step1, there are only limited strips on the generated
zebras, but as the step grows, the strips are getting more and more. Finally,
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Input Ours CycleGAN PG-CycleGAN Disco

Fig. 4. Translation results. From top to bottom. Zebra to horse, horse to zebra, apple
to orange, summer to winter, winter to summer. For the first three translations, our
results are generated with attention block, and for the last two translation, attention
block is not used. (Color figure online)

all the generated zebras are covered with strips, which makes them really like
zebras.

The function of the attention block is to tract the domain part in the image,
which will protect the background information while in translation. In Fig. 6,
looking at the attention maps (the grey images), each of them can accurately
find the source domain. As a result, shown in the photos after the attention
block, the generated pictures will have the same background as the original
images have.
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Input step1 step2 final

Fig. 5. Domain translation for generating a zebra images by a horse image. Results of
step1 (fully trained with 256×256 size images, which is same as CycleGAN), step2 (fully
trained with 512× 512 images), and step3 (fully trained with 1024× 1024 pictures, the
model already finished growing). With the layers growing, some fine details are added.
The strips of generated zebra is adding with the step increasing.

Fig. 6. Results of attention block for zebra to horse and horse to zebra domain transla-
tion of four group. The order inside each group is input image, generated image without
attention map, attention map and generated image with attention map. The attention
block can correctly tract the domain part inside the images.

4.3 Baselines

Nowadays, there are many famous GANs performing well in domain transferring
using different loss. CycleGAN [1] with least-squared GAN [16] loss and Disco-
GAN [15] with Standard loss [17] use a circulation to train adversarial network.
Dual GAN [19] uses Wasserstein GAN loss [18] to solve the model collapse. To
prove our model really work well on high pixels images, we compare our model
with CycleGAN [1], CycleGAN [1] with progressively growing method [5] and
DiscoGAN [15] on 1024 × 1024 images.

4.4 Qualitative Results and Quantitative Results

Figure 4 shows the results of Horse2zebra, Apple2Orange, Summer2Winter,
Monet2Photo, and blond2brown datasets. Although CycleGAN has a strong
ability in domain transfer, the background will be changed by trained mapping
function due to loss function, which is based on whole the image. Moreover, when
we zoom in the image from CycleGAN, obvious checkerboard artifact resulted
from transposed convolution layers can be observed. The simple combination of
PG-GAN and CycleGAN do not have good performance. Because the receptive
field changes a lot when new layers are added, the model collapsed is easier
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Table 1. VGG perception for each model

Model H2Z Z2H A2O O2A M2P P2M

VGG(accuracy) 0.99 0.99 0.96 0.96 0.98 0.98

Ours 0.78 0.94 0.84 0.83 0.84 0.27

CycleGAN 0.82 0.90 0.77 0.87 0.83 0.11

PG CycleGAN 0.75 0.65 0.62 0.59 0.72 0.09

Disco GAN 0.63 0.19 0.80 0.19 0.74 0.35
a Higher scores mean better model.
b H (horse), Z(zebra), A(apple), O(orange), M(monet),
P(photo)

to occur. DiscoGAN focuses on the relationship between two domains, but can
only realize unidirectional domain translation, such as horse2zebra in Fig. 4.
By incorporating the progressive growing strategy, attention block and replac-
ing transpose convolution with bilinear interpolation upsampling, our results
have less checkerboard effect, more natural background and stronger ability of
domain transfer. Our model successfully makes output more realistic compared
with other models and manages to solve the checkerboard artifacts.

We use the VGG-16 network [19] to quantitatively evaluate the authenticity
of our generated images. VGG-16 is a classical model in Image Identification.
Comparing with AlexNet [20], VGG-16 used stacked small convolution kernels
increasing the depth of the network with fewer parameters. We prepare a unique
VGG-16 network for each datasets, expect winter2summer that VGG-16 only
has 70% accuracy. For the training datasets are the same with the datasets
we used in domain translation. As we wanted our domain translation is more
natural, which means our results should have a higher grade in VGG-16 network.
Therefore, we calculate the accuracy of each dataset in Table 1, where we also
list the accuracy of VGG-16 network for test images.

Our approach reaches the highest score in most domain translation, while
the CycleGAN is the second, which means it does well in domain translating.
Although PG CycleGAN uses the progressive growing method, it is third one
of all, because the model is not stable enough, then adding layer will always
just learn to change the color instead of the domain translation. Because of
the loss function used by DiscoGAN, it can reach good results in one direction
domain translation. Finally, comparing with these GANs, it is obvious that our
model deepens the understanding of the semantic information through progres-
sive training and enhances the vision of the attention block (Figs. 7 and 8).
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Input Ours CycleGAN PG-CycleGAN Disco

Fig. 7. Translation results. From top to bottom. Horse to zebra, zebra to horse, orange
to apple, apple to orange, picture to monet, monet to picturen. For the first five transla-
tions, our results are generated with attention block, and for the last three translation,
attention block is not used. (Color figure online)
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Input Ours CycleGAN PG-CycleGAN Disco

Fig. 8. Translation results. From top to bottom. Winter to summer, summer to winter,
blond hair to brown hair, brown hair to blond hair. Attention Block is not used.
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5 Conclusion

Simply combination of a progressively growing method with CycleGAN will
easily cause model collapse. In this paper, we present a more stable GAN–PG-
Att-CycleGAN. The architecture trains an adversarial network gradually with
the help of attention block, and fix the generator to reach the goal. Our method
can greatly reduce the damage of the deep layer to the spatial information.
Besides, with the help of the increased number of layers and skip connection, we
can generate images with more natural textures.
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Abstract. In this paper, we propose a method for generating joint
angle sequences toward unsupervised 3D human pose estimation. Many
researchers have proposed human pose estimation methods. So far, how-
ever, most methods have problems that require a large amount of images
with supervised pose datasets to learn pose estimation models. Build-
ing such datasets is a time-consuming task. Thus, we aim to propose
a method that can estimate 3D human poses without requiring train-
ing data with known poses. Toward this goal, we propose a GAN-based
method for human motion generation and an optimization-based human
pose estimation method. The proposed method consists of a generator
that generates human pose sequence, a renderer that renders human
images by changing 3D meshes based on the pose sequences gener-
ated, and a discriminator that discriminates between generated images
and training data. Through an experiment based on simulated walking
images, we confirmed that the proposed method can estimate the poses
of body parts that are not occluded.

Keywords: 3D human pose estimation · Unsupervised learning ·
Generative adversarial networks

1 Introduction

Human pose estimation from image sequences has various applications such as
activity recognition, user interface, and others. Thus, many researchers have
proposed human pose estimation methods [4,10]. In recent years, many deep
learning-based methods for estimating human poses have been proposed. By
using these methods, we can obtain accurate human poses from RGB images.

3D human pose estimation methods are mainly divided into two categories.
One is a two-step method that first estimates the positions of joints in the 2D
image and then estimates 3D human poses based on the 2D joint positions [6,7].
The problem with this type of method is that the final 3D pose estimation accu-
racy depends on the estimation accuracy of the 2D joint positions. In addition,
since the 3D pose estimations are based on 2D joint positions, such methods
may not be able to utilize image features from the entire input image.
c© Springer Nature Singapore Pte Ltd. 2020
M. Cree et al. (Eds.): ACPR 2019 Workshops, CCIS 1180, pp. 100–109, 2020.
https://doi.org/10.1007/978-981-15-3651-9_10
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Fig. 1. Final goal of this research

Another type of method involves estimating the 3D human poses directly
from the image [1,3,12,13,15]. In these methods, 3D pose estimation can be
achieved directly from RGB images by learning from supervised datasets with
known poses as training data. These methods require a large amount of super-
vised pose datasets to learn human pose estimation models. Building such
datasets is a time-consuming task, and preparing a large amount of such data is
difficult.

In contrast, in this research, we aim to achieve a method that can esti-
mate 3D human poses without requiring training data of known poses. Figure 1
shows the final framework that this research aims to realize. First, the latent
vectors that represent actions or behaviors are obtained from the input image
sequences. Next, human joint angle sequences are generated from these latent
vectors. Finally, human images are rendered from the joint angle sequences.
Here, if we can learn to generate an image sequence that matches the input
image sequences through a series of these processes, the joint angles of the input
images can be estimated as intermediate results (joint angles in Fig. 1).

In this paper, we focus on the latter part of the Fig. 1 (inside the dotted line
frame)—that is, the processes from the generation of the joint angle sequences to
the generation of the human image sequences using latent vectors as input. We
aim to realize these processes by using a GAN-based framework. Figure 2 shows
the flow of the proposed method. Here, instead of latent vectors, we employ noise
vectors. The proposed method consists of a motion generation model that gener-
ates joint angle sequences, and a renderer that renders human image sequences
by deforming a 3D mesh model based on the generated joint angles. These gen-
erative models are trained so that the differences between the generated image
sequences and the training data are minimized. In addition, we cannot estimate
human poses by using only the latter part of Fig. 1, we also propose a joint angle
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Fig. 2. Overview of proposed method

sequence estimation method for this purpose. In this paper, we focus on walking
motions and show the effectiveness of the proposed method.

The contributions of this paper are as follows:

– a new scheme toward unsupervised 3D human pose estimation
– a human motion generation model that can render human images that match

training datasets
– a network structure for this purpose combining differentiable modules

2 Proposed Method

2.1 Overview

An overview of the proposed method is shown in Fig. 2. The proposed method
consists of a motion generation model that generates joint angle sequences θi,
and a renderer that renders human image sequences by deforming a 3D mesh
model based on the generated joint angles. The generative model is learned to
reduce the differences between the training data and the generated images. After
training, we can generate joint angle sequences that match the training dataset
images.

For the motion generation model that generates joint angle sequences, we
employ long short-term memory (LSTM). The skinned multi-person linear
(SMPL) model [5] is used in the process that deforms the 3D human mesh
based on the joint angle sequences, and we render human images from the 3D
mesh by using the neural renderer model [2]. These processes are constructed
with differentiable models, and errors in the rendered images can be backprop-
agated to the motion generation model. Thus, the motion generation model can
be learned from errors in the rendered image sequences. The proposed model
is designed based on a GAN framework and can be learned in the end-to-end
manner.

2.2 Detailed Configuration

Figure 3 shows the detailed configuration of the proposed method. It consists of
a motion generator that generates joint angle sequences, a discriminator that
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Fig. 3. Configuration of the proposed method

discriminates between the generated images and training data, a human pose
discriminator for learning human body structures and their limitations, and a
renderer. The renderer consists of a mesh creator that transforms a 3D human
body mesh based on the generated joint angles and an image renderer that
renders the human body mesh into 2D images.

Generator. The generator is implemented as a two-layer LSTM. The input
of the generator is the noise vector z ∈ R

64 and the output is the joint angle
sequences θ ∈ R

l∗3∗K . l is the number of frames of one image sequence and K
is the number of joints. In the current implementation, l = 8 and K = 8.

Discriminator. The discriminator was designed by referencing the structure of
the discriminator in DCGAN [9] and implemented using a 3D convolutional neu-
ral network (3D Conv) [14] that can handle image sequences. Our discriminator
consists of four 3D Conv layers, four max pooling layers, and one fully connected
layer, and it outputs the probability of whether the input image sequences are
rendered images or training data. We use leaky ReLUs for activation functions.
Table 1 shows the detailed configuration of the discriminator.
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Table 1. Configuration of discriminator

Type Kernel Stride Outputs

3D Conv 3 × 3 2 × 2 16

Max pooling 3 × 3 2 × 2 16

3D Conv 3 × 3 2 × 2 32

Max pooling 3 × 3 2 × 2 32

3D Conv 3 × 3 2 × 2 64

Max pooling 3 × 3 2 × 2 64

3D Conv 1 × 1 1 × 1 64

Max pooling 1 × 1 1 × 1 64

FC – – 1

Mesh Creator. We used the skinned multi-person linear (SMPL) model [5] as
a mesh creator. This model can generate differentiable 3D meshes M(θ) ∈ R

3∗N

when 3D joint angles θi are inputted. N is the number of mesh vertices and
N = 6980. The 3D joint angles θi ∈ R

3∗K are the axis-angle representations.
The number of the joints is K = 23. The body parameter β ∈ R

10 is a 10-
dimensional vector representing the body shape. These parameters in the mesh
creator do not require training and therefore do not need to change during the
training phase. However, in the current implementation, the number of joints is
reduced and only the hip, knee, shoulder and elbow joints (K = 8) are focused
on. In addition, we employ the shape parameters of the template body mesh as
the body shape parameters.

Image Renderer. The neural renderer from [2] is used as the image renderer.
This is a differentiable image rendering function that outputs human images
x̂ ∈ R

l∗h∗w based on the 3D human mesh M(θ) ∈ R
l∗3∗N outputted by the

mesh creator and the camera parameters c ∈ R
3. Here, h and w are the height

and width of the input image, and the camera parameters are expressed as
c = [distance, elevation, angle]. Since the parameters in the image renderer do
not require training, they do not need to change during the training phase. In
addition, in the following experiment, the camera parameters are already known.

Human Pose Discriminator. The four modules described above are the basic
parts of the proposed method. However, with only these modules, the 3D joint
angles generated by the generator and the discriminate accuracy of the dis-
criminator were dependent on the viewpoint of the training data. Furthermore,
since the generator did not contain constraints of human body structures, the
generator may generate joint angles that humans cannot pose at. Thus, in our
method, we introduce a human pose discriminator that learns the constraints of
the human body structure.
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Table 2. Configuration of human pose discriminator

Type Kernel Stride Outputs

3D Conv 3 × 3 2 × 2 16

Max pooling 3 × 3 2 × 2 16

3D Conv 3 × 3 2 × 2 32

Max pooling 3 × 3 2 × 2 32

3D Conv 3 × 3 2 × 2 64

Max pooling 3 × 3 2 × 2 64

3D Conv 1 × 1 1 × 1 64

Max pooling 1 × 1 1 × 1 64

FC – – 1

The human pose discriminator consists of four convolution layers, four max
pooling layers, and one fully connected layer, as shown in Table 2, and discrimi-
nates whether the input images were training data or generated by the generator.
For training the human pose discriminator, we employed human images captured
from various viewpoints. The input images were taken from various viewpoints
rendered by the image renderer in which the camera parameters were changed
at random.

The objective functions of the generator, the discriminator, and the human
pose discriminator are expressed by the following equations.

minL(G) = Ep(z)[log(1 − D(x̂;G(z)))]
+α(Ep(z)[log(1 − Reg(x̂;G(z)))]) (1)

max L(D) = Epdata(x)[log D(x)]
+Ep(z)[log(1 − D(x̂;G(z)))] (2)

max L(Reg) = Epdata(x)[log Reg(x)]
+Ep(z)[log(1 − Reg(x̂;G(z)))] (3)

where G() is the generator, D() is the discriminator, and Reg() is the human
pose discriminator, z is the noise vector, x is the training data, x̂ is the rendered
images, and α is the weight of the regularization term using the human pose
discriminator.

2.3 Joint Angle Estimation

As described above, this paper focused on only the latter part of Fig. 1, we
cannot estimate 3D poses of input images with only these modules. Thus, we
implemented a method for estimating the joint angles from newly inputted test
images. Figure 4 shows the process flow of the method.

First, the trained models generate the joint angle sequences and render the
human image sequences. Then, by minimizing the errors between the rendered
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Fig. 4. Estimation method for estimating joint angles of input images

images and the inputted images, we can find accurate angles of joints in the
inputted images. The objective function for estimating the joint angles of the
inputted images are as follows:

min Loss =
1
n

∑

n=1

||xn − x̂n||2 (4)

where N is the number of the images, x is the inputted images, and x̂ is the
rendered images. In the current implementation, we assume the camera parame-
ters are known, but we can consider these parameters as unknown and estimate
them.

3 Experiment

To evaluate the effectiveness of the proposed method, we conducted the following
experiment. For training data, we generated CG data by using the SMPL model
and the neural renderer. Here, we focused on human walking. We generated
CG images of human walking scenes based on [8], and randomly changed the
ranges of each angle magnitude in order to express various gait patterns. To
train the human pose discriminator, we employed the OU-ISIR Gait Database,
Multi-View Large Population Dataset (OU-MVLP) [11], which includes images
of walking scenes of various people from multiple viewpoints.

In the experiment, we generated and employed 50 videos of two viewpoints as
the training data. These image sequences consist of eight frames. In the training
phase, we adopted the model at the epoch that obtained the minimum mean
square error between the training data and the images rendered by the proposed
model as the final trained model. The learning rate was 0.001, the batch size was
5, and the weight of the regularization term α was 0.01. Adam was adopted as
the optimization method. The two camera viewpoints in the training data were
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Fig. 5. Example of generated images from trained model

Fig. 6. Image generation results of proposed model from test images

alternated for each batch. The generated images and the training data were
alternatively inputted in each batch to the discriminator. Training took 10,8264
seconds (about 30 h).

Examples of the generated images are shown in Fig. 5. As can be seen, the
proposed model can generate images of similar appearance to the training data.

Next, we estimated the joint angles from the test data. Figures 6 and 7 show
these results. The results showed that the hip and knee joint angles can be
estimated correctly. On the other hand, the shoulder and elbow joint angles
cannot be estimated correctly. The reason for such different tendencies seems
to be that the joint angles are estimated based on the mean square error of
the silhouette. Therefore, in scenes in which the arms and torso overlap, the
arm movements are difficult to estimate accurately. In addition, in the training
phase, since we used images from two viewpoints as training data, we can obtain
the arm movements even if silhouette images are employed. However, in the
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Fig. 7. Joint angle estimation results

estimation phase, we employed only one viewpoint; thus, we consider that only
silhouette images were insufficient for estimating arm movements.

4 Conclusion

In this paper, we proposed a 3D human pose estimation method that did not
require training data with known poses. Experiments using CG data of simulated
walking confirmed that the proposed method can estimate the poses of the body
parts which were not occluded.

Future works can include investigations of an optimization method using
RGB images instead of silhouette images and a method that can estimate the
poses of body parts even when they will be occluded. Implementation of the
whole method shown in Fig. 1 is also a matter for future works.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
JP17K00372 and JP18K11383.
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Abstract. This paper presents a method for video generation under dif-
ferent viewpoints. The method gets inspired by MoCoGAN’s idea which
modelled a video clip in two latent sub-spaces (content and motion) and
achieved impressive results recently. However, MoCoGAN and most of
existing methods of video generation did not take viewpoint into account
so they cannot generate videos from a certain viewpoint, which is a need
for data augmentation and advertisement applications. To this end, we
propose to follow the idea of conditional GAN and introduce a new vari-
able to control the generated video’s view. In addition, to keep the sub-
ject consistent during action implementation, we utilize an additional
sub-network to generate the content control vector instead of using a
random vector. Besides, the objective function for training the network
will be modified to measure the similarity of content, action and view
of the generated video with the truth one. Preliminary experiments are
conducted for generating video clips of dynamic human hand gestures,
showing the potential to generate videos under different viewpoints in
the future.

Keywords: Data augmentation · Video GAN · Dynamic hand
gesture · Multi-view

1 Introduction

Dynamic hand gestures have been shown to be very effective for human machine
interaction [5]. Despite the fact that there exist a number of methods for dynamic
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hand gesture recognition from video, deployment of such methods in practi-
cal applications must face many challenges such as low hand resolution; phase
variation; complex background and viewpoint changes, among which viewpoint
change is the most critical issue [10]. To deal with viewpoint change, ones have to
prepare data of dynamic hand gestures observed under different viewpoints for
training recognition models. Currently, deep models have been shown to be very

Fig. 1. Video space decomposition: in Motion-Content sub-spaces in MoCoGAN [11]
and in Motion-Content-View sub-spaces in our proposed vi-MoCoGAN. The right
image sequences (row by row) illustrate key-frames of videos generated from 2 views
with 2 subjects (content) for one motion (action).

powerful in many computer vision tasks. However, training deep models always
requires big data. Unfortunately, there exist rarely multi-view dynamic hand ges-
tures datasets. In addition, setup for collecting hand gestures by a large number
of cameras and subjects is not easy. In a survey given in [6], only one among fifty
presented datasets, was collected by multiple cameras, but this dataset concerns
sign language, not for human machine interaction. In [4] and [10], a multi-view
dataset has been presented but it showed that performance of cross-view recog-
nition is still very limited due to the lack of training data. Some recent works
have shown that data augmentation could improve significantly recognition per-
formance. The problem of video generation at a certain viewpoint was not raised
in the literature. Until now, this idea for multi-view data generation was only
studied for still images (e.g. faces) in CRGAN [9]. A direct application of this
approach for video generation is to use CRGAN for generating each separated
frame. However, this approach will be very time consuming because it must pro-
cess frame by frame. In addition, this approach focuses on frame generation, it
does not take motion of the object into account.

This paper presents a method for automatic generation of dynamic human
hand gestures from different viewpoints which helps to augment data for train-
ing deep models of recognition. The ongoing work enriches the real dataset with
artificial videos generated from pre-defined viewpoints. Generating videos from
a novel viewpoint will be a future work. Our proposed method gets inspired by
the idea of MoCoGAN (Motion Content GAN) [11] that modelled a video in two
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sub-spaces (motion and content). However, the original MoCoGAN and most
of existing methods for video generation did not take viewpoint into account.
In our work, we introduce a view control vector into MoCoGAN to learn view-
points. In addition, we also put another conditional vector generated from an
image encoder to ensure that the subject (content) does not change during per-
forming hand gestures. With both additional inputs, the objective function of
the whole network will be modified to measure the similarity of content, view
and action at the same time. We name our proposed method as vi-MoCoGAN
with the prefix vi standing for viewpoint to distinguish with the original MoCo-
GAN. Compared to the original MoCoGAN, which decomposes a video clip into
motion and content, vi-MoCoGAN decomposes a video clip into three compo-
nents: motion, content and viewpoint (Fig. 1).

To evaluate the proposed method, we collect a dataset of twelve dynamic
hand gestures observed under five viewpoints. This dataset will be used to
train vi-MoCoGAN then vi-MoCoGAN generates new samples of dynamic ges-
tures among twelve pre-defined gestures from five views. The experiments show
promising results of video generation at different viewpoints. In summary, the
contributions of our work are: (i) adapt a video generation network to deal
with different viewpoints; (ii) put a constraint on the subject to make it more
consistent during gesture/action implementation; (iii) preliminary evaluation of
generating dynamic human hand gestures.

2 Related Work

2.1 Existing Works of Video Generation

Video generation is a new topic in computer vision. It opens many applications
for example entertainment/advertisement or data augmentation for machine
learning algorithms. However, the problem of video generation remains still a big
challenge because video is a spatial-temporal sequence which contains objects
performing actions. As a consequence, a generative model needs to learn both
the appearance and physical motion of the object at the same time. Generative
Adversarial Network (GAN) has been widely applied for image generation [2].
Recently, some works inspired the idea of GAN for video generation have been
attempted such as VGAN [13], TGAN [7], MCNET [12] and MoCoGAN [11].
MoCoGAN has outperformed TGAN and VGAN on several benchmark datasets
such as MUG Facial Expression; Tai-Chi; UCF101. This motivates us to study
MoCoGAN and extend it for video generation under different viewpoints.

2.2 Summary of MoCoGAN

The main idea of MoCoGAN is to consider each video as a combination of motion
and content. Therefore, the latent space of video clips should be decomposed into
two latent sub-spaces which are motion subspace and content subspace. This
decomposition facilitates the control of motion and content generation which
is absent in existing video generation methods. We assume the latent space of
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Fig. 2. Frameworks of (a) the original MoCoGAN [11] and (b) the proposed
vi-MoCoGAN.

images ZI ≡ Rd. Each z ∈ ZI is an image in the space ZI and a video is a path
of length K in the image space [z(1),z(2), ...,z(K)]. In MoCoGAN, the latent
space ZI is decomposed into two sub-spaces: the content space ZC = RdC and
the motion space ZM = RdM : ZI = ZC × ZM with d = dC + dM . The content
sub-space is modelled by a Gaussian distribution zC ∼ pZC

≡ N (z|0, IdC
) where

IdC
is the identity matrix of size dC × dC . In a short video, the content remains

the same so the same realization of zC will be used for generating different frames
in a video clip. The motion in the video clip is modeled by a path in the motion
subspace ZM . The sequence of vectors to generate a video is represented by
Eq. (1):

[z(1),z(2), ...,z(K)] = [[
zC

z
(1)
M

], [
zC

z
(2)
M

], ..., [
zC

z
(K)
M

]] (1)

As not all paths in ZM correspond to physically plausible motions, valid paths
should be learnt using a recurrent neural network (RNN) RM . At each time,
RM takes a vector sampled from a Gaussian distribution as input: εk ∼ pE ≡
N (ε, 0|IdE

) and outputs a vector in ZM : z
(k)
M = RM (k). Shortly, the RNN

maps a sequence of random variables with independent and identical distribution
[ε(1), ..., ε(K)] to a sequence of correlated random variables [RM (1), ..., RM (K)]
representing dynamics in a video. In MoCoGAN, RM is implemented as a one-
layer GRU [1].

The framework of MoCoGAN is illustrated in Fig. 2a. It composes of four
sub-networks: the recurrent neural network RM , the image generator GI , the
image discriminator DI and the video discriminator DV . The image generator

GI generates a video clip by mapping a vector [[
zC

z
(1)
M

], [
zC

z
(2)
M

], ..., [
zC

z
(K)
M

]] ∈ ZI to a
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sequence of images: ṽ = [x̃1, x̃2, ..., x̃K ] where x̃k = GI([
zC

z
(k)
M

]) and z
(k)
M is from

RM (k). DI and DV make judges on GI and RM . MoCoGAN optimization is as
in Eq. (2):

max
GI ,RM

min
DI ,DV

Fmcg1 = max
GI ,RM

min
DI ,DV

FV (DI ,DV , GI , RM ) (2)

where

FV (DI ,DV , GI , RM ) = Ev[−logDI(S1(v))] + Eṽ[−log(1 − DI(S1(ṽ)))]+
Ev[−logDV (ST (v))] + Eṽ[−log(1 − DV (ST (ṽ)))] (3)

where Ev is a shorthand for Ev∼pV
, and Eṽ for Eṽ ∼ pṼ . S1, ST are two

random access functions. S1 takes a video clip and outputs a random frame
from the clip while ST takes a video clip and randomly returns T consecutive
frames from the clip. In Eq. (3), the first and the second terms encourage DI to
output 1 for a video frame from a real video clip v and 0 for a video frame from
a generated one ṽ. Similarly, the third and the fourth terms encourage DV to
output 1 for T consecutive video frames from a real video clip v and 0 for T
consecutive frames from a generated one ṽ.

To model categorical dynamic of action/gesture, MoCoGAN utilizes an addi-
tional one-hot vector zA to control the category of action. As a consequence, the
objective function changes to Fmcg2 Eq. (5):

Fmcg2 = FV (DI ,DV , GI , RM ) + λLI(GI , Q) (4)
= Fmcg1 + λLI(GI , Q) (5)

where LI is a lower bound of the mutual information between the generated video
clip and zA, Q approximates the distribution of the action category variable
conditioning on the video clip which is implemented by adding a softmax layer
to the last feature layer of DV . λ is a hyperparameter, set to 1 in the experiment.

3 vi-MoCoGAN

3.1 Viewpoint Controlling

To generate action/gestures from a certain viewpoint, we introduce an one-hot
vector zV to control the view of image generator. The fact of introducing zV

must be carefully considered because it could affect the network’s performance.
By experiment, we found that the best way is put zV into the image generator
GI . Besides, we adapt the objective function to evaluate the view of generated
video with the input view control zV by a cross-entropy function LV . In this
way, the new objective function Fvmcg1 that takes view constraint into account
is as Eq. (6):

Fvmcg1 = Fmcg2 + βLV (6)

where β is a hyperparameter. We call this model vi-MoCoGAN v1.
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3.2 Subject Consistency

The current model vi-MoCoGAN v1 is capable of generating video clip of a
certain action at a certain viewpoint. However, in our experiments, we found
that it does not ensure well consistency of the subject performing the action.
This means vi-MoCoGAN v1 could generate videos whose the subject is a
combination of several body parts of different subjects in the training set. The
reason is that in MoCoGAN, there is not an explicit constraint to keep subject’s
consistency. In fact, the output of video discriminator DV in MoCoGAN has
only two components: one is a binary value (0 or 1) to generally judge the true
video from the generated one, another is a vector to measure the similarity of
action category. As a result, it is too weak to judge separately content, action
and view of the generated video.

To overcome this limitation, firstly, we do not use a random content vector zC

to input into the generator GI . Instead, we randomly extract one image I from a
given video and pass it through an Image Encoder sub-network to generate the
vector zC = IE(I). Then, we add a cross-entropy function LC , that evaluates
the similarity of the subject in generated video clip with zC , in the objective
function. The final objective function Fvmcg2 of our vi-MoCoGAN v2 is as
Eq. (7):

Fvmcg2 = Fmcg1 + βLV + γLO = Fvmcg1 + γLO (7)

where γ is a hyperparameter. Figure 2 and Table 1 show the difference between
the original MoCoGAN and the proposed vi-MoCoGAN.

3.3 Network Architectures

vi-MoCoGAN v1 composes of four sub-networks RM , G1
I ,D

1
I ,D

1
V similar to

the four subnets of MoCoGAN but their inputs and outputs change (see Table 1).
Particularly, the output of D1

V in vi-MoCoGAN v1 has 1 + dA + dV values
while the output of DV in MoCoGAN has only 1+dA values. The dV additional
values are used to evaluate the view of generated video with the view controlling
vector zV by the entropy function LV (Eq. (8)).

vi-MoCoGAN v2 composes of five sub-networks: four subnets RM , G2
I ,D

2
I ,

D2
V and an additional Image Encoder IE to generate content vector zC . It

notices that the output D2
V of vi-MoCoGAN v2 has 1+dA +dV +dC compo-

nents, the dC additional values are used to evaluate the similarity of subject in
the generated video with zC by the entropy function LC (Eq. (9)). ExtractV ()
andExtractCO() are two functions that extract dV and dO values corresponding
to the distribution of view and content from output of D

{1,2}
V .

LV = CrossEntropy(zV , ExtractV (dV ,D
{1,2}
V )) (8)

LO = CrossEntropy(zO, ExtractC(dO,D2
V )) (9)
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where zO and zV are one-hot vectors indicating the subject and the view to be
learnt.

Architectures of sub-networks RM ,D
{1,2}
I ,D

{1,2}
V , G

{1,2}
I in vi-MoCoGAN are

quite similar to the ones of MoCoGAN, but their configurations are modified to
adapt with more inputs and outputs. In most cases, we add an additional layer
in each sub-network and we adapt the kernel size, stride and padding. Compared
to MoCoGAN, vi-MoCoGAN v2 has more than one sub-network which is Image
Encoder IE . We have designed IE to generate the content vector zC and a
network Evaluator E to evaluate the quality of the generated videos. Table 2
shows configuration of these sub-networks where dV is the number of views,
dO is the number of subjects, dA is the number of action categories, dAV O =
(dA + dV + dO), dV O = (dV + dO). Hyper-parameters α, β, γ are set to 1. In
these tables, N stands for output channels, K,S, P stand for kernel size, stride
and padding. Similar to MoCoGAN, we also used ADAM [3] for training, with
a learning rate of 0.0002 and momentums of 0.5 and 0.999.

Table 1. Main differences between MoCoGAN and vi-MoCoGAN

Method Sub-nets Inputs #Outputs DI #Output DV Loss function

MoCoGAN RM , GI ,

DI , DV

zC , zA 1 1 + dA F + LI

vi-MoCoGAN v1 RM , GI ,

D1
I , D

1
V

zC , zA, zV 1 + dV 1 + dA + dV F + LI + LV

vi-MoCoGAN v2 RM , GI , D
2
I ,

D2
V , IE

zC = IE(I), zA, zV 1 + dV + dO 1 + dA + dV + dO F + LI + LV + LC

In original MoCoGAN, all generated video clips has resolution of 64 × 64.
As these videos contain human action, this resolution is acceptable to recognize
the action. However, in our work, we generate videos of human hand gestures
where human body do not change so much, only arm and hand posture are
changing. However, hand has usually very low resolution, if we generate low
resolution video clip, the detail of hand should be lost. In this work, we generate
(height × width) video clips (128 × 128 in our experiment).

4 Experiments

4.1 Building the Dataset of Hand Gestures at Different Viewpoints

As mentioned previously, there does not exist a multi-view hand gestures dataset
for human machine interaction. Therefore, we have collected a new dataset of
twelve dynamic hand gestures, performed by six subjects observed by five cam-
eras. The cameras are uniformly spacing. During gesture implementation, subject
stand in front of the third camera at a distance of 2.0 m (Fig. 3). Five cameras
(K1,K2,K3,K4,K5) are set at the height of 1.5 m at angles (−90◦, −45◦, 0◦,
45◦, 90◦) compared to human orientation. The K1,K5 at −90◦, 90◦ are two most
difficult views because the human hand is easily occluded by human body. The
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Table 2. Configuration of sub-networks in vi-MoCoGAN

GI Configuration

Input zM ∼ RM , zC ∼ IE(I) ∈ RdC , zV ∈ RdV

1 DCONV-(N(512), K(4,4), S(1, 1), P(0, 0)), BN, ReLU

2 DCONV-(N(256), K(4,4), S(2, 2), P(1, 1)), BN, ReLU

3 DCONV-(N(128), K(4,4), S(2, 2), P(1, 1)), BN, ReLU

4 DCONV-(N(128), K(4,4), S(2, 2), P(1, 1)), BN, ReLU

5 DCONV-(N(64), K(4,4), S(2, 2), P(1, 1)), BN, ReLU

6 DCONV-(N(3), K(4,4), S(2, 2), P(1, 1)), Tanh

DI Configuration

Input height × width × 3

1 CONV-(N(64), K(4,4), S(2, 2), P(1,1)), LeakyReLU

2 CONV-(N(128), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

3 CONV-(N(128), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

4 CONV-(N(256), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

5 CONV-(N(512), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

6 CONV-(N(1 + dV O), K(4; 4), S(1; 1), P(0; 0)), BN, LeakyReLU

DV Configuration

Input 16 × height × width × 3

1 CONV3D-(N(64), K(4,4,4), S(1,2, 2), P(0,1,1)), LeakyReLU

2 CONV3D-(N(128), K(4,4,4), S(1,2,2), P(0,1,1)), BN, LeakyReLU

3 CONV3D-(N(128), K(3,4,4), S(1,2,2), P(1,1,1)), BN, LeakyReLU

4 CONV3D-(N(256), K(4,4,4), S(1,2,2), P(0,1,1)), BN, LeakyReLU

5 CONV3D-(N(512), K(4,4,4), S(1,2,2), P(0,1,1)), BN, LeakyReLU

6 CONV3D-(N(1 + dAV O), K(4; 4; 4), S(1; 1; 1), P(0; 0; 0)), BN,

LeakyReLU

IE Configuration

Input height × width × 3

1 CONV-(N(64), K(4,4), S(2,2), P(1,1)), LeakyReLU

2 CONV-(N(128), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

3 CONV-(N(128), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

4 CONV-(N(256), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

5 CONV-(N(512), K(4,4), S(2,2), P(1,1)), BN, LeakyReLU

6 CONV-(N(dC); K(4; 4), S(1; 1), P(0; 0)), BN, LeakyReLU

E Configuration

Input 16 × height × width × 3

1 CONV3D-(N(64), K(4,4,4), S(1, 2, 2), P(0, 1, 1)), LeakyReLU

2 CONV3D-(N(128), K(4,4,4), S(1, 2, 2), P(0, 1, 1)), BN, LeakyReLU

3 CONV3D-(N(128), K(3,4,4), S(1, 2, 2), P(1, 1, 1)), BN, LeakyReLU

4 CONV3D-(N(256), K(4,4,4), S(1, 2, 2), P(0, 1, 1)), BN, LeakyReLU

5 CONV3D-(N(512), K(4,4,4), S(1, 2, 2), P(0, 1, 1)), BN, LeakyReLU

6 CONV3D-(N(dAV O), K(4; 4; 4), S(1; 1; 1), P(0; 0; 0)), BN,

LeakyReLU
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Fig. 3. Setup equipment for collecting multi-view hand gestures

video are captured at 640 × 480, 30 fps, we re-sample videos every three frames
and resize frames to 128 × 128.

In our experiment, each gesture corresponds to a movement of the hand such
as up/down, left/right, left circle, right circle, etc. with hand shape following
a cycle from closed palm to open palm (open two fingers) then closed palm.
The gestures are designed to correspond to some commands controlling home
appliances in a smart home. Totally, we have 1080 video samples (12 gestures × 6
subjects × 5 views ×3 realization times) for training the vi-MoCoGAN v1 or v2.
It notices that there are two pairs of gestures whose trajectories of the hand are
similar, the main difference is only in the hand posture (open palm or open two
fingers of the hand) so if the generated video has low resolution, it could be hard
to recognize this difference. In our experiments, dC is set to 50 and dM is set to
10 as in MoCoGAN, dV the number of views is set to 5, dA is 12, dO the number
of subjects in the experiments.

4.2 Evaluation Metrics

As mentioned in [8], evaluating generative models is known to be a challenging
task. There are not common metrics for evaluating generated videos. In MoCo-
GAN, the authors utilized Average Content Distance (ACD) and Motion Control
Score (MCS). The higher ACD shows the better content consistency of the gen-
erated video while the MCS shows the capacity in motion generation control. To
compute ACD, depending on the dataset that the authors measure the L2 pair-
wise distance between two consecutive frames with the features computed using
OpenFace for face dataset. To compute MCS, the authors trained a classifier to
recognize the generated actions. The better accuracy of the classifier, the higher
generated video quality.

In this work, we propose three evaluation metrics for evaluating video gener-
ation results under different viewpoints. We utilize a 3D CNN E that has been
learnt from labelled dataset of hand gestures at different viewpoints. Through
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the training, we hope E will recognize the most important features of real videos
then use it as an arbitrator to judge on the quality of generated videos in term of
action, subject and view. As we can see in Table 2, E has the similar architecture
of the video discriminator DV . The output of E is the predicted values of action,
subject, view and each represented as an one-hot vector.

We assume qA, qO, qV are one-hot vectors to input to vi-MoCoGAN to gen-
erate video clip for gesture A, subject O and view V respectively. The generated
video will be input to the network E and outputs three vectors pA, pO, pV
predicting the gesture, the subject and the view of the generated video. We
then compare the similarity of the truth information with the predicted one by
CrossEntropy function. So we have three metrics: Object Control Score (OCS);
View Control Score (CVS) and Motion Control Score (MCS). The higher values
of OCS, VCS and MCS, the better quality of generated video.

OCS = CrossEntropy(pO, qO) (10)
V CS = CrossEntropy(pV , qV ) (11)
MCS = CrossEntropy(pA, qA) (12)

4.3 Experimental Results

This section shows the evaluation results obtained by vi-MoCoGAN v1
(MoCoGAN with view control - Sect. 3.1) and vi-MoCoGAN v2 (MoCoGAN
with view control and subject consistency - Sects. 3.1 and 3.2). We start first
by giving some qualitative results showing the limitation of vi-MoCoGAN v1
and improvement made by vi-MoCoGAN v2.

Qualitative Evaluation. We evaluate qualitatively the generated videos by
vi-MoCoGAN v1 and vi-MoCoGAN v2 in term of subject, view and action.

Subject Consistency Evaluation. Figure 4 shows the key-frames of two videos
generated by vi-MoCoGAN v1 (first row) and vi-MoCoGAN v2 (second
row). We observe that at the first row, vi-MoCoGAN v1 generates video with
poor quality in term of subject consistency. Most of frames in this video contains
the same subject but in several frames (e.g second frame) contains another sub-
ject. The quality of generated frames is poor. There is many shadow appeared
in the frames so we can not see clearly the subject and the performed gesture. In
contrast with vi-MoCoGAN v1, vi-MoCoGAN v2 gives significantly better
video quality. The subject remains the same during gesture implementation. The
quality of frames is better and we can observe clearly the gesture performed by
the subject through consecutive frames.

View Consistency Evaluation. Figure 5 shows key-frames of two videos gener-
ated by vi-MoCoGAN v1 (first row) and vi-MoCoGAN v2 (second row) for
the fourth view (K4). In this example, we observe that the video generated by
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Fig. 4. Evaluation of videos generated by vi-MoCoGAN v1 (first and third rows) and
vi-MoCoGAN v2 (second and fourth rows) in term of subject consistency.

vi-MoCoGAN v1 (first row) has very low quality. Mainly the gesture is gen-
erated at view K4 but we observe also appearance of the subject at view K1.
Conversely, this drawback has been resolved with vi-MoCoGAN v2 (second
row). This time, the view of gesture is correctly generated (the fourth view
K4). This shows that it seems that with the control of view, the network could
generate the video at correct view. But this depends strongly on the subject
consistency. If the subject consistency is well controlled, the view problem could
be resolved.

Fig. 5. Evaluation of videos generated by vi-MoCoGAN v1 (first row) and
vi-MoCoGAN v2 (second row) in term of view consistency.

Action Evaluation. Figure 6 shows key-frames of four videos (two videos gener-
ated by vi-MoCoGAN v1 (first and third rows) and two videos generated by
vi-MoCoGAN v2 (second and fourth rows)) for two subjects at two views K5

(−90◦) and K3 (0◦). Once again, we observe that the quality of the videos gen-
erated by vi-MoCoGAN v1 is very poor and it is very hard to recognize the
gestures even by human eyes. vi-MoCoGAN v2 performs better and generates
videos in which we can recognize the pre-defined gestures.
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Fig. 6. Evaluation of videos generated by vi-MoCoGAN v1 (first row) and
vi-MoCoGAN v2 (second row) in term of gestures

Quantitative Evaluation. We have trained the evaluation network E with
a subset of multi-view hand gestures performed by two subjects, five views,
four gestures each realized 3 times. Totally we have 120 videos for training. We
generate 40 videos (5 views × 2 subject× 4 gestures) by vi-MoCoGAN v1 and
40 videos (5 views × 2 subject× 4 gestures) by vi-MoCoGAN v2 .

Table 3. Quantitative evaluation of vi-MoCoGAN

Method/Score VCS OCS ACS

vi-MoCoGAN v1
(MoCoGAN + View control)

0.8 0.65 0.75

vi-MoCoGAN v2
(MoCoGAN + View control + Subject
Consistency)

1 0.9 0.99

Table 3 shows that the fact of integrating view and subject constraints in the
MoCoGAN allows vi-MoCoGAN v2 generates better video clip: the subject, view
and action are well generated. In term of view, VCS obtained by vi-MoCoGAN
v1 is only 0.8 while this value is 1 by vi-MoCoGAN v2. As analysed in the
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qualitative evaluation section, the quality of videos generated by vi-MoCoGAN
v1 is very poor to distinguish two views. Subject consistency score is very low
with vi-MoCoGAN v1 (OCS = 0.65) while vi-MoCoGan v2 has OCS up to 0.9.
In term of gestures, vi-MoCoGan v2 has higher action consistency score (0.99)
than vi-MoCoGan v1 (0.75).

Figure 7 illustrates the real videos (first row) and the generated videos by
of vi-MoCoGAN v2 (second row) of one subject performing fourth gestures at
five different views. This figure is best viewed with Acrobat/Foxit Reader on a
desktop. The readers are invited to click to images to play the video clip. We
can see that compared to the real video, the generated videos have good view-
point, subject consistency and the generated gestures are correctly recognized
and comparable to the real gestures. Sometimes, the phase of generated gestures
changes comparing to the phase of the real gestures but this enrich the gestures
set and could help for training recognition model.

Fig. 7. Comparison of real gestures (first row) performed by a subject and the corre-
sponding generated gestures (second row) at five different views (from left to right K1

(−90◦), K2 (−45◦), K3 (0◦), K4 (45◦), K5 (90◦) (see Supplementary material). The
figure is best viewed with Acrobat/Foxit Reader on a desktop.

5 Conclusion

We have presented a variant of MoCoGAN for generating videos under differ-
ent viewpoints. To the best of our knowledge, this is the first work for video
generation at certain viewpoints. The experiments have been conducted with
the case of human hand gestures, showing good video quality in term of view,
subject and gestures. This is a good step for augmenting data which enriches the
current set of data without requiring annotation which is very time consuming.
However, this is an ongoing work so many tasks will be conducted in the future.
Firstly, we will investigate deeply the role of view and subject controlling for
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video generation. Currently, without subject controlling, the view of generated
video is not good. The first experiment could be changing the value of hyper-
parameters. Secondly, we will evaluate quantitatively the proposed methods for
every subject and gesture and test to generate video of other multi-view action
datasets. Thirdly, now the videos are generated under the same view and sub-
ject in the training set. It would be able to generate videos with new subjects at
novel viewpoints. Finally, the generated videos will be used as augmented data
for training gesture recognizer.
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Abstract. When a model learned in a domain is applied to a different
domain, even if in the same task, there is no guarantee of accuracy. This
is a very important issue when deep learning and machine learning are
applied in the field. In medical applications, there is a wide variety of
domain bias, making it very difficult to create a model appropriate for
all domains. Furthermore, semantic segmentation needs fine annotation
and its high labor cost makes its application difficult. Histopathological
image segmentation enables drug discovery and medical image analysis,
but it is expensive due to its annotation cost and the need for the skills
of histopathological experts. In this paper, we focus on a weakly super-
vised method using point annotation unique to histopathological image
segmentation, and tackled on weakly supervised domain adaptation to
suppress domain gaps. Providing point level annotation instead of fine
annotation decreases the high cost of labor normally required.

Keywords: Histopathology image segmentation · Semantic
segmentation · Weakly supervised domain adaptation · Medical image
analysis

1 Introduction

1.1 Domain Adaptation

Convolutional Neural Networks (CNNs) achieve great success in many tasks
such as image classification, object detection, and action recognition. However,
CNNs cannot guarantee performance in unseen data because of the variety of
environments (domain gaps). Thus, there is a need to annotate the data for new
domains and remake the models. There are, however, obstacles that arise. For
example, object detection and semantic segmentation require fine annotation,
which has a high labor cost. Annotation cost is an important issue when apply-
ing machine learning and deep learning to a social problem. The goal is to reduce
annotation cost and make proper models in a wide variety of domains. Domain
adaptation tackles such problems and aims to reduce domain gaps in training
data (source data) and testing data (target data). By using source data that is
c© Springer Nature Singapore Pte Ltd. 2020
M. Cree et al. (Eds.): ACPR 2019 Workshops, CCIS 1180, pp. 127–140, 2020.
https://doi.org/10.1007/978-981-15-3651-9_12
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fully annotated and target data that is not annotated or not fully annotated (the
weakly supervised method), we are able to make an appropriate model in a new
domain for less cost. In domain adaptation (DA), supervision is defined by the
target data’s annotation level; essentially, where the source data is fully anno-
tated and the target data is not, the process is referred to as an unsupervised
domain adaptation (UDA). If some target data is annotated, it is considered a
semi-supervised domain adaptation (SDA). If the target data is not fully anno-
tate but some weak annotation exists, this is referred to as a weakly-supervised
domain adaptation (WDA). Several UDA methods have shown great progress
[7,9,13,27,30]; many such methods have been proposed for semantic segmen-
tation [17,18,32,34,36]. The UDA method is being suggested as more complex
method and the number of hyperparameters required is increasing. Hyperpa-
rameter tuning in medical application, which has several domains, is difficult
due to the shortage of experts. In this paper we introduce weak annotation into
a simple UDA method, creating a WDA. The result is a simple domain adap-
tation method that guarantees performance in the target data at a lower cost
when compared to previous methods.

1.2 Medical Image Analysis

Recently, there have been many studies on medical image segmentation, such
as those on histopathological image segmentation [8,10,37], MRI tumor image
segmentation [21], and retinal vessel image segmentation [12]. These studies
achieved significant progress, but wide domain gaps still exist in biomedical
image analysis (e.g., camera, organs, staining method). In medical applications,
it is particularly necessary to guarantee high performance, so a proper model
for each area must be made due to many domain gaps. Semantic segmentation
requires fine annotation that has a high labor cost. Experts are needed, making
the total cost of annotation higher and creating a serious problem in medical
applications.

1.3 Weakly Supervised Semantic Segmentation

Recently, weakly-supervised segmentation methods have been developed [1,3,
15,22,28,29]. Weak annotation involves items at the image level, point level and
at the level of the bounding box that are not fully annotation but provide help-
ful annotations. The UDA method has progressed, but the number of hyper-
parameters has increased, complicating the process accordingly. We use weak
annotation as the target label and aim to make an easy-to-handle model for
medical application. In histopathological image segmentation, point annotation
and bounding boxes are primarily used. We used point level annotation from the
viewpoint of the fineness of cell size and ease of handling point information in
histopathological images. This paper contributes to the literature by applying a
WDA to histropathological image segmentation, showing that by using a point-
level annotation, which is a low cost construct compared to full annotation, it
is possible to improve the accuracy in the target domain by combined it with a
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simple UDA method, such that the number of hyperparameters is low and it is
an easy-to-handle model.

2 Related Work

2.1 Histopathological Image Segmentation

Many histopathology image segmentation methods have been developed [4,5,
19,25,37]. Semantic segmentation addresses a wide variety of issues unique to
histopathology image segmentation. [25] treats regression in cell images, and [37]
focuses on a cell segmentation problem that requires finer classification. [14] is
weakly supervised method with point annotation. It processed pseudo-labels by
combining k-means clustering and Conditional Random Fields (CRF).

2.2 Medical Image Domain Apdaptation

Domain adaptation in medical image analysis has progressed [6,16,20,33]. In
many cases, there are multiple methods available to obtain common domain
representation to solve domain gaps. [20] deals with pneumonia classification
problems. This study uses Generative Adversarial Network (GAN), which gen-
erates images such that it is difficult to discriminate between the source and
the target, so the classification model is used for a common domain. Domain
adaptation is also progressing in the area of histopathological image segmenta-
tion. [6] prepared models for each source and target and used maximum mean
discrepancy (MMD) or correlation alignment (CORAL), which measure the dif-
ference between feature distributions in each model as a loss function to resolve
domain discrepancy. [33] transfered the source image to the target style by using
Cycle-GAN to solve domain gaps in image style using train data. [16] used an
adversarial learning method where the common segmenter and discriminator
were provided. The discriminator decides which domain is input from the com-
mon segmenter output, and common domain representation is obtained.

3 Weakly Supervised Domain Adaptation

3.1 Unsupervised Domain Adaptation

As an introduction to our method, UDA is explained. In UDA, it has been
experimentally shown that adversarial learning is effective, and many methods
have adopted it [11,17,30,34,36]. These methods commonly set the discrimina-
tor, which distinguishes whether input data is a source or a target and solves
adversarial loss Ladv, so generater get proper model for both source and target
domain. Figure 1 shows an overview of our method networks. The segmenter G
output is the segmentation result. Based on hidden layer outputs, discriminator
D distinguishes whether input data is a source image Is ∈ R

(H×W×3) (fully
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Fig. 1. An overview of our method. Segmenter G outputs the segmentation result.
Discriminator D distinguishes whether the segmenter’s softmax output is from source
data Is ∈ R

(H×W×3) or target data It ∈ R
(H×W×3). Then the adversarial loss is

optimize Ladv and the segmenter is given a good model for both domains, with which
the discriminator can determine whether an input is from the source or target. In UDA,
segmentation loss is only Lseg on source data, but in WDA, the weakly segmentation
loss Lweakseg on target data is added to this.

annotated by Ys ∈ R
(H×W )) or a target image It ∈ R

(H×W×3) (not annotated).
Domain adaptation for semantic segmentation [32] shows that low-dimensional
softmax output P = G(I) ∈ R

(H×W×C), where C is the number of categories,
is better for discriminator input than high-dimensional hidden layer outputs, so
this was adopted for this study. While segmenter outputs are difficult for the
discriminator to distinguish the domain of, in this case, the discriminator learns
from the segmenter outputs which domain they come from. Thus, after adver-
sarial learning, such an adapted segmenter match feature distributions between
source and target. So, UDA scheme can be written as follow.

Segmenter Training. We define the segmentation loss in (1) as the cross-
entropy loss for source data {Is , Ys}:

Lseg(Is) = −
∑

h,w

∑

c∈C

Y (h,w,c)
s logP (h,w,c)

s (1)

Discriminator Training. As discriminator input, we use segmenter softmax
ouput P = G(I) ∈ R

(H×W×C). And to train discriminator, we use discriminaor
loss in (2) cross-entropy loss LD for two class (source and target). So, it can be
written as:

LD(P ) = −
∑

h,w

(1 − z) log(D(P (h,w,0))) + z log(D(P (h,w,1))) (2)
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where z = 0 if input data is draw from target domain, and z = 1 if inuput data
from source domain.

Adversarial Learning. For target data, to make target prediction distribution
P t = G(It) ∈ R

(H×W×C) close to source prediction distribution P s, we use
adversarial loss Ladv in (3) written as:

Ladv(It) = −
∑

h,w

log(D(P (h,w,1)
t )) (3)

So, we formulate objective function for domain adaptation:

L(Is , It) = Lseg(Is) + γLadv(It). (4)

And optimizing min-max criterion:

max
D

min
G

L(Is , It), (5)

we aim to maximize the probability of predictions in target data while minimiz-
ing segmentation loss in source data. By optimizing min-max criterion 5, the
segmenter gets a common representation that solves the domain gaps.

3.2 Weakly Supervised Domain Adaptation

There are many weakly-supervised annotations. Image level annotation is given
only object identification, point annotation is given object position, bounding
box is given object rectangles and so on. For this paper, point annotation was
determined to be best in histopathological image segmentation because of its
fineness in a large number of cells. In addition, as shown in Fig. 2, we experi-
mented with three types of weak labels: point level annotation, gaussian level
annotation, and superpixel level annotation.

Point Level Annotation. Point level annotation give information by points
to each cells. In this paper, this weakly label expresses as point level weakly
annotations.

Point Annotation with Gaussian Function (Gaussian Level). In addition
to point level annotations, we give gaussian level annotation which gaussian
functions are center at each point annotations. In this paper, this weakly label
expresses as gaussian level weakly annotations.

Point Annotation with Superpixel (Superpixel Level). First, images is
divided into superpixel (we used SLIC algorithm [2]), and gives annotations to
superpixel which is given point level annotations. In this paper, this weakly lable
expresses as superpixel level weakly annotations.
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Fig. 2. An overview of the weakly labeling method on target data. A point level anno-
tation is given to each nuclei in the image. This is point level weakly annotation. In
addition, we used gaussian level annotation; gaussian functions are centered at each
point annotation. This is called gaussian level weakly annotations. Superpixel level
annotation is when images are divided into superpixels and annotations are given to
the superpixel at the point level annotations. This is called superpixel level weakly
annotation.

Segmentation Loss with Weakly Label. In weakly supervised segmentation,
[31] says partial cross entropy loss which uses only labeled points p ∈ ΩL with
ground truth is effective. So, we adopted it in our method.

Lweakseg(It) = −
∑

p∈ΩL

yi log p (6)

We add weakly-segmentation loss to unsupervised domain adaptation loss func-
tion (5). Thus we opitimize weakly domain adaptation loss function (7).

L(Is , It) = Lseg(Is) + γ1Lweakseg(It) + γ2Ladv(It)

max
D

min
G

L(Is , It) (7)

4 Experiments

4.1 Dataset

Source Data. The source data is the Monuseg dataset [24]. The dataset consists
of annotated hematoxylin and eosin (H&E) stained histology images captured
at 40 x magnification and made available by the Indian Institute of Technology,
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[a] original image [b] ground truth

Fig. 3. MoNuseg dataset

Guwahati. This dataset was selected from several patients at several hospital
and was extracted in a 1000 × 1000 patch. There are seven cancer types. An
example is shown in Fig. 3. This dataset consists of 30 images and 21623 nuclei
are annotated (Fig. 4).

Target Data. The target data is the TNBC dataset [23]. This dataset is anno-
tated H&E stained histology images captured at 40×magnification and made
available by the Curie Institute. All slides are taken from a cohort of Triple
Negative Breast Cancer (TNBC) patients and were scanned with a Philips Ultra
Fast Scanner 1.6RA. For eleven patients, we extracted 512× 512 patches from
different areas of tissue. This dataset consists of 50 images and 4022 nuclei are
annotated. Additionally, this dataset has been annotated by three experts, guar-
anteeing its annotation level. In this paper, in order to evaluate them in tandem
with the target data, the 50 images were divided into two groups so they could
be evaluated in a 2-fold cross validation.

4.2 Experiment Conditions

Segmenter Network and Pre-traning. As segmenter model, we used drc-26
[35] which has dilated convolution and pre-trained on ImageNet. To pre-train
segmenter for Lseg in (1), we use source data {Is , Ys} and used Adam optimizer
with learning rate 1.10−2.

[a] original image [b] ground truth

Fig. 4. TNBC dataset
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Discriminator Network. As discriminaor network, we use arcitecture similar
to [32]. It consists of 5 convolution layers (kernel size is 4 × 4 and stride is 2),
and channel number is {64, 128, 256, 512, 1}. Except for the last layer, a leaky
ReLU parameterized by 0.2 and batch normalization follows in each convolution
layer.

Network Traning in Domain Adaptation. In all experiments we set batch
size to 8 and random crop (512 × 512 in only source data), random 4 rotation 90
degrees for data augumentation. To train segmenter, we used Adam optimizer
with learning rate 1.10−4. And to train discriminaor, We used the momentum
SGD optimier with (momentum is 0.9 and weight decay is 5.10−4). The learning
rate is decreased with the polynomial decay with power of 0.9. For γ1 and γ2, the
optimum parameters were selected in the range of 0.01 to 0.5 respectively. We
implement our network using the PyTorch toolbox on a single NVIDIA GeForce
GTX 1080 Ti GPU. All source data 50 images were used as train data. Target
is divided into two groups for 2-fold cross validation, so finally thier score is
averaged.

4.3 Results

The results are shown in Table 1. These were evaluated by foreground
intersection-over-union (fIoU) and F-measure. The experimental conditions for
the comparative experiment follows.

Source Model. The source model is learned by using only 50 images from the
source data.

Target Model. The target model is learned by using only 25 images from
the target data. Domain adaptation aims at this value. Table 1 represents the
differences of fIoU in the target model as domain gaps.

DA only (unsupervised DA). This is the unsupervised domain adaptation
result. The source data with full annotation and the target data with no anno-
tation were used as training data.

Point Level (weakly Supervised DA). This is the weakly supervised domain
adaptation result. Source data with full annotation and target data with point
level weakly annotation were used as training data.

Gauss Level (weakly Supervised DA). This is the weakly supervised
domain adaptation result. Source data with full annotation and target data
with gaussian level weakly annotation were used as training data.
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Superpixel Level (weakly Supervised DA). This is our proposed weakly
supervised domain adaptation result. Source data with full annotation and target
data with superpixel level weakly annotation were used as training data.

Overall Results. Table 1 is list of evaluation values of fIoU, F measure, pixel
accuracy, and fIoU gap which shows difference from target. In domain adapta-
tion, target model result is the upper-bound result. So, in this experiment, the
upper bound is 0.682. For WDA with superpixel level annotation, although the
fIoU gap is 0.154, it has been reduced significantly domain gaps compared to
other methods.

Figure 5 shows the output results of the method used in these comparative
experiments. Looking at the output results, the source model does not give the
target information well, so there are many misidentified areas in which the anno-
tation is not given. Although the results of the unsupervised domain adaptation
have been improved, it was not possible to sufficiently reduce mis-recognition.
Our method, given the superpixel weakly labeling, can cause a reduction to a
level that can be mis-recognized. On the other hand, when compared to weakly
supervised methods, the result of point level annotation is the same as in an
unsupervised method. Gaussian level annotations are an improvement, but the
superpixel level is the best. Thus, it is important to give weakly annotations that
capture a certain shape.

Figure 6 is the output result of grad-CAM [26], which visualizes where the
discriminator focuses. The source data’s result remains unchanged because the
source data is fully annotated. It appears that the discriminator focuses on the
object area of the segmenter output and so tends to judge the target result using
the worse result and output good result for target data.

Table 1. List of evaluation values of fIoU and F measure. The difference from the
target model is shown as the fIoU gap.

Annotation level fIoU F-measure Pixel accuracy fIoU gap

Base model

Source model 0.441 0.584 0.893 −0.241

Target model 0.682 0.822 0.956 –

Unsupervised

DA only 0.472 0.611 0.909 −0.210

Weakly supervised

Point level 0.495 0.648 0.933 −0.187

Gaussian level 0.506 0.646 0.934 −0.176

Superpixel level 0.528 0.684 0.937 −0.154
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Input data

input image ground truth

Source model

Unsupervised domain adaptation

Weakly supervised domain adaptation

point level gaussian level superpixel level

Fig. 5. Output results. The top shows the input data and the ground truth. Next is
the result of the source model, which is trained-only source data. Third from the top is
the result of unsupervised domain adaptation, and the bottom is the result of weakly
supervised domain adaptation with point level, gaussian level, and superpixel level.
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source data
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model

unsupervised
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Fig. 6. Output result of grad-CAM [26], which visualizes the focus of the discriminator.
The yellow region indicates a larger value and represents where the discriminator looks
to distinguish input data domain.
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5 Conclusion

In this paper, we showed that weakly supervised domain adaptation is useful in
histopathological image segmentation. Our method combines a simple unsuper-
vised domain adaptation method with weak labeling. In the weak label method,
the image is divided into superpixels and annotations are given to the super-
pixels at the point level annotations. The experiments show that this method
resolves domain gaps constract to unsupervised domain adaptation and shows
the effectiveness of weakly annotation. In the future, we hope to combine weakly-
supervised semantic segmentation method.
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pixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

3. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly
supervised instance and semantic segmentation. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)

4. Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J.: Cell proposal network for
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1989–1998. Stockholmsmässan, Stockholm Sweden (10–15 Jul 2018)

18. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation
learning for domain adaptation (2017). arXiv preprint arXiv:1707.01217

19. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A
dataset and a technique for generalized nuclear segmentation for computational
pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017). https://doi.org/
10.1109/TMI.2017.2677499

20. Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Semi-supervised
learning with generative adversarial networks for chest x-ray classification with
ability of data domain adaptation. In: 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), pp. 1038–1042, April 2018. https://doi.org/
10.1109/ISBI.2018.8363749

21. Mohseni Salehi, S.S., Erdogmus, D., Gholipour, A.: Auto-context convolutional
neural network (auto-net) for brain extraction in magnetic resonance imaging.
IEEE Trans. Med. Imaging 36(11), 2319–2330 (2017). https://doi.org/10.1109/
TMI.2017.2721362

22. Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., Schroers, C., Boykov, Y.: On
regularized losses for weakly-supervised CNN segmentation. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 507–522 (2018)
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Abstract. Digital subtraction angiography (DSA) is one of imaging methods
using X-ray image for clear visualization of the vessel information during
intervention with a catheter. In order to obtain a fine DSA image, patients have
to hold their breathing. However, steady breath hold is a burden for the patients
and is sometimes difficult for elder patients. We propose a blood vessel
enhancement method with consecutive digital angiographic images acquired
under the natural breathing. Robust principal component analysis (RPCA) is
used to enhance blood vessel information from consecutive angiographic images
acquired under the natural breathing. RPCA can separate the consecutive images
into a low-rank component and a sparse component. The information of contrast
media is included in the sparse component. We implemented it on GPU and
applied the proposed method to 13 sets of angiographic images and confirmed
that it enables to generate satisfactory enhanced angiographic images.

Keywords: Angiographic image � Sparse model � Blood vessel image �
Interventional radiology

1 Introduction

X-ray fluoroscopy is an imaging modality capable of observing internal structures and
functions in real time. Spatial and temporal resolutions are better than those of other
imaging modalities and interventional devices such as a catheter can also be clearly
visualized. It is used to guide a catheter inserted into a blood vessel to the treated area
during intervention. In this operation for liver region, contrast media is sometimes
injected using a catheter to know where the current catheter top is and how the vessel
pattern is located beforehand. In order to reduce the times of contrast agent injection, it
is ideal to show a blood vessel road map in advance.
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In this imaging, organs in irradiation direction are overlapped because X-ray
fluoroscopic image is a perspective projection of 3-dimensional object to 2-dimensional
image. Therefore, the background structures can be often confused with the blood
vessel. In order to solve this problem, digital subtraction angiography (DSA) [1] is
used. DSA is one of imaging methods using X-ray image for clear visualization of the
vessel information during intervention with a catheter. DSA requires two kinds of
X-ray images; mask image and live image. The mask and live images are respectively
acquired before and during injection of contrast media. By subtracting the mask image
from each live image, most of background structures in the live image are removed and
the vessel information is enhanced. However, in the case that the target is a thora-
coabdominal organ such as liver, the positions and shapes of the background structures
around the vessels often change due to the physiological movement in the patient’s
body such as cardiac and respiratory motions. When respiratory phases of the mask and
live images do not match, motion artifacts are likely to in the resultant DSA. In order to
obtain a fine DSA image, patients must hold their breath. However, steady breath hold
is a burden for the patients especially for elder patients.

Image registration-based methods and segmentation-based methods have been
commonly proposed to remove the background structures or improve the visibility of
blood vessels in X-ray fluoroscopic images. Nejati et al. proposed a registration method
for cardiac angiographic images [2]. The method uses a multiscale framework in which
the mask and live images are decomposed to coarse and fine sub-image blocks itera-
tively in order to improve the accuracy of non-rigid image registration. In [3], Xiao
et al. extracted blood vessels directly from the angiographic images by automatically
determining seed points and then extracting centerlines or vascular structures. A layer
separation method for X-ray fluoroscopic images was proposed as another strategy for
blood vessel enhancement by Zhu et al. [4, 5] and Zhang et al. [6]. This method can
separate X-ray fluoroscopic images into three layers based on different motion patterns
such as background structures, diaphragm, and blood vessels using multiscale frame-
work. The visibility of blood vessels is improved, but the layer separation method also
requires calculating the deformation field as these registration methods. This leads to a
computational burden.

Without requiring motion estimation, robust principal component analysis (RPCA)
can separate foreground moving objects from background in computer vision [7]. In [8,
9], classical RPCA was used to enhance blood vessels from complex background. Jin
et al. integrate total variation (TV) regularization into the RPCA to improve
enhancement of the coronary artery [10]. However, blood vessel enhancement in liver
region with these techniques has not been reported to our knowledge.

In this paper, we present a method for enhancing blood vessels in liver region using
consecutive angiographic images taken under free breathing. Although a general idea
of the proposed method and preliminary experimental results have been presented in
[11], the details of the method and experiments are described in this paper. In order to
improve the reliability of the evaluation, we also significantly increased the number of
datasets.
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2 Methods

Figure 1 shows a processing flow of the proposed method. The pixel value of each
frame of the angiographic motion picture is first logarithmic-transformed. The X-ray
intensity distribution detected by the image sensor would obey the Lambert-Beer’s law
and modeled as

Iðx; y; tÞ ¼ I0 exp½�lorgðx; y; tÞ � lconðx; y; tÞ�: ð1Þ

Here I0 is the incident radiation. lorgðx; y; tÞ represents the integration of attenuation
coefficient of organs along the line connecting the X-ray source and the detected
position ðx; yÞ and lconðx; y; tÞ represents that of the contrast agent. Two attenuation
terms exist in the exponential function. By normalizing the detected image by the
incident radiation and taking its logarithm, two components are modeled by a linear
sum as

gðx; y; tÞ ¼ � logðIðx; y; tÞ=I0Þ ¼ lorgðx; y; tÞþ lconðx; y; tÞ: ð2Þ

Image gðx; y; tÞ is more suitable than Iðx; y; tÞ for the purpose of separating organ
image and contrast agent image. After such preprocessing, RPCA-based component
separation is performed. Contrast agent is separated as a sparse component after
exponential transformation is applied. Exponential transformation is used as the inverse
of logarithmic transformation. Details of RPCA are given in the following sub-sections.

2.1 Blood Vessel Enhancement

Classical RPCA is used to enhance blood vessel information without any omission.
RPCA can separate the consecutive angiographic images C into a low-rank component
L and a sparse component S. Here, each column of C is composed of the pixel values
of a certain time frame and each row is composed of time sequential pixel values at a

Logarithmic transformation

Exponential transformation

RPCA

Sparse componentLow-rank component 

Angiographic image

Background
image

Enhanced 
angiographic image

Fig. 1. Processing flow of the blood vessel enhancement method
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certain position. This decomposition is formulated as the following optimization
problem:

min Lk k� þ k Sk k1
� �

subject to C ¼ Lþ S ð3Þ

where �k k� denotes the nuclear norm of a matrix, i.e., the sum of singular values of the
matrix and �k k1 denotes the l1-norm, i.e., the sum of the absolute values of matrix
entries. k is the trade-off parameter to strike a balance between the two norms. If k is a
high value, a lot of information is classified into the low-rank component while the
sparse component is almost empty. The low-rank component represents background
structures and periodical information such as bones and organ motion along with
breathing. The sparse component represents rapid and non-periodic information such as
the flow of the contrast media and the motion of the high-contrast catheter.

Although the conventional RPCA works for above-mentioned separation to some
extent, there are at least two defects. (1) Artifacts due to complicated motion caused by
intestinal gas. Spatially complicated pattern and temporally fast motion of intestinal gas
are likely to be classified into the sparse component. So intestinal gas may yield false
vessel pattern. (2) The liver region around diaphragm has significant and rapid change
in pixel values due to respiration and likely to be classified into the sparse component.
Therefore, we introduced further constraints based on two types of a-priori knowledge:

Knowledge 1: Pixel values in the same organ are similar and sharp changes in pixel
values take place around the border of organs. Blood vessels have these charac-
teristics and are also continuous in space and time.
Knowledge 2: Blood vessels with contrast agent have smaller pixel values (dark)
than surrounding area (intensity level).

Based on Knowledge 1, we introduced a term of total variation (TV) penalty.
Since TV penalty intends to maintain smooth intensity distribution and to remove
isolated dots or small regions, it is expected to remove artifacts caused by intestinal gas
as keeping continuous blood vessels as they are. However, since the liver region around
diaphragm has a smooth and large structure, TV penalty does not work. Thus, we
introduced the second penalty, which works as a restriction on the range of pixel value.
In general, X-ray absorption by blood vessels with contrast media is higher than liver
and other soft tissue. In our implementation, we empirically set the condition for pixel
values of the sparse component so that it is positive.

This decomposition is formulated as the following optimization problem:

min Lk k� þ kS Sk k1 þ kTV rTk k2;1
n o

subject to C ¼ Lþ S; S[ 0;T ¼ S ð4Þ

rTk k2;1¼
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxTð Þ2i þ ryT

� �2
i þ rtTð Þ2i

q
ð5Þ

where �k k2;1 denotes the l2,1-norm. kS, and kTV are the control parameter regarding
sparse component and TV regularization, respectively. Equation (5) reduces intermit-
tent noise appearing in the blood vessel image while preserving edges by minimizing
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the first derivative of the x, y, and time axes. Equations (3) and (4) are minimized by
using the alternating direction method of multipliers (ADMM) [12, 13]. In updating
total variation term, the Split Bregman method was used [14].

The termination condition in the optimization of Eq. (4) is formulated as follows:

Ljþ 1 � Lj

�� ��
2 þ Sjþ 1 � Sj

�� ��
2\tol ð6Þ

where j is the number of iterations, and tol is the convergence tolerance. tol was
empirically set to 0.001.

2.2 Parallel Processing

For fast optimization, we implemented GPU parallel processing. Figure 2 shows the
processing flow of parallel processing. First, angiography dataset is transferred fromCPU
to GPU. Subsequently, the TV regularization image is updated using Split Bregman
method. Then the background component and the blood vessel component are updated.
After updating the components, the convergence is judged by the termination condition.
To save transfer time, only scalar values were transferred from GPU to CPU. The GPU
side is instructed to output each component only if the termination condition is satisfied.

3 Experiments

Image acquisition experiments were conducted with 13 patients. This study was
approved by the Ethical Review Board of Chiba University and all patients gave us
informed consent to participate in this study. Contrast enhancement methods were
applied to free breathing angiograms. The target site is the celiac artery, and the image
size is around 900 � 700 pixels, the number of frames is around 50–60 frames. In the
used computer, CPU was Core i7-6850 K (Intel) with 6 cores and 128 GB RAM and

CPU(Host) GPU(Device)

S, L

Command
data output

Not 
satisfied

Satisfied

Update of Tk

Termination
condition

Γ

(Split Bregman)

Update of Lk,Sk

Optimization method
(ADMM)

Transfer only error value
to save data transfer time

Sk+1, Lk+1
S Blood vessel component
L Background component
Γ Angiogram

T TV regularization image

Fig. 2. Processing relation between CPU and GPU
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GPU was GeForce GTX1080 (NVIDIA) with 2560 cores and 8 GB RAM. In order to
accelerate all methods, Compute Unified Device Architecture was introduced.

As for the trade-off parameter k in the formulation of conventional RPCA, we set it to
k ¼ 0:6

� ffiffiffiffi
N

p
and modified RPCA integrated with TV regularization uses kS ¼ 0:7

� ffiffiffiffi
N

p
,

kTV ¼ 0:3
� ffiffiffiffi

N
p

, whereN is the number of pixels of time-sequential 2-dimensional image.
k uses the same value as [7]. kS, kTV were determined after grid search over wide ranges.
These three parameters were used for all datasets.

The performance of the proposed method was qualitatively and quantitatively
evaluated through comparing with the other two methods. One is “DSA” in which
background structure is eliminated by subtracting a mask image which is given by the
median of the first five frames in the sequence. The other method is the conventional
RPCA using Eq. (3), named “Conventional RPCA”.

Corrected contrast-to-noise ratio (cCNR) proposed by Ma et al. [15] is used as the
method of quantitatively evaluation. Once the foreground and background of an image
are defined, the definition of cCNR can be formulated as:

cCNR ¼ lF � lBj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ k �MSEV

p ð7Þ

MSEV ¼
X

x;y
IVtruthðx; yÞ � IVS ðx; yÞ
� �2.

IVtruth
		 		 ð8Þ

where lF and lB are the mean of foreground and background pixel values respectively,
rB is the standard deviation of the background pixel values, and k is a weighting factor
that strike a balance between rB and MSEV. k was empirically set to 1/10. Equation (8)
evaluates the degree of defect in the blood vessel region based on the difference from
the ideal blood vessel image. An ideal DSA is used for an ideal blood vessel image. It
was created by using an ideal mask image which has the smallest dispersion with the
live image. cCNR measures the contrast between the foreground and background pixel
intensities in relation to the standard deviation of the background pixel intensities.
Larger cCNR values imply a better contrast. Figure 3 shows an example of foreground
and background regions. Background is defined as the white image region and fore-
ground being the dark area within the white part. These regions (binary mask) were
manually determined. In the experiment, we select 5 frames from each sequence for the
mask generation and compute the average cCNR of the 5 frames.

(b) Binary mask image(a) Original angiographic image

Fig. 3. Definition of foreground and background for calculation of cCNR
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4 Results and Discussion

4.1 Results

Figure 4 shows an example of comparison of the enhancement methods. Here we
selected the same timing frame from a sequence of images. At this timing the contrast
medium was widely flowed to the organ. The result of “DSA” shows strong artifacts
because the background structures between the mask image and the live images are
different by respiratory motion and heartbeat. “Conventional RPCA” enhanced
angiographic images without requiring the mask images, but still presents artifacts
around intestines with gas and diaphragm region. On the contrary, “Modified RPCA”
reduced artifacts and improved the visibility of blood vessels.

Figure 5 shows the cCNR values. The cCNR values of “modified RPCA” were
higher than those of other methods. It means that the visibility of blood vessels was
improved.

The total processing time after acquisition of a sequence of angiograms was
7.9 ± 0.5 [s]. Our co-authors include medical doctor, and he suggested the process be
completed in 20–30 s. Although only one medical doctor’s evaluation is insufficient for
clinical practice, we suppose that it is short enough.

(b) DSA

(c) Conventional RPCA (d) Modified RPCA

(a) Angiography

Fig. 4. Comparison of blood vessel enhancement results
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4.2 Discussion

As mentioned in introduction, the final goal of this work is to make a blood vessel
pattern image which can work as a blood vessel road map before catheter guidance.
However, injected contrast media does not necessarily show clear and continuous
vessel pattern. The obtained blood vessels in each frame sometimes have gap caused by
body motion, such as breathing or intestinal motion. In this paper, we presented a
method for blood vessel enhancement and applied it to each frame of angiogram.
However, to generate a complete road map of blood vessels, we need another step to
provide those images. One solution might be registration and integration of those
images. This is one of our future works.

While the large or moderate size of blood vessels are successfully classified into
sparse component and enhanced for visualization, very thin vessels may disappear.
However, this is not a serious drawback because the visualization of such thin vessels is
not always needed in the generation of blood vessel road map for catheter guidance.

5 Conclusions

In this paper, we presented a blood vessel enhancement method using consecutive
angiographic images with respiratory motion. The proposed method was based on
robust principal component analysis to separate the original motion picture into low-
rank component and sparse component. We added penalty terms to the sparse com-
ponent for better performance of blood vessel extraction. In order to achieve high-speed
processing, we implemented parallel processing using GPU. We applied the proposed
method to 13 patient datasets. In all cases we confirmed both qualitatively and quan-
titatively that visibility of blood vessels was improved by the proposed method. Using
the parallel processing, total processing was successfully completed in about 8 s, which
is short enough for clinical use in practice.

Acknowledgment. This work was supported in part JSPS KAKENHI (16K16406) and the JSPS
Core-to-Core Program.
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Fig. 5. Values of calculated cCNR for each patient dataset
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Abstract. Computational models for liver deformation are usually per-
formed without considering intrahepatic vasculatures. The major hurdle
is the computational cost when deforming the liver and its vessels simul-
taneously. In this paper we introduce a numerical method containing a
combined constrained constructive optimisation (CCO) algorithm and
host mesh fitting (HMF) algorithm. While the CCO algorithm is used
to generate a large liver vascular network, the HMF algorithm morphs
hepatic structure within a host mesh. This technique is applied to the
liver of the Visible Man (VM), where total 16,300 vessels are generated
to extend the 84 digitised portal and hepatic veins in the VM liver.
The liver deformation due to respiration effects and heart beats is sim-
ulated in real-time (35 Hz) and matched with the video sequence of an
endovascular Trans-Arterial Chemo Embolization (TACE) procedure. In
conclusion an efficient method for morphing a virtual liver containing
large vasculatures is proposed, and may have applications in chemother-
apy and endovascular simulations.

Keywords: Liver · Deformable model · Visible Man · Host mesh
fitting

1 Introduction

The liver is heavily vascularized to serve its roles in the filtration and storage of
blood [1]. Being a soft organ, the liver is under constant shape changes due to
heart beats and respiration effects. Hence an ideal liver model would have the
liver parenchyma and intra-hepatic structures deformed simultaneously. How-
ever, computer algorithms for liver deformation usually do not deal with the
concurrent distortion of liver and its intra-hepatic vasculatures (for a review see
[2]). This problem has been addressed in a few recent works, e.g. in a subject-
specific liver model including the parenchyma, the Glisson’s capsule and blood
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vessels, where the hepatic structures are deformable and presented in the con-
text of laparoscopy surgery [3]. Specifically, the vascular tree in [3] was based on
the skeletonisation of segmented blood vessels from CT images, and the vascular
tree was constructed as beam elements suitable for finite-element analysis (FEA).
This approach, however, can only handle a small number of vessels, e.g., tens
of vessels in the model. To apply this method to a large vasculature containing
hundreds or thousands of vessels, a different approach is required to circumvent
the computational bottleneck.

Two challenges need to be addressed here when deforming a virtual liver and
its vascular trees. Firstly a suitable geometric representation for the vascular tree
is required. A 3D vascular model demands a high cost in graphical rendering and
deformation, and becomes computationally prohibitive with a large vasculature.
It is also not essential to visualise all blood vessels in their 3D details, and indeed
a majority of them are not detectable from clinical medical images, where the
image resolution may reach 0.5 mm. In this work we use a constrained construc-
tive optimisation (CCO) algorithm to generate 1D vascular trees. The algorithm
was originally proposed in [4] for a 2D circular tissue, and has been used to
generate large hepatic vasculatures for structural analysis [5], hepatic clearance
[6] and hepatic arterial flow modelling [7]. In [7], the first several generations
of arteries were digitised from CT images at first, and the CCO algorithm was
used for creating small vessels downstream the larger vessels. We will adopt the
same method for the hepatic tree generation.

Secondly the numerical algorithm for simultaneously deforming the liver
and its vessels is the key for computational cost. A FEA analysis for the liver
parenchyma needs to handle complex constitutive equations governing soft tis-
sue deformation, even without considering embedded vessels. If validated such
an analysis would again be too computationally expensive. However, since the
hepatic motion due to respiration effects is small (1–2.6 cm at the cranio-caudal
direction [8]), we can take advantage of the fact that the topology of the vas-
culature remains unchanged while being reformed, and use a so-called host-
mesh-fitting (HMF) algorithm. This is a Finite Element mesh-based geometric
modelling method and has been used to simulate the displacement of skeleton
muscles [9] and the heart [10]. A similar workflow can be applied to the liver
and its vessels.

The aim of this work is to combine the CCO and the HMF algorithm for real-
time simulations of a virtual liver containing large vasculatures. This method
may be used for modelling hepatic motions in an endovascular procedure such
as the Trans-Arterial Chemo Embolization (TACE) for treating hepatocellular
carcinoma tumours.

2 Methods

2.1 Digitisation of Blood Vessels from the Visible Man

We make use of the Visible Man (VM) data set from the National Library of
Medicine (NLM, Bethesda, MD) to exemplify the algorithm. The data set of VM
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contains 2D images slices of 2,048 × 1,216 pixels, and is available from public
domains [15]. The intra-slice and interslice resolutions are 0.33 mm and 1 mm,
respectively. The same VM data set has been used to illustrate the concept of
virtual reality in liver surgery [14] and to describe the liver anatomy [16]. In [14]
the liver surface was extracted by using a semi-automatic deformable model, and
14,000 triangles were used to represent the segmented liver surface.

Our method differs from that of [14] and [16] in that a parametric cubic
Hermite mesh is used to represent the various hepatic structures, i.e. a 1D mesh
for the vascular tree, a 2D surface mesh for the liver surface or Glisson’s capsule,
and a 3D volume mesh for the liver parenchyma. The process is illustrated in
Fig. 1. In Fig. 1(a), key points (nodes) were manually placed along the contours of
the VM liver, then a bicubic Hermite mesh was constructed (Fig. 1b). In Fig. 1(c),
cylinders were used to represent blood vessels, where nodes were placed along
the centreline and radius data recorded for each node. Using this method eight
generations total 84 portal venous (PV) and hepatic venous (HV) vessels are
digitised (Fig. 1c). The final mesh contains a combination of 1D, 2D and 3D
elements, as shown in Fig. 1(d).

Fig. 1. Digitised Visible Man liver: (a) a data cloud digitised at the contours of the
liver; (b) a bicubic Hermite mesh is constructed based on the data cloud; (c) PV and
HV trees of up to eight generations are digitised; (d) an overall impression of the VM
liver.

The PV and HV trees of the VM shown in Fig. 1 represent the typical
liver vessel branching pattern [16]. The diameter of the smallest vessel in the
digitised hepatic tree is about 1.2 mm. The digitistation is a manual process
and takes up to four hours to construct in the open source software Cmgui
(https://www.cmiss.org/cmgui). The hepatic arterial tree was not constructed

https://www.cmiss.org/cmgui
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because it was barely visible in the VM images due to lose of blood pressure
post-mortem.

2.2 An Implementation of the CCO Algorithm

In the CCO algorithm, the growth of small blood vessels follows the principle of
minimum energy, i.e., the vascular network uses a minimum energy to perfuse
a tissue [4]. The core of this method consists of the minimization of a target
function, which is the bifurcation volume [4]:

V = πΣN
i=1r

2
i li (1)

where N = 3 represents the three vessel segments in a bifurcation, V is the total
blood volume, r and l are the radius and length of a vessel segment, respectively.
The blood flow in the tree is approximated as Poiseuille flow and satisfies the
relationship between pressure drop ΔP , resistance and flow rate Q:

ΔP =
8lμ

πr4
Q (2)

where μ is the viscosity of the blood. For the PV tree the flow rate at the
root portal vein was set as 900 mL/min or 15 mL/s, and the pressure at the
terminals of PV tree as 9 mmHg [12]. The flow in the HV tree was created in a
reversed manner, i.e. the outlets of the HV were virtually viewed as inlets and
the perfusion rate was 1,350 mL/min. The pressure drop across the HV tree was
2 mmHg, which means that the resistance to the hepatic blood returning to the
heart is very small [12].

The graphical realism of a vasculature depends on the global or structural
criterion, and local or geometric criterion. The former determines the shape of
the tree, and the latter defines the shape of bifurcations. Concerning the radius
of parent and daughter vessels, the power law branching pattern was used [13]:

rλ
0 = rλ

1 + rλ
2 (3)

where 0, 1, 2 represent the parent vessel and two daughter vessels. λ is a constant
and is configured as 2.7 in our implementation, in accordance with the suggested
value between 2 to 3 in [5]. The following procedure is followed to add a new
vessel segment to a current tree (Fig. 2):
1. Randomly generate a point within the perfusion volume;
2. Search for the closest segments to the point;
3. Perform the optimization process to create a bifurcation;
4. Check if every constraint is satisfied;
5. Generate a list of candidates which passed Step 4;
6. Use the one candidate which have the smallest tree volume

In Step (3), minimization of the target function is performed using a trust-
region based algorithm [17], which is suitable for convex shape problems. In
Step (4) geometric constraints are enforced so that the bifurcation angles and
the length of each new vessel are controlled within physiological values [13]. In
addition, all vessels must be contained inside the perfusion volume and do not
intersect with any other vessels from the same tree [5].
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Fig. 2. Adding a new branch in the tree: after a random point is added into the perfu-
sion volume, the algorithm will search for the closest segment to it, and an optimisation
routine is run to determine the bifurcation point that gives the minimum tree volume.

2.3 Host Mesh Fitting Algorithm

The HMF algorithm may be considered as one of the free-form deformation
techniques used in computer graphics to manipulate 3D objects [9]. The trans-
formation is an affine transformation as it preserves collinearity and ratios of
distances. The HMF algorithm involves the use of two parametric meshes, i.e. a
host mesh and a slave mesh (Fig. 3), where the slave mesh contains the objects of
interest, in this case the liver and its blood vessels. The host mesh is an assistive
mesh that encapsulates the slave mesh. Figure 3 shows a diagram of the host and
the slave mesh with their coordinate systems (η and ξ). The nodal coordinates
of the slave mesh can be expressed as:

ηi = fi(ξ1, ξ2, ξ3) (4)

where i = 1, 2, 3, fi is the parametric function of the nodal coordinates of the
host mesh, which is the same as the basis functions (e.g. linear Lagrange or cubic

Fig. 3. Diagram of the host and slave mesh. The slave mesh (ηi) is contained within
the host mesh (ξi), and the relative nodal position of the slave mesh in the host mesh
remain unchanged when the deformation is small.
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Hermite functions) used in a finite element mesh [9]. When the deformation of
liver is small and the topology of the liver mesh is consistent, i.e. no tearing or
cutting of the mesh occurs, fi can be approximated as unchanged. This implies
that the relative locations of the nodes on the slave mesh with respect to the
host mesh remain identical. When the host mesh is deformed, the displacements
of the host mesh drive the morphing of the slave mesh, and dynamically update
its nodal positions.

3 Results

3.1 Creation of Large Vasculatures for the VM Liver

The CCO algorithm was applied to the digitised PV and HV trees shown in
Fig. 1. From the existing 84 vessel digitised, small veins and venules were gen-
erated. Overall thirteen generations of total 16,384 blood vessels were created
for the PV and HV trees. The flow rate and pressure drop in each of the blood
vessels were solved according to Eq. (2). It can be seen from Fig. 4 that the geo-
metric constraints of the algorithm are obeyed as all newly generated vessels are
contained within the liver organ.

3.2 Morphing of the Liver and Its Vasculatures

The multi-dimensional mesh shown in Fig. 4, including the liver surface and vas-
culatures, are treated as a single slave mesh and placed in the host mesh of a
trilinear element of eight nodes (Fig. 5). Since it was infeasible to obtain body
motion information from the VM dataset because the images were obtained
post-mortem, we utilised the data from two sources to help with the simulation.
Firstly, we had the hepatic motion data as reviewed in [8]. Secondly, the fluo-
roscopy video of a TACE procedure for the treatment of an unresectable liver
tumour was used as a visual guidance. The video, shown in several snapshots
in Fig. 5, illustrates the parenchymal displacements. In the left column of Fig. 5,
four video frames with 1 second apart (denoted +1s, +2s, +3s and +4s) are
shown. The white triangle indicates the position of a guide wire for the catheter.
In the right column, the deformation of the virtual liver is driven by the host
mesh, corresponding to the TACE video.

It is clear from the review in [8] that the largest liver displacement (1–2.6 cm)
occurs at the cranio-caudal direction, while the motions in other directions are
insignificant. This is confirmed from the video sequence of the TACE procedure.
Moreover, it can be seen from the TACE video that the inferior tip of the liver is
unaffected from the respiration effects. Based on these observations, the upper
four nodes of the host cubic mesh were programmed to displace at the cranio-
caudal direction with the total displacements of 2.5 cm in each motion cycle.
Motion vectors of the four nodes are shown in Fig. 5, which in turn drove the
motion of the liver and its vasculatures. The simulation was run on a desktop
computer (Intel Core i5-4690 CPU @ 3.5 GHz, RAM 16 GB). The responding
time for each nodal displacement iteration was 0.028 s, or 35 Hz.
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Fig. 4. PV and HV vasculatures for the liver. Top left: the digitised PV tree from
the VM dataset; Top right: the PV tree was extended to thirteen generations using
the CCO algorithm; Bottom left: inclusion of the HV tree plus IVC (in blue colour);
Bottom right: the final expanded PV and HV trees with total 16,300 vessels. (Color
figure online)

4 Discussion

In silico models are valuable in many clinical and biomedical applications such as
surgical planning, image-based navigation, chemotherapy and drug effect simula-
tions. In drug delivery applications, it is desirable to extend a vascular tree from
a spatial level (∼1 mm) visible from clinical CT/MRI images to a sub-millimeter
level where the drug agent is released. For microsphere-carried-drug delivery, a
vascular tree detailed to the arteriole or venule level, or even to the sinusoidal or
cellular level would be useful, because that is the spatial level where the uptake
of drug by hepatocytes occurs. Vascular morphology information at such a fine
resolution cannot be achieved from clinical CT/MRI imaging, but may be feasi-
ble with other imaging modalities such as micro-CT [11], intravital microscopy
[18], etc. Hence, the construction of a large vasculature needs to connect the
vascular models from different spatial scales, and from different imaging modal-
ities. The CCO algorithm demonstrated in the paper is capable of generating
a vascular network spanning from the scale of millimetres, i.e. the site of drug
releasing, to the sale of micrometres of capillaries. This provides an attractive
solution to the simulation of TACE where the arterial supply to a tumour and
hepatic clearance need to be considered from multiple spatial scales [6].
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Fig. 5. Simulation of the liver motion. Left column: snapshots of the fluoroscopy video
of a TACE procedure. Right column: the motion of the virtual liver corresponds to the
video sequence. The vectors indicate nodal displacements of the host mesh, which are
2.5 cm at the cranio-caudal direction.

The major challenge we intended to address in this work was to deform a
large vasculature in a time frame relevant to clinical navigation applications.
As shown in Fig. 5, the simulation of the liver motion following diaphragm dis-
placements was run in real-time. The assumption made for the simulation was
that the relative locations of intra-hepatic structures were identical under small
deformation, thus spared the cost of expensive Finite Element analysis. The time
saved can be used in tracking extra-hepatic fiducial markers, or the nodes of the
host mesh. The markers may be placed at the surface of the abdomen, which can
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be detected by a vision camera in real-time [19]. Since the host mesh has much
less nodes (in the case of Fig. 5 it is 8) than the slave mesh, the computational
cost for their tracking is more affordable. Moreover, the number of elements in
the host mesh is much smaller than that of the slave mesh (in the case of Fig. 3
there is only one element in the host mesh). Therefore, it is much more com-
putationally efficient to use the resultant transformation matrix to deform the
slave mesh.

There are some limitations pertaining to the current model. While we have
used a computer-generated vascular structure model, which was built upon a
healthy liver of the VM liver, to simulate the deformation of a diseased liver
(as in Fig. 5), we did not consider the mechanical and physiological differences
between them. For liver diseases such as cirrhosis, nonalcoholic steato-hepatitis,
etc, the density of liver parenchyma may be different, and hence affect the liver’s
mechanic properties [20]. Moreover, the generation of small vessels through CCO
is a random process. Currently there is no correlation with the data from the
patient, except the coarse initial vessels. And a clinical validation of the gener-
ation process in terms of density of vessels, average orientations, etc have not
been performed.

Nevertheless, the computational technique presented in the paper is the first
of its kind that deforms a large vasculature in the order of 10,000 vessels in real-
time, to our knowledge. The proposed approach can have applications where a
detailed vascular tree and its deformation are important, for example in treating
hepato-cellular carcinoma.

5 Conclusion

In this paper we presented a computational technique based on a combined
CCO and HMF approach to deform a virtual liver and its vasculature in real-
time. The technique may have potential applications in surgical navigation and
chemotherapy for the liver.
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17. Moré, J., Sorensen, D.: Computing a trust region step. SIAM J. Sci. Stat. Comput.

4, 553–572 (1983)
18. Meyer, K., et al.: A predictive 3D multi-scale model of biliary fluid dynamics in

the liver lobule. Cell Syst. 4, 277–290.e9 (2017)
19. Yu, H.B., Ho, H.: System designs for augmented reality based ablation probe track-

ing. In: Paul, M., Hitoshi, C., Huang, Q. (eds.) PSIVT 2017. LNCS, vol. 10749,
pp. 87–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75786-5 8

20. Angulo, P.: Nonalcoholic fatty liver disease. N. Engl. J. Med. 346(16), 1221–1231
(2002)

https://doi.org/10.1007/978-3-319-75786-5_8


Development of 3D Physiological
Simulation and Education Software

for Pregnant Women
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Abstract. Many women smoke during pregnancy despite the harmful
effects of maternal smoking on the fetus being well established. Provid-
ing women with better support to stop smoking when pregnant is likely
to increase their motivation to quit. We aim to combine 3D modelling
and physiological simulations to create a science-based educational tool
for pregnant women. We employ parametric mesh (linear Lagrange or
cubic Hermite) in the OpenCMISS-Zinc package to model the maternal
and fetal geometries. We then use a distributed system of Poiseulle flow
equation to solve the blood flow in the arterial system. The transporta-
tion of chemical species of smoke in the arterial system is simulated by
incorporating a transient advection equation. We further use an ordi-
nary differential equation (ODE) system to simulate the time course of
Carboxyhemoglobin (HbCO) in plasma during a 48 h time period. These
simulation results are visualised in the arterial tree of the mother and the
fetal body surface respectively for an easy understanding of the trans-
portation process of HbCO. In conclusion a novel software tool has been
developed to render scientific data in a 3D pregnant woman model and to
convey educational messages for smoking cessation and other purposes.

Keywords: Pregnant woman · Fetus · Physiological simulation ·
Smoking cessation

1 Introduction

Smoking during pregnancy is associated with an increased risk of neonatal and
infant death and low birth weight [1]. Despite of mounting evidence of such
harmful effects, smoking in pregnancy is still common in some groups of pregnant
women. For example, an estimated 32% of women who are Māori (the indigenous
people of New Zealand) smoke during pregnancy [2]. Many developed countries
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have strong smoke-free policies and widely available quit smoking services to
help people change their smoking behaviour [3]. However, pregnant smokers are
less likely to access such services and typically have lower levels of education
and health literacy. Innovative approaches are required to assist this target pop-
ulation to quit smoking; strategies that use digital graphics and simulations can
be of great interest, and thus, influence [4–6]. The motivation for this project is
to integrate 3D models and physiological simulations into a software tool that
facilitates pregnant woman education.

We have set two objectives for the software development. The first objective
is to construct a parametric (Lagrange or Hermite) mesh for a pregnant woman
model including fetus. The second objective is to make physiological simulations
and incorporate scientific data for smoking cessation assistance. The simulations
include blood flow in the cardiovascular system and drug transportation in it.
This requires solving differential equation systems for transient drug concen-
trations in blood vessels. Since scientific data are usually reported in academic
publications but with poor accessibility to the public, innovative approaches are
required to convey the knowledge to public.

For instance, one study about the smoking effects on fetus describes the
effects of carbon monoxide (CO), which is one of the most harmful components
of cigarette smoke [7]. Red blood cells are responsible for carrying oxygen to
different tissues by taking up oxygen from the blood flow. However, CO binds
to haemoglobin with a 200-times stronger affinity than oxygen [7]. It penetrates
the body through the lungs, bounds to hemoglobin to create Carboxyhemoglobin
(HbCO) that diffuses throughout the whole body. Since the maternal blood is
the only source of oxygen, nutrients and xenobiotic for the fetus, the HbCO
reaches the fetus’ bloodstream via the placenta. This leads to a decrease in
oxygen delivery and may cause fetal hypoxia. Through mathematical modelling
it is possible to simulate the clearance of HbCO in both the fetal and maternal
blood. This paper presents our work in combining all these components, and
designing an educational tool to show these physiological simulations.

2 Methods

2.1 3D Maternal and Fetal Models

We make use of a 3D pregnant woman and fetus model in the public domain
(https://www.turbosquid.com), and retain the vertices of the polygonal quad-
rangles and triangles of the original models in the form of data clouds (Fig. 1a,
the left panel). Then a parametric (linear Lagrange or cubic Hermite) mesh is
constructed from the data cloud using a Cmgui software in the OpenCMISS
package [8]. The parametric mesh allows for a representation of 3D objects with
a small set of elements. For example, the final model of the fetus consists of 884
nodes and 948 elements.

The arterial tree is constructed in a similar manner, but in a 1D mesh rather
than a 2D surface mesh. The arterial tree ranges from the aorta to peripheral
arteries (Fig. 1b). We referred to the human anatomy [9] and the arterial radii

https://www.turbosquid.com
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Fig. 1. Construction of the parametric mesh for the maternal and fetus model: (a) the
data cloud of the fetus surface is used to create the linear Language mesh and then
cubic Hermite mesh; (b) the data cloud of the cardiovascular system of the mother is
used to create a parametric linear Lagrange mesh of the arterial system; (c) The cubic
Hermite mesh of the maternal model.

from [10], so that the radius at each arterial node is incorporated as a compu-
tational field, then cylinders of varying diameters are swiped across the arterial
tree (Fig. 1b).

Construction of the maternal surface model uses the same technique as the
fetal surface model. In general, it is easier to construct a mesh for a consistent
geometry such as the torso, but more difficult for a complex geometry such as
the face. We referred to the cubic Hermite mesh previously made for a human
body as described in [11] which was used to visualise the lymphoscintigraphy
data.

2.2 Modelling the Blood Flow in the Arterial Tree

Assuming the blood flow is ruled by the Hagen-Poiseuille Law, then the pressure
drop Δp is related to the flow rate q for a laminar, incompressible and Newtonian
flow in a long cylindrical pipe as:



Development of 3D Physiological Simulation 163

Q =
Δp

R
(1)

where R = 8μL/(πr4) represents the vessel resistance. L and r are the length
and radius for each artery. From Eq. (1) the flow velocity in a vessel is derived
as u = Q/(πr2). For a drug in the blood flow, its concentration follows a 1D
advection equation:

∂C

∂t
+ u

∂C

∂x
= 0 (2)

where C is the concentration of a drug. To solve the flow across a bifurcation,
we assume that the concentration is proportional to the flow rate: C = k × Q
where k is a proportional constant. That assumption means that at bifurcations
the concentration will follow the flow rates at daughter vessels. Equation (2) is
solved used a finite difference method described in [12].

2.3 Modelling the CO Diffusion and HbCO Clearance

CO crosses the placenta to reach the fetal blood stream, causing a decrease of
the amount of oxygen supplied to the fetal tissues. We use a CO exchange model
between the human fetus and the mother from [7]. The simplified model allows us
to simulate the HbCO clearance in the maternal and fetal plasma simultaneously.
The model consists of two coupled differential equations:

y1
t

= a11y1 + f1 (3)
y2
t

= a21y1 + a22y2 + f2 (4)

where y1 and y2 are the concentration of HbCO in the maternal and fetal blood,
respectively. aij is the diffusion constant, fi is the function of volume distribution
of CO. For details of the individual terms we refer the interested reader to [7]. By
integrating the first equation, we find an expression for y1 that can be substituted
into the second equation which can be in turn integrated. Finally, the solutions
are:

y1 = y1(τ) + [y1(0) − y1(τ)]ea11t (5)
y2 = −c1 + c2e

a11t + [c2 − y2(0)]ea22t (6)

where τ is a nominated time where the simulation ends, and is 48 h in this case.

2.4 Software Implementation

The software has been developed using the Python language. The graphic user
interface (GUI) is based on the cross-platform GUI toolkit PyQt 5.4, the Python
binding of Qt, which provides Qt Designer for designing and building GUIs from
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Qt components. The 3D engine is based on PyZinc, the Python binding of the
OpenCMISS-Zinc Application Programming Interface (API) [8]. PyZinc is an
object-oriented API that consists of graphical objects defined by attributes and
methods with handles to control from. The OpenCMISS package is specifically
designed for physiological simulations and is the major engine behind the Phys-
iological Human project.

Figure 1 gives an example of representing 3D bio-structures in parametric
mesh. One advantage of employing this kind of mesh is that scientific data can
be incorporated as computational fields [13]. For example, during smoking, chem-
icals contained in cigarette smoke move cross the blood vessels. This physical
process can be simulated by colour-coding the concentration of CO, or any chem-
ical species to provide an intuitive feel of its concentration in the tree, as we will
show in the Results next.

3 Results

3.1 Physiological Simulations

The blood in the arterial system of the mother is solved from the system of
differential equations (1) and (2). The simulation results are shown in Fig. 2.
Here the cardiac output is assumed to be 5 L/min. The flow rate to the brain
is about 800 mL/min or 16% of cardiac output. The flow to the kidney (renal
perfusion) and uterus is about 1.2 L/min and 600 mL/min, or 24% and 12% of
cardiac output, respectively. These are consistent with the circulation flow data
in pregnant women [14]. Of specific note is that during pregnancy the renal blood
flow increases drastically (up to 80%) than non-pregnant women [14].

Figure 3 visualises the concentration of [HbCO] on the fetal surface at two
instants (8 h and 16 h) of a day. Equations (3)–(4) are solved under the assump-
tion that the mother smokes about 1.5 packs of cigarette per day for 16 h. It can
be seen that the [HbCO] elimination in fetus is not as quickly as the mother.
[HbCO] still presents in the fetal plasma even hours after the mother stops
smoking. The information could be helpful as it allows a pregnant woman to
comprehend how smoking can affect the fetus.

3.2 Software Implementation

We have developed the first software for the simulation of smoking effect on 3D
pregnant woman and fetus models. The GUI of the software is shown in Fig. 4.
The GUI is split into two panels. The left panel contains the 3D window powered
by the PyZinc engine, which renders the 3D models and physiological data. A
user can navigate through the 3D environment by using the mouse. The right
panel configures physiological simulations. These include the results of several
models of CO exposition, based on the amount of CO the mother is exposed to
during a 48 h timeframe. Once the model is loaded, the user can drag the slider
under the 3D window to view the concentration of HbCO, whose colour would
change from blue for the lowest concentration to red for the highest. The time
and mean HbCO levels are displayed in the three corresponding boxes.
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Fig. 2. Physiological simulation for the blood flow in pregnant women. The total car-
diac output is 5L/min, the renal and uterine flow are 1.2 L/min and 600 mL/min,
respectively.

Fig. 3. Physiological simulations show that HbCO concentration in fetus (color coded
on the surface). The plots are the results by solving Eqs. (4)–(5), and suggest the
[HbCO] remain in the fetal blood hours after the mother stops smoking. (Color figure
online)
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Fig. 4. The graphic user interface of the Python-based software. There are three panels
in the GUI, each contains different functions as introduced in Results.

4 Discussion and Conclusion

The complications induced by cigarette smoking to fetal growth are well doc-
umented, including premature birth, delay in development, low birth weight
and miscarriage [1,15,16]. Indeed, maternal smoking is the largest modifiable
risk factor affecting fetal and infant health [5]. However, smoking cessation has
proved to be difficult for many smokers. Innovative methods and novel uptake
schemes need to be considered by government agencies and public health pro-
fessionals. The aim of the project was to develop innovative software to address
this demand and to motivate smoking pregnant women to quit smoking during
pregnancy.

In the current implementation, we developed a Python-based platform that
displays the 3D maternal and fetal models and visualises time-depending physio-
logical data such as HbCO in the body. We have incorporated two physiological
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simulations in the software, the first being the blood flow in the cardiovascu-
lar system of the mother, and the second being the time course simulation for
HbCO. Many other physiological simulations will be made for various clinical
concerns, and we leave the options to end users to advise which simulations are
needed.

As the first version, there are some limitations pertaining to the software.
Firstly, it would be important for incorporating more accurate anatomical struc-
tures for the simulation. An important development direction is to incorporate
anatomically accurate models in particular that of the fetal model into the soft-
ware. Currently the fetal model only exists in the form of a surface mesh, and no
fetal organs are modelled due to a lack of fetal organ anatomy information. This
is crucial for our next stage of software development, since clearance of drugs is
heavily dependent on the hepatic and renal systems of fetus [17]. Secondly, we
did not consider the interface between blood and air in the lungs. Neither did we
consider the exchanges located in the placenta region. These could be important
factors for the transport of HbCO. Thirdly when solving the transport equa-
tions for the arterial system the resistance of organs upon blood flow was not
considered. A typical treatment is to connect the end of the outlets to lumped
parameter models, or extend the arterial system to the level where outlet arterial
pressure can be determined [18]. Lastly, the evaluation of the software system
is only visual at the current stage. For the dissemination of the software, user
experience feedback needs to be studied, and clinical data incorporated.

In conclusion we have developed the first 3D physiological simulation and
education software for pregnant women. Feedbacks from clinicians, pregnant
women and public health workers will be sought and incorporated for future
developments of the software.
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6. Glover, M., Kira, A.: Pregnant Māori smokers’ perception of cessation support and
how it can be more helpful. J. Smok. Cessat. 7, 65–71 (2012)

7. Hill, E.P., Hill, J.R., Power, G.G., Longo, L.D.: Carbon monoxide exchanges
between the human fetus and mother: a mathematical model. Am. J. Physiol. -
Heart Circulatory Physiol. 232, H311–H323 (1977)



168 A. Bourgais et al.

8. Bradley, C., et al.: OpenCMISS: a multi-physics & multi-scale computational
infrastructure for the VPH/Physiome project. Prog. Biophys. Mol. Biol. 107, 32–
47 (2011)

9. Gilroy, A., MacPherson, B., Ross, L., Schuenke, M., Schulte, E., Schumacher, U.:
Atlas of Anatomy. Thieme, New York (2008)

10. ADAN-WEB - HeMoLab (2018). http://hemolab.lncc.br/adan-web/
11. Reynolds, H.M., Dunbar, P.R., Uren, R.F., Blackett, S.A., Thompson, J.F., Smith,

N.P.: Three-dimensional visualisation of lymphatic drainage patterns in patients
with cutaneous melanoma. Lancet Oncol. 8, 806–812 (2007)

12. Coutey, C., Berg, M., Ho, H., Hunter, P.: Computational simulation of blood flow
and drug transportation in a large vasculature. In: Joldes, G.R.R., Doyle, B.,
Wittek, A., Nielsen, P.M.F.M.F., Miller, K. (eds.) Computational Biomechanics
for Medicine, pp. 133–142. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-28329-6 12

13. Bradley, C., Pullan, A., Hunter, P.: Geometric modeling of the human torso using
cubic hermite elements. Ann. Biomed. Eng. 25, 96–111 (1997)

14. Sharma, R.P., Schuhmacher, M., Kumar, V.: The development of a pregnancy
PBPK Model for Bisphenol A and its evaluation with the available biomonitoring
data. Sci. Total Environ. 624, 55–68 (2018)

15. Morgan, D.J.: Drug disposition in mother and foetus. Clin. Exp. Pharmacol. Phys-
iol. 24, 869–873 (1997)

16. Walsh, R.A.: Effects of maternal smoking on adverse pregnancy outcomes: exami-
nation of the criteria of causation. Hum. Biol. 66, 1059–1092 (1994)

17. Ring, J.A., Ghabrial, H., Ching, M.S., Smallwood, R.A., Morgan, D.J.: Fetal hep-
atic drug elimination. Pharmacol. Ther. 84, 429–445 (1999)

18. Muller, A., Clarke, R., Ho, H.: Fast blood-flow simulation for large arterial trees
containing thousands of vessels. Comput. Methods Biomech. Biomed. Eng. 20,
160–170 (2017)

http://hemolab.lncc.br/adan-web/
https://doi.org/10.1007/978-3-319-28329-6_12
https://doi.org/10.1007/978-3-319-28329-6_12


Resolution Conversion of Volumetric
Array Data for Multimodal Medical

Image Analysis

Kento Hosoya1, Kouki Nozawa1, and Atsushi Imiya2(B)

1 School of Science and Engineering, Chiba University,
Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

2 Institute of Management and Information Technologies, Chiba University,
Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

imiya@faculty.chiba-u.jp

Abstract. This paper aims to clarify statistical and geometric prop-
erties of linear resolution conversion for registration between different
resolutions observed using the same modality. The pyramid transform
for higher-dimensional array with rational-order is formulated by means
of tensor decomposition. For fast processing of volumetric data, com-
pression of data is an essential task. Three-dimensional extension of the
pyramid transform reduces the sizes of the volumetric data by factor 2.
Extension of matrix expression of the pyramid transform to the opera-
tion of tensors using the mode product of a tensor and matrix derives
the pyramid transform for volumetric data of the rational orders. The
pyramid transform is achieved by downsampling after linear smooth-
ing. The dual operation of the pyramid transform is achieved by linear
interpolation after upsampling. The rational-order pyramid transform
is decomposed into upsampling by linear interpolation and the tradi-
tional pyramid transform with the integer order. By controlling ratio
between upsampling for linear interpolation and downsampling in the
pyramid transform, the rational-order pyramid transform is computed.
The tensor expression of the volumetric pyramid transform clarifies that
the transform yields the orthogonal base systems for any ratios of the
rational pyramid transform.

1 Introduction

There are modern demands on tensor-based higher-dimensional visual processing
from medical image analysis [12], microstructure analysis of material science and
biology [1] and visualisation of natural phenomena [16]. Objects and phenomenon
in natures including human cells and organs are fundamentally observed and
described as a spatio-temporal volumetric sequences. Therefore, even snapshots
of them in a temporal series are three-dimensional data. For fast processing of
volumetric data, compression of data is an essential task [16,17]. Registration
between images with the same resolution observed by the same modality is a
standard framework [22,23]. The second class of problems is registration between
c© Springer Nature Singapore Pte Ltd. 2020
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images observed using different modalities [9,24,25]. The third one is registration
between different resolutions observed using the same modality [6]. This paper
focuses on linear resolution conversion for the third problem.

In this paper, the rational-order pyramid transform [2–7] for volumetric array
data is formulated by means of tensor decomposition. We 30 mm the matrix
expression of the pyramid transform for discrete signals. In Ref. [2], the rational
order pyramid transform is designed from the viewpoint of synthesis of IIR filter
banks by assuming a biorthogonal relation for the kernels of pyramid transform
and its dual transform. The matrix-based expression, however, yields orthogonal
bases in each resolution. Employing the tensor expression of higher-dimensional
array data and mode product of a tensor and matrix, we introduce the pyra-
mid transform for volumetric array data. The pyramid transform is a classical
method for multiresolution image analysis. Multiresolution image analysis estab-
lishes stable and accurate feature extraction by transmitting global features in
a coarse resolution to local and precise features in a fine resolution. The ratio-
nal order pyramid transform reduces the size of the volumetric data for any
ratio. Furthermore, tensor expression of the volumetric pyramid transform clar-
ifies that the transform yields orthogonal base systems for any sizes of scale
reduction by the rational pyramid transform.

For longitudinal analysis [8], the registration of a temporal sequence of images
observed by different modalities [9–12] is demanded. The resolution of medical
images depends on the modalities of the observations. Even if the same physical
observation modality is used for measuring each image in a sequence, images
with different resolutions are measured. For instance, the width of the x-ray
used in computerised tomography affects resolution of slice images. The same
slice images measured by the x-rays with different energies possess the different
resolutions [13], since the energy of the x-ray mathematically defines the width
of the x-ray beams. The registration of reference and target images [14,15,23]
with different resolutions is an essential problem in medical image registration.
For the normalisation of resolutions for the registration of an image pair, the
pyramid transform [3–7] of rational orders is demanded.

2 Mathematical Preliminaries

2.1 3D Signal Processing

We assume that our images are elements of the Sobolev space H2(R3). We define
the linear transforms

g(u) = Rf(u) =
∫
R3

wσ(x)f(σu − x)dx, (1)

f(x) = Eg(x) =
1
σ3

∫
R3

wσ(u)g
(

x − u

σ

)
du, (2)

where wσ(x) = wσ(x)wσ(y)wσ(z), for x = (x, y, z)� ∈ R3.



Volumetric Pyramid and Dilation Transforms 171

Definition 1. In both the domain and range spaces of the transform R, the
inner products of functions are defined as

(f, g)D =
∫
R3

f(x)g(x)dx, (Rf,Rg)R =
∫
R3

Rf(u)Rg(u)du. (3)

The dual operation R∗ of the operation R satisfies the relation (f,Rg)R =
(R∗f, g)D.

Since for the operations R and E, the relation
∫
R3

Rf(u)g(u)du =
∫
R3

f(x)Eg(x)dx (4)

is satisfied, we have the relation R∗ = E.
For σ > 0, dilation filtering is

h(x) = g(x)∗σ f(x) =
∫
R3

g(x−σy)f(y)dy =
1
σ3

∫
R3

g(u)f
(

x − u

σ

)
du. (5)

This equation coincides with Eq. (2) if we set wσ(x) = g(x). The discrete dilation
filtering of factor k for sequence [18] is

hi = fi ∗k gi =
∑

m+kn=i

gmfn =
∞∑

j=−∞
gi−kjfj =

∞∑
j=−∞

gjf j−i
k

. (6)

assuming that summation is achieved for j − i = kp.
For the three-dimensional array fijk = f(Δi,Δj,Δk), which is the samples

of f(x) on x = (Δi,Δj,Δk)� for z ∈ Z3, the volumetric pyramid transform of
the order p is

gmnk = hpm pn pk,

hmnk =
(p−1)∑

α,β,γ=−(p−1)

p − |α|
p2

· p − |β|
p2

· p − |γ|
p2

fm+α n+β k+γ . (7)

The dual transform is

fpm+α pn+β pk+γ

=
1
p3

(
p − α

p
· p − β

p
· p − γ

p
gpm pn pk +

α

p
· β

p
· γ

p
gp(m+1) p(n+1) p(k+1)

)
, (8)

for α, β, γ = 0, 1, · · · , (p − 1).

2.2 Tensor Algebra and Decomposition

For the triplet of positive integers I1, I2 and I3, the third-order tensor RI1×I2×I3

is expressed as X = ((xijk)). Indices i, j and k are called the 1-mode, 2-mode



172 K. Hosoya et al.

and 3-mode of X , respectively. The tensor space RI1×I2×I3 is interpreted as the
Kronecker product of three vector spaces RI1 , RI2 and RI3 such that RI1 ⊗
RI2 ⊗ RI3 . We set I = max(I1, I2, I3).

Samples Sf(Δz) for |z|∞ ≤ I yield an I×I×I three-way array F. To preserve
the multi-linearity of the function f(x), we deal with the array F as a third-order
tensor F . The operation vecF derives a vector f ∈ RI123 for I123 = I2 · I2 · I3.
We can reconstruct f from F using an interpolation procedure.

For X , the n-mode vectors, n = 1, 2, 3, are defined as the In-dimensional
vectors obtained from X by varying this index in while fixing all the other
indices.

The unfolding of X along the n-mode vectors of X is defined as matrices
such that X(1) ∈ RI1×I23 , X(2) ∈ RI2×I13 and X(3) ∈ RI3×I12 for I12 = I1 · I2,
I23 = I2 · I3 and I13 = I1 · I3, where the column vectors of X(j) are the j-mode
vectors of X for i = 1, 2, 3. We express the j-mode unfolding of Xi as Xi,(j).

For matrices

U = ((uii′)) ∈ RI1×I1 , V = ((vjj′)) ∈ RI2×I2 , W = ((wkk′)) ∈ RI3×I3 , (9)

the n-mode products for n = 1, 2, 3 of a tensor X are the tensors with entries

(X ×1 U)ijk =
I1∑

i′=1

xi′jkui′i,

(X ×2 V )ijk =
I2∑

j′=1

xij′kvj′j , (10)

(X ×3 W )ijk =
I3∑

k′=1

xijk′wk′k,

where (X )ijk = xijk is the ijk-th element of the tensor X . The inner product of
two tensors X and Y in RI1×I2×I3 is

〈X ,Y〉 =
I1∑

i=1

I2∑
j=1

I3∑
k=1

xijkyijk. (11)

Using this inner product, we have the Frobenius norm of a tensor X as |X |F =√〈X ,X〉. The Frobenius norm |X |F of the tensor X satisfies the relation |X |F =
|f |2, where |f |2 is the Euclidean norm of the vector f . If X = a ◦ b ◦ c =
((xijk)), xijk = aibjck for a = (a1, a2, · · · , an1)

�, b = (b1, b2, · · · , bn2)
� and

c = (c1, c2, · · · , cn3)
�.

For the three-dimensional array F = ((fijk)) ∈ Rn1×n2×n3 , the mode prod-
ucts of tensors with matrices A = ((aij)) ∈ Rm1×n1 , B = ((bij)) ∈ Rm2×n2 and
C = ((cij)) ∈ Rm3×n3 are defined as

F ×1 A� =
n1∑

α=1

fαjkaiα, F ×2 B� =
n2∑

β=1

fiβkbjβ , F ×3 C� =
n3∑

γ=1

fijγckγ .

(12)
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The shift-invariant operation is expressed as

g(x, y, z) =
∫ ∫ ∫

Ω

a(u − x)b(v − y)c(w − z)f(u, v, w)dudvdw. (13)

We assume that all a(x), b(y) c(z) and f(x, y, z) are zero outside of a finite
support Ω. The discrete shift-invariant operation

gijk =
∞∑

α=−∞

∞∑
β=−∞

∞∑
γ=−∞

aα−ibβ−jcγ−kfαβ,γ (14)

with a finite support is expressed as

G = F ×1 A� ×2 B� ×3 C�, (15)

where aij = a|i−j|, bij = b|i−j| and cij = c|i−j|, using the mode product of
tensor. Using the discrete cosine transform (DCT) matrix of the type II

Φ =
((

1√
n

sj cos
(2j + 1)i

2n
π

))
= (ϕ0,ϕ1, · · · ,ϕn−1), sj =

{
1, if j = 0,
1√
2
, otherwise,

(16)
the DCT for three-dimensional array is expressed as

G = F ×1 Φ� ×2 Φ� ×3 Φ�. (17)

3 Rational-Order Pyramid Transform

3.1 Eigenspace Analysis of Pyramid Transform of Sequences

The pyramid transform

gn :=
1
4
f2n−1 +

1
2
f2n +

1
4
f2n+1 =

1
4
(f2n−1 + 2f2n + f2n+1) (18)

for the sequence {fn}∞
n=−∞ is redescribed as

gn = h2n, hn =
1
4
(fn−1 + 2fn + fn+1) = fn +

1
2

(
fn−1 − 2fn + fn+1

2

)
. (19)

These relations imply that the pyramid transform is achieved by downsampling
after computing moving average.

For the Neumann boundary condition, the one-dimensional discrete Lapla-
cian L is

L =
1
2
D, D =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠

. (20)
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The eigendecomposition of D is

DΦ = ΦΛ, Λ = ((λkδkl)) λ
(n)
k = 4 sin2 πk

2n
. (21)

The matrix of downsampling operation for vectors is

Sq = I ⊗ eq
1, eq

1 = (1, 0, · · · , 0)� ∈ Rq. (22)

Furthermore, the 2p + 1-dimensional diagonal matrix

Np =
((

n|i−j|
))

, nk =
p − k

p
, 0 ≤ p ≤ k (23)

is expressed as

Np =
p∑

k=0

akDk, D0 = I, (24)

for an appropriate collection of coefficients {ak}p
k=1. Using matrices Np and Sp,

the linear interpolation for order p is expressed

Lp = NpSp. (25)

as the matrix. Equation (25) implies the following property.

Property 1. Assuming that the domain of signals is L{ϕi}n−1
i=0 , the range of sig-

nals upsampled using linear interpolation of order p is L{ϕi}pn−1
i=0 .

Using the relation in Eq. (19), the pyramid transform of order q is expressed
as

Rq =
1
q
SqNq, (26)

since the pyramid transform is achieved by downsampling after shift-invariant
smoothing, for which the matrix expression is Nq. Equation (26) implies the
following theorem.

Theorem 1. With the Neumann boundary condition, the pyramid transform

of order q is a linear transform from L{ϕi}n−1
i=0 to L{ϕi}

1
q n−1

i=0 , assuming that
n = kq.

Equations (25) and (26) derive the following theorem.

Theorem 2. The q/p-pyramid transform is expressed as

Rq/p =
1
q
SqNqLp =

1
q
SqNq/pSp, Nq/p = NqNp. (27)

Theorem 2 implies the following theorem.
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Theorem 3. With the Neumann boundary condition, the q/p-pyramid trans-

form is a linear transform from L{ϕi}n−1
i=0 to L{ϕi}

p
q n−1

i=0 .

Since the matrix expression of R∗
q/p and Eq/p are R�

q/p and E�
q/p, respectively,

we have the following theorem.

Theorem 4. For a rational number q/p, the pyramid transform and its dual
transform satisfy the relations,

R∗
q/p = R�

q/p = Eq/p = Rp/q, E∗
q/p = E�

q/p = Rq/p = Ep/q, (28)

where A∗ is the dual operation of the linear transform A.

Theorem 4 implies the following theorem.

Theorem 5. If R�
q/p = Es/r, the relation q/p × s/r = 1 is satisfied for the

rational-number pair q/p and s/r.

The linear scale space transform is used for multiresolution image analysis.
For a pair of positive number such that p + q = 1, the relation

(
n
k

)
∼ 1√

2πnpq
exp

(
(k − np)2

2npq

)
(29)

is called De Moivre-Laplace theorem. This theorem implies the discrete approx-
imation of the linear scale space transform using the binomial distribution.

Table 1 summarises the relations between p-pyramid transform for positive
integers and the scaled linear scale-space transform for signals. This table clar-
ifies the relation between the signals yielded by the p-pyramid transform and
numerically approximated linear scale space transform.

Table 1. Relations between the pyramid transform and linear scale-space transform.

Discrete expression Continuous expression

gm =
1∑

k=−1
wkf2m−k g(x) =

∫ ∞
−∞ w2(y)f(2y − x)dx

gm =
n∑

k=−n

1
(2n)!

(
2n

n − k

)

fm−k g(x) = 1√
2πτ

∫ ∞
−∞ exp

(
− y2

2τ

)
f(x − y)dy

gm = hqm

hn =

(q−1)∑

α=−(q−1)

p − |α|
q2

kn+α

km+β =
1

p

(
p − β

p
fm +

β

p
fm+1

)

g(x) =

∫ ∞

−∞
wσ(y)f(σy − x)dx, σ > 0

wσ(x) =

{
1
σ

(
1 − 1

σ
|x|) , |x| ≤ σ

0, |x| > σ

f (k) =
(
Φ(I − τ

2
Λ)−kΦ�

)
f (see Appendix.)

f (k) = (f
(k)
0 , f

(k)
1 , · · · , f

(k)
n−1)

�
∂

∂τ
f(x, τ) = 1

2
∂2

∂x2 f(x, τ), τ ≥ 0
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3.2 Eigenspace Analysis of Pyramid Transform of 3D Array

Using the relation between Eqs. (7) and (8), we construct the pyramid transform
of the rational order q/p for p, q ∈ Z+.

Definition 1. The q/p pyramid transform first achieves upsampling of order p
by using linear interpolation. For the upsampled data, the pyramid transform of
order q is applied.

We call the transform the q/p-pyramid transform.

Definition 2. The dual transform is achieved by downsampling to the result of
the dual transform of the pyramid transform.

Equation (8) is the linear interpolation of gpm pn pk to generate fm n k for
k,m, n = 0,±1 · · · ,±∞.

The pyramid transform for three-dimensional volumetric digital images is

G = F ×1 R�
q/p ×2 R�

q/p ×3 R�
q/p. (30)

The transform allows us to compress the volumetric data to a small size.
Equation (30) implies the following properties and theorem, where ϕαβγ

ijk =
ϕαiϕβjϕγk for

U = ϕα ◦ ϕβ ◦ ϕγ = ((ϕαβγ
ijk )). (31)

Property 2. Assuming that the domain of images is L{ϕi ◦ ϕj ◦ ϕk}n−1
i,j,k=0 for

n = 2m, the range of subsampled images by order p is L{ϕi ◦ ϕj ◦ ϕk}pn−1
i,j,k=0.

Property 3. With the Neumann boundary condition, the pyramid transform of

order q is a linear transform from L{ϕi◦ϕj ◦ϕk}n−1
i,j,k=0, to L{ϕi◦ϕj ◦ϕk}

1
q n−1

i,j,k=0,
assuming n = lq.

Theorem 6. With the Neumann boundary condition, the q/p pyramid trans-

form is a linear transform from L{ϕi ◦ϕj ◦ϕk}n−1
i,j,k=0, to L{ϕi ◦ϕj ◦ϕk}

p
q n−1

i,j,k=0.

Since the vectors {ϕi}n−1
i=0 satisfies the relation ϕ�

i ϕj = δij , the relation

〈ϕi ◦ ϕj ◦ ϕk, ϕi′ ◦ ϕj′ ◦ ϕk′〉 = δii′δjj′δkk′ . (32)

is satisfied. Therefore, the q/p-pyramid transform derives an orthogonal base
system for q/p.
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4 Statistical Property

For a positive function f(x, y, z) ≥ 0 defined on the domain Ω = [0, a] × [0, b] ×
[0, c], we define the function

f(x, y, z;u) =
{

f(x, y, z), if f(x, y, z) < u,
u, otherwise. (33)

Since the total value of f(x, y, z) smaller than u is

U(u; f(x, y)) =
∫ a

0

∫ b

0

∫ c

0

f(x, y, z;u)dxdydz, (34)

the total value for f(x, y, z) = u is computed as

H(u; f(x, y)) = lim
δ→0

U(u + δ; f(x, y, z)) − U(u − δ; f(x, y, z))
2δ

=
∂

∂u
U(u; f(x, y, z)). (35)

The function

h(u; f(x, y, z)) =
1

|a × b × c|
∂

∂u
U(u; f(x, y, z)) (36)

is the normalised grey-value histogram of f(x, y, z) on Ω.
The distance between a pair of normalised histograms p(u) = h(u; f(x, y, z))

and q(u) = h(u; g(x, y, z)) is computed by the transportation

dα(p, q) = min
c(x,y)

α

√∫ umax

0

∫ vmax

0

|p(u) − q(v)|αc(u, v)dudv (37)

for α > 0 with the conditions
∫ umax

0

c(u, v)du ≤ q(v),
∫ vmax

0

c(u, v)dv ≤ p(u).

Resolutions of original images in Figs. 1 and 2 are 362× 434× 362 and 111×
102 × 159 voxels, respectively. We assume that volumetric images are defined in
the region

Ω = [−w,w] × [−h, h] × [−d, d]

and that the centroids of images are aligned to the origin for each resolution.
The grey-value histograms are generated from voxel values in the region

Ω1/2 =
[
−w

2
,
w

2

]
×

[
−h

2
,
h

2

]
×

[
−d

2
,
d

2

]
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in each resolution. The result of q/p-pyramid transform is defined in

Ωq/p =
[
−q

p
· w,

q

p
· w

]
×

[
−q

p
· h,

q

p
· h

]
×

[
−q

p
· d,

q

p
· d

]
.

The grey-value histogram is generated from voxel values in

Ω
1/2
q/p =

[
−q

p
· w

2
,
q

p
· w

2

]
×

[
−q

p
· h

2
,
q

p
· h

2

]
×

[
−q

p
· d

2
,
q

p
· d

2

]
.

These operations reduce the number of voxels in the background for the gen-
eration of grey-value histogram, since the grey-values on the background vox-
els causes biases on grey-value distribution in histograms. The top and bottom
matrices in Table 2 show the distances among the images in Figs. 1 and 2, respec-
tively, for α = 2. In these matrices, the elements in the upper triangles are
computed, since the matrices are symmetric.

The numerical experiments imply that the grey-value distributions of the
results of the volumetric q/p-pyramid transform possess the same distribution
property as the original images, that is, the transform preserves the shapes of
grey-value histograms of images.

Setting D(q/p, r/s) to be the transportation distance between a pair of the
normalised grey-value histograms of images computed by the q/p- and r/s-
pyramid transforms, Table 2 shows that

|D(q/p, r/s) − D(b/a, f/e)| ≤ C (38)

for a positive number C and any combinations of four rational numbers q/p, r/s,
b/a and f/e.

Table 2. Distance matrix of the normalised grey-value histograms for the volumetric
brain images for α = 2.

1/1 1/2 1/3 2/3

1/1 0 2.88 × 10−3 7.21 × 10−3 2.89 × 10−3

1/2 ∗ 0 1.24 × 10−3 1.19 × 10−5

1/3 ∗ ∗ 0 1.21 × 10−3

2/3 ∗ ∗ ∗ 0

1/1 1/2 1/3 2/3

1/1 0 1.15 × 10−3 3.16 × 10−3 2.05 × 10−3

1/2 ∗ 0 1.17 × 10−3 0.34 × 10−5

1/3 ∗ ∗ 0 0.71 × 10−3

2/3 ∗ ∗ ∗ 0
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(a) 1/1 (b) 1/1

(c) 2/3 (d) 2/3

(e) 1/2 (f) 1/2

(g) 1/3 (h) 1/3

Fig. 1. Pyramid transform of images and their grey-value histograms. Resolution of
the original volumetric brain images [19] is 362 × 434 × 362.
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(a) 1/1 (b) 1/1

(c) 2/3 (d) 2/3

(e) 1/2 (f) 1/2

(g) 1/3 (h) 1/3

Fig. 2. Pyramid transform of images and their grey-value histograms. Resolution of
the original volumetric kidny image is 111 × 102 × 159
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5 Conclusions

We have introduced a tensor-based framework for the rational-order pyramid
transform of volumetric data, which we call the q/p pyramid transform. The
rational-order pyramid transform reduces the size of images by any rational
factors. The transform corresponds to the traditional transform if q/p = 1/2. If
the result of the pyramid transform is expressed in the same landscape with the
original images, the result of the transform yields a low-resolution image in any
rational order. Numerical experiments imply that the grey-value distributions of
the results of the q/p pyramid transform processes the same distribution property
with the original image, that is, the transform preserves the shapes of grey-scale
histograms of images. Furthermore, tensor expression of the volumetric pyramid
transform clarifies that the transform yields the orthogonal base systems for any
ratios of the rational pyramid transform.

Since the dual transform of the pyramid transform is achieved by convolu-
tion after upsampling, the dual transform to the pyramid transform is dilated
convolution with the triangle kernel [18]. Since the statistical properties of grey-
value histogram are fulfilled to the dual transform of the pyramid transform, the
dilated convolution with the triangle kernel preserves the statistical properties
of grey-values through factors of dilation.

Registration between images with the same resolution observed by the same
modality is a standard framework [22,23]. The second class of problems is regis-
tration between images observed using different modalities [9,24,25]. The third
one is registration between different resolutions observed using the same modal-
ity [6]. This paper focused on the third problem. Numerical and statistical exper-
iments showed that the rational order pyramid transform is used as a resolution-
conversion method for multi-modernity image registration.
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putational Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy”
project funded by a Grant-in-Aid for Scientific Research on Innovative Areas from
MEXT, Japan, and by Grants-in-Aid for Scientific Research funded by the Japan Soci-
ety for the Promotion of Science.

Appendix: Discrete Heat Equation

For the heat equation ∂f
∂τ = 1

2 · ∂2f
∂x2 in R2 × R+, the semi-implicit discretisation

with the Neumann boundary condition

f (k+1) − f (k)

τ
=

1
2
Df (k+1),

and the eigenvalue decomposition of the matrix D yield the iteration form [20,21]

f (k+1) = Φ
(
I − τ

2
Λ

)−k

Φ�f , Λ = ((λiδij)),
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where λ0 > λ2 > · · · > λn−1, for f = (f0, f1, · · · , fn−1)�. This iteration form
implies that the discrete scale transform is a linear transform from L{ϕi}n−1

i=0 to
L{ϕi}n−1

i=0 .
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Learning Spatiotemporal Representation
Based on 3D Autoencoder for Anomaly

Detection
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Abstract. Because of ambiguous definition of anomaly and the com-
plexity of real data, anomaly detection in videos is of utmost importance
in intelligent video surveillance. We approach this problem by learning
a novel 3D convolution autoencoder architecture to capture informative
spatiotemporal representation, and an 2D convolutional autoencoder to
learn the pixel-wise correspondences of appearance and motion informa-
tion to boost the performance. Experiments on some publicly available
datasets demonstrate the effectiveness and competitive performance of
our method on anomaly detection in videos.

Keywords: Anomaly detection · 3D convolution autoencoder ·
Spatiotemporal irregularity

1 Introduction

Anomaly detection in videos refers to the identification of events that do not
conform to expected behavior. It is an important task in video analytics, e.g.,
it plays a crucial role in video surveillance. However, anomaly detection is an
unsolved challenging issue due to the following problems: firstly, the realistic
data is complex, anomaly data points may lie closely to the boundary of normal
regions, e.g. skateboarders and walking people appear similarly in the application
of camera surveillance, where skateboarders are anomaly objects and prohibited
in pedestrian footpaths. Secondly, the labelled effective data is limited. Spe-
cially, the normal patterns are usually available or easy to be collected, but the
abnormal samples are relatively few or costly.

In order to deal with these problems, several methods, which based on autoen-
coder for abnormality detection focus on modeling only the normal pattern of the
videos [16], are proposed [18]. The main idea of this paradigm lies in the fact that
only normal samples are needed at training time, while the detection of anomaly
is according to measuring the distance from the learned normal pattern. Due to
learning deviation in videos is very challenging as the definition is ill-defined [6],
while learning ordinaries is relatively easier, this paradigm focuses on learning

Supported by Wuhan University.

c© Springer Nature Singapore Pte Ltd. 2020
M. Cree et al. (Eds.): ACPR 2019 Workshops, CCIS 1180, pp. 187–195, 2020.
https://doi.org/10.1007/978-981-15-3651-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3651-9_17&domain=pdf
https://doi.org/10.1007/978-981-15-3651-9_17


188 Y. Chang et al.

the characteristics of regular temporal patterns with a very limited form of label-
ing - as it assumes that all events in the training videos are part of the regular
patterns. To handle the issue of limited labelled data, [4] has been proposed to
learn temporal regularity using 2D convolutional autoencoder. These methods
just pay attention to temporal regularity implied by reconstruction error of video
clips (Fig. 1).

Fig. 1. Regularity score of a video sequence from Ped2 [8] and the red box locate
the ground truth of abnormal events. When some abnormal events occurred, e.g., a
bicycle intrudes, the regularity score drops significantly, and when there are no irregular
motion, the regularity score is relatively high. (Color figure online)

In this work, we design a novel 3D convolution autoencoder architecture to
learn the pixel-wise correspondences of appearance and motion information to
capture informative spatiotemporal representation. In addition, our architecture
can efficiently and effectively learn some semantics representation which are
useful for less supervised video tasks. Since abnormal events are usually less
than normal events in videos, it will be efficient if we formulate video anomaly
detection as a one-class problem whose outliers are the anomaly.

In brief, our approach considers both appearance and motion features based
on the perception that compared with normal behaviors, an abnormal behav-
ior differs in their appearance characteristic or motion properties or both. In
summary, this paper makes the following contributions:

– We propose a novel 3D autoencoder architecture which has temporal dimen-
sion to capture informative spatiotemporal representation to detect anomaly
in videos by leveraging only weakly labeled videos end-to-end.

– We exploit to effectively capture both motion and appearance descriptors and
appropriately combine them by an additional 2D convolutional autoencoder
to learn the pixel-wise correspondences of them to boost the performance.
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2 Related Work

2.1 Anomaly Detection Based on Hand-Crafted Features

Early work usually utilizes low-level trajectory features, a sequence of image
coordinates, to represent the regular patterns [16]. However, these methods are
not robust in complex or crowded scenes that with challenging cases, e.g., occlu-
sions and shadows, because trajectory features are based on object tracking and
it is very easy to fail in these conditions. Taking consideration of the short-
comings of trajectory, more useful low-level spatial-temporal features, such as
histogram of oriented gradients (HOG) [1], histogram of oriented flows (HOF) [2]
are exploited.

2.2 Anomaly Detection with Weak Supervision

Most video based anomaly detection approaches involve a local feature extrac-
tion step followed by learning a model on training video. [3,11] use temporal
coherency prior on adjacent frames to train an autoencoder network. [14] intro-
duces label-free supervision which uses constraint learning combined with physics
and domain knowledge to solve three computer vision tasks including tracking
objects and a walking man. Recurrent Neural Network (RNN) and its long short
term memory (LSTM) variant have been widely used for sequential data mod-
eling, [13] utilized encoder LSTM to extract features and uses decoder LSTMs
to the task of reconstruction tasks.

2.3 Autoencoder

Autoencoder is first applied to reduce dimensionality. [5] proposed a deep autoen-
coder initialized by RBMs. Then, to extract features more robustly, other vari-
ants of autoencoder are presented. Sparse autoencoder [10], denoising autoen-
coder [17], contractive autoencoder [12]. Convolutional autoencoder has been
presented in [9]. The authors consider the 2D image as input and construct
stacked convolutional autoencoders for initializing CNNs. [4] applied 2D con-
volutional autoencoder to learn temporal regularity. Based on these work, we
proposed a novel 3D autoencoder architecture for video anomaly detection with
the usage of both appearance and motion.

3 Approach

Supervised learning has achieved good performance on some video tasks, e.g.,
video recognition and action detection, however, it is difficult to apply super-
vised learning methods to the application of anomaly detection due to the lack of
sufficient labeled abnormal events. To tackle those difficulties, we use 3D convo-
lutional autoencoders to learn regularity in video sequences. The intuition is that
the learned autoencoders is able to reconstruct the motion signatures presented
in regular videos with low error but unable to accurately reconstruct motions
in irregular videos. In other words, the autoencoder can model the complex
distribution of the regular dynamics of appearance changes.
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Fig. 2. Overview of our video anomaly detection architectures framework

3.1 Architectures

The proposed approach for detecting anomalous events rely on three autoen-
coders networks associated to different inputs to learn appearance, motion fea-
tures, and a joint representation of them. The basic architecture of the proposed
autoencoder network is illustrated in Fig. 2.

For the encoder part, we choose a shallow network with less than 4 layers.
Then, the number of neurons is reduced by half in the next layer until reaching
the “bottleneck” hidden layer. The decoder part has a symmetric structure with
respect to the encoder part. To learn spatiotemporal features, 3D convolutional
networks are introduced by [15]. Different from 2D convolution, 3D convolution
has one more dimension: temporal. The output of one kernel convolves feature
maps is 3-dimensional. 3D deconvolution is used in our decoder. It’s an inverse
operation of 3D convolution. Deconvolution is also called fractionally strided
convolution or transposed convolution.

Appearance Autoencoder. The first 3D-autoencoder learns mid-level app-
earance representations from the original image. We take short video clips in
a temporal sliding windows to capture L consecutive frames as the input. The
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objective function of appearance autoencoder is defined as:

Lappearance =
w,h∑

i,j

(xi,j − x̂i,j)2 (1)

Where xi,j represents the pixel intensity of input frame, and x̂i,j represents the
intensity of reconstruction result according to appearance autoencoder.

Motion Autoencoder. The second autoencoder is used to learn the motion
features. Dense optical flow is computed to represent the motion. A dense optical
flow can be seen as a set of displacement vector fields between the pairs of two
consecutive frames t and t+1. Formally, optical flow consists of x and y displace-
ment vectors for every position in the frame which indicate the horizontal and
vertical movement components. We stack the optical flow of L consecutive frames
to create 2L input. The objective function of motion autoencoder is expressed
as:

Lmotion =
w,h∑

i,j

(yi,j − ŷi,j)2 (2)

Where yi,j represents the optical flow value of input frames, and ŷi,j repre-
sents the reconstruction result of the motion autoencoder.

Fusion Autoencoder. In contrast to the traditional methods [Reference] only
extract appearance and motion features, to learn the pixel-wise correspondences
between spatial and temporal features, we propose to fuse these two features to
learn a joint representation by a 2D autoencoder:

Lfusion =
w,h∑

i,j

(zi,j − ẑi,j)2 (3)

We concatenate the output of appearance encoder and motion encoder to stack
the two feature maps at the same spatial locations across the feature channels,
and put the concatenated feature maps to a 2D autoencoders.

3.2 Objective Function

Our architecture’s objective function consists of the Euclidean loss between the
input feature and the reconstructed feature of the three components:

Ltotal = Lappearance × λappearance + Lmotion × λmotion + Lfusion × λfusion (4)

To train the network, the intensity of frame pixels and optical flow in all
frames are normalized to [0,1]. For different datasets, the coefficient factors
λappearance, λmotion, and λfusion can be manually setted. In our experiments,
we set λappearance, λmotion, and λfusion as 1.0, 0.1 and 10.0 respectively.
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3.3 Regularity Score

Following [4], given the reconstruction error of a frame and optical flow which
are obtained by summing up all the pixel-wise errors, we compute the regularity
score of a frame t as follow:

g(t) = 1 − L(t) − mint(L(t))
maxt(L(t))

(5)

4 Experiment

In this section, we evaluate our proposed method by testing the effects of its
different components and comparing it with state of the arts on three publicly
available anomaly detection datasets, including the CUHK Avenue dataset, the
UCSD Pedestrian dataset and the ShanghaiTech dataset. Note that our model is
not fine-tuned to one dataset. It is general enough to capture regularities across
multiple datasets.

4.1 Datasets

We train our model based on three datasets: UCSD pedestrian [8] and Avenue
[7], and the ShanghaiTech dataset.

The UCSD dataset contains two parts: The UCSD Pedestrian 1 (Ped1)
dataset and the UCSD Pedestrian 2 (Ped2) dataset. The UCSD Pedestrian 1
(Ped1) dataset includes 34 training videos and 36 testing ones with 40 irregu-
lar events. All of these abnormal cases are about vehicles such as bicycles and
cars. The UCSD Pedestrian 2 (Ped2) dataset contains 16 training videos and 12
testing videos with 12 abnormal events. The definition of anomaly for Ped2 is
the same with Ped1. Usually different methods are evaluated on these two parts
separately.

Avenue dataset is a static camera dataset in front of a subway station. 12
training video samples only contain normal videos, and 16 testing video samples
are composed of both normal and abnormal video events. Each frame in this
dataset has 640 × 320 pixels.

The ShanghaiTech dataset contains 330 training videos and 107 testing ones
with 130 abnormal events. Totally, it consists of 13 scenes and various anomaly
types.

4.2 Evaluation Metric

In the literature of anomaly detection [7,8], a popular evaluation metric is to
calculate the Receiver Operation Characteristic (ROC) by gradually changing
the threshold of regular scores. Then the Area Under Curve (AUC) is cumulated
to a scalar for performance evaluation. A higher value indicates better anomaly
detection performance. In this paper, we use frame-level AUC for performance
evaluation.
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4.3 Anomalous Event Detection

As our model learns the temporal regularity, it can be used for detecting anoma-
lous events in a weakly supervised manner. We use our proposed autoencoders’
objective function and regularity score to analyze global detection in frame level.
Table 1 compares the anomaly detection accuracies of our autoencoders against
state-of-the-art methods. We can see our method performs competitively to these
methods. Figure 3 shows part of UCSD Ped2 dataset results’ regularity scores
as a function of frame number.

Table 1. AUC of different methods on the Ped1, Ped2, Avenue and ShanghaiTech
datasets.

Algorithm UCSD Ped1 UCSD Ped2 Avenue ShanghaiTech

Conve-AE 75.00% 85.00% 80.00% –

ConvLSTM-AE 75.50% 88.10 77.00% –

Stacked RNN – 92.20% 81.70% 68.00%

Our method 82.55% 90.95% 83.25% 71.52%

Fig. 3. Parts of temporal regularity score of UCSDPed2. The regularity score imply the
possibility of normal, and blue shaded regions are the anomaly in groundtruth (Color
figure online)

5 Conclusions

For video anomaly detection task, we proposed a 3D autoencoder architecture
to learn spatiotemporal irregularity. We first designed an effective 3D convo-
lutional autoencoder to extract informative representation of spatial and tem-
poral information. Then, to learn the pixel-wise correspondences of them, we
build an additional 2D convolutional autoencoder to fuse the representations
of the appearance and motion to take advantages of their complementary. Our
model is generalizable across multiple datasets, and quantitative analysis on
three datasets shows that our method performs competitively to state-of-art
methods.
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Abstract. Although there have been attempts to tackle the problem of
hand gesture recognition “in-the-wild”, deployment of such methods in
practical applications still face major issues such as view point change,
clustered background and low resolution of hand regions. In this paper,
we investigate these issues based on a frame-work that is intensively
designed in terms of both varying features and multi-view analysis. In
the framework, we embed both hand-crafted features and learnt features
using Convolutional Neural Network (CNN) for gesture representation at
single view. We then employ multi-view discriminant analysis (MvDA)
based techniques to build a discriminant common space by jointly learn-
ing multiple view-specific linear transforms from multiple views. To eval-
uate the effectiveness of the proposed frame-work, we construct a new
multi-view dataset of twelve gestures. These gestures are captured by five
cameras uniformly spaced on the half of a circle frontally surrounding
the user in the context of human machine interaction. The performance
of each designed scheme in the proposed framework is then evaluated.
We report accuracy and discuss the results in view of developing prac-
tical applications. Experimental results show promising performance for
developing a natural and friendly hand-gesture based applications.
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1 Introduction

Hand gestures are becoming one of the most natural means for human machine
interaction (HMI). In the last decades, numerous techniques for hand ges-
ture recognition have been proposed and developed in practical applications,
for example sign-language recognition [5]. Thanks to recent advances of the
depth sensors (e.g., PrimeSense, Kinect) and Deep Neuron Networks (DNN),
many hand-related works (e.g., hand gesture recognition, hand pose estimation)
demonstrated impressive results [12,13]. However, as denoted in a comprehensive
and recent survey [13], the main challenges such as view-point change of active
hands or cluttered background, low-resolution of hand regions are still remain-
ing. Many existing methods will be failed given those challenges. In context of
developing practical applications, like gaming interface, or home appliance con-
trolling system [2], using hand gestures in a natural way is always required. An
end-user should not directly point his/her hand to the sensor as well as would not
care about a valid distance from the subject to the sensor in most of interactive
situations. The majority of existing works deal with hand gestures recognition
from a common viewpoint or in a specific context (e.g., a subject is sitting on
a chair and point his/her hand to the sensor). Different viewpoints result in
different hand poses, hand appearances and even background and/or lighting.
This degrades dramatically the performance of pre-trained models. Therefore,
proposing robust methods for recognizing hand gestures from unknown view-
point (or we adopt the term from [13], “in-the-wild” hands) is pursued in this
work.

Our focus in this paper is systematically investigating the performance of
cross-view action recognition method on human hand gestures and analysing how
to improve it. We propose a framework which takes both handcrafted features
and learnt features using CNN for gesture representation at single view. Then
we employ MvDA based techniques to build a discriminant common space by
jointly learning multiple view-specific linear transforms from multiple views. To
the best of our knowledge, this is the first intensive work to explore dynamic
hand gestures under different viewpoints.

To this end, a crucial requirement is to build a dataset of dynamic hand
gestures observed from different viewpoints. In fact, lack of existing multi-view
datasets of hand gestures, recognizing hand gestures under different viewpoints
could not be explored. Although a related topic such as hand pose estimation
has been extensively studied recently with many public datasets at different
viewpoints [13]. Unfortunately, dynamic hand gestures datasets with a large
number of gesture types and varying view-points are still not available. In [9],
the authors have introduced a dataset of five hand gestures, captured by five
cameras at different viewpoints. In [16], a dataset of two gestures taken from
four Kinects has been collected for investigating the role of multiple views in
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authentication problem. In those works, the number of gestures are very limited
(two or five gestures) and not designed to hand gestures but for body gestures
in general. As indicated in [11], most of hand gestures datasets are collected by
single camera and they introduced a new multi-view dataset of eight gestures
taken at different locations by two cameras (side and frontal views). In this paper,
we introduce a set of twelve gestures captured with five camera. This gesture set
allows mapping to more commands for controlling equipment in reality. Due to
the higher number of gestures, gesture recognition will be more challenging.

Thanks to the proposed frame-work and the constructed dataset, perfor-
mances of the gestures recognition from different views are deeply investigated.
Consequently, developing a practical application is feasible. Wherein, a “sensi-
tive area” can be used to measure the accuracy/sensitivity of a gesture-based
control from ambiguous directions. In that context, the end-user could stand in
any position and orientation in the room while doing a control gesture. She/he
could have a habit of looking forward to the equipment to be controlled but
not the device to capture the image. The constructed dataset is made publicly
available.

2 Related Work

In the literature, there are many intensive surveys on the hand gesture recog-
nition [21], particularly, recent hand pose estimation [13]. However, to our best
knowledge, the related works on hand gestures recognition from ambiguous view-
points are still very limited. Although dynamic hand gesture could belong to
human actions, where general methods for action recognition could be directly
applied. However, deploying such related techniques are prevented from specific
characteristics of hand gestures, such as hand region has small resolution but
high DoF, the fingers are easily self-occluded, various temporal factors/noises
(frame-rate, speed of hand movement, phase variation). In following sections, we
divide works into three topics related to the proposed method.

2.1 Hand Gestures for Controlling Home Appliances

Nowadays, dynamic hand gesture-based controls are developed in a wide range of
common home appliances such as Television, air-conditions, fan, light, door. For
instance, a Samsung smart TV now consists of a de-factor function providing a
hand gesture-based controlled by moving one/two hands. Works in [22] attempts
using static hand gesture system by a dynamic gesture. Their system is capable of
rejecting unintentional gestures thanks to the start and stop routines. [8] utilized
three types of sensors with six dynamic hand gestures conveying commands to
control a television. [19] used two USB pan-tilt cameras. The system strongly
depends on the assumption that a gesture is performed if the hand is moved in
a high speed. Although a series of the works has been listed, the recognition of
hand gestures from ambiguous views have been not investigated yet. In context
of developing a feasible application, we point out that a learnt model from a
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certain view can be failed from different views. To develop a natural application,
without intending control direction of the end-user is required.

2.2 Multiple-View Learning

Data in our real-world is always in multiple views and/or multi-modalities. In
one hand, multi-view learning has been known as machine learning algorithms
which consider learning data from different views at the same time in order to
improve the system performance. In the other hand, multiple view learning is
also known as data fusion or data integration from multiple features. In [17],
multi-view learning algorithms could be considered in three aspects: co-training;
multiple kernel learning; and subspace learning. In [1], authors proposed the
large-margin framework for multi-view data that is based on an un-directed
latent space Markov network to name a few. Works in [20] introduces multiple
view-specific projection matrices and project a recognition target from a certain
view by a corresponding view-specific projection matrix into a common discrim-
inant subspace.

2.3 Viewpoint-Invariant Recognition

Viewpoint variations often make action recognition challenging because the
same actions can be seen different from different views. Many view-invariant
approaches have been proposed. [4] proposes a view-invariant matching method
based on epipolar geometry between actor silhouettes without tracking and
explicit point correspondences. [7] learns two view-specific transformations for
the source and target views, and then generated a sequence of linear trans-
formations of action descriptors as the virtual views to connect two views. [18]
introduces a 4D view-invariant action feature extraction to encode the shape and
motion information of actors observed from multiple views. These approaches
lead to computationally intensive algorithms because they must find the best
match between 3D and 2D observations over a large model parameter space.

3 Methods for Gesture Recognition

Our proposed framework is illustrated in Fig. 1. It consists of two main blocks:
The first block extracts features from each video sample captured from each
single view. We call these features private features. The second one jointly learns
a set of transformations to project all private features into a common space to
generate viewpoint-invariant representation of gestures. Then any classifier can
be used to classify these gestures in the common space. In the following, we will
present each technique in detail.
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Fig. 1. Proposed framework for dynamic hand gesture recognition

3.1 Private Features Extraction from Single View

To extract private features for representing a gesture, we adopt two techniques:
one extracts hand-crafted features and the other learns features using convolu-
tional neural network. We would like to investigate which features could deal
better with viewpoint change in case of dynamic hand gestures.

Extracting Hand-Crafted Features. Hand-crafted features for action repre-
sentation usually take both spatial and temporal cues of the action into account.
In this work, hand-crafted features are extracted rely on techniques that is
presented detail in our previous research [3], due to its efficiency and its out-
performance on gesture recognition problem. That uses ISOMAP as non-linear
dimension reduction for representing spatial cue and Kanade Lucas Tomasi fea-
ture tracker (KLT) to capture temporal cue.

Spatial Features Extraction. We construct a low-dimension space of hand pos-
tures from each frame of gesture sequences by utilizing a manifold learning
technique. Suppose that at the ith view, given a set of Ni bounding boxes of
postures P (i) = {P i

1, ..., P
i
Ni

}. These postures can be achieved using any auto-
matic hand detection and/or segmentation technique. In this paper, to avoid
impact of such techniques to the conclusion of the studied framework, we man-
ually annotate hand region in each frame (see Fig. 5) and utilise segmented
hand regions to input to our algorithm. Each posture P i

k, k = (1, ..., Ni) could
have different size. We normalize all of them to the same size and reshaping
each to a row vector. Then we employ conventional non-linear dimension reduc-
tion technique ISOMAP [14] to compute the corresponding coordinate vectors
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Y (i) = {Y i
k ∈ Rd, k = (1, ..., Ni)} in the d-dimensional manifold space (d � D),

where D is dimension of original data. The value of d could be empirically cho-
sen. We use residual variance Rd to evaluate the error of dimensional reduction
and select three first components (d = 3) in the manifold space to extract spatial
features of each hand shape/posture. A hand gesture with M-frames length at
the ith view is now represented in the manifold as follows:

Y iG
M ={(Y i

1,1,Y
i
1,2,Y

i
1,3),(Y

i
2,1,Y

i
2,2,Y

i
2,3),...,(Y

i
M,1,Y

i
M,2,Y

i
M,3)} (1)

Temporal Features Extraction. We use KLT (Kanade-Lucas-Tomasi) tracker [10]
to extract hand movement trajectory. The we extract temporal features through
three main steps: (1) connect tracked points to create trajectories; (2) select the
most significant trajectories; (3) compute average trajectories of these significant
trajectories (x, y). The most significant trajectory is considered as the longest
ones among all. The average trajectory represents the main direction of hand
movement. The temporal features (TriGM ) extracted from M-frames sequence of
gesture at the ith view as:

TriGM = {(xi
1, y

i
1), (x

i
2, y

i
2), ..., (x

i
M , yi

M )} (2)

Phase Alignment: Once the spatial and temporal features are extracted, they
are combined to completely represent dynamic hand gestures {Y iG

M , T riGM } at the
ith view. In a practical situation, the subject can perform the same gesture dif-
ferently at different times and this difference is more remarkable among subjects.
In that way, the length of the gestures is different from each other. We consider
it as phase variation problem. To overcome this, we apply also the interpolation
scheme as described in our previous work [3] so that the hand gesture sequences
have the same length while maximizing inter-period phase continuity.

Fig. 2. Illustration of a gesture belonging to the 6th class in private space from different
viewpoints.
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Figure 2 illustrates a gesture sample belonging to the 6th class in the new
private feature space. In this figure, we use the first two elements of the temporal
features and the first element of spatial features. Different colors correspond to
different views. Obviously, private features in different views do not converge.
As a result, the cross-view recognition will be very challenging.

Feature Extraction Using 3D Convolutional Neural Network. CNN is a
must-try technique in any scheme of recognition. Recently, the 3D convolutional
neural network (C3D) has shown to be very efficient for human action recognition
(as presented in our previous research [15]). In this paper, it will be utilized as a
private feature extractor of dynamic gestures. C3D composes of 8 convolutional
layers, 5 max pooling and 2 fully connected layers followed by a soft-max output
layer. In this network, the convolutional operation is 3D convolution which aims
to capture both spatial and temporal information of video.

Originally, C3D was trained on human action dataset Sport 1M. However, to
adapt to use for hand gestures, we have fine tuned the network on our dataset
of hand gestures. We then use the fine-tuned network to extract features of
4096 dimensions at FC6 layer. As our dataset is still small in terms of number
of samples for training (about 216 samples per view), we have applied data
augmentation and utilize zero padding and this results in a better performance
compared to using the original dataset for training.

3.2 Learning View-Invariant Representation for Cross-View
Recognition

As mentioned previously, private features of the same gesture are very different
at different viewpoints. They should be represented in another common space
to be converged. There exists a number of techniques to build the viewpoint
invariant representation. In this paper, we will deploy a variant of multi-view
discriminant analysis methods: Multi-view discriminant analysis (MvDA) and
Multi-view discriminant analysis with view consistency (MvDA-vc). These tech-
niques have been used for view-invariant face recognition [6]. However, most of
multi-view discriminant analysis in the literature as well as in [6] were exploited
for still images. To the best of our knowledge, our work is the first one to build
common space for video sequences. We will see how such techniques could help
to improve cross-view recognition.

Multi-view Discriminant Analysis (MvDA). Suppose that gestures
belonging to c classes are observed from v views, the number of samples from
the jth view of the ith class is nij . We define X = {xijk|i = (1, ..., c); j =
(1, ..., v); k = (1, ..., nij)} as samples from v views where xijk ∈ Rdj is the kth

sample from the jth view of the ith class, dj is the dimensions of data at the
jth view. Here xijk can be a handcrafted feature vector or a learnt feature vec-
tor extracted using C3D. The multi-view discriminant analysis method tries to
determine a set of v linear transformations to project all gesture samples from
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each view j = (1, ..., v) to a common space. The projection results of X on the
common space is denoted by Y = {yijk = wT

j xijk|i = (1, ..., c); j = (1, ..., v); k =
(1, ..., nij)}. The common space is built by maximizing the between-class varia-
tion Sy

B while minimizing the within-class variation Sy
W from all views. Sy

B and
Sy

W are computed as follows:

Sy
W =

c∑

i=1

v∑

j=1

nij∑

k=1

(yijk − μi)(yijk − μi)
T (3)

Sy
B =

c∑

i=1

ni(μi − μ)(μi − μ)T (4)

where μi = 1
ni

∑v
j=1

∑nij

k=1yijk is the mean of all samples of the ith class from
all views in the common space; μ = 1

n

∑c
i=1

∑v
j=1

∑nij

k=1 yijk is the mean of all
samples of all classes from all views in the common space; n =

∑c
i=1 ni.

Then the objective is formulated by a Reyleigh quotient:

(w∗
1,w

∗
2, ...,w

∗
v) = arg maxw1,w2,...,wv

Tr(Sy
B)

Tr(Sy
W )

(5)

According to [6], the optimization problem could be analytically solved through
generalized eigenvalue decomposition.

Multi-view Discriminant Analysis with View Consistency (MvDA-vc).
In [6], the authors observed that as multiple views correspond to the same
objects, there should be some correspondence between multiple views, that
means if X1,X2 are observed at two views v1, v2, then there exists a certain
transformation R so that X1 = RX2. As a result, the transformations obtained
from two views have the similar relationship: w1 = Rw2. Let us define βi that
captures the structure of the transformation wi. Then the β1 and β2 capturing
the structures of two transformations of two views 1 and 2 should be similar:
β1 = β2.

Generalizing to v views, suppose that βi, i = (1, ..., v) captures the structures
of v transformations wi. Following the above observation, the βi, i = (1, ..., v)
should resemble mutually. That means the similarity between the pair of βi and
βj should be minimized.

v∑

i,j=1

||βi − βj ||22 (6)

This term is called in [6] view consistency and will be added to the denominator
of Eq. (5)

(w∗
1, w

∗
2, ..., w

∗
v) = arg maxw 1,w 2,...,w v

Tr(Sy
B)

Tr(Sy
W ) + α

∑v
i,j=1 ||βi − βj ||22

(7)

Similarly, this optimization problem could be analytically solved by relaxing to
the ratio trace problem as Eq. (5). In the Eq. (7), α is an empirically chosen
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Fig. 3. Set of twelve dynamic hand gestures.

parameter. It puts a weight on the view-consistency assumption. When α = 0,
the MvDA-vc becomes the original MvDA.

Once the transformations (w∗
1,w

∗
2, ...,w

∗
v) have been determined, the projec-

tion of data from separate original view to the common space is straightforward.
We consider the features in this common space as view-invariant features and
can apply any classifier to do the recognition. In this paper, we will simply use
K-NN as classifier. The selection of the better classifier will be a future work.

4 Dataset and Experimental Results

4.1 Multiview Dataset

The evaluation of robustness of hand gesture recognition w.r.t viewpoint changes
was not considered in the literature. Therefore, there does not exist a dataset
dedicated to this problem. In our work, we carefully design a dataset which is
collected from multiple camera viewpoints in indoor environment with complex
background. Our dataset consists of twelve dynamic hand gestures which corre-
spond to controlling commands of electronic home appliances. Each gesture is
a combination of hand movement following a pre-defined direction and chang-
ing of hand shape in a natural manner. For each gesture, hand starts from one
position with close posture, it opens gradually at half cycle of movement then
closes gradually to end at the same position and posture. Figure 3 illustrates the
movement of hand and changes of postures during gesture implementation.
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Fig. 4. Environment setup.

Fig. 5. Illustration of a gesture belonging to the 6th class observed from five different
views.

Five Kinect sensors K1, K2, K3, K4, K5 are setup at five various positions
in a simulation room of 4 m× 4 m with a complex background (Fig. 4). This
work aims to capture hand gestures under multiple viewpoints at the same time.
Subjects are invited to stand at a nearly fixed position in front of five cameras
at an approximate distance of 2 m. The Kinect sensor provides both RGB and
Depth data. This setup allows to capture a multi-view and multi-modal dataset.

Twenty participants (13 males and 7 females) are voluntary to perform ges-
tures one after another. Each subject performs one gesture three times. Totally,
the dataset contains 900 (5 views × 12 gestures × 5 subjects × 3 times) dynamic
hand gestures. The frame rate is 20 fps and frame resolution is set to 640 × 480.
Each gesture’s length varies from 50 to 120 frames (phase variation problem).
This leads to a huge number of frames to be processed. This dataset will be
soon publicly available for research purpose. We have annotated the dataset at
gesture level. Manual annotation at pixel level for every frame is a very time-
consuming task. At writing time of this paper, gestures from six subjects have
been annotated at pixel levels. As a result, in this work, we will evaluate on a
subset of the whole collected data. Besides, although the dataset is multi-modal
(RGB, skeleton, Depth), in this work, we will evaluate on only RGB channel.
Figure 5 illustrates a gesture belonging to the 6th class observed from five differ-
ent views and its correspondence in private feature space (Fig. 2). We observe a
big difference in appearance of hand postures at different views.
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Table 1. Average accuracy % of single view gesture recognition using handcrafted and
learnt features with and without multi-view discriminant analysis.

Train‖Test 1‖1 2‖2 3‖3 4‖4 5‖5 Avr.

C3D+SVM [15] 66.2 75.9 86.1 75.0 67.6 74.1

C3D+KNN 85.2 87.5 87.5 88.4 94.9 88.7

C3D+MvDA+KNN 77.3 77.8 86.6 80.5 80.1 80.4

C3D+MvDA-vc+KNN 88.4 89.8 92.6 90.7 98.6 92.0

ISOMAP+KLT+SVM [3] 63.7 70.9 81.2 74.2 61.2 70.2

ISOMAP+KLT+KNN 67.0 78.9 78.2 76.9 90.1 78.2

ISOMAP+KLT+MvDA+KNN 61.4 64.0 59.1 57.4 83.5 65.0

ISOMAP+KLT+MvDA-vc+KNN 88.7 87.7 92.7 94.7 98.7 92.5

4.2 Experimental Results

To evaluate the proposed framework, we follow one-leave-subject out in all exper-
iment settings to ensure independent subject training. Each time, we use samples
performed by one subject for testing and all samples performed by remaining
subjects for training. The average accuracy is computed to evaluate performance
of each technique. We evaluate how the conventional methods themselves could
deal with variation of viewpoints and what is the role of multi-view discriminant
analysis. It notices that when using MvDA or MvDA-vc in the framework, for
both single and cross-view evaluations, all samples from every viewpoint will
be projected onto the common space. After that, single view recognition uses
training and testing samples from the same view in that common space while
cross-view recognition uses training and testing data from two different views.
The details of all experiments will be described in the next subsections.

Evaluation of Single View Recognition. In this part, we present single
view recognition results obtained with two groups of methods with and without
using multi-view discriminant analysis. The first group uses 3D convolutional
neural network to extract features while the second group uses handcrafted fea-
tures. Table 1 shows recognition accuracy obtained with single view evaluation
protocol. That means the training and testing views are the same.

Discussion on the Use of Handcrafted and Learnt Features: Firstly, all of the
methods using C3D features give the performance similar or lightly better than
the ones using handcrafted features (ISOMAP+KLT). The results could be
explained by the fact that C3D is more robust for characterizing hand move-
ment. In addition, due to the fact that the C3D features extractor takes the
whole video sequence as input for learning the model, it will learn the contextual
background that makes good effects for distinguishing the gestures. In addition,
an advantage of C3D features is it does not need a pre-processing step such as
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Table 2. Average accuracy (%) of cross-view gesture recognition using handcrafted
and learnt features with and without multi-view discriminant analysis.

Train|Test 1‖2 1‖3 1‖4 1‖5 2‖1 2‖3 2‖4 2‖5 3‖1 3‖2 3‖4 3‖5 4‖1 4‖2 4‖3 4‖5 5‖1 5‖2 5‖3 5‖4 Avr.
C3D+SVM [15] 44.9 28.2 25.4 19.4 25.4 59.2 37.0 21.7 21.3 35.2 35.2 20.4 24.1 26.8 59.2 42.1 17.6 20.8 28.7 54.6 32.4
C3D+KNN 9.3 7.9 9.3 6.5 5.7 5.1 9.3 3.7 8.3 9.3 9.3 5.1 6.9 6.9 5.1 10.2 6.9 8.8 6.5 6.9 7.3
C3D+MvDA+KNN 68.5 67.1 68.1 67.6 69.4 67.1 69.9 67.1 68.1 68.9 67.6 67.6 64.8 64.8 64.3 65.3 70.8 73.1 72.2 71.3 68.2
C3D+MvDA-vc+KNN 74.1 72.7 72.2 70.4 68.5 65.7 67.6 67.1 70.4 89.8 67.6 67.1 70.8 71.8 70.4 69.9 74.1 75.0 73.1 74.1 71.6
ISOMAP+KLT+SVM [3] 46.3 32.1 26.4 24.3 48.2 54.7 31.8 26.9 36.9 44.9 58.6 45.7 30.3 34.7 57.7 48.0 24.9 26.0 37.2 53.0 39.4
ISOMAP+KLT+KNN 46.9 30.4 17.5 12.2 51.2 50.2 30.4 17.8 20.1 49.2 56.1 32.7 12.2 25.7 60.4 53.8 17.8 14.2 43.9 62.4 35.5
ISOMAP+KLT+MvDA+KNN 67.0 68.7 69.6 67.3 65.7 63.7 61.4 65.0 67.0 66.3 66.7 68.3 65.7 66.7 69.3 66.0 73.3 74.6 74.6 75.2 67.5
ISOMAP+KLT+MvDA-vc+KNN 71.8 70.6 70.6 71.6 69.6 72.9 70.9 73.2 72.6 72.9 72.6 72.6 75.2 72.9 71.6 74.5 80.8 71.2 78.5 80.8 77.7

hand segmentation. In case that hand segmentation is too challenging, learning
features is an alternative choice. However, C3D is much more time consuming
and requires huge memory load so it should be carefully considered to deploy in
practical application. One idea is to lighten the network architecture when the
number of classes is small.

Discussion on the Variation of Viewpoints: We first discuss the results obtained
by handcrafted features and CNN features without using multi-view discriminant
analysis. C3D+SVM gives the highest accuracy at the third view (the frontal
view - K3) (86.1%) and degrades gradually in the views at the left side and right
side of the user. The same for ISOMAP+KLT+SVM which obtained the highest
accuracy (8.12%) at the 3rd view. However, when C3D or ISOMAP+KLT com-
bine with KNN (K = 1), the highest accuracy achieved at the most right view (K5

- 94.9% by C3D+KNN and 90.1% by ISOMAP+KLT+KNN). In general, KNN
gives better average accuracy (88.7% by C3D+KNN vs 74.1% by C3D+SVM;
78.2% by ISOMAP+KLT+KNN vs. 70.2% by ISOMAP+KLT+SVM). In worst
cases, the accuracy without multi-view discriminant analysis, is only more than
60%.

Discussion on the Impact of Multi-view Discriminant Analysis. We see in Table 1
that recognition accuracy has significantly increased when we apply multi-view
discriminant analysis. With C3D features, MvDA helps to increase the average
accuracy on all pair of views from 74.1% to 80.4%. It continues to increase to
92.0% thanks to taking view consistency into account. Concerning handcrafted
features ISOMAP+KLT, the multi-view discriminant analysis does not help to
improve the recognition accuracy on single view. It may be explained by the fact
that the projected points on the new common space are more scattered. In that
case, the K-NN could be a too simple classifier for distinguishing different classes.
However, as we can see later, multi-view discriminant analysis helps to improve
significantly cross-view recognition. In both cases of using learnt or handcrafted
features (the 4th row and the 8th row of the Table 1), multi-view discriminant
analysis with view consistency helps to increase recognition accuracy for all views
(92.0% with C3D+MvDA-vc+KNN and 92.5% with ISOMAP+KLT+MvDA-
vc+KNN).
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Evaluation of Cross View Recognition

Discussion on the Use of Handcrafted and Learnt Features: In cross-view evalua-
tion, handcrafted features give lightly better average accuracy than C3D features
(39.4% vs. 32.4%). However, both feature types give very low recognition accu-
racy without using multi-view discriminant analysis (the second row and the
fifth row in Table 2). It notices that in this paper, we report only the use of
SVM as classifiers according the two original papers [3,15]. We have tried also
the use of KNN but the accuracy is very low.

Discussion on the Variation of Viewpoints: We observe that when the two con-
secutive views are considered (e.g. the first view close to the second one), the
recognition accuracy is better than when two views are far. For instance, accu-
racy could achieve to 59.2% with C3D features with the pair of training, testing
view (2,3) or (4,3). However, the accuracy is only 17.6% with C3D features
when training and testing views are too far. The same situation happens with
handcrafted features (the fifth row of the Table 2). This is explained that both
features are not robust to a large change of viewpoints. Besides, the accuracy is
not symmetric when training and testing views interchange.

Discussion on Impact of Multi-view Discriminant Analysis: When using multi-
view discriminant analysis, for both types of features, the accuracy improves
impressively (from 32.4% to 68.2% with MvDA and 71.6% with MvDA-vc in case
of C3D features; from 39.4% to 67.5% with MvDA and 77.7% with MvDA-vc in
case of ISOMAP+KLT features). It is very interesting to notice that accuracy
at each pair of (training, testing) views is now quite consistent, independent of
the fact that the training and testing are close or far. This is a power of multi-
discriminant analysis that builds the common space and helps to find out an
invariant representation of gestures.

Impact of View Consistency on Recognition. As discussed previously, view
consistency has strong impact on the performance of recognition in both cases
(single view and cross-view). In this subsection, we study the influence of value
α in Eq. 7 on the recognition. Figure 6 shows the evolution of average accuracy
when the value α increased. We found that the highest accuracy obtained with
α = 0.01 using C3D features and α = 0.05 with ISOMAP+KLT features. When
α is increased, the accuracy is reduced. It means we should not put a big weight
on view consistency because it could reduce the role of within-class variation
Sy

W from all views in Eq. (7).
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Fig. 6. Impact of view consistency term (α) on recognition performance using C3D
and handcrafted (KLT+ISOMAP) features.

5 Conclusions

The paper proposes a framework to intensively study the impact of view change
on recognition performance with both handcrafted features and learnt features.
We conclude that the difference between training views and testing views could
degrade strongly recognition performance. Multi-view discriminant analysis with
view consistency assumption helps to boost cross-view recognition significantly.
Even this, the average accuracy in cross-view evaluation is still low (the highest
average accuracy is 77.7%) and needs to be improved. In the future, we plan to
take benefit of multi-modalities; generate more multi-view data using Generative
Adversarial Network to enrich the training set and test with the whole dataset. In
addition, this paper also introduce a new multi-view and multi-modal dynamic
hand gesture dataset in the context of human machine interaction. This dataset,
publicly made available, will allow researchers in the community to deeply inves-
tigate new robust algorithms to be deployed in practical applications.
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Abstract. Learning to capture long-range relations is essential for video
recognition. Modern deep learning systems capture spatio-temporal cor-
relation via 3D CNNs. However, it is highly inefficient. In this work, we
propose a Dual Correlation Network (DCN) to elaborate the relationship
between channels of 3D CNN along with time series. DCN is designed
with a self-attention network in the way of a dual path. The channel
correlation path selectively emphasizes interdependent channel maps by
integrating associated features among all channel maps. The temporal
connection path selectively picks temporal relation by integrating associ-
ated features among temporal maps. To address action recognition task,
we insert the DCN block to MFNet [3]. Experimental results on the
Kinetics, UCF-101 and HMDB-51 demonstrate that our network achieves
superior performance to the existing state-of-the-art methods on these
three datasets.

Keywords: Action recognition · Correlation · Self-attention

1 Introduction

Human action recognition aims to automatically classify the action in a video,
and it is a fundamental topic in computer vision with many societal applications
such as video surveillance, video retrieval, robot perception, and smart envi-
ronment/city. Activity videos are spatio-temporal data which are composed of
image frames with a specific width/height (XY) concatenated along time axis
(T). There are three kinds of classic architecture for action recognition: two-
stream CNN [11], 3D CNNs [14–16], and 2D CNNs with temporal models on
top such as LSTM [18,25] and self-attention [22]. Two-stream CNNs capture
appearance and motion information with diverse streams, which turn out to be
effective for video classification. Yet, it is time-consuming to train two networks
and calculate optical flow in advance. 2D CNNs with temporal models usually
focus on capturing coarser and long-term temporal structure, but lack capacity
of representing finer temporal relation in a confined spatiotemporal region. To
c© Springer Nature Singapore Pte Ltd. 2020
M. Cree et al. (Eds.): ACPR 2019 Workshops, CCIS 1180, pp. 211–222, 2020.
https://doi.org/10.1007/978-981-15-3651-9_19
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overcome these limitations, 3D CNNs employ 3D convolution and 3D pooling
operations to directly learn spatiotemporal features from stacked RGB volumes.

Recognition from videos requires capturing both spatial and temporal infor-
mation, desirably using learned convolutional kernels. Numerous works have
tried to exploit spatio-temporal representations by using 3D CNN, P3D, (2+1)
D [9,15,16] and so on. However, the progress of these architecture design and
representation trend to learn local correlation along input channels which disre-
garding the hidden information between channel and temporal, The main reason
is 3D CNN inherent complexity calculation process and high dimension. Each
channel of the feature map represents different semantic information extracted
by neural networks and they are extremely relevant, besides video clips contain
different periods during action occur, so that the contribution of the video frame
to the action recognition is also different.

This work is guided by whether 3D convolutional neural network (CNN) can
learn the correlation between time and space very well? Existing methods for
action recognition can be summarized into three ways, including hard attention
[25], soft attention [25,26] and self-attention [18,22]. Considering computational
effectiveness and capacity to learn characteristics, we introduced a Dual Corre-
lation Network (DCN) by using self-attention to capture global correlations in
the video domain. Compared with model spatio-temporal correlation with two
stream inputs [11] or jointly and implicitly with a 3D convolution [15], our DCN
aims to simultaneously consider inter-channel correlation information between
temporal and channel features, besides, we used an explicit way with a dual-
branch unit to represent different levels of concept and information. As showed
in Fig. 1, the proposed DCN block is composed of channel correlation path and
temporal correlation path. In order to address action recognition task, the block
is inserted into MFNet [3], which decompose the 3D CNN with multi fiber net-
work to ease the amount of calculation of 3D kernels. The DCN block equipped
lightweight 3D is capable of learning channel-wise dependencies which gives them
the opportunity to learn better representations of videos. The corresponding
code is available from our community site1. We evaluated our method on the
Kinetics-400, UCF-101 and HMDB-51 datasets. The experiments on action clas-
sification task demonstrate the efficacy contributed by DCN. In summary, our
contributions are summarized as following:

(1) A temporal attention module and a channel attention module are proposed
to learn the temporal interdependencies of features and model channel inter-
dependencies, respectively.

(2) A novel correlation block is proposed, by embedding them between 3D
blocks, compared to 3D convolution, it provides a global correlation of tem-
poral and channel in video.

(3) We investigate the effect of our proposed DCN block with three different
video datasets, proving its superior performance through comparison with
the state-of-the-art on various public benchmarks.

1 https://github.com/djzgroup/DualCorrelationNetwork.

https://github.com/djzgroup/DualCorrelationNetwork
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In the rest of the paper, we introduce related work in Sect. 2, and detail about
the proposed correlation network in Sect. 3. Experimental setups and experimen-
tal results are located in Sect. 4. And the conclusion of this paper and future work
in Sect. 5.

feature

extraction prediction

action

ShutPut

Fig. 1. DCN-MFNet. Our DCN block is inserted into the MFNet. The whole network
takes video clips as input, then passed to the feature extractor to extract features,
where green represents convolution layer, and pink represents the DCN module. The
DCN block operates on the different levels of feature maps in the network. The output
of the network is a video-level prediction and different length indicates different labeling
values. (Color figure online)

2 Related Work

Learning video representations for human activity recognition have been suc-
cessful. CNN methods allow end-to-end learning of video features and represen-
tations optimized for the training data, performing superior to traditional work
[19] for video understanding. In this section, we will briefly review related works
involving video action recognition networks and attention models.

2.1 Video Action Recognition Networks

Remarkable progress in action recognition is largely driven by the success of
2D CNNs in image recognition. The original Two-Stream Network [11] take a
single RGB frame and a small number of optical flow frames as input to capture
both motion and appearance information in videos. Distinct from the image,
video possesses temporal structure and motion information, which are impor-
tant in order to video analysis. This motivates researchers to model them more
effectively, such as 3D CNNs [9,15,16], Temporal Segment Network (TSN) [21],
dynamic image networks [1], and Non-Local Network [22]. Despite the enormous
amount of effort on modeling motion via temporal convolution, 3D CNNs can
still achieve higher accuracy when fused with optical flow [9,15,16], which is
unfortunately expensive to compute. Recently, 3D convolutions can be decom-
posed into a P3D [9] and R(2+1)D [16] or S3D [5]. 3D group convolution was
also applied to video classification in ResNeXt [5] and MFNet [3]. Our dual cor-
relation network goes beyond two-stream networks and 3D convolution, and we
proposed a new operator that can better learn the temporal dynamics of video
sequences and channels of correlation.
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2.2 Attention Modules

Attention modules can model long-range dependencies and have been widely
applied in many tasks [8,10,13,18]. In particular, [18] is the first to propose the
self-attention mechanism to draw global dependencies of input and applies it in
machine translation. Meanwhile, attention modules are increasingly applied in
image vision field. Zhang et al. [27] introduce a self-attention mechanism to learn
a better image generator. The work [22], which is related to self-attention mod-
ule, mainly exploring the effectiveness of non-local operation in spatio-temporal
dimension for videos and images. Different from previous work, we used self-
attention mechanism and extended by a two paths of attention modules to cap-
ture rich contextual relationships for better feature representations with intra-
class compactness. Comprehensive empirical results verify the effectiveness of
our proposed method.

3 The Proposed Method

In this section, we describe our method for learning global temporal feature
and channels features. We first review the backbone architecture (MFNet [3]).
Then we present the dual correlation network in detail. Finally, we consider how
to build the dual correlation network to leverage the matching information by
incorporating the correlation operator into the backbone. We insert our dual
correlation network into different levels of feature maps in the network, Table 1
provides the details of MFNet used in this paper.

3.1 MFNet Backbone

The MFNet [3] was recently introduced and shown to yield state-of-the-art action
recognition results on several video datasets. The main idea of MFNet is that the
current GFLOPs for 3D CNN networks (such as I3D and R(2+1)D networks)
is too high. Commonly used 2D convolutional networks such as resnet-152 or
vgg-16 networks are probably 10+ GFLOPs and the two 3D convolutional net-
works just mentioned have reached 100+ GFLOPs. Therefore, the goal of this
work is tantamount to greatly improve the efficiency of 3D CNN model while
maintaining the effect of these model.

3.2 Dual Correlation Network

As shown in Fig. 2, a DCN block is a basic computational unit operating on
an input volume A ∈ R

C×T×H×W and an output volume of D ∈ R
C×T×H×W

where H, W, T, C are the height, width, temporal depth and number of channels
of the feature maps. The DCN block considers inter-channel correlation infor-
mation between temporal and channel features and explicit way with a dual
path which represents a different levels of concept and information. Specifically,
the DCN learns spatiotemporal features from volume input with a two-branch
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Table 1. DCN-MFNet. The input size for the network is 16× 224× 224, the stride is
denoted as (temporal stride, height stride, width stride)

Layer Repeat Channel DCN-MFNet

Output size Stride

Input 3 16× 224× 224

Conv1
Maxpool

1 16 16× 112× 112
16× 56× 56

(1,2,2)
(1,2,2)

Conv2 1
2

96 8× 56× 56 (2,1,1)
(1,1,1)

DCN 1 96 8× 56× 56

Conv3 1
3

192 8× 28× 28 (1,2,2)
(1,1,1)

DCN 1 192 8× 28× 28

Conv4 1
5

384 8× 14× 14 (1,2,2)
(1,1,1)

DCN 1 384 8× 14× 14

Conv5 1
2

768 8× 7× 7 (1,2,2)
(1,1,1)

AvgPooling 1 1× 1× 1

FC 1 101

architecture: (1) channels correlation path (ccp) for interdependent channel maps
learning, and (2) temporal correlation path (tcp) for global temporal dependen-
cies features learning.

Channels Correlation Path. In channels correlation path, each channel maps
are feature-specific responses, and different semantics are linked to each other. By
exploiting the interdependencies among channel maps, it emphasizes interdepen-
dent feature maps and improves the feature representation of explicit semantics.
Therefore, a channel correlation module is designed to explicitly model interde-
pendencies among channels. The structure of the channel correlation module is
illustrated in Fig. 2. First, we reshape A to A ∈ R

C,THW . Then perform a mul-
tiplication between A and the transpose of A. Finally, we apply a softmax layer
to obtain the channel correlation X ∈ R

C×C . We directly calculate the channel
correlation map from the feature map. The channel correlation map equation is
expressed as follows:

Xj,i =
exp(Ai, Aj)∑c
i=1 exp(Ai, Aj)

(1)

Where Xj,i measures the ith channels impact on the jth channel. In addi-
tion, we perform a matrix multiplication between the transpose of X and A and
reshape their result to R

C×T×H×W . When we multiply the result by a scale
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Fig. 2. The details of the channel correlation module (a) and temporal correlation
module (b).

parameter α and perform an element-wise sum operation with A to obtain the
final output E ∈ R

C×T×H×W as follows:

E = α

c∑

i=1

(Xj,iAi) + A (2)

Temporal Correlation Path. In temporal correlation path, 3D CNN can
learn local spatio-temporal features, but lack of global information, thus we
design a temporal correlation path to model the relationships of video frames.
The structure of temporal correlation module is illustrated in Fig. 2. As the above
method, we reshape B to B ∈ R

T,CHW and then perform a matrix multiplication
between B and the transpose of B. finally we apply a softmax layer to obtain
the channel correlation T ∈ R

T,T . We directly calculate the temporal correlation
map T ∈ R

T,T from the feature map B ∈ R
C×T×H×W , the temporal correlation

map equation is expressed as follows:

Tj,i =
exp(Bi, Bj)∑c
i=1 exp(Bi, Bj)

(3)

Where T ji measures the ith position impact on the jth position. In addi-
tion, we perform a matrix multiplication between the transpose of X and B
and reshape their result to R

C×T×H×W . when we multiply the result by a scale
parameter β and perform an element-wise sum operation with B ∈ R

C×T×H×W

to obtain the final output as follows:

E = β
T∑

i=1

(Tj,iBi) + B (4)
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Fusion. In order to take full advantage of long-range contextual information, we
aggregate the feature from channels correlation path and temporal correlation
path. We perform an element-wise sum to accomplish feature fusion and obtain:

D = E + F (5)

Where D is correlation volume from A, which learned a significant feature of
channels and temporal. The DCN can model the relationship between channels
of 3D CNN along with time series, where the channel correlation path selec-
tively emphasizes interdependent channel maps by integrating associated fea-
tures among all channel maps. The temporal connection path selectively picks
temporal relation by integrating associated features among temporal maps. The
DCN operates on the video volume and output a video-level prediction. We
insert this block into MFNet after conv2–4, thus we can capture global temporal
feature and channels feature.

4 Experiments

In Sect. 4.1, we firstly present the action recognition datasets and the evaluation
settings. In Sect. 4.2, we study different aspects of our proposed DCN on the
Kinetics dataset and compare it with the state-of-the-art methods. In Sect. 4.3,
we transfer the learned spatiotemporal representations in DCN to the datasets
of UCF-101 and HMDB-51. In Sect. 4.4, we visualize the features we learned
from our models.

4.1 Datasets

We evaluate our proposed method on three challenging video datasets with
human actions, namely HMDB-51 [7], UCF-101 [12], and Kinetics [6]. Table 2
displays the details of the datasets. For all of these datasets, we utilise the stan-
dard training/testing splits and protocols provided as the original evaluation
scheme. For HMDB-51 and UCF-101, we report the average accuracy over three
splits and for Kinetics, we report the performance on the validation and test set.

Table 2. Details of the datasets used for evaluation. The Clips shows the total number
of short video clips extracted from the videos available in the dataset

Datasets Clips Videos Classes

HMDB-51 6,766 3,312 51

UCF-101 12,320 25,00 101

Kinetics 306,245 306,245 400



218 F. Han et al.

4.2 Results on the Kinetics Dataset

The Kinetics dataset is the largest well-labeled action recognition dataset. Its
current version contains 400 action classes and each category has at least 400
videos. In total, there are around 240,000 training videos, 20,000 validation
videos, and 40,000 testing videos. The evaluation metric on the Kinetics dataset
is the average of top-1 and top-5 error. The experiment of DCN on this dataset
with only RGB input under the setting of training from scratch.

In our experiment, the DCN model is trained on Kinetics with an initial
learning rate 0.1 which decay step-wisely with a factor 0.1. The weight decay is
set to 0.0001and we use SGD as the optimizer with a batch size of 1,024. Table 3
summaries the results of our models and other competing methods on the kinetics
400 datasets, and we can see that our model can get improved compared with
many state-of-art models. We are first compared with three baseline methods:
(1) CNN+LSTM [17], (2) two Stream [11], and (3) 3D CNNs [2,3,16,24]. we
propose DCN significantly outperform these baselines by around 10%. Besides,
I3D is also equipped with long-term modeling by stacking 64 frames. Then we
compare with the recent state-of-the-art methods, namely MFNet, outperform
by 0.8%. From the above observation improved the effectiveness of DCN.

Table 3. Accuracy (%) performance comparison of DCN model with state of-the-art
methods on kinetics.

Method Top1 Top5

Two-stream [11] 63.2% –

ConvNet+LSTM [17] 63.3% –

S3D [24] 69.4% 89.1%

I3D-RGB [2] 71.1% 89.3%

R(2+1)D-RGB [16] 72.0% 90.0%

MFNet [3] 72.8% 90.4%

Ours 73.6% 91.0%

4.3 Results on the UCF101 and HMDB51 Dataset

UCF-101 and HMDB-51 are another two popular action recognition datasets,
whose sizes are relatively small and the performance on them is very high. The
UCF-101 has 101 action classes and 13,320 video clips. We follow the official
evaluation scheme and report average accuracy over three training/testing splits.
The HMDB-51 dataset is a set of realistic videos from various sources, includ-
ing movies and web videos. This dataset has 6,766 videos from 51 action cate-
gories. Our experiment follows the original evaluation scheme using three train-
ing/testing splits and reports the average accuracy. As these two datasets are
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relatively minute, we cannot train DCN from scratch and thereby transfer the
video representations learned from the Kinetics dataset to them by fine-tuning.

We follow experimental settings in [4,15,24] and report the averaged three-
fold cross validation accuracy. For training the model on UCF-101 and HMDB-
51, we use an initial learning rate 0.005 and decrease it for three times with a
factor 0.1. The weight decay is placed at 0.0001 and the momentum is set to 0.9
during the SGD optimization.

First, compared with the ImageNet pre-trained model, Kinetics pre-train can
significantly improve the performance on small datasets. Then, we demonstrate
that fine-tuning DCN outperforms many competitive baselines. The models in
the top two of the table are RGB with optical flow baselines based on two
stream networks, including Two-Stream and TSN. We propose DCN significantly
outperform these baselines by around 10%. The remaining models in the table
are robust RGB-only baselines based on 3D CNNs. From Table 4, We can see that
our model obtain a comparable performance to the best performer of RGB-3D.

Table 4. Accuracy (%) performance comparison of DCN model with state of-the-art
methods over all three splits of UCF101 and HMDB51.

Methods +OF UCF-101 HMDB-51

Two-Stream [11] + 88.0% 59.4%

TSN [21] + 94.2% 69.4%

Resnet-50 [4] 82.3% 48.9%

Resnet-152 [4] 83.4% 46.7%

CoviAR [23] 90.4% 59.1%

C3D [15] 82.3% 51.6%

Res3D [24] 85.8% 54.9%

ARTNet [20] 94.3% 70.9%

I3D-RGB [2] 95.6% 74.8%

R(2+1)D-RGB [16] 96.8% 74.5%

MFNet [3] 96.0% 74.6%

Ours 97.9% 74.8%

4.4 Visualization

In order to better understand the features that channel and temporal features our
network learned. We provided some action feature visualize. As shown in Fig. 3,
we show three examples from UCF-101 dataset. The first column is Original
image, 2–4 is a heat map, and the 5–7 shows the focus map of the DCN. Besides,
we predict top3 prediction probabilities to demonstrate the ability of DCN to
forecast. Those visualize results in the 2–4 column show that DCN by learning
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channel correlation can focus on selectively emphasizes interdependent channel
maps. Besides from 5–7 columns represent the focus map of different frames,
results shows that the video frames combined different information from different
frames, effectively combine them to help with the final action recognition.

Label: HeadMassage
Prediction: top1 HeadMassage prob:0.99219, top2 BlowDryHair prob:0.00373 top3 HairCut prob: 0.00276

Label: YOLO
Prediction: top1 ApplyEyeMakeup prob:0.98219, top2 ApplyLipStick prob:0.01161 top3 HairCut prob: 0.00188

Label: ShutPut
Prediction: top1 ShutPut prob:0.98237, top2 ThrowDiscus prob:0.00508 top3 HammerThrow prob: 0.00427

Fig. 3. Visualization on UCF101. Our model predictions top probability, The first
column is Original image, 2–4 is a heat map, and the 5–7 shows the focus map of the
DCN.

5 Conclusion and Future Work

In this work, we propose a novel architecture, coined as DCN, for spatiotemporal
feature learning in videos. Construction of DCN is based on a dual correlation
path which aims to simultaneously consider inter-channel correlation information
between temporal and channel features and explicit way with a dual-branch unit
which represents different level of concept and information. As demonstrated on
the Kinetics dataset, DCN block is able to yield better performance than the
3D convolution and DCN with a single RGB input even outperforms the C3D
with two-stream input. For representation transfer from Kinetics to datasets of
UCF-101 and HMDB-51, DCN also achieves superior performance to the original
MFNet.

For DCN, augmenting RGB input with optical flow also helps to improve
performance. However, the high computational cost of optical flow prohibits its
application in real-world systems. In the future, we will plan to further improve
the DCN architecture to overcome the performance gap between single-stream
and two-stream input.
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Abstract. The ubiquitous availability of wearable sensors is responsi-
ble for driving the Internet-of-Things but is also making an impact on
sport sciences and precision medicine. While human activity recogni-
tion from smartphone data or other types of inertial measurement units
(IMU) has evolved to one of the most prominent daily life examples of
machine learning, the underlying process of time-series feature engineer-
ing still seems to be time-consuming. This lengthy process inhibits the
development of IMU-based machine learning applications in sport science
and precision medicine. This contribution discusses a feature engineer-
ing workflow, which automates the extraction of time-series feature on
based on the FRESH algorithm (FeatuRe Extraction based on Scalable
Hypothesis tests) to identify statistically significant features from syn-
chronized IMU sensors (IMeasureU Ltd., NZ). The feature engineering
workflow has five main steps: time-series engineering, automated time-
series feature extraction, optimized feature extraction, fitting of a special-
ized classifier, and deployment of optimized machine learning pipeline.
The workflow is discussed for the case of a user-specific running-walking
classification, and the generalization to a multi-user multi-activity clas-
sification is demonstrated.

1 Introduction

Human Activity Recognition (HAR) is an active research area within the field
of ubiquitous sensing, which has applications in medicine (monitoring exercise
routines) and sport (monitoring the potential for injuries and enhance athletes
performance). For a comprehensive overview on this topic refer to [6]. Typically
the design of HAR applications has to overcome the following challenges [1]:
c© Springer Nature Singapore Pte Ltd. 2020
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1. Selection of the attributes to be measured.
2. Construction of a portable and unobtrusive data acquisition system.
3. Design of feature extraction and inference methods.
4. Automated adjustment to new users without the need for re-training the

system.
5. Implementation in mobile devices meeting energy and processing require-

ments.
6. Collection of data under realistic conditions.

In this contribution, we are discussing the automated engineering of time-
series features (challenge 3) from two synchronized inertial measurement units
as provided by IMeasureU’s BlueThunder sensor [8]. Each sensor records accel-
eration, angular velocity, and magnetic field in three spatial dimensions. Due to
the availability of machine learning libraries like tsfresh [2] or hctsa [5], which
automate the extraction of time-series features for time-series classification tasks
[4], we are shifting our focus from the engineering of time-series features to the
engineering of time-series. For this purpose, we are considering not only the 18
sensor time-series from the two synchronized sensors but also 6 paired time-
series, which measure the differences between the axes of different sensors. A
further focus of this contribution is the optimization of the feature extraction
process for the deployment of the machine learning pipeline (Sect. 2). The work-
flow is discussed for the case of a user-specific running-walking classification
(Sect. 3.1), and the generalization to a multi-user multi-activity classification
(Sect. 3.2) is demonstrated. The paper closes with a short discussion (Sect. 4).

2 Automated Feature Engineering Workflow

The automated feature engineering workflow presented in this paper has two
foundations: The BlueThunder sensor from IMeasureU Ltd. [8] and the time-
series feature extraction library tsfresh [2,3].

2.1 Synchronized Inertial Measurement Units

The BlueThunder sensor is a wireless inertial measurement unit (IMU), which
combines a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis compass. Its
specification is listed in Table 1 and its dimensions are shown in Fig. 1a. One of
the key features of this sensor is the fact that several units can be synchronized.
Therefore, not only the measured sensor signals itself, but also paired signals,
like, e.g. the difference between the acceleration in the x-direction of two different
sensors can be used as an additional signal. One might interpret these computed
signals as being recorded by virtual sensors, which of course are basically signal
processing algorithms.

In order to demonstrate the applicability of the presented feature engineering
workflow, we are going to discuss two different activity recognition experiments.
The first experiment is concerned with the discrimination of running vs walking
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Table 1. Specification of IMeasureU BlueThunder sensor [8].

Features

Accelerometer range ±16 g

Accelerometer resolution 16 bit

Gyroscope range ±2000◦/s

Gyroscope resolution 16 bit

Compass range ±1200µT

Compass resolution 13 bit

Data logging 500Hz

Weight 12 g

for a specific person (Sect. 3.1), the second with generalizing the classification of
10 different activities over different persons (Sect. 3.2). The running vs walking
classification experiment was designed with a basic setup of two different IMUs
being mounted at the left and right ankle. The multi-activity classification task
considered 9-different mounting points, which were mounted at the left and right
upper arm, the left and right wrist, the left and right ankle, as well as the top
of the left and right foot (Fig. 1b).

2.2 Feature Extraction on the Basis of Scalable Hypothesis Testing

At the core of the Python-based machine learning library tsfresh [2] is the
FRESH algorithm. FRESH is the abbreviation for FeatuRe Extraction on the
basis of Scalable Hypothesis testing [3]. The general idea of this algorithm is to
characterise each time-series by applying a library of curated algorithms, which
quantify each time-series with respect to their distribution of values, correlation
properties, stationarity, entropy, and nonlinear time-series analysis. Of course,
this brute force feature extraction is computationally expensive and has to be
followed by a feature selection algorithm in order to prevent overfitting. The
feature selection is done by testing the statistical significance of each time-series
feature for predicting the target and controlling the false discovery rate [3].
Depending on the particular feature-target combination, the algorithm chooses
the type of hypothesis test to be performed and selects the set of statistically
significant time-series features while preserving the false discovery rate. The
pseudocode of the FRESH algorithm is given in Algorithm1.

2.3 Feature Engineering Workflow for Activity Recognition

The general approach of the feature engineering workflow for activity recognition
has five major steps:

Time-series engineering. Increase the number of time-series by designing
virtual sensors, which combine the signals from different sensors, compute
attributes like derivatives, or do both.
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ba

Fig. 1. IMeasureU’s BlueThunder sensor. Panel a dimensions of sensor [8, p.2], panel
b Mounting points of sensors at the front of head (1), left and right upper arm (2, 9),
left and right wrist (3, 8), left and right ankle (4, 7), and top of left and right foot (5,
6). For the running-walking classification, sensors were mounted at the left and right
ankle (4, 7). For the multi-activity classification, the optimal sensor combination was
tip of right foot (5) and right upper arm (2).

Automated time-series feature extraction. Extract a huge variety of dif-
ferent time-series features, which are relevant for predicting the target.

Optimized feature extraction. Identify a subset of features, which optimizes
the performance of a cross-validated classifier.

Fitting of specialized classifier. Refit the classifier by using only the subset
of features from the previous step.

Deployment of optimized algorithm. Extract only those time series fea-
tures, which are needed for the specialized classifier.

Note that the deployment step uses the fact that every feature can be mapped
to a combination of a specific time-series and a well-defined algorithm. Most
likely, not all time-series are relevant and depending on the classifier, only a small
set of time-series features is needed. An example of this workflow is documented
in the following case-study for classifying running vs walking.

3 Activity Recognition Case Studies

3.1 Running vs Walking

The following case study trains an individualized activity recognition algorithm
for discriminating running vs walking on the basis of a 560 s long activity
sequence, for which the corresponding activities were logged manually:
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– 2 synchronized IMUs mounted at left and right ankle (cf. Fig. 1b),
– 560 s of mixed running and walking,
– 280000 measurements for each of the 18 sensors (plus 6 paired measurements),
– 140 sections of 4 s length (82 walking-sections, 58 running-sections),
– 15605 features in total,
– 4850 statistically significant features (false discovery rate 5%),

The virtual sensor was configured to compute the magnitude of difference
between corresponding directions of the acceleration and gyroscope sensors. The
time-series features were extracted with tsfresh [2]1, which was available in ver-
sion 0.10.1 at the time of this case study. A random forest classifier as imple-
mented in scikit-learn [7] (version 0.19.0) was used for discriminating running vs
walking. The default configuration of the classifier already achieved 100% accu-
racy under 10-fold cross-validation, such that no hyperparameter tuning was
performed. The following 20 time-series features were identified as optimized
time-series feature subset as features with the highest feature importances from
100k fitted random forests.

[ ’ a c c e l y d i f f a g g l i n e a r t r e n d f a g g ”max” c hun k l e n 5 a t t r ” s t d e r r ” ’ ,

’ a c c e l y d i f f c h a n g e q u a n t i l e s f a g g ”var ” i s ab s T ru e qh 1 . 0 q l 0 . 0 ’ ,

’ a c c e l y r a g g l i n e a r t r e n d f a g g ”min” c hunk l e n 1 0 a t t r ” s t d e r r ” ’ ,

’ a c c e l y r c h a n g e q u a n t i l e s f a g g ”mean” i s ab s T ru e qh 1 . 0 q l 0 . 0 ’ ,

’ a c c e l y r c h a n g e q u a n t i l e s f a g g ”var ” i s a b s F a l s e q h 1 . 0 q l 0 . 2 ’ ,

’ a c c e l y r c h a n g e q u a n t i l e s f a g g ”var ” i s a b s F a l s e q h 1 . 0 q l 0 . 4 ’ ,

’ a c c e l z d i f f c h a n g e q u a n t i l e s f a g g ”var ” i s ab s T ru e qh 1 . 0 q l 0 . 8 ’ ,

’ a c c e l z l a g g l i n e a r t r e n d f a g g ”min” c hunk l e n 1 0 a t t r ” s t d e r r ” ’ ,

’ a c c e l z l c h a n g e q u a n t i l e s f a g g ”var ” i s a b s F a l s e q h 0 . 6 q l 0 . 0 ’ ,

’ acce l z r minimum ’ ,

’ g y r o x r c h a n g e q u an t i l e s f a g g ”var ” i s ab s T ru e qh 0 . 4 q l 0 . 2 ’ ,

’ g y r o y d i f f a g g l i n e a r t r e n d f a g g ”max” c hunk l e n 1 0 a t t r ” s t d e r r ” ’ ,

’ g y r o y d i f f a g g l i n e a r t r e n d f a g g ”max” c hunk l e n 5 0 a t t r ” s t d e r r ” ’ ,

’ g y r o y d i f f c h a n g e q u a n t i l e s f a g g ”var ” i s a b s F a l s e q h 1 . 0 q l 0 . 4 ’ ,

’ g y r o y d i f f c h a n g e q u a n t i l e s f a g g ”var ” i s ab s T ru e qh 1 . 0 q l 0 . 0 ’ ,

’ g y r o y l c h a n g e q u a n t i l e s f a g g ”var ” i s ab s T ru e qh 0 . 6 q l 0 . 4 ’ ,

Data: Labelled samples comprising different time-series
Result: Relevant time-series features
for all predefined feature extraction algorithms do

for all time-series do
for all samples do

Apply feature extraction algorithm to time-series sample and
compute time-series feature;

end
Test statistical significance of feature for predicting the label;

end

end
Select significant features while preserving false discovery rate;

Algorithm 1. Pseudocode of Feature extRaction on the basis of Scalable
Hypothesis testing (FRESH).

1 https://github.com/blue-yonder/tsfresh/tree/v0.10.1.

https://github.com/blue-yonder/tsfresh/tree/v0.10.1
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’ g y r o z l c h a n g e q u a n t i l e s f a g g ”var ” i s a b s F a l s e q h 0 . 6 q l 0 . 4 ’ ,

’ g y r o z r c h a n g e q u a n t i l e s f a g g ”mean” i s ab s T ru e qh 0 . 6 q l 0 . 4 ’ ,

’ g y r o z r c h a n g e q u a n t i l e s f a g g ”mean” i s ab s T ru e qh 0 . 8 q l 0 . 2 ’ ,

’ g y r o z r c h a n g e q u a n t i l e s f a g g ”var ” i s a b s F a l s e q h 0 . 6 q l 0 . 0 ’ ]

These 20 time-series features are computed from 10 different time-series:
four from the right ankle (accel y r, accel z r, gyro x r, gyro z r), three
from the left ankle (accel z l, gyro y l, gyro z l), and three magnitude of
differences (accel y diff, accel z diff, giro y diff). Each feature references
the generating algorithm using the following scheme [2]: (1) the time-series kind
the feature is based on, (2) the name of the feature calculator, which has been
used to extract the feature, and (3) key-value pairs of parameters configuring
the respective feature calculator:

[kind] [ calculator ] [parameterA] [valueA] [parameterB] [valueB]

The features are dominated by two different methods, which quantify
the linear trend (agg linear trend) and the expected change of the signal
(change quantiles). A detailed description of the underlying algorithms can be
found in the tsfresh documentation2. The list of features can be converted into
a dictionary using the function

t s f r e s h . f e a t u r e e x t r a c t i o n . s e t t i n g s . from columns ( )

which can be used for restricting the time-series feature extractor of tsfresh to
extract just this specific set of time-series features3.

Figure 2a summarizes the feature engineering workflow for the running vs
walking case study. The inlay at the bottom right of this figure is also depicted
in Fig. 2b. It shows the estimated activity sequence as time-series of probabilities
on a hold-out data set, which was recorded by the same person as the training
data set but on a different date. For this activity classification, only the 20 time-
series features listed above were used. The algorithm’s accuracy on the hold-out
dataset was 92%.

3.2 Multi-activity Classification Case Study

The following case study involves a more complex feature engineering setup
because all nine sensor mounting points, as depicted in Fig. 1, were considered
for the feature engineering. The task of this case study was to find a combination
of sensors for recognizing the activities

– laying down face down,
– push-ups,
– running,

2 https://tsfresh.readthedocs.io/en/v0.10.1/text/list of features.html.
3 https://github.com/blue-yonder/tsfresh/blob/master/notebooks/the-fc parameters

-extraction-dictionary.ipynb.

https://tsfresh.readthedocs.io/en/v0.10.1/text/list_of_features.html
https://github.com/blue-yonder/tsfresh/blob/master/notebooks/the-fc_parameters-extraction-dictionary.ipynb
https://github.com/blue-yonder/tsfresh/blob/master/notebooks/the-fc_parameters-extraction-dictionary.ipynb
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Fig. 2. Feature engineering workflow for activity recognition tasks with details for
the running vs walking case study (panel a). Classification of running vs walking for
validation data set operating on the 20 time-series features identified during the feature
engineering phase of the case study (panel b). Red dots indicate misclassifications. The
algorithm has an accuracy of 92%. (Color figure online)
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Fig. 3. Evaluation of multi-activity recognition pipeline on the hold-out data set.
(Color figure online)

– sit-ups,
– standing,
– star jumps, and
– walking,

while allowing for optimal generalization to other individuals. Therefore, the fea-
ture engineering was optimized on the basis of a group 5-fold cross-validation of
activities from five different persons (four men, one woman). The mean accuracy
for this proband-specific cross-validation was 92.6%.

The optimal sensor mounting points for this task have been identified as the
tip of the right foot and the upper right arm (Fig. 1). The evaluation of the
resulting activity recognition algorithm on a sixth subject, who had recorded a
45 min long evaluation data set, retrieved a similar performance (Fig. 3) and was
computed in less than 20 s.

4 Discussion

The presented workflow for feature engineering of activity recognition task
demonstrates a flexible and robust methodology, which is based on the com-
bination of signals from synchronized IMUs and automated time-series feature
extraction. Due to the availability of machine learning libraries for automated
time-series feature extraction, it can be expected that there will be a general shift
of focus in research from the engineering of time-series features to the engineer-
ing of time-series. In this work, the engineering of time-series has been modelled
as virtual sensors, but in many cases, this process will be similar to the design
of signal operators.

Acknowledgement. The authors like to thank Julie Férard and the team at IMea-
sureU for their support.
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Abstract. The release of greenhouse gases and aerosols from fires has
a large influence on global climate: on average, fires are responsible for
up to 30% of anthropogenic CO2 emissions.

The German Aerospace Center (DLR) is operating the “FireBIRD”
constellation, which consists of the two satellite missions TET-1 (Tech-
nology Test Platform), and BIROS (Bispectral Infrared Optical System)
It is dedicated to scientific investigation of the issues involved as well
as to early fire detection from space. The satellite and detector app-
roach is based on proven DLR technology achieved during the BIRD
(Bispectral Infrad Detection) Mission, which was launched in 2001 and
was primarily used for observation of fires and volcanic activity until
2004.The Payload of TET-1 and BIROS has spectral channels in visi-
ble (VIS), near infrared (NIR), mid wave (MIR) and a thermal infrared
(TIR) channel. The paper is focused on the processing for TET- and
BIROS- Fire- BIRD image data. In the FireBird standard processing
chain level 1b and 2a data-products are generated automatically for all
users after the data reception on ground. The so called fire-radiative-
power (FRP) is one of the most important climate relevant parameters
witch is estimated by using the bi-spectral method. Two characteristics
of the FireBIRD sensors are unique: first, the high radiometric dynamic
sensitivity for quantitative evaluation of normal temperatures and high
temperature events (HTE) in the same scene. Second, the evaluation
of the effective fire area in square meters independent of the recorded
number of fire cluster sizes, which is given as the number of pixels per
cluster. For certain users, such as firefighters, it is necessary to obtain
fire data products (location and temperature) quickly and with minimal
delay after detection. In such applications, data processing must take
place directly on board the satellite without using a complex processing
chain. The paper describes also an alternative fire-detection algorithm
witch uses artificial neural networks (deep learning) and will compare it
with the standard Level-2 FireBIRD processing.
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1 Introduction

FireBird is defined as a constellation of two small satellites mainly dedicated
to the investigation of high temperature events. The first satellite TET-1 was
launched on 12 June 2012. The second satellite BIROS was launched on 22 July
2016.

Both satellites have an identical infrared payload with special design items for
detection and measurement of high temperature events in sub-pixel resolution.
The payload design is shown in Fig. 1, its main parameters are listed in Table 1.

Fig. 1. FireBird camera complex (3 sensor system; left: MWIR, right: LWIR, middel:
VIS)

Compared to TET-1 the BIROS Satellite is equipped with a propulsion sys-
tem to ensure an optimal constellation of the orbits to ensure optimal pointing
capabilities. In addition BIROS has a much more powerful data processing sys-
tem on board, which enables the implementation of a very flexible processing
chain.

Due to the limited resources of a small satellite, there are some limitations
that can be partially compensated by a flexible operation of the satellite. A
well-developed service on demand, especially in the case of BIROS, can signifi-
cantly improve the satellite’s data throughput. All these aspects of using a small
satellite to study high temperature events (HTE) are explained below.

2 Remote Sensing and Detection High Temperature
Events with Small Satellites

The temporal and spatial distribution of high temperature events (HTE) and the
intensity of the events, including their background to the HTE to be taken into
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Table 1. FireBird camera parameters.

CCD line-VIS camera (3 line FPA) Infrared-cameras

Wave length 1. 460–560 nm MWIR: 3,4–4,2 µm

2. 565–725 nm LWIR: 8,5–9,3 µm

3. 790–930 nm

Focal length 90,9 mm 46,39 mm

FOV 19,6◦ 19◦

F-Number 3,8 2,0

Detector CCD-line CdHgTe staggerd
arrays

Detector cooling Passive, 20 ◦C Stirling, 80–100 K

Pixel size 7 µm× 7 µm 30 µm× 30 µm

Number of pixel 3× 5164 2× 512 staggered

Quantization 14 bit 14 bit

Ground sampling distance 42,4 m2 356 m2

Ground resolution 42,4 m2 178 m2

Swath width 211 km2 km 178 km2

Data rate Max 44 MBit/s nom 11,2 0,35 MBit/s

Accuracy 100m on ground 100 m on ground

account for the analysis, can vary considerably. In Oertel [6] different scenarios
were examined with regard to the satellite instruments available at that time.
Different observation scenarios are triggered not only by the different types of
HTEs, but also by the different types of user groups. In this context it is worth-
while to continue the investigation of the advantages and disadvantages of small
satellites begun in Lorenz, [5].

For the investigation of such highly dynamic events as bushfires in particular,
the re-visit time and the overflight time of the satellite is an important evaluation
criterion. Due to the piggy back launch of small satellites the possibility choosing
the over-flight-time (LTAN) is limited. The probability to get an ascending node
of about 12:00 o’clock or later (A-Train) is very low, but it is needed to have the
possibility to detect and evaluate mostly larger fires like the Aqua- and Terra-
Satellites from the USA. TET-1 and BIROS have an equator crossing time of
10:30 am and 9:30 am. From these orbits particularly small fires, which develop
in the morning, can be detected. The variability is higher with regard to the
revisit time. In a standard flight mode (only nadir pointing orientation, without
consideration of the off-nadir pointing options), the TET-1 revisit time is approx.
3 or 4 days (maximum at the equator). The second BIROS satellite was able to
reduce this time to 1 day.

Additionally the pointing capability of the satellites with a tilting of up to
30◦ off track can be taken into account. (The 30◦ limit is due to the atmospheric
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damping, not from the satellite). The sub-satellite point moves from day to day
about 600 km, but it is possible to obtain an overlap of the image strips of two
consecutive days in the order of 100 km by tilting the satellite out of the nadir
direction.

With this it is possible to observe a high-temperature event (HTE) in two
subsequent days with one satellite. With a second satellite, it would be possible
to ensure more than one daily coverage for a given target. This is valid if only
night or day time imaging tasks had been taken into account. But in combination
of both it is possible with respect to the given orbit constellation to get up to
two images of the same target per day. This was demonstrated in different cases.

Another important point is downlink capacity due to limited resources of
small satellites. typically equipped with S-Band transmitter. This allows trans-
mitting approximately 100 MB per contact (with the best elevation). Using the
maximum number of spectral bands, FireBird (TET or BIROS) generates more
than 100 MB, so more than one contact is required to transmit the data com-
pletely.Coming back the detection of HTE’s itself, most satellite-based methods
rely on sensors witch a channel in the middle infrared (MIR) atmospheric win-
dow. As shown in different other publications (e.g. Lorenz [5]) the MIR spectral
channel is the most sensitive to active fires, as it includes the spectral maxi-
mum of emitted fire radiation or is close to while the spectral radiance of the
background is lowest here.

The FireBIRD detection algorithm is an adaptive so called contextual algo-
rithm witch uses the MIR, TIR and NIR and channels witch can distinguish
after the classification process between:

1. Detection of potentials hot pixels,
2. rejection class of strong sun glints or clouds,
3. rejection class of bright objects,
4. rejection class of warm surfaces and
5. rejection class of cold clouds.

This basis of the sequential algorithm was developed and tested already for
the BIRD Satellite Mission. It has been modified and implemented by the Fire-
BIRD mission for operational use. The most important principles were published
in [7].

3 BIROS–Satellite Approach

The BIROS satellite is based on a proven approach developed by DLR for the
BIRD mission launched in 2001 (Briess, [1]). BIROS satellite bus uses the same
technology as the TET satellite, which was successfully launched in July 2012
as the first German “Technology Test Carrier”. TET was initiated and financed
by the DLR Space Administration as part of the German On-Orbit Verification
(OOV) programm.

At the end of 2013, TET-1 was handed over to the FireBird mission. BIROS
was financed by the “BMBF” and was part of the FireBird mission from the
beginning.
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BIROS and TET-1 use an almost identical multispectral camera system as
the main payload. (see Fig. 2). On board BIROS are several other technological
experiments designed to contribute to the scientific and technological challenges
of the next generation of remote sensing satellites.

High torque reaction wheels and the propulsion system system on BIROS
should be emphasized. Particularly in the field of space-based disaster warning
systems micro satellites are becoming more and more interesting as highly agile
and accurate pointing platforms with the options of swath width extension, in
the track stereo imaging, fast multi-target pointing in combination with a high
flexibility to command the sensor systems to enable different data acquisition
scenarios and finally a fast and flexible distribution of information to the end
user on the ground.

BIROS have also a technical on-board experiment by using a hardware VHF
modem. Over an ORBCOMM satellite (altitude 800 km) it could be possible to
inform directly the ground users via E-Mail about an on-board detected hot-spot
with the concerning geo-location e.g for fire-fighters. Here the image classification
algorithms will be based on artificial neuronal networks (see paragraph 8).

Fig. 2. BIROS satellite with the payload segment

4 Operation and Data Products

The operation of small satellites is differs from that of larger satellites. The
FireBIRD-Constellation is a system with a ‘service on demand’ because the
limited resources require a very dedicated selection of targets (data-takes). For
this operation an individual data ordering process, done by a restricted group of
people is necessary. The users can delegate their requests to the order group and
in case of conflicts the group decides on the priority of the orders. In addition
to the urgency of informing oneself about a disaster situation, the terms conflict



240 W. Halle et al.

and priority depend above all on technical parameters such as the amount of
data to be stored and linked and the number of available ground stations.

Data collection planning is supported by an efficient ordering tool called
SPOT, developed by DLR GSOC. The GUI of SPOT is shown in Fig. 3. The
use of SPOT also makes it possible to predict future data acquisition and thus
to support targeted planning of firing experiments for validation activities and
other project-dependent events.

The user can choose from four standard device configurations of the camera
to optimally utilize the on-board mass memory (Table 2). During night mea-
surements (Fire Night) the visual bands can be switched off. During the day the
GSD of the visual bands can be switched between 40 m and 160 m and for VIS1
it is possible to select which of the visual bands should be transmitted to earth.
This is then a decision between the GSD and the area to be monitored on the
ground.

Table 2. TET-1 and BIROS standard mode configuration.

Mode MWiR MWIR-CAL LWiR LWIR-CAL VISN VISR VISG AOCS Remark

Fire4× 4 X X X X X X X X GR 160m

FireNight X X X X X

VISl backward X X X X X X GR 40m

VISl forward X X X X X X GR 40m

VISl nadir X X X X X X GR 40m

VIS3 X X X X X X X X GR 40m

System order X X X X X X X X GR 40m

When the raw data is received, an operative processing unit generates a
standard data format for the raw data. Depending on the operating mode, this
L0 level contains up to 5 measurement files, two calibration files for the infrared
cameras and a setting file. Based on these raw data files, the L1b standard
products are generated. L1b products are radiometrically calibrated data with
geographic annotation and associated metadata information. This information
can be provided either in an ENVI-compliant data format or in an HDF5 format.

Users are informed about the status of data processing and the products can
be downloaded via DLR’s EOweb data archiving infrastructure.

5 Radiometric Calibration and Validation

In order to obtain scientifically usable image data, a radiometric calibration of
the visible and infrared channels of the sensor must be performed. The applica-
tion of the corresponding calibration data sets to raw image data is the first step
in the image processing pipeline and aims at converting the digital raw image
data into units of mean spectral radiation related to the spectral band of each
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Fig. 3. The GUI of SPOT user tool

channel. For the visible (VIS) and near-infrared (NIR) channels, calibration data
sets were obtained from ground-based flat field measurements with well charac-
terized reference sources. These data sets are applied to the incoming VIS/NIR
raw data. For the mid-wave infrared (MWIR) and the long-wave-infrared chan-
nels (LWIR), calibration data are recorded during flight after data acquisition.

The calibration procedure in the case of FireBird is not a classic two-point
procedure, but is based on a correlation of the detector signals with the continu-
ous heating process of the blackbody flap in front of the IR optics (see left Fig. 4
and right Fig. 4).

These efforts concentrate on the development of algorithms for the recon-
struction of scene signal sections with very high signal dynamics. For example,
very hot temperature events on relatively cold backgrounds in the MWIR and
LWIR channels can show nonlinear signal responses, especially at very low signal
levels or even information loss due to optical distortion. The described calibra-
tion procedure can check the linearity of the signal responses and based on the
knowledge of the spatial distribution of the incoming radiation information in
the images (so-called Point Spread Functions, PSF), lost information can at least
partially be estimated or reconstructed. The result is an increase of the effective
dynamic range of the sensor channel. In addition, the signal dynamic range can
be increased by operating the system in a special mode with reduced integration
time for very hot scenes.

6 Hot Area Technology and the Bi-Spectral Algorithm

The observation of HTE and in particular of wild fires places high demands on
the dynamic range which the device has to cope with. An extreme example is
the observation of the Bardabunga volcano on the island (see Fig. 5) especially
in the MWIR band. In this image, ice and fire stand side by side and the fire fills
a series of detector pixels, which requires a very high saturation temperature.
On the other hand, the glacier’s low IR signal forces the detector into the non-
linear operating range as described above. Both extremes can be overcome with
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Fig. 4. Left: calibration Black-Body-Flap temperature curve. Right: detector signal
(DN) correlated to the flap temperature

Fig. 5. Fire and Ice-The Bardabunga volcano on Iceland

extremely different integration intervals of the infrared detectors. This is exactly
the technology implemented in FireBIRD’s IR cameras. The dwell time of the
IR cameras is approx. 20 ms, the integration interval for the background tem-
peratures ∼20 ◦C is set to 6 ms. Controlling the signal levels of the first standard
exposure during the readout process in real time makes it possible to initiate a
second exposure with a much shorter integration interval in case of saturation.
This technology allows an extremely high dynamic range to be covered.
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Fig. 6. Left: MWIR Portugal forest fires, 21 June 2017. Right: MWIR spectral radiance
of the image line by fire without HA mode (red-line); with HA Mode (black-line) (Color
figure online)

The following pictures show an example of this unique on-board function:
In figure Fig. 6 (left) shows the data of the MWIR channel of the Portu-

gal Forest Fire, 21 June 2017. The applied spectral radiance (right) shows the
saturated pixels in one of the fire clusters (red line). The black line shows the
real signal modulation of the fire cluster after the second data acquisition with
the shorter integration time of 500 µs instead of 6ms. After the combination of
the two data recordings on the ground, the high dynamic range is also visible
in the processed fire clusters. Figure 7 visualizes this function in detail: The left
image is based on the processing without the HA processing mode. Here no inner
structure of the fire cluster is visible (all pixels are saturated). The right image
shows the result in HA processing mode. Here you can distinguish details of the
spectral radiation within the fire clusters.

In case of very small a hot spot which covers only a part of an image ground
pixel the relating detector signal is a mix of the background temperature and the
high temperature resulting in a brightness temperature of may be ∼40 ◦C (for
the compete pixel). After the detection of the HTE (see paragraph 2) calculation
of the hot spot temperature from this brightness temperature the Dozier method
(Dozier, [2]) will be applied.

In the single pixel case, the effective firing temperature TF and the proportion
of fire in the pixel qF , which refers to the fire section AF , are determined by
solving the mixed equations for the pixel-averaged radiation in two channels:

Lj − Lh
j,bg = qF

(
Bj (T p

F ) − Lh
j,bg

)
(1)

where I j is the atmospherically corrected radiance of a hot pixel in channel j
(j = MIR and TIR), Bj(T) is the black-body radiance in channel j as a function
of temperature T, Lhj,bg is the radiance of the non-fire portion of the hot pixel
to be estimated from the adjacent background pixels.
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Fig. 7. Left: Fire cluster without HA-Processing. Right: Fire cluster with HA-
Processing

Because the MIR radiation intensity of a fire is so intense, even smaller
subpixel fires will significantly affect not only the beam signal of the pixel in
which the fire is actually located, but also the signal of neighboring pixels. This
effect is particularly pronounced in TET-1 and BIROS images, as the double
scan causes the pixels to overlap by 50%. For this reason, active fires are usually
recognized as clusters of ‘hot’ pixels in MIR imaging, referred to here as ‘hot
clusters’.

The area of a hot cluster in an image should not be confused with the area
of the causing fire. The Fig. 8 shows an example of the bush fires detected in
August 2019 (data-take FBI BIROS 20190825T020016). The left image shows
the spectral radiation of the MIR channel. On the right side the calculated
fire radiant power (FRP) is shown. Figure 9 shows on the left side the position
of the footprint of the data take over Brazil and on the right side the details
(FRP) of some fire clusters of Fig. 8. The ‘Size’ column in the Table 3 from the
standard Level 2 data products of the scene in Fig. 8 indicates how many pixels
are contained in the cluster described by a row of this table. The ‘Pixel area’
column indicates the area size of the affected pixels in the cluster, but the actual
size of the fires is generally smaller: column A (m2) indicates the effective size
of each cluster calculated using the bi-spectral method.

This type of Level 2 data product also helps to locate the bush fire directly
and only transmit relevant fire parameters to the local authorities or directly to
the fire brigade.

7 FireBIRD Application for Wild Fire Monitoring

Since the IR camera systems on board TET-1 (2012) and BIROS (2017) are
active, about 6000 scenes of forest fires or other HTEs, i.e. volcanoes and
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Fig. 8. Left: MIR channel Brazil BIROS 25th August 2019; right: Calculated FRP(Fire-
Radiative-Power)

Fig. 9. Left: Location of the footprint of the data-take over Brazil 25th August 2019;
right: details (FRP) of some fire-clusters of Fig. 8
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Table 3. FRP table for a small field of view of scene FBI BIROS 20190825T020016.

CustesNO Size (Pixel) Pixel area (m2) Lat Long FRP (MW) T (K) A (m2)

0 15 496860 −18,509 −59,319 5,22 499,3 1480,6

1 21 695604 −18,496 −59,322 8,08 520,5 1941,7

2 5 165620 −18,545 −59,810 0,93 549,3 180

7 44 1457456 −18,336 −58,439 12,01 620,7 1427

8 8 264992 −18,335 −58,424 2,43 560,7 433,8

9 29 960596 −18,421 −59,463 21,71 599,2 2969,5

10 9 298116 −18,314 −58,511 2,49 505,2 672,8

12 4 132496 −18,312 −58,504 0,7 548,5 137,4

13 12 397488 −18,303 −58,500 2,82 513,1 716,7

14 9 298116 −18,250 −58,379 2,55 621,6 300,9

17 3 99372 −18,174 −58,308 0,81 493,6 241,1

18 20 662480 −18,144 −58,188 10,56 563,8 1842,8

19 12 397488 −18,153 −58,296 1,73 666,9 154,5

24 7 231868 −18,123 −58,225 0,84 693,5 63,9

25 6 198744 −18,136 −58,363 1,59 588,9 233

27 7 231868 −18,120 −58,275 1,78 523,5 418,5

28 5 165620 −18,113 −58,228 0,88 673,6 75,2

industrial sites such as power plants, offshore gas and oil platforms, refiner-
ies and mines, have been recorded. HTEs occur on all continents and in a wide
variety of land cover types, from grasslands in South Africa, eucalyptus forests in
Australia, boreal forests in Canada and even volcanoes in Iceland. In Fig. 10 an
overview shows the most important placements of the worldwide data recordings
with TET.

A very sad example was the devastating bushfires in the USA (Paradise Cal-
ifornia) in November 2018. TET-1 and BIROS were able to jointly demonstrate
the benefits of a constellation of more than one satellite. A time series of both
satellites within 5 days shows the change detection capabilities of the FireBIRD
system. The Fig. 11 shows the foot-print of the data-takes. In the first days
between 10th, 12th and 14th November, the detected fire with the calculated
FRP is clearly visible in the Level 2 data products (see Fig. 13).

In the Fig. 13 the combination of 3 data-takes are shown the moving of the
fire-fronts. This map projection of the fire data was developed by the DLR-ZKI
(DLR-Center for Satellite based Crisis Information) especially for the regional
authority and for the fire fighters (Fig. 12).

The Table 4 gives an overview of the time series of the relevant fire parameters
of the several days of recorded data-takes. It shows on November 12th the highest
fire activation with the total size of the clusters (pixel size = 2241) and the
effective size of the fires AF = 520645 m2. On November 14th the fire burns
drops (AF = 88345 m2), but the evaluated temperature is even the highest in
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Fig. 10. Overview of the placements of the worldwide data acquisition of the FireBIRD
mission until 2018

Fig. 11. Overview of the foot-print of the data-takes over Paradise (Nov 2018)

Fig. 12. Left: FRP: 10th Nov/2018. Middle: FRP: 12th Nov/2018. Right: FRP: TET
10th Nov/2018
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Fig. 13. Fire-Fronts: yellow (10th Nov), orange (12thNov), red (14th Nov); Source:
DLR-ZKI (Color figure online)

the time series of the data acquisition. The local movement of fires between 10th

and 14th November is illustrated in Fig. 13 (Source DLR-ZKI).

Table 4. Overview of Level 2 data products for time series of bushfires in Paradise
(USA) 2018

Date time/h
sensor

10.11 00:19
TET/night

10.11 13:09
TET/night

12.11
13:14
TET/day

14.11
13:19
TET/day

21.11 0:17
BOS
night

22.11
18:02
BOS day

FRP/MW 2792 3327 4953 1089 69.7 3.1

T fire/K 714 672 658 752 720 891

AF/m2 202750 314956 520645 88345 191 52

Total size
cluster/pixel

1511 1738 2241 1173 188 17

8 Preparation of an On-Board FireBIRD Application for
Wildfire Monitoring

In the last section, the evaluation of fire-fighting products was demonstrated
using some examples. These products were processed with the FireBIRD Level
2 processor in a processing chain at the DLR ground station in Neustrelitz near
Berlin after each downlink of the satellite data. The processing time for the data
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acquisition can vary up to several minutes depending on the number of recorded
fire locations. The reason for this is that for the calculation of the fire radiant
power (FRP), co-registration between the MWIR and LWIR channels must be
very precise using an adaptive adaptation algorithm.

Especially for firefighters only the detection of fires with the parameters
location, size and temperature is of importance. They do not need the FRP, but
they need the fire information as quickly as possible. The BIROS satellite has the
ability to send this type of information directly to the end user, without using
the usual ground stations, via an integrated Orbcom modem. On the other hand,
BIROS has a powerful on-board payload computer for image data processing.

For on-board classification to generate dedicated information for the fire
brigade, neural networks are predestined to solve the problem. This has already
been demonstrated on the forerunner mission BIRD (see Halle [4]).

Before implementing an artificial neural network on the BIROS payload com-
puter, the algorithms in MATHWORKS were simulated and evaluated offline
using different data sets from the FireBIRD archive. The approach of the artifi-
cial neural network was carried out as follows: The input image of 12× 12 pixels
on two channels (MWIR and LWIR) passes through the 16 layers of the neural
network, including three convolution layers. It is simply divided into two trained
classes, either there is a fire or there is no fire. The output is the probability that
the input data belongs to one of these classes.

To detect fire in an image, it is divided into overlapping 12× 12 pixel patches.
These are classified individually. If a fire on a patch is very likely, then the
corresponding coordinates are marked on a mask and the coordinates of the
pixel with the highest intensity are stored. At the end of the entire classification
process, there is a mask for the entire image on which each pixel on which there is
a fire is most likely marked. In addition, a table with the coordinates of possible
fire clusters is created (Figs. 14 and 15).

Fig. 14. Topology of the neural network

Table 5 topology of the neural network with 16 layers and 2 trained classes.
The training was carried out on only five different sample pictures. The train-

ing images were divided into 98420 12 × 12 pixel patches. A series of patches from
2018 contained fires. Two of the images were taken in January 2018 in the Niger
Delta (TET1 2018/Jan/02, TET1 2018/Jan/04) while there were some fires.
Two more show wild fires in California in December 2017 (TET1 2017/Dec/10)
and November 2018 (TET2018/Nov/12). The last one was recorded when a vol-
cano erupted on the Galapagos Islands in July 2018 (TET1 2018/July/03). The
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Fig. 15. TET1 2017/Dec/10

ground-truth for the training was based on masks generated by the standard
fire-detection-algorithm and then completed by hand (Figs. 16 and 17).

The standard FireBIRD fire-detection algorithm and the neural network were
compared based on detected cluster centers and assumed cluster centers, respec-
tively. The image section on which this comparison was performed is part of a
scan showing the forest fires in the Amazon rainforest in Bolivia on 24th 2019
(BIROS 2019/Aug/24). 45 common clusters were found by the algorithms and
41 by the neural network (see Table 5).

Fig. 16. Left: BIROS Data-Take 2019/Aug/024; right: results from fire-detection-
algorithm
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Fig. 17. Left: results of neural network classification; right: combined result; yellow
marked pixels were found by both algorithms (Color figure online)

Table 5. Certain results from the cluster centre comparison

Index Fire-detection-algorithm Neural net classification

mean x mean y mean x mean y

89 551.5 919.1 552 919

95 627 899.3 629 900

134 571.5 801.5 571 801

144 559.9 781.9 560 783

9 Conclusion

In this paper we have demonstrated the capabilities of the small satellite sys-
tem FireBIRD to detect high-temperature events with the multispectral infrared
sensor system. The sensor system flies on the TET and BIROS satellites of an
attitude of approx. 500 km SSOrbit and is capable of detecting and evaluating
even small fires with low energy as well as very hot and bright fires by means
of an adaptive, so-called hot area-mode when switching the integration time.
The benefits of a fire constellation (at least with two satellites) were shown by
means of examples of the fire catastrophe in Paradise (USA) in November 2018:
Here, data recordings from TET and BIROS show the change of the fire loca-
tion and the fire parameters (fire size, fire temperature and fire radiation power)
during a narrow time series. Another unique feature of FireBIRD’s Level 2 pro-
cessing was demonstrated by a data recording of the giant Amazon rainforest
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fire in August 2018: By using the bi-spectral method, the effective cluster fire
size (in the sub-pixel range) can be better estimated than using only the num-
ber of affected fire pixels of the cluster. For scientific users, FireBIRD standard
processing offers Level 2 data products using the bi-spectral method (Dozier).
In this case, the fire-radiative-power (FRP) is an important performance value
as a climate-related parameter. Firefighters in particular only need information
about the location and size of the fire. This information is required as soon as
possible after detection and is preferably generated directly on board the satel-
lite. Artificial neural networks are predestined for this application and can be
implemented directly in hardware on board the satellites. In this paper the fea-
sibility of the neural network classification of a “fire” class and a “non-fire” class
was demonstrated (on the ground) and compared to the results of the bi-spectral
method in a FireBIRD data acquisition of the large bushfire in Brazil and Bolivia
in August 2019.
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Abstract. The Sentinel-4 payload is a multi-spectral camera system
which is designed to monitor atmospheric conditions over Europe. The
German Aerospace Center (DLR) in Berlin, Germany conducted the ver-
ification campaign of the Focal Plane Subsystem (FPS) on behalf of Air-
bus Defense and Space GmbH, Ottobrunn, Germany. In this publication,
we will present in detail the temperature dependence of dark signal for
the CCD 376 (NIR) from e2v. Dark current is strongly temperature-
dependent and is based on the thermal excitation of electrons in the
conduction band. During the testing the temperature of the detectors
was varied between 215K and 290K. Different models were examined,
and corresponding deviations determined. Presenting the dark current
by means of an Arrhenius plot, it can be shown, that the activation
energy is about half of the band gap. As an important result it could
be shown that the temperature dependence can be described by two
activation energies.

Keywords: SENTINAL-4 · Dark signal · Temperature dependence ·
Activation energy

1 Introduction

The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus
under ESA contract in the frame of the joint European Union (EU)/ESA
COPERNICUS program with the objective of monitoring trace gas concentra-
tions. The German Aerospace Center, DLR Berlin, conducted the verification
campaign of the Focal Plane Subsystem (FPS) during the second half of 2016.

The Sentinel-4 Focal Plane Subsystem (FPS) consists of two FPAs, two Front
End Electronics (FEEs) and one Front End Support Electronic (FSE). The FPAs
house the CCD detectors, the detector-close electronics, as well as internal LEDs
for radiometric on-board calibration.

Details of the Sensor and the FPA can be found in the publication from
Swindells [13], Hohn [5], Hinger [4] and Hermsen [3]. Information about the
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comprehensive test campaign are provided in Skegg [12], Williges [15] and Can-
deias [1].

As part of this test campaign, the dark signal was extensively investigated as
an important performance parameter. Dark signal is varied by changing either
the integration time or the operating temperature [7]. When measuring the dark
signal with increasing integration times a non-linear behavior was observed for
Sentinel-4 Detector by Skegg (see [12] Fig. 6).

This presentation focus on the dark signal variation by temperature change
of the NIR detector, because UVVIS detector has a similar behavior. The tem-
perature range varies in this experiment from 215K (operating temperature of
the detector) to 292K.

This publication is structured as follows. It begins with an overview of the
results of previous work. The following chapter summarizes the known informa-
tion about the dark current. Then the measurement setup and the procedure will
be described. The next chapter provides the results. Finally, conclusions and an
outlook are presented.

2 Related Work

A detailed investigation of the dark current for a backside-illuminated CCD was
published in the paper from Widenhorn [14]. The temperature range was similar
to our experiment (222K to 291K). First the authors assumed that the dark cur-
rent follow the Arrhenius law, described by the activation energy and a prefactor.
The temperature dependencies can be approximated and thus the dark current
can be scaled to an arbitrary temperature. In the paper from Popowicz [10]
similar results are published.

Then the relation between the prefactor and the apparent activation energy,
as described by the Meyer-Neldel rule, was investigated. A more detailed analysis
shows that the activation energy for the dark current changes in the temperature
range. As a result they stated the relative importance at high temperatures of
the diffusion dark current and at low temperatures by the depletion dark current.
The diffusion dark current, characterized by the band gap of silicon, is uniform
for all pixels. At low temperatures, the depletion dark current, characterized by
half the band gap, prevails, but it varies for different pixels.

Dark current spikes are pronounced at low temperatures and can be explained
by large concentrations of deep level impurities in those particular pixels. We
show that fitting the data with the impurity concentration as the only variable
can explain the dark current characteristics of all the pixels on the chip.

3 Dark Current

3.1 Signal Model

An overview about sensor performance consideration can be found in the books
from Kopeika [8], Janesick [6] and Janesick [7]. Detector verification for the
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Sentinel-4 CCD-Matrix is described in the paper from Williges [15]. Eckardt [2]
published a similar investigation for the DESIS [9] detector.

The detector signal model is based on the following approach for the average
signal (see Schwarzer [11])

〈s〉 = ηDV · ηV · ηqu
λ · τ · Apix · λ

hc
· E + DS (1)

〈s〉 Camera output signal [DN]
h Plank’s constant [Js]
c Speed of light [m/s]
λ Center wavelength of incident light [m]
GS = ηDV · ηV Overall system gain [DN/e]
E Irradiance at detector level [W/m2]
τint Integration time [s]
Apix Pixel area [m2]
DS Dark signal [DN]

We assume three noise-components: photon noise, dark current noise, and
read-noise. Both, photon and dark current noise, are Poisson distributed. The
sources of read-noise are related to the sensor read out and amplifier circuits
and can be described by a normal distribution with variance σ2

k. In this (linear)
signal model the total variance σ2

s of the digital signal 〈s〉 is given according to
the propagation of uncertainty (or propagation of error) by

σ2
s = η2

DV · η2
v · (〈nel〉 +

〈
nD

el

〉)
+ η2

DV · σ2
k. (2)

and with Eq. (1) by

σ2
s = GS · 〈s〉 + η2

DV · σ2
k (3)

This linear equation is a relation between variance of measured noise and
averaged signal (PTC – Photon Transfer Curve).

3.2 Dark Signal Calculation

Dark signal D = GS · 〈
nD

el

〉
is varied by changing either the integration time or

the operating temperature. The shot noise component of the dark signal D is
given by Eq. (4)

σ2
D ∼ D (4)

D is the average dark signal D = τint ·DR (τint is the integration time in [s]).
DR is the average dark current rate [e−/s], the slope of dark signal dependence
as a function of integration time (see Fig. 5).
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Fig. 1. Dark signal in [DN] as a function of integration time (left) and (right) dark
current in [e/s] related to integration time. (Data set DS-NIR-xxxnm-215K-160912-
155847-Dark-Current-Rate, Gain = 0.0856 V/e, DC = 1.6 e/s, measurement at oper-
ating temperature)

Often the dark current is determined independently of the size of the detector
area (5) and (6):

DR

[
nA/cm2

]
= 109 · (Q · DR [e/s]) /Apix (5)

or the other way around (Fig. 1)

DR [e/s] = DR

[
nA/cm2

] · 10−9 Apix

Q
(6)

3.3 Temperature Dependence

We investigate the slope of dark signal dependence as a function of temperature.
Different models describe this dependence. Equation (7) is an example and can
be found in the book from Janesick [7]. In addition to the temperature itself,
the temperature dependence of the size of the band-gap is also considered:

DR = 2.55 × 1015PA · DFM · T 1.5 · e−Eg/2kT (7)

with

DFM Dark Current [DC] figure-of-merrit @300K in
[e/s] or [nA/cm2]

Apix = 27.5 · 10−4 × 15 · 10−4 Pixel area [cm2]
Eg = 1.1557 − 7.021×10−4T 2

1108+T Silicon bandgap energy as a function of temper-
ature [eV]

k = 8.6173324 × 10−5 Boltzmann’s constant [eV/K]
Q = 1.602176565 × 10−19 elementary charge [C] = [As]

To analyze the temperature dependence, DFM has to be determined from DC(T )
and Eg(T ) at 300K. There is also an empirical equation (8) for the temperature
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dependence of the dark current, which is specified by e2v for their detectors
(private communication: Michael Skegg):

DR = DR (T = 300K) · 122 · T 3 · e−6400/T (8)

A modification describes the temperature dependence better:

DR = D∗
FM · T 3 · e−6400/T D∗

FM = DR (T = 300K) (9)

3.4 Measurement Setup

The measurement set up is described in detail in Williges [15] and Hohn [5]. A
top view of the setup is provided in the Fig. 2.

The Thermal Vacuum Chamber is equipped with one optical window with a
diameter of 200 mm. Due to spatial constrains a mounting system was designed
where two FPAs and the reference detector are aligned along and parallel to the
optical axis, with the detectors facing the optical axis perpendicularly. A plane
folding mirror mounted on a linear manipulator moving along the OA (optical
axis) allowed for transfer of light to each detector subsequently. In combination
with a spatial off-set of each detector with respect to the OA this allowed for
equal optical path lengths, guarantying equal illumination on each detector.

Fig. 2. CAD drawing of the opto-mechanical mounting unit developed for the Sentinel 4
verification campaign. The location of the two test detectors and the reference detector,
the according electronic units as well as the cooling circuits can be seen. The folding
mirror is in position 1, able to transfer light from outside of the TVC to DLR’s reference
detector.

The measurement mode was Long Dark (with separate read-out of image
and store areas). Long dark mode is a special mode used for this frame transfer
CDD, in which the store section is read out line-by-line just before the end of
the long integration period, before the frame transfer from the image area into
the store are is performed. Subsequently the image area is read out in the usual
manner. This method allows the determination of the dark current in the store
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area under the store shield, as well as in the image area. Due to the different
processing, the image and store areas may generate different dark currents.

4 Results and Discussion

The measurements of the dark current were made with an integration time of
τint = 30 s with continuous cooling from 293K to 215K over a period of 12 h.
After 10 h cooling stopped and temperatures increased again. The measurement
mode was Long Dark (with separate read-out of image and store areas). All
42.723 temperature measurements for NIR and VIS detector are plotted in
Fig. 3(left).

If one follows the paper of Widenhorn [14], then the dark current can be
described according to the Arrhenius law:

DR = DR (T0 = 300K) · exp
(

−ΔE

kT

)
(10)

DR is the dark current in [e/s] and ΔE is the activation energy.

Fig. 3. Left: Temperature profile as a function of time. (black - UVVIS-Detector, red -
NIR-Detector), Right: Temperature dependence of the dark signal in the image (black)
and storage (red) zone, the evaluated dark signal is the difference of the signal in the
image and store zone (blue) at pixel (157, 350) (Color figure online)

A first look at the data shows that the measurement reflects the expected
dependency very well. In the following, the measurements shall be compared
with the expected mathematical dependencies. The green line in Fig. 3(right) is
the difference between the dark signal from the image zone and store zone. A fit
with the exponential approach (“Arrhenius plot”, Eq. (10)) fits the experimental
data quite well (see Fig. 3(right)).

The result and the comparison with the model Eqs. (7) and (9) shows Fig. 4.
A look on Fig. 4(right) shows, that the relative differences derived from the plot
4(left) fits the model well between 220K and 280K. (The reference temperature
is choosen at T = 276.6K.) At about 280K, a significant kink is visible. Between
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Fig. 4. Left: Temperature profile as a function of temperature according to the Arrhe-
nius plot. (black - DC from NIR-Detector, red - model based on Eq. (7), green - model
based on Eq. (9)) Right: Temperature dependence of the relative differences of the dark
signal and model signal at pixel (157, 350). (Color figure online)

Fig. 5. NIR temperature dependence of the dark current rate @Pixel = (240, 360).
Noticeable is the significant change in the activation energy at 280K.

280K and 295K one will find a linear deviation from the model. Above 295K,
the deviation is due to the saturation of the signal.

In the following, the kink will be examined more closely at about 280K. For
this purpose, the increase should be considered as a function of temperature.
Figure 5(left) shows the result. Here it becomes clear that at T = 280K, the
activation energy changes significantly. Figure 5(right) shows the plot with the
fit for the two different climbs.

The spatial distribution of the activation energy is shown in Fig. 6. Obviously,
the standard deviation is very small (1%–2%) and there are no abnormalities in
the spatial distribution of the two activation series.
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Fig. 6. Spatial distribution and histogram of the activation energy. (Histogram values
(+), in green a Gauss-fit to the histogram values, red line is the Gauss distribution
derived from mean and standard-deviation of the histogram) (Color figure online)

Finally, the dark current should be calculated at the point where the low
temperature and the high temperature dependence intersect. Temperature and
dark current are calculated according to Eq. (11)

TC = ΔEHT −ΔELT

k(log DHT
R0 −log DLT

R0 )
DR (TC) = DLT

R0 · exp
(
−ΔELT

kTC

) (11)

The histogram of the crossing Temperature and the dark current at Tc is shown
in Fig. 7.
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Fig. 7. Histogram of the crossing temperature and the dark current at Tc

5 Conclusion and Outlook

In this paper we report about an investigation of temperature behaviour of
the dark signal/current between 215K and 290K for a scientific CCD device.
The data set has an exceptionally high number of measuring points (900 mea-
surements with an integration time of 30s). The temperature measurements are
synchronous to the dark signal measurements.

Basically, the temperature behavior of the dark current is as expected theo-
retically and experimentally (see Eqs. (7) and (9)).

Two parts of the temperature dependence of the dark current could be
detected. These can be characterized, for example, by different activation ener-
gies. There is a clear separation of the activation energies at 280K. The result
is

– Low temp activation energy = 0.628 ± 0.004 eV
– High temp activation energy = 0.537 ± 0.009 eV
– The variation width for the activation energies for the entire chip was

extremely small (1%–2%).

Due to this, no variation of the pre-factor with the activation energy was
found (Meyer-Neldel rule). (See Fig. 3 from the paper [14].)

The main finding of the article is the change of the dark current rate with
the temperature. The reason is assumed to be the changing electric field within
the silicon chip, since the depletion depth decreases as the number of electrons
increases. Further measurements, which are to be carried out as part of the
verification of the flight model, should deepen this knowledge.
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Abstract. One of the most important tasks for visual inertial odom-
etry systems is pose estimation. By integrating system poses, motion
trajectory of the system can be obtained. Due to errors existing in calcu-
lations, the accumulated errors grow unbounded. To decrease the drift,
keyframes and loop-closure information can be used as additional refer-
ences for the system. To use this information, the system should able
to handle multi-relative measurements which cross many periods of filter
cycles. In Kalman filter based system the fusion of such information is one
of the toughest problems. In this paper, we propose an extended stochas-
tic cloning method to overcome this problem. The proposed method is
based on the error state Kalman filter. It also can be used in other
Kalman filters. The experimental results show that based on the pro-
posed method trajectory errors and uncertainties of filtered results are
decreased significantly. At the same time, the IMU’s biases are mod-
eled as a random-walk noise and be updated as well. This way, by using
keyframes and loop-closure information, the proposed method is able to
improve the accuracy of the sensor models.

Keywords: Kalman filter · Stochastic cloning · Visual odometry ·
Measurement fusion

1 Introduction

Ego-motion estimation is one of the key research topics for applications like
robotics, autonomous driving etc. A common way to obtain ego-motion infor-
mation is by using vision-aided inertial navigation system, which is an integrated
method of camera and inertial measurement unit (IMU). A relative motion to
the previous measurement can be obtained by fusing data from camera and IMU.
Since noise and errors exist in each measurement, the overall motion trajectory
which is obtained by only integrating relative motions subjects to large errors.
Post processing steps must be applied to eliminate errors and finally output an
optimized motion trajectory.

In computer vision community, the Kalman filter based method [1] is one of
the famous post processing methods. Beside Kalman filter, many methods [2–4]
are widely used as well. Some papers claim that optimization-based methods
c© Springer Nature Singapore Pte Ltd. 2020
M. Cree et al. (Eds.): ACPR 2019 Workshops, CCIS 1180, pp. 263–275, 2020.
https://doi.org/10.1007/978-981-15-3651-9_23
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Fig. 1. Illustration of the relationship between standard image frames, keyframes, and
loop-closure frames. Easy to see that all of them measure a transformation between
two frames.

outperform filter based method [5,6]. However, Kalman filter based method has
its advantage. It requires less computation resources, and it is able to provide
the quality of the estimation. At the same time, the performance gap between
Kalman filter and other methods is not significant according to our test. There-
fore, our research focuses on the Kalman filter based ego-motion estimation
method.

With each new relative motion estimation arriving, system state is updated
by fusing the data into Kalman filter. Such frame-by-frame pose calculation
method is commonly used for visual odometry. However, due to imperfect cal-
ibration and noise naturally exist in every sensor, errors cannot be completely
eliminated by filter. As a result, the accumulated errors grow unlimited.

To overcome above mentioned problem, keyframe [7,8] and loop-closure
method [9] are introduced for visual odometry. Both ideas involve previous mea-
surements as additional constraints to optimize current system state. By the
former method, most representative frames are selected as keyframes, and sev-
eral normal frames exist in between keyframe pairs. Once a new keyframe is
obtained, frame-by-frame estimated trajectory is optimized again by including
only the new keyframe and its adjacent keyframes. By loop closure method,
system detects whether a current environment is the same as in a previously
already passed scene. Accumulated error can be eliminated by using successfully
detected loop-closure information. Figure 1 shows relationship between standard
image frames, keyframes, and loop-closure frames.

Keyframe and loop-closure method perform well in optimization-based visual
odometry systems. To involve these methods, previous measurements must be
kept by system. Such requirement makes them difficult to be included in Kalman
filter based method which does not keep any historical data other than the
one previous state. We are inspired by [10] and propose a novel method, which
can handle multi-historical states in Kalman filter. With the proposed method,
keyframe and loop closure information are easily involved into Kalman filter
based system. Moreover, by using this information, uncertainties of filtered
results and IMU’s biases decrease significantly. This way, keyframes and loop
closure information are used to improve the accuracy of the sensor models.
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Fig. 2. Data fusion of visual odometry (VO) and IMU using strapdown algorithm (SDA)
and ESKF.

This paper is organized as follows: In Sect. 2, an introduction to error state
Kalman filter (ESKF) is given. ESKF is suitable for vision-aided inertial systems,
therefore, the proposed method is based on ESKF but also can be easily used in
other Kalman filters. In Sect. 3 the proposed extended stochastic cloning method
is described. Experimental results are presented in Sect. 4, and Sect. 5 concludes
the paper.

2 Error State Kalman Filter

Just by mathematical integration of raw data provided by an IMU through the
strapdown algorithm (SDA) it is possible to conclude on an absolute position
or orientation in space. Unfortunately, the IMU output data (angular rate w,
acceleration f) is associated with various sensor errors such as scaling, bias,
non-linearity etc. so that the exclusive use of an IMU to compute an absolute
pose will quickly lead to unacceptable results. By adding additional information
such as from visual odometry (VO) the importance of these sensor errors can
be reduced and the faulty navigation solution can be corrected. This sensor
data fusion (Fig. 2) is realized with an ESKF. It does not directly estimate the
variables of interest (x), but their errors (δ), which in turn serve as a correction
for the strapdown solution.

2.1 Strapdown Algorithm

The state vector of the strapdown algorithm (1) contains the rotation from body
to navigation frame represented as a quaternion qn

b , the position sn and speed
vn defined in the navigation frame as well as the body-fixed offsets of the IMU
angular rate bw or acceleration sensor bf . Each of the physical quantities is
subdivided into 3 spatial axes, resulting in a state vector length of 16.

x16×1 =
[
qn
b sn vn bw bf

]T
(1)

The Eqs. (2) to (6) describe the time-discrete propagation of the individual state
variables for the time step dt = tk+1 − tk. The operator ◦ in (2) describes a
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quaternion multiplication between the previous qn
b,k and an orientation change,

fed from the offset-corrected IMU angular rate measurement wk = w̃k − bw,k.
The position sn

k is propagated with the trapezoidal rule. The velocity update
(4) is calculated with the offset-corrected acceleration fk = f̃k −bf,k. The cross
product inside the second bracket describes a rotation correction, gn stands for
the local gravity vector. Both IMU offsets (5, 6) do not change during a time
step.

qn
b,k+1 = qn

b,k ◦ q (wk · dt) (2)

sn
k+1 = sn

k +
(
vn
k + vn

k+1

) · dt/2 (3)

vn
k+1 = vn

k + R(qn
b,k) · (fk + 0.5 · wk × fk) · dt − gn · dt (4)

bw,k+1 = bw,k (5)

bf,k+1 = bf,k (6)

2.2 Error State Equations

The error state Kalman filter estimates the error values of the physical quan-
tities to the navigation system. Upon arrival of visual odometry measurement,
the navigation system pose error is cloned (δαc, δsc) and the error state vector
(7) is extended by it, which yields to a δ vector length of 21. This cloning serves
to accurately project the system uncertainties between two visual odometry sur-
veys.

δ21×1 =
[
δα δs δv δbw δbf δαc δsc

]T
(7)

δk+1 = Φk · δk + Gk · wk (8)

=
(

(I15 + F 15 · dt) 015×6

06×15 I6

)
· δk +

(
G15×12 · dt

06×12

)
· wk (9)

F 15 =

⎛

⎜
⎜
⎜
⎜
⎝

03 03 03 −R 03

03 03 I3 03 03

−[Rfk]× 03 03 03 −R
03 03 03 03 03

03 03 03 03 03

⎞

⎟
⎟
⎟
⎟
⎠

(10)

To propagate the errors δ in (8) the time-discrete transition matrix Φk is
obtained from the continuous process matrix F 15 by first order Taylor series
approximation, where F 15 is obtained by linearizing the strapdown equations in
Sect. 2.1. The process noise wk in (8) is largely determined by the properties of
the IMU used. This vector consists of the standard deviations for the angular
rate noise nw, the angular rate bias instability nbw , the acceleration sensor noise
nf and the acceleration bias instability nbf .

w12×1 =
[
nw nbw nf nbf

]T (11)
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The associated time-discrete process noise matrix G can be set up as follows:

G15×12 =

⎛

⎜
⎜
⎜
⎜
⎝

R 03 03 03

03 03 03 03

03 03 R 03

03 I3 03 03

03 03 03 I3

⎞

⎟
⎟
⎟
⎟
⎠

(12)

2.3 Visual Odometry Observation

The visual odometry measurement from the stereo camera system T k+1
k,vo pro-

vides 6 dof relative pose information between two time steps tk and tk+1. The
relative pose is composed of 3d angle and position information represented as a
homogeneous transformation matrix:

T k+1
k,vo = T

(
Δq ,Δs

)
vo

=

(
R(Δq)

[
Δsx Δsy Δsz

]T

01×3 1

)

vo

(13)

The projection of (13) on the absolute state vector (1) can be calculated by the
difference between the strapdown algorithm poses at time tk and tk+1.

T k+1
k,n = T (qk, sk)

−1
n · T

(
qk+1, sk+1

)
n

(14)

The navigation filter estimates error terms, therefore its observation data is
calculated from the difference between the strapdown algorithm and the visual
odometry. If a VO reading is available, the error measurement ΔT k+1

k can be
described by:

ΔT k+1
k,n = T n

vo

(
T k+1

k,vo

)−1 (
T n

vo

)−1

T k+1
k,n (15)

T n
vo transforms measurement from VO frame to IMU frame. By partial derivation

of (14) towards the angle and position errors at the current (δα, δs) or previous
time (δαc, δsc), the measurement matrix Hk+1 can be set up.

Hk+1 =
(
Hk+1|k 06×9 Hk|k

)
(16)

Hk+1|k is defined in as follows:

Hk+1|k =
∂T k+1

k,n

∂(δαk+1, δsk+1)
(17)

According to [10], it is known that

Hk|k = −Hk+1|kF (18)

F is the accumulative transformation matrix, where F =
∏m

i=1 Φk+i.
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2.4 Strapdown Correction

After a successful filter cycle, the error filter state vector δ is used to enhance
the state vector x of the strapdown algorithm. Since visual odometry provides
a measurement with 6 degrees of freedom, i.e. angle and position are not pro-
cessed separately from each other, the pose is also corrected in the form of a
multiplication with homogeneous transformation matrices.

T (qn,+
b,k+1, s

n,+
k+1) = T (δα, δs)−1 · T (qn,−

b,k+1, s
n,−
k+1) (19)

The remainder of the state vector (1) is corrected by simply subtracting the
associated error terms of (7).

v+
k+1 = v−

k+1 − δv (20)

b+
w,k+1 = b−

w,k+1 − δbw (21)

b+
f,k+1 = b−

f,k+1 − δbf (22)

3 Extended Stochastic Cloning

Relative motion estimation from camera system is an interdependent measure-
ment of the system state at two time instants. The stochastic cloning method is
commonly used to processing such measurement. As shown in Fig. 1, the relative
motion estimation of keyframe and loop-closure are interdependent measure-
ments as well. In this case, the system states at every keyframe time instants
must be kept as well, this means that Kalman filter must be able to handle
multiple system states simultaneously. An extended stochastic cloning method
is proposed for such purpose.

First of all, instead of the standard stochastic cloning, the error state is
augmented as follows:

Δx̆k = ( Δxk,Δxe,k,Δxc,k)
T (23)

Δxk is the updated system state at time k, Δxe,k and Δxc,k are augmented sys-
tem states for keyframe and standard frame. The keyframe term Δxe,k must be
located on the left of the standard-frame term Δxc,k. Therefore, the covariance
matrix equals

P̆ k =

⎡

⎣
P k P e,k P c,k

P e,k P e,k 0
P c,k 0 P c,k

⎤

⎦ (24)

In Eq. (24), P k = P e,k = P c,k. The reason for the different notation is to
indicate explicitly the covariance elements for each term in the error state.

The zero terms in the covariance matrix are cross covariance between the
cloned terms for standard frames and keyframes. Because the standard frames
and keyframes are independently measured by different modules, therefore, they
are uncorrelated.
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Next, the prediction steps are performed whenever each IMU measurement
arrives.

P̆ k+n|k = Φ̆k+nP̆ kΦ̆
T
k+n + Ğk+nQk+nĞT

k+n (25)

Φ̆k+n is the augmented state transformation matrix. Qk+n is the covariance
matrix of the process noise. Ğk+n is the augmented matrix of the noise transition
matrix Gk+n in Eq. (12):

Ğk+n =
[
Gk+n

0

]
(26)

Once the next standard frame is obtained, the filter state and the covariances
are updated. Note that the top-left block in Eq. (24) is an independent entity.
Therefore, in the propagated covariance matrix P̆ k+n|k, the top-left block is
entirely updated.

Consider that a new keyframe is detected at time k + m. The system state
can be updated as following

Δx̆k+m = Δx̆k + K̆qi (27)

P̆ k+m|k+m = P̆ k+m|k − K̆H̆k+mP̆ k+m|k (28)

K̆ is Kalman gain which equals

K̆ = P̆ k+m|kH̆
T
k+mS̆−1 (29)

where
S̆ = H̆k+mP̆ k+m|kH̆

T
k+m + Σqi

(30)

Σqi
is the covariance matrix of the innovation vector qi which includes three

Euler angles and three translation elements corresponding to T i. H̆k+m is the
augmented observation matrix which is defined as follows:

H̆k+m = [Hk+m|k,06×9,Hk|k,06×9,06×15] (31)

Here, 06×15 is the entry relative to the standard frame, Hk|k relates to the cloned
term in the augmented error state Δx̆k, and Hk+m|k relates to the original terms
in Δx̆k. 06×9 relates to the IMU terms, because the camera measurement does
not provide any additional information about the IMU entries in Δx̆k. Hk+m|k
is defined as follows:

Hk+m|k =
∂T k+m

k,n

∂(δαk+m, δsk+m)
(32)

Hk|k is the observation matrix relative to the keyframe. Because the error mea-
surement is derived as follows:

ΔT k+m
k,n = T n

vo

(
T k+m

k,vo

)−1 (
T n

vo

)−1

T k+m
k,n (33)
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Therefore, Hk|k can be obtained with partial derivatives of T k+m
k,n w.r.t.

(δαk, δsk) (see Eq. 34). In this way, the accumulative transformation matrix
(Eq. 10) is not needed anymore; this is even faster than the standard stochastic
cloning:

Hk|k =
∂T k+m

k,n

∂(δαk, δsk)
(34)

Back to Eq. (27), because the elements in Δx̆k are kept as being zero, there-
fore, Δx̆k+m = K̆qi. Finally, the updated error state Δx̆k+m is added to the
predicted state x̃k+m for obtaining the filtered system state

xk+m = x̃k+m + Δxk+m (35)

Δxk+m is a vector which includes the original state terms in Δx̆k+m. In this way,
the filter is updated by using keyframe measurements. All elements in the system
state x benefit from additional keyframes and loop-closure measurements.

The above steps are repeated for subsequent measurements, the size of the
filter state grows constantly. Once the number of terms in the filter state reaches
a maximum, some terms must be removed.

Time-stamp intervals between keyframes are checked. A keyframe is removed
if it is defined by a minimum-length interval to its neighbors. This scheme guar-
antees a uniform distribution of the remaining keyframes with respect to the
time dimension.

4 Experimental Results

To evaluate performance of the proposed keyframe and loop-closure methods,
several realistic indoor and outdoor datasets are recorded. Our test platform is
named as Integrated Positioning System (IPS), which is an ESKF based visual
inertial odometry system.

Each of the tests includes two basic steps. First, the performance of the
original system is checked on the datasets. Then, the keyframe and loop-closure
measurements are involved to the IPS system by using the proposed method,
the complete processing is performed again.

By comparing the results, an improvement of the trajectory, of the system
uncertainties, and the sensor-noise model can be easily seen.

First, a static dataset is used, the dataset is composed of a static image
sequence for about 34 min in 10 Hz.

The static case is no challenge for keyframe detection. The keyframes can even
be defined by a fixed time interval. However, this dataset is an ideal resource to
check the correctness of the filter algorithm. Only if the proposed filter algorithm
works fine, then the impact of the keyframe method to the system can be ana-
lyzed. On the other hand, as mentioned before, the loop-closure measurement
is fused in the same manner as for the keyframes. Therefore, the static test is
selected as the first experiment.
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Fig. 3. Top-left: yx-view of the measured trajectory. Top-right: yz-view. Middle-left:
Uncertainties of measured positions show that they grow over time. The horizontal axis
is the time stamp. Middle-right: Uncertainties of measured rotations. Rotations about
the x and y axis are corrected by gravity which is measured by the IMU. Therefore,
rotation uncertainties for these two axes are kept in a stable range and they are overlaid
in the figure. Bottom: Uncertainties of angular-velocity biases. these curves indicate the
confidence of the modeled IMU drift.

The quality of the IPS measurements is affected by the sensor noise, any
imperfect calibration, and so forth. On the other hand, although the scene is
fixed in the static dataset, illumination and shadows of objects change with the
process over time. Therefore, even given that the system is fixed at a physical
position, the measured trajectory has a random drift.
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Fig. 4. Top-left: yx-view of measured trajectory. Top-right: yz-view of measured tra-
jectory. Middle-left: Part of uncertainties of measured positions, uncertainties decrease
once keyframe measurement arrives. Patterns repeat during the whole process. The
full figure is too dense to be displayed. Middle-right: Part of uncertainties of measured
rotation. As mentioned before, the rotation about the x and y axis is corrected by
gravity, thus, there is no significant effect on both. Bottom: Part of uncertainties of
angular velocity biases.

Figure 3 shows the measurements using the original IPS. In the test, the root
mean square (RMS) 3D error between start and end point equals 0.129 m.

Next, keyframe measurements are involved into the system, the maximum
keyframe interval equals 50 frames. The testing results are shown in Fig. 4. In
this case, the RMS 3D error equals 0.004 m.
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Fig. 5. Top: Both figures show the part of the measured trajectory. They clearly indi-
cate an error between start and end point. Middle-left: Uncertainties of measured posi-
tions. Middle-right: Uncertainties of measured rotation. Bottom-left: Uncertainties of
modeled angular velocity biases. Bottom-right: Modeled angular velocity biases.

The test shows that the filter works as expected. The error of the measured
trajectory (when using the new system) is about 32 times less than for the
original IPS.

Next, the system is tested on a dynamic dataset. Figure 5 shows the measure-
ments of the original IPS. Figure 6 shows the results of the IPS with keyframe
and loop-closure measurements.
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Fig. 6. Top: Both figures show the part of the measured trajectory. Middle-left:
Uncertainties of measured positions. Middle-right: Uncertainties of measured rotation.
Bottom-left: Uncertainties of modeled angular velocity biases. Bottom-right: Modeled
angular velocity biases.

The start and end position of the dynamic route is the same point. Therefore,
a loop-closure should be detected by the system at the end of the image sequence.

Figure 6 shows the effect of loop-closure. The trajectory is corrected by loop-
closure measurements and jumps to a position very close to the start point.

Furthermore, all of the filter states (uncertainties, sensor biases) are updated
at the same time. In this case, the sensor model is updated by the proposed
method.
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5 Conclusion

In this paper, an extended stochastic cloning method is proposed to overcome one
of the toughest problems in the Kalman filter, the information-fusion problem
of relative measurements which cross many periods of filter cycles. The testing
results show the performance of the proposed method. The trajectory error is
reduced to a very small number by loop-closure detection. Moreover, the biases
of the sensors and the uncertainties of the system are reduced by involving
keyframes and loop-closure detection, which means that the sensor model is
updated by the proposed method. In our future work, we will explore how the
updated sensor model affects the whole positioning system.
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