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Abstract A special game against nature is examined in this paper, in which nature
controls timings of repairable and non-repairable failures of a system of equipment,
and preventive maintenance, repairs and preventive replacement policies are the
countermeasures. We optimize the imperfect preventive maintenance policy for a
multi-unit system with different initial virtual age units. We develop a binary integer
programming problem, where the management decides on the optimal preventive
maintenance policy to minimize the total expected maintenance cost not to exceed
a given budget. The mathematical formulation is developed for a multi-unit sys-
tem, considering different preventive maintenance levels for each unit. Numerical
examples with sensitivity analysis are performed to illustrate the performance and
efficiency of the proposed model. Also, the model is examined for a real case study
from railway industry. The results determine the optimal preventive maintenance
policy and provide managerial insights based on computational analysis.

Keywords Multi-unit system · Imperfect preventive maintenance · Initial virtual
age · Selective maintenance · Optimization

1 Introduction

The study of games against nature is an important field of game theory. The payoff
of the active player might depend on weather conditions, rainfall, currency exchange
rates, timings of breakdowns of systems of equipment to mention only a few. All
these uncertain factors can be predicted with mathematical statistical methods and so
some probabilistic characterizations become available making these factors random
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variables. There are usually two different ways to deal with such situations. In one
case the probabilities of unfavorable outcomes are limited or minimized considering
the situation as a zero-sum two-person game. In the other approach the expected
payoff is optimized. This second type of approach is the usual method in reliability
and quality engineering. In this paper we will also follow this approach.

In competing industries, units and machines are subject to failure by usage and
time (Wang 2002). Performing perfect maintenance is not always possible for all
the units due to the limitation in resources, budgets and time (Liu and Huang 2010).
Maintenance can be performed imperfectly at different levels to return the system to
somewhere between as good as new and as bad as old. Different models of imper-
fect maintenance have been developed by academic researchers, such as virtual age
models. A comprehensive review is presented in (Pham and Wang 1996).

Virtual age models are developed by Kijima (1989). In one model, the virtual
age of a system after nth maintenance is yn = yn−1 + αXn , where yn−1 is the
virtual age of the system before nth maintenance, α is the level of maintenance
(0 ≤ α ≤ 1) and Xn is the nth time to failure. In another model, the nth repair
decreases all the accumulated damage up to nth failure, yn = α(yn−1 + Xn). Two
extensions of the Kijima model; proportional age reduction (PAR) and proportional
age setback (PAS), have been studied by different researchers (Sanchez et al. 2009;
Martorell et al. 1999; Zhou et al. 2007). Ferreira et al. (2015) presented a Weibull-
based generalized renewal process using mixed virtual age model. Tanwar et al.
(2014) provided a survey for imperfect repair models for repairable systems using
the concepts of Generalized Renewal Process (GRP), arithmetic reduction of age
(ARA), and arithmetic reduction of intensity (ARI).

Due to limitations in budget, resources, and time,maintenancemight be performed
at different levels and managers should make the decision according to actual condi-
tion of each unit. This sort ofmaintenance action is called selectivemaintenance (Cao
et al. 2018; Rice 1999; Cassady et al. 2001), which is widely used in industry. Cas-
sady et al. (2001) developed a mathematical programming model to select a subset
of maintenance actions for making selective maintenance decisions, where compo-
nent life length followed Weibull distribution. Cassady et al. (2001) established a
framework for modeling and optimizing selective maintenance, considering differ-
ent models and concluded different models resulted in different optimal selective
maintenance decisions. Lüx et al. (2012) proposed a non-linear binary mathematical
model for selective maintenance considering cannibalization and multiple mainte-
nance actions. Pandey et al. (2013) addressed a selective maintenance model for a
binary system under imperfect maintenance. They consider age reduction and hazard
adjustment tomake themodel assumptionmore realistic. Cao et al. (2017) proposed a
simulation method for selective maintenance model to maximize system availability.
Time and budget are the most frequent constraints in selective maintenance models,
which could be negligible, certain or uncertain (Ali et al. 2011). We consider the
budget as a challenging constraint to select the best subset of maintenance actions.

Optimizing maintenance model of a system is more complex when the system
consists ofmany components.Multi-unitmaintenancemodels are focused on optimal
maintenance policies for a system with several units (Nicolai and Dekker 2008;
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Cho and Parlar 1991). A multi-unit system might be affected by competing risks,
which is modeled in (Zhang and Yang 2015). The authors considered a repairable
multi-component system, where maintenance policy restores the entire system to as-
good-as-new state after maintenance. Such assumptions are not realistic. Combining
multi-unit system assumption and virtual age is used in (Liu and Huang 2010; Dao
and Zuo 2017) to select optimal maintenance strategies. Liu et al. (2018) developed
a selective maintenance model to choose a subset of maintenance actions, where
maintenance time is stochastic. The authors applied the proposed model on a three-
unit system and proposed their model application in industry. A systematic review
of the selective maintenance models in multi-unit systems is presented in (Cao et al.
2018).

In this paper, we introduce a model for a selective maintenance policy of a multi-
unit system with different initial virtual ages and different maintenance levels. The
objective is to find the optimal preventivemaintenance level for each unit tominimize
the total maintenance cost subject to budget constraints. The imperfect preventive
maintenance cost, replacement cost (for non-repairable failures) andminimalmainte-
nance cost (for repairable failures) are included in themaintenance costs.We develop
a binary integer programming model to analyze the proposed problem. To the best
of our knowledge, this is the first study that optimizes the maintenance program for
a multi-unit system with considering initial virtual ages, imperfect maintenance, and
various maintenance levels.

This paper is organized as follows. InSect. 2,wepresent the problemdefinition and
problem formulation. Numerical examples are given in Sect. 3 to illustrate the model
and its efficiency. Sensitivity analysis is performed in this section as well. Section 3
includes a real case study from the railway industry. Finally, Sect. 4 concludes the
paper and provides future research directions.

2 Problem Definition

The basic problem is finding the optimal preventive maintenance policy for a multi-
unit system with different initial virtual ages. In this problem, we assume that there
are different preventive maintenance levels for each unit. First, we briefly describe
the maintenance level concept.

In many industrial environments, there are different maintenance levels for differ-
ent machines and units. As an example, based on the information of Mobility Work
website (Giorgio and Pulcini 2018), the maintenance levels could be categorized
in 5 different levels. Level 1 of maintenance includes simple maintenance actions
that are necessary for the operations, such as condition monitoring rounds and daily
lubrication. Amaintenance Level 2 is the simple procedures performed for the equip-
ment that is usually implemented by a qualified worker with a brief training, such
as controlling the operation parameters in equipment, breaking and safety devices
control. Level 3 consists of operations which need complex procedures and a quali-
fied technician with detailed procedure. Level 4 maintenance, performed by a team,



236 M. Hamidi et al.

takes care of operations whose procedures use specific techniques or technologies,
such as measuring and analyzing the machine vibration and Level 5 maintenance,
which is named renovation or reconstruction operations, includes operations whose
procedures apply a particular know-how and need special techniques, technologies
or processes, like complete inspection on dismantled machines. In here, first differ-
ent maintenance levels for each unit needs to be determined and next the following
formulation can be used to determine the optimal maintenance policy.

2.1 Problem Formulation

The following notations are used throughout the paper.

k = (1, 2, . . . , N ) Set of all units
Mk Number of possible preventive maintenance levels for

each unit k
i(0 ≤ i ≤ Mk) Preventive maintenance level i, which decreases the

virtual age of each unit k from Tk to αki Tk where
αki ∈ [0, 1]

C (m)
ki Preventive maintenance cost for unit k at maintenance

level i
Rk Number of repairable failure types for each unit k
ρk j (t) for j = 1, 2, . . . , Rk The failure rate of each repairable failure type j for each

unit k
c(r)
k j Cost of minimal repair for repairable failure type j for

each unit k
Fk(t) The CDF of time to the first non-repairable failure for

each unit k from zero virtual age
C (R)
k Cost of failure replacement for unit k

B(m) Preventive maintenance budget
B(R) Replacement budget
B(r) Minimal corrective repair budget

Consider a multi-unit system with N units and initial virtual ages T1, T2, . . . , TN .
Themanagement wants to decide on the optimal preventive maintenance plan, which
wouldminimize total expected cost. The preventivemaintenance is performed at time
zero and the planning horizon is the next T time periods. For each unit k, preventive
maintenance with level i decreases the virtual age of the unit from Tk to αki Tk , where
αki ∈ [0, 1]. There are Mk possible preventive maintenance levels, for each unit, i.e.
0 ≤ i ≤ Mk . The preventive maintenance cost C (m)

ki depends on the unit k and the
maintenance level i. For each unit k, maintenance level 0 means that no preventive
maintenance is performed with factor αk0 = 1 and cost C (m)

k0 = 0, while the value
αki = 0 refers to preventive replacement.

Each unit is subjected to both non-repairable failure and Rk types of repairable
failures, with failure rate ρk j (t) for j = 1, 2, . . . , Rk . Let c

(r)
k j and C (R)

k be the costs
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of minimal repairs for repairable failure type j and that of the failure replacement
including possible damages. So generally three types of maintenance is considered
for each unit: preventive maintenance, minimum repair for repairable failures and
replacement for non-repairable failures.

During any time period of length X, the expected number of type j repairable
failures is clearly

αki Tk+X∫

αki Tk

ρk j (t)dt (1)

So the total expected repair cost becomes:

Rk∑
j=1

c(r)
k j

αki Tk+X∫

αki Tk

ρk j (t)dt (2)

Let t denote the time of the first non-repairable failure, then the conditional CDF
considering the initial virtual age and imperfect preventive maintenance is given as

Fki (t) = Fk(t + αki Tk) − Fk(αki Tk)

1 − Fk(αki Tk)
(3)

For simplicity, we assume that at most one non-repairable failure might occur
during the considered time period of length T. If it occurs at time X ∈ (0, T ), then
the unit becomes as new, so the expected number of repairable failures until the end
of the planning horizon is

T−X∫

0

ρk j (t)dt (4)

for failure type j, so the expected total repair cost for all types of repairable failures
after the non-repairable failure is

Rk∑
j=1

c(r)
k j

T−X∫

0

ρk j (τ )dτ (5)

If the time of the non-repairable failure X ∈ (0, T ) were known, then the total
minimal repair cost for repairable failures would have the following form:
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Γki (X) =
Rk∑
j=1

c(r)
k j

⎡
⎣

αki Tk+X∫

αki Tk

ρk j (t)dt +
T−X∫

0

ρk j (t)dt

⎤
⎦ (6)

Let fki (t) = F ′
ki (t). The total expected cost of preventive maintenance, minimal

repairs and possible replacement during time period T is given as

ψki (T ) =
T∫

0

Γki (X) fki (X)dX + Γki (T )(1 − Fki (T )) + C (R)
k Fki (T ) + C (m)

ki

=
Rk∑
j=1

c(r)
k j

T∫

0

⎡
⎣

αki Tk+X∫

αki Tk

ρk j (t)dt +
T−X∫

0

ρk j (t)dt

⎤
⎦ fki (x)dx

+
Rk∑
j=1

c(r)
k j

⎡
⎣

αki Tk+T∫

αki Tk

ρk j (t)dt

⎤
⎦(1 − Fki (T )) + C (R)

k Fki (T ) + C (m)
ki (7)

Now, we can formulate the optimization problem:

min
N∑

k=1

Mk∑
i=0

xkiψki (T ) (8)

Subject to:

Mk∑
i=0

xki = 1, ∀ k (9)

N∑
k=1

Mk∑
i=0

xkiC
(m)
ki ≤ B(m) (10)

N∑
k=1

Mk∑
i=0

xki

⎛
⎝

T∫

0

Γki (X) fki (X)dX + Γki (T )(1 − Fki (T ))

⎞
⎠ ≤ B(r) (11)

N∑
k=1

Mk∑
i=0

C (R)
k xki Fki (αki Tk + T ) ≤ B(R) (12)

In the proposed model, the decision variables are as follows:

xki =
{
1
0
if maintenance level i is chosen for unit k

otherwise
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Equation (8) is the objective function which is the overall expected maintenance
cost. Equation (9) implies that for each unit only one maintenance level should be
considered and constraint (10) shows the limitation in total preventive maintenance
cost. The budget limitation for total corrective repair cost and replacement cost are
required by inequalities (11) and (12), respectively.

It should be noted that if the unit failure rate follows Weibull distribution, then
we have

ρk j (t) = βk j

ηk j

(
t

ηk j

)βk j−1

,∀ k, j (13)

Fk(t) = 1 − e
−

(
t

ηk

)βk

,∀ k (14)

Fki (X) = Fk(X + αki Tk) − Fk(αki Tk)

1 − Fk(αki Tk)
,∀ k, i (15)

fki (X) = F ′
ki (X) = fk(X + αki Tk)

1 − Fk(αki Tk)

= 1

1 − Fk(αki Tk)

βk j

ηk j

(
X + αki Tk

ηk j

)βk j−1

e
−

(
X+αki Tk

ηk j

)βk j

∀ k, i (16)

So Eq. (6) can be rewritten as:

Γki (X) =
Rk∑
j=1

c(r)
k j

⎡
⎣

αki Tk+X∫

αki Tk

ρk j (t)dt+
T−X∫

0

ρk j (t)dt

⎤
⎦

=
Rk∑
j=1

c(r)
k j

(
1

ηk j

)βk j [
(αki Tk + X)βk j − (αki Tk)

βk j + (T − X)βk j
]

Then, we can obtain Eq. (7) as follows:

ψki (T ) =
T∫

0

	ki (X) fki (X)dX + 	ki (T )(1 − Fki (T )) + C (R)
k Fki (T ) + C (m)

ki

=
Rk∑
j=1

c(r)
k j

(
1

ηk j

)βk j
T∫

0

[(αki Tk + X)βk j − (αki Tk)
βk j

+ (T − X)βk j ] fki (X)dX

+
Rk∑
j=1

c(r)
k j

(
1

ηk j

)βk j [
(αki Tk + T )βk j − (αki Tk)

βk j
]
(1 − Fki (T ))

+ C (R)
k Fki (T ) + C (m)

ki (17)
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We can compute the equations of constraints accordingly. We use Weibull
distribution as the unit failure rate in the following numerical examples.

3 Numerical Examples

In this section,we solve two simple numerical examples and one realworld case study
by utilizing CPLEX software to illustrate the efficiency of the proposed model.

3.1 Example 1

We consider a 3 unit system K = (1, 2, 3) with initial virtual ages Tk = (1, 1, 1.5)
years. Each unit has 3 preventive maintenance levels and 4 repairable failure types,
j = (1, 2, 3, 4). The planning horizon is T = 3 years, and the budget for preventive
maintenance, minimal repair and replacements are B(m) = $40, B(r) = $1000,
B(R) = $200, respectively. The Weibull scale parameter and shape parameter for
each repairable failure for each unit is presented in Tables 1 and 2, respectively.
Cost of replacement is C (R)

k = (5, 5, 5) and cost of minimal repair and preventive
maintenance is presented in Tables 3 and 4, respectively. Effect of each preventive
maintenance level for each unit can be seen in Table 5.

Applying the above parameters, we first compute the total expected maintenance
costs, ψki (T ), and the results are presented in Table 6. The total maintenance cost
includes preventive maintenance, minimal repair for all repairable failure types and
replacement cost for non-repairable failure.

Table 1 Value of scale parameter ηk j of Weibull distribution for Example 1

ηk j (scale parameter of repairable failure of type j)

1 2 3 4

Units, k 1 1 0.9 1 1

2 0.8 0.6 0.4 0.9

3 0.6 0.7 0.5 0.3

Table 2 Value of shape parameter βk j of Weibull distribution for Example 1

βk j (shape parameter of repairable failure of type j)

1 2 3 4

Units, k 1 1.1 1.2 1.3 1.4

2 1.4 1.3 1.2 1.1

3 1.6 1.6 1.6 1.6
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Table 3 Cost c(r)
k j of minimal repair of failure of type j for each machine k for Example 1

c(r)
k j (cost of minimal repair for repairable failure of type j)

1 2 3 4

Units, k 1 2 2.1 2.2 2.3

2 1.5 1.4 1.3 1.2

3 1.7 1.7 1.7 1.7

Table 4 Preventive maintenance cost C (m)
ki for unit k at maintenance level i for Example 1

C (m)
ki (preventive maintenance cost at maintenance

level i)

1 2 3

Units, k 1 1 1.5 2

2 2 2.5 3

3 2 2.5 3

Table 5 Age reduction coefficient αki in virtual age model for Example 1

αki (age reduction coefficient, level i)

1 2 3

Units, k 1 0.9 0.8 0.7

2 0.5 0.4 0.3

3 0.7 0.6 0.5

Table 6 The total expected cost ψki (T ) of preventive maintenance, minimal repairs and possible
replacement for Example 1

ψki (T ) (total expected maintenance cost at level i)

Level 1 Level 2 Level 3

Units, k Unit 1 40.705 40.882 41.223

Unit 2 45.003 45.517 46.240

Unit 3 139.032 136.161 137.086

Next, we optimize function (14) and obtain $222.318 as the optimal objective
value. The optimal decision variables can be seen in Table 7. It shows that the
management should consider preventive maintenance level 1 for unit 1 and unit 2,
and level 2 for unit 3. It is clear that any other combination of maintenance levels for
the units would lead to larger maintenance costs.
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Table 7 The optimal preventive maintenance policy for Example 1

Maintenance level, i

Level 1 Level 2 Level 3

Units, k Unit 1 1 0 0

Unit 2 1 0 0

Unit 3 0 1 0

3.1.1 Discussion on Weibull Distribution Parameters

The Weibull parameters are the critical factors in determining the optimal solutions.
We are now examining how the value of shape and scale parameters affect the optimal
solution. First, we solve the proposed example for random values of shape parameter
βk j . The results are shown in Table 8. It is pretty clear that even a small change in
shape parameter would lead to change in optimal solution. Likewise, we perform

Table 8 Optimal solution corresponding to various values of shape parameter βk j

βk j (shape parameter of each repairable failure type j
for each unit k)

Optimal maintenance level

Case 1

βk j =

⎡
⎢⎢⎣
1.2 1.3 1.4 1.5

1.5 1.4 1.3 1.2

1.7 1.7 1.7 1.7

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 2

βk j =

⎡
⎢⎢⎣
1.3 1.4 1.5 1.6

1.6 1.5 1.4 1.3

1.8 1.8 1.8 1.8

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 3

βk j =

⎡
⎢⎢⎣
1.4 1.5 1.6 1.7

1.7 1.6 1.5 1.4

1.9 1.9 1.9 1.9

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 4

βk j =

⎡
⎢⎢⎣

1 1.1 1.2 1.3

1.3 1.2 1.1 1

1.5 1.5 1.5 1.5

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 5

βk j =

⎡
⎢⎢⎣
0.9 1 1.1 1.2

0.9 1.2 1.8 0.8

1.1 1.5 0.9 2

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 6

βk j =

⎡
⎢⎢⎣
0.8 0.9 1 1.1

0.8 1.7 0.6 1.2

1 0.8 1.9 1.4

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 1 0

⎤
⎥⎥⎦
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Table 9 Optimal solution corresponding to various value of scale parameter ηk j

ηk j (scale parameter of each repairable failure type j for
each unit k)

Optimal maintenance level

Case 1

ηk j =

⎡
⎢⎢⎣
1.5 1.2 0.8 1.8

0.3 1.2 1 0.6

0.9 1.7 1.5 0.9

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

0 0 1

0 0 1

⎤
⎥⎥⎦

Case 2

ηk j =

⎡
⎢⎢⎣

1 1.5 2 2.5

0.3 0.4 0.5 0.6

4 3 2 1

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

0 0 1

0 0 1

⎤
⎥⎥⎦

Case 3

ηk j =

⎡
⎢⎢⎣
0.7 1.7 1.2 0.4

1.3 0.2 1.9 1.6

1.9 0.7 0.5 1.8

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 1

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 4

ηk j =

⎡
⎢⎢⎣
1.2 1.2 1.2 1.2

1 1 1 1

0.8 0.8 0.8 0.8

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 0 1

⎤
⎥⎥⎦

Case 5

ηk j =

⎡
⎢⎢⎣
1 0.9 0.6 0.3

2 1.6 1.2 0.8

3 2 1 0.1

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

0 0 1

⎤
⎥⎥⎦

Case 6

ηk j =

⎡
⎢⎢⎣
0.3 0.9 1.4 0.3

1.2 0.6 1.2 0.6

0.5 2 0.3 0.1

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

1 0 0

⎤
⎥⎥⎦

the optimization problem for various value of scale parameter ηk j (Table 9). Like
as shape parameter, any deviation in scale parameter value remarkably changes the
optimal solution. Therefore, it is very important for decision makers to indicate the
precise and correct value ofWeibull parameters if theywant to obtain the real optimal
solution.

There are different methods to estimate the distribution parameters. Generally,
these methods categorized into two groups: (1) the graphically method such as prob-
ability plotting and hazard plotting, and (2) the analytically methods such as method
of moment (MOM) least square method (LSM), maximum likelihood estimation
(MLE) and density power method (DPM). All these methods depend on the data
quality that are used to estimate the parameters. Many of data analysis and statistical
packages easily compute the Weibull parameters based on the given data.
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3.2 Example 2

In this example, we consider a system with 10 units, 5 preventive maintenance levels
for each unit, and 8 types of possible repairable failures. The planning horizon is T =
5 years and we assume the maintenance budgets as B(m) = $4000, B(R) = $20000,
and B(r) = $100000. The rest of the parameters are presented in Tables 10, 11, 12,
13, 14 and 15.

We next compute the total expected maintenance costs for all units in all possible
preventive maintenance levels, and the results can be seen in Table 16.

We then solve the optimum problem to find the optimal solution. The results show
that minimum total maintenance cost for all units is $64768.95 The corresponding
optimal decision variable are given in Table 17. Based on the results, we conclude
that the management should apply maintenance level 1 for all units except for units
7 and 10, where maintenance level 2 is optimal.

Next, we perform sensitivity analysis based on the Example 2 information. First,
we vary the value β11 ofWeibull distribution shape parameter of unit 1 at failure type
1. The results are shown in Fig. 1.

It is clear that when the shape parameter is increased, the total maintenance cost
is increased, as well. The same process for the Weibull scale parameter η11 of failure
type 1 can be done.

Next we repeat the analysis of the maintenance costs based on different values of
T for all units in maintenance level 1. The results given in Fig. 2 show that increase
in the total life cycle for each unit leads to an increase in the maintenance cost. Thus,
when the considered unit age becomes larger, the maintenance cost increases as
well. From managerial point of view, it is implied that the unit replacement strategy
is justified when the unit age becomes old.

3.3 Case Study

In this section we present a real world application of the model for railroad tracks.
Track repairable failure types are categorized into twomain categories, structural and
geometrical failures. While structural defects are created by structural conditions of
the track, including rail, sleeper, fastening, sub-grade and drainage system, geometry
failures are related to bad condition of the rail geometry parameters, such as profile
and alignment (He et al. 2015). In this study, we consider three of themajor repairable
geometry failure types as follow:

• The first is the surface failure type, which measures any non-uniformity of the top
surface of a single rail. As can be seen in Fig. 3, the surface measurement can be
positive or negative when there is a hump or a dip, respectively.

• The second repairable failure type, demonstrated in Fig. 4, is DIP, which measures
a fall or a rise in the centerline of the track.
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Table 13 Preventive maintenance cost C (m)
ki for unit k at maintenance level i for Example 2

C (m)
ki (preventive maintenance cost at maintenance level i)

1 2 3 4 5

Units, k 1 18 16 14 12 10

2 20 18 16 14 12

3 22 20 18 16 14

4 24 22 20 18 16

5 26 24 22 20 18

6 10 8 6 4 2

7 12 10 8 6 4

8 14 12 10 8 6

9 16 14 12 10 8

10 18 16 14 12 10

Table 14 Age reduction coefficient αki in virtual age model for Example 2

αki (age reduction coefficient at maintenance level i)

1 2 3 4 5

Units, k 1 0.5 0.6 0.7 0.8 0.9

2 0.4 0.5 0.6 0.7 0.8

3 0.3 0.4 0.5 0.6 0.7

4 0.2 0.3 0.4 0.5 0.6

5 0.1 0.2 0.3 0.4 0.5

6 0.5 0.6 0.7 0.8 0.9

7 0.4 0.5 0.6 0.7 0.8

8 0.3 0.4 0.5 0.6 0.7

9 0.2 0.3 0.4 0.5 0.6

10 0.1 0.2 0.3 0.4 0.5

• The third is the cross level (X-level) failure type, which measures the difference
in elevation of top surface of two rails at any specific point of the railroad track.
The cross level measurement is mostly performed under load since the rails can
move up or down under a load. Figure 5 presents cross level defect.

Geometry cars equipped with sensors, GPS and measurement devices, periodically
inspect tracks and record different track geometries such as track alignment, ele-
vation, curvature and track surface. Part of the data that geometric cars gather are
segment number, milepost, defect amplitude, and class. A brief definition of these
variables is as follows.

• Segment number: Segment is like tracks connecting two cities
• Milepost: Point on the track segment
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Table 16 The total expected cost ψki (T ) of preventive maintenance, minimal repairs and
replacements for Example 2

ψki (T ) (total expected maintenance cost at level i)

Level 1 Level 2 Level 3 Level 4 Level 5

Units, k Unit 1 7434.66 7595.41 7770.12 7936.26 8077.1

Unit 2 6797.55 6939.69 6863.79 7027.83 7026.21

Unit 3 5903.92 6039.37 6200.2 6370.71 6536.61

Unit 4 6677.03 6723.92 6686.54 6831.1 6870.19

Unit 5 3908.57 4275.88 4112.81 4174.67 4296.98

Unit 6 7578.84 7826.99 8422.37 8079.31 8233.5

Unit 7 6995.12 6706.4 7100.34 7271.06 7251.42

Unit 8 6339.08 6490.41 6813.02 6861.25 7087.52

Unit 9 6873.41 7029.82 7283.39 7502.28 7892.27

Unit 10 7061.84 6549.49 6724.75 7376.53 7224.52

Table 17 Optimal solutions for Example 2

Maintenance level, i

Level 1 Level 2 Level 3 Level 4 Level 5

Units, k Unit 1 1 0 0 0 0

Unit 2 1 0 0 0 0

Unit 3 1 0 0 0 0

Unit 4 1 0 0 0 0

Unit 5 1 0 0 0 0

Unit 6 1 0 0 0 0

Unit 7 0 1 0 0 0

Unit 8 1 0 0 0 0

Unit 9 1 0 0 0 0

Unit 10 0 1 0 0 0

• Defect type: Geometry defect types
• Defect amplitude: Size of defect in inches or degrees
• Class: All tracks get a number between one and five. Each class represents oper-
ating speed limits for passenger and freight traffic. Class one has the lowest speed
limit and class five has the highest speed limit.

Federal Railroad Administration (FRA) defines the defect amplitude threshold of
each failure type and a defect amplitude recorded by geometry cars is considered a
failure if greater than the threshold. Such defects violate FRA safety standards and
need immediate maintenance. The failure threshold for each failure type is presented
in Table 18.
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Fig. 2 Total expected maintenance costs for all units at maintenance level 1 regard to various T

Fig. 3 Graphical representation of surface failure

In this study we consider segments as different units of the system, where each
segment can have three types of repairable failure; DIP, surface and X-level. A unit
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Fig. 4 Graphical representation of DIP failure

Fig. 5 Graphical representation of cross level failure

Table 18 Failure amplitude threshold for each failure type in different rail classes (inch)

Class of rails

Class 1 Class 2 Class 3 Class 4 Class 5

Failure type DIP 3 2.75 2.25 1.75 1.5

Surface 3 2.75 2.25 2 1.25

Cross level 3 2 1.75 1.25 1

is considered failed when the defect amplitude of at least one milepost is greater than
the FRA threshold. That milepost needs to be minimally repaired.

To elaborate the real application of the model, the required data has been obtained
from Burlington Northern and Santa Fe (BNSF) Railway Company. BNSF Railway
is one of the major freight railroad networks in North America and is one of the
seven class I railroads in US. We consider the track geometry failures from 2007 to
2013. We consider a track with three segments. For each segment, we analyze the
failure time data recorded by geometry cars and estimate a Weibull distribution for
each failure type in class 5 rails. Table 19 shows the results.

The cost of minimal repair for each unit based on the failure type is presented in
Table 20. The minimal repair cost is the same for each segment.

There are two maintenance levels to preventively maintain any track segment;
tamping and stone blowing. In tamping process, a tampingmachine raise the sleepers
and ballast the stone under them, while in the stone blowing process the ballast rests
and the stone will be blown under them. The preventive maintenance cost for each
segment is shown in Table 21. The age reduction coefficient αki for all segments in
tamping process is 0.6 and in stone blowing maintenance is 0.8.
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Table 19 Estimated Weibull parameters for different modes of failure in rail segments

Segment, k Shape parameter, βk j Scale parameter, ηk j

Failure type DIP 3 1.5 146

Surface 2 1.2 212

3 1.4 181

Cross level 1 1.3 211

2 1.3 238

3 1.4 211

Table 20 Cost c(r)
k j of minimal repair of failure type j in segment k

Cost of minimal repair for each failure type

DIP Surface Cross level

Segment, k 1 $1125 $1125 $1534

2 $1125 $1125 $1534

3 $1125 $1125 $1534

Table 21 Preventive

maintenance cost C (m)
ki for

segment k at maintenance
level i

Preventive maintenance level, i

Level 1, stone
blowing

Level 2, tamping

Segment, k 1 $125460 $139400

2 $157658 $175175

3 $117551 $130613

The initial virtual age of each segment is Tk = (4, 5, 3) years respectively. The
replacement cost for all segments is same and is equal to $480000. We assume
the time horizon of T = 5 years and maintenance budgets as B(m) = $500000,
B(r) = $1000000, B(R) = $600000.

Using the above data, the total maintenance cost for each segment is shown in
Table 22.

Table 22 The total expected
cost, ψki (T ) of maintenance,
repairs and possible
replacement

Maintenance level, i

Level 1 Level 2

Segment, k 1 $129189 $142472

2 $160854 $178247

3 $120121 $133675
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Table 23 Optimal solutions
for case study

Maintenance level, i

Level 1 Level 2

Segment, k 1 1 0

2 1 0

3 1 0

The optimal solution shows that to minimize the total maintenance cost, all
segment should consider the maintenance level 1 (Table 23). The minimal total
maintenance cost for the whole system is $410167.

4 Conclusion

In this paper, we developed a new model to study imperfect maintenance of a multi-
unit system with different maintenance levels and different initial virtual ages. The
mathematical formulation was given and numerical examples were presented. A real
world case study of rail tracks was presented and the optimal maintenance level
for each unit and the corresponding total maintenance costs for each maintenance
policy were presented in the results. Moreover, sensitivity analysis was performed
to study the impact of changing some model parameter values. This result can assist
the management to realize the importance of the correct estimation of the model
parameters.

Themodel introduced in this paper canbe extended in severalways.Thepreventive
maintenance time can be optimized in addition to the current maintenance level.
Instead of expected cost we could also consider expected cost per unit time, when
the cycle ends either at time T or at the time of non-repairable failure, which occurs
first. These model variants will be the subject of our next project.
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