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Abstract In sympathy with work of Akio Matsumoto, this essay reviews models
that consider how the coupling of systems within ecologic-economic contexts can
generate not only chaotic dynamics, but lead to outcomes that exhibit kurototic
outcomes rather than reflecting Gaussian distributions. This aligns with arguments
made byMartinWeitzmann regarding the global climate system. Themodels consid-
ered included one where climate and economic systems are separately non-chaotic
but chaotic when combined and another where the economic system is chaotic and
when combined with climate generates kurtotic outcomes through flare attractors.
Likewise, similarly coupled models involving fisheries and forestry dynamics are
considered where coupling leads to chaotic dynamics. Multi-level systems with such
dynamics are then considered with the governance issues involved with such systems
are examined.

1 Introduction

Akio Matsumoto has long studied coupled dynamical systems exhibiting various
forms of complex dynamics, often involving lags (Matsumoto 1997, 1999; Mat-
sumoto and Szidarovszky 2015). In addition, he has had an interest in implications
of such models connecting economics with environmental problems (Matsumoto
et al. 2018; Ishikawa et al. 2019). A theme of his work on these topics has indeed
been that both coupling and lags tend to increase the complexities arising from
such systems. This might appear to run counter to another theme of his work, that
sometimes chaotic dynamics “can be beneficial” (Matsumoto 2001, 2003). However,
those models involved one-dimensional systems of price dynamics without coupling
or lags or other complications that could undermine their relatively sunny outcomes.
Nevertheless, this insight of Matsumoto’s that chaotic dynamics are not necessarily
“bad” has not been fully appreciated.
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In appreciation of these themes of Matsumoto’s we shall consider how coupled
ecologic and economic chaotic systems can generate extreme events, kurtotic “fat
tails.” While there are various such possible applications, including to fisheries and
forests, arguably the most important involves global warming, a more accurate term
that this observer prefers to the more anodyne and widely used “climate change.”
While most of the models underlying official IPCC reports have assumed Gaussian
distributions of outcomes, Martin Weitzman (2009, 2011, 2012, 2014) has argued
that underlying nonlinear dynamics of the global climate system in interaction with
the global economic system is subject to power law or other distributions that exhibit
kurtosis and thus a higher probability of extreme outcomes than appearing in the
more conventional models. Indeed, Lorenz (1963) first identified a strange attractor
associated with sensitive dependence on initial conditions in a chaotic model of
climate dynamics. It is thus completely appropriate to consider how such models can
bring about these outcomes that Weitzman considered to be so important.

This raises the question of how policy should be carried out in the face of such
phenomena, especially as this happens in the context of complications such as the
hierarchical complexity of ecologic-economic systems and the bounded rationality
of policy makers (Rosser and Rosser 2006, 2015). Such analysis is deeply in synch
with the spirit and tradition of the work of Akio Matsumoto.

2 A Coupled Climate-Economy Model

As already noted, Lorenz (1963) modeled climate dynamics as being chaotic,
although that term was not yet in use at that time. However, the chaotic nature of
climate dynamics is widely accepted, with the “butterfly effect” of sensitive depen-
dence on initial conditions being widely viewed as a reason why weather forecasting
has only a fairly short range of reliability, even though longer term averages and
trends may be forecasted.

While many theoretical models of chaotic economic dynamics have been pro-
posed (Rosser 2011, Appendix A), solid empirical verification of such dynamics in
economic systems has been lacking, although a variety of complex nonlinear dynam-
ics have been accepted as happening in economic systems. However, as studied in
Rosser (2002) two systems that by themselves may not exhibit chaotic dynamics can
do so when coupled together. This draws on work of Chen (1997), which draws on
simple underlying sub-systems.

This simple system has two sectors in its economic part, agricultural and manu-
facturing. These sectors are each related to global average temperature, T. For agri-
culture, temperature is a negative input. For manufacturing, it is a positive input to
global average temperature. Each sub-system is very simple, but the coupled system
can show chaotic dynamics.

On the economic side demand is given by a CES utility function of agriculture,
A, and manufacturing, M.
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U (A, M) = (Aρ + Mρ)1/ρ. (1)

We are assuming equilibrium on the economic side so that consumption of each
good equals its output. This gives the elasticity of substitution as is standard for CES
functions to be

σ = 1/(1−ρ) < 1. (2)

Both production functions are linear in labor, L, with total labor normalized to
unity, so that

L(A) + L(M) = 1. (3)

Besides a positive constant and the labor input, agricultural production also
includes a negative quadratic term for global average temperature, so that

A = (−αT 2 + βT + 1)L(A). (4)

Manufacturing output is given by

M = bL(M). (5)

This generates a market clearing manufacturing price of

P = (−αT 2 + βT + 1)/b. (6)

The climate model draws on one due to Henderson-Sellers and McGuffie (1987).
This now involves dynamics with time subscripts as temperature in a succeeding time
period that is determined by the temperature in the current one along with a long-run
normal temperature, Tn, as well as a positive linear function of manufacturing output.
With c in the unit interval and g > 0, this is given by

Tt+1 = (1−c)(Tt−Tn) + Tn + gMt . (7)

Combining with the economic sub-system generates an equilibrium motion for
global temperature that is given by

Tt+1 = (1−c)Tt + g(bp1−σ
t )/(1 + p1−σ

t ). (8)

Chen simulated this model setting σ = 0.5, α = 8, β = 7, b = 1, and g = 0.6.
The climatic tuning parameter, c, for this set of other parameter values, generates a
unique and stable steady state for values in (0.233, 1). As c declines below 0.233,
period-doubling bifurcations appear, and aperiodic chaotic dynamics appear after
it goes below c = 0.209. The system also exhibits sensitive dependence on initial
conditions (“butterfly effect”) below this level as well.



6 J. Barkley Rosser Jr.

3 Flare Attractors and Extreme Ecologic-Economic
Outcomes

A related model that can bring about an outcome of a combined ecologic-economic
system with a chaotic driver, if differing in important details from the model in the
preceding section, involves flare attractors. These are key to the not-fully developed
econochemistry concept. Initially conceived by Otto Rössler and Georg Hartmannn
(1995) to study solar flares and various autocatalytic chemical reactions, they came
to be applied to economics as well, initially for entrepreneurial activities (Hartmann
and Rössler 1998) and then for asset price volatility (Rosser et al. 2003).

This approach differs from that in the previous section by having the underlying
fundamental process being chaotic rather than becoming chaotic as a result of the
coupling aspect. In the case of this model the “flaring” kurtotic outcomes, sudden
bursts coming almost from nowhere, are the result of the coupled second layer deriv-
ing from the underlying driving chaotic process. This also involves an introduction
of heterogeneous agents into the system. Ironically as one moves from the original
model of solar flares to the model of climatic outbursts of extreme temperatures, we
see a return to an original physical chemistry application after passing through an
economics application that explored financial market dynamics.

The underlyingmathematics of thismodelwere developedbyRössler et al. (1995).
The attractors involved are extensions of the continuous chaotic attractor model of
Rössler (1976) as special cases that are continuous-but-nowhere-differentiable and
also exhibit “riddled basins.” The full explication of such attractors is due to Milnor
(1985).

Here we shall extend this model to an application not previously made, to the
problem of global warming, or more generally, extreme outcomes of climate change.
Thepreviousmodel due toChen (1997), had the ecologic-economic interactionsmore
direct, which arguably reflects a longer run perspective. Here we shall focus more on
a shorter-term perspective of economic-to-climate interactions. The coupling aspect
involves the second-tier aspect of heterogeneous agents responding to the underlying
economic model already assumes an environmental limit on economic growth. This
limit is not connected to the higher level global warming issue, but a narrower limit
more locally determined. The model is one of the earliest chaotic economic models
due to Day (1982). His model involves a logistic equation, which relates to the
original model of chaotic application. This was due to May (1976). Such a model
depends on a hard upper limit of growth along with a lower bound.

The underlying economic model, due to Day (1982) is a modified Solow growth
model. It has the labor exponent as α, and β the capital exponent, y being per capita
output, λ being the population growth rate, with m being a “capital-congestion”
saturation coefficient, which ultimately drives the logistic formulation that has an
upper limit, and which resembles the model ofMay (1976). The modified production
function is given by

f (k) = βkβ(m−k)y . (9)
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Assuming a constant savings rate, the capital-labor ratio implies the following
difference growth equation,

kt+1 = αβkβ
t (m−kt )

y/(1 + λ). (10)

This formulation coincideswith that ofMay (1976), whomade clear the parameter
values of this model for which chaotic dynamics will occur. Rosser et al. (2003, p. 80)
assumed that

Aβ/(1 + λ) = 3.99 = kt+1/(1 − kt ). (11)

This formulation provides a chaotic dynamical process as k changes. This process
assumes that the capital share remains constant.

Earlier literature has posited at this point that the specification of heterogeneous
agents involved human agents responding differently to the underlying system. For
this case we follow Hartmann and Rössler (1998) for giving a general form of the
agent reaction function. The difference between this formulation and earlier work by
these authors in physical chemistry is that while here the agents are heterogeneous
individuals or organizations, in this case implicitly the agents are nations or regions
of the world subject to climatic variation.

What goes on here is that we have a set of locations that have a varying relation
with the exogenous chaotic driving force. In particular there will be a switching value
of a, a function of k, beyond which there will be a substantial increase in temperature.
Whereas in the asset model of Rosser et al. (2003) these agent reaction functions
represent behavior of human agents, including human organizations, in this case
these represent locations on the planet with their respective situations that imply
heterogeneous behavior. The appearance of an outburst reflects a sufficient number
of these agents/locations crossing their critical value of 1 > a > 0.

The general form of the reaction function for an agent/location of I type out of n,
assuming agents/locations, and c > 0, and will be given by

BI
t+1 = bI

t + bI
t

(
aI−k It

)−cb(I )2
t + cst . (12)

The first term in (12) is an autoregressive component. The second is the switching
term. The third provides a stabilizing component. The fourth is the destabilizing
element coming from the buildup of previous trends, representing the ongoing overall
state of the system determined by overall demand s, and is given by

St+1 = b1t + b2t + · · · + bnt . (13)

In Rosser et al. (2003), assuming certain values of the parameters allows for
a simulation that provides a sequence of outcomes that exhibit scattered kurtotic
outbursts consistent with the Weitzman scenario for global warming.
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4 Coupled Chaotic Dynamics in Renewable Resource
Markets

While we have seen that coupled chaotic dynamics can happen at the global level
scale of the climate-economy system, such coupled chaotic dynamics can also hap-
pen in lower level ecologic-economic systems. Two examples are in fisheries and
also in forestry, although the former have been modeled more clearly, with Conklin
and Kohlberg (1994) initially showing the possibility for chaotic dynamics within
a fishery in a non-optimizing setting. Central to such dynamics in these systems is
when supply curves bend backwards, a result first suggested for fisheries without
a formal model by Copes (1970). More complex dynamics for fisheries than those
presented below are presented in Foroni et al. (2003).

Hommes and Rosser (2001) have demonstrated the possibility of this for fisheries
in what they label a “Gordon-Schaefer-Clark” model of an optimally managed fish-
ery. This assumes on the ecological side a Schaefer (1957) yield function, f (x), with
x the fish biomass, which in equilibrium will also be the harvest function, h(x), with
r the natural growth rate of the fish and k the carrying capacity of the fishery is given
by

h(x) = f (x) = r x(1−x/k). (14)

Following Clark (1985) the economic side is given by an effort function linear in
time fishing, E, with costs C(E), without fixed costs, constant marginal costs, c, and
a catchability coefficient, q, with p the price of fish, and R the rent, output Y is given
by

Y = qEx = h(x). (15)

This implies that rent which the present value of which is to be maximized is

R(Y ) = pqEx−cE . (16)

In the optimization non-equilibriummust be allowedwhere harvest may not equal
the yield function. Solving the intertemporal optimal control problem with non-
negativity constraints on x and h and a constant discount rate, δ, (Hommes and
Rosser 2001) leads to

f (x) = δ = [c f (x)]/(p−c). (19)

From this optimal discounted supply curve is given by

x(p, δ) = k/4[1 + (c/pqk)−(δ/r) + (1 + c/pqk − (δ/r)2 + 8cδ/pqkr)1/2].
(20)
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The crucial variable determining system dynamics is the discount rate, δ. At
zero with no discounting of future rents, the supply curve slopes upwards, but as
it increases beyond about 0.02, the supply curve bends backwards, allowing for
catastrophic collapses of the fishery. As it goes to infinity implying not counting the
future at all, the curve bends backwards the most and becomes identical to that for
an open access fishery subject to “tragedy” (Gordon 1954), the problem dealt with
by Ostrom (1990) and others. The open access supply curve is given by

x(p,∞) = (rc/pq)(1−c/pqk). (21)

Assuming lags in behavior by fishers turns this into a form of a cobweb model.
Somewhat similarly to the finding ofMatsumoto (1997), Hommes and Rosser (2001)
show for an appropriate demand curve and for intermediate values of the discount
rate, chaotic dynamics can emerge in this coupled fishery system.

While no one has shown specifically chaotic dynamics in a forest-harvesting
model, under certain situations an optimally managed forest can also exhibit
backward-bending supply curves for sufficiently high discount rates. This was first
proposed byHyde (1980) with empirical support for backward-bending forestry sup-
ply curves found in the Amazon rain forest for certain circumstances (Amacher et al.
2009). Drawing on Colin Clark’s fishery model, Binkley (1986) developed a model
that formally showed how such a backward-bending supply curve could arise in a
forestry model, with this further studied by Rosser (2013). These models are all for a
single output, timber from cut trees, with Binkley finding tentative empirical support
for the long run supply of loblolly pines in the southeastern US. The basic canonical
optimal forestry management model accounting for multiple uses and infinite time
horizon is given by Hartman (1976).

Letting most variables be identical to the above fishery model, the main new
variable that appears in the system is T, the optimal rotation age for the forest, the
time that trees should be cut and then replanting of them occurs. This T depends
on the discount rate and also p, the price of timber, and unlike the fishery, the yield
function is a function of time since the last replanting, f (t), with the growth at optimal
rotation age given by f (T (p)). From all this an optimal inverse supply function for p
as a function of T and δ is given by

p = c/[ f (T ) − f ′(t)(1 − e−δt )/δ)]. (22)

This is consistent with the possibility of a backward-bending supply curve for
certain parameter values. Binkley (1986, p. 173) provides an intuitive explanation of
what is happening in such situations.

High stumpage prices imply not only that the output from the forest has high value, but also
that the capital in the form of growing stock has a high opportunity cost. At high prices, it
is optimal to conserve on the use of capital and therefore to reduce the stock inventory by
reducing the rotation age.
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While it has not been shown explicitly that thismodel can generate chaotic dynam-
ics, I am reasonably certain that with appropriate lags for forester behavior, such will
occur for certain situations. I close this discussion by observing that chaotic dynamics
have been found for a variety of both harvested biological populations (Sakai 2001)
as well as non-harvested ones (Zimmer 1999; Turchin 2003; Solé and Bascompte
2006).

5 Policy in Complex Multi-level Hierarchies with Bounded
Rationality

The difficulty of managing such dynamically complex coupled systems is compli-
cated when they exist within hierarchical ecologic-economic contexts (Radner 1992;
Rosser 1995, 2001). This complexity enforces the necessary reliance on bounded
rationality as posed by Simon (1957, 1962; Rosser and Rosser 2015). It also involves
positing the appropriate level of the system as the locus of such policymaking in
order to overcome the difficulties of common property resources that arise in such
situations (Netting 1976; Ostrom 1990; Bromley 1991; Rosser and Rosser 2006;
Rosser 2016).

While Simon (1962) formalized the discussion of hierarchy in complex systems,
his arguments for dynamical systems were prefigured in general systems theory (von
Bertalanffy 1962) and its predecessor, tektology (Bogdanov 1925–1929). These have
been more fully generalized for ecological systems by Holling (1992). A deep issue
is the relation between higher and lower levels of such systems. While it is generally
argued that higher levels dominate or at least constrain lower levels (Radner 1992),
it may be possible for changes in lower levels to lead to changes in higher levels,
or even the complex emergence of higher levels through hypercyclic morphogenesis
(Rosser 1991).

We can consider such systems that allow for ultimately flexible relations with both
fast and slow dynamics in the formalization of synergetics as developed by Haken
(1977). Let there be a well-defined hierarchy with n levels. Higher levels constrain
more rapidly oscillating lower levels under normal conditions. Thus fast dynamics
operate at lower levels and slow dynamics operate at higher levels.

At a given level let q be the vector of fast variable dynamics and F the vector
of slow variable dynamics, with A, B, and C being matrices and ε(t) be an i.i.d.
stochastic fluctuations term. Then the fast dynamics are given by

dq/dt = Aq + B(F)q + C(F) + ε(t). (23)

Haken argues that such a system can be simplified by rearranging this equation
in order to exhibit adiabatic approximation in which the fast dynamics are shown to
depend solely upon the slow dynamics based on order parameters in F. This is given
by
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dq/dt = −(A + B(F))−1C(F). (24)

The order parameters are the variables in F and can be ranked in inverse order of
the absolute values of the variables inA+B(F). Curiously these order parameters are
unstable in the sense that they possess positive real parts of their eigenvalues. Other
variables are the slaved variables and have negative real parts of their eigenvalues.

Structural changes in the sense of Holling can come from either the bottom or the
top in such a system. Bottom-up changes can come about through a slaved variable
destabilizing by having the real part of its eigenvalue going positive in a process
known as “the revolt of the slaved variables” (Diener and Poston 1984). Haken
saw this as a key to the emergence of chaotic dynamics in a structured system. An
example might be the outbreak of the Great Plague in Europe in the mid-14th century
as an accumulation of malnutrition weakening population immune systems reached
a critical mass such that the plague could sweep through the population (Braudel
1967).

The top-down mechanism can happen through the emergence of a new constrain-
ing higher level of the system, such as the emergence of a city in an urban hierarchy
much larger than previous ones that dominates them through the appearance of new
economic activities (Rosser 1994). The mechanisms for such anagenetic moments
of hypercyclic morphogenesis can arise from frequency entrainment as modeled by
Nicolis (1986). Another way may be through the appearance of cooperative forms
leading to multi-level evolution in an evolutionary process (Crow 1955).

The policy problem must confront this hierarchical complexity. This is an issue
that Ostrom (1990) and others have tried to confront. A clear outcome is that gover-
nance should operate at the most crucial level that determines the crucial dynamics
of the system. In light of the analysis above of synergetic systems, it may not always
be obvious what that level is (Wilson et al. 1999). A system apparently dominated
by the highest level may actually be dependent on dynamics at the bottom and vice
versa. More generally, focusing policy on an ecologic-economic hierarchy level that
is not crucial to the system dynamics can lead to worse outcomes than doing nothing.

Indeed, for the most difficult problems the complex links mean that actions may
need to be taken at several levels. This would seem to be especially the case for the
global climate system, where in fact given the coupled nonlinear dynamics involved
it would seem that multiple levels are involved. Global agreements are necessary
for setting overall goals. But individual nations must set goals and establish specific
policies. Butmany of these policies end up being carried out at lower levels. Likewise
it is not just the political and economic elements that have this multi-level aspect,
but also the ecological and climatological. The ecologic-economic system functions
at levels ranging from almost minutely local to the totally global.

A further complication due to the complexities associated especially with chaotic
dynamics is that when a system is decomposed from the global to the regional level,
it may be subject to severe effects due to sensitive dependence on initial condi-
tions. Thus Massetti and Di Lorenzo (2019) have considered in detail the regional
level forecasts from simulations of global level climate models used by the United
Nations IPCC for projecting possible future climate outcomes. In particular they ran
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simulations slightly varying initial starting values for certain variables and indeed
found substantial sensitive dependence for regional level projections. Thus for the
west-central portion of the United States some projections would have substantial
warming while others actually found cooling happening even as the global average
was for warming, again for starting values only slightly apart, thus replicating the
old result found by Lorenz (1963) for climate models. Needless to say, this seriously
complicates knowing what to do at more local levels for such situations.

These multi-layered complexities involve deep uncertainties about all the mat-
ters noted above and more. These include ongoing debates about underlying science
issues, as well as the full nature of the interactions between the economic and cli-
matological aspects. That the elements of this involve chaotic dynamics subject to
sensitive dependence on initial conditions makes the whole matter that much more
difficult to understand. All this leads to the inability of any observer or agent to
reliably understand in full detail how it works. This means that inevitably bounded
rationality is the best that can be hoped for to be used in analyzing such a system.

6 Conclusions

The coupled global ecologic-economic system deeply involves chaotic dynamics.
This means the system is subject to sensitive dependence on initial conditions. Also
it may be subject to flare phenomena. These involve kurtotic outbursts that increase
the dangers involved in understanding the system and increase the risks involved
in the analysis. These issues extend to other kinds of coupled dynamical ecologic-
economic systems such as those involving fisheries and forests. As a multi-layered
complex system, where management must apply at the appropriate level, decision
makers are limited to bounded rationality in dealing with it. The ideas involved in
these matters are deeply linked to ideas that Akio Matsumoto has studied in his
lifetime of research.
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