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Preface 1

This book contains a collection of research papers on Dynamic Economic Systems,
Game Theory, and Related Topics with applications and theoretical issues cele-
brating the academic achievements of Prof. Akio Matsumoto. The authors of this
volume are his former collaborators, colleagues, and friends who contributed their
newest research results in honor of the well respected scientist, colleague, and also a
great friend of all of us who have the privilege of knowing him.

Professor Akio Matsumoto is considered as one of the international leaders in
research in dynamic economic models especially dealing with delayed dynamics.
His life is a true success story. He was born 70 years ago as the first son of a middle
class family. Both parents were educators, from whom he learned honesty, hard
work, and demand for high quality intellectual activity. After elementary and junior
high schools the years studied in the Keio High School gave him the high quality
education which was fundamental for his college education and later research
works. During his college years, he started studying Administrative Engineering,
and then for a short time he was dedicated to Marxian Economics. After realizing
that this was not his primary interest, he turned to General Equilibrium Theory and
then became specialized in Economic Dynamics. First linear models were in his
focus, where local stability implies global stability, so this type of models were not
challenging enough to the young talented researcher. After several shorter periods
with different Japanese universities, twenty two years ago he finally joined the
Economics Department of Chuo University in Tokyo. The new challenging
atmosphere there helped him to further extend his research topics and find his major
research interest, Nonlinear Dynamics with special attention to Delayed Systems.
The two years of working in the University of Southern California under a
Fulbright grant was very influential for his research development, and later the two
years in the University of Arizona on a sabbatical leave gave him the opportunity to
continue and further improve his research and publishing activity. He is the author
and coauthor of several books, book chapters, conference papers in addition to
close to 200 journal publications. His two most recent books on Game Theory and
Dynamic Oligopolies, as well as two coedited volumes, were published by
Springer. His research papers were published in high quality journals, including
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Nonlinear Dynamics, Psychology, and Life Sciences; Nonlinear Analysis: Real
World Applications; International Game Theory Review; Applied Mathematics and
Computations; Journal of Economic Behavior and Organization; Communications
in Nonlinear Science and Numerical Simulation; CUBO a Mathematical Journal;
Mathematics and Computers in Simulations; Chaos, Solitons & Fractals; Economic
Modeling; Structural Change and Economic Dynamics; Metroeconomica; Journal
of Evolutionary Economics; Frontiers in Applied Mathematics and Statistics;
Environmental Economics and Policy Studies; Focus Issue of Chaos among many
others. He also participated in a great number of international conferences (he also
organized a couple of Nonlinear Economic Dynamics conferences), where we had
the opportunity to discuss different research topics and results with him. We all
learned a lot during these discussions. He was always very helpful, friendly, and all
kinds of communications were very pleasant with him. In addition to “dry” sci-
entific works he is a fan of both light and classical music. The community of
researchers in Game Theory and Dynamic Economic Systems owes much to
Professor Matsumoto. The present volume of the collected papers expresses a
modest sign of our gratitude.

Urbino, Italy Gian Italo Bischi
Budapest, Hungary
December 2019

Ferenc Szidarovszky
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Preface 2

Introduction

Summary of the Scientific Works of Prof. Matsumoto

Professor Matsumoto has a large publication record on analyzing a wide variety of
static and dynamic economic models and related theoretical issues. In addition to
examining dynamic nonlinear monopolies with discrete and continuous time scales
and with fixed and distributed delays he also extended these models to duopolies
and triopolies with one and two delays. The local asymptotical stability of the
equilibrium was studied analytically and global stability was examined with
computer simulation. The most important results on these topics are summarized in
chapters 2 and 3 of his book: Matsumoto, A. and F. Szidarovszky, Dynamic
Oligopolies with Time Delays, Springer, 2018. These models and results were later
extended to n-firm oligopolies: models with and without product differentiation
were considered with both discrete and continuous time scales. Cases of fixed and
distributed single and multiple delays were analyzed, local stability conditions were
derived, and those for global stability were obtained by using numerical simula-
tions. In addition to the classical Cournot competition Bertrand oligopolies were
also studied with both linear and hyperbolic price functions. The classical result of
Theocharis was generalized for the nonlinear models, as well as special cases with
implementation and demand delays were examined. Interesting results were
obtained by comparing dynamic Cournot and Bertrand competitions. Several
additional extensions of oligopolies were introduced and their dynamic behavior
analyzed including models with employee ownership, with advertisements, with
flexible and contingent workforce and unemployment insurance, and with consid-
eration to production adjustment and investment costs. Partial cooperation among
the firms can model different versions of co-ownership among the firms. This
general model contains the classical noncooperative and fully cooperative cases. In
addition to equilibrium analysis its stability conditions were derived. As related
topics, models with cartelizing groups and antitrust thresholds were introduced and
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examined. In addition, some difficulties in applying the Herfindahl-Hirschman
index were discovered and analyzed. In studying oligopolies with uncertainty,
the uncertainty in the price and cost functions were modeled with probabilistic
methods. Behavioral uncertainty was modeled in a duopoly, when one firm
believed that the competition was à la Cournot, and the other firm thought that it
was a Bertrand duopoly. Contest games are generalizations of hyperbolic oligo-
polies. The stability of such games were examined without and with time delays.
A special n-firm oligopoly was introduced with discontinuous profit functions,
when the firms could treat their waste until a certain volumes and then contrac-
tors were hired to take care of the rest. If the contractors charged setup costs, then
the profit functions became discontinuous. This static model was proved to have at
least one equilibrium which is not necessarily unique. Based on this work several
researchers considered similar models with their dynamic extensions. Models of
adaptive learning of the price function were introduced and conditions were derived
for the asymptotical stability of the resulted dynamic models guaranteeing suc-
cessful learning. The dynamism of the models was based on repeated price or
output information. Some interesting results on n-firm oligopolies are presented in
chapters 4–6 of the book by Matsumoto and Szidarovszky (2018). Several theo-
retical issues were studied in relation to the above mentioned models. The stability
of continuous time dynamics with one or two delays were studies and the stability
thresholds and stability switching curves were characterized with elementary
methods. Sufficient, and necessary global stability conditions were analyzed for
continuous dynamics, as well as stability conditions for discrete and continuous
systems were compared. Several classical economic models were reconsidered with
dynamic extensions including time delays. Both discrete and continuous time scales
were considered with fixed and distributed delays. Goodwin’s multiplier-accelerator
model was extended to consider consumption, investment, and tax collection delays
including piecewise delay investment. The neoclassical Solow model was extended
with delays, as well as with physical and human capitals. Delay dynamic Marxian
economies were also examined. Stability switching curves were analytically
determined in two- and three-delay Lotka-Volterra competition systems and in
nonlinear cobweb models. Similar issues were studied in international subsidy
games with electronic and traditional traders; in asset price dynamics; in analyzing
Hicksian trade cycles and the Kaldor-Kalecki dynamic model, furthermore
in IS-LM models with tax collection. Oligopoly models were connected to envi-
ronmental issues, when point-source and non-point-source emission controls were
studied and conditions were derived for the successful control of emission volumes.
Both linear and hyperbolic Cournot competitions and linear Bertrand oligopolies
were studied in static and dynamic frameworks. The research interest of Prof.
Matsumoto was not limited to economics. We can mention here two different areas.
One is the application of the Lotka-Volterra-type model into analyzing the dynamic
evolution of the devotion of two lovers toward each other. The other area is a very
important field of industrial engineering, namely reliability and quality engineering.
Models were developed to find optimal imperfect preventive maintenance strategies
as a game against nature. Similar models and solution algorithms were suggested to
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determine optimal scheduling of repairs and preventive replacements of compo-
nents and subsystems of engineering systems. Since all of these models rely on
statistical methods with uncertainties in the obtained decisions, they could be
treated by using expected value analysis (as usual) or certainty equivalents.

A Note on Akio’s Passion for the Beatles

In 2003 Akio Matsumoto published a paper in Chaos, Solitons & Fractals, An
interdisciplinary journal of nonlinear science, where he investigated a dynamic
model of pure exchange with two goods and two consumers in which chaotic price
fluctuations can arise. In order to reveal some statistical properties of such price
dynamics, he constructed a density function along a chaotic trajectory, calculated a
long-run average utility and then compared it with the utility computed at a sta-
tionary state of the model. He essentially obtained two results: he analytically
proved and numerically verified that (1) chaotic price dynamics can be beneficial
for one consumer and harmful to the other one; (2) in the long-run the whole
economy is possibly better off along chaotic fluctuations than at a stationary state.
These results imply the possibility that a chaotic variation of price may be
preferable respect to a constant price, i.e., chaotic economies may be beneficial.
A surprising economic implication, in contrast to many economic policies oriented
to the stabilization of chaotic systems. However, in this short note I would better
pay attention to the title of the paper proposed by Akio: “Let it be”, with subtitle
“Chaotic price instability can be beneficial”. Of course, “Let it be” is also the title of
a famous song by the English rock band “The Beatles”, released in March 1970 as a
single (and also the title of a famous album) written and sung by Paul McCartney.
A song that quite soon became famous all over the world. This may be just a
coincidence, but all friends of Akio immediately understood it was not the case, as
we all know his passion for the Beatles.

Indeed, some years after Akio wrote another paper, together with his coauthor
Ferenc Szidarovszky, where they considered a market with an isoelastic demand
function and proposed a three-country model with two active governments and two
firms. The purpose of this paper was to study the dynamic behavior of a sequential
subsidy game in which the governments determine their optimal trade policies and,
accordingly, the firms choose their optimal outputs. The paper was published in the
Springer book Global Analysis of Dynamic Models in Economics and Finance
(edited by G. I. Bischi, C. Chiarella and I. Sushko) with the title “A Little Help
from my Friend” and subtitle “International Subsidy Games with Isoelastic
Demands”. Such title emphasizes the presence of subsidies offered by countries to
the firms they are hosting in order to increase their welfare. Of course, “With a
Little Help from My Friends” is a song by the Beatles from their 1967 album Sgt.
Pepper’s Lonely Hearts Club Band, written by Paul McCartney and John Lennon,
and intended as the album’s featured vocal for drummer Ringo Starr. The song
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became very famous also for a subsequent recording of the track by Joe Cocker,
that in 1969 was an anthem for the Woodstock era.

But this is not the end of the story, because in September 2017 one of us (Gian
Italo Bischi) received a copy of the Springer book Optimization and Dynamics with
Their Applications (A. Matsumoto editor) that included a paper by Akio concerning
a dynamic model describing love affairs between two people under different con-
ditions in the interaction of the lovers. The paper gave conditions for the existence
of steady states and considered the effects of delays in the mutual-reaction process,
called the gaining-affection process. Bischi sent a playful email to Akio where he
said to be a bit disappointed because after the previous papers with titles inspired to
Beatles songs, for that paper on love affairs dynamics he expected the title “All you
need is love”.

The answer from Akio was almost immediate “Dear Gian Italo, it is a very good
idea, ‘All you need is love’. Do you mind if I use this title? After finishing the love
dynamic paper, I almost lost interest on this issue. However, you encourage me to
do it again. In order to entitle ‘All you need is love’ I will write one more paper on
love dynamics”.

Any comments are useless. As a conclusion of this short note we can state that,
for sure, Akio is really very fond of the Beatles, and this thesis has been supported
by himself who recently remarked, during a NED (Nonlinear Economic Dynamics)
conference in Kyiv (Ukraine), that in 1968 he was just 18 years old, and that was
the time when the success of the Fab Four of Liverpool was worldwide. However,
he also said that he was not pretty sure if, in the Sixties and Seventies, he loved
more the Beatles or the Rolling Stones. In other words, existence has been proved,
but not uniqueness.

Contributions of This Volume

The papers being published in this volume are divided into three groups. Research
papers in economic dynamics are in the first group, the second group contains
works in game theory, while papers on related areas close the collection.

Papers on Economic Dynamics

The first paper is written by J. Barkley Rosser Jr., who is a mentor and old friend of
Prof. Matsumoto. He gives an outline of four dynamic models: A coupled
climate-economy model; its variant with flare attractors; a renewable resource mar-
ket, and complex multi-level hierarchies with bounded rationality. Edgar J. Sanchez
Carrera and coauthors introduce and study the co-evolution dynamics of human
capital and innovative firms by using evolutionary game theory. They show that a
policy to increase the stock of skilled labor can set the economy on a positive path
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towards technological development. Gian Italo Bischi and coauthors give an
excellent survey of different learning schemes focusing mainly on comparing
adaptive and statistical learnings. The limit sets and basins of attractions for statistical
learning are characterized and the case of Bray learning is described. As examples the
cases of unimodal, bimodal, and overlapping generation models with increasing
maps are shown in detail. Giovanni Campisi and Fabio Tramontana study a
heterogeneous agent-based financial market model and show that the presence of
imitators makes the dynamics more complicated but even more realistic. Imitators
may stabilize an otherwise unstable market and at the opposite, they can make
unstable an otherwise stable market. The paper of Domenico De Giovanni and
coauthors is based on the dynamics of compliance and optimal auditing in a popu-
lation of boundedly rational agents who might decide to engage in tax evasion. The
agents have several different ways to do so with different auditing probabilities. The
paper studies the intertemporal optimal auditing policy of the tax authority that
maximizes revenue with resource constraint. Toshio Inaba and Toichiro Asada
examine a three-country Kaldorian model of business cycles where the exchange
rates are fixed. Discrete time scales are selected and the authors show the cyclical
fluctuations of the real national income and real capital stock of the countries.
Numerical simulations verify and illustrate the theoretical findings. Ahmad
Naimzada and Marina Pireddu reconsider the Muthian cobweb model where the
economy is populated by unbiased fundamentalists and two types of biased funda-
mentalists, which are optimists and pessimists. Discrete time scales are selected and
the stability of the equilibrium is studied. The section is closed by the paper of József
Móczár dealing with the characterization of a large class of dynamic models. The
generalized Nöther’s theorem and the Lie symmetries of the Lagrangian are the
theoretical basis of the investigation. Goodwin’s non-linear dynamic system illus-
trates the Lie symmetries, and the author shows that the cyclical trajectories are
extremal in the phase space.

Papers on Game Theory

Tamás László Balogh and Attila Tasnádi extend the production-in-advance version
of the capacity-constrained Bertrand-Edgeworth mixed duopoly game and prove
the existence of the pure-strategy (subgame-perfect) equilibrium for all possible
orderings. The authors also analyze the public firm's impact on social surplus and
compare the results to the production-to-order models. The famous Nikaido-Isoda
theorem gives sufficient conditions for the existence of a Nash equilibrium for
n-person concave games. It is also well known for n-person single-product oligo-
polies without product differentiation that if the firms face capacity limits, the price
and cost functions are twice continuously differentiable, the price function is
decreasing and concave and the cost functions are increasing and convex, then the
Nash equilibrium is unique. The paper by Ferenc Forgó and Zoltán Kánnai shows
that under reasonable conditions the concavity of the revenue function or the
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convexity of the cost functions are necessary for the uniqueness of the equilibrium.
Zoltán Kánnai and coauthors give sufficient conditions for the existence of a
solution of a large class of optimal control problems. Their analysis is based on the
theory of set-valued mappings. The case of a generalized dynamic input-output
economic model illustrates the practical application of the theoretical results. Agent
based simulation is used in the paper of Ugo Merlone and coauthors to analyze the
evolution of networks of interactive agents. N-person social dilemma games are
selected with Pavlovian agents and all possible game types of different model
parameter values are characterized and the corresponding evolution of the games
are analyzed and compared.

Papers on Related Area

The paper by Maryam Hamidi and coauthors extend the earlier models on preventive
maintenance policies examined by Prof. Matsumoto and his collaborators. Multi-unit
systems are studied with different initial virtual ages where the possible repairable
failures, maintenance and repair costs, failure and preventive replacement costs, as
well as financial constraints, are included. In addition to developing the associated
mathematical model, a numerical case study illustrates the practical application
of the methodology. The computation of Nash-equilibria often requires the numerical
solution of nonlinear equations with real numbers, vectors or even functions being
the unknowns. Therefore the well-known solution techniques, like the Newton
method, have to be extended to certain abstract spaces in order to cover most practical
cases. The paper of I. K. Argyros and Stepan Shakhno generalizes the Newton-type
equation solvers to Banach-space valued operator equations. The convergence
analysis of this procedure is more general than that in earlier works making the
applicability of the methodology more flexible. The final paper of this volume, by
Sándor and Márk Molnár (father and son) considers a generalized form of a linear
system, when the derivatives of the input functions show up in the system equations.
They give sufficient conditions for the reachability of any final state, which is a nice
generalization of the Kalman condition introduced in the classical case. The paper
also gives a brief summary of the classical results which makes their comparison to
the general case easier. The mathematical methodology is based on the theory of Lee
algebras, the fundamentals of which are also discussed in the paper.

Gian Italo Bischi
gian.bischi@uniurb.it

Ferenc Szidarovszky
szidarka@gmail.com
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Preface 3

Magical Mystery Tour from Linearity to Nonlinearity

I arrive at an old enough age to look back at my life and work. I have been thinking
of my personal past and have a feeling that my life was so simple and straight-
forward that I could clearly see a straight life trajectory connecting the starting point
and the current point. The following is often mentioned. All people’s life careers
look coherent in retrospect but are likely to have been wild and winding in prospect.
You can see whether my life career looks like to be well planed as a linear line or to
play it by ear as a chaotic path.

Origins and Boyhood: Now I am going to turn back the clock and talk about
my own origins and evolution as a professor of mathematical economics. I was born
in 1950 as the first son of a middle-class family in which my father was a math-
ematics high school teacher and my mother was a teacher of the Japanese language
until I was born. My father had grown up on farms and his elder brother was
running dairy cattle farm with a lot of cows in the neighborhood of my father’s
house where my family lives now. So, I had grown up in pastoral surroundings,
waking up with cows’ morning cry and having fresh milk every day. After spending
peaceful days in elementary and junior high schools, I went to Keio high school in
1966 that was an attached school of Keio University, an A-rated historical private
university in Tokyo. One good point of this school was that its students could be
admitted at Keio University without an entrance examination. Passing the entrance
examinations of universities, which was called examination hell, we were forced to
have endurance and perseverance. In fact, hundreds of thousands of high school
students targeting good schools should devote their young life for hard-studying,
followed by mock exams, preparation and review from early morning to mid-night,
seven days a week. By contrast, my high school days were very easy-going.

I enrolled at the faculty of engineering of Keio University in 1969 and then
joined the department of administrative engineering. This department is one of the
pioneering departments focusing on management engineering in Japan. Its selling
point then was “enjoy studying on campus and then become a company president”.
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To become a company president was one of the dreams of the young people those
days. However, I did not have any inclination to become a president or even a
professor of economics. Around 1970, universities in Japan got rough and student
movements were most furious due to domestic and international situations. Japan
signed the treaty of mutual cooperation and security with the United States in 1960
in Washington. The treaty was valid for 10 years. Thus, 1970 was the year of
revision. Quite a few university students, as well as ordinary people were against
the reconfirmation. The Japan Communist Party and Japan Social Party standing
behind the scenes, their factions occupied university buildings and halted classes.
Internationally the anti-movements against the Vietnam war became more active
day by day from the latter half of 1960s. Although I was an apolitical student, I was
unavoidably involved in those movements like the main character, Simon, of the
Strawberry Statement of Warner Brothers Pictures in 1970. At the same time, I was
strongly affected by “flower power” that was rooted in the opposition movement
of the Vietnam war and peaceful war protest, typically represented by hippies like
persons in faded jeans wearing flowers in the long hair. I still have its remnant
nowadays.

The Treaty was successfully renewed in 1970. Universities returned to normal
and students were gradually back to classes. I encountered with my first bifurcation
point of my life in a class of firm research in which we studied secrets of successful
firms. I can still remember the following comments by a professor with strong
impact on me, “Umami is a type of seasoning discovered in Japan which is used in
cooking. It is a white powder stored in a small container with a lid having 10–20
small holes. Umami is sprinkled to add flavor while preparing the food. The
company that produced Umami powder tried to enlarge the diameter of the holes
of the lid to increase the amount of Umami used while cooking as a way to raise
profit”. This could be a rare example, but I was amazed how small-minded it was
and lost interest all in one gulp on administrative or management engineering. I first
turned attention to Marxian economics that was decorated with crisis in capitalism,
class struggle, surplus value, labor theory of value, all of which were different from
those studied in administrative engineering. Further, they were flying around in
student meetings, as well as in class meetings held at the heyday of the movements,
and thus I was a bit familiar with them (now I presume that the Communist and
Social parties intentionally used these words to dupe naive students and I was
almost trapped). Soon after, I found Marxian economics was not what I wanted and
then started to study modern economics all by myself.

Graduate Schools and After: Most of my friends took off to society after
graduation but I did not feel in that way. To postpone my decision, I studied
economics for the time being and enrolled at the graduate school (the master
program) of Yokohama City University in 1976. I had a particular interest on the
general equilibrium theory, spent a lot of time to read classical monographs, Theory
of Value of Gerard Debreu (1959) and General Competitive Analysis (1971) by
K. Arrow and F. Hahn covering the theoretical developments of the general
equilibrium theory after Debreu. It was not an easy job to unravel the tight logic
of the general equilibrium theory. I wrote a master thesis on synthesizing Keynes
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and Walras based on the dual decision hypothesis in disequilibrium economy. To
continue the doctorate program, I finally decided to study economics in earnest.
Gaining a Ph.D. scholarship, I enrolled at the graduate school of Tohoku University
in which I completed my doctorate degree in 1980. After graduation, I got a
position in a small university in Nagono in a central area of Japan. I taught ele-
mentary economics but was not happy with that position. My position-changing
journey also started with an aim returning to Tokyo. After spending four years,
I moved to the faculty of political science and economics of Takushoku University
in Tokyo. I was back to Tokyo, however, it was a non-stationary point something
like intermittent chaos that approaches a stationary state and stays in its neigh-
borhood for a long time and finally moves away. Therefore, after spending five
years, I moved again to the west coast of Japan, the economic department of Niigata
University. It was a national university and the research environment was greatly
improved. Although it is located in the west coast, there was a very sharp difference
from the west cost of the US with blue sky and brightening sun shine. Niigata is on
the Sea of Japan and a snow country having a severe winter that I did not and do not
like. In 1998, I finally touched down at the economic department of Chuo
University in Tokyo. Teaching basically introductory microeconomics and
macroeconomics for those years, I accidentally encountered Irregular growth
cycles, Richard Day’s AER paper, that shifted my research interest definitely to
nonlinear dynamics. This was my second bifurcation point.

Richard Day: I got the Fulbright grant on research program in 1990 and chosen
the University of Southern California for US affiliation because Prof. Richard Day
was there. My first experience of studying abroad, however, started at the Bryn
Mawr College in Pennsylvania, the other side of the US. The Japan-US educational
commission gave me an opportunity not only to improve English but to obtain the
common knowledge of the US for survival in everyday life before starting a life in
Los Angeles, California. There were ten other Fulbright grantees. Staying at a
college dormitory with full board located in a very beautiful campus outside a major
metropolitan area, we studied English from morning to evening. My own first
objective was how to correctly pronounce “Bryn Mawr” that includes two “r”.
Since Japanese language does not have corresponding sound for “r”, we (Japanese)
are not good at saying it correctly. On the one hand, I had real wonderful time and
appreciated warm hospitality provided by people at the college. On the other, I did
not have remarkable progress in English, this was because we were back to the
dormitory after the classes and spoke Japanese to each other.

At the end of August of that year, I moved to Los Angeles and finally stayed
there for two years until 1992 with one-year extension of the grantee. During
around the 1990s, Prof. Day was standing at the world center of nonlinear economic
dynamic analysis and I was so excited at being closer to him. He organized the
economic dynamic seminar once a week and various professors from inside and
outside of the US gave one-hour lectures on relevant topics of economic dynamics
and exchanged heated arguments with the participants during the seminars. I was
immensely lucky to be taught by and to discuss many topics with him. It was also
my great pleasure and good memorial that my paper, Complex dynamics in a simple
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macro disequilibrium model was accepted, after a long and hard struggle, by
Journal of Economic Behavior and Organization (JEBO) edited by Professor Day.

Professor Day had many faces, not only a professor of economics but also sailor,
motor cyclist, and poet. For several decades, he and his wife lived on a boat
anchored at Marina del Ray, North America’s largest harbor. They commuted to
USC with a Porche. Nevertheless, they called themselves “boat people”. They once
invited my family to this boat and took us sailing on Los Angeles Sea. Although the
sea was not rough, I easily got seasick by the way that the boat was moving. Sailing
on the sea sounded very nice but it was pretty hard in fact. All in all, this period
should be golden years in my life.

In 2003 a conference honouring Richard Day was held at USC and Barkley
Rosser who was the fitting successor for JEBO invited me. It was also a great
honour for me to attend this conference and to show some results strongly related to
his work on statistical dynamics. The revised version of the paper originally pre-
sented, Density function of piecewise linear transformation, was published in the
special issue of JEBO in 2005. A few years ago I sent to him my paper, Delay
differential growth model (JEBO, 2011) with a long-time-no-see message since the
paper extended the discrete time growth model developed in his AER paper to a
delay continuous time growth model and showed the birth of complicated dynamics
involving chaos. I received unexpectedly heart-warming response from him and
whispered to myself that I could have returned the favor.

Conferences and Friends: In 1994, an international conference on dynamical
systems and chaos was held at TokyoMetropolitan University. One of the organizers
of this conference asked me to chair an economic session and to give a talk. There, I
met Gustav Feichtinger for the first time. He was a head of the research group
ORDYS (Operations Research and Nonlinear Dynamical Systems) at TU Wien and
organized a workshop on optimal control, dynamic games, and nonlinear dynamics
for every two years. After the session, he came to me and offered me to participate to
his next conference, the fifth Viennese workshop on advances in nonlinear economic
dynamics. I attended this workshop and made my international debut. At the same
time, I fully realized that being international was not an easy job. Carl Chiarella was
a discussant of my talk, but I hardly understood his comments because he spoke in
very strong Australian accent. It was a small experience but very impressive. Gustav
opened the door for the new world of nonlinear economics dynamics and I jumped
into it. I accumulated international academic developments by attending various
conferences related to nonlinear dynamics, in particular, the conference in Umea,
Sweden, organized by Tönu Puu in 1995, the conference in New South Wales in
Sydney, Australia, organized by Carl Chiarella in 1996, the Viennese conference
again in 1997, the conference in Beer-Sheva in Israel organized by Michael Sonis in
1998 and so on. I made great friends through those conferences: Gian Italo Bischi,
Volker Böhm, Herbert Dawid, Christophe Deissenberg, Peter Flashel, Cars
Hommes, Steve Keen, Micheal Kopel, Hans-Walter Lorenz, Serena Sordi, to name a
only few. This expansion of human network was my third bifurcation point.

Barkley Rosser: I cannot remember when I met Barkley for the first time, but
we were at the same conferences and workshops many times. We were getting
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closer every time we met. I am sure that he was at the Micheal Sonis’ conference in
Israel in 1998. We have been friends for quite a long time. Soon after he became the
editor of JEBO, he offered me to become an associate editor. I took this offer and
stayed there one more year after Barkley stepped down from JEBO. Although
time-consuming, I had pretty interesting experiences to learn what have been done
after we submitted a paper to a journal. Barkley came to my university more than
several times and gave a seminar each time. You all know how his seminar goes.
Before the seminar, I always asked him to speak slowly, to avoid slangs, not to call
out loud, etc. He nodded and smiled. Actually, the seminar started in peaceful
atmospheres in which he slowly and clearly spoke plain English. After ten minutes
or so, his engine quietly started and his talk was changed into motion a little but he
was in first gear, everything was all right. A few minutes later, unconsciously he
shifted the gear to second and then to third. The whole situations changed com-
pletely and his solo stage began while many of the participants did not really follow
his talk. At some international airport, I coincidentally met students from the
economic department of James Madison University and had small chats with them.
I asked one of them whether he knew Prof. Barkley Rosser. His answer was yes
with “he yelled out in a class”. For his honour, I have to quickly add the followings.
After his talk at some conference, I asked Carl Chiarella whether he could follow
Barkley and he said, “no problem for natives”. In 2008, Barkley organized a
conference on transdisciplinary perspective on economic complexity at his uni-
versity and kindly invited me. One of the participants gave a lecture in almost
exactly the same way as Barkley, yes, this professor yelled out loud. Although I
forgot his name, I was sure he was an American. So I found that Barkley was not
alone.

Ferenc Szidarovszky: Among others, Ferenc Szidarovszky influenced me sci-
entifically and socially more than anyone else. The name “Szidarovszky” was
well-known among the students at graduate schools of economics in Japan because
he coauthored enormous amounts of the papers concerning oligopoly theory with
Prof. Koji Okuguchi who was a very well-known professor and his Springer book,
Expectations and Stability in Oligopoly Models was one of musts for graduate
students focusing on microeconomics and game theory. Without having any
specific reasons, I thought, on my own, Prof. Szidarovszky was a supervisor of
Prof. Okuguchi when he studied in a graduate school in the United States and after
graduation, they worked together. I know Prof. Okuguchi only by name and Prof.
Szidarovszky were out of my league, a person who lived in another world. When I
met him at a small research meeting held in Odense in Denmark in 2002, I got a big
surprise to learn that he was still active. As I mentioned earlier, I thought that Prof.
Szidarovszky was the supervisor and should be older than Prof. Okuguchi who was
old enough then. In consequence, I believed with selfish reasons that Prof.
Szidarovszky was already retired (I feel very sorry for having had said this to him.
Later I knew that Prof. Szidarovszky was not the supervisor and much younger than
Prof. Okuguchi). I remember Gian Italo Bischi, Micheal Kopel, Shahria Yousefi,
and some others came to this meeting. In daytime we shared and discussed the
recent results of respected researchers while in nighttime, we went to a small
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restaurant where we raised a glass or two of wine (or three, maybe more) and
enjoyed Danish cousin. That just reminds me that this get-together was a starter
of the still-continuing NED conference. Professor Szidarovszky was a well-known
mathematician and the first-rate game theorist. It was an easy guess that his brain
was full of equations and theorems. However, I found in Odense that he divided his
brain into two parts, one for mathematics and the other for jokes (later I got to know
he was also a classic music lover, so he divided the brain into three at least). He
kept presenting a wide variety of jokes ranging from wry smiles or dry laughs to
dirty ones and we laughed away the hours. This was my small anecdote with Prof.
Szidarovszky whom now I call Szidar. It was definitely sure that this unsuspected
encounter was the fourth bifurcation point.

I got a sabbatical leave in 2006 and went to University of Arizona in Tucson
where Szidar was. We worked hard together revising, from a delay dynamic
viewpoint, the traditional imperfect competition models of monopoly and oligopoly
and classical economic dynamic models of Kaldor, Goodwin, Hicks, etc. We
published a large number of papers in economic and applied mathematical journals
and two monographs from Springer, Game Theory and its Applications (2015) and
Dynamic Oligopolies with Time Delays (2018), as well as editing a conference
volume of the 9th International Conference on Nonlinear Economic Dynamics held
in Tokyo, Essays in Economic Dynamics (Springer, 2016). Further, I edited a book
celebrating academic achievements of Szidar, Optimization and Dynamics with
their Applications (Springer, 2017). He is such a perfectionist about publishing. He
usually called himself “picker” when he returned, with a lot of red marks, the draft
of a paper I wrote. After repeating this adjustment process many times over more
than a decade, I believe that a number of marks is getting a little bit less these days.

From Here: Recently I am still active in writing scientific papers. Having Power
Point slides of one or two unfinished papers, I regularly attend the annual confer-
ence of the Society for Chaos Theory in Psychology and Life Science (SCTPLS)
where Barkley will be the president next term, the conference on Nonlinear
Economic Dynamics (NED) in odd years (its 2019 edition organized by Irina
Sushko was held in Kyiv, Ukraine) and the workshop Modeli Dinamici in
Economia and Finanza (MDEF) organized by Laura Gardini and Gian Italo Bischi
in even years. Its 2020 edition will be held in Urbino. I cannot wait for it. After
these conferences, I finalize the papers taking account of the comments and criti-
cism obtained. The old professor neither dies nor fades away but plans to be on the
Magical Mystery Tour for a few more years.

Akio Matsumoto
Chuo University

Tokyo, Japan
akiom@tamacc.chuo-u.ac.jp
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Coupled Chaotic Systems and Extreme
Ecologic-Economic Outcomes

J. Barkley Rosser Jr.

Abstract In sympathy with work of Akio Matsumoto, this essay reviews models
that consider how the coupling of systems within ecologic-economic contexts can
generate not only chaotic dynamics, but lead to outcomes that exhibit kurototic
outcomes rather than reflecting Gaussian distributions. This aligns with arguments
made byMartinWeitzmann regarding the global climate system. Themodels consid-
ered included one where climate and economic systems are separately non-chaotic
but chaotic when combined and another where the economic system is chaotic and
when combined with climate generates kurtotic outcomes through flare attractors.
Likewise, similarly coupled models involving fisheries and forestry dynamics are
considered where coupling leads to chaotic dynamics. Multi-level systems with such
dynamics are then considered with the governance issues involved with such systems
are examined.

1 Introduction

Akio Matsumoto has long studied coupled dynamical systems exhibiting various
forms of complex dynamics, often involving lags (Matsumoto 1997, 1999; Mat-
sumoto and Szidarovszky 2015). In addition, he has had an interest in implications
of such models connecting economics with environmental problems (Matsumoto
et al. 2018; Ishikawa et al. 2019). A theme of his work on these topics has indeed
been that both coupling and lags tend to increase the complexities arising from
such systems. This might appear to run counter to another theme of his work, that
sometimes chaotic dynamics “can be beneficial” (Matsumoto 2001, 2003). However,
those models involved one-dimensional systems of price dynamics without coupling
or lags or other complications that could undermine their relatively sunny outcomes.
Nevertheless, this insight of Matsumoto’s that chaotic dynamics are not necessarily
“bad” has not been fully appreciated.

J. Barkley Rosser Jr. (B)
James Madison University, Harrisonburg, USA
e-mail: rosserjb@jmu.edu
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In appreciation of these themes of Matsumoto’s we shall consider how coupled
ecologic and economic chaotic systems can generate extreme events, kurtotic “fat
tails.” While there are various such possible applications, including to fisheries and
forests, arguably the most important involves global warming, a more accurate term
that this observer prefers to the more anodyne and widely used “climate change.”
While most of the models underlying official IPCC reports have assumed Gaussian
distributions of outcomes, Martin Weitzman (2009, 2011, 2012, 2014) has argued
that underlying nonlinear dynamics of the global climate system in interaction with
the global economic system is subject to power law or other distributions that exhibit
kurtosis and thus a higher probability of extreme outcomes than appearing in the
more conventional models. Indeed, Lorenz (1963) first identified a strange attractor
associated with sensitive dependence on initial conditions in a chaotic model of
climate dynamics. It is thus completely appropriate to consider how such models can
bring about these outcomes that Weitzman considered to be so important.

This raises the question of how policy should be carried out in the face of such
phenomena, especially as this happens in the context of complications such as the
hierarchical complexity of ecologic-economic systems and the bounded rationality
of policy makers (Rosser and Rosser 2006, 2015). Such analysis is deeply in synch
with the spirit and tradition of the work of Akio Matsumoto.

2 A Coupled Climate-Economy Model

As already noted, Lorenz (1963) modeled climate dynamics as being chaotic,
although that term was not yet in use at that time. However, the chaotic nature of
climate dynamics is widely accepted, with the “butterfly effect” of sensitive depen-
dence on initial conditions being widely viewed as a reason why weather forecasting
has only a fairly short range of reliability, even though longer term averages and
trends may be forecasted.

While many theoretical models of chaotic economic dynamics have been pro-
posed (Rosser 2011, Appendix A), solid empirical verification of such dynamics in
economic systems has been lacking, although a variety of complex nonlinear dynam-
ics have been accepted as happening in economic systems. However, as studied in
Rosser (2002) two systems that by themselves may not exhibit chaotic dynamics can
do so when coupled together. This draws on work of Chen (1997), which draws on
simple underlying sub-systems.

This simple system has two sectors in its economic part, agricultural and manu-
facturing. These sectors are each related to global average temperature, T. For agri-
culture, temperature is a negative input. For manufacturing, it is a positive input to
global average temperature. Each sub-system is very simple, but the coupled system
can show chaotic dynamics.

On the economic side demand is given by a CES utility function of agriculture,
A, and manufacturing, M.
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U (A, M) = (Aρ + Mρ)1/ρ. (1)

We are assuming equilibrium on the economic side so that consumption of each
good equals its output. This gives the elasticity of substitution as is standard for CES
functions to be

σ = 1/(1−ρ) < 1. (2)

Both production functions are linear in labor, L, with total labor normalized to
unity, so that

L(A) + L(M) = 1. (3)

Besides a positive constant and the labor input, agricultural production also
includes a negative quadratic term for global average temperature, so that

A = (−αT 2 + βT + 1)L(A). (4)

Manufacturing output is given by

M = bL(M). (5)

This generates a market clearing manufacturing price of

P = (−αT 2 + βT + 1)/b. (6)

The climate model draws on one due to Henderson-Sellers and McGuffie (1987).
This now involves dynamics with time subscripts as temperature in a succeeding time
period that is determined by the temperature in the current one along with a long-run
normal temperature, Tn, as well as a positive linear function of manufacturing output.
With c in the unit interval and g > 0, this is given by

Tt+1 = (1−c)(Tt−Tn) + Tn + gMt . (7)

Combining with the economic sub-system generates an equilibrium motion for
global temperature that is given by

Tt+1 = (1−c)Tt + g(bp1−σ
t )/(1 + p1−σ

t ). (8)

Chen simulated this model setting σ = 0.5, α = 8, β = 7, b = 1, and g = 0.6.
The climatic tuning parameter, c, for this set of other parameter values, generates a
unique and stable steady state for values in (0.233, 1). As c declines below 0.233,
period-doubling bifurcations appear, and aperiodic chaotic dynamics appear after
it goes below c = 0.209. The system also exhibits sensitive dependence on initial
conditions (“butterfly effect”) below this level as well.
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3 Flare Attractors and Extreme Ecologic-Economic
Outcomes

A related model that can bring about an outcome of a combined ecologic-economic
system with a chaotic driver, if differing in important details from the model in the
preceding section, involves flare attractors. These are key to the not-fully developed
econochemistry concept. Initially conceived by Otto Rössler and Georg Hartmannn
(1995) to study solar flares and various autocatalytic chemical reactions, they came
to be applied to economics as well, initially for entrepreneurial activities (Hartmann
and Rössler 1998) and then for asset price volatility (Rosser et al. 2003).

This approach differs from that in the previous section by having the underlying
fundamental process being chaotic rather than becoming chaotic as a result of the
coupling aspect. In the case of this model the “flaring” kurtotic outcomes, sudden
bursts coming almost from nowhere, are the result of the coupled second layer deriv-
ing from the underlying driving chaotic process. This also involves an introduction
of heterogeneous agents into the system. Ironically as one moves from the original
model of solar flares to the model of climatic outbursts of extreme temperatures, we
see a return to an original physical chemistry application after passing through an
economics application that explored financial market dynamics.

The underlyingmathematics of thismodelwere developedbyRössler et al. (1995).
The attractors involved are extensions of the continuous chaotic attractor model of
Rössler (1976) as special cases that are continuous-but-nowhere-differentiable and
also exhibit “riddled basins.” The full explication of such attractors is due to Milnor
(1985).

Here we shall extend this model to an application not previously made, to the
problem of global warming, or more generally, extreme outcomes of climate change.
Thepreviousmodel due toChen (1997), had the ecologic-economic interactionsmore
direct, which arguably reflects a longer run perspective. Here we shall focus more on
a shorter-term perspective of economic-to-climate interactions. The coupling aspect
involves the second-tier aspect of heterogeneous agents responding to the underlying
economic model already assumes an environmental limit on economic growth. This
limit is not connected to the higher level global warming issue, but a narrower limit
more locally determined. The model is one of the earliest chaotic economic models
due to Day (1982). His model involves a logistic equation, which relates to the
original model of chaotic application. This was due to May (1976). Such a model
depends on a hard upper limit of growth along with a lower bound.

The underlying economic model, due to Day (1982) is a modified Solow growth
model. It has the labor exponent as α, and β the capital exponent, y being per capita
output, λ being the population growth rate, with m being a “capital-congestion”
saturation coefficient, which ultimately drives the logistic formulation that has an
upper limit, and which resembles the model ofMay (1976). The modified production
function is given by

f (k) = βkβ(m−k)y . (9)
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Assuming a constant savings rate, the capital-labor ratio implies the following
difference growth equation,

kt+1 = αβkβ
t (m−kt )

y/(1 + λ). (10)

This formulation coincideswith that ofMay (1976), whomade clear the parameter
values of this model for which chaotic dynamics will occur. Rosser et al. (2003, p. 80)
assumed that

Aβ/(1 + λ) = 3.99 = kt+1/(1 − kt ). (11)

This formulation provides a chaotic dynamical process as k changes. This process
assumes that the capital share remains constant.

Earlier literature has posited at this point that the specification of heterogeneous
agents involved human agents responding differently to the underlying system. For
this case we follow Hartmann and Rössler (1998) for giving a general form of the
agent reaction function. The difference between this formulation and earlier work by
these authors in physical chemistry is that while here the agents are heterogeneous
individuals or organizations, in this case implicitly the agents are nations or regions
of the world subject to climatic variation.

What goes on here is that we have a set of locations that have a varying relation
with the exogenous chaotic driving force. In particular there will be a switching value
of a, a function of k, beyond which there will be a substantial increase in temperature.
Whereas in the asset model of Rosser et al. (2003) these agent reaction functions
represent behavior of human agents, including human organizations, in this case
these represent locations on the planet with their respective situations that imply
heterogeneous behavior. The appearance of an outburst reflects a sufficient number
of these agents/locations crossing their critical value of 1 > a > 0.

The general form of the reaction function for an agent/location of I type out of n,
assuming agents/locations, and c > 0, and will be given by

BI
t+1 = bI

t + bI
t

(
aI−k It

)−cb(I )2
t + cst . (12)

The first term in (12) is an autoregressive component. The second is the switching
term. The third provides a stabilizing component. The fourth is the destabilizing
element coming from the buildup of previous trends, representing the ongoing overall
state of the system determined by overall demand s, and is given by

St+1 = b1t + b2t + · · · + bnt . (13)

In Rosser et al. (2003), assuming certain values of the parameters allows for
a simulation that provides a sequence of outcomes that exhibit scattered kurtotic
outbursts consistent with the Weitzman scenario for global warming.
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4 Coupled Chaotic Dynamics in Renewable Resource
Markets

While we have seen that coupled chaotic dynamics can happen at the global level
scale of the climate-economy system, such coupled chaotic dynamics can also hap-
pen in lower level ecologic-economic systems. Two examples are in fisheries and
also in forestry, although the former have been modeled more clearly, with Conklin
and Kohlberg (1994) initially showing the possibility for chaotic dynamics within
a fishery in a non-optimizing setting. Central to such dynamics in these systems is
when supply curves bend backwards, a result first suggested for fisheries without
a formal model by Copes (1970). More complex dynamics for fisheries than those
presented below are presented in Foroni et al. (2003).

Hommes and Rosser (2001) have demonstrated the possibility of this for fisheries
in what they label a “Gordon-Schaefer-Clark” model of an optimally managed fish-
ery. This assumes on the ecological side a Schaefer (1957) yield function, f (x), with
x the fish biomass, which in equilibrium will also be the harvest function, h(x), with
r the natural growth rate of the fish and k the carrying capacity of the fishery is given
by

h(x) = f (x) = r x(1−x/k). (14)

Following Clark (1985) the economic side is given by an effort function linear in
time fishing, E, with costs C(E), without fixed costs, constant marginal costs, c, and
a catchability coefficient, q, with p the price of fish, and R the rent, output Y is given
by

Y = qEx = h(x). (15)

This implies that rent which the present value of which is to be maximized is

R(Y ) = pqEx−cE . (16)

In the optimization non-equilibriummust be allowedwhere harvest may not equal
the yield function. Solving the intertemporal optimal control problem with non-
negativity constraints on x and h and a constant discount rate, δ, (Hommes and
Rosser 2001) leads to

f (x) = δ = [c f (x)]/(p−c). (19)

From this optimal discounted supply curve is given by

x(p, δ) = k/4[1 + (c/pqk)−(δ/r) + (1 + c/pqk − (δ/r)2 + 8cδ/pqkr)1/2].
(20)
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The crucial variable determining system dynamics is the discount rate, δ. At
zero with no discounting of future rents, the supply curve slopes upwards, but as
it increases beyond about 0.02, the supply curve bends backwards, allowing for
catastrophic collapses of the fishery. As it goes to infinity implying not counting the
future at all, the curve bends backwards the most and becomes identical to that for
an open access fishery subject to “tragedy” (Gordon 1954), the problem dealt with
by Ostrom (1990) and others. The open access supply curve is given by

x(p,∞) = (rc/pq)(1−c/pqk). (21)

Assuming lags in behavior by fishers turns this into a form of a cobweb model.
Somewhat similarly to the finding ofMatsumoto (1997), Hommes and Rosser (2001)
show for an appropriate demand curve and for intermediate values of the discount
rate, chaotic dynamics can emerge in this coupled fishery system.

While no one has shown specifically chaotic dynamics in a forest-harvesting
model, under certain situations an optimally managed forest can also exhibit
backward-bending supply curves for sufficiently high discount rates. This was first
proposed byHyde (1980) with empirical support for backward-bending forestry sup-
ply curves found in the Amazon rain forest for certain circumstances (Amacher et al.
2009). Drawing on Colin Clark’s fishery model, Binkley (1986) developed a model
that formally showed how such a backward-bending supply curve could arise in a
forestry model, with this further studied by Rosser (2013). These models are all for a
single output, timber from cut trees, with Binkley finding tentative empirical support
for the long run supply of loblolly pines in the southeastern US. The basic canonical
optimal forestry management model accounting for multiple uses and infinite time
horizon is given by Hartman (1976).

Letting most variables be identical to the above fishery model, the main new
variable that appears in the system is T, the optimal rotation age for the forest, the
time that trees should be cut and then replanting of them occurs. This T depends
on the discount rate and also p, the price of timber, and unlike the fishery, the yield
function is a function of time since the last replanting, f (t), with the growth at optimal
rotation age given by f (T (p)). From all this an optimal inverse supply function for p
as a function of T and δ is given by

p = c/[ f (T ) − f ′(t)(1 − e−δt )/δ)]. (22)

This is consistent with the possibility of a backward-bending supply curve for
certain parameter values. Binkley (1986, p. 173) provides an intuitive explanation of
what is happening in such situations.

High stumpage prices imply not only that the output from the forest has high value, but also
that the capital in the form of growing stock has a high opportunity cost. At high prices, it
is optimal to conserve on the use of capital and therefore to reduce the stock inventory by
reducing the rotation age.
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While it has not been shown explicitly that thismodel can generate chaotic dynam-
ics, I am reasonably certain that with appropriate lags for forester behavior, such will
occur for certain situations. I close this discussion by observing that chaotic dynamics
have been found for a variety of both harvested biological populations (Sakai 2001)
as well as non-harvested ones (Zimmer 1999; Turchin 2003; Solé and Bascompte
2006).

5 Policy in Complex Multi-level Hierarchies with Bounded
Rationality

The difficulty of managing such dynamically complex coupled systems is compli-
cated when they exist within hierarchical ecologic-economic contexts (Radner 1992;
Rosser 1995, 2001). This complexity enforces the necessary reliance on bounded
rationality as posed by Simon (1957, 1962; Rosser and Rosser 2015). It also involves
positing the appropriate level of the system as the locus of such policymaking in
order to overcome the difficulties of common property resources that arise in such
situations (Netting 1976; Ostrom 1990; Bromley 1991; Rosser and Rosser 2006;
Rosser 2016).

While Simon (1962) formalized the discussion of hierarchy in complex systems,
his arguments for dynamical systems were prefigured in general systems theory (von
Bertalanffy 1962) and its predecessor, tektology (Bogdanov 1925–1929). These have
been more fully generalized for ecological systems by Holling (1992). A deep issue
is the relation between higher and lower levels of such systems. While it is generally
argued that higher levels dominate or at least constrain lower levels (Radner 1992),
it may be possible for changes in lower levels to lead to changes in higher levels,
or even the complex emergence of higher levels through hypercyclic morphogenesis
(Rosser 1991).

We can consider such systems that allow for ultimately flexible relations with both
fast and slow dynamics in the formalization of synergetics as developed by Haken
(1977). Let there be a well-defined hierarchy with n levels. Higher levels constrain
more rapidly oscillating lower levels under normal conditions. Thus fast dynamics
operate at lower levels and slow dynamics operate at higher levels.

At a given level let q be the vector of fast variable dynamics and F the vector
of slow variable dynamics, with A, B, and C being matrices and ε(t) be an i.i.d.
stochastic fluctuations term. Then the fast dynamics are given by

dq/dt = Aq + B(F)q + C(F) + ε(t). (23)

Haken argues that such a system can be simplified by rearranging this equation
in order to exhibit adiabatic approximation in which the fast dynamics are shown to
depend solely upon the slow dynamics based on order parameters in F. This is given
by
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dq/dt = −(A + B(F))−1C(F). (24)

The order parameters are the variables in F and can be ranked in inverse order of
the absolute values of the variables inA+B(F). Curiously these order parameters are
unstable in the sense that they possess positive real parts of their eigenvalues. Other
variables are the slaved variables and have negative real parts of their eigenvalues.

Structural changes in the sense of Holling can come from either the bottom or the
top in such a system. Bottom-up changes can come about through a slaved variable
destabilizing by having the real part of its eigenvalue going positive in a process
known as “the revolt of the slaved variables” (Diener and Poston 1984). Haken
saw this as a key to the emergence of chaotic dynamics in a structured system. An
example might be the outbreak of the Great Plague in Europe in the mid-14th century
as an accumulation of malnutrition weakening population immune systems reached
a critical mass such that the plague could sweep through the population (Braudel
1967).

The top-down mechanism can happen through the emergence of a new constrain-
ing higher level of the system, such as the emergence of a city in an urban hierarchy
much larger than previous ones that dominates them through the appearance of new
economic activities (Rosser 1994). The mechanisms for such anagenetic moments
of hypercyclic morphogenesis can arise from frequency entrainment as modeled by
Nicolis (1986). Another way may be through the appearance of cooperative forms
leading to multi-level evolution in an evolutionary process (Crow 1955).

The policy problem must confront this hierarchical complexity. This is an issue
that Ostrom (1990) and others have tried to confront. A clear outcome is that gover-
nance should operate at the most crucial level that determines the crucial dynamics
of the system. In light of the analysis above of synergetic systems, it may not always
be obvious what that level is (Wilson et al. 1999). A system apparently dominated
by the highest level may actually be dependent on dynamics at the bottom and vice
versa. More generally, focusing policy on an ecologic-economic hierarchy level that
is not crucial to the system dynamics can lead to worse outcomes than doing nothing.

Indeed, for the most difficult problems the complex links mean that actions may
need to be taken at several levels. This would seem to be especially the case for the
global climate system, where in fact given the coupled nonlinear dynamics involved
it would seem that multiple levels are involved. Global agreements are necessary
for setting overall goals. But individual nations must set goals and establish specific
policies. Butmany of these policies end up being carried out at lower levels. Likewise
it is not just the political and economic elements that have this multi-level aspect,
but also the ecological and climatological. The ecologic-economic system functions
at levels ranging from almost minutely local to the totally global.

A further complication due to the complexities associated especially with chaotic
dynamics is that when a system is decomposed from the global to the regional level,
it may be subject to severe effects due to sensitive dependence on initial condi-
tions. Thus Massetti and Di Lorenzo (2019) have considered in detail the regional
level forecasts from simulations of global level climate models used by the United
Nations IPCC for projecting possible future climate outcomes. In particular they ran
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simulations slightly varying initial starting values for certain variables and indeed
found substantial sensitive dependence for regional level projections. Thus for the
west-central portion of the United States some projections would have substantial
warming while others actually found cooling happening even as the global average
was for warming, again for starting values only slightly apart, thus replicating the
old result found by Lorenz (1963) for climate models. Needless to say, this seriously
complicates knowing what to do at more local levels for such situations.

These multi-layered complexities involve deep uncertainties about all the mat-
ters noted above and more. These include ongoing debates about underlying science
issues, as well as the full nature of the interactions between the economic and cli-
matological aspects. That the elements of this involve chaotic dynamics subject to
sensitive dependence on initial conditions makes the whole matter that much more
difficult to understand. All this leads to the inability of any observer or agent to
reliably understand in full detail how it works. This means that inevitably bounded
rationality is the best that can be hoped for to be used in analyzing such a system.

6 Conclusions

The coupled global ecologic-economic system deeply involves chaotic dynamics.
This means the system is subject to sensitive dependence on initial conditions. Also
it may be subject to flare phenomena. These involve kurtotic outbursts that increase
the dangers involved in understanding the system and increase the risks involved
in the analysis. These issues extend to other kinds of coupled dynamical ecologic-
economic systems such as those involving fisheries and forests. As a multi-layered
complex system, where management must apply at the appropriate level, decision
makers are limited to bounded rationality in dealing with it. The ideas involved in
these matters are deeply linked to ideas that Akio Matsumoto has studied in his
lifetime of research.
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Abstract The paper aims to study the co-evolution dynamics of human capital and
innovative firms by means of an evolutionary game theory model. We analyze the
properties of the model, showing that if the demand for skilled labor is higher than
its supply, then innovative firms may have an incentive to become non-innovative
and stop hiring skilled workers. If, by contrast, the supply of skilled labor is higher
than its demand, then there could be incentives for non-innovative firms to become
innovative. Then, we introduce the dynamic extension of the model, applying a
replicator dynamics equation for the fraction of innovative firms and the fraction
of skilled workers. The steady states of the system are identified and as the most
interesting one, the interior steady state, is discussed. Subsequently some simplified
versions of the model are proposed and studied. By means of such analysis, we claim
that a policy oriented to increasing the stock of skilled labor can set the economy on
a positive path towards technological development.
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1 Introduction

The effects of advanced technological firms on the labor market has been deeply
studied in economics (see, for example, Guerrini et al. 2019; Matsumoto and Szi-
darovszky 2020). Seminal papers by Griliches (1969) and Welch (1970), pointed
out that the implementation of new technologies in an effective and efficient way,
requires adequate skills on the part of workers. A direct consequence of this hypothe-
sis is that an insufficient number of skilled workers is a limitation to the adoption and
diffusion of new technologies. In the literature this restriction is known as ‘restriction
of human resources’, which has been widely discusssed discussed by Amendola and
Gaffard (1988), among others.

Due to the complementarity between skilled workers and firms’ investments in
R&D, and any additional cost spent on innovation, the demand for skilled work-
ers increases, and with it, the differential between wages paid to skilled workers
compared to respect to the unskilled workers. When resources spent on innovation
by firms become substantial, a virtuous cycle of economic performance character-
ized by high wages and high firms’ productivity, and therefore growth, emerges (see
Krusell et al. 2000).1 Seminal papers have developed models to demonstrate that
skilled workers and innovative firms complement each other, giving rise to the con-
formation of a high level equilibrium or economic growth, where new technologies
reduce the demand for unskilled workers and increase the demand for those who
are qualified, while their training allows them to adapt more easily to technological
changes (see Acemoglu 1997, 1998, 2002; Aghion 2006; Hornstein et al. 2005).

As it is well known, the technological progress requires a constant update of the
educational and training system. Education can be considered as a productive input
that can be accumulated and that can be transferred through different economic
sectors and production processes,2 and therefore, the creation and adoption of new
technologies and the accumulation of human capital are interdependent factors that
are endogenously determined in an economy (Caselli 1999; Gould 2002).

As it is widely recognized, technological progress has a favorable effect on
social well-being (Acemoglu and Restrepo 2018). Differences in countries’ eco-
nomic growth rates are mainly due to differences in the fraction of skilled workers
and innovative firms that are capable of adapting to (or producing) technological
progress. Invention, automation, adoption of new technology and accumulation of
human capital are interdependent factors that, in the common view, generate growth
and prosperity.

It is difficult to determine if the accumulation of human capital is what drives the
process of economic growth or technological progress, based on theoretically and

1In the sophisticated context of firms’ evolutionary theory the idea of Nelson and Phelps (1966) is
referred to, created in the macroeconomic sphere, that “internal” knowledge is needed to absorb
new knowledge produced outside, showing a kind of inverse causal process between intellectual
capital and innovation.
2The accumulation of human capital and the improvement of its management are the sources of
sustainable competitiveness (Barney 1991; Hitt et al. 2001).
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empirically robust results (see Risso and Sanchez Carrera 2019; Sanchez Carrera
2019). We understand that the increase in the quality of human capital acts as an
incentive for investment in technology, in the sameway that the increase in investment
in technology by firms encourages the decision of workers in to train and get up-
to-date. The reverse process is also verified. The non-linear evolutionary model we
present corresponds to this self-replicating process.3 The existence of incentives in
one way or another does not imply the immediate change in the decisions of each
firm or each worker. It simply indicates a possible direction of evolution, or more
precisely, a trend. In our model, if the trend continues in the long term, it will lead to
a technologically advanced economy or, conversely, will lead to a poorly performing
economy. It will create a situation of conformity in a high social or technological
equilibrium or in a low one dominated in the Pareto sense.

In our model we consider, in contrast to the standard endogenous growth theory
(Grossman and Helpman 1991; Romer 1990) where agents maximize their direct
utility, that agents imitating the more successful strategy, given the current state of
the economy. Utility maximization indeed requires perfect information, which is an
assumption that in the real world is not always realized. People indeed make choices
based on what their neighbours do, and choose to act like them if they believe that the
results are better than those they attain, in terms of economic performance, lifestyles
and so on.

The economic behaviour driven by imitation is not a novelty in the economic
literature, as it is based on the idea posited by Accinelli and Sánchez Carrera (2011,
2012) and Sanchez Carrera (2019). Through their contributions, they explore the
foundations of strategic complementarities between firms and workers by means of
the evolutionary game theory, where firms and agents can respectively decide to
invest in R&D and education (bearing the associated costs) or not, given the current
state of the economy, that is to say, the fraction of high technological firms and the
fraction of skilled worker over the total workforce.

Based on the above theoretical motivations, this research paper aims to study
the co-evolution dynamics of human capital and innovative firms by means of an
evolutionary game theory model. More specifically, our model encompasses two
types of firms (innovative and non-innovative) and two types of workers (skilled
and unskilled). The main difference between the two firms is that the innovative
firms employ skilled workers as production input, while non-innovative firms do
not. The main difference between skilled and unskilled workers is that the former
are more productive than the latter. Moreover, unskilled labor is absolutely elastic,
while skilled labor is not. Firms maximize their profits given the equilibrium price
in the consumption good market (price-takers) and input prices are fixed to marginal
productivity (Matsumoto and Szidarovszky 2018). From these strategic interactions,
under some reasonable hypothesis that will be introduced and justified later, two
evolutionary stable strategies emerge: for the firms, to invest in research and devel-
opment and for the workers, to invest in education, giving rise to prosperity and

3For a broad overview of the topic on nonlinear economic dynamics, see Matsumoto et al. (2018).
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economic growth, or not to invest in R&D nor in education, hence giving rise to a
poverty trap.

The remainder of the paper is organized as follows. In Sect. 2, we develop the
model by explaining how firms maximize their benefits given the distribution of
workers types (i.e. skilled or unskilled). In Sect. 2.1we study the relationship between
firms’ profit rates and the labor market. The rates of profits, workers’ wages and edu-
cation costs are considered as the main variables for the decision making of firms and
workers respectively. Section 2.2 develops an evolutionary dynamics for the firms’
decisions and the evolutionary dynamics for workers’ decisions. Section3 develops
the evolutionary dynamics of the economy, analyzing the main characteristics of the
possible stationary states and some particular transitions path. Section4 presents the
conclusions from the model and offers further research directions.

2 Setup of the Model

Let us consider an economy where there are two types of firms (which differ in the
level of technology of their production process) producing an homogeneous prod-
uct in a perfect competitive market where the equilibrium price of the product is
determined as a market clearing price that here is assumed given to p > 0. A group
of firms, namely innovative firms denoted by the subscript i , uses state-of-the-art
technology, while the remaining ones, non-innovative firms denoted by n, use “tradi-
tional” technology. Factors of production used by both types of firms are generically
represented by physical capital, K > 0, and labor, L > 0. Labor is differentiated
between skilled workers, s, and unskilled workers, s̄.

The amount of capital used by innovative firms is denoted by Ki > 0. Innovative
firms employ skilledworkers, and the amount of skilledworkers employed is denoted
by Lis ≥ L̄ is > 0, where L̄ is represents the r̀eference amount’ of skilled workers
which is necessary for production. Innovative firms demand also unskilled workers,
and Lis̄ > 0 represents such amount of hired unskilledworkers.Non-innovative firms
use capital Kn > 0 and only demand unskilled labor Lns̄ > 0. Firms’ production
functions (satisfying the usual convexity assumptions) are represented by:

fi : R3+ → R,

fn : R2+ → R

where the function f j∈{i,n} a strictly concave, differentiable and not decreasing in
each of its variables. That is, firms’ production functions are, respectively:

yi = fi (Ki , Lis, Lis̄) and yn = fn(Kn, Ls̄) (1)
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Optimal output supply of innovative firms is denoted by y∗
i (p) and that of non-

innovative firms is y∗
n (p), at prices p . We also denote by K ∗

i , L∗
is, L∗

i s̄ and K ∗
n , L∗

ns̄
the optimal inputs demand of each type of firms, at prices p.

At any moment of time, t , the market demand is satisfied by Ni (t) ≥ 0 total
number of innovative firms and by Nn(t) ≥ 0 total number of non-innovative firms,
where N = Ni (t) + Nn(t) is the whole population of firms. At prices p the market
demand is y(p), then:

y(p) = Ni (t)yi (p) + Nn(t)yn(p)

where y j (p), j ∈ {i, n} corresponds to individual supply of each firms’ type. In
addition, we assume that total demand cannot be covered only by innovative firms,
that is to say y(p) > Ni (t0)yi (p).The remainder ȳ = y(p) − Ni (t0)y(p)i is covered
by non-innovative firms, in such a way that the relation ȳ = Nn(t0)yn(p) is verified.

Let us assume that the marginal costs of innovative firms are smaller than those
of the non-innovative firms, that is:

dci (y)

dt
<

dcn(y)

dt

where c j , j ∈ {i, n} is the respective cost function, we also assume that:

dci (0)

dt
<

dcn(0)

dt
< p

meaning that both types of firms have incentives to produce positive quantities for
the market.

Firms aremaximizing their profits andweconsider that input prices are determined
by their marginal productivity, i.e.

w∗
s = d fi

dLs
(K ∗

i , L
∗
is, L

∗
i s̄)

w∗
s̄ = d fi

dLns̄
(K ∗

i , L
∗
is, L

∗
i s̄) = d fn

dLs̄
(K ∗

n , L
∗
ns̄)

r∗
i = d fn

dKi
(K ∗

i , L
∗
is, L

∗
i s̄)

r∗
n = d fn

dKn
(K ∗

n , L
∗
ns̄)

where w j is labor wage and r∗
j is the capital price, for j ∈ {i, n}.

Total labor available at each time t is denoted by H(t) = Hs(t) + Hs̄(t) > 0,
where Hs(t) and Hs̄(t) correspond, respectively, to the amounts of skilled and
unskilled labor, at time t. We also assume that the supply of unskilled labor is abso-
lutely elastic, i.e. it is always possible to find in the market the amount required by
the firms. This does not necessarily happen with skilled labor.
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Firms are competitive and therefore seek to maximize their profit functions:

�i (Ki , Lis, Lis̄) = p fi (Ki , Lis, Lis̄) − (ri Ki + ws Lis + ws̄ Li s̄)

�n(Kn, Lns̄) = p fn(Kn, Lns̄) − (rnKn + ws̄ L s̄)

(2)

The equilibrium values of quantities K ∗
i , K

∗
n , L

∗
is , L

∗
i s̄ , L

∗
ns̄, satisfy:

�i (K ∗
i , L

∗
is, L

∗
i s̄) ≥ �i (Ki , Lis, Lis̄) ∀ (Ki , Lis, Lis̄), and

�n(K ∗
n , L

∗
ns̄) ≥ �n(Kn, Lns̄) ∀ (Kn, Lns̄).

Remark 1 If ∂ fi/∂Lis̄ �= 0, the function Lis̄; �+ → � exists by the global implicit
function theorem satisfying Lis̄(Lis) = Lis̄ for all Lis ≥ L̄ is > 0. As a consequence
of the implicit function theorem the following identity holds:

dLis̄

dLis
(Lis) = −

∂ fi
∂Lis

(Ki , Lis, Lis̄)

∂ fi
∂Lis̄

(Ki , Lis, Lis̄)
. (3)

The equation corresponds to the marginal rate of substitution of unskilled by skilled
labor. The curve determined by (Lis, Lis̄(Lis)) corresponds, with fixed Ki , to an
iso-product curve. Operating outside the optimum implies an additional cost for the
firm.

2.1 Firms and Labor Market

Consider that in period t = t0, K ∗
i and K

∗
n are the optimal amounts of capital required

by each type of firms, and the optimal amounts of labor are L∗
is, L∗

i s̄ for innovative
firms and L∗

ns̄ for non-innovative firms. Hence, the following relationship can be
verified:

�i (K ∗
i , L

∗
is, L

∗
i s̄)

ci (y∗)
= �n(K ∗

n , L
∗
ns̄)

cn(y∗)
(4)

That iswith optimally production the profit rates of the two types of firms, is identical.
However, the above relationship (2) is no longer true if the required optimal labor
quantities are not acquired in the labor market because supply of skilled labor does
not satisfy its demand. In that case, firms must operate outside the optimum. So we
can state the following result.

Proposition 1 If in the labor market, the skilled workers demand is greater than
its supply, then innovative firms produce in a suboptimal situation. Consequently,
incentives may arise to modify strategies, i.e. firms prefer being non-innovative and
workers prefer being unskilled.
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Proof Suppose that in period t = t0, the following holds:

Ni (t0)L
∗
i > Hi (t0), Ni (t0)L

∗
i s̄ + Nn(t0)L

∗
ns̄ < Hs̄(t0).

This leads to some, if not all, innovative firms producing in a suboptimal situation.
This can happen in three different ways:

1. Innovative firms must keep the production at the optimum level y∗
i (p) for which

they must demand unskilled labor to replace the skilled labor in the iso-product
curve determined by the relationship: Lis̄ = Lis̄(Lis), see Remark 1. The identity
fi

(
K ∗

i , Lis, Lis̄(Lis)
) = y∗

i must be valid.
2. Some innovative firms produce less than the optimal amount: yi (p) < y∗(p).
3. Some innovative firms pay higher wages than equilibrium wages to the hired

skilled workers i.e.;

ws(t0) > w∗
s = ∂ fi

∂Lis
(K ∗

i , L
∗
s ).

Any of these alternatives is considering that some innovative firms, momentarily
at least, are getting lower profit rates than those corresponding to non-innovative
firms. So firms have incentives to stop being innovative, with the consequent fall in
the demand for skilled labor and an increase in the demand for unskilled labor. This
situation is maintained until the profit rates are equalized, which happens in some
time t = t1 when:

Ni (t1)L
∗
is = Hi (t1),

and
Ni (t1)L

∗
i s̄ + Nn(t1)L

∗
ns̄ = Hs̄(t1),

where
Ni (t1) < Ni (t0), Nn(t1) > Nn(t0),

consequently
Hs(t1) < Hs(t0), Hs̄(t1) > Hs̄(t0).

If additionally we assume that for an unskilled worker to become a skilled worker,
he or she has to face the cost of education (or training cost), then when the number
of innovative firms is low enough, that brings a disincentive for the qualification
of workers. Wages of skilled workers can never be lower than wages of unskilled
workers, since there are costs associated with the qualification, the wages difference
should cover such costs, otherwise there would be no incentives for the qualification.

Corollary 1 If there is an excess supply of skilled labor, then innovative firms could
lower their production costs by offering to the hired skilled workers salariesws lower
than those of equilibrium, but slightly higher than thewages of unskilledworkers, that
is, 0 < ws̄ ≤ ws < w∗

s . Profit rates of innovative firms grow, and there are incentives
for non-innovative firms to become innovative.
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FromCorollary 1, It follows that r∗
i Ki + ws L∗

is + w∗
s̄ L

∗
i s̄ ≤ ci (y∗(p)) and r∗

n Kn +
w∗

s̄ L
∗
ns̄ ≤ cn(y∗) and so we have that:

�i (K ∗
i , L

∗
is, L

∗
i s̄)

r∗
i K

∗
i + ws L∗

is + w∗
s̄ L

∗
i s̄

>
�i (K ∗

i , L
∗
is, L

∗
i s̄)

ci (y∗)
= �n(K ∗

n , L
∗
ns̄)

cn(y∗)
. (5)

Since we consider that firms (business owners) seek to invest in the production
sectors with higher profit rates, equality in (5) assumes that there will be no changes
in technology, that is, there are no incentives to change from being a non-innovative
type, or the other way around. Nevertheless note that, if the economy is able to create
incentives for workers to qualify themselves, then firms owners will have incentives
to transform non-innovative firms into innovative firms, thusmaking an improvement
in productive technology.

Next, we analyze the dynamic interdependence between innovative firms and
skilled labor, by applying replicator dynamics.

2.2 Firms and Workers Evolutionary Dynamics

Let us consider that firms remain in the market as long as their respective profits
are positive and the firms’ owners’ aim is to maximize the profit rate. Managers and
owners have the same interests, that is, there are no agency problems in this model.
We denote by B̄i (Hs(t)) > 0 the average profit rate of the innovative firms when the
amount of skilled labor is given by Hs(t) > 0. In this case, it results that:

B̄i (Hs(t))

⎧
⎪⎨

⎪⎩

≤ Bi (y∗
i ) ∀t : Hs(t) ≤ Ni (t)L∗

is

≥ Bi (y∗
i ) ∀t : Hs(t) ≥ Ni (t)L∗

is

= Bi (y∗
i ) ⇔ Hs(t) = Ni (t)L∗

is

(6)

Notice that, in (6) the first inequality is the result of having to replace skilled workers
work by unskilled workers. Therefore some innovative firms should produce outside
the optimum, as a consequence of which the benefits decrease as costs increase or
because of the suboptimal level of production. The second inequality corresponds
to an excess of skilled labor supply. Therefore innovative firms will be able to offer
salaries less than those of equilibrium to skilled workers without decreasing the
optimal level of production. Equality corresponds to the fact that it is produced
according to an optimal plan with equilibrium prices.

Similarly for non-innovative firms, wewill denote by B̄n(Hs̄(t)) the average profit
rate of the non-innovative firms. Observe that under the assumptions of our model
B̄n(Hs̄(t)) = Bn(y∗

n ), given that the supply of unskilled workers is undoubtedly sup-
posed to be absolutely elastic.

Consider that the rate of innovative firms existing in the economy, at any time t,
is given by ns = Ns/N , and by applying the replicator’s dynamics, such rate will
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grow according to the differential equation:

ṅi = ni (1 − ns)[B̄i (Hs(t)) − B̄n(Hs̄(t))], (7)

where ns = Ns/N corresponds to the rate of non-innovative firms.
Expected payoffs of workers’ type s is given by the expression:

E(s) = probs(I ) [ws − CE] + probs(N I ) [ws̄ − CE] (8)

where probs(I ) and probs(N I ) denote the probabilities that skilled workers will be
hired by innovative and non-innovative firms, probs(I ) + probs(N I ) = 1. CE > 0
represents the discounted education costs to unit time period faced by skilledworkers.

While expected payoffs of worker’s type s̄, is given by:

E(s̄) = probs̄(I ) [ws̄] + probs̄(N I )[ws̄]. (9)

where

probs̄(I ) =
{
0 i f Hi (t) ≥ Ni L∗

s

Ps̄(I ) i f Hs(t) < Ni L∗
is

Claim 1 There are strategic complementarities, meaning that: probs(I ) >

probs(N I ), and probs̄(N I ) > probs̄(N I ). That is, innovative firms and skilled work-
ers are complementary and the same holds for non-innovative firms and unskilled
workers.

Let us denote by ws(t) = ws(Hi (t)) the wage of the skilled workers when the
supply of skilled labor is Hi (t). We then have:

ws(Hs(t)) =

⎧
⎪⎨

⎪⎩

> w∗
s for all t : Ni (t)L − is∗ > Hs(t)

< w∗
s for all t : Ni (t)L∗

is < Hs(t)

= w∗
s for all t : Ni (t)L∗

is = Hs(t)

(10)

Workers are indifferent between being skilled or not if, E(s) = E(s̄), i.e. the
probability probs(I ) for a qualified worker to be hired by an innovative firm is given
by:

prob∗
s (I ) = ws̄ + CE

ws − ws̄
. (11)

By hs = Hs/H we denote the rate of qualified labor at each moment and then, for
hs̄ = Hs̄/H we denote the rate of unskilled labor, then hs + hs̄ = 1. According to
the dynamics of the replicator, the growth rate of skilled labor grows proportionally
to the net income difference ws(t) − ws̄(t) − CE, as:

ḣs = hs(1 − hs) (ws − ws̄ − CE) (12)
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where CE is the discounted cost of education or qualification that a worker must
deal with to become a skilled worker. We consider that this cost is exogenously
determined.

3 Evolutionary Dynamics of the Economy

Remember that hs(t) = Hs (t)
H is the rate of qualified workers existing in the market,

andni (t) = Ni (t)
N is the rate of innovative firms in the economyat everymoment. From

differential equations (7) and (12) and taking into account that for all t, equalities
1 = hs + hs̄ and 1 = ni + nn hold, we obtain the result that the evolution of the
economy is represented by the following dynamical system:

ḣs = hs(1 − hs) [(ws(t) − ws̄ − CE)]

ṅi = ni (1 − ni )[B̄i (hs(t)) − B̄n(hs̄)]
(13)

Note that the profit rate of non-innovative firms, as well as wages of unskilled
workers are, according to the assumptions of the model, constant. To facilitate the
resolution of the system, we assume that the costs of education are also constant over
time. The dynamic system turns out to be coupled, which shows the interdependence
between the variables considered, in this case the interdependence between inno-
vative firms that use advanced technology and skilled workers or qualified human
capital.

Observe that the system:

hs(1 − hs) (ws(t) − ws̄ − CE)) = 0

ni (1 − ni )[B̄i (hs(t)) − B̄n(hs̄)] = 0
(14)

defines the stationary states of the economy, meaning that:

• Thedynamic equilibria representedby (h1s , n
1
i ) = (1, 0) and (h2s , n

2
i ) = (0, 1)have

no meaning in our model. This is because they represent an economy composed
exclusively either of skilled workers and non-innovative firms, or on an economy
composed exclusively of unskilledworkers and all technologically advanced firms.

• The dynamic equilibria represented by (h3s , n
3
i ) = (0, 0) and (h4s , n

4
i ) = (1, 1) cor-

respond to very special situations. The first one ((h3s , n
3
i ) = (0, 0)) corresponds

to an economy in which all firms produce with low-technology, and there is no
skilled labor. The second one ((h4s , n

4
i ) = (1, 1)) is the counterpart and corresponds

to an advanced economy where all firms are technologically advanced, and the
workforce is exclusively qualified. These equilibria are analyzed in Accinelli and
Sánchez Carrera (2012); Sanchez Carrera (2019), where it is shown that the low
equilibrium corresponds precisely to a poverty trap.
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• The most interesting equilibrium is that in which the following equalities hold:

ws(t) − ws̄ − CE = 0

B̄i (hs(t)) − B̄n(hs̄) = 0
(15)

This state corresponds to the situation represented by (h5s , n
5
i ) in which the effi-

ciency wage, w∗
s , is reached and equal to ws̄ − CE and at the same time that, at

the optimum level of production, the profit rates of innovative and non-innovative
firms are equal, that is, B̄i (h5s (t)) = B̄n(hs̄).Therefore they are non existing incen-
tives so that neither the workers nor the firms modify the way they are acting.
In this steady state, the equality will prevail Hs = Hh5s = Ni L∗ = Nn5i L

∗
is which

supposes supply of skilled labor equal to its demand. We conclude that the rate n5i
of the firms acting in the economy will be innovative and the rest will be with rate
(1 − n5i ) and are non-innovative firms. Finally, the rate of workers h5s choosing to
be qualified and the rest (1 − h5s ) remaining as non-qualified workers. This equi-
librium is determined by the cost of education and the speed with which changes
in technology will have an impact on the determinant variables of the model: the
supply of skilled workers and the rates of benefit of the firms. The equilibrium
values (h5s , n

5
i ) will be different depending on the economic conditions of the

different countries. This result is consistent with the considerations made in Ace-
moglu 1997, 1998, 2002; Aghion 2006; Hornstein et al. 2005, among others that
show the existence of considerable differences in the use and implementation of
the new technologies in different countries.

3.1 The Feasible Transition Paths

The seminal papers by Acemoglu (2002), Autor et al. (1998), and Bowles et al.
(2001), pointed out that the growing adoption of new technologies in thework centers
modifies, at the time of their adoption, the demand forworkers, demanding from them
the adoption of necessary capabilities for the better use of the new technology. This
process is accompanied by a growth in the wage difference between skilled and
unskilled workers. Whichever way, the question remains the same: who determines
who? Does the increase of qualified workers in the market imply an increase in
investment by firms in technology, or is it the other way round?

Although, in general, it is impossible to obtain an analogous solution for the system
of equations that determines the evolution of the economy just described above, it
is possible to consider a particularly relevant case. Assume a linear relationship:
ws(t) − [ws̄ − CE] = β Ṅi where β is a positive constant. If N is fixed, it will result
in Ṅi = Nṅi . This hypothesis reflects the fact that the wage difference between
skilled and unskilled labor depends on the rate increase in technologically advanced
firms, which are precisely those which demand skilled workers. Substituting into
system (14), we get:
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ḣs = hs(1 − hs)βNṅi (16a)

ṅi = ni (1 − ni )[B̄i (hs(t)) − B̄n(hs̄)]. (16b)

Being 0 < hs(t0) < 1 the rate of skilled workers existing at the initial moment and
ni (t0) the rate of innovative firms existing at that time.Obtaining then for 0 < hs(t) <

1

hs(t) = eβN [ni (t)−ni (t0)]
1−hs (t0)
hs (t0)

+ eNβ[ni (t0)−ni (t)] .

In order to better discuss the meaning of this solution, consider: A = 1−hs (t0)
hs (t0)

and

C = eβNi (t0). It turns out then

hs(t) = 1

ACe−βNni (t) + 1
. (17)

The trajectories are determined once the initial conditions are known (hs(t0),
ni (t0)). The phase diagram corresponds to points in the square (0, 1) × (0, 1) deter-
mined by the trajectories (hs(t), ni (t)), that result from solving the system (16). The
next proposition states our main result.

Proposition 2 A long-run co-evolutionary dynamics between types of workers and
firms holds. That is, if the rate of skilled workers is high enough, then the rate of
innovative firms increases, but also in other way around, i.e. when the initial rate of
innovative firms is high enough, then the rate of skilled workers increases as well.

Proof According to the second equation of the dynamical system (16), it follows
that, this change in the rates of profits becomes a new incentive for the transforma-
tion of non-innovative firms into technologically advanced firms, and therefore, the
subsequent increase in the demand for skilled labor results in the increase of wages
of skilled workers. The duration of the virtuous cycle will depend on the time that
the new technologies take to expand and the workers will be trained in the use of new
technologies. An interesting and exhaustive discussion of this topic can be found in
Card and DiNardo (2002).

It is important to highlight that, if Ni (t) → N , that is, if all firms become inno-
vative, when t → ∞ then, hs(t) → 1

ACeβN+1 = h∞. As a result, in the long term,
if the rate of innovative firms increase along the time, the rate of skilled labor will
converge to the value

h∞(hs(t0), ni (t0)) = 1
1−hs (t0)
hs (t0)

eβ(Ni (t0)−N ) + 1

which corresponds to different values according to the initial conditions of the model
measured at t = t0. That is, the long term rate of skilled workers will depend on the
initial rate of skilled labor and the number of existing innovative firms at t = t0 (see
Fig. 1).
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Fig. 1 Case in which
ṅi > 0, and
hs(t) → hF = 1

ACe−βN+1

This shows that, for a certain period of time, those countries in which the initial
rate of skilled labor and the number of innovative firms is higher, then there are at
the end of the period higher values of skilled workers. The fact that when all firms
are innovative then there are unskilled workers as well because they use skilled and
unskilled workers as inputs for their production.

Note that the Eq. (16b) can be rewritten as:

ṅi = ni (1 − ni )[(B̄i + B̄n)hs(t) − B̄n]

so if [B̄i + B̄n]hs(t) − B̄n > 0 or equivalently if

hs(t) >
B̄n

B̄i + B̄n
(18)

then ṅ > 0 and if ṅ > 0 then ḣs > 0.
By contrast, if the rate of innovative firm decreases (see Fig. 2), then in the long

run, i.e. if ṅi < 0 we get:

h f (ni (t0)) = h f = 1

AeβNi (t0) + 1
.

This is the co-evolutionary dynamics for human capital and innovation. If the
rate of skilled workers is high enough, the rate of innovative firms will increase,
and then the rate of skilled workers increases, too. The fact that the initial rate of
skilled workers in the country is sufficient to start a technological growth trajectory,
it will depend on the relationship between the expected profits for innovative and
non-innovative firms. That is, the smaller the quotient B̄i/B̄n , the higher the initial
rate of workers needed to start a technological development path. In this way, a policy
maker interested in the technological development of a country, may implement a
policy of incentives suitable for the establishment of technologically advanced firms
and/or through incentives for workers to become skilled, i.e. increasing the quality
of human capital.
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Fig. 2 Case in which
ṅi < 0, and hs(t) → 1

AC+1

4 Conclusion

The model we have developed highlights the fact that the technological change and
the development of skilled labor are coevolutionary processes complementing and
determining each other. The dynamic system that reflects the evolution of technology
is a system coupled with that of skilled workers. Hence, the relative weights of
the variables in the future evolution may be varied, but both will jointly determine
the long-term evolution. The economic policy maker must act on the political and
economic elements that may delay the evolution of the variables, assuring adequate
costs of education or opportunities of implementing new technologies without costs
aggravated by excessive bureaucracy, for example.

From our results, further research should focus on the following. For example, a
policy maker interested in the technological development of the national economy
must address favourable incentives for workers to aspire to become skilled and firms
to become innovative. The existence of negative incentives either for the introduction
of new production technologies or for the permanent training of workers, will result
in slowing or stopping the process of technological change in the economy as a
whole. For instance, high costs of education or high taxes on technology, will have
negative results, and both will lead to the technological stagnation of the economy.

Education, training and innovation must be considered as a social organic struc-
ture interrelated with the productive structure. That is to say, economies or economic
policymakers should implement strategies that result in the combination of educa-
tion at all levels: competitiveness, the technology level, the training and skills of
the workforce, the population of scientists and development of the country. A quali-
fied education is an important instrument to overcome poverty, improve equality of
opportunities and productivity, and move towards development.
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Path Dependence in Models with Fading
Memory or Adaptive Learning

Gian Italo Bischi, Laura Gardini and Ahmad Naimzada

Abstract We consider a learning mechanism where expected values of an eco-
nomic variable in discrete time are computed in the form of a weighted average that
exponentially discounts older data. Also adaptive expectations can be expressed as
weighted sums of infinitely many past states, with exponentially decreasing weights,
but these are not averages since the weights do not sum up to one for any given initial
time. These two different kinds of learning, which are often considered as equivalent
in the literature, are compared in this paper. The statistical learning dynamics with
exponentially decreasing weights can be reduced to the study of a two-dimensional
autonomous dynamical system, whose limiting sets are the same as those obtained
with adaptive expectations. However, starting from a given initial condition, dif-
ferent transient dynamics are obtained, and consequently convergence to different
attracting sets may occur. In other words, even if the two different kinds of learning
dynamics have the same attracting sets, they may have different basins of attraction.
This implies that local stability results are not sufficient to select the kind of long-run
dynamics since this may crucially depend on the initial conditions. We show that the
two-dimensional discrete dynamical system equivalent to the statistical learningwith
fading memory is represented by a triangular map with denominator which vanishes
along a line, and this gives rise to particular structures of their basins of attraction,
whose study requires a global analysis of the map. We discuss some examples moti-
vated by the economic literature.
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1 Introduction

Many dynamic models involve memory of past states to determine the future time
evolution of systems in physics, engineering, natural sciences and economics. The
inclusion of past history in the time evolution adds nontrivial complexities, balancing
the advantage of dealing with more realistic models. In economics the inclusion of
memory in modeling human decisions may be considered as a method to represent
learning processes (see e.g. Hommes et al. 2012). The effects of memory in continu-
ous time models of oligopoly markets has recently been analyzed byMatsumoto and
Szidarovszky in a series of papers dealing with problems of stability of equilibrium
points as time lags are varied, as well as bifurcations leading to dynamic complexities
whose consequences are studied both by analytical and numerical methods, see e.g.
Matsumoto and Szidarovszky (2018), and Matsumoto and Szidarovszky (2015), as
well asMatsumoto (2017). Dynamic models involving delays often generate dynam-
ical systems of infinite dimension. However, some particular kinds of distributed
delays have been introduced, expressed by integral terms with kernels (denoted as
gamma functions) characterized by an exponential decay going back in the past, that
allow to transform an integrodifferential equation into an expanded set of ordinary
differential equations of finite dimension (see e.g. Cushing 1978; MacDonald 1978;
Chiarella 1991).

In this paper we consider discrete time dynamic models, often used to describe
social and economic systems characterized by event-driven time, simulate to describe
agents that take decisions by considering past information with exponentially dis-
tributed weights, i.e. an exponentially fadingmemory. In particular, we consider eco-
nomic models that involve agents’ expectations about the future states of the system,

and are formulated as mappings from beliefs to realizations, such as xt = F
(
x (e)
t

)

or xt = F
(
x (e)
t+1

)
, where x (e)

t and x (e)
t+1 represent agents’ expectations about current

or future states respectively. In order to close the model one must introduce a learn-
ing mechanism by which agents make forecastings on the basis of the past history
of the system. In this paper we consider one-dimensional models with expectations
endowed with two kinds of learning: The first is known as adaptive learning (see e.g.
Hommes 2013 and references therein) where expectations are obtained by assuming
that at each time the expected value is a weighted average of the previous forecast
and the previous observed value; the second, obtained by assuming that at each time
period the agents compute the expected value as an average of the past realized val-
ues, starting from a given initial time t = 0, is sometimes called statistical learning
(see e.g. Guesnerie and Woodford 1992).

Both learning mechanisms share the same equilibrium points of the correspond-
ing model with rational expectations (or perfect foresight) x (e)

t = xt for each t ,
that is, assuming that agents are able to anticipate the future outcomes, so that
expectations are fulfilled at each time. So, it is interesting to consider the prob-
lem of stability of such “rational equilibria” under these learning mechanisms. The
Rational Expectations (RE) hypothesis, based on the assumptions that agents have
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complete knowledge of the economic model and fully exploit all the available pieces
of information, has been criticized from many points of view, mainly because the
assumptions behind the RE paradigm seem to require too much agents’ rational-
ity. So, models with boundedly rational agents that converge in the long run to a
rational equilibrium may be seen as an evolutionary interpretation of rationality, and
some authors say that in this case the boundedly rational agents are able to learn, in
the long run, what rational agents already know under very pretentious rationality
assumptions (see e.g. Fudenberg and Levine 1998). However, it may happen that
under different starting conditions (or as a consequence of exogenous perturbations)
the same adaptive process leads to non-rational equilibria as well, i.e. equilibrium
situations which are different from the ones forecasted under the assumption of full
rationality, as well as to dynamic attractors characterized by endless asymptotic fluc-
tuations or unfeasible evolutions. The coexistence of several attracting sets, eachwith
its own basin of attraction, gives rise to path dependence, irreversibility, hysteresis
and other nonlinear and complex phenomena commonly observed in real systems
as well as in laboratory experiments. So, stability arguments under some learning
dynamics are often used as equilibrium selection criteria.

In this paper we consider a particular statistical learning in which the agents
discount older data by making weighted averages with exponentially decreasing
weights (see Bischi and Gardini 1996; Bischi and Naimzada 1997), so it is the
analogous of an exponentially decreasing gamma kernel often used in continuous
time dynamic models with distributed delays. Moreover, the discrete fading memory
analyzed in this paper includes, as a limiting case, the learning process proposed
by Bray (1983). Even adaptive expectations can be expressed as weighted sums of
infinitely many past states, with exponentially decreasing weights, but these are not
averages since the weights do not sum up to one for any finite initial time. These two
different kinds of learning are often considered as equivalent in the literature, because
they assume the same form as t → +∞. Indeed, statistical learning dynamics with
exponentially decreasing weights can be reduced to the study of a two-dimensional
autonomous dynamical system, whose limiting sets are the same as those obtained
with adaptive expectations. However, starting from a given initial condition, different
transient dynamics are obtained, and consequently convergence to different attracting
sets may occur. In other words, even if the two different kinds of learning dynamics
have the same attracting sets, theymayhave different basins of attraction. In situations
of multistability, i.e. when several coexisting attractors are present, local stability
results are not sufficient to provide selection criteria since this may crucially depend
on the initial conditions. Hence, adaptive and statistical learning may give different
results when the problem of equilibrium selection arises. Moreover, we show that the
two-dimensional discrete dynamical system equivalent to the statistical learningwith
fading memory is represented by an iterated two-dimensional triangular map with
denominator which vanishes along a line, and this gives rise to particular structures of
their basins of attraction, whose study requires a global analysis of themap following
a stream of literature dealing with maps which are not defined in the whole phase
space due to the presence of vanishing denominators, see Bischi et al. (1999), Bischi
et al. (2003), and Bischi et al. (2005). In particular, we show that the structure of the
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basins is strongly influenced by the presence of particular points, called focal points
in Bischi and Gardini (1997) and Bischi et al. (1999), whose existence, in the case
of models with expectations, is related to the presence of fixed points of the map
F , which are rational expectations equilibria. These global properties are specific to
discrete time models, in the sense that they cannot be observed in continuous time
models with delays.

The plan of the paper is the following. In Sect. 2 we compare the mathematical
form of models with adaptive expectations and those with statistical learning. In
Sect. 3 their dynamical properties are studied, in particular those of statistical learning
with fading memory analyzed through the study of an equivalent two-dimensional
iteratedmap,with particular emphasis on the study of the basins of attraction and their
global bifurcations specific to maps with a vanishing denominator. In Sect. 4 some
examples are discussed, Sect. 5 concludes and suggests some possible extensions.

2 From Beliefs to Realizations: Rational Expectations
and Learning Dynamics

Let us consider one-dimensional discrete time economicmodels represented bymap-
pings from expected values to realized values of the same period, i.e. the outcome
of the state variable xt at time t is a function of the value x (e)

t which agents expect,
at the same time t , for the state variable, computed by the agents on the basis of the
information held at the previous time (t − 1)

xt = F
(
x (e)
t

)
(1)

If the agents have Rational Expectations (RE), which in a deterministic framework
means that they are endowed by Perfect Foresight (PF), the expected values coincide
with the realized values at each time

x (e)
t = xt ∀t (2)

If (2) is inserted into (1) we get
xt = F (xt )

which means that only a Rational Expectations Equilibrium (REE) is a fixed point
of the map F . It is often argued that the assumption of rational expectations is too
strong, since economic models should take into account human limited ability to
make forecastings. This leads to the weaker assumption of Bounded Rationality
(BR) which assumes that agents compute the expected values x (e)

t by some learning
mechanism based on past experience, i.e.

x (e)
t = �

(
xt−1, xt−2, ..., x

(e)
t−1, x

(e)
t−2, ...

)
(3)
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This assumption is not only introduced by claiming that BR ismore realistic than RE,
but it is often used as a REE justification or as a dynamic mechanism for equilibrium
selection when several RE equilibria exist (see e.g. Marimon 1997). Of course, this
requires that a REE must also be an equilibrium for the model with learning. In
this context, the local stability of a REE with respect to the dynamics induced by
bounded rationality learning is commonly referred to as an evolutive explanation of
the RE solution, see Guesnerie and Woodford (1992). Moreover, some REEs may
be more likely to be reached than other ones when some learning mechanism is
introduced (some may be not reached at all if they are unstable under the chosen
learning process). Even more interesting situations of equilibrium selection arise
when there are attractors of the dynamics with learning which do not exist with RE.
This leads, for the dynamics with bounded rationality, to situations of coexistence of
attractors which are rational, i.e. also exist for the model with RE assumption, with
attractors which are non rational, i.e. asymptotic evolutions which do not exist under
the assumption of RE, so that the long-run behavior is characterized by agents which
continue to make wrong forecastings.

The selection of the attractor, in particular the convergence to a rational or a
non rational attractor, may depend on the initial condition, i.e. from the boundaries
among the different basins of attraction. This aspect has been rather neglected in the
literature because it requires a global analysis of the dynamics with learning.

2.1 Adaptive Learning and Reduction to One-Dimensional
Dynamics

A simple and frequently used learning mechanism is given by the adaptive expecta-
tions, expressed by

x (e)
t+1 = x (e)

t + α
(
xt − x (e)

t

)
0 ≤ α ≤ 1. (4)

i.e. for each time t = 0, 1, .... the value x (e)
t+1 expected for the next period (t + 1)

is obtained by “adapting” the previous forecasting x (e)
t in the direction of the cor-

responding observed value xt , with a speed of adjustment α. Rearranging (4) the
new expected value x (e)

t+1 can be expressed as a convex combination (i.e. a weighted

average) of the previous expected value x (e)
t and the currently observed value xt

x (e)
t+1 = (1 − α) x (e)

t + αxt 0 < α < 1 (5)

We can observe that the limiting case α = 1 corresponds to static (or naive) expec-
tations

x (e)
t+1 = xt (6)
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and decreasing values of α correspond to higher inertia in updating the previously
expected value according to the more recent observation.

Using (5) repeatedly, the adaptively expected value can be expressed as

x (e)
t+1 = α

∞∑
k=0

(1 − α)k xt−k (7)

i.e. infinitely many past realizations are considered, with weights exponentially
decreasing as more remote past values are considered (decreasing as the terms of
a geometric sequence of ratio (1 − α)). Some authors call (7) a weighted average
of the values observed in the past, but it is important to remark that (7) cannot be
considered as an average, since the weights do not sum up to one for any finite
initial time. Indeed, the weighted sum (7) involves infinitely many “realized” values
xt , even with t < 0. The model (1), endowed with adaptive learning, can be reduced
to a one-dimensional dynamical system in the space of expected values by inserting
(1) inside (5)

x (e)
t+1 = (1 − α) x (e)

t + αF
(
x (e)
t

)
(8)

This means that, given an initial expectation x (e)
0 , the whole time evolution (or tra-

jectory) of expected values is obtained by the iteration of the one dimensional map

gα (z) = (1 − α) z + αF (z) . (9)

Of course, the corresponding time evolution (or trajectory) of realized values
xt , t ≥ 0, is simply obtained by (1), i.e. by taking the images by F of the expected
values, xt = F(x (e)

t ), t ≥ 0.
The properties of the map (9) are well known (see e.g. Hommes 1994; Chiarella

1988). It is a convex combination of the map F and the identity map, so its graph
is included inside the region between the graph of F and the diagonal. This implies
that the map gα and the map F have the same fixed points, i.e. the REEs are fixed
points of gα as well. It is immediate to realize that adaptive expectations are fulfilled
for each t , i.e. x (e)

t = xt ∀t , if and only if xt = F (xt ), i.e. at the REE. Instead, the
cycles of gα are in general different from those of F , and the adaptive forecastings
are always wrong along invariant sets that are not fixed points of F(x).

Let us assume that the functions are smooth enough on a compact interval of
interest, i.e. F : I → I , F of class C(1). It is worth to note that the graph of gα

approaches the graph of F as α → 1, i.e. in the limiting case of naive expectations,
whereas the graph of the map gα approaches the diagonal as α → 0. This implies
that for each F a value α ∈ (0, 1) exists such that gα is an increasing function for any
α ∈ (0,α) and, as it is well known, an increasing map cannot have cycles of period
k > 1. In otherwords, an adaptive learning,with sufficiently lowvalues ofα, rules out
any dynamic behavior which is more complex than convergence to a REE. However,
not all the REEs are stable under adaptive learning. From the properties of the map
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gα, the following well known results follow, which are immediate consequences of
the fact that the first derivative of gα (z) is a convex combination of 1 and F

′
(z).

(i) If α is sufficiently small

(
i.e. α < min

{
1

1−F ′(x) , x ∈ I, F ′(x) 	= 1
} )

then gα

is increasing, so that only REEs exist.
(ii) If a REE x∗ is unstable with F

′
(x∗) > 1 then it is also unstable for gα being

g
′
α(x∗) > 1.

(iii) If a REE x∗ is unstablewith F ′
(x∗) < −1 then it is stable for gα for a sufficiently

small value of α.

The properties listed above suggest a stabilizing role of adaptive expectations with
respect to naive expectations. However, cases in which, for intermediate values of α,
dynamic behaviors of the map gα can be obtained which are more complex than the
dynamics of the map F , have been given in the literature (Chiarella 1988; Hommes
1991; Hommes 1994). This happens, for example, with decreasing functions F . In
these cases the iteration of F can only exhibit convergence to a fixed point or to cycles
of period 2, whereas the corresponding map gα which governs the time evolution of
adaptive expectations, may be noninvertible (a bimodal map) for intermediate values
of α, so that cycles of any period and chaotic dynamics can be observed, and even
distinct coexisting attractors.

2.2 Statistical Learning and Reduction to Two Dimensional
Dynamics

Another frequently used learning mechanism is obtained by assuming that, at any
time period t = 0, 1, ... the agents compute the expected value at the next time period
(t + 1) as a weighted arithmetic mean of past realized values

x (e)
t+1 =

t∑
k=0

atk xk (10)

with weights

atk ≥ 0, k = 0, ..., t, normalized to 1, i.e.
t∑

k=0

atk = 1 (11)

Some authors call statistical learning this method to obtain expected values (see
e.g. Guesnerie and Woodford 1992). The learning mechanism as suggested by Bray
(1983) in the form of a simple arithmetic mean

x (e)
t+1 = 1

t + 1

t∑
k=0

xk (12)
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is a particular case. More general distributions of weights can be proposed, which
reflect the different methods that the agents use to exploit information contained
in the past observations. These can be obtained by defining, for each time t ≥ 0, a
(t + 1)-dimensional vector of relative weights

ω(t) =
{
ω(t)
0 ,ω(t)

1 , ...,ω(t)
t

}
(13)

with ω(t)
k ≥ 0, from which the weights (11) are computed as

atk = ω(t)
k

Wt
, k = 0, ..., t with Wt =

t∑
k=0

ω(t)
k (14)

A reasonable assumption for the computation of the relative weights is that old
observations are less considered by economic agents, i.e. they use decreasingweights
which discount older data (see e.g. Friedman 1979; Radner 1983; Lucas 1986). A
simplemethod to obtain this consist in assigning a fixed value to the weight of the last
observed value, say ω(t)

t = 1, t ≥ 0, and then the other weights are computed so that
the ratio between two successive weights is fixed, that is, ω(t)

k−1/ω
(t)
k = ρ, ρ ∈ [0, 1].

With this assumption (13) becomes

ω(t) = {
ρt , ρt−1, ..., ρ, 1

}
(15)

i.e. ω(t)
k = ρt−k , and consequently

atk = ρt−k

Wt
(16)

where Wt is the (t-th) partial sum of a geometric series

Wt =
t∑

k=0

ρt−k =
{

1−ρt+1

1−ρ
i f 0 ≤ ρ < 1

t + 1 i f ρ = 1
(17)

Statistical learning with “geometrically” distributed weights (16) have been used in
Bischi and Naimzada (1997) as a generalization of that proposed by Bray: in fact, for
ρ = 1 it gives the Bray’s average (12). In the other limiting case ρ = 0 it reduces to
naive expectations x (e)

t+1 = xt , whereas for intermediate values of the memory ratio
ρ this learning rule describes agents which, at each time period t , compute their
expectations according to a weighted estimation procedure which “exponentially
discounts older observations” (see Friedman 1979), that is, an exponentially fading
memory, see also Foroni et al. (2003), Naimzada and Tramontana (2009), Pecora and
Tramontana (2016), Tramontana (2016), and Cavalli and Naimzada (2015), as well
as a further generalization with power means in Bischi et al. (2015).
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The learning rule (10) with “geometric weights” (16)

x (e)
t+1 =

t∑
k=0

ρt−k

Wt
xk (18)

can be written as a generalized “adaptive rule” with nonautonomous (i.e. “time-
dependent”) adjustment speed. In fact,

x (e)
t+1 = ρWt−1

Wt

t−1∑
k=0

ρt−1−k

Wt−1
xk + 1

Wt
xt = Wt − 1

Wt
x (e)
t + 1

Wt
xt

where the recursive relation

Wt+1 = 1 + ρWt , W0 = 1. (19)

has been used. So, if we define

αt = 1

Wt
. (20)

we get

x (e)
t+1 = (1 − αt ) x

(e)
t + αt xt = (1 − αt ) x

(e)
t + αt F

(
x (e)
t

)
(21)

which is very similar to an “adaptive rule” (4) except for the fact that the constant
speed α is replaced by a time-dependent speed of adjustment given by a decreasing
sequence {αt }with αt ∈ (0, 1) for each t and αt → (1 − ρ) as t → +∞. Hence, for
t → +∞, the nonautonomous recurrence (21) tends to the limiting form

x (e)
t+1 = g1−ρ(x

(e)
t ) = ρx (e)

t + (1 − ρ)F(x (e)
t ). (22)

i.e., in the long run it behaves like a model with a standard adaptive rule, with speed
of adjustment α = 1 − ρ. This fact led many authors to consider the two learning
rules, the adaptive rule (4) and the statistical rule (18), as practically equivalent, and
justify this equivalence statement by the property that the dynamics of the expected
values under both the learning rules are governed, in the long run, by the a one-
dimensional map which has the same form g1−ρ(z), given by (9). However, even if
the limiting sets are the same, their time evolutions are different, because starting from
the same initial conditions, the two learning mechanisms exhibit different transient
dynamics due to the fact that during the early iterates the dynamics with statistical
learning (18), governed by (21), is different from the one governed by (22), and in
the presence of several attractors this may be crucial to decide which one will be
reached in the long run. In particular, if several attractors are present, convergence to
different attractors under the two learningmechanismsmay be observed even starting
from the same initial condition, thus giving different equilibrium selection results.
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This can be equivalently stated by saying that even if the two different kinds of
learning dynamics have the same attracting sets, their basins of attraction may be
different. This is also true in the particular case of Bray learning (12), corresponding
to the limiting case ρ = 1, as we shall see in the following through some examples.

Some remarks on the crucial role of initial conditions in models with Bray’s
learning can be found in the literature. For example, in Holmes and Manning (1988)
the learning rule (12) is used in a nonlinear cobweb model with decreasing F , and it
is stressed that such type of learning has a stabilizing effect on the long run dynamics.
However, the authors remark that the short and intermediate run dynamics can be
rather complex and of considerable interest. A similar argument is given in Dimitri
(1988) where a quadratic map F is proposed as a modification of a linear model of
price dynamics with p(e)

t computed according to (12) as proposed in Bray (1983).
On the basis of numerical results Dimitri writes “...the evolution of the model is
indeed very much dependent upon the starting position...” as a comment to the fact
that even if a REE is locally stable, divergent price sequences are obtained even if
initial conditions are taken rather close to the REE. These considerations lead us to
face the problem of the basins of attraction. This is not, in general, an easy task for
nonautonomous recurrences like (21), because for nonautonomous recurrences the
ω-limit sets are not invariant sets, due to the fact that the iterated map changes as t
varies. However, a global characterization of the basins is possible for (21) since it
can be reduced to an autonomous two-dimensional map. This is easily obtained by
noticing that, from (19), the sequence {αt } defined in (20) can be defined recursively
as

αt+1 = αt

αt + ρ
, α0 = 1

So, the model (1) endowed with learning (18) can be written as

⎧⎪⎪⎨
⎪⎪⎩

xt = F
(
x (e)
t

)

x (e)
t+1 = (1 − αt ) x

(e)
t + αt xt

αt+1 = αt
αt+ρ

with initial conditions x0 (the initial realized value) and α0 = 1. This recursive
relation is already known in the literature, at least for the limiting case of Bray
learning, i.e. for ρ = 1 (see e.g. Marimon 1997). Following the same procedure as
in the case of adaptive expectations, we can use (1) to obtain a mapping (which
is two-dimensional in this case) which defines the time evolution of the expected
values. However, it is important to remark that in this case the iteration procedure
starts with the value observed in t = 0, given by x0, and this implies that the first
expected value used to start (23) is given, according to (10), by x (e)

1 = x0. So, the
sequences of expected values generated by (21) can be obtained from the iteration of
(23) starting from α0 = 1 and x (e)

1 = x0. This means that the difference equation by
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which x (e)
t is recursively computed is shifted of one period with respect to the other

one: ⎧⎨
⎩
x (e)
t+2 = (1 − αt+1) x

(e)
t+1 + αt+1F

(
x (e)
t+1

)

αt+1 = αt
αt+ρ

(23)

Following Bischi and Naimzada (1997) and Bischi and Gardini (1997), in order to
study the general properties of the two-dimensional map (23) we rewrite it in the
equivalent form

T :
{
zt+1 = ρWt

1+ρWt
zt + 1

1+ρWt
F(zt )

Wt+1 = 1 + ρWt

(24)

where zt = x (e)
t+1 and Wt is defined in (17). The sequence of expected values of the

model (1)with learning (18) are obtained from the trajectories of the two-dimensional
recurrence (24) provided that the conditions are chosen as:

z0 = x (e)
1 = x0 and W0 = 1 (25)

Starting from a given (z0,W0) the iterations of the map T uniquely defines the
trajectory τ = {

(zt ,Wt ) = T t (z0,W0) , t ≥ 0
}
and if (z0,W0) = (x0, 1) then the

sequence {zt , t ≥ 0} represents the time evolution of the expected variables{
x (e)
t , t ≥ 1

}
from which the sequence of realized values {xt } starting with the given

x0 is simply obtained as the images under the function F :

xt = F (x (e)
t ) t ≥ 1 (26)

In other words, if {(z0,W0), (z1,W1), ... , (zt ,Wt ), ...} is the sequence generated by
the map T starting from the initial condition (z0,W0) = (x0, 1), then

{
x (e)
1 = z0,

x (e)
2 = z1, ... , x (e)

t+1 = zt , . ..
}
is the sequence of expected values, and {x0, x1 =

F(z0), ..., xt = F(zt−1), ... } is the corresponding sequence of realized values. Thus
the study of the general model (1) with learning rule (18) is reduced to that of a two-
dimensional map with initial conditions constrained on the lineW = 1 (line of initial
conditions). The class of maps (24) has been initially studied in Bischi and Gardini
(1997), which inspired a stream of literature on maps with vanishing denominator,
see Bischi et al. (1999), Bischi et al. (2003), and Bischi et al. (2005), from which
several applications followed, e.g. Tramontana (2016) and Gu and Hao (2007).
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3 Limit Sets and Basins of Attraction for Statistical
Learning With fading Memory

Any trajectory of (24) starting from initial conditions on the line W = 1 is confined
in the strip 0 < W < 1

1−ρ
. In fact, this strip is mapped into itself by T because the

second difference equation in (24), which gives the dynamics of the variable W , is
independent of z and gives a monotonically increasing sequence (the partial sums of
a geometric series of ratio ρ) and if 0 ≤ ρ < 1 such sequence {Wt} converges to the
sum of the geometric series

W ∗ = 1

1 − ρ
. (27)

For 0 ≤ ρ < 1 the line W = W ∗ is an invariant and globally attracting line for the
map T , on which the ω-limit sets of all its trajectories are located. For this reason
we shall call it line of ω-limit sets . The restriction of T to this line is given by the
one-dimensional map

g(z) = ρz + (1 − ρ)F(z) , (28)

already obtained in (22) as the limiting form of the nonautonomous recurrence (21).
The map (28) will be called limiting map, since it governs the asymptotic behavior
of the map T . This implies, as proved in Bischi and Gardini (1996), that any k-cycle
A = {

z∗
1, . . ., z

∗
k

}
of the map gρ(z) is in one-to-one correspondence with a k-cycle

A = A × {W ∗}={(z∗
1,W

∗), . . . , (z∗
k ,W

∗)} of the map T , located on the line of ω-
limit sets.Moreover, the attractors of themodel (1) with learning scheme (18), as well
as their basins of attraction, can be studied on the basis of the following proposition,
given in Bischi and Gardini (1996) (see also Bischi and Naimzada 1997):

Proposition 1 Let A be a k-cycle, k ≥ 1, of the map g1−ρ(z), 0 ≤ ρ < 1. Then
(i) if A is attracting for the limiting map gρ(z), then the set A=A × {W ∗} is an

attracting cycle of the map T , and F(A) is an attracting cycle of the model (1) with
learning scheme (18);

(ii) the basin of attraction D1 of the attractor F(A) of the model (1) with learning
scheme (18) is given by the intersection of the two-dimensional basin B of the cycle
A of the map T with the line of initial conditions W = 1.

We recall that the case k = 1 corresponds to a fixed point z∗ of g(z), and F(A) =
F(z∗) = z∗ is a REE, since the fixed points of g(z) are also fixed points of F(z).

The part (i) of the Proposition 1 confirms that the asymptotic behavior, i.e. the
kinds of attractors and their stability properties, are the same as those of a standard
adaptive learning rule with adaptive coefficient α = 1 − ρ. For example, a sufficient
condition for the attractivity of a REE z∗, under learning (18) with ρ < 1, is given
by

∣∣g′
(z∗)

∣∣ < 1, that is,

− ρ + 1

1 − ρ
< F

′
(z∗) < 1 . (29)
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However, the most important implications of Proposition 1 are due to part (ii), since
it suggests a general procedure to obtain the boundaries of the basins of attraction
when two or more coexisting attractors are present, as often occurs in the case of
nonlinear models. This is an important issue that cannot be studied on the basis of
the limiting map gρ, because the initial conditions are to be taken on the lineW = 1,
whereas gρ only governs the dynamics near the line of ω-limit sets W = W ∗. This
means that only a global knowledge of the two-dimensional map T allows one to
follow the short-run behavior, during which the dynamics is not governed by the
limiting map g.

Moreover, as outlined in the Proposition 1, the basins of attraction of the two-
dimensional map T , whose intersection with the line of initial conditions W = 1
gives the basins of the model with statistical learning, are obtained by considering
the preimages of proper neighborhoods of the attracting sets located along the line
of ω-limit sets. We recall that the two dimensional basin of attraction of an attractor
A of the map T is the open set of points which generate trajectories converging to A:

B (A) = {
(z,W ) |T t (z,W ) → A as t → +∞}

. (30)

A closed invariant set A ⊂ {W = W ∗} is called asymptotically stable (or attracting)
if a neighborhood U of A exists such that T (U ) ⊆ U and T n(x) → A as n → +∞
for each x ∈ U . Then, the basin of A is obtained by taking all the preimages of the
points of U

B (A) =
∞⋃
n=0

T−n(U )

where T−n(x) denotes the set of all the preimages of x of rank n, i.e. the set of
all the points which are mapped into x after n iterations of T . So, the study of the
two-dimensional basin is based on the study of the inverses of T . In the case of the
map (24) we have that the properties and the qualitative changes of its basins are
strongly influenced by the presence of the denominator which can vanish along the
line W = − 1

ρ
and, in particular, by the points in which the first component of T

assumes the form 0/0, see Bischi et al. (1999, 2003, 2005), Gardini et al. (2007), and
Bischi and Gardini (1997) for the particular class of triangular maps (24). In these
papers it is proved that the presence of points where a component of the map assumes
the form 0/0, called focal points, may have important consequences on the structure
of the basins and their global bifurcations, because fans of basins boundaries arise
from them giving peculiar finger-shaped structures called lobes. The existence of
lobes, originating from the focal points, may have important consequences on the
structure of the basins of attraction of the model with learning (18) whenever they
intersect the line of initial conditions W = 1. This occurrence causes the creation
of basins with a complicated topological structure, such as basins formed by many
disjoint intervals, as we shall see in the next section.
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3.1 Global Properties and Structure of the Basins of The
two-Dimensional Triangular Map

In the following we briefly recall some definitions and properties specific to maps
with vanishing denominator (see Bischi et al. 1999, 2003, 2005 for a more complete
treatment). Let us consider a map (x, y) → (

x ′, y′) = T (x, y) of the form

T :
{
x ′ = F(x, y)
y′ = G(x, y)

(31)

where x and y are real variables and at least one of the components has the form of
a fractional rational function, i.e.

F(x, y) = N1(x, y)

D1(x, y)
and/or G(x, y) = N2(x, y)

D2(x, y)
(32)

The functions Ni (x, y) and Di (x, y), i = 1, 2, are defined in the whole plane R2, so
that the set with no definition δs of the map T coincides with the locus of points in
which at least one denominator vanishes:

δs = {
(x, y) ∈ R

2|D1(x, y) = 0 or D2(x, y) = 0
}

(33)

The two dimensional recurrence obtained by the iteration of T is well defined, i.e. it
generates not terminating trajectories, provided that the initial condition belongs to
the set E given by

E = R
2 \

∞⋃
k=0

T−k (δs) (34)

so that T : E → E . We recall here the following definition

Definition Apoint Q = (xQ,yQ ) is a focal point if at least one component of themap
T takes the form 0/0 in Q and there exist smooth simple arcs γ(τ ), with γ(0) = Q,
such that limτ→0 T (γ (τ )) is finite. The set of all such finite values, obtained by
taking all the arcs γ(τ ) through Q, is the prefocal set δQ.

Roughly speaking, a prefocal curve is a set of points for which at least one inverse
exists which maps (or “focalizes”) the whole set into a single point, called focal
point. For maps with a vanishing denominator, new kinds of contact bifurcations
have been evidenced which involve the singularities defined above. In particular,
contacts between basin boundaries and prefocal curves may cause the creation of
particular structures of the basin boundaries, denoted as lobes and crescents. These
particular structures have been observed in the study of discrete dynamical systems of
the plane which arise in some different contexts, see e.g. Billings and Curry (1996),
Billings et al. (1997), Foroni et al. (2003), Gardini et al. (1999), Tramontana (2016),
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Pecora and Tramontana (2016), Cavalli and Naimzada (2015), and Yee and Sweby
(1994). As already mentioned, the existence of lobes, originating from the focal
points, has important consequences on the structure of the basins of attraction of the
model with statistical learning whenever they intersect the line of initial conditions
W = 1, causing the creation of one dimensional basins, of themodel (1)with learning
(18) with a complicated topological structure.

We now briefly describe the basic mechanism leading to the formation of lobes
and crescents. In order to do this, let us consider the map T given in (24), which we
rewrite as T : (z,W ) → (

z′,W ′), i.e.

T :
⎧⎨
⎩
z′ = ρW

1+ρW z + 1
1+ρW F(z)

W ′ = 1 + ρW
(35)

and we consider the image of an arc crossing through a focal point. We shall see
that, according to the general results given in Bischi et al. (1999), a one-to-one
correspondence is obtained between the slopes of the arcs through a focal point and
the points in which their images cross the corresponding prefocal curve.

We first notice that the map (35) is not defined in the whole plane, because the
denominator of the first component vanishes on the points of the line δs of equation
W = − 1

ρ
. So, in order to have a well defined recurrence we must exclude from the

phase plane of T the singular line as well as all its preimages of any rank δ−n
s for

each n ≥ 1, belonging to a sequence of lines located below the singular line obtained
by backward iteration of the second component of T , i.e.

W = W ′ − 1

ρ
. (36)

So, δ−1
s has equation W = − 1+ρ

ρ2
and is located below δs , and analogously δ−n

s , the
set of points which are mapped in the singular line after n iterations of T , are located
on the line of equation

W = −
∑n

k=0 ρk

ρn+1
= − 1 − ρn+1

ρn+1 − ρn+2
. (37)

and the phase space of the recurrence defined by the map T is given by

E = R
2 \ ∞∪

n=0
δ−n
s . (38)

where δ−(n+1)
s is below δ−n

s for each n ≥ 1. In the map (35) only the first component
has denominator, which vanishes in the points of the singular line y = − 1

ρ
, where the

numerator becomes F(x) − x , hence it vanishes at every fixed point of the function F
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(and thus also of the limiting map (22)). It follows that the a focal point is necessarily

of type
(
x∗,− 1

ρ

)
, where x∗ is a fixed point of F(x).

In order to explain the role of a focal point and the related prefocal set in the
geometric and dynamic properties of the map T , following the arguments given in
Bischi et al. (1999) we consider a smooth simple arc γ transverse to δs and how it
is transformed by T . Let (z0,−1/ρ) be the point where γ intersects δs and assume
that the arc γ is deprived of (z0,−1/ρ). If z0 	= x∗, i.e. F(z0) 	= z0, then the image
T (γ) is made up of two disjoint unbounded arcs asymptotic to the line of equation
y = 0, as qualitatively shown in Fig. 1. A different situationmay occur if z0 = x∗, i.e.
F(z0) = z0, because in this case the numerator of the first component also vanishes,

and the limit of T (γ) may take finite values as (z,W ) →
(
x∗,− 1

ρ

)
, so that T (γ) is

a bounded arc (as qualitatively sketched in Fig. 1 for the arc γ2). If m is the slope of

the tangent to the smooth arc γ in the focal point Q =
(
x∗,− 1

ρ

)
then in Bischi et al.

(1999) it is proved that the image T (γ) crosses the line W = 0 in the point (um, 0)
with

um(x∗) = x∗ + F ′(x∗) − 1

ρm
. (39)

This means that the images of the arcs crossing through
(
x∗,− 1

ρ

)
with slopem 	= 0

are bounded arcs (as qualitatively shown in the right panel of Fig. 1), and asm varies
inR all the points of the lineW = 0 are obtained, provided that F ′(x∗) 	= 1. Thus the
line of equationW = 0 represents the prefocal set δQ for the map (35). The situation
in which F ′(x∗) = 1 can be considered as a bifurcation case (see Bischi et al. 2005).

This suggests some consequences when we consider the preimages. The map (35)
may be a noninvertible map, because the number of distinct inverses of T depends
on the function F(x). In fact, even if a point (z,W ) has a unique image under the

Fig. 1 Schematic picture of the action of a two-dimensional map on an arc crossing a singular
curve δS along wich a denominator vanishes. Left: The arcs γ1 and γ3 cross the singular curve in a
generic point of δS whereas γ2 crosses it through a focal point. Right: Two arcs crossing δS through
a focal point with different slopes are mapped into finite arcs crossing the prefocal curve δQ in
different points
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application of T , given by
(
z′,W ′) = T (z,W ), the backward iteration of T may not

be uniquely defined, since given a point
(
z′,W ′) its preimages (z,W ) are obtained by

solving, with respect to the unknowns z andW , a systemwhichmay have several real
solutions, i.e. several inverses. If n is the number of distinct inverses we denote them
by T−1

i

(
z′,W ′) for i = 1, ..., n and T−1

(
z′,W ′) = ⋃n

i=1 T
−1
i

(
z′,W ′). Moreover,

if F(x) has N fixed points (hence also T has N fixed points) then the prefocal line
must belong to a region, say ZN , whose points have N distinct rank-1 preimages.

To sum up, for each focal point Qi =
(
x∗
i ,− 1

ρ

)
the map T in (35) defines a one-

to-one correspondence between the slope m of an arc γ through Qi and the point
(u, 0) in which the image T (γ) crosses the prefocal curve δQ , given by

m → (u, 0) : u = x∗
i + F ′(x∗

i )−1
ρm

(u, 0) → m : m = F ′(x∗
i )−1

ρ(u−x∗
i )

(40)

Some consequences of this correspondence, important for the characterization of the
basins’ boundaries and their bifurcations, are deduced by considering a smooth arc
ω that intersects the prefocal line in two points. In this case, the N rank-1 preimages
of ω, say T−1

i (ω), i = 1, ..., N , are arcs such that each T−1
i (ω) has a loop with knot

in the focal point Qi = (x∗
i ,− 1

ρ
). This implies that a remarkable contact bifurcation

occurs when a smooth curve segment ω moves towards the prefocal curve δQ until
it has a contact and then crosses δQ (as qualitatively shown in Fig. 2). As ω moves
toward δQ , its preimages move towards Qi , and when ω becomes tangent to δQ then
each preimage ωi

−1 = T−1
i (ω) has a cusp point at Qi . The slope of the common

tangent line to the two arcs that join in Qi is given by mi (uc), according to (40). If
the curve segment ω moves further, so that it crosses δQ in two points, say (u1, 0)
and (u2, 0), then its preimages form loops with double points at the focal points Qi .

Fig. 2 Qualitative picture of a preimage of an arc moving towards a prefocal line until crossing it
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This kind of contact bifurcation is important in the study of the boundaries of the
basins of attraction, because if ω is a portion of a basin boundary, a contact between
ω and δQ implies that a loop is created along the basin boundary, because a basin
boundary is backward invariant, i.e. it includes all the preimages of any portion of
it, and the portion of the basin inside the loop is a lobe, as we shall discuss in the
next sections. Moreover, in the case of noninvertible maps the creation of crescents
can be obtained as well, obtained from the merging of lobes as qualitatively shown
in Fig. 3. It is caused by contacts of a critical curve LC with a basin boundary which
already includes lobes which merge along LC−1 after the contact (see e.g. Mira et al.
1996 for a definition of critical curves).

Now, let us consider the forward iteration of T . It is easy to see that the image of
rank-n of the prefocal line W = 0 belongs to the line of equation W = Wn where

Wn = 1 − ρn+1

1 − ρ
(41)

i.e. a sequence of lines parallel to the prefocal line δQ and convergent to the line of
the ω-limit sets W = W ∗. This implies that any cycle belonging to the ω-limit set
W = W ∗ is transversely attracting. This property is important in order to study the
boundaries of the basins. In fact, recall that, in general, the boundaries of a basin are
obtained by taking the stable sets of some cycles on it. In the case of maps (35) such
cycles can only be located on the line of ω-limit sets. To get the stable set Ws of a

Fig. 3 Qualitative sketch to describe the formation of a crescent obtained by the merging of two
lobes when a portion of a basin of attraction crossing the prefocal line δQ has a contact with a
critical curve LC
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saddle it is enough to take the preimages of any rank of a local stable set Ws
loc, that

is Ws = ∞∪
n=0

T−n(Ws
loc), where Ws

loc is transverse to the line W = W ∗. Due to the

expansive character of T−1 along theW direction, as defined in (36), such preimages
must necessarily reach, in a finite number of steps, the prefocal line W = 0. So,
all these preimages must necessarily cross the singular line W = − 1

ρ
through focal

points Qi .
From this observation it follows that the stable set of any saddle cycle of T ,

obtained by taking the preimages of a local stable set, is made up of branches issuing
from the focal points. In fact, the preimages of any local stable set, transverse to
the line of ω-limit sets W = W ∗, necessarily go back to the prefocal line W = 0 in
a finite number of steps. Thus any stable set must be made up of branches which
“cross” the singular line in the focal points, i.e. are “focalized” through the focal
points. This argument, applied to the stable set of some saddle cycle belonging to the
line of ω-limit sets, constitutes the global mechanism which causes the formation of
the particular structures of the basins which will be shown in the examples.

3.2 Increasing Maps

Wehave seen that even if the law ofmotion (1)with the two different kinds of learning
(4) and (18) has the same attracting sets, the corresponding basins of attraction are
generally different. This is related to the fact that the asymptotic dynamics obtained
with both the learning mechanisms are governed by the map gρ = g1−α, whereas the
basins are obtained by different procedures.

However, things are simpler when F is an increasing map. In this case the limiting
map g is also increasing. As it is well known, for a continuous and increasing map
the only invariant sets are the fixed points, and when several fixed points exist,
say x∗

1 < x∗
2 < ... < x∗

k they are alternatingly stable and unstable: the unstable fixed
points are the boundaries that separate the basins of the stable ones. Indeed, in this
case the same situation also holds for the basins of the stable fixed points under the
statistical learning.

Proposition If F is increasing then the basins with adaptive learning and speed
α are the same as those for the statistical learning with fading memory and ratio
ρ = 1 − α.

Proof Let F be a continuous and increasing function and let x∗ be an unstable fixed
point of F . The stable set of the saddle S = (x∗, 1/(1 − ρ)) is obtained by taking
the preimages of any rank of the local stable set of S, which is included in the line
z = x∗. The rank-1 preimages of a point

(
x ′,W ′) are obtained by

{
F(z) + z

(
W ′ − 1

) = x ′W ′

W = W ′−1
ρ
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and for any W ′ ≥ 1 this has only one solution, because the left hand side of the first
equation is increasing if F is increasing and W ′ ≥ 1. In particular, the only rank-1
preimage of a point

(
x∗,W ′) belongs to the line z = x∗, so that the projections of the

unstable fixed points on the line of initial conditions W = 1 are the only boundaries
which separate the basins, like in the one-dimensional map g �.

We remark that two dimensional basins of the attracting fixed points of the map
T , located on the line W = W ∗, may include portions which do no belong to the
vertical lines through the saddle points, but these are necessarily confined in the
region W < 1, so that they have no influence on the basins of the model (1) with
learning (18). An example will be shown below.

3.3 The Particular Case of Bray Learning

We have seen that the case of the statistical learning (12) proposed by Bray (1983)
can be obtained from the statistical learning with fading memory (18) in the limiting
case ρ → 1−. It can be noticed that in this case any REE x∗ with F ′ (x∗) < 1 is
stable, i.e. it can be “learned” by the agents, because the stability condition (29) is
always satisfied as ρ → 1−. In other words, for the general model (1) with Bray’s
learning (12), the steady states x∗ characterized by F

′
(x∗) < 1 are locally attracting

equilibria, whereas those with F
′
(x∗) > 1 are unstable saddles. This confirms, and

extends, the stability results obtained, for particular models, by Bray (1983), Dimitri
(1988), and Holmes andManning (1988). That is: in the case of Bray’s learning (12)
any complexity is lost, and any trajectory is either divergent or convergent to a stable
REE x∗.

However, besides divergent trajectories there may be two or more coexisting
stable REEs, and the arguments given above about the complexity in the basins also
hold in this case. In fact, even if W ∗ = 1/(1 − ρ) → +∞, for each REE x∗ with
F

′
(z∗) < 1 the invariant lines z = x∗ are attracting sets whose basins can be obtained

following the same procedure outlined in the previous sections. The triangular map
(35) becomes

T :
⎧⎨
⎩
z′ = z + F(z)−z

1+W

W ′ = 1 + W

with initial condition taken on the lineW = 1. The linewith no definition isW = −1,
on it a focal point is associated with each REE and the prefocal line is W = 0.

Except for the uninteresting case in which a unique unstable REE exists (and
all the trajectories are divergent), or the simple case in which only one globally
attractingREEexists, there are both attracting lines z = x∗

i and repelling lines z = z∗
j ,

associated with stable REE x∗
i and unstable REE z∗

j respectively. Then, any repelling
invariant line z = z∗

j has a stable set (made up of all the preimages of any rank of
the line z = z∗

j ) which separates different basins. Such preimages may intersect the
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prefocal line of T . Thus, depending on the topological structure of these preimages,
associated with the inverses of T , the basins on the line W = 1 may have a simple
or complex geometrical structure.

4 Examples

4.1 Unimodal Maps: A Cobweb Model

One of the simplest models expressed by a law of motion of the form xt = F
(
x (e)
t

)

is the cobweb model (see e.g. Nerlove 1958, Hommes 1991, Chiarella 1988, Jensen
and Urban 1984). In the market of a given good, let qD = D(p) and qS = S(p)
be the demand and supply functions respectively. At the time t , qD depends on the
current price pt , whereas qS depends of the price p(e)

t expected by producers at
the previous time in which they decided their production. If the production delay is

taken as the time unit, themarket clearing condition becomes D (pt ) = S
(
p(e)
t

)
, and

assuming that D(p) is a continuous and decreasing function (hence invertible) the
law of motion of the market clearing price is pt = D−1S(p(e)

t ) at which the adaptive
learning (4) or the statistical learning (18) can be applied. As an exercise to illustrate
the results of the previous sections, and to compare the two kinds of expectations, we
consider a cobweb model where F(x) = D−1S(x) is a quadratic map, like in Jensen
and Urban (1984) or Dimitri (1988), where a linear demand function is considered
together with a backward bending supply curve, expressed by a quadratic function,
so that F(x) is conjugate to the standard logistic map

f (x) = μx (1 − x) , μ > 1 (42)

So, in the following we consider a model xt = f
(
x (e)
t

)
with f given by (42). In

this case, the dynamics of the expected prices under the assumption of adaptive
expectations (4) is governed by a quadratic map as well, given by

z′ = gα(z) = (1 − α) z + αμz (1 − z) (43)

whereas under the assumption of statistical learning (18) the dynamics of the expected
prices is obtained by the two-dimensional map (24)

T :
{
zt+1 = ρWt zt+μzt (1−zt )

1+ρWt

Wt+1 = 1 + ρWt

(44)



54 G. I. Bischi et al.

and the limiting map which governs the asymptotic behavior is:

z′ = g1−ρ (z) = ρz + (1 − ρ) μz (1 − z) (45)

For each μ > 1 there are two non negative REEs, given by

s∗ = 0 and p∗ = μ − 1

μ

where s∗ is an unstable fixed point of f , with f ′ (s∗) > 1, hence it is also an unsta-
ble fixed point of g for each ρ ∈ [0, 1), whereas p∗ is stable for 1 < μ ≤ 3, and
unstable for μ > 3 with f ′ (p∗) < −1. This means that the REE p∗ is stable under
the assumption of adaptive expectations provided that α is sufficiently small (and
the same is true for the statistical learning with ρ sufficiently close to 1). In the fol-
lowing we shall consider values of α or ρ such that the REE p∗ is stable, however
even in this case, p∗ is not globally stable since for each α ≥ 0 (ρ ≤ 1) diverging
sequences of expected values can be obtained as well. This raises the question of
the study of the basins of attraction, i.e. the delimitation of the boundary which sep-
arates the set of initial conditions that generate trajectories converging to the REE
(i.e. the basin of attraction of p∗) from the set of initial conditions that generate
unbounded trajectories (i.e. the basin of attraction of infinity). This question is very
easily solved for the case of adaptive learning, whose study requires a simple analysis
of the one-dimensional quadratic map (43), for which the basin of p∗ is given by
the interval ]0, g−1

α (0)[=]0, 1[. Instead, for the statistical learning a global analysis
of the two dimensional map (44) requires more advanced methods. In fact, (44) is a
noninvertible map with two focal points,

Q1 =
(
0,−1

ρ

)
and Q2 =

(
μ − 1

μ
,−1

ρ

)
. (46)

In Fig. 4a, obtained with ρ = 0.75 and μ = 6, the basins of the two-dimensional
map (44) are shown: The white region represents the set of points converging to

the fixed point P = (p∗,W ∗) =
(

μ−1
μ

, 1
1−ρ

)
, and the grey region represents the set

of points which generate diverging trajectories. The intersections with the line of
initial conditionsW = 1 represent the respective one-dimensional basins of the cob-
web model with statistical learning (18) given by the interval (0, z) with z = 1.125.
Instead, if we consider the adaptive learning (4) with α = 0.25, so that the dynamics
of expected prices are governed by the same one-dimensional map, the basin of the
REE p∗, is

(
0, g−1

0.25(0)
) = (0, 1.5), where g−1

0.25(0) is the preimage of the unstable
fixed point s∗ different from itself. This basin coincides with the portion of the line
of ω-limit sets W = W ∗ included in the white region of Fig. 4. A trajectory starting
from x (e)

0 = 1.2 converges to p∗ under adaptive expectations, whereas for the model
with statistical learning (18) with ρ = 0.75, for which the asymptotic dynamics of
the expected prices are governed by he same limiting map, the trajectory starting
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Fig. 4 Numerically generated basins of attraction of the two-dimensional map (44): The white
region represents the set of points converging to the fixed point P∗ and the grey region represents
the set of points which generate diverging trajectories. a ρ = 0.75 and μ = 6; b ρ = 0.75 and μ = 7

from z0 = p(e)
1 = 1.2 diverges. So, with the same starting condition, the trajectory

obtained with the standard adaptive learning converges to the REE p∗, whereas the
model with statistical learning (18) with ρ = 1 − α does not converge.

An even more evident difference is obtained in the situation shown in Fig. 4b,
obtained with ρ = 0.75 and μ = 7. Now the basin B (p∗) is formed by two disjoint
intervals, because a “hole” formed by points which generate diverging trajectories is
nested inside B (p∗).

It can be noticed that the size, in the z direction, of B(P), increases for higher
values of W , so that stronger shocks are necessary to bring the phase point inside
B(∞), i.e. the system is less vulnerable with respect to exogenous perturbations as
time goes on. Loosely speakingwemay say that as the amount of information (i.e. the
number of observed realized values) increases the system has a greater probability
to converge, because agents learn to behave more and more rationally as time goes
on.

The above considerations are even more evident when applied to situations like
the one shown in Fig. 5, obtained for ρ = 0.75 and μ = 9. In this case the basin of p∗
is formed by 4 disjoint intervals, due to the presence of lobes of B(∞) intersecting
the line of initial conditions W = 1.

We now describe a procedure to obtain the exact delimitation of the boundary F
that separates the two basins. In fact, the complementary set of B(∞) is the set of
bounded trajectories which converge to invariant sets of the limiting map g, on the
lineW = W ∗. As remarked above, the attractor always coincides with the REE if the
memory ratio ρ is sufficiently close to 1, whereas for lower values of ρ the bounded
attractor of the map gρ(z) may be a cycle or even a chaotic set. Here we are only
interested in parameters’ values for which the REE p∗ is locally stable, but it is clear
that arguments similar to those used below hold independently of the topological
structure of the attracting set of gρ(z). Thus P = (p∗,W ∗) denotes the attractor of
T located on the line W = W ∗, whose basin will be denoted by B(P). The frontier
F behaves as a repelling set for the points near it, since it acts as a watershed for
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Fig. 5 The same as Fig. 4,
with ρ = 0.75 and μ = 9

the trajectories of the map T . Points belonging to F are mapped into F both under
forward and backward iteration of T : more exactly T (F) ⊆ F , T−1 (F) = F (see
Mira et al. 1996 Chap. 5). This implies that if a saddle-point belongs to F , then F
must also contain the whole stable manifold (see Gumowski and Mira 1980; Mira
et al. 1996). In our case, for eachμ > 1 and 0 ≤ ρ < 1 the point S = (0,W ∗), located
on the line of ω-limit sets W = W ∗ = 1/(1 − ρ), is a saddle point for the map T ,
with local stable manifold along the invariant line z = 0 and unstable set along the
invariant line W = W ∗. The local stable set of S belongs to F because the unstable
manifold, along the lineW = W ∗, has a branch pointing toward the attractor P , and
the opposite branch going to infinity (see Fig. 6). Then F includes the whole stable
set of S, i.e.

F ⊇ Ws(S) =
⋃
n≥0

T−n(Ws
loc(S)) (47)

where Ws
loc(S) is given by the portion of the W axis with W ∈ (0,W ∗), denoted by

ω0 in Fig. 6, and T−n(z,W ) denotes the set of all the rank-n preimages of the point
(z,W ), i.e. the set of points which are mapped into (z,W ) after n applications of T .
In our case, the map (44) is a noninvertible map of Z0 − Z2 type, i.e. a point

(
z′,W ′)

has no rank-1 preimages or two preimages, given by T−1
(
z′,W ′) = T−1

1

(
z′,W ′) ∪

T−1
2

(
z′,W ′), where

T−1
1 :

⎧⎪⎪⎨
⎪⎪⎩
z = (

(
W ′+μ−1

)−
√

(W ′+μ−1)2−4μz′W ′
2μ

W = W ′−1
ρ

T−1
2 :

⎧⎪⎪⎨
⎪⎪⎩

z = (
(
W ′+μ−1

)+
√

(W ′+μ−1)2−4μz′W ′
2μ

W = W ′−1
ρ

(48)
if �(z,W ) = (

W ′ + μ − 1
)2 − 4μz′W ′ > 0.
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We say that a point (z,W ) has two preimages, given by (48), if �(z,W ) > 0,
and that no inverses are defined in the points (z,W ) when �(z,W ) < 0. The curve
defined by the equation

�(z,W ) = (W + μ − 1)2 − 4μzW = 0, (49)

is called critical curve LC (from the french “Ligne Critique”). Its points have two
coincident preimages located on the line LC−1 given by

LC−1 = {(x, y) |ρW − 2μz + μ = 0} (50)

obtained from T−1
i with � = 0. It can also be obtained as the locus of points at

which the determinant of the Jacobian matrix of T vanishes, and LC = T (LC−1)

(see Gumowski and Mira 1980; Mira et al. 1996; Abraham et al. 1997). As LC−1

crosses the singular line δs out of the focal points, LC = T (LC−1) is formed by two
unbounded branches asymptotic to the prefocal line δQ (see Fig. 6). The knowledge
of the curves LC and LC−1 is important in the computation of the preimages of the
local stable set of S from which F is obtained according to (47). Indeed, from (48)
the rank-1 preimages of Ws

loc(S) can be easily computed. The two rank-1 preimages
of ω0, which is entirely included inside Z2, are one on the same (invariant) W -axis
and the other one on the line of equation

W = μ

ρ
(z − 1) (51)

denoted by ω−1 in Fig. 6. This line intersects the line of initial conditions W = 1 in
the point

z = 1 + ρ

μ
(52)

According to (47), also the line (51) belongs toF . It can be noticed that (51) “crosses”
the singular line through the focal point Q2. The portion of this line located below
the critical curve LC belongs to the region Z2, hence it has two preimages, say ω1−2
and ω2−2, whose equation can be obtained from (48) with W ′ = μ

ρ

(
z′ − 1

)
. These

two preimages are located at opposite sides with respect to the line LC−1 and merge
in the point H , given by the merging preimages of the point H1 = ω−1 ∩ LC (see
Fig. 6). After some algebraic manipulation it is possible to see that such preimages
belong to the curve of equation:

x =
μ + ρW ±

√
(μ + ρW )2 − 4 (1 + ρW )

(
μ + ρ + ρ2W

)

2μ
. (53)

The locus (53) represents an hyperbola if ρ < 1
4 , a parabola if ρ = 1

4 , an ellipse if
ρ > 1

4 (as in Fig. 6, obtained with ρ = 2
3 ) and crosses the line with no definition
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Fig. 6 An extended view of the numerically generated basins of attraction of the two-dimensional
map (44): The white region represents the set of points converging to the fixed point P∗ and the
grey region represents the set of points which generate diverging trajectories. a ρ = 2

3 and μ = 4;
b μ = 5.4

W = −1/ρ at the focal points. According to (47) also the curve (53) belongs to the
frontier F , as well as the preimages of ω0 of any rank.

The union of all these preimages gives the boundary separating the basin B (∞)

from the basin of the stable fixed point P, represented in Fig. 6, by the grey and the
white regions respectively.

With the set of parameters used in Fig. 6a the two merging preimages of the point
H1, represented by the point H in which ω−2 intersects LC−1, are below the prefocal
line δQ . This implies that the two rank-1 preimages of H , denoted by H (1)

−1 and H (2)
−1

in Fig. 6a, are below the line δs .
As long as the point of intersection H1 between LC and the line ω−1 is below the

line W = W1 = 1, the whole curve ω−2 lies below the z axis, so that the preimages
of ω−2 are located below the singular line, as can be easily deduced from the second
component of (48).

As μ increases the critical curve LC moves upwards, and when it reaches the
lineW = W1 = 1 the curve ω−2 reaches the z axis, so that its preimages ω−3 appear,
issuing from the two focal points Q1 and Q2. For example, in Fig. 6b the point H1 is
above the line W = 1, and consequently its preimage H , which is on the top of the
arc ω−2, is above the lineW = 0. The two preimages of the portion of ω−2 above the
z axis are the lobes issuing from the focal points Q1 and Q2, and the same happens
at all the preimages of any rank of the focal points.

However, in order to understand the structure of the basins, we can limit our
analysis to the portion of the plane above the line W = −1/ρ (as in Fig. 7a)

For the set of parameters used in Fig. 7a the situation is similar to the one shown
in Fig. 6b: the arc ω−2 of F does not intersect the line of initial conditions W = 1,
thus it does not affect the basin of attraction D1(p∗) given by the intersection of
B (P) with the line W = 1, according to Proposition 1. This is due to the fact that
the point H1 = ω−1 ∩ LC is located below the line of equation W = W1 = 1 + ρ,
and this implies that its preimage H is located below the line of initial condition
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Fig. 7 Numerical computation of the preimages of the segment ω0 located along the line z = 0

W = W0 = 1. In fact, due to the particular structure of the second equation of themap
T , the preimages of any point of a line W = Wt are located on the line W = Wt−1,
as can be easily computed by the second equation of (48).

As μ is increased, a value will be reached, say μ = μ∗
0 , at which the point H1 is

on the lineW = W1 = 1 + ρ and, as a consequence, the curve ω−2 becomes tangent
to the line of initial conditions W = W0 = 1 in the point H = (zH , 1) (see Fig. 7b)
where

zH = 1

2
+ ρ

2μ
. (54)

Thevalueμ∗
0 = 2 + 2

√
1 + ρ (as can be easily computed from the tangency condition

between the curve of equation (53) and the line W = 1) represents a bifurcation of
the basin D1(p∗) of initial conditions which generate bounded price sequences. In
fact for μ < μ∗

0 the basin D1(p∗) is the interval (0, z), with z given by (52), whereas
for μ > μ∗

0 a hole is created around zH , whose points belong to B(∞), bounded by
the two intersections (h1, 1) and (h2, 1) between the curve (53) and the line W = 1.

The situation becomes even more complex as μ is further increased. The value

μ = μ∗
1 = 2 + ρ +

√
(1 + ρ)

(
1 + ρ + ρ2

)
is reached at which the point H1 is on the

lineW = W2 = 1 + ρ + ρ2. At this value of μ two lobes of B(∞), bounded by ω−3,
reach the line of initial conditions, the tangency points being the two preimages H 1−1
and H 2−1 of the point H . This gives a second bifurcation of the basin D1(p∗), at
which two new holes are created around the tangency points, and the basin of the
REE p∗ is given by the union of 4 disjoint intervals, separated by holes of B(∞).

Other similar bifurcations occur at μ = μ∗
n , where μ∗

n = 1 + Wn +
2
√
Wn (1 + ρWn) at which ω−n−1, belonging to the set T−n−1(ω0), become tan-

gent to the line of initial conditions. This implies that 2n new holes are created. The
result of this sequence of bifurcations is that the basin assumes a structure which is
typical of a Cantor set. In fact, at each bifurcation value μ = μ∗

n , n ∈ N, the num-
ber of lobes of B (∞) is doubled, and the whole sequence of bifurcations causes a
fractalization of the basin boundaries near the focal points (and their preimages) that
gives a “finger-shaped” structure of B (∞). When μ reaches the limiting value
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Fig. 8 The case of Bray’s
learnng ρ → 1− with
μ = 12. The dots represent a
trajectory starting from the
initial condition (z0, 1) with
z0 = 0.3

μ∗
∞ = lim

n→∞ μ∗
n = 4 − ρ

1 − ρ
,

the point H1, together with all of its infinite preimages located at the top of the lobes,
reach the line of the ω-limit sets W = W ∗. Thus at μ = μ∗∞ infinitely many lobes of
B (∞) have been created, and all have a contact with a chaotic attractor A located
on the line W = W ∗. This contact between ∂B (∞) and the chaotic set causes the
disappearance ofA and for μ > μ∗∞ only divergent trajectories of the map T can be
obtained.

The global analysis of the basin boundaries just described holds for any value
of the memory ratio ρ belonging to the interval (0, 1). In particular, it also holds in
the limiting case ρ → 1−. In this case the singular line, where the focal points are
located, has equationW = −1. The equations of the curves which form the boundary
F are obtained from those given above just substituting ρ = 1. So, also in the case
of Bray learning (12), the complexity in the structure of the basins is conserved, as
shown in Fig. 8, obtained with ρ = 1 and μ = 12.

Similar structures of the basins are obtained for other models represented by
unimodal maps, like the model proposed in Dimitri (1988), whose global analysis is
given in Bischi and Naimzada (1997).

4.2 Bimodal Maps: Coexisting Stable REEs and the Problem
Of equilibrium Selection

In the model analyzed above, one of the two “competing” equilibria is a rather
unrealistic attractor at infinity. However, similar results hold when two or more
bounded coexisting equilibria, or more complex bounded attractors of the limiting
map g exist, such as periodic cycles or chaotic sets. An interesting situation arises if
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a model with expectations is such that two REEs exist which are both stable under
a learning rule, i.e. two “competing” rational expectation equilibria whose selection
depends on the initial condition. In order to show an example where this happens,
we consider a bimodal function F defined as

F(x) = −ax3 + 3ax2 − 2ax + 1 (55)

This map has three fixed points, say x∗
1 < x∗

2 < x∗
3 , as shown in Fig. 9a, where the

graph of F is represented, for a = 3, together with the graph of g0.3 = 0.7x +
0.3F(x), the map which governs the one-dimensional dynamics of the expected
values when adaptive expectations (4) are introduced with α = 0.3, and also repre-
sents the limiting map for the two-dimensional dynamics describing the statistical
learning (18) with ρ = 0.7. From this graph it is evident that x∗

2 is always unstable,
both for F and for g, whereas for a given value of a the REEs x∗

1 and x
∗
3 are stable for

g provided that sufficiently low values of α (or sufficiently high values of ρ) are con-
sidered. So situations of two coexisting stable REEs x∗

1 and x∗
3 are easily obtained.

In this case, the problem of equilibrium selection is related to the delimitation of the
basins. Such problem is simple as far as adaptive learning (4) is concerned. In fact,
the stable set of the unstable REE x∗

2 , given by the set of all of its preimages, consti-
tutes the boundary which separates the basin of x∗

1 from the basin of x∗
3 . These basins

are formed by the two immediate basins, which include x∗
1 and x∗

3 respectively, and
infinitely many disjoint portions, preimages of the immediate basins, which accu-
mulate at the two periodic points of a repelling cycle {s1, s2} which also constitutes
the boundary of the basin of infinity, i.e. s1 and s2 separate the points which generate
trajectories converging to bounded attractors from the ones generating unbounded
trajectories.

Instead, if the two-dimensional map equivalent to themodel with statistical learn-
ing (18) is considered, the basins appear to be more complex. In Fig. 9b the two-
dimensional basins of

(
x∗
1 ,W

∗) and
(
x∗
3 ,W

∗), located along the line W = W ∗ =
1/(1 − ρ), are represented by grey and light-grey regions respectively, whereas the
black region represents the basin of infinity. In this case the common boundary of the
dark-grey and white regions is given by the stable set of the saddle point

(
x∗
2 ,W

∗)
and the boundary of the basin of infinity is formed by the stable set of the saddle-cycle
S ={(s1,W ∗), (s2,W ∗)}. As usual, the structure of these boundaries is made up of
lobes and crescents originating from the three focal points Qi = (

x∗
i ,−1/ρ

)
, and

the complexity of the basins of the model with statistical learning is related to the
fact that the boundaries of such lobes and crescents intersect the line of initial con-
ditions W = 1 in several points, so that the basins of the two stable REEs are quite
different from those observed for the model with adaptive learning. For example,
the trajectory starting with the initial condition x (e)

1 = x0 = 0.3 < x∗
2 , converges to

x∗
3 , and the one starting from x (e)

1 = x0 = 1.7 > x∗
2 , converges to x∗

1 , whereas with
adaptive expectations any trajectory startingwith x0 < x∗

2 converges to x
∗
1 , so that the

equilibrium selection results obtained with adaptive expectations are now reversed.
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Fig. 9 a The graphs of the map F given in (55) for a = 3 together with the graph of g0.3 = 0.7x +
0.3F(x); b Basins of attraction of the map (35) with F in (55): the light-grey region represents the
basin of

(
x∗
3 ,W ∗), the grey region is the basin of (

x∗
1 ,W ∗), the black region is the basin of infinity

This different equilibrium selection happens when the initial conditions are taken
inside the “holes” given by the intersections of lobes and crescents with the line
of initial conditions W = 1, whereas other initial conditions converge to the same
equilibrium as in the model with adaptive expectations. This is true, for example, for
the two trajectories represented in the figure, obtainedwith x (e)

1 = 0.8 and x (e)
1 = 1.2.

4.3 An O.G. Forward Looking Model Represented by an
Increasing Map

A large class of economic problems are characterized by forward-looking expecta-
tions, i.e. are modeled by a discrete time law of motion of the form

xt = F(xet+1) (56)

Common examples in which such mappings are obtained by Overlapping Genera-
tions (O.G.) models, where agents typically living two periods (say young and old)
take the consumption and/or saving decision of their whole life in the first period
(when young) so that they must guess (i.e. foresee) which will be the status of the
economy (e.g. prices) one period ahead, when they will be old. As in the previous
sections, xt represents the current (or realized) state variable of the economic sys-
tem at time t and xet+1 is the expected state for time t + 1 according to the agents’
forecasting rule and their information set at time t .

Under the assumption of perfect foresight (2) the agents correctly anticipate the
future state, i.e. x (e)

t+1 = xt+1 for each t , and this defines the rational expectations
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equilibrium profiles through the iteration scheme

xt = F(xt+1), (57)

called backward PF dynamics. Indeed (57) has no dynamical meaning, but it must be
simply seen as a recursive scheme which defines an intertemporal equilibrium with
PF along which expectations are fulfilled, i.e. the equilibrium sequences generated
by the recurrence (57) represent the outcomes of the economic system under the
strong assumption that the agents are characterized by self-fulfilling RE.

In this case, we can have rational expectation time paths which are more complex
than a stationary state. In fact, a recurrence of the form (57) can generate periodic
sequences of any period or even aperiodic (i.e. chaotic) bounded sequences.

A fixed point of (57) defines a Rational Expectations Equilibrium (REE), a k-
periodic cycle Ck = {α1, . . . ,αk}, with αi 	= α j , ∀ i, j = 1, . . . , k, such that αi =
F(αi+1), i = 1, . . . , k − 1, and αk = F(α1), represents a Rational Expectations
Cycle (REC) and so on.

In the literature on forward looking models, learning mechanisms are often pro-
posed where the computation of xet+1 does not involve the current state xt . Such
assumption is usually motivated by saying that in modeling forward looking expec-
tations generally the “subjects are requested to make forecasts at the beginning of
period t , when xt is not in their information set” (from Marimon et al. (1993)).

Under this assumption, the presence of xt in both sides of the equation (56) is
avoided, and it is immediate to realize that the one-dimensional dynamics which
describe the time evolution of expected values of the model (56) under adaptive
learning as well as the two-dimensional dynamics which describes the time evolu-
tion of expected values of the model (56) under the statistical learning, are the same
as those described in the previous sections. So, the method and the results described
above can be applied to many models with forward looking expectations which have
been proposed in the literature. As an example, let us consider an Overlapping Gen-
erations model, proposed in Evans and Honkapohja (1995), where a representative
consumer is assumed to live for two periods: period t (when young) and period
t + 1 (when old), and its utility function is Ũ = U (ct+1) − V (nt ), where ct+1 is the
consumption when old, nt the labor supply when young. In Evans and Honkapohja
(1995) a concrete illustration is given, withU (c) = c1−σ

1−σ
, σ > 0, V (n) = n1−ε

1−ε
, ε > 0

and a production function f (nt , Knt ), where Knt is the aggregate labor supply of
K consumers, is considered in the separable form f (n, Kn) = nαψ (Kn), where
ψ (Kn) = A (I ∗)β . These assumptions allow to obtain, for the consumer optimiza-
tion problem with budget constraints

p(e)
t+1ct+1 = Mt and pt f (nt , Knt ) = Mt
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Fig. 10 a The graphs of themap F taken fromEvans andHonkapohja (1995); bBasins of attraction
of the map (35) with this map F : the light-grey region represents the basin of

(
n∗
3,W

∗), the grey
region is the basin of

(
n∗
1,W

∗), the black region is the basin of infinity

a law of motion in the forward looking form

nt = F(n(e)
t+1)

where F has a graph like the one shown in Fig. 10a, which is obtained with the same
set of parameters used in Evans and Honkapohja (1995). The function F has three
REEs denoted by n∗

i , i = 1, 2, 3, two of which are stable. In Evans and Honkapohja
(1995) the following learning scheme is introduced

n(e)
t+1 = (1 − αt )n

(e)
t + αt nt−1 = (1 − αt )n

(e)
t + αt F(n(e)

t )

with αt = 1/t , i.e. the Bray learning (12).
If we consider the most general statistical learning (18) we obtain the same basins

as the ones obtained for the limitingmap g1−ρ, i.e. bounded by the unstable REE. This
is shown in Fig. 10b, where the basins of the two-dimensional map equivalent to the
statistical learning (18) are represented by different grey regions. The intersection of
the line of the initial conditions W = 1 with the intermediate-grey region represents
the basin of the REE n∗

1 and the intersection with the light-grey region represents the
basin of the REE n∗

3. Since the portions of the stable set of the saddle point
(
n∗
2,W

∗)
which are not along the invariant line z = n∗

2 (i.e. the arcs originating from the focal
points Qi ) are confined below the line of initial conditions W = 1, the basins are
simply bounded by the unstable REE n∗

2, as in the case of adaptive expectations,
as shown in Fig. 10b. Of course, the same holds for ρ = 1, i.e. in the case of Bray
learning.
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5 Conclusions and Further Research

The inclusion of memory of past states in discrete dynamical systems that represent
economic models with expectations has been considered in the form of a weighted
average with exponentially decreasing weights. This scheme is then compared to
adaptive expectations. The two methods to compute expected values share the same
attractors but differ for the role played by initial conditions as in general they have dif-
ferent basins of attraction with several coexisting attractors. So, in cases of multista-
bility different equilibrium selections can be obtained. This result has been obtained
through the study of the basins of a two-dimensional map equivalent to the statis-
tical learning with fading memory, by using some methods for the study of global
bifurcations of plane maps with a denominator that vanishes in a one-dimensional
subset of the phase space. The results described in this paper have been illustrated
by some simple economic examples, such as cobweb models and an overlapping
generations framework. Following the path indicated by some recent works by Mat-
sumoto and Szidarovszky in continuous-time oligopoly models with exponentially
fading memory, also the methods described in this paper for discrete-time models
may be usefully applied in Cournot or Bertrand oligopoly games in discrete time,
see e.g. Deschamps (1975) or Thorlund-Petersen (1990). Such games, endowed with
fadingmemory, will be reduced to an equivalent autonomousmapswith denominator
of dimension greater than two, a quite challenging mathematical task.
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Come Together: The Role of Cognitively
Biased Imitators in a Small Scale
Agent-Based Financial Market

Giovanni Campisi and Fabio Tramontana

Abstract We analyze the consequences of the presence of imitators in a financial
market populated by boundedly rational speculators. We consider imitators that only
look at the recent success of the available trading rules.We show that the introduction
of this kind of imitators makes the results more complicated but even more realistic.
In particular, under some specific circumstances, imitatorsmay stabilize an otherwise
unstable market or, at the opposite, make unstable an otherwise stable scenario.

Keywords Cognitive biases · Bounded rationality · Financial markets ·
Agent-based models

1 Introduction

Over the last few years a lot of attention has been raised on the psychology of finan-
cial markets. This is probably a consequence of the failure of the traditional approach
to the study of financial markets, which is essentially based on the assumption of per-
fectly rational agents, cornerstone of the so-called Efficient markets hypothesis (see
Fama (1995, 1965)). These theories dramatically failed in anticipating and explaining
how financial bubbles like the dot.com bubble or the US real estate bubble originated,
grow larger and then burst (see Shiller (2015)). The consequences of the explosions
of such bubbles can be huge and nowadays we know that they can also influence real
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economy, triggering deep recessions. Bubbles and crashes are not the only stylized
facts of financial markets that the mainstream approach is unable to explain in a con-
vincingmanner. The list of other prominent features of stockmarkets includes excess
volatility, fat tails of returns’ distribution together with their virtual unpredictability.
We also mention volatility clustering and long memory effects among the facts to be
explained. Deviations from the perfectly rational behavior have been founded and
analyzed since many years before the current economic crisis.1

A systematic study and classification of the irrationalities that plague humans’
decision making started with the works of Kahneman and Tversky in the seventies
(see Tversky and Kahneman (1974) for a list of the most common biases). They and
their scholars proved that people who make decisions follow simple rules of thumb
(called heuristics) that many times represent an easy way to make a good decision,
but may also lead to systematic deviations (called biases) from what a perfectly
rational agent should do. The good thing is that, given their regularity, these biases
can in some sense be foreseen.

Financial traders (professional or not) decide whether to buy or sell an asset
following simple heuristics, too. These rules of thumb can be subdivided into two
main categories: fundamental and chartists trading rules, followedby fundamentalists
and chartists (or technicians), respectively (see Frankel et al. (1986), Menkhoff and
Taylor (2007) for empirical validations andHommes (2011) for a reviewof laboratory
experiments). The former are convinced that, even in the short period, prices will
come back to their fundamental values, so they buy undervalued assets and sell
overvalued ones. Chartists (or technicians) look at the time series of prices to find a
clue for understanding the (near) future price movements.

An interesting strand of research consists in studying small-scale heterogeneous
agent-based financial market models (HAMs henceforth) with behavioral assump-
tions. The pioneering work in this field is due to Day and Huang (1990) and after
that the interactions between heterogeneous market participants have been devel-
oped in many directions (see Chiarella et al. (2009), Hommes and Wagener (2009),
Lux (2009), Westerhoff (2009) for example). The strong point of HAMs lies in
the connection between the behavioral assumptions that are supported by empiri-
cal and experimental evidence, and the small scale of the dynamical systems that
explain asset price movements and the underlying mechanisms that cause them. This
permits to analytically study the most of these models, making understandable the
endogenous causes of particular price movements. HAMs lead to irregular endoge-
nous price dynamics even in their deterministic version, through the nonlinearities
that are introduced in the trading rules and/or in the switchingmechanism. The emer-
gence of chaotic dynamics permits to replicate stylized facts like bubbles and crashes
and excess volatility. These results reduce the role played by stochastic variables that
can still be useful to replicate some quantitative aspects of real time series, but are
not necessary for a qualitative explanation of the most of these facts.

HAMs can also be used for taking into consideration the imitative strategies that a
(sub)group of traders can adopt to obtain better performances. In this sense the works

1See for instance the famous Allais paradox (Allais 1953).
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of Lux (1995, 1998) and Lux andMarchesi (1998, 1999) deserve to bementioned. In
their works there are fundamentalists and chartists. These latters use a combination
of trend following and imitative strategies and can be optimistic or pessimistic. They
decide which subgroup to imitate looking at what the majority is doing2 and at
expected and realized excess profits of the available strategies. A similar mechanism
is used in Franke and Westerhoff (2016). Further HAMs with imitation are Bischi
et al. (2006) and Foroni and Agliari (2008).

Our work is also related to the strand of literature in which financial markets are
viewed as evolutionary adaptive systems, populated byboundedly rational interacting
agents (see Brock and Hommes (1997, 1998), Chiarella et al. (2000), Chiarella and
He (2002), Farmer (2002) among the others). In these models agents are allowed to
switch among the different trading strategies, trying to learn the best one. The authors
of these papers are interested in the final outcome of this evolutionary competition
and remarkable results emerge when the fractions of agents adopting each strategy,
continuously vary over time, never reaching a fixed final value.

In our model there are some agents that keep fixed their strategies, no matter what
happens in the markets. They are overconfident and can be affected by the so-called
confirmation bias (see Barber and Odean (2000, 2001)). Roughly speaking, they
favor information that support their strategies and give less importance to the others.
This bias explains, for instance, why even beliefs that have been heavily discredited
survive in the mind of some people (Kunda 1999). On the other hand, we also
consider a fraction of traders that are not so self-confident and at each time period
reconsider their strategies myopically looking at the performance of the alternatives.
We consider the amount of agents adopting each strategy as a consequence of the
imitative behavior and not as a cause. In this sense we do not model an herding
behavior (in which traders follow the crowd). Our approach is even more simple
because it does not require for imitators to know the number of traders that use each
available strategy. They only look at their neighborhoodwhere they canfind examples
of traders adopting the various strategies. When they look at the outcome of their
strategies, they decide who among them should be imitated. In some context this
behavior can be a good one. Especially when a best strategy really exists. Financial
markets is not one of these cases because we cannot state, for instance, that the
fundamentalists approach is always better than the chartists one or the opposite, and
in this case, as we will see, the role of imitators can by quite important and drastically
influence price dynamics.

The paper is structured as follows. In Sect. 2 we build a typical HAM with fun-
damentalists and chartists that keep fixed their strategies. In Sect. 3 we introduce a
third group of traders that imitate the behavioral rule of the others by using a simple
rule of thumb. The consequences of the introduction of imitators in the market are
studied in Sect. 4. Section5 concludes the paper.

2In this case we talk about herding rather than imitation, that we use in a more generic meaning.
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2 The Benchmark Model

In this Section we build a typical HAM describing a financial market where only one
asset is exchanged. The market is populated by two kinds of speculators: fundamen-
talists and chartists.

In the spirit of Day and Huang (1990), a market maker adjusts the log of the asset
(P) according to this rule:

Pt+1 = Pt + a
(
D f

t + Dc
t

)
(1)

where D f
t and Dc

t represent the orders placed at time t by fundamentalists and
chartists, respectively. Pt is the current asset price and it is known by all market
participants. The positive parameter a measures the intensity of the adjustment.

Fundamentalists are assumed to believe in the reversion of the asset price towards
its (exogenously given) fundamental value F . As a consequence, they buy the asset
when its price is below the fundamental value and sell it when it is overvalued. Their
behavioral rule is the following:

D f
t = f

(
F − Pt

)
(2)

where f > 0 is a reaction parameter.
At the opposite, chartists optimistically interpret the signal given by a price above

the fundamental. So they buy the overvalued asset because they think that the positive
trendwill go on, at least in the short period. Nevertheless, we introduce a nonlinearity
in their trading rule (an arctangent) that permits us to take into consideration a certain
degree of prudence when the difference between actual price and fundamental value
becomes extremely large. Orders placed by chartists are given by:

Dc
t = c ∗ arctan

(
Pt − F

)
(3)

where c is a positive reaction parameter.3

The price adjustment rule (1) combined with the trading rules (2) and (3), gives
us a dynamic model explaining the movements of the asset price as a function of the
previous period price:

Pt+1 = Pt + a
[
f
(
F − Pt

) + c ∗ arctan
(
Pt − F

)]
(4)

3Note that we would obtain the same qualitative results that are explained in the following by
using (Pt − Pt−1) instead of (Pt − F), so considering some sort of positive feedback investors
(see De Long et al. (1990)). We prefer to avoid this characterization of chartists because it would
increase the dimensionality of the dynamical system explaining the price dynamics.
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We can use the auxiliary variable xt = Pt − F representing deviation from the
fundamental value, to obtain the map:

xt+1 = f (xt ) = xt + a[c ∗ arctan(xt ) − f xt ]. (5)

2.1 Steady States and Local Stability

One of the fixed points of the map (5) corresponds to a price equal to the fundamental
value: x∗ = 0 (we call it fundamental fixed point in what follows). Nevertheless, the
price may not converge to it if it is not locally stable. To check the local stability of
x∗ we must use the first derivative of f (xt ), i.e.:

f
′
(xt ) = 1 + a

( c

1 + x2t
− f

)
(6)

and evaluate it at the fundamental fixed point value:

f
′
(0) = 1 + a(c − f ) (7)

The fixed point is locally stable if the value of the derivative is lower than 1 in
absolute value. We can easily obtain the local stability condition in terms of the
chartists’ reactivity coefficient c:

− 2

a
+ f < c < f (8)

Condition (8) has a straight interpretation: the asset price converges to the funda-
mental value provided that fundamentalists are more reactive (or trade more aggres-
sively) than chartists, but not too much.4

The fulfillment of condition (8) only ensures the local stability of the fundamental
fixed point. In other words, we know that starting with an initial value of the price
that is close enough to the fundamental value, then the price will converge to it.
But how close the price should be to the fundamental value? Note that this is a
quite relevant question because another way of formulating the same question is
the following: if a shock hits the market, are we sure that the price will come back
to the fundamental value? The larger is the interval made up by initial conditions
leading to the fundamental value, the more robust is the system that only requires
some settlement periods for reabsorbing shocks (see Fig. 1).

4This second case may appear less easy to interpret but the explanation is straight: when fundamen-
talists strongly dominate the market the price oscillations are huge and overvalued and undervalued
prices alternate. From the mathematical point of view this is a so-called flip (or period-doubling)
bifurcation.
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Fig. 1 Timeplots obtained by using the parameters’ values: a = 3, c = 0.8 and f = 1.2. At time
period t = 450 an additive shock is introduced. The shock hitting the system in panel b is larger
than the one of panel a

The set of initial conditions leading to a fixed point (x∗) is usually called its basin
of attraction (β(x∗)) in the dynamical systems’ literature. In our case the basin of
attraction of the fundamental value is given by:

β(x∗) =]α−, α+[ (9)

where α− and α+ are the points of an (unstable) cycle of period 2 that we can find
by looking at the second iterate f 2(x) (see Fig. 2).

By keeping fixed the value of f and by varying the value of c inside the range
of local stability of the fundamental fixed point (8), we find that the larger is c the
larger is β(x∗). This means that when fundamentalists are much more reactive than
chartists, even if condition (8) is not violated, only initial conditions quite close to
the fundamental value lead to it.

In other terms, even starting from a scenario in which price is equal to the funda-
mental value, a small shock may have heavy consequences on the price dynamics.

Fig. 2 First and second iterates of the map f (x). In a we have that a = 3, f = 1.64 and c = 1.5.
The fixed points of the second iterate (the red curve) bound the basin of attraction of the fixed point.
This set is smaller when c is reduced to 1.1 as in (b)
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And what happens to initial conditions outside β(x∗)? In these cases the strong
dominance of fundamentalists combined with a sufficiently large mispricing drives
fundamentalists to overreact to the market signal and the price diverges alternating
high and low values, each time more distant from the fundamental one (Fig. 1b).

Let us focus on what happens when chartists are more aggressive than funda-
mentalists (i.e. c > f ) by looking at the bifurcation diagram of Fig. 3, obtained by
keeping fixed a = 3 and f = 1.2 and varying the values of c between 0.5 and 4.

Until the value of the chartists’ reactivity is lower than the fundamentalists’ one,
the asset price converges to the locally stable fundamental fixed point. At c = f
a pitchfork bifurcation occurs and two further steady states are created. For values
of c not excessively higher than f the fundamental state x∗ = 0 is locally unstable
and price converges to one of the other two steady states, depending on the initial
condition. Note that one steady state (x+) corresponds to an overvalued price while
the other one (x−) to a situation where the price is undervalued. By further increasing
the reactivity of chartists, the two coexisting fixed points also become locally unstable
via a simultaneous flip (or period doubling) bifurcation, giving rise to coexisting
cycles of period 2, 4, 8 and so on. After the typical cascade of period-doubling
bifurcations, two coexistent chaotic attractors arise. When the system converges to
one of them, the price erratically moves in it, keep remaining in the bull or in the bear
region (i.e. markets where the prices are overvalued or undervalued, respectively). In
the rightmost part of the diagram, for high values of c, the two attractors become one
(a so-called homoclinic bifurcation of x∗ occurs) and the price oscillates between
the bull and the bear regions in an almost unpredictably way, no matter the initial
condition. In Fig. 4 we have a typical timeplot obtained by using c = 4.528.

This is the most interesting scenario. In fact the dynamics represented in Fig. 4 are
hardly distinguishable from those obtained by using a more sophisticated stochastic
model. This simple deterministic model is able to qualitatively replicate some impor-
tant facts of the financial markets like bubbles and crashes and excess volatility. In
this scenario, periods in which the price gets closer to the fundamental value, alter-

Fig. 3 Bifurcation diagram.
The red diagram is obtained
by using an initial condition
x0 = 0.1 while the green one
is obtained starting from
x0 = −0.1. The black
portion of the diagram is not
influenced by the initial
condition chosen
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Fig. 4 One hundred
consecutive values of the
price when the attractor is
chaotic and covers both bull
and bear regions

nate with periods in which it moves away from it. This means that in some periods
the fundamentalists trading rule seems to be better than the one used by chartists, but
this situation never persists forever. It is (almost) impossible to identify a rule that
would permit to systematically beat the market.

The following table summarizes the main features of the benchmark model:

Parameters’ values Stability of fund. fixed point Effects of a price shock
− 2

a + f < c < f –Locally stable
–Not globally stable

–Small =⇒ reabsorbed
–Big =⇒ divergence

c > f –Locally unstable
–Attractors are periodic or chaotic, i.e.
price constantly fluctuates possibility of
realistic bull and bear dynamics

–Reabsorbed

To this benchmark model we will add in the next Section a third group of traders,
the imitators, and we will analyze the consequences of their presence.

3 The Model with Imitators

If we want to consider a more realistic asset market, we must take into consideration
that it is not only populated by traders that do not question their beliefs about the
future price’s movements. There also exist traders that change their behavioral rules.
Among them there is someone that looks at the beliefs of the other traders, trying
to learn the best strategy. This means to check who has been right between chartists
and fundamentalists, that is if it is meaningful to believe that the price will suddenly
approach the fundamental value or not. We know that a rational behavior consists
in waiting a long time and comparing a long series of daily returns, in order to be
relatively sure that the results are caused by the relative values of the trading strategies
and not by chance. This is a consequence of the so called law of great numbers that
permits to the best strategy (if there is one) to asymptotically emerge. Unfortunately,
there exists a huge amount of experimental evidence and data that people believe
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instead in the so-called law of small numbers.5 People believing in the “false” law
of small numbers, according to definition of Shefrin (2001) “attribute negative serial
correlation to an identical and independently distributed stochastic process”. In other
words, a sample, especially if small is erroneously considered highly representative
of the population. For our purposes this means that after some periods in which the
asset price has moved closer and closer to the fundamental value, imitators start
thinking that the fundamentalists’ belief is the best one and decide to behave like
them. The opposite is when the price has moved away from the fundamental value.

Besides the fact that this false law may lead to erroneous evaluations even if a
best strategy really exists, we will show that it may have heavy consequences when
a best strategy does not exists, like in the case of the chaotic motion of price showed
in the previous section.

Considering how people are influenced by the actions of the others is not new in
the literature. Banerjee (1992) and Bikhchandani et al. (1992) show that in markets
with asymmetric information where decisions are taken sequentially, it is possible to
create information cascades that sometimes lead to the herding of wrong behaviors.
Orléan (1995) removes the hypothesis of sequential decisions in a Bayesian setting.
These are all examples of rational herding, in the sense that from the point of view
of the single decision maker, following the signal given by the actions of the others
can be the right thing to do, even if it can lead to undesirable consequences at the
aggregate level. In HAMs literature of financial markets, the most important works
on imitation are probably those of Lux (1995, 1998) and Lux and Marchesi (1998,
1999) where agents are influenced by the actual price trend and also by the opinion
of the majority.

Our model is different from those predecessors in two ways. First of all, we take
into consideration an imitative behavior that is not necessarily an herding behavior.
In fact, imitators do not want to follow the crowd, or the majority, simply because
they are unable to survey the opinion of all the traders. Moreover, when we talk about
money, it is possible that it is not so relevant to belong to the majority if the majority
is going to lose money. We build a model in which there is no majority between the
fundamentalists and the chartists behavioral rules before the decision of imitators.
The behavior of imitators create a majority that in this sense is a consequence and not
a cause of the imitation.6 The second difference with respect of the existing literature
is the simplicity of the decisional mechanism adopted by imitators. As we have seen,
a huge amount of evidence exists in support of the idea that people follow simple
rule of thumbs for making decisions. We try to keep their behavioral rule as simple
as possible, obtaining the same results, from a qualitative point of view, of more
complicated models.

5See Tversky andKahneman (1971). To be precise, this false belief is a consequence of the so-called
representativeness heuristic (Tversky and Kahneman 1974) according to which people evaluate the
probability of whether A originated from process B by the degree to which they resamble each
other.
6The pivotal role of imitators in our model resembles the role of undecided voters in elections when
the other parties are not able to get majority without them.
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3.1 The Complete Model

Let us now introduce a third kind of traders to the benchmark model analyzed in
the previous section. As we have seen, we call them imitators because they, at each
time period, decide which of the other two groups to imitate. In order to take into
consideration the relative number of imitators, we also explicitly introduce three
parameters, representing the amount of traders belonging to each group: nc, n f and
ni denoting the number of chartists, fundamentalists and imitators, respectively.

The market maker rule takes now the following form:

Pt+1 = Pt + a
(
n f D

f
t + ncD

c
t + ni D

i
t

)
(10)

where Di
t denotes the imitators’ orders.

Considering that we are interesting in the role played by imitators, we can nor-
malize the values of n f and nc to 1. A value of ni = 0.5 implies that imitators are
a half with respect to chartists or fundamentalists (and a fifth of the total number of
traders), while a value of ni = 2 implies that the number of imitators is twice the
number of fundamentalists or chartists (and a half of the total number of traders),
and so on. As a consequence, imitators cannot choose looking at what the majority
is doing because the number of fundamentalists and chartists is the same. They will
create a majority with their decision. This majority can be temporary because they
could change their minds in the future.

The behavioral rules of chartists and fundamentalists are the same of the bench-
mark model, expressed in Eqs. (3) and (2), respectively. We need to specify now
the behavioral rule of imitators. We assume that they use a very simple heuristic: at
each time t they look at the current price Pt and at its previous value Pt−1. If Pt is
closer than Pt−1 to the fundamental value, than they conclude that the fundamental-
ists’ strategy has been successful and they imitate fundamentalists in time t + 1. The
opposite is true if the distance between the price and the fundamental is grown up in
the last period.7

Remembering that we have already introduced an auxiliary variable (xt ) that
measures the distance between the current price and the fundamental value, the
behavioral rule of imitators is the following:

Di
t =

{
i xt if |xt | > |xt−1|
−i xt if |xt | < |xt−1| (11)

7This kind of modeling could also represent the net effect of the decisions of subgroups of imitators
that look backward and that differ for the number of past periods they consider. The net effect of
each new data is that some groups will switch towards the belief they support.
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where the positive parameter i measures the reactivity of imitators to the market
signal.8

By combining behavioral rules (3), (2) and (11) with the market maker rule (10),
we obtain the dynamical system regulating how the asset price evolves:

xt+1 :
{
xt + a[c ∗ arctan(xt ) − ( f − ni i)xt ] if |xt | > |xt−1|
xt + a[c ∗ arctan(xt ) − ( f + ni i)xt ] if |xt | < |xt−1| (12)

that is a system of second-order difference equations. By introducing the auxiliary
variable yt = xt+1 we have the equivalent system of first-order difference equations:

T :

⎧
⎪⎨

⎪⎩

xt+1 =
{
xt + a[c ∗ arctan(xt ) − ( f − ni i)xt ] if |xt | > |yt |
xt + a[c ∗ arctan(xt ) − ( f + ni i)xt ] if |xt | < |yt |

yt+1 = xt

(13)

In Fig. 5 the grey regions (I) of the phase plane represent situations in which the
last value of the price is more distant from the fundamental value with respect to the
previous price value, so imitators will follow chartists. In the white areas (II), the
opposite is true so imitators interpret the market signal as they were fundamentalists,
so they are optimistic when price is low (and buy the asset) while they are pessimistic
when the price is high (and sell the asset).

We can look at the dynamical system (13) as the combination of two subsystems
regulating how the asset price evolves

F(I ) :
{
xt+1 = xt + a[c ∗ arctan(xt ) − ( f − ni i)xt ]
yt+1 = xt

F(I I ) :
{
xt+1 = xt + a[c ∗ arctan(xt ) − ( f + ni i)xt ]
yt+1 = xt

(14)

where system F(I ) governs the dynamics in the region (I ) of the phase plane while
system F(I I ) is active in the other subregions of the phase plane. Obviously, the
dynamics may switch from one region to the other.

In the next Section we analyze what happens to the local stability properties of
the fundamental steady state as a consequence of the introduction of imitators.

8We use in both cases a linear trading rule for imitators in order to avoid introducing a further
nonlinearity in the model. By using the inverse tangent function when imitators behave like chartists
we would obtain the same results we will show in the rest of the paper.
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Fig. 5 The regions in grey are those where imitators behave like fundamentalists. In the white
regions they interpret the market signals as chartists do

4 Imitators and Local Stability of the Fundamental Steady
State

We have seen in the benchmark model that the fundamental fixed point becomes
locally unstable via pitchfork bifurcation when chartists are more aggressive than
fundamentalists. How does the introduction of imitators affect this result?

In this case the fundamental fixed point belongs to the border that separates
Regions I and II. The stability conditions in the two regions become:

SCI : f > c + ini and SCI I : f + ini > c (15)

respectively.
As a consequence, we can distinguish among four scenarios covering all the

possible combinations of parameters:

(a) f > c + ini > c: fundamentalists aremuchmore reactive than chartists and imi-
tators are a few and/or have a low reactivity (strong fundamentalists dominance
scenario);

(b) c + ini > f > c: fundamentalists are more aggressive than chartists but if imi-
tators behave like chartists they can be predominant (weak fundamentalists dom-
inance scenario);
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Table 1 Scenarios and local
stability of the fundamental
fixed point

Region I Region II

sfds Stable Stable

wfds Unstable Stable

wcds Stable Unstable

scds Unstable Unstable

(c) f + ini > c > f : chartists dominates the market but if imitators and funda-
mentalists behave similarly they are more reactive than chartists (weak chartists
dominance scenario);

(d) c > f + ini > f : chartists are much more reactive than fundamentalists and
imitators are a few and/or low reactivity (strong chartists dominance scenario).

The local stability properties of the fundamental fixed point in each scenario are
summarized in Table 1.

4.1 The Strong Fundamentalists Dominance Scenario

The first case we consider is also the easiest to analyze. In fact, in both regions (I) and
(II) the fundamental steady state is locally stable. The stability conditions (15) are
both fulfilled. As a consequence only the initial condition can belong to the region
(I) of the phase plane because fundamentalists are more reactive than chartists and
imitators. So the price becomes closer to its fundamental value (that is the system
passes to and remains in region (II)) and imitators immediately start behaving like
fundamentalists. Only a shock that moves the price in the opposite direction with
respect to its fundamental value can make imitators change their minds and make
the system come back to region (I), but only for the length of the shock, because
the price will start again to approach the fundamental value as soon as the shock is
finished.

We must also note that there are two main differences with respect to the cor-
responding benchmark case (i.e. with ni = 0). First of all, in this case the speed of
convergence is faster that the one that wewould seewithout imitators. This is obvious
because imitators in this scenario can be considered as additional fundamentalists,
so we would obtain the same effect by increasing the value of f in the benchmark
model. The second difference lies in the size of the fundamental fixed points’ basin
of attraction. With imitators behaving as fundamentalists this basin is reduced, and
in fact we have seen in the benchmark model that the larger is the value of f the
smaller is the set of initial price values leading to the fundamental fixed point. This
means that some shocks that were reabsorbed in the benchmark model could not be
reabsorbed now.
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4.2 The Weak Fundamentalists Dominance Scenario

This case is more interesting than the previous one, because imitators can make the
difference in the dynamics of the asset price.

Let us start by considering an initial condition belonging to the subregion (II) of
the phase plane. In particular it belongs to the basin of attraction of the fundamental
fixed point. This means that the current price is closer to the fundamental value than
its previous period value. In this case imitators decide to believe, as fundamental-
ists do, that the price will converge towards its fundamental value and they behave
accordingly. The stability condition for the subregion (II) (see (15)) holds and price
moves closer to the fundamental value. In other words the system stays in the subre-
gion (II) of the phase plane, and so on for the next periods. But what would happen
as a consequence of a shock that move the asset price away from the fundamental
value? The orbit, after the shock, moves from the subregion (II) to the subregion (I)
where the stability condition SCI is violated, in fact c + ini > f . The shock makes
the imitators change their mind and they start following the chartists’ trading rule,
giving them the additional influence that permits to obtain complicated price dynam-
ics. We have seen in the benchmark model that when chartists are more reactive than
fundamentalists, periods in which the asset price goes away from the fundamental
value alternate with periods in which it moves closer to it. So, we should expect
that sooner or later imitators will behave again as fundamentalists, bringing back
stability to the system. That is true provided that when fundamentalists prevail, their
system is in the basin of attraction of the fundamental fixed point. Otherwise, the
overreaction of fundamentalists lead the price to move away from the fundamental
value and imitators to switch to the chartists’ rule. This is confirmed by the timeplot
in Fig. 6 where we introduce a (positive) additive shock to the price after which price
movements are characterized by fluctuations.

The same happens starting directly with an initial condition in the subregion (II)
of the phase plane but not belonging to the basin of attraction of the fundamental
fixed point. In a case like the one represented in Fig. 6 a paradoxical situation seems
to occur. In fact, a price value below the fundamental fixed point is followed by an
overvalued price, whose deviation from the fundamental fixed point is increased.
According to the imitators’ behavioral rule, they decide to behave like chartists, even
if the fundamentalists’ strategy has been successful. Our hypothesis is that imitators

Fig. 6 Timeplot obtained by
keeping fixed a = 3;
c = 1.1; f = 1.2; im = 0.6
and ni = 0.9. The shock is
additive and introduced at
iteration 425
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Fig. 7 Bifurcation diagram
obtained keeping fixed
a = 3; c = 1.1; f = 1.2 and
i = 0.6. The relative number
of imitators varies between 0
and 1

look at the beliefs of the other groups and not at their gains. Fundamentalists take
their decisions thinking that the price will converge to the fundamental fixed point,
so their success, in this case, is not considered a signal of the accuracy of their belief.
The overreaction of fundamentalists is more probable when the number of imitators
is not negligible. This is confirmed by the bifurcation diagram in Fig. 7.

We can see that if the number of imitators is high enough, the fundamental steady
state could not be reached and the complexity of the dynamics increases with the
number of imitators.

So imitators play a key role in this scenario and if we think at more frequent
shocks we can easily imagine how complicated the dynamics may appear.

4.3 The Weak Chartists’ Dominance Scenario

This case is specular to the previous one and share with it the importance of the
initial condition. Starting from Region II, that is from a value of the asset price
closer to its fundamental value than the former period price (or immediately after a
shock that moved the price towards its fundamental value), the system may start to
converge to the fundamental value, despite the fact that without imitators we would
see convergence to an attractor different from the fundamental steady state. The
bifurcation diagram in Fig. 8, obtained by using an initial condition in Region II can
clarify this situation.

As canbe seen, until imitators are too few to competewith chartists, they contribute
in originating dynamics that do not converge to the fundamental value. The initial
condition (or the shock) becomes even more relevant when imitators are numerous
enough to make the price change direction when they opt for imitating the funda-
mentalists’ trading rule. Stabilizing forces are now dominating with respect to the
destabilizing role played by chartists and price starts moving towards its fundamen-
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Fig. 8 Bifurcation diagram
obtained keeping fixed
a = 3; f = 1.2; c = 1.4;
i = 0.3. The share of
imitators ni varies between 0
and 1

tal value, as can be seen in the right part of Fig. 8, the one representing this third
scenario. This dominance of stabilizing forces is strong because even if a new price
shock happens, moving away the price from the fundamental value, we know that
sooner or later the price will move again towards the fundamental value and imitators
definitely behave like fundamentalists. Unless the system would not be outside the
basin of attraction of the fundamental fixed point (as we have seen in the previous
subcase).

The role of imitators is extremely important here because their role is pivotal:
when they believe that price will go close to the fundamental value, it actually does.

The left part of Fig. 8 is also representative of what would happen starting from
an initial condition in Region I. Imitators follow the trading rule of chartists and the
more they are the more complicated the price dynamics becomes. We move into this
point analyzing the last scenario.

4.4 The Strong Chartists’ Dominance Scenario

In this case, the asset price never converge to its fundamental value. Stability con-
ditions (15) are both violated. Chartists dominate the market so strongly that even a
shock that moves the price towards the fundamental value does not have long period
consequence. After the first period in which imitators follow the fundamentalists’
trading rule, the price starts again moving towards an attractor that is periodic or
chaotic. We know that in this case imitators often change their minds and alternate
behavioral rules. Let us consider the case in which, even without imitators, the attrac-
tor is chaotic and bull and bear dynamics (in the sense explained before) occur, i.e.
when chartists strongly dominate the market (as in the case represented in Fig. 4).
Under these circumstances, values of the asset price close the fundamental value
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Fig. 9 Bifurcation diagram
obtained by keeping fixed
a = 3; f = 1.2; c = 3.3;
i = 0.3. The share of
imitators varies between 0
and 1

alternate with values far away from it in an almost unpredictable way. In such a
case it can be natural to expect that by introducing imitators the price’s variance will
increase. That is fluctuations should be amplified. This is only partially confirmed
by simulations. Let us look at the bifurcation diagram represented in Fig. 9

We can see that for certain values of the relative number of imitators ni the chaotic
attractor reduces its size, sometimes even becoming periodic. This result is quite
interesting and can be seen as a possible base model for reproducing some stylized
facts of financial markets like volatility clustering. In our simple model, in fact, we
consider the model’s parameters as exogenously given. In real markets we expect
that they can vary over time. It is not strange to consider the number of imitators one
of them. If this is so, the changing number of imitators can drastically modify the
boundaries of the price movements as we have just seen. So, a general tendency for
an increase of the price variations as imitators increases can be observed but cannot
be considered a general rule. This interesting scenario deserves, in our opinion, to
be deepen investigated. We plan to do that in future research.

5 Conclusions

The discovery of deviations from the rational behavior described in the microeco-
nomics textbooks, has a long history. In the heuristics-and-biases program, Kahne-
man and his collaborators find a lot of deviations that are systematic and in some
sense predictable. Among the various strands of the theoretical economic literature
that try to incorporate such behavioral assumptions, there is one in which the mathe-
matics of dynamical systemsmeets behavioral economics. The aim of the researchers
working in this field consists in building small scale models representing markets
populated by heterogeneous and boundedly rational agents. The small scale of the
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models usually permits their analytical study that, together with the use of numeri-
cal simulations, makes possible to understand the causes of the emergence of some
phenomena. These models are usually not so sophisticated to be immediately cali-
brated. Hardly the simulated time series could quantitatively be compared with real
ones.9 The main aim of these models consists in qualitatively replicating some of the
most puzzling stylized facts. At a later stage, these models can be the base for the
building of more complicated and complete models that also quantitatively replicate
some market phenomena. One of the main results of this strand of literature is that
in order to qualitatively reproduce a lot of stylized facts, the introduction of some
well thought behavioral assumptions in a completely deterministic setting may be
enough.

The most of these models tries to explain some features of financial markets.
In this model we have analyzed the role of cognitively biased imitators in a single
asset market. Imitators trade together with fundamentalists and chartists and at each
time period they decide which of the two available trading rules is the best for the
next trading session. This decision is based on the last performance of the available
strategies. Our results permit to enlight the role of imitators in destabilizing or in
stabilizing the market. In particular, some of the scenarios we obtain seems to be
suitable for being used as a skeleton for replicating important facts of financial
markets like long memory effects and volatility clustering.

The model can be extended in several directions. Different kinds of trading strate-
gies can be added (a first attempt in this direction is Brianzoni and Campisi (2020))
and some stochastic elements can be inserted in order to replicate more quantitative
features of financial markets and to better understand the role of cognitive biases.
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Evolutionary Tax Evasion, Prospect
Theory and Heterogeneous Taxpayers

Domenico De Giovanni, Fabio Lamantia and Mario Pezzino

Abstract This work studies the dynamics of compliance and optimal auditing in a
population of boundedly rational agents who decide whether to engage in tax evasion
depending on an evolutionary adaptation process. If they decide to evade taxes, tax-
payers can choose different ways to engage in tax evasion and face different auditing
probabilities. Moreover, taxpayers make decisions according to the (realistic) prin-
ciples of Prospect Theory. The analysis studies the intertemporal optimal auditing
of a tax authority that targets tax revenues maximization and strategically selects
audit probabilities to manage the trade-off created by controlling different modes of
evasion with a resource constraint.

Keywords Tax evasion · Prospect theory · Optimal control · Auditing ·
Controlled evolutionary dynamics

JEL Codes: D8 · C61 · C73 · H26

1 Introduction

The way economic literature traditionally has defined tax evasion as a form of deci-
sion under risk1 has faced criticism by those studies that have not found sufficient
empirical nor experimental support to the key results of the theory.2

1See for example Allingham and Sandmo (1972), Yitzhaki (1974), Slemrod and Yitzhaki (2002),
Slemrod and Weber (2012).
2 See Alm et al. (1992), Alm (1999), Torgler (2002), Frey and Feld (2002), Alm (2018).
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Recently a growing body of economic literature has reconciled the results of
the theoretical models and the empirical evidence introducing aspects of bounded
rationality and social interactions in the analysis.3 It seems increasingly apparent
in particular that individuals may tend to overestimate detection probabilities4 and
their behavior may be best described by the type of value functions considered in
prospect theory (PT) rather than traditional expected utility theory. Examples of
works that have applied the cumulative prospect theory framework, first introduced
in Kahneman and Tversky (1979), to study the risky decision of boundedly rational
taxpayers are provided by Bernasconi and Zanardi (2004), Dhami and Al-Nowaihi
(2007), Dhami and Al-Nowaihi (2010), De Giovanni et al. (2019).5

Our work is most closely related to De Giovanni et al. (2019), cited as DLP in
further discussions. DLP extends the framework of tax evasion under PT to a dynamic
evolutionary setting.6 Evolutionary dynamics consider individuals to be boundedly
rational, i.e. assumed to be “programmed” to behave in a certain manner. Social
interactions play an important role: through social interactions agents can learn of
the payoffs obtained by other individuals and, over time, change their conduct (i.e.
evolve). Specifically, DLP describes the dynamic effects of tax reforms (e.g. changes
in tax rates or auditing approaches) and the effects of the bounded rationality of
taxpayers under PT on the long-run level of compliance. Assuming that the tax
authority and the agents have different degrees of rationality (taxpayers assumed to
be following PT principles and the tax authority to be rational),7 DLP studies the
intertemporal optimization of tax revenues by a regulator who can choose auditing
effort. The authors show that the long-run evolution of the controlled dynamic system
depends on how taxpayers react to auditing policies and, in particular, on theway they
may distort the probability of auditing. In addition, the authors show the possibility
of the existence of a discontinuity in the regulator’s optimal control created by a
threshold level of tax evasion. Auditing costs are increasing and convex in the level
of tax evasion and, for higher levels of tax evasion, there may be a threshold level of
evasion that would make the regulator suddenly decide to drastically reduce auditing
effort.

This work extends the analysis proposed in DLP to consider the possibility that
taxpayers may evade taxes in different ways and that, depending on the particu-
lar form of evasion chosen, they will face different, endogenous audit probabilities.
Assuming that individuals can evade taxes in different ways is a rather realistic exten-

3Recent contributions have studied the way social norms and forms of intrinsic motivation (often
referred as tax morale) may affect individuals’ behavior and, ultimately, compliance rates. See
Andreoni et al. (1998), Luttmer and Singhal (2014), Lamantia and Pezzino (2018), Alm (2018).
4See Chetty (2009).
5See also Trotin (2012), Piolatto and Trotin (2016), Piolatto and Rablen (2017).
6See also Antoci et al. (2014), Lamantia and Pezzino (2018) where evolutionary dynamics are
applied to the study of tax compliance. Pickhardt and Prinz (2014) provide a review of the works
that study the behavioral dynamics of tax evasion, with a particular focus on the way interaction
among individuals playing different roles (e.g. taxpayers, tax practitioners, tax authorities, etc.) can
affect the level of compliance in a population.
7See also Dhami and Al-Nowaihi (2010), Petrohilos-Andrianos and Xepapadeas (2016).
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sion. In addition, it is often the case where tax authorities worldwide tend to classify
taxpayers into different groups that may differ on the type of income and expected
incidence of tax evasion.8 Naturally, it is expected that different categories of taxpay-
ers may engage differently with tax evasion and, consequently, may require different
levels of auditing effort. Specifically, in what follows we assume that all taxpayers
in the population earn the same level of income and may be “programmed”.9 They
may be honest and fully report their income. They may otherwise decide to engage
in tax evasion. Those who decide to do so can choose whether to consider more
or less aggressive modes of evasion. Similarly, we could think of individuals with
the same level but different types of income (e.g. business and non-business) who,
consequently, can entertain different modes of evasion.

Extending the analysis of DLP to include more than one form of tax evasion
is not trivial. Tax evasion can now take multiple forms and the tax authority can
attempt to optimally control the behavior of tax payers strategically choosing two
audit probabilities. Auditing, however, comes at a cost that, realistically, we assume
to be increasing and convex in the auditing effort of the tax authority. The convexity
of the cost of auditing indirectly expresses the effects of a resource constraint that
the regulator faces and implies that the optimal control, even if the regulator has two
probabilities at her disposal, can only produce a second best solution. In other words,
the tax authority faces a trade-off between the benefit of reducing more aggressive
(and more difficult to detect) forms of tax evasion and saving resources allowing the
existence of an non-empty set of individuals who engage in less aggressive evasion.
This type of trade off could not be identified in a framework with only one mode of
evasion.

The way the tax authority deals with the trade off described above will depend on
the level and distribution of tax evasion modes that she will initially face and on the
way individuals may deform (in line with the boundedly rational behavior proposed
in PT) auditing probabilities. If individuals overestimate audit probabilities, then it
will get easier for the auditor to enforce auditing for less aggressive evaders; the
optimal audit probability for this mode of evasion displays non-monotonic patterns
due to the convexity of the auditing costs. Interesting, and in line with the results in
DLP, now that individuals may be deforming audit probabilities, we may observe
a discontinuity on the optimal auditing probability of high evaders. This happens
when a sufficiently large number of individuals engages with aggressive forms of tax
evasion; the tax authority identifies a threshold level of evasion for which enforce-
ment becomes too expensive and a drastic reduction in effort is required. The long
rung equilibria (the good, in which all individual in the population tend to act hon-

8For example, tax authorities tend to distinguish between taxpayers who are employed or self-
employed; those whose income is generated by business or non-business activities; those who have
filled a tax assessment with or without the support of a tax advisor.
9Frey (1999) shows that in a population there may be taxpayers who simply do not look for opportu-
nities to evade taxes. On similar lines, Long and Swingen (1991) (p. 130) argue that some individuals
are not naturally predisposed to evade taxes. This is in line with experimental evidence that shows
that some individuals never choose to evade taxes (see Feld and Tyran 2002), even in the absence
of enforcement.
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estly, and the bad, in which tax evasion is the prevailing behavior in the population)
continue to exist, but the probability deformation increases the basin of attraction of
the good equilibrium. Perhaps not surprisingly, for a sufficiently strong probability
deformation, auditing becomes easier enough and both optimal auditing probabilities
become increasing functions of their respective levels of evasion modes and, in terms
of dynamic evolution of the population of taxpayers, the population will always end
up with all taxpayer being honest.

The work is organized as follows. Section2 describes agents’ preferences, the
evolutionary setup and intertemporal optimization problem of tax auditing. Section3
performs a series of numerical experiments highlighting the main insights of our
analysis. Section4 concludes the paper with further research directions.

2 Model

Wemodel the evolution of tax evasion bymeans of a continuous-time infinite-horizon
population game. The population consists of boundely rational taxpayers (agents),
all with the same incomeW and subject to tax rate r . Tomodel situations in which tax
evasion may take different forms, we make available to each taxpayer at each time
three strategies. First, taxpayers might adopt strategy H meaning that they decide to
pay the full amount of taxes. We name as honest the taxpayers adopting strategy H .
Second, taxpayers might choose strategyM . This strategy refers to situation in which
taxpayers decide to evade taxes, but the tax evasion is mild, in the sense that agents
adopting strategy M choose a profile corresponding to a low amount of evasion.
More formally, adopting strategy M implies declaring to the tax authority an income
DM < W , so that the amount of tax evasion is EM = W − DM . We refer to agents
adopting strategyM asmild evaders. Third, taxpayersmight choose strategy A,which
refers to situation inwhich the evasion is aggressive.More formally, adopting strategy
A entails declaring to the tax authority a low income, DA < DM , which implies a high
evasion level EA = W − DA > EM . We call aggressive evaders taxpayers choosing
strategy A.

With probability ph , h = M, A, an evader is audited and sanctioned. Sanction is
proportional to evasion: if detected, the sanctioned agent pays λr Eh , where λ ≥ 1
measures the additional fine if found guilty. Summing up, if the evader playing
strategy h (h = M, A) is not found guilty, then his net income is:

Y N
h = W (1 − r) + r Eh ;

On the other hand, if audited, then agent’s net income is:

YG
h = W (1 − r) − λr Eh .
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Honest taxpayers’ net income is:

Y H = W (1 − r) .

2.1 Agents Preferences

In this section we introduce the framework of Prospect Theory (PT) to our analysis.
We standardize agents’ net income using the after-tax income (1 − r)W as reference
point. This implies that agents are interested in the utility coming from their net
income relative to the reference points. Using this change of variable, honest agents
have a relative income equal to zero while Eh evaders gets a relative income equal to
XG
h = YG

h − (1 − r)W = −λr Eh if detected and to XN
h = Y N

h − (1 − r)W = r Eh

if not detected.
Another relevant element of PT is represented by the Probability Weighting func-

tion, which models the empirical evidence that people tend to underweight “high”
probabilities and overweight “low” probabilities. The ProbabilityWeighting function
w(p) : [0, 1] → [0, 1] is increasing in the probability of being found guilty p and
satisfies the usual properties in PT. Here we employ the Prelec probability weighting
function w(p) = e−[(− log p)α] proposed in Prelec (1998).

For the value function (utility) v(x) associated to outcome x (i.e. Xq
h , q = N ,G),

here we borrow the well-known one suggested in Tversky and Kahneman (1992) (as
also done in Dhami and Al-Nowaihi 2007) and assume

v(x) =
{

xβ if x ≥ 0
−θ (−x)β if x < 0

where θ > 1 measures loss aversion and β ∈ [0, 1] is a preference parameter (notice
that Tversky and Kahneman (1992) suggest to use β = 0.88 and θ = 2.25).

Summing up, for h = M, A, the expected value of evaders playing h is

V h = w(ph)v(−λr Eh ) + w(1 − ph)v (r Eh) ,

while honest taxpayers have utility V H = w(0)v(0) = 0.

2.2 Evolutionary Setup

This section describes a dynamicmodel of tax evasion based on the evolution of agent
types in a population. The population’s state at time t is represented by the couple
x(t) = (xM(t), xA(t)), where (xM(t), xA(t)) denotes the share of mild (aggressive)
evaders at time t . The remaining fraction of agents in the population, 1 − xM(t) −
xA(t), is the share of honest taxpayers. We also assume that the auditing probabilities
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depend on the current state of the system, that is ph(t) = ph (xM(t), xA(t)), h =
M, A. This gives the regulator the ability to adjust the auditing probabilities according
to the current state of the population.

According to the static model described above, the expected value of evading Eh ,
h = M, A, at time t is given by:

V h (t) := V h (xM(t), xA(t)) = (1)

w (ph(t)) v(−λr Eh) + w (1 − ph(t)) v (r Eh) .

In continuous time, replicator dynamics for the shares (xM(t), xA(t)) is expressed by
the following system of ordinary differential equations (ODE), see Weibull (1997)
for details:

{
ẋM(t) = xM(t)

(
V M(t) (1 − xM(t)) − xA(t)V

A(t)
)

ẋ A(t) = xA(t)
(
V A(t) (1 − xA(t)) − xM(t)V M(t)

) . (2)

According to dynamical system (2), the proportion of agents playing a given
strategy increases whenever its fitness is above the average fitness in the population
(recall that the utility of honest taxpayers is set to zero).

2.3 Optimal Enforcement

Next, we turn on the enforcement side of the model, as done in Petrohilos-Andrianos
and Xepapadeas (2016). We assume that the regulator selects the effort put into
auditing each type of evaders in order to control the dynamical system (2), with the
long-term target of maximizing the present value of the future stream (net auditing
costs) of cash-flows deriving from tax income.Without loss of generality, we assume
that there is a one-to-one correspondence between regulator effort and auditing prob-
ability for each type of evaders. While innocuous, this assumption allows us to get
rid of the efforts and treat the auditing probabilities, pM(t) and pA(t), as the control
variables of the optimization problem. Also, we assume that the cost selecting an
auditing probability ph is quadratic, that is ch(ph) = γh p2h , h = M, A. Parameters
γh > 0, h = M, A describe the inefficiency in detecting tax evasion. Herewe are also
assuming γA > γM : more aggressive forms of tax evasion imply also more sophis-
ticated strategies employed by dishonest agents and, consequently, higher auditing
costs for the regulator.

The tax authority collects tax and fines as indicated in Table1, and is subject to
auditing cost. The net tax revenue, is defined as NT R(t) = T RA(t) + T RN (t) −
c(t), where:
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Table 1 Summary of taxes and fines collected by the regulator

Compliance Mild evasion Aggressive evasion

Audit rW r(W − EM ) + λr EM r(W − EA) + λr EA

No audit rW r(W − EM ) r(W − EA)

1. T RA(t) is the expected time-t gross tax revenues coming from honest and audited
agents, that is:

T RA(t) = (1 − xM(t) − xA(t))rW+∑
h=M,A

ph(t)xh(t) (λr Eh + r (W − Eh)) ;

2. T RN (t) is the expected time-t gross revenue coming from non-audited agents,
that is:

T RN (t) = r
∑

h=M,A

(1 − ph(t))xh(t)(W − Eh);

3. c(t) is the time-t cost of auditing, that is:

c(t) =
∑

h=M,A

ch (ph(t)) .

We are assuming that the regulator is a rational forward looking agent. Thus,
the regulator’s dynamic problem includes selection of the feedback rules, ph(t) =
ph(xM(t), xA(t)) ∈ [0, 1], h = M, A, such that the following objective function

+∞∫
0

e−δt NT R(t)dt (3)

ismaximized subject to the replicator state equations (2) and the additional constraints
xh(t) ∈ [0, 1].

3 Dynamic Analysis

In this section, we present the main insights of our analysis when the forward looking
auditor implements the auditing policy that maximizes the discounted sum of future
Net Tax Revenues (3). Here, our interest concerns two specific issues, namely: 1. the
optimal auditing policy and its long-run implications on the shares of both types of
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Table 2 Parameter values used in the analysis

W EM EA λ γM γA β θ δ

5 1 2.5 1.5 3 4 0.88 2.55 0.05

evaders; 2. the impact of key parameters on the optimal solution. In what follows,
we use the parametrization displayed in Table2.

Since the optimal reinforcement model does not admit a closed-form solution,
we rely on numerical approximation to compute value functions, optimal auditing
rules and optimal vector field. We have performed a series of experiments with dif-
ferent parametric setup, all highlighting the tax rate and the parameter of probability
deformation as the main drivers of the optimal auditor behavior and, consequently,
the long-run evolution of the system. In what follows, we present the main insights
of our analysis, again making use of the parametric setup in Table2.

A common feature shared by the optimal auditing policies is that, for a given type
of evaders, they appears to depend only on the percentage of evaders of the same
type. In different terms, the current fraction of evaders of type M (A) affects only
the auditing probability for type M (A). This seems reasonable as the contribution
of type M to the NTR, both in terms of auditor’s expected reward and auditing costs,
is independent on the fraction of evaders of type A and vice-versa. Also, observe
that selecting the optimal auditing rule is a matter of balance between two forces.
First, the auditor has an incentive to choose a high auditing probability to discourage
evasion. Second, as evasion increases, convex auditing costs make the auditor willing
to choose a low auditing probability, which force dominates the other depending on
the current state of the system and the situation at hand. To elaborate, we discuss
the results by highlighting the effect of probability deformation, which is the factor
affecting the long-run dynamics of the system.

We solve the optimal regulation problem by means of a semi-Lagrangian method
that discretizes the corresponding Hamilton-Jacobi-Bellman equation.We first apply
theEuler scheme to replace the continuous-timeproblemwith a discrete-timeversion.
We then apply the finite element method to the infinite-dimensional discrete-time
problem. A detailed explanation of the method is far beyond the scope of this paper.
We refer to Grüne and Semmler (2004), De Giovanni and Lamantia (2018) for more
details.

Figure1 shows the solution of the dynamic optimal auditing problem when tax-
payers do not deform probabilities.10

The optimal auditing policies for evaders of type M and A display quite different
qualitative (and quantitative) patterns. The left panel displays a non-monotonic pat-
tern. The optimal auditing probability the auditor uses formild evaders, pM , is strictly

10Here we adopt the usual representation for a three-strategy game (a game with one population
game and three pure strategies): instead of depicting the shares of the population employing the
different pure strategies in the simplex ofR3, these shares are shown in a two-dimensional equilateral
triangle where the vertices correspond to population distributions where all agents employ the same
pure strategy and the sides to population distributions where only two pure strategies are adopted.
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(a) pM (xM , xA) (b) pA(xM , xA)

(c) Optimal vector field

Fig. 1 Solution of the optimal auditing problemwith no probability deformation. Panel a: Optimal
auditing probability rule for mild evaders; Panel b: Optimal auditing probability rule for aggressive
evaders. Panel c: System dynamics. The tax rate is set to r = 0.25 and the remaining parameter
values are those shown in Table 2

positive even when low evaders are absent (that is, xM = 0). Here, the far-sighted
auditor is caring not only for the current profit, but also for the future loss of profits
due to possible increase in the fraction of low evaders. The positive optimal probabil-
ity despite the current absence of mild evaders then reflects the auditor’s willingness
to keep mild evaders’ prospect at a low level, so as to discourage future incentives
to become mild evader. As the share of mild evaders increases, we observe a natural
increase in the auditing probability, reflecting the auditor’s urgency to reduce both
the loss of current profits and mild evaders’ prospect at the same time. However, the
incentive to increase the auditing probability as xM increases is persistent only as far
as the share of mild evaders is sufficiently low. After reaching a certain level, convex
auditing costs make economically convenient for the auditor to decrease the auditing
probability. On the other hand, the auditing probability for aggressive evaders turns
out to be always increasing with xA. In fact, with aggressive evaders the auditor’s
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(a) pM (xM , xA) (b) pA(xM , xA)

(c) Optimal vector field

Fig. 2 Solution of the optimal auditing problem with a probability deformation level equal to
α = 0.5. Panel a: Optimal auditing probability rule for mild evaders; Panel b: Optimal auditing
probability rule for aggressive evaders. Panel c: System dynamics. The tax rate is set to r = 0.25
and the remaining parameter values are those shown in Table 2

willingness to keep the level of xA as low as possible always prevails. The effects
of the optimal auditing policy on the long-run evolution of the shares of evaders is
shown in the optimal vector field displayed in panel (c) of Fig. 1.

The system exhibits the coexistence of two stable long-run equilibria, eachwith its
own basin of attraction. In the first equilibrium, all tax payers will end up to be mild
evaders. In the second equilibrium, the population is characterized by a polymorphic
population with a small, positive, fraction of both type of evaders and the majority
of taxpayers that choose to be honest. The boundary of the basin of attraction of the
two final outcomes, which determines the long-run population configuration, is only
driven by the initial level ofmild evaders. Suppose the initial population configuration
lies in the region in which the optimal auditing probability pM is increasing. Then,
the system will end up to the good equilibrium where the large part of the population
behaves honestly. In this region, indeed, the auditor is able to keep the prospect of
both types of evaders low enough, so as to discourage evasion of both types. In
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(a) pM (xM , xA) (b) pA(xM , xA)

(c) Optimal vector field

Fig. 3 Solution of the optimal auditing problem with a probability deformation level equal to
α = 0.25. Panel a: Optimal auditing probability rule for mild evaders; Panel b: Optimal auditing
probability rule for aggressive evaders. Panel c: System dynamics. The tax rate is set to r = 0.25
and the remaining parameter values are those shown in Table 2

the complementary region, the increasing auditor’s incentive to rise the prospect of
low evaders in order to balance the increasingly auditing cost, makes the system
converge to the bad configuration where all taxpayers are mild evaders. At this
point it is interesting to observe a peculiar difference between the one-state model
proposed in DLP and the two-state model of the present work. In DLP, the absence
of probability deformation always leads to the bad scenario in which all taxpayers
end up being evaders. Here, instead, we observe long-run population heterogeneity
even without probability deformation.

Continuing the discussion, Fig. 2 shows the optimal auditing rule when a strong
probability deformation is introduced. The probability deformation makes easier
for the auditor to enforce auditing for mild evaders. The optimal auditing rule again
displays a non-monotonic patterns. However, it reaches its maximum level at a higher
share of aggressive evaders. On the other hand, we observe a discontinuity on the
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optimal auditing probability of high evaders, at very high levels of xA. The effects
of the probability deformation in terms of the dynamic evolution of the system are
shown in panel c of Fig. 2. Again the system admits the coexistence of two different
equilibria, where the bad one consists in the monomorphic configuration where all
taxpayers are mild evaders and the good one represents a polymorphic configuration.
Compared with the previous case, we observe that the basin of attraction of the good
equilibrium in this case is larger than the case where no deformation is assumed.
However, the good equilibrium observed is characterized by a higher share of mild
evaders.

Figure3 looks at the effects of a even stronger probability deformation. Auditing
becomes easier enough to make the incentive to increase auditing dominate the cost
effect. As a result, both optimal auditing probabilities become increasing functions of
their respective target. In terms of dynamic evolution of the population of taxpayers,
the population will always end up with all taxpayer being honest.

4 Concluding Remarks

In this work we have extended the analysis proposed in DLP to allow for heteroge-
neous taxpayers. Our analysis reveals two interesting insights. First, in contrast with
the one-state model of DLP, we observe long-run heterogeneity even without the
probability deformation of prospect theory. Second, taxpayers that behave according
to prospect theory are more easily enforced, the degree of probability deformation
impacting positively. This increases the chances of observing a long-run distribution
of evaders in which all agents are mild evaders.

Given the relevance of the subject under investigation and the promising results
presented here, we believe that there is room for further exploration in two directions.
First, a calibration of taxpayers’ preferences based on real world data is an important
step in understanding the factors that drive tax evasion in different countries. Second,
an analysis of the uncontrolled dynamical system would, on both the policy and
theoretical side, sheds light on the role of tax auditor on the long run distribution of
tax evasion. We are currently working on such extensions and will present the results
in a separate paper.
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On Dynamics of a Three-Country
Kaldorian Model of Business Cycles
with Fixed Exchange Rates

Toshio Inaba and Toichiro Asada

Abstract In this paper, we consider a three-country Kaldorian nonlinear macrody-
namic model of business cycles with fixed exchange rates. The term ‘Kaldorian’
means that our model is a three-country extension of Kaldor’s nonlinear business
cycle model that is characterized by the dynamic interaction of the real income
and the real capital stock. It is supposed that three countries are connected through
international trade and international capital movement with imperfect capital mobil-
ity under fixed exchange rates. This paper is a sequel to our previous study of the
two-country Kaldorian business cycle model under fixed exchange rates. We find
by means of numerical simulations that the addition of one country to the previous
analytical framework makes the dynamic behavior of the model much more complex
compared with the two-country version.

Keywords Kaldorian model of business cycles · Three country model · Fixed
exchange rates · Chaotic dynamics

1 Introduction

Akio Matsumoto devoted his quite prolific and brilliant research career to the study
of nonlinear economic dynamics. His recent contributions contain a series of the
applications of nonlinear continuous time delay differential equations to economic
dynamics (see, for example, Matsumoto and Szidarovszky (2011, 2019), Matsumoto
et al. (2018)). However, his early works include the economic applications of the rel-
atively small dimensional (one or two dimensional) nonlinear discrete time dynamic
systems, which often produces the complex dynamics (see, for example, Matsumoto
(1994, 1996, 1997, 1999). If the dimension of the system is relatively small, analyt-
ical treatment of the system as well as the numerical simulations becomes relatively

T. Inaba
School of Education, Waseda University, Tokyo, Japan
e-mail: inaba@waseda.jp

T. Asada (B)
Faculty of Economics, Chuo University, Tokyo, Japan
e-mail: asada@tamacc.chuo-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2020
F. Szidarovszky and G. I. Bischi (eds.), Games and Dynamics in Economics,
https://doi.org/10.1007/978-981-15-3623-6_6

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3623-6_6&domain=pdf
mailto:inaba@waseda.jp
mailto:asada@tamacc.chuo-u.ac.jp
https://doi.org/10.1007/978-981-15-3623-6_6


104 T. Inaba and T. Asada

easy. But, the analytical treatment becomes almost impossible so that wemust exclu-
sively resort to the numerical simulations if the dimension of the nonlinear discrete
time dynamic system is large.

Our present study is somewhat related to Matsumoto’s early works, that is, the
study of a nonlinear discrete time dynamic economic model. In this paper, however,
we study an unusually large dimensional nonlinear economic system, that is, three
country Kaldorian business cycle model with fixed exchange rates, which is reduced
to a discrete time eight dimensional nonlinear dynamic system. Analytical treatment
of such a complicated system is quite difficult, so that we are obliged to derive some
tentative conclusions through some numerical simulations. Analytical treatment of
the model in this paper is restricted to only a special case that is reduced to a series
of the unconnected two dimensional systems. Next, we shall describe the motivation
of our research.

Recent development of the dynamic approaches to international and regional
economics is quite remarkable.1 In line with this development, open economy exten-
sion of Kaldor’s (1940) nonlinear business cycle model, which is based on Keynes’
(1936) theory of effective demand with underemployment, was studied by several
authors. For example, Asada (1995), Asada et al. (2000a, b, 2012), and Medved’ová
(2011) tried to extend the Kaldorian business cycle theory to the models of small
open economy under fixed and flexible exchange rates. On the other hand, Asada
(2004), Asada et al. (2001, 2010, 2011) and Maličky and Zimka (2010, 2012) stud-
ied two-country or two-regional model of Kaldorian business cycles under fixed and
flexible exchange rates. Incidentally, original Kaldorian business cycle model con-
sists of a two-dimensional system of nonlinear dynamic equations that can interpret
the dynamic interaction of real national income and real capital stock in a closed
economy with underemployment.2 In this paper, we try to extend Kaldorian business
cycle theory to three-country model under fixed exchange rates.

It is worth noting that Lorenz (1987, 1993) already studied such a three country
Kaldorianmodel under fixed exchange rates.But, in themodel inLorenz (1987, 1993)
only the international trade is introduced and the international capital movement is
neglected. In the three-countryKaldorianmodel in this paper, the international capital
movement as well as international trade is explicitly introduced. We suppose that the
money capital rather than real capital moves between countries according to the
differences of nominal interest rates of the countries with imperfect capital mobility,
whichmeans that the degree of capitalmobility (β) is positive andfinite. In ourmodel,
the total money stock as a whole is fixed by the trans-national central bank such as
European Central Bank under currency integration that is a kind of fixed exchange
rate system, and the money moves between countries through international trade and
international capital movement. Therefore, our three-country Kaldorianmodel under
fixed exchange rates can be applicable to the theoretical analysis of the economic
system under currency integration such as European Union.

1See, for example, Asada et al. (2003), Krugman (1996), Nijkamp and Reggiani (1992), Puu (1997)
and Rosser (1991).
2See Dohtani et al. (1996) as well as Kaldor’s (1940) original paper.
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Our model consists of an eight-dimensional system of nonlinear difference equa-
tions. By means of numerical simulations, we find that the addition of one country
makes the dynamic behavior of the model much more complex compared with the
two-country version. In Sect. 2, we present the full system of equations in our model,
and in Sect. 3 we study the dynamic properties of the model mathematically under
some special conditions. In Sect. 4 we report some results of our numerical simu-
lations of the general case, which contain several dynamic properties of the system
such as stability, instability, cyclical and chaotic movements of the main variables.
Section 5 is devoted to the concluding remarks.

2 Formulation of the Model

Our three-country model with fixed exchange rates consists of the following system
of equations, where t denotes the time period and the subscript i(i = 1, 2, 3) is the
index number of a country. The exchange rates of the currencies of countries 2 and
3 that are measured in terms of the currency of country 1 (E2, E3) are fixed at the
levels E2 = E3 = 1 without loss of generality.

Disequilibrium adjustment process of the goods market in country i is

Yi (t + 1) − Yi (t) = αi [Ci (t) + Ii (t) + Gi + Ji (t) − Yi (t)];αi > 0. (1)

Capital accumulation equation in country i is

Ki (t + 1) − Ki (t) = Ii (t). (2)

Consumption function in country i is

Ci (t) = ci {Yi (t) − Ti (t)} + C0i ; 0 < ci < 1,C0i � 0. (3)

Investment function in country i is

Ii (t) = Ii (Yi (t), Ki (t), ri (t)); ∂ Ii
∂Yi

> 0,
∂ Ii
∂Ki

< 0,
∂ Ii
∂ri

< 0. (4)

Income tax function in country i is

Ti (t) = τi Yi (t) − T0i ; 0 < τi < 1, T0i � 0. (5)

Equilibrium condition of the money market in country i is

Mi

pi
= Li (Yi (t), ri (t)); ∂Li

∂Yi
> 0,

∂Li

∂ri
< 0. (6)
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Net export (current account) functions in three countries are

J1(t) = δH1(Y1(t),Y2(t),Y3(t)); ∂H1

∂Y1
< 0,

∂H1

∂Y2
> 0,

∂H1

∂Y3
> 0, (7)

J2(t) = δH2(Y1(t),Y2(t),Y3(t)); ∂H2

∂Y1
> 0,

∂H2

∂Y2
< 0,

∂H2

∂Y3
> 0, (8)

J3(t) = −J1(t) − J2(t) ≡ δH3(Y1(t),Y2(t),Y3(t)); ∂H3

∂Y1
= −∂H1

∂Y1
− ∂H2

∂Y1
,

∂H3

∂Y2
= −∂H1

∂Y2
− ∂H2

∂Y2
,
∂H3

∂Y3
= −∂H1

∂Y3
− ∂H2

∂Y3
< 0, 0� δ � 1. (9)

Capital account functions in three countries are

Q1(t) = β{r1(t) − r2(t)} + β{r1(t) − r3(t)} ≡ β{2r1(t) − r2(t) − r3(t)}, (10)

Q2(t) = β{r2(t) − r1(t)} + β{r2(t) − r3(t)} ≡ β{−r1(t) + 2r2(t) − r3(t)}, (11)

Q3(t) = −Q1(t) − Q2(t) ≡ β{−r1(t) − r2(t) + 2r3(t)};β � 0. (12)

The definition of total balance of payments in country i is

Ai (t) = Ji (t) + Qi (t). (13)

Specification of the monetary policy of the trans-national central bank is

M1(t) + M2(t) + M3(t) = M > 0, Mi (t) > 0. (14)

Equations that describe the international movement of money stock between three
countries are

M1(t + 1) − M1(t) = A1(t), (15)

M2(t + 1) − M2(t) = A2(t), (16)

M3(t + 1) − M3(t) = −A1(t) − A2(t) = A3(t). (17)

The meanings of the symbols are as follows. Yi = real net national income. Ci =
real consumption expenditure. Ii = real net private expenditure on physical capital.
Gi = real government expenditure (fixed). Ji = real net export (J1 + J2 + J3 =
0). Ki = real physical capital stock. Ti = real income tax. ri = nominal rate of
interest. Mi = nominal money stock. pi = price level. Qi = real capital account
(Q1 + Q2 + Q3 = 0). Ai = real total balance of payments (A1 + A2 + A3 = 0).
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Furthermore, we have the following three kinds of important parameters. αi =
adjustment speed in the goods market in a country i. δ = degree of international
trade. β = degree of capital mobility.

Equation (1) describes the Keynesian/Kaldorian quantity adjustment process of
the disequilibrium in the goods market in country i, which says that the real output
changes according as the excess demand in the goods market is positive or negative.3

Equation (2) is the capital accumulation equation in country i, which says that the
net investment contributes to the changes of the physical capital stock. Equation (3)
is the standard Keynesian consumption function in country i, which says that the real
consumption is an increasing function of the real disposable income. Equation (4) is
the standard Kaldorian/Keynesian investment function in country i, which says that
the firms’ real net expenditure on the investment goods is an increasing function of
real national income, a decreasing function of the real capital stock, and a decreasing
function of the nominal interest rate.4 Equation (5) is a standard income tax function,
and the right hand side of Eq. (6) is a standard Keynesian money demand function.
Equations (7), (8) and (9) are the standard Keynesian net export functions of three
countries. It is worth noting that by definition, we always have J1(t)+ J2(t)+ J3(t) =
0. Equations (10), (11) and (12) are the standard capital account equations of three
countries under imperfect capital movement. In this model, the ‘capital movement’
does not mean the movement of the physical capital stocks Ki between countries
but it is supposed that only money capitals (bonds) move between countries. We
also have Q1(t) + Q2(t) + Q3(t) = 0 by definition. Equation (13) is nothing but
the definition of the total balance of payments in country i. Needless to say, we
always have A1(t) + A2(t) + A3(t) = 0. Equation (14) is a specification of the
monetary policy, which means that the total money stock as a whole is fixed by the
trans-national central bank of the currency union such as European Central Bank.
Equations (15), (16) and (17) mean that the money stock of a country i changes
endogenously according as the total balance of payments of this country is positive
or negative. Incidentally, by adding Eqs. (15), (16) and (17) we have

3∑

i=1

Mi (t + 1) −
3∑

i=1

Mi (t) =
3∑

i=1

Ai (t) = 0, (18)

which implies Eq. (14).
For simplicity, we assume that price levels of three countries are fixed at the level

such that p1 = p2 = p3 = 1.
By solving Eq. (6) with respect to ri (t), we obtain

ri (t) = ri (Yi (t), Mi (t)); ∂ri
∂Yi

> 0,
∂ri
∂Mi

< 0. (19)

3See Kaldor (1940) and Keynes (1936).
4See also Kaldor (1940) and Keynes (1936).
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Then, we can reduce the above system to the following eight dimensional system
of difference equations.

Y1(t + 1) = Y1(t) + α1[c1(1 − τ1)Y1(t) + C01 + c1T01 + G1

+ I1(Y1(t), K1(t), r1(Y1(t), M1(t))) + δH1(Y1(t), Y2(t), Y3(t)) − Y1(t)]
≡ F1(Y1(t), K1(t), Y2(t), Y3(t), M1(t);α1, δ), (20a)

K1(t + 1) = K1(t) + I1(Y1(t), K1(t), r1(Y1(t), M1(t)))

≡ F2(Y1(t), K1(t), M1(t)), (20b)

Y2(t + 1) = Y2(t) + α2[c2(1 − τ2)Y2(t) + C02 + c2T02 + G2

+ I2(Y2(t), K2(t), r2(Y2(t), M2(t))) + δH2(Y1(t), Y2(t), Y3(t)) − Y2(t)]
≡ F3(Y1(t), Y2(t), K2(t), Y3(t), M2(t);α2, δ), (20c)

K2(t + 1) = K2(t) + I2(Y2(t), K2(t), r2(Y2(t), M2(t)))

≡ F4(Y2(t), K2(t), M2(t)), (20d)

Y3(t + 1) = Y1(t) + α3[c3(1 − τ3)Y3(t) + C03 + c3T03 + G3

+ I3(Y3(t), K3(t), r3(Y3(t), M̄ − M1(t) − M2(t)))

+ δH3(Y1(t),Y2(t),Y3(t)) − Y3(t)]
≡ F5(Y1(t),Y2(t),Y3(t), K3(t), M1(t), M2(t);α3, δ), (20e)

K3(t + 1) = K3(t) + I3(Y3(t), K3(t), r3(Y3(t), M̄ − M1(t) − M2(t)))

≡ F6(Y3(t), K3(t), M1(t), M2(t)), (20f)

M1(t + 1) = M1(t) + δH1(Y1(t),Y2(t),Y3(t))

+ β{2r1(Y1(t), M1(t)) − r2(Y2(t), M2(t)) − r3(Y3(t), M̄ − M1(t) − M2(t))}
≡ F7(Y1(t),Y2(t),Y3(t), M1(t), M2(t); δ, β), (20g)

M2(t + 1) = M2(t) + δH2(Y1(t), Y2(t), Y3(t))

+ β{−r1(Y1(t), M1(t)) + 2r2(Y2(t), M2(t)) − r3(Y3(t), M̄ − M1(t) − M2(t))}
≡ F8(Y1(t), Y2(t), Y3(t), M1(t), M2(t); δ, β). (20h)

In this model, we have three kinds of important parameters, αi (i = 1, 2, 3), δ and
β. The larger αi, more quick is the adjustment in the goods market in response to
the excess demand in the goods market in country i. The larger δ, more active is the
international trade between three countries. The larger β, higher is the international
mobility of money capital between three countries. It will be interesting to study how
the changes of these parameter values affect the dynamic properties of the model.
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3 Mathematical Analysis of a Special Case

In the special case of δ = β = 0, a system of Eqs. (20a–20h) is reduced to the
following system of equations (i = 1, 2, 3).

Yi (t + 1) = Yi (t) + αi [ci (1 − τi )Yi (t) + C0i + ci T0i + Gi

+ Ii (Yi (t), Ki (t), ri (Yi (t), M̄i )) − Yi (t)] ≡ Fi
1(Yi (t), Ki (t); M̄i , αi ),

(21a)

Ki (t + 1) = Ki (t) + Ii (Yi (t), Ki (t), ri (Yi (t), Mi )) ≡ Fi
2(Yi (t), Ki (t); Mi ),

(21b)

Mi (t + 1) = Mi (t) = Mi . (21c)

In case of δ = β = 0, there is no international trade and no international capital
movement between countries. In other words, three countries are completely isolated
economically. In mathematical term, this is a decomposable system, in which there
are three isolated systems of two dimensional nonlinear difference equations.

The equilibrium values (Y ∗
i , K ∗

i ) of Eqs. (21a–21c) such that Yi (t +1) = Yi (t) =
Y ∗
i , Ki (t + 1) = Ki (t) = K ∗

i can be expressed as follows.

Y ∗
i = 1

1 − ci (1 − τi )
(C0i + ci T0i + Gi ) > 0, (22a)

Ii (Y
∗
i , K ∗

i , ri (Y
∗
i , Mi )) = 0. (22b)

We can see that the equilibrium value K ∗
i is uniquely determined because of the

assumption ∂ Ii
∂Ki

< 0. In this section, we assume that K ∗
i > 0.

The Jacobian matrix of the dynamic system (21a–21c) at the equilibrium point
can be written as

Ji =
[
Fi
11 Fi

12

Fi
21 Fi

22

]
(23)

where Fi
11 = 1 + αi

⎡

⎢⎣I iYi
(+)

+ I iri
(−)

r iYi
(+)

−

⎧
⎪⎨

⎪⎩
1 − ci (1 − τi )︸ ︷︷ ︸

(+)

⎫
⎪⎬

⎪⎭

⎤

⎥⎦, Fi
12 = αi I iKi

(−)

< 0, Fi
21 =

I iYi
(+)

+ I iri
(−)

r iYi
(+)

, Fi
22 = 1+ I iKi

(−)

, I iYi = ∂ Ii/∂Yi > 0, I iri = ∂ Ii/∂ri < 0, r iYi = ∂ri/∂Yi > 0,

I iKi
= ∂ Ii/∂Ki < 0, and all partial derivatives are evaluated at the equilibrium point.

Furthermore, we assume as follows.

Assumption 1 Ai ≡ I iYi
(+)

+ I iri
(−)

r iYi
(+)

−{1 − ci (1 − τi )}︸ ︷︷ ︸
(+)

> 0.
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Assumption 2 − I iKi
(−)

< 1.

Assumption 1 means that the sensitivity of investment activity with respect to the
changes of the national income of country i(I iYi ) is sufficiently large at the equilib-
rium point, which is the standard hypothesis of Kaldorian business cycle model.5

Assumption 2 means that the sensitivity of investment activity with respect to the
changes of the capital stock in country i

(∣∣I iKi

∣∣) is not extremely large.
In this case, the characteristic equation of the dynamic system (21a–21c) at the

equilibrium point becomes as follows:

�i (λ) ≡ |λI − Ji | =
∣∣∣∣
λ − Fi

11 −Fi
12

−Fi
21 λ − Fi

22

∣∣∣∣ = λ2 + b1iλ + b2i = 0 (24)

where

b1i = −traceJi = −Fi
11 − Fi

22 = −2 − αi Ai
(+)

− I iKi
(−)

, (25)

b2i = det Ji = Fi
11F

i
22 − Fi

12F
i
21 = 1 + I iKi

(−)

+αi

⎡

⎢⎣Ai
(+)

−{1 − ci (1 − τi )}︸ ︷︷ ︸
(+)

I iKi
(−)

⎤

⎥⎦.

(26)

The characteristic Eq. (24) has the following two roots:

λ1i (αi ) =
(

−b1i +
√
b21i − 4b2i

)
/2, λ2i (αi ) =

(
−b1i −

√
b21i − 4b2i

)
/2 (27)

Then, we have the following proposition.

Proposition 1 Let us define the value αi0 as follows:

αi0 ≡ −I iKi
(−)

/

⎡

⎢⎣Ai
(+)

−{1 − ci (1 − τi )}︸ ︷︷ ︸
(+)

I iKi
(−)

⎤

⎥⎦ > 0 (28)

Then, the characteristic roots that are expressed by Eq. (27) become a set of
conjugate complex roots with |λi (αi )| = 1 at αi = αi0,where |λi (αi )| is the modulus
of the characteristic roots. Furthermore, we have d|λi (αi )|/dαi > 0.

Proof It follows from Eq. (27) that the characteristic roots become a set of conjugate
complex roots if and only if the inequality

5See Kaldor (1940).
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b21i − 4b2i < 0 (29)

is satisfied, and in this case we have

|λi (αi )| =
√

(b1i/2)2 +
(√

(−b21i + 4b2i )/2

)2

= √
b2i . (30)

We can easily see that at αi = αi0 we have b2i = 1, and in this case we obtain

b21i − 4b2i = (−2 − αi0Ai − I iKi
)2 − 4

=

⎧
⎪⎨

⎪⎩
−2 + −{1 − ci (1 − τi )}(I iKi

)

Ai − {1 − ci (1 − τi )} I iKi
(−)

(−I iKi
)

⎫
⎪⎬

⎪⎭

2

− 4 < 0 (31)

from Eq. (28) under Assumption 2. Furthermore, we obtain

db2i/dαi = Ai > 0 (32)

under Assumption 1. This completes the proof. �

Proposition 1 implies that the cyclical fluctuations of the real national income and
the real capital stock of country i occur because of the existence of a set of complex
roots if αi is close to αi0, and the equilibrium point is locally stable (unstable) if
αi < αi0(αi > αi0) but αi is close to αi0. Furthermore, the point αi = αi0 becomes
a Hopf Bifurcation point of the two dimensional discrete time system under the
additional assumptions λn

i j (αi0) �= ±1 (n = 1, 2, 3, 4) ( j = 1, 2).6 In this case,
there exist some non-constant periodic solutions at some parameter values αi that
are sufficiently close to αi0.

In this section, we studied the mathematical analysis of the system under the spe-
cial assumption δ = β = 0, which means that there is no international trade and no
international capital movement. However, the system becomes the fully indecom-
posable eight dimensional nonlinear system of difference equations and the dynamic
behavior of the system may become much complex if we introduce the international
trade and international capital movement, that is, δ > 0 and β > 0. It is quite difficult to
analyze such a complex systemmathematically, so that we shall provide some results
of tentative numerical simulations to study the dynamic behavior of the system.

6See Gandolfo (2009) Chap. 24.
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4 Numerical Simulations

In this section, we adopt the following specifications of the functional forms of a
system of dynamic Eqs. (20a–20h), and report some results of our numerical simu-
lations. Some parameter values are based on empirical studies. For example, 0.64 in
Eq. (33a) is derived from marginal propensity 0.7 to consume.

Y1(t + 1) = Y1(t) + α1[0.64Y1(t) + 75 + f (Y1(t)) − 0.3K1(t) − 10Y1(t)
0.5 + M1(t)

+ δ{−0.2Y1(t) + 0.1Y2(t) + 0.1Y3(t)
0.5 − Y1(t)], (33a)

K1(t + 1) = K1(t) + f (Y1(t)) − 0.3K1(t) − 10Y1(t) + M1(t), (33b)

Y2(t + 1) = Y2(t) + α2[0.64Y2(t) + 75 + f (Y2(t)) − 0.3K2(t) − 10Y2(t)
0.45 + M2(t)

+ δ{0.1Y1(t) − 0.2Y2(t) + 0.1Y3(t)} − Y2(t)], (33c)

K2(t + 1) = K2(t) + f (Y2(t)) − 0.3K2(t) − 10Y2(t)
0.45 + M2(t), (33d)

Y3(t + 1) = Y3(t) + α3[0.64Y3(t) + 75 + f (Y3(t)) − 0.3K3(t) − 10Y3(t)
0.4 + M3(t)

+ δ{0.1Y1(t) + 0.1Y2(t) − 0.2Y3(t)} − Y3(t)], (33e)

K3(t + 1) = K3(t) + f (Y3(t)) − 0.3K3(t) − 10Y3(t)
0.4 + M3(t), (33f)

M1(t + 1) = M1(t) + δ{−0.2Y1(t) + 0.1Y2(t) + 0.1Y3(t)}
+ β{20Y1(t)0.5 − 2M1(t) − 10Y2(t)

0.45 + M2(t) − 10Y3(t)
0.4 + M3(t)},

(33g)

M2(t + 1) = M2(t) + δ{0.1Y1(t) − 0.2Y2(t) + 0.1Y3(t)}
+ β{−10Y1(t)

0.5 + M1(t) + 20Y2(t)
0.45 − 2M2(t) − 10Y3(t)

0.4 + M3(t)},
(33h)

M3(t) = 1200 − M1(t) − M2(t), (33i)

where f (Yi (t)) is given by

f (Yi (t)) = 80

π
Arctan

{
2.25π

20
(Yi (t) − 200)

}
+ 35 (i = 1, 2, 3), (34)

which is an example of Kaldor’s (1940) S-shaped nonlinear investment function.7

Kaldor (1940) rationalizes the hypothesis of S-shaped investment function as
follows. The sensitivity of investment expenditure with respect to national income
(∂ Ii/∂Yi )will become relatively small for both of the extremely small and extremely
large national incomes levels “because when there is a great deal of surplus capacity,

7See, for example, Asada et al. (2000a, b, 2001, 2010, 2011), and Dohtani et al. (1996).
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an increase in activity will not induce entrepreneurs to undertake additional construc-
tion: the rise of profit will not stimulate investment. … But it will also be small for
unusually high levels of activity, because rising costs of construction, increasing costs
and increasing difficulty of borrowing will dissuade entrepreneurs from expanding
still faster – at a time when they already have large commitments.” Kaldor (1940).

We consider the following five cases to study the numerical simulations of this
eight-dimensional system of nonlinear dynamic equations:

Case 1: Isolated economy (δ = β = 0) with α2 = α3 = 0.6.
Case 2: Not isolated but strictly restricted in both international trade and interna-

tional capital mobility (δ = β = 0.1) with α2 = α3 = 0.6.
Case 3: Only international trade restriction is slightly relaxed (δ = 0.3, β = 0.1)

with α2 = α3 = 0.6.
Case 4: Both of the restrictions of international trade and international capital

mobility are relaxed (δ = 1, β = 0.6) with α2 = α3 = 0.6.
Case 5: The high adjustment speed in goods market (α2 = α3 = 0.9) with δ =

1, β = 0.6.

In all cases, we adopt the parameter α1 as a bifurcation parameter to construct
bifurcation diagram of Y1.

Case 1: Isolated economy
Figures 1, 2 and 3 illustrate the case of δ = β = 0, which means that there is
no international trade and no international capital movement, in other words, three
countries are economically isolated.

Figure 1, which is a bifurcation diagram of Y1 with respect to the parameter α1,

shows that the equilibrium point is stable for sufficiently small adjustment speed

Fig. 1 Bifurcation diagram
of Y1 with δ = β = 0, α2 =
α3 = 0.6
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Fig. 2 Attractor of Y1
versus Y2 with δ = β = 0, α1
= α2 = α3 = 0.6

Fig. 3 Lyapunov exponent
(λ) with δ = β = 0, α2 = α3
= 0.6

of the goods market, but it becomes unstable and persistent fluctuations emerge for
sufficient large adjustment speed even if the countries are economically isolated.
Figure 2, which is an attractor of the variables Y1 and Y2, shows that Y1 is fixed but
Y2 fluctuates under the parameter set δ = β = 0, α1 = α2 = α3 = 0.6. Figure 3
shows that for relevant range of adjustment speed in country 1, the chaotic movement
scarcely occurs, because the Lyapunov exponent for that range is almost zero.
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Case 2: Not isolated but strictly restricted in both international trade and inter-
national capital mobility
Figures 4, 5 and 6 illustrate the case of δ = β = 0.1, which means that three coun-
tries are not economically isolated, but international trade and international capital
mobility are strictly restricted.

Comparing Figs. 1 and 4,we can see that the introduction of international trade and
international capital movement may contribute to increase the dynamic instability of

Fig. 4 Bifurcation diagram
of Y1 with δ = β = 0.1, α2 =
α3 = 0.6

Fig. 5 Time tragectory of
Y1 with δ = β = 0.1, α1 =
α2 = α3 = 0.6
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Fig. 6 Attractor of Y1
versus Y2 with δ = β = 0.1,
α1 = α2 = α3 = 0.6

the system and enhance the cyclical fluctuations of the economic variables. Figure 5
is an example of the time trajectory of periodic fluctuations. Figure 6 is a butterfly-
like attractor of the real national incomes of countries 1 and 2, which produces the
partly synchronized and partly counter-synchronized fluctuations of the real national
incomes of two countries.

Case 3: Only international trade restriction is slightly relaxed
Figures 7, 8 and 9 illustrate the case of δ = 0.3 and β = 0.1, which means that only
international trade restriction is slightly relaxed compared with the case 2.

Comparing Figs. 4 and 7, we can see that the slight relaxation of the restriction
of international trade alone with the same degree of capital mobility may contribute
to stabilize the system, in the sense that it may enlarge the stability region of the
adjustment speed parameter. Figure 8 is an example of the time trajectory of the
periodic fluctuations. Comparison of Figs. 5 and 8 suggests that the increase of the
degree of international trade (δ) may enlarge the period of the cycle. Figure 9 is an
attractor of the real national incomes of countries 1 and 2, which produces almost
synchronized movements of the real national incomes of two countries.

Case 4: Both of the restrictions of international trade and international capital
mobility are relaxed
Figures 10, 11, 12 and 13 illustrate the case of δ = 1 and β = 0.6, which means that
both of international trade and international capital mobility are relaxed.

Comparison of Figs. 7 and 10 suggests that the increases of both of the degree of
international trade and the degree of international capital mobility will not destabilize
the system if the adjustment speed of the goods market in a country is sufficiently
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Fig. 7 Bifurcation diagram
of Y1 with δ = 0.3, β = 0.1,
α2 = α3 = 0.6

Fig. 8 Time trajectory of Y1
with δ = 0.3, β = 0.1, α1 =
α2 = α3 = 0.6

small, but they will destabilize the system for sufficiently large adjustment speed
of the goods market in that country. Figure 11 is a ribbon-like attractor of the real
national incomes of countries 1 and 2, which produces the partly synchronized and
partly counter-synchronized cyclical movements of the real national incomes of two
countries. Figure 12 is a totally synchronized attractor of the real national incomes
of countries 1 and 3 under the same parameter values as those of Fig. 11. Figure 13
shows that the chaotic movements occur because of positive values of Lyapunov
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Fig. 9 Attractor of Y1
versus Y2 with δ = 0.3, β =
0.1, α1 = α2 = α3 = 0.6

Fig. 10 Bifurcation diagram
of Y1 with δ = 1, β = 0.6, α2
= α3 = 0.6

exponent under sufficiently high adjustment speed of the goods market in a country
when both of the degree of international trade and the degree of the international
capital mobility are sufficiently high.

Case 5: The high adjustment speeds in goods market
Figures 14, 15, 16 and 17 illustrate the case of δ = 1, β = 0.6, and α2 = α3 = 0.9,
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Fig. 11 Attractor of Y1
versus Y2 with δ = 1, β =
0.6, α1 = α2 = α3 = 0.6

Fig. 12 Attractor of Y1
versus Y3 with δ = 1, β =
0.6, α1 = α2 = α3 = 0.6

which means that the adjustment speeds of the goods market in countries 2 and 3
as well as the degrees of international trade and international capital mobility are
sufficiently high.

Comparison of Figs. 10 and 14 suggests that the increases of the adjustment
speed of the goods market in each country is a destabilizer of the system under high
degrees of international trade and international capitalmobility. Figures 15 and 16 are
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Fig. 13 Lyapunov exponent
(λ) with δ = 1, β = 0.6, α2 =
α3 = 0.6

Fig. 14 Bifurcation diagram
of Y1 with δ = 1, β = 0.6, α2
= α3 = 0.9

attractors of the real national incomes of three countries, inwhich case themovements
of the national incomes of all countries are totally synchronized. Figure 17 shows
that in this case the chaotic movements occur under wide range of the adjustment
speed of the goods market in country 1 because of the positive values of Lyapunov
exponent.
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Fig. 15 Attractor of Y1
versus Y2 with δ = 1, β =
0.6, α1 = α2 = α3 = 0.9

Fig. 16 Attractor of Y1
versus Y3 with δ = 1, β =
0.6, α1 = α2 = α3 = 0.9

5 Concluding Remarks

In this paper, we extended two country Kaldorian business cycle model with fixed
exchange rates that was developed by Asada et al. (2011, 2001) to a three coun-
try model, and studied its dynamics numerically. As a result, we found that some
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Fig. 17 Lyapunov exponent
(λ) with δ = 1, β = 0.6, α2 =
α3 = 0.9

interesting dynamic phenomena can occur in such an extended model. For exam-
ple, the partially synchronized and partially counter-synchronized movements of the
real national incomes of countries 1 and 2 can coexist with the totally synchronized
movements of the real national incomes of countries 1 and 3 under some set of
parameter values such as the degree of international trade, degree of international
capital mobility, and the adjustment speeds of the goods market in three countries.
We also found that chaotic movements as well as cyclical fluctuations can occur for
some set of the parameter values.

Incidentally, in our model the real government expenditures and the tax rates of
three countries are fixed, and the total money stock of the currency union that is
determined by the trans-national central bank are also fixed. It will be interesting to
studywhat kinds of fiscal andmonetary policies can stabilize the economy and reduce
the amplitude of the fluctuations in this three country model under fixed exchange
rates. It is also interesting to study the dynamic properties of three-country model
with flexible exchange rates. Investigation of these topics is an important research
program that is left for studies in future.
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Eductive Stability, Heterogeneous
Information Costs and Period-Two Cycle
Multiplicity
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Abstract Starting from a Muthian cobweb model, we here extend the profit-based
evolutionary settings in Hommes and Wagener (2010) and in Naimzada and Pireddu
(2020a) by assuming that unbiased fundamentalists and several groups of biased fun-
damentalists face information costs that are inversely proportional to their bias. Like
in thoseworks, we deal with the case inwhich themodel is globally eductively stable,
being globally stable under naive expectations. Similarly to Naimzada and Pireddu
(2020a), we find that the stability of the unique steady state, which coincides with the
fundamental, holds either for every value of the bias, like in Hommes and Wagener
(2010), or just for suitably small and large values of the bias. On the other hand,
introducing into the economy new couples of symmetrically biased groups of funda-
mentalists with a sufficiently high bias, multiple coexisting locally stable period-two
cycles emerge. While in Hommes and Wagener (2010) such phenomenon occurs
only when the steady state is locally stable, we observe the coexistence of multiple
locally stable period-two cycles also when the equilibrium is unstable, thanks to
information costs. Moreover, we show that the relative position of the newly arisen
period-two cycles may not coincide with and without information costs.
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1 Introduction

In the present contribution, following the approach adopted in Naimzada and Pireddu
(2020a), we extend the Muthian cobweb model with heterogeneous agents by
Hommes and Wagener (2010)—in which a profit-based evolutionary mechanism
operates—by assuming that producers face differentiated information costs, directly
proportional to their rationality degree. In particular, while in Naimzada and Pireddu
(2020a), in addition to unbiased fundamentalists, a unique couple of groups of sym-
metrically biased agents is considered, we here deal with the case of N ≥ 2 cou-
ples of groups of symmetrically biased optimists and pessimists, which differ in the
strength of the bias. We recall that, despite the heterogeneity in the forecasting rules,
in Hommes and Wagener (2010) all agents face a common zero information cost.

The starting point of this research strand is given by Brock and Hommes (1997),
where a Muthian cobweb type demand-supply model was presented, with producers
which choose between rational and naive expectations about prices, selecting the
strategy on the basis of the recent profits the two forecasting rules allowed to realize.
In particular, an information cost is associated to the use of the more sophisticated
forecasting rule. Dealing with the same share updating mechanism adopted in Brock
andHommes (1997) for the casewithoutmemory,Hommes andWagener (2010) con-
sider a Muthian cobweb model framework in which producers can choose among
three different forecasting rules: fundamentalists predict that prices will always be
at their fundamental value, optimists predict that the price of the good will always
be above the fundamental price, whereas pessimists predict prices below the funda-
mental price. Hommes and Wagener (2010) focus on the case in which the Muthian
model is globally eductively stable in the sense of Guesnerie (2002), that is, on the
case in which the model is stable under naive expectations, as the slopes of demand
and supply satisfy the familiar “cobweb theorem” by Ezekiel (1938). They show that
under evolutionary learning the steady state, which is always (locally or globally)
stable, may coexist with a locally stable period-two cycle, along which prices fluctu-
ate around the rational expectations price and most agents switch between optimistic
and pessimistic strategies. This means that, although the model in Hommes and
Wagener (2010) is globally eductively stable, the evolutionary system therein admits
both the steady state and the period-two cycle as possible long-run outcomes, and
thus, contrarily to the setting in Brock and Hommes (1997), it may be not globally
evolutionary stable.

Extending the model in Hommes and Wagener (2010) by assuming that pro-
ducers face heterogeneous information costs, inversely proportional to the degree
of their bias, for the case of one couple of groups of symmetrically biased agents
in Naimzada and Pireddu (2020a) we found that the equilibrium, when globally
eductively stable, may be unstable under evolutionary learning. Hence, the introduc-
tion of differentiated information costs, in addition to making the characterization of
agents’ heterogeneitymore complete than inHommes andWagener (2010), allows us
to give a cleaner negative answer to the question does eductive stability always imply
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evolutive stability? addressed in that paper, which was in turn inspired by the claim in
Guesnerie (2002) that “reasonable” adaptive learning processes are asymptotically
stable.

In more detail, the setting in Naimzada and Pireddu (2020a) was mainly analyzed
bymeasuring the influence of agents’ heterogeneity through the parameter describing
the degree of optimism and pessimism, that was also introduced, in financial markets
contexts, e.g. in Cavalli et al. (2017), in De Grauwe and Rovira Kaltwasser (2012),
in Naimzada and Pireddu (2015), and in Naimzada and Ricchiuti (2008, 2009). We
found that the unique steady state, which coincides with the fundamental, may be
stable either for all values of the bias or just for suitably small and for suitably large
values of the bias. The possible destabilization of the steady state occurs via a flip
bifurcation, at which a stable period-two cycle emerges, which persists even after the
pitchfork bifurcation throughwhich the steady state recovers its local stability. On the
other hand, since the map governing the dynamics in Naimzada and Pireddu (2020a)
is monotonically decreasing, like it happened in Hommes andWagener (2010) in the
absence of information costs, no richer dynamics could arise.

As mentioned above, in the present work we extend the setting considered in
Naimzada and Pireddu (2020a) by dealing with N ≥ 2 couples of groups of symmet-
rically biased fundamentalists, which differ in the degree of the bias, and which face
heterogeneous information costs, that are inversely proportional to their bias.We find
that, although the map governing the dynamics is decreasing even in such more gen-
eral context, multiple coexisting locally stable period-two cycles can emerge, one for
each added couple of groups, when their bias is sufficiently high. Similarly to what
happened in Hommes and Wagener (2010), such locally stable period-two cycles
emerge, together with unstable period-two cycles, through double fold bifurcations
of the second iterate of the map governing the dynamics, even if they may arise in a
different position with respect to the already existing cycles, when compared to the
case without information costs. In either case, the stability of the preexisting attrac-
tors in not affected by the emergence of the new period-two cycles. Indeed, the main
difference between our framework and that considered in Hommes and Wagener
(2010) lies in the fact that, while in that setting the emergence of new period-two
cycles can occur only when the steady state is locally stable—since in the absence
of information costs the steady state can not lose stability—dealing with at least two
couples of groups of biased fundamentalists we can observe the coexistence of mul-
tiple locally stable period-two cycles also when the equilibrium is unstable, thanks
to the introduction of information costs. Thus, we can say that eductive stability may
not imply evolutionary stability when information costs are taken into account, also
in the presence of several couples of groups of biased fundamentalists.

In addition to the just described results, along the paper we investigate the effect
produced by the main model parameters on the stability of the steady state when
several coupled groups of biased agents populate the economy. We stress that there
exists a unique equilibrium and its expression is influenced neither by the introduc-
tion of information costs, nor by the number of groups of biased agents. Namely, as
in Hommes and Wagener (2010), the steady state always coincides with the funda-
mental. Moreover, like in the simplified setting considered in Naimzada and Pireddu
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(2020a), we still find that increasing the information cost of unbiased fundamentalists
may have a destabilizing effect on the equilibrium. Indeed, the choices of fundamen-
talists lead prices towards the fundamental value and raising their information cost
makes their share decrease, due to their resulting lower fitness in terms of profits,
not only for prices far from the equilibrium, but also in a neighborhood of it, and
this may lead to a destabilization of the steady state. On the other hand, increasing
the information cost of a group of biased agents may have a stabilizing effect, when
their bias is excessively large. Namely, in this case, raising the information cost of
those optimists and pessimists makes their fitness fall, not only for prices close to the
equilibrium, but also far from it, making the share of agents opting for such strate-
gies decrease, so that prices more likely converge towards the fundamental value. As
concerns the effect produced on the system stability by the introduction of a further
couple of groups of symmetrically biased agents, comparing the stability conditions
derived in Naimzada and Pireddu (2020a) for the case of one group of optimists
and one group of pessimists with the stability conditions for the case with several
groups of biased fundamentalists, we find that further coupled groups of biased fun-
damentalists may have either a destabilizing or a stabilizing effect on the equilibrium
according to the considered parameter configuration.

The remainder of the paper is organized as follows. In Sect. 2 we recall the model
in Naimzada and Pireddu (2020a) with differentiated information costs and two types
of biased fundamentalists, together with the corresponding main findings. In Sect. 3
we present and analyze the setting with several types of biased fundamentalists. In
Sect. 4 we describe some possible extensions of the model.

2 The Model with Two Types of Biased Fundamentalists

At first we recall the discrete-time evolutionary cobweb setting in Hommes and
Wagener (2010) with two types of biased fundamentalists, to which in Naimzada
and Pireddu (2020a) we added information costs in the profits (see (2.5) below).

The economy is populated by unbiased fundamentalists, that we will just call fun-
damentalists, and by two types of biased fundamentalists, i.e., one group of optimists
and one group of pessimists, which are symmetrically biased. In the Muthian farmer
model, agents have to choose the quantity q of a certain good to produce in the next
period and are expected profit maximizers. Assuming a quadratic cost function

γ(q) = q2

2s
, (2.1)

with s > 0, the supply curve is given by

S(pe) = spe, (2.2)
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where pe is the expected price and s describes its slope. The demand function is
supposed to be linearly decreasing in the market price, i.e.,

D(p) = A − dp,

with A and d positive parameters, representing respectively the market size and the
slope of the demand function. We stress that the demand is positive for sufficiently
large values of A.

At the fundamental price p = p∗ demand equals supply, i.e.,

p∗ = A

d + s
. (2.3)

This is also the expression of the unique model steady state in Hommes andWagener
(2010) and in Naimzada and Pireddu (2020a). Like in those works, along the paper
we will deal with the case in which the Muthian model is globally eductively stable
in the sense of Guesnerie (2002), that is, with the case in which the model is stable
under naive expectations, as the slopes of demand and supply satisfy the familiar
“cobweb theorem” by Ezekiel (1938) and thus it holds that s/d < 1.

Agents have heterogeneous expectations about the price of the good they have
to produce. In particular, fundamentalists predict that prices will always be at their
fundamental value, while optimists (pessimists) predict that the price of the good
will always be above (below) the fundamental price. Hence, assuming a symmetric
disposition of the beliefs and characterizing the fundamentalists, pessimists and opti-
mists by subscripts 0, 1, 2, respectively, in symbols we have that their expectations
at time t are given by

pe
i,t = p∗ + bi , i ∈ {0, 1, 2}, with b0 = 0, b1 = −b, b2 = b, (2.4)

where b > 0 describes the bias degree of pessimists and optimists. In order to avoid
a negative expectation for pessimists, we will restrict our attention to the bias values
b ∈ (0, p∗), with p∗ as in (2.3).

Denoting by ωi,t the share of agents choosing the forecasting rule i ∈ {0, 1, 2} at
time t , the total supply is given by

∑2
i=0 ωi,t S(pe

i,t ) and thus the market equilibrium
condition reads as

A − dpt =
2∑

i=0

ωi,t S(pe
i,t ).

As concerns the share updating mechanism, Hommes andWagener (2010) deal with
the discrete choicemodel in Brock andHommes (1997) for the casewithoutmemory,
in which only the most recently realized net profits π j,t−1, j ∈ {0, 1, 2}, are taken
into account. In symbols
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ωi,t = exp(βπi,t−1)
∑2

j=0 exp(βπ j,t−1)
, i ∈ {0, 1, 2},

where β > 0 is the intensity of choice parameter.
When considering information costs, net profits π j,t , j ∈ {0, 1, 2}, at time t are

defined as
π j,t = pt S(pe

j,t ) − γ(S(pe
j,t )) − c j , (2.5)

with γ and S as in (2.1) and (2.2), respectively, andwith the nonnegative parameter c j

representing the information cost deriving by the adoption of forecasting rule j . Since
optimists and pessimists do not perfectly know the economic fundamentals andmake
symmetric errors in estimating them,wemay affirm that those agents display the same
degree of rationality, and thuswewill assume that c1 = c2 = c, for a certain c ≥ 0.On
the other hand, unbiased fundamentalists exactly know the formulations of demand
and supply functions and they are able to correctly compute the fundamental value.
Due to their higher degree of rationality with respect to optimists and pessimists, we
will suppose that the information cost c0 of fundamentalists satisfies 0 ≤ c ≤ c0, i.e.,
that the information costs are inversely proportional to the bias degree.1 We stress
that for c = c0 = 0 we are led back to the framework in Hommes and Wagener
(2010), while setting c0 = C and c = 0 we obtain the same information costs as in
Anufriev et al. (2013) where, in a DSGEmodel with heterogeneous expectations, the
equilibrium predictor for the inflation rate is available at cost C ≥ 0, while biased
agents do not face any information cost.

Introducing, like in Hommes and Wagener (2010), the variable xt = pt − p∗, we
can write the model dynamic equation in deviation from fundamental as

xt = − s

d

2∑

i=0

ωi,t bi

with

ωi,t =
exp

(
− βs

2 (xt−1 − bi )
2 − βci

)

∑2
j=0 exp

(
− βs

2 (xt−1 − b j )2 − βc j

) ,

or, more explicitly, recalling (2.4), as

xt = sb
d (ω1,t − ω2,t )

= sb
d

exp
(
− βs

2 (xt−1+b)2
)
−exp

(
− βs

2 (xt−1−b)2
)

exp
(
− βs

2 (xt−1+b)2
)
+exp

(
− βs

2 (xt−1−b)2
)
+exp

(
− βs

2 x2
t−1−β(c0−c)

) .
(2.6)

1Indeed, according to Hommes (2013), p. 150, A fundamentalists strategy, however, requires struc-
tural knowledge of the economy and information about “economic fundamentals”, and therefore
we assume positive information-gathering costs for fundamentalists. In the cobweb model the fun-
damental forecast requires structural knowledge of demand and supply curves in order to compute
the fundamental steady state price p∗.
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For the model formulation in terms of xt , the unique steady state is given by x∗ = 0
and we will report the corresponding stability condition in terms of the intensity of
choice parameter in Proposition 2.1. We can rewrite (2.6) as

xt = f (xt−1), (2.7)

where the one-dimensional map f : (−p∗,+∞) → R is defined as

f (x) = sb

d

exp
(
− βs

2 (x + b)2
)

− exp
(
− βs

2 (x − b)2
)

exp
(
− βs

2 (x + b)2
)

+ exp
(
− βs

2 (x − b)2
)

+ exp
(
− βs

2 x2 − β(c0 − c)
) . (2.8)

We stress that f is differentiable and that, recalling the expression of p∗ in (2.3), its
domain is enlarged by considering increasing values of A.Moreover, when extending
its domain to R, the map is odd, and it is possible to prove that f is decreasing also
for nonzero information costs, using the same argument based on the nonnegativity
of the variance in relation to a suitable stochastic process concerning the biases,
employed in Theorem A in Hommes and Wagener (2010) for the case c = c0 = 0.
The monotonicity of f excludes the possibility of complex dynamics in the presence
of information costs, too, and indeed in Naimzada and Pireddu (2020a) we observed
at most a period-two cycle, either coexisting with the locally stable steady state,
or being the unique attractor. In fact, differently from what obtained in Theorem
A in Hommes and Wagener (2010)—where in the absence of information costs
the fundamental steady state is always (locally or globally) stable for s/d < 1—
in Proposition 2.1 below (which coincides with Proposition 3.1 in Naimzada and
Pireddu 2020a) we find that the intensity of choice parameter β may also be either
destabilizing or it may play an ambiguous role on the equilibrium stability when
information costs are taken into account.

Along the present section, we call a scenario destabilizing (stabilizing) with
respect to a parameter when the steady state is stable (unstable) below a certain
threshold of that parameter and unstable (stable) above it. We say that a scenario
is mixed if the steady state is unstable inside an interval of intermediate parameter
values and stable for lower and higher values of the parameter. We say that a scenario
is unconditionally unstable (unconditionally stable) when the steady state is unstable
(stable) for all the parameter values.

Proposition 2.1 Equation (2.7) admits x = 0 as unique steady state. The equilib-
rium x = 0 is locally asymptotically stable for (2.6) if

β <
d

(
2 + exp

(
βb2s
2 − β(c0 − c)

))

2b2s2
.

Hence, if s/d < 1, depending on the considered parameter configuration, on increas-
ing β we may have an (i) unconditionally stable, (i i) mixed or (i i i) destabilizing
scenario.
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We stress that when setting c = c0 = 0, i.e., in the absence of information costs,
cases (i i) and (i i i) in Proposition 2.1 can not occur since, as shown in Theorem A
in Hommes and Wagener (2010) and as we explained above, without information
costs the steady state is always (locally or globally) asymptotically stable. Hence,
if we neglected information costs we would not observe, in particular, the most
classical effect produced by the intensity of choice parameter, that is, the destabilizing
scenario.

We recall that with the introduction of information costs, when the steady state
loses stability, a flip bifurcation occurs at which a globally stable period-two cycle
emerges. The period-two cycle becomes locally stable only in case the steady state
recovers its stability for increasing values of β, otherwise the period-two cycle
remains globally stable. When instead the steady state is always stable like in
Hommes and Wagener (2010), the locally stable period-two cycle emerges, together
with an unstable period-two cycle, for sufficiently large values of β through a double
fold bifurcation of the second iterate of f , and both the steady state and one of the
two period-two cycles remain locally stable when raising β.

Rewriting the stability conditions in Proposition 2.1 in terms of the bias, the
following result follows:

Corollary 2.1 The equilibrium x = 0 is locally asymptotically stable for (2.6) if

b2 <
d

(
2 + exp

(
βb2s
2 − β(c0 − c)

))

2βs2
. (2.9)

Hence, depending on the considered parameter configuration, on increasing b we
may have an unconditionally stable or mixed scenario.

Thus, according to Proposition 2.1 and Corollary 2.1, there are up to two possible
stability thresholds for x = 0 with respect to β and b, respectively, and x = 0 may be
locally stable just for sufficiently low and for sufficiently high values of the intensity
of choice parameter and of the bias. In particular, this means that the introduction of
information costs may not only produce a destabilization of the system for interme-
diate values of the bias of optimistic and pessimistic agents, but that a sufficiently
strong beliefs’ heterogeneity can be stabilizing in the presence of information costs.

We now report in Figs. 1 and 2 the scenarios compatible with Corollary 2.1 for
increasing values of b, while fixing the other parameters as follows: A = 8, s =
0.95, d = 1, β = 10, c = 0.1. In such configuration, setting in Fig. 1 c0 = 0.11,
so that the information costs for fundamentalists and for biased agents have almost
coinciding values,weobserve just the two frameworkswhich can occur in the absence
of information costs. Namely, in Fig. 1a for b = 0.4 we find that the steady state
x = 0 is globally stable and in Fig. 1c for b = 0.8 we observe, in addition to the
locally stable steady state, denoted by a black dot, a stable and an unstable period-
two cycles, denoted respectively by black and empty squares, which are born for
b ≈ 0.690 through a double fold bifurcation of the second iterate of f , that we
illustrate in Fig. 1b. On the other hand, in Fig. 2 for c0 = 0.2 we observe that the
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Fig. 1 The graph of the second iterate of f for c0 = 0.11, and b = 0.4 in a, b = 0.690 in b and
b = 0.8 in c

Fig. 2 The graph of the second iterate of f for c0 = 0.2, and b = 0.3 in a, b = 0.393 in b, b = 0.5
in c, b = 0.850 in d and b = 1 in e

steady state x = 0 is globally stable in Fig. 2a for b = 0.3, but in Fig. 2c the steady
state has become unstable for b = 0.5, and it is denoted by a small circle, being
surrounded by a globally stable period-two cycle, born for b ≈ 0.393 through a
pitchfork bifurcation of the second iterate of f , that we illustrate in Fig. 2b and which
corresponds to a flip bifurcation of f . In Fig. 2e for b = 1 the steady state x = 0 is
again locally stable thanks to a further pitchfork bifurcation of the second iterate
of f that has occurred for b ≈ 0.850 at x = 0 (see Fig. 2d). The basin of attraction
of x = 0 is separated by that of the locally stable period-two cycle by an unstable
period-two cycle, born through that pitchfork bifurcation. We stress that, for suitable
parameter configurations, x = 0 may lose and recover stability for increasing values
of β through a flip bifurcation of f and a pitchfork bifurcation of the second iterate
of f , respectively, as it happens in Fig. 2 when raising b.

Rewriting the stability conditions in Proposition 2.1 in terms of the information
costs, the following result follows:

Corollary 2.2 The equilibrium x = 0 is locally asymptotically stable for (2.6) for
every value of the information costs 0 ≤ c ≤ c0 if b ≤ √

d/(βs2). If instead b >√
d/(βs2), then x = 0 is locally asymptotically stable for (2.6) if

c0 − c < log

⎛

⎝
d exp

(
βb2s
2

)

2(b2βs2 − d)

⎞

⎠

1
β

.
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Hence, if b >
√

d/(βs2), depending on the considered parameter configuration, on
increasing c we may have an unconditionally stable, stabilizing or unconditionally
unstable scenario, while on increasing c0 we may have an unconditionally unstable
or a destabilizing scenario.

Thus, according to Corollary 2.2, increasing the information cost of biased agents
has either no effect on the equilibrium stability or it is stabilizing, when their bias is
excessively large.On the other hand,Corollary 2.2 tells us that raising the information
cost of fundamentalists is destabilizing, when the equilibrium is not always unstable
and if the bias of optimists and pessimists is large enough.

3 The Model with Several Types of Biased Fundamentalists

We now extend the set of expectation rules in (2.4) by assuming that the economy, in
addition to encompassing unbiased fundamentalists facing an information cost c0 ≥
0, is populated by N ≥ 1 couples of groups of symmetrically biased fundamentalists,
which face information costs that are inversely proportional to their bias degree.
Hence, for i ∈ {0, 1, 2, 3, . . . , 2N } and p∗ as in (2.3) we have

pe
i,t = p∗ + bi , with b0 = 0, b2n = −b2n−1 = bn > 0, for 1 ≤ n ≤ N , (3.1)

with b0 which describes the bias of fundamentalists (denoted by index 0) and bn

describing the bias of the n-th coupled groups, composed respectively by pessimists
(denoted by index 2n − 1) and by optimists (denoted by index 2n). Since for the bias
of fundamentalists we suppose that b0 = 0, by (2.4) we find pe

0,t = p∗. In regard to
the remaining biases, in order to avoid negative expectations for pessimists, we will
restrict our attention to the bias values bn < p∗, for 1 ≤ n ≤ N . Moreover, without
loss of generality we can assume that 0 = b0 < b1 < b2 < · · · < bN , so that for
the information costs it is reasonable to suppose that c0 ≥ c1 ≥ c2 ≥ · · · ≥ cN ≥ 0,
where cn , for 1 ≤ n ≤ N , describes the information cost faced by the n-th coupled
groups of pessimists and optimists, and, as explained above, c0 is the information
cost faced by unbiased fundamentalists. Since pessimists (denoted by index 2n − 1)
and optimists (denoted by index 2n) belonging to the n-th coupled groups face the
same information cost cn , it holds that c2n = c2n−1 = cn > 0 for 1 ≤ n ≤ N .

In the case N = 1, the model reduces to that studied in Naimzada and Pireddu
(2020a) and recalled in Sect. 2, when identifying b1 with b and c1 with c. For N > 1
the net profits π j,t realized at time t by unbiased fundamentalists and by the 2N
coupled groups of pessimists and optimists are described by the expression in (2.5)
for j ∈ {0, 1, 2, 3, . . . , 2N }, respectively, while the share ωi,t of agents choosing the
forecasting rule i ∈ {0, 1, 2, 3, . . . , 2N } at time t is given by

ωi,t = exp(βπi,t−1)
∑2N

j=0 exp(βπ j,t−1)
.
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Our model dynamic equation can be written in terms of xt = pt − p∗ as

xt = − s

d

2N∑

i=0

ωi,t bi

with

ωi,t =
exp

(
− βs

2 (xt−1 − bi )
2 − βci

)

∑2N
j=0 exp

(
− βs

2 (xt−1 − b j )2 − βc j

)

for i ∈ {0, 1, 2, 3, . . . , 2N }. More explicitly, by (3.1) and recalling the relation
between ci , for i ∈ {1, 2, 3, . . . , 2N }, and cn , for n ∈ {1, . . . , N }, we obtain

xt = s
d

∑N
n=1bn(ω2n−1,t − ω2n,t )

= s
(∑N

n=1bn

(
exp

(
− βs

2 (xt−1+bn)
2−βcn

)
−exp

(
− βs

2 (xt−1−bn)
2−βcn

)))

d
(
exp

(
− βs

2 x2
t−1−βc0

)
+∑N

n=1

(
exp

(
− βs

2 (xt−1+bn)2−βcn

)
+exp

(
− βs

2 (xt−1−bn)2−βcn

))) .
(3.2)

The unique steady state for the extended system is still given by x∗ = 0 (see Propo-
sition 3.1 below), and its expression is influenced neither by the introduction of
information costs, nor by the number of groups of biased agents.

In view of the next analysis, we rewrite (3.2) as

xt = fN (xt−1), (3.3)

where the one-dimensional map fN : (−p∗,+∞) → R is defined as

fN (x) =
s
(∑N

n=1 bn

(
exp

(
− βs

2 (x + bn )
2 − βcn

)
− exp

(
− βs

2 (x − bn )
2 − βcn

)))

d
(
exp

(
− βs

2 x2 − βc0
)

+ ∑N
n=1

(
exp

(
− βs

2 (x + bn )2 − βcn

)
+ exp

(
− βs

2 (x − bn )2 − βcn

))) .

(3.4)
We stress that fN reduces to f in (2.8) for N = 1, when identifying b1 and c1 with
b and c, respectively. Like for f , it holds that fN is differentiable and that its domain
is enlarged by considering increasing values of A. Moreover, when extending its
domain to R, the map is odd. Namely, replacing x with −x leaves the denominator
unchanged, while the numerator of fN changes sign, so that fN (−x) = − fN (x) for
every x ∈ R. Moreover, still employing the argument in Theorem A in Hommes and
Wagener (2010), based on the nonnegativity of the variance in relation to a suitable
stochastic process, it can be proven that fN is decreasing for every N ≥ 1, so that
no complex dynamics can occur. Indeed, at most we will observe multiple locally
stable coexisting period-two cycles, both when the steady state is locally stable and
when it is unstable (cf. Figs. 3 and 4, respectively).

In the next result we derive the expression of the market stationary equilibrium
for (3.3) and we describe the corresponding stability condition.
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Fig. 3 The graph of the second iterate of f2 for c0 = 0.3, and b2 = 1.01 in a, b2 = 1.06 in b,
b2 = 1.5 in c, b2 = 1.82 in d and b2 = 2 in e

Fig. 4 The graph of the second iterate of f2 for c0 = 0.5, and b2 = 1.5 in a, b2 = 1.83 in b and
b2 = 2 in c

Proposition 3.1 Equation (3.3) admits x = 0 as unique steady state. The equilib-
rium x = 0 is locally asymptotically stable for map fN in (3.4) if

N∑

n=1

(
βs2b2n − d

)
exp

(−βsb2n
2

− βcn

)

<
d

2
exp(−βc0) . (3.5)

Proof A straightforward check ensures that x = 0 solves the fixed-point equation
fN (x) = x , with fN as in (3.4).
In order to show that x = 0 is the unique steady state it suffices to observe that

fN is positive if and only if x is negative.
The stability condition follows by imposing that f ′

N (0) ∈ (−1, 1). By direct com-
putations, we have

f ′
N (0) =

−2βs2
∑N

n=1 b
2
n exp

(−βsb2
n

2 − βcn

)

d
(
exp(−βc0) + 2

∑N
n=1 exp

(−βsb2
n

2 − βcn

)) .

Since f ′
N (0) is always negative, the stability of x = 0 is guaranteed by f ′

N (0) > −1,
which is equivalent to (3.5). �
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Due to the several possibilities which may arise from an increase in the various
parameter values, rather than presenting the results in propositions, we prefer to
gather all the comments hereinafter, as this choice allows for a larger freedom.

Since c0 reduces the termon the right-hand side of (3.5), increasing suchparameter
may have a destabilizing effect on the equilibrium when the left-hand side of (3.5) is
positive, and this happens for instancewhen b1 >

√
d/(βs2). Indeed,when the biases

of optimists and pessimists are large enough, raising the information cost of unbiased
fundamentalists makes the share of agents opting for that strategy decrease, due to
the lower fitness in terms of profits, not only for prices far from the equilibrium, but
also in a neighborhood of the steady state. Since fundamentalists have a stabilizing
effect on the equilibrium, a reduction in their share makes more difficult for prices
to converge towards the fundamental value.

As concerns the effect of an increase in the information costs of biased funda-
mentalists on the equilibrium stability, by (3.5) it follows that it is not univocal and
depends on the intensity of the corresponding bias. Namely, if bm >

√
d/(βs2) (if

bm <
√

d/(βs2)) for some m ∈ {1, . . . , N }, then raising cm may have a stabilizing
(destabilizing) effect on the equilibrium, since the left-hand side of (3.5) decreases
(increases). Indeed, if the bias of a group of optimists or pessimists is excessively
large, increasing the corresponding information cost makes the profits of the agents
opting for that strategy decrease also when prices are far from the equilibrium and
thus their share falls. The consequent raise in the shares of agents with a lower bias
and of fundamentalists makes prices more likely converge towards the fundamental
value.

Similarly to what happens with information costs of optimists and pessimists, we
observe that increasing the biases has not a univocal effect. Namely, rewriting (3.5)
as

b21 <

d

(

2 + exp

(
βsb21
2 − β(c0 − c1)

))

+ 2
(∑N

n=2

(
d − βs2b2n

)
exp

( −βs
2 (b2n − b21) − β(cn − c1)

))

2βs2
, (3.6)

and comparing such condition with (2.9), when identifying b1 and c1 with b and c,
respectively, we conclude that the introduction of further coupled groups of biased
fundamentalists may have either a destabilizing or a stabilizing effect on the equi-
librium according to the sign of

N∑

n=2

(
d − βs2b2n

)
exp

(−βsb2n/2 − βcn
)
. (3.7)

Indeed, when the latter term is negative (positive), the values of b1 which satisfy
(3.6) are a subset (superset) of the values of b which satisfy (2.9). We stress that term
in (3.7) is negative e.g. when the biases of the newly introduced coupled groups are
excessively large.

We finally notice that drawing conclusions on the role of β on the system stability
is very difficult, due to the several occurrences of β in (3.5).



138 A. Naimzada and M. Pireddu

As explained after (3.4), since the map fN is decreasing for every N ≥ 1, no com-
plex dynamics can occur. However, in addition to the phenomena portrayed in Figs. 1
and 2, when considering further coupled groups of optimists and pessimists, multiple
coexisting locally stable period-two cycles can emerge, one for each added couple
of groups. In particular, in Fig. 1 in Hommes and Wagener (2010) such phenomenon
is illustrated when N = 2 for the setting without information costs in the case x = 0
is locally stable, since in that framework the steady state can not lose stability. On
the contrary, thanks to the introduction of information costs, dealing with at least
two couples of groups of symmetrically biased fundamentalists, we can observe the
coexistence of multiple locally stable period-two cycles also when x = 0 is unstable.
Indeed, in the presence of information costs, for N = 2 we show up to two coexist-
ing locally stable period-two cycles, both when the steady state is locally stable (in
Fig. 3) and when it is unstable (in Fig. 4), for the following parameter configuration:
A = 8, s = 0.95, d = 1, β = 10, b1 = 1, c1 = 0.2, c2 = 0.1, and fixing c0 = 0.3
in Fig. 3 and c0 = 0.5 in Fig. 4, while we will let b2 free to vary. More precisely, in
Fig. 3 we show how the shape of the second iterate of the map f2 varies for increas-
ing values of b2, so that for b2 = 1.01 we find in Fig. 3a the unstable steady state
x = 0, denoted by a small circle, and a globally stable period-two cycle, denoted by
black squares, while for b2 = 1.5 we observe in Fig. 3c that x = 0, now denoted by a
black dot, has become locally stable and that an unstable period-two cycle, denoted
by empty squares, has emerged through a pitchfork bifurcation of the second iterate
of f2 occurring for b2 ≈ 1.06 and illustrated in Fig. 3b, as it happened in Fig. 2d
when raising b. When increasing the bias of the second coupled groups of optimists
and pessimists to b2 = 2, we observe in Fig. 3e a further pair composed by a locally
stable and an unstable period-two cycles, denoted respectively by black and empty
stars, which are born for b2 ≈ 1.82 through a double fold bifurcation of the second
iterate of f2 (see Fig. 3d) without affecting the local stability of x = 0. Raising the
information cost faced by unbiased fundamentalists from c0 = 0.3 to c0 = 0.5, in
Fig. 4a, like in Fig. 3a, we find for b2 = 1.5 the unstable steady state x = 0 and a
globally stable period-two cycle. On the other hand, when increasing the value of the
bias of the second coupled groups of optimists and pessimists to b2 = 2, in Fig. 4c we
observe also a locally stable and an unstable period-two cycles, born for b2 ≈ 1.83
through a double fold bifurcation of the second iterate of f2 (see Fig. 4b) while x = 0
is still unstable.

Hence, the main difference between the frameworks portrayed in Figs. 3 and 4 lies
in the absence in the latter, due to a larger value of the information cost of unbiased
fundamentalists, of the pitchfork bifurcation of f 22 depicted in Fig. 3b through which
x = 0 becomes locally stable.

We stress that the mechanism which allows for the emergence of the second
couple of locally stable and unstable period-two cycles in Fig. 1 in Hommes and
Wagener (2010)—obtained for the same parameter configuration we are dealing
with, except for the zero information costs and for the consideration in that work of
increasing values of the intensity of choice parameter, rather than of the bias—is very
similar to that which leads from Fig. 3c to Fig. 3e, and indeed it is based on a double
fold bifurcation of the second iterate of the map governing the dynamics, too. We
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Fig. 5 The graph of the second iterate of f2 for c = c0 = 0, and b2 = 1.01 in a, b2 = 1.84 in b
and b2 = 2 in c

illustrate the steps related to the framework in Fig. 1 in Hommes andWagener (2010)
in Fig. 5 below for c = c0 = 0, wherewe progressively increase b2. For b2 = 1.01we
observe in Fig. 5a the locally stable steady state x = 0, denoted by a black dot, and a
locally stable period-two cycle, denoted by black squares, together with the unstable
period-two cycle, denoted by empty squares, separating their basins of attraction.
For b2 = 2, in Fig. 5c we find a further pair composed by a locally stable and an
unstable period-two cycles, denoted respectively by black and empty stars, which
are born for b2 ≈ 1.84 through a double fold bifurcation of the second iterate of f2
(see Fig. 5b), similar to the one we observed in Fig. 3d. Nonetheless, while in Fig. 3
the couple of locally stable and unstable period-two cycles emerges in the interval
bounded by the already existing locally stable period-two points, for the parameter
configuration considered in Fig. 1 in Hommes and Wagener (2010) and in our Fig. 5
the new couple of locally stable and unstable period-two cycles arises externally
with respect to the already existing locally stable period-two cycle. In either case,
the emergence of such couple of locally stable and unstable period-two cycles does
not alter the stability of the preexisting attractors.

Similar phenomena to those just described occur when adding further couples of
groups of biased fundamentalists into the economy. Namely, both with and without
information costs, the introduction of extra pairs of groups of optimists and pessimists
leads, for sufficiently high values of their bias, to the emergence of new couples of
locally stable and unstable period-two cycles through a double fold bifurcation of
the second iterate of the map governing the dynamics. In more detail, just one extra
couple composed by a locally stable and an unstable period-two cycles emerges
due to the introduction into the economy of a new pair of groups of symmetrically
biased fundamentalists. As already seen with N = 2, also with several couples of
groups of biased agents it still holds that the birth of a new pair of locally stable
and unstable period-two cycles does not affect the stability of the other attractors.
In particular, for N = 3, starting from the frameworks considered in Figs. 3 and 4
and setting c3 = 0.05, we observe the emergence for b3 ≈ 2.8, through a double fold
bifurcation of f 23 , of a new couple of locally stable and unstable period-two cycles,
externally with respect to the already existing cycles. This is still true when dealing
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with the parameter configurations just described, but in the absence of information
costs. Namely, in such case, the double fold bifurcation of f 23 , which allows for the
emergence of a new couple of locally stable and unstable period-two cycles, occurs
for b3 ≈ 2.95. We do not report the corresponding graphs of f 23 , because they would
be difficult to read due to the reduced size of the pictures and the relatively high
number of period-two cycles.

We just conclude by remarking that, if information costs are taken into account
and for s/d < 1, i.e., when the Muthian model is eductively stable in the sense of
Guesnerie (2002), the new couples of locally stable and unstable period-two cycles
may emerge—with the increase in the number of groups of biased fundamentalists,
for sufficiently high values of their bias—both when x = 0 is locally stable, like
in Fig. 3, and when it is unstable, like in Fig. 4. This is indeed the main difference
between our findings and those in Hommes and Wagener (2010), where, due to the
absence of information costs, the steady state is always locally stable. Hence, we can
infer that eductive stability may not imply evolutionary stability when information
costs are taken into account, also in the presence of several couples of groups of
biased fundamentalists.

4 Conclusion

We believe that the setting analyzed here and in Naimzada and Pireddu (2020a), as
well as the original framework in Hommes and Wagener (2010), can be the start-
ing point for other research developments. Indeed, we recall that the final sentence
in Hommes and Wagener (2010) reads as follows: “The study of the stability of
evolutionary systems with many trader types in various market settings and with
more complicated strategies remains an important topic for future work”. In such
perspective, the analyzed framework with heterogeneous producers could be further
extended by dealing with a richer set of forecasting rules, including e.g. rational
expectations agents like in Naimzada and Pireddu (2020b), in view of investigat-
ing whether dynamic phenomena more complex than period-two cycles can emerge
when the fundamental steady state loses stability or even when it is stable.

A different modification of the model, which could possibly lead to rich dynamic
outcomes, would consist in introducing memory in the share updating mechanism,
so that agents, in choosing the heuristics to adopt, rather than taking into account just
the most recently realized net profit, would consider the performance of the various
forecasting rules in terms of realized profits in the recent past.
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Nöther’s Theorem and the Lie
Symmetries in the Goodwin-Model

József Móczár

Abstract The dynamic behavior of a physical system can concisely be described by
the least action principle. In the centrumof itsmathematical presentations is a specific
function of the coordinates and velocities, i.e., the Lagrangian. If the integral of a
Lagrangian is stationary, then the system is moving along an extremal path through
the phase space. All Lie symmetries of a Lagrangian correspond to a conserved
quantity, and the conservation principle is explained by variation symmetry. Briefly,
that is the meaning of Nöther’s theorem. After showing that Goodwin’s cyclical
growth model has a Lagrangian, we introduce the generalized Nöther’s theorem and
apply it to Goodwin’s 2D model in order to get its Hamiltonian. We prove that the
cyclical motion in hismodel derives from its dynamic Lie symmetries. These cyclical
trajectories are extremal trajectories in the phase space, and along these trajectories
the first integral of the model’s Lagrangian is stationary, which by the principle
of least action also means that they satisfy the first-order necessary conditions. The
optimality still needs to satisfy the sufficient condition. Since the Legendre’s second-
order sufficient condition is not applicable here, we show it satisfies another systems
of sufficient conditions, the local convex surface of Lagrangian with the minimum
non-trivial fixed-point and contour lines. Our conclusion is that all systems’ solutions
described by the other first-order nonlinear ordinary differential equations are optimal
if they have a Lagrangian that satisfies the sufficient and necessary conditions.
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1 Introduction

Herewe apply thegeneralizedNöther’s theorem and theLie symmetries toGoodwin’s
economic growth cyclemodel in conjunctionwith Lagrangian theory.1 Exploring and
characterizing the behavior of the Lie symmetries are the subject and result of most
recent papers in this field. For example, Sen and Tabor (1990) examined the three
dimensional model of Lorenz (1963) that is essential in complex chaotic dynam-
ics; Baumann and Freyberger (1991) scrutinized the two-dimensional scaled Lotka-
Volterra dynamic system (Lotka 1925; Volterra 1931), while Almeida and Moreira
(1992) looked at the three-wave interaction problem using the Lie symmetries.

As is also known, the solution curves of the Goodwin-model (Goodwin 1967) are
closed trajectories with a dynamic equilibrium that can also be given directly based
on the Lyapunov function (see Hirsch et al. 2004). Although Goodwin used the first
integral concept to define the solutions of his economic model, due to the lack of suf-
ficient explanation its connection to physics and the roots in the Lagrangian remained
in obscurity all the time to economists. Neither in his paper of 1967 nor in any of
his later works, neither Goodwin himself nor anyone else demonstrated that his non-
linear dynamical system has a Lagrangian and that the first integral can be produced
with the application of a proper Lie symmetry, or, as is more widely known, of the
Hamiltonian, which is a conserved quantity of the dynamical system. Nevertheless,
this approach through the generalized Nöther’s theorem shows not only relevance but
also elegance since we can freely use the language of both classical (non-relativistic)
mechanics and mathematical control theory and their concept systems too. In Sect. 2
we concisely introduce Nöther’s theorem and in general the Lagrangian. We show
the Euler-Lagrange differential equation then we introduce the generalized Nöther’s
theorem, which will be used in Sect. 4 for the investigation of Goodwin’s non-linear
dynamic system. In Sect. 3 we assume that the readers are familiar with Goodwin’s
original growth cycle model and economics; so we emphasize only his model’s non-
linear dynamic system and give some economic interpretations of the variables and
parameters. Section 4 defines the Lagrangian and Hamiltonian by using the gener-
alized Nöther’s theorem, and Sect. 5 determines the Lie symmetries of Goodwin’s
non-linear dynamic system. Finally in Sect. 6 we show that the Goodwinian cyclical
motion is generated by the model’s Lie symmetries, more specifically its dynamic
symmetries. The first integral, i.e., the constant conserved quantity derived from the
model’s Lagrangian, results this inner symmetry. We will also show that Nöther’s
generalized theorem plays an important role in the mechanics of Goodwin’s model.

1This approach is an improved version of that introduced earlier in Móczár (2010), and Móczár and
Márkus (2011). The fundamentals of the mathematical principles used in this paper can be found
in Hydon (2000), Nutku (1990), Olver (1993), and Velan and Lakshmanan (1995).
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2 The Generalized Nöther’s Theorem and the Conservation
Laws

Nöther (1918) was the first who formulated a universal theorem for the connec-
tion between the dynamic symmetries and the conservation laws. In the spirit of
her renowned theorem, generally, it is also true that the symmetry of a Lagrangian
corresponds to a conserved quantity, and vice versa. We can illustrate this statement
with a simple example. Let us consider the classical Lagrangian of a free particle
with mass m which simply is L = (1/2)mẋ2, where ẋ = dx/dt . It can be seen that
L is dependent only on the velocity of x, i.e., on ẋ and independent of the position
of x which means that x is invariant under spatial translation. Thus, dL/dx = 0,
i.e., L is symmetric by x. From this we can show, by using the appropriate Euler-
Lagrange equation that ∂L/∂ ẋ = mẋ = p is constant, which means that impulse p
is a conserved quantity.

The Lagrangian defines the trajectories of any dynamical system. The corre-
sponding Lie symmetries are such that, under infinitesimal transformations of the
dependent and independent variables of the integral-functional, they leave the total
structure invariant. In the literature this invariance is sometimes referred to as varia-
tion symmetry. In our discussion we pay special attention to the so-called dynamical
symmetrieswhich are not connected to the geometric symmetries of coordinate trans-
formation, and it will play a crucial role in understanding the generalized Nöther’s
theorem. We must note, that a Lagrangian cannot be given to all dynamic systems
and thus in those cases (generalized) Nöther’s theorem cannot be applied (Wigner
1954). At the same time several different Lagrangians can be written up to a dynamic
system, but their integral functionals behave differently under the same infinitesimal
transformation (Morandi et al. 1990).

From our studies in physics, we know that Nöther’s theorem can be useful in other
disciplines too, if the problem can be formulated by using the calculus of variations.
The theorem connects the invariant characteristics of integral-functional

S =
∫ t2

t1

L(t, q(t), q̇(t))dt (1)

with the conservation laws, i.e., the integral of the appropriate Euler-Lagrange
or Hamiltonian differential equations (see Nagy 1981). Thus the conservation of
impulse (motion quantity) and angular momentum in mechanics correspond to a
spatial translation and rotational invariance of the integral-functionalwhile the invari-
ance under the translation with respect to time corresponds to the conservation of
energy. The translational and rotational invariances with respect to both spatial and
time variables are also called geometric invariances. A further and deeper under-
standing of these invariances can be obtained if we explore (find out) the appropriate
Lagrangian and the symmetries of the equations of motion derived from it. Each,
independent symmetry provides a further conversation law of the process.
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The extremal principles in mechanics are of prime importance in both physics and
optimal control theory. They describe the motion between the initial q1 and the final
q2 states on the time interval [t1, t2]. The object is the calculation of the extremal
path. By mathematics, if the action function is extremal to the optimal (real) path,
then the integral-functional in (1) cannot take its extremal under the perturbed path
q(t) + δq(t) with an infinitesimally small δ, even if it is very close to the extremal.
It is said, that we vary the action function, i.e., we consider the first variance of the
integral:

δS =
∫ t2

t1

[L(t, q(t) + δq(t), q̇(t) + δq̇(t) − L(t, q(t), q̇(t)))]dt . (2)

All this is used to find the necessary conditions of extremality under which the
equation δS = 0 is satisfied. This is the least action principle. Applying the steps of
the calculus of variations (see Budó 1965), we get the Euler-Lagrange differential
equation:

d

dt

∂L

∂q̇
= ∂L

∂q
, (3)

whose explicit form is a second-order ordinary differential equation if ∂L/∂q �= 0.
The solution of this equation provides the extremal motion path.

Proceeding on our way towards the presentation of the generalized Nöther’s the-
orem, we consider a system with the coordinates, q1, q2, . . . , qn . The Lagrangian
is now a function of all variables and their derivatives with respect to time. In this
generalized case the derivation of Hamiltonian is as follows.

At first let us consider the total derivative of L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n)with
respect to time:

dL

dt
=

n∑
i=1

(
∂L

∂qi

dqi
dt

+ ∂L

∂q̇i

dq̇i
dt

)
.

The Euler-Lagrange equations for the generalized system enable us to substitute
for the partials of L with respect to qi , so we have:

dL

dt
−

n∑
i=1

(
q̇i

d

dt

(
∂L

∂q̇i

)
+ ∂L

∂q̇i

dq̇i
dt

)
= 0,

which can be rewritten as follows:

d

dt

[
n∑

i=1

(
∂L

∂q̇i
q̇i

)
− L

]
= 0.
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Thus the quantity inside the square brackets (i.e., the Hamiltonian or first integral)
is constant:

H =
n∑

i=1

(
∂L

∂q̇i
q̇i

)
− L = const. (4)

This is called the generalized Nöther’s theorem which will be used for n = 2 in
Sect. 4.

3 Goodwin’s Non-linear Dynamic System

Goodwin’s growth cyclemodel of 1967 is a simple dynamicmodel of the distribution
ratios of gross output and employment. The trajectories of employment and the
workers’ share of the total income are given by the following non-linear dynamic
system:

v̇ = [(1/σ) − (α + β) − (1/σ)u]v (5)

u̇ = [−(α + γ ) + ρv
]
u (6)

where v is the employment rate and u is the workers’ share of total income, v̇ and u̇
are their derivatives with respect to time, σ is the fixed capital-output ratio, α is the
growth rate of labor productivity which is constant assuming an unchanged rate of
non-embodied technical progress. β is the fixed growth rate of the labor force as well
as −γ + ρv = ẇ/w is a linearized Phillips curve where w is the wage rate, γ and ρ

are constants with appropriately high positive values. We note that (5) and (6) form
a 2D first-order nonlinear autonomous homogeneous differential equations system.

If u is absent from Eq. (5), then the employment rises at a constant rate, i.e.,
v̇/v = (1/σ)− (α + β) where (1/σ) > (α + β), which means that the efficiency of
capital is greater than the sum of the growth rate of productivity and the growth rate
of the labor force. To put it differently, we can say that the employment rate rises
if the productivity of capital is higher than the sum of the extensive and intensive
factors of economic growth. Likewise, if v is absent from Eq. (6), then the workers’
share of the total income declines at a steady rate, u̇/u = −(α +γ ). This means that
the workers’ share of total income declines at such a rate that is precisely equal to the
sum of the growth rate of labor productivity and the autonomous growth parameter
of wages. In both cases the trajectory is an exponential function, in the former case
an increasing one, while in the latter a decreasing one. But, if we also consider the
other variable u in (5), then the capital efficiency through variable u decreases in the
growth rate of employment while in (6) the increasing pace of wage rate to a unit of
employment rate will, through the variable v, cause the decrease of the rate by which
the workers’ share of the total income declines.
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Thereafter, Goodwin eliminates the time from Eqs. (5) and (6). To produce the
closed trajectories with the dynamic equilibrium of his model, Goodwin applied the
same simplemethod asAndronov et al. (1966, pp. 143–145) did to the Lotka-Volterra
system. The time-variance, just like in classical mechanics, gives the first integral:

[(1/σ) − (α + β)] ln u + (α + γ ) ln v − (1/σ)u − ρv = const. (7)

While Goodwin said nothing about Eq. (7), we will now demonstrate that it is the
Hamiltonian or else conserved quantity of his dynamic system given by (5) and (6).

4 The Lagrangian and Hamiltonian of Goodwin’s
Non-linear Dynamic System

At first, to produce the Lagrangian of the Goodwin model, we use the results in
Fernandez-Nuñez (1998). We will denote it with L′ which can be given as follows:

L ′(v, v̇, u, u̇) = 1

2

ln u

v
v̇ + 1

2

ln v

u
u̇−

(((1/σ) − (α + β)) ln u + (α + γ ) ln v − (1/σ)u − ρv) (8)

If we take the Euler-Lagrange equations of the Lagrangian L′ with respect to u
and v, we get back Eqs. (5) and (6) of the Goodwin model. Thus we have shown that
the Goodwin model also has the Lagrange structure.

According to the generalized Nöther’s theorem (4), we can show by a simple
calculation that the Hamiltonian of the Goodwin model is the following:

H ′ = v̇
∂L ′

∂ v̇
+ u̇

∂L ′

∂ u̇
− L ′

= ((1/σ) − (α + β)) ln u + (α + γ ) ln v − (1/σ)u − ρv, (9)

which is the conserved quantity, i.e., the first integral, which corresponds to Eq. (7).
If we consider the corresponding energy E′ from the mechanics the first integral can
be calculated as follows:

I ′
(
= eE

′) = vα+γ u(1/σ)−(α+β)e−(ρv+(1/σ)u) (10)
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5 The Lie Symmetries of Goodwin’s Non-linear Dynamic
System

Let us take the infinitesimal transformations of the state variables of the model:

v′ = v + ς1(v, u) (11)

u′ = u + ς2(v, u) (12)

and

t ′ = t (13)

where functions ς1(v, u) and ς2(v, u) are directly independent of time, i.e., ∂ς1/∂t =
0 and ∂ς2/∂t = 0. Substituting Eqs. (11), (12) and (13) into Eqs. (5) and (6),
after simplifying the received equations, we get the following partial differential
equations:

(((1/σ) − (α + β))v − (1/σ)uv)
∂ς1

∂v
+ (ρvu − (α + γ )u)

∂ς1

∂u
+ ((1/σ)u − (1/σ) + (α + β))ς1 + (1/σ)vς2 = 0 (14)

(((1/σ) − (α + β))v − (1/σ)uv)
∂ς2

∂v

+ (ρvu − (α + γ )u)
∂ς2

∂u
− ρuς1 + (α + γ − ρv)ς2 = 0 (15)

We have obtained a connected partial differential equations system which has a
possible solution as follows:

ς1 = ((1/σ) − (α + β))v − (1/σ)uv (16)

ς2 = ρvu − (α + γ )u (17)

By using this solution, we can now determine the relevant generator, i.e., the
vector of Lie symmetries:

X ′
1 = (((1/σ) − (α + β))v − (1/σ)uv)

∂

∂v
+ (ρvu − (α + γ )u)

∂

∂u
(18)

Another possible solution to (13) and (14) can be given as:

ς1 = vα+γ u(1/σ)−(α+β)

eρv+(1/σ)u
((1/σ) − (α + β) − (1/σ)u)v (19)
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ς2 = vα+γ u(1/σ )−(α+β)

eρv+(1/σ)u
(ρv − (α + γ ))u (20)

The infinitesimal generator can now be given as follows:

X ′
2 = vα+γ u(1/σ)−(α+β)

eρv+(1/σ)u
((1/σ)v − (α + β) − (1/σ)uv)

∂

∂v

+ vα+γ u(1/σ−(α+β))

eρv+(1/σ )u
(ρvu − (α + γ )u)

∂

∂u
(21)

If we compare the generators defined in Eqs. (19) and (20), then we can easily
observe the following relations between them:

X ′
2 = vα+γ u(1/σ)−(α+β)

eρv+(1/σ)u
X ′
1 (22)

i.e., the generators differ in one factor only. Since these generators share the same
structure too, the factor

I ′ = vα+γ u(1/σ)−(α+β)

eρv+(1/σ)u
(23)

must show the permanent quantity of motion. This is precisely equal to the con-
served quantity derived from the Lagrangian in Eq. (10), which refers to the dynamic
symmetries of the Goodwin model.

6 Numerical Study

The Goodwin model examines the interdependence between the accumulation of
capital and the distribution of income. Its solution curves reply to the question of
how the accumulation of capital changes cyclically with periodicity

T = 2π/((α + β)((1/σ) − (α + β)))1/2

around the non-trivial equilibrium fixed-point whose coordinates are

u∗ = 1 − (α + β)σ

v∗ = (α + γ )/ρ.

The parameters in the model can be estimated by using econometric meth-
ods from the appropriate time-series. We can also think of these calculations as
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Harvie (2000) did in his paper by testing the model with real data, whereby he makes
some interesting observations.

The following graphs were made by choosing the following parameter values: α
= 0.058, β = 0.1, γ = 15, σ = 0.08 and ρ = 15. The initial values are v(0) = 0.095
and u(0) = 0.9. The direction of motion on the closed curve is a clockwise rotation.
Figures 1 and 2 show the periodic behavior of v(t) and u(t), while Fig. 3 illustrates
these periodicities with the phase diagram in the (u(t), v(t)) space.

The cyclical trajectories of the Goodwin model—as we have proved—are the
extremal trajectories in the phase space, and along these trajectories the first integral
of the model’s Lagrangian is stationary, which by the principle of least action also
means that they satisfy the first-order necessary condition. For the optimality, satis-
fying a second-order sufficient condition still needs, namely, the Legendre condition.
For this purpose, first define

|�| =
∣∣∣∣ L

′
v̇v̇ L ′

v̇u̇

L ′
u̇v̇ L ′

u̇u̇

∣∣∣∣ =
∣∣∣∣ 0 0
0 0

∣∣∣∣
where the second-order derivatives are to be evaluated along the extremals, and L′
was defined in (8). Since both principal minors are zero, the Legendre condition does
not work in this case.

Fig. 1 Periodic behavior of
v(t)
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Fig. 2 Periodic behavior of
u(t)

Fig. 3 Phase portrait u(t) −
v(t)

Thus we use another condition, namely, the second-order sufficient condition, the
convexity of the Lagrangian. Figure 4 shows the local convexity of the Lagrangian
with the non-trivial equilibriumfixed-point and contour lines of extremal trajectories.

This means that the change of the employment rate v(t) and the workers’ share
of total income u(t) are optimal along the extremal trajectories in the local sense,
which results in optimal growth cycles.
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Fig. 4 Lagrangian of the
Godwin-model

7 Conclusions

The results of this paper can be used to refine the descriptions of the solution curves
of the nonlinear first-order ordinary differential equations systems by allowing us
to formulate a general rule: the trajectory of the dynamic system is optimal if it
has a Lagrangian that satisfies the first-order necessary and second-order sufficient
conditions.

By our investigations we have shown that the cyclical motion is generated by
the Goodwin model’s Lie symmetries, more specifically by its dynamic symmetries.
The first integral, i.e., the constant conserved quantity derived from the model’s
Lagrangian, results this inner symmetry. This also means that Nöther’s generalized
theorem plays an important role in the mechanics of Goodwin’s model.
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Mixed Duopolies with Advance
Production

Tamás László Balogh and Attila Tasnádi

Abstract Production to order and production in advance have been compared in
many frameworks. In this paper we investigate a production in advance version of
the capacity-constrained Bertrand-Edgeworth mixed duopoly game and determine
the solution of the respective timing game. We show that a pure-strategy (subgame-
perfect) Nash-equilibrium exists for all possible orderings of moves. It is pointed
out that unlike the production-to-order case, the equilibrium of the timing game lies
at simultaneous moves. An analysis of the public firm’s impact on social surplus is
also carried out. All the results are compared with those of the production-to order
version of the respective game and with those of the mixed duopoly timing games.

Keywords Bertrand-Edgeworth · Mixed duopoly · Timing games

1 Introduction

We can distinguish between production-in-advance (PIA) and production-to-order
(PTO) concerning how the firms organize their production in order to satisfy the con-
sumers’ demand.1 In the former case production takes place before sales are realized,
while in the latter one sales are determined before production takes place. Markets
of perishable goods are usually mentioned as examples of advance production in
a market. Phillips et al. (2001) emphasized that there are also goods which can be
traded both in a PIA and in a PTO environment since PIA markets can be regarded
as a kind of spot market whereas PTO markets as a kind of forward market. For
example, coal and electricity are sold in both types of environments.

1The PIA game is also frequently called the price-quantity game or briefly PQ-game.
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The comparison of the PIA and PTO environments has been carried out in experi-
mental and theoretical frameworks for standard oligopolies.2 For instance, assuming
strictly increasing marginal cost functions, Mestelman et al. (1987) found that in
an experimental posted offer market the firms’ profits are lower in case of PIA. For
more recent experimental analyses of the PIA environment we refer to Davis (2013)
and Orland and Selten (2016). In a theoretical paper Shubik (1955) investigated the
pure-strategy equilibrium of the PIA game and conjectured that the profits will be
lower in case of PIA than in case of PTO. Levitan and Shubik (1978) and Gertner
(1986) determined the mixed-strategy equilibrium for the constant unit cost case
without capacity constraints.3 Assuming constant unit costs and identical capacity
constraints, Tasnádi (2004) found that profits are identical in the two environments
and that prices are higher under PIA than under PTO. Zhu et al. (2014) showed
for the case of strictly convex cost functions that PIA equilibrium profits are higher
than PTO equilibrium profits. In addition, considering different orders of moves and
asymmetric cost functions Zhu et al. (2014) demonstrated that the leader-follower
PIA game leads to higher profit than the simultaneous-move PIA game.4

Concerning our theoretical setting, the closest paper is Tasnádi (2004) since we
will investigate the constant unit cost case with capacity constraints. The main dif-
ference is that we will replace one profit-maximizing firm with a social surplus max-
imizing firm, that is we will consider a so-called mixed duopoly. We have already
considered the PTOmixed duopoly inBalogh andTasnádi (2012) forwhichwe found
(i) the payoff equivalence of the games with exogenously given order of moves, (ii)
an increase in social surplus compared with the standard version of the game, and
(iii) that an equilibrium in pure strategies always exists in contrast to the standard
version of the game.5 In this paper we demonstrate for the PIA mixed duopoly the
existence of an equilibrium in pure strategies, (weakly) lower social surplus than
in case of the PTO mixed duopoly and the emergence of simultaneous moves as a
solution of a timing game.

It is also worthwhile to relate our paper briefly to the literature on mixed
oligopolies. In a seminal paper Pal (1998) investigates for mixed oligopolies the
endogenous emergence of certain orders of moves. Assuming linear demand and
constant marginal costs, he shows for a quantity-setting oligopoly with one public
firm that, in contrast to our result, the simultaneous-move case does not emerge.

2We call an oligopoly standard if all firms are profit maximizers, which basically means that they
are privately owned.
3Gertner (1986) also derived some important properties of the mixed-strategy equilibrium of the
PIA game for strictly convex cost functions. For more on the PIA case see also Bos and Vermeulen
(2015), van den Berg and Bos (2017), and Montez and Schutz (2018).
4From thementioned papers only Zhu et al. (2014) considered sequential orders of moves. For more
on standard duopoly leader-follower games we refer to Boyer and Moreaux (1987), Deneckere and
Kovenock (1992) and Tasnádi (2003) in the Bertrand-Edgeworth framework. Furthermore, Din and
Sun (2016) extended Zhu et al. (2014) to mixed duopolies.
5We refer the reader also to Bakó and Tasnádi (2017) which proves the validity of the Kreps and
Scheinkman (1983) result formixedduopolies by employing theKreps andScheinkman tie-breaking
rule at the price-setting stage.
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Matsumura (2003) relaxes the assumptions of linear demand and identical marginal
costs employed by Pal (1998). The case of increasing marginal costs in Pal’s (1998)
framework has been investigated by Tomaru and Kiyono (2010). In line with our
result on the timing of moves Bárcena-Ruiz (2007) obtained the endogenous emer-
gence of simultaneousmoves for a heterogeneous goods price-settingmixed duopoly
timing game. In case of emission taxes Lee and Xu (2018) find that the sequential-
move (simultaneous-move) game emerges in the equilibrium of the mixed duopoly
timing game under significant (insignificant) environmental externality. There is also
an evolving literature onmanagerial mixed duopolies, for instance, Nakamura (2019)
shows that in this case a sequential order of moves emerges in which the private firm
with a price contract moves first, while the public firmwith a quantity contract moves
second.

The remainder of the paper is organized as follows. In Sect. 2 we present our
framework, Sects. 3–5 contain the analysis of the three games with exogenously
given order of moves, Sect. 6 solves the timing game, and we conclude in Sect. 7.

2 The Framework

The demand is given by function D on which we impose the following restrictions.

Assumption 1 The demand function D intersects the horizontal axis at quantity a
and the vertical axis at price b. D is strictly decreasing, concave and twice continu-
ously differentiable on (0, b); moreover, D is right-continuous at 0, left-continuous
at b and D(p) = 0 for all p ≥ b.

Clearly, any price-setting firm will not set its price above b. Let us denote by P
the inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤ a, P (0) = b, and
P (q) = 0 for q > a.

On the producers side we have a public firm and a private firm, that is, we consider
a so-called mixed duopoly. We label the public firm as 1 and the private firm as 2.
Henceforth, we will also label the two firms as i and j , where i, j ∈ {1, 2} and i �= j .
Our assumptions imposed on the firms’ cost functions are as follows.

Assumption 2 The two firms have identical c ∈ (0, b) unit costs up to the positive
capacity constraints k1, k2 respectively.

We shall denote by pc themarket clearing price and by pM the price set by amonopo-
list without capacity constraints, i.e. pc = P (k1 + k2) and pM = argmaxp∈[0,b](p −
c)D (p). In what follows p1, p2 ∈ [0, b] and q1, q2 ∈ [0, a] stand for the prices and
quantities set by the firms.

For any firm i and for any quantity q j set by its opponent j we shall denote by
pmi (q j ) the profit maximizing price on firm i’s residual demand curve Dr

i (p, q j ) =(
D(p) − q j

)+
with respect to its capacity constraint, i.e. pmi (q j ) = argmaxp∈[0,b]

(p − c)min{Dr
i

(
p, q j

)
, ki }. Clearly, pmi is well defined whenever c < P(q j ) and
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Assumptions 1–2 are satisfied. If c ≥ P(q j ), then pmi (q j ) is not unique, as any price
pi ∈ [0, b] together with quantity qi = 0 results in πi = 0 and πi cannot be positive.
For notational convenience we define pmi (q j ) by b in case of c ≥ P(q j ).

For a given quantity q j we shall denote the inverse residual demand curve of
firm i by Ri (·, q j ). In addition, we shall denote by qm

i (q j ) the profit maximizing
quantity on firm i’s inverse residual demand curve subject to its capacity constraint,
i.e. qm

i (q j ) = argmaxq∈[0,ki ](Ri (q, q j ) − c)q. It can be checked that Ri (qi , q j ) =
P(qi + q j ) and qm

i (q j ) = Dr
i

(
pmi (q j ), q j

)
.6

Let us denote by pdi (q j ) the smallest price for which

(pdi (q j ) − c)min
{
ki , D

(
pdi (q j )

)} = (pmi (q j ) − c)qm
i (q j ),

whenever this equation has a solution.7 Provided that the private firm has ‘suf-
ficient’ capacity, that is max{pc, c} < pm2 (k1), then if it is a profit-maximizer, it
is indifferent to whether serving residual demand at price level pm2 (q1) or sell-
ing min{k2, D

(
pd2 (q1)

)} at the weakly lower price level pd2 (q1). Observe that if
Ri (ki , q j ) = pmi (q j ), then pdi (q j ) = pmi (q j ), which can be the case for some val-
ues of q j in case of pM < P(ki ). We shall denote by q̃ j the largest quantity for
which qm

i (q̃ j ) = ki in case of pM ≤ P(ki ) (i.e. qm
i (0) = ki ), and zero otherwise.

From Deneckere and Kovenock (1992, Lemma 1) it follows that pdi (·) and pmi (·)
are strictly decreasing on [q̃ j , k j ]. Moreover, qm

i (·) is strictly decreasing on [q̃ j , k j ]
and constant on [0, q̃ j ], and therefore q̃ j = inf{q j ∈ [0, a] | qm

i (q j ) < ki } is always
uniquely defined.

We assume efficient rationing on the market, and thus, the firms’ demands equal

�i (D, p1, q1, p2, q2) =
⎧
⎨

⎩

D (pi ) if pi < p j ,

Ti (p, q1, q2), if p = pi = p j(
D (pi ) − q j

)+
if pi > p j ,

for all i ∈ {1, 2}, where Ti stands for a tie-breaking rule. We will consider two
sequential-move games (one with the public firm as the first mover and one with the
private firm as the first-mover) and a simultaneous-move game. We employ the same
tie-breaking rule as Deneckere and Kovenock (1992).

Assumption 3 If the two firms set the same price, thenwe assume for the sequential-
move games that the demand is allocated first to the second mover8 and for the
simultaneous-move game that the demand is allocated in proportion of the firms’
capacities.

6Note that Dr
i

(
pmi (q j ), q j

) ≤ ki since pmi (q j ) ≥ P(ki + q j ).
7The equation defining pdi (q j ) has a solution for any q j ∈ [0, k j ] if, for instance, pmi (q j ) ≥
max{pc, c}, which will be the case in our analysis when we refer to pdi (q j ).
8This ensures for the case when the public firm moves first the existence of a subgame perfect Nash
equilibrium in order to avoid the consideration of ε-equilibria implying a more difficult analysis
without substantial gain.
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Nowwe specify the firms’ objective functions. The public firmaims atmaximizing
total surplus, that is,

π1(p1, q1, p2, q2) =
∫ min

{
(D(p j )−qi )

+
,q j

}

0
R j (q, qi )dq +

∫ min{a,qi }

0
P(q)dq − c(q1 + q2)

=
⎧
⎨

⎩

∫ min{D(p j ),q1+q2}
0 P(q)dq − c(q1 + q2) if D(p j ) > qi ,

∫ min{D(pi ),qi }
0 P(q)dq − c(q1 + q2) if D(p j ) ≤ qi ,

(1)

where 0 ≤ pi ≤ p j ≤ b. We illustrate social surplus in Fig. 1.
The private firm is a profit maximizer, and therefore,

π2(p1, q1, p2, q2) = p2 min {q2,�2 (D, p1, q1, p2, q2)} − cq2. (2)

We divide our analysis into three cases.

1. The strong private firm case, where we assume that qm
2 (k1) < k2 and P(k1) >

c. This means that the private firm’s capacity is large enough to have strategic
influence on the outcome and the public firm cannot capture the entire market.

2. Theweak private firm case, where we assume that qm
2 (k1) = k2 and P(k1) > c. In

this case the private firm’s capacity is not large enough to have strategic influence
on the outcome, but it has a unique profit-maximizing price on the residual demand
curve.

3. The high unit cost case, where we assume that c ≥ P(k1). In this case if the public
firm produces at its capacity level, then there is no incentive for the private firm
to enter the market, because the cost level is too high.

Clearly, the three cases are well defined and disjunct from each other.

Fig. 1 Social surplus
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We nowdetermine all the equilibrium strategies of both firms for the three possible
orderings of moves in each of the three main cases. Within every case we begin with
the simultaneous moves subcase, thereafter we focus on the public-firm-moves-first
subcase, finally we analyze the private-firm-moves-first subcase. The results are
always illustrated with numerical examples. For better visibility, the most interesting
equilibria are depicted.

3 The Strong Private Firm Case

The following two inequalities remain true for the simultaneous moves and public
leadership cases.

Lemma 1 Under Assumptions 1–3, qm
2 (k1) < k2 and P(k1) > c we must have in

case of simultaneous moves and public leadership that

p∗
2 ≥ pd2 (q

∗
1 ) (3)

in any equilibrium (p∗
1, q

∗
1 , p

∗
2, q

∗
2 ) in which q

∗
1 > 0.

Proof We obtain the result directly from the definition of pd2 (q1). Clearly, p
∗
1 ≤

pm2 (q∗
1 ). For any q1 ∈ [0, k1], the private firm is better off by setting p2 = pm2 (q1) and

q2 = qm
2 (q1) than by setting any price p2 < pd2 (q1) and any quantity

q2 ∈ [0, k2]. �

Lemma 2 Under Assumptions 1–3, qm
2 (k1) < k2 and P(k1) > c we have in case of

simultaneous moves and public leadership that

p∗
2 ≤ pm2 (0) = max{P(k2), p

M} (4)

in any equilibrium (p∗
1, q

∗
1 , p

∗
2, q

∗
2 ).

Proof Suppose that p∗
2 > max{P(k2), pM }. If p∗

2 ≤ p∗
1 , then the private firm would

be better off by setting price max{P(k2), pM} and quantity D
(
max{P(k2), pM}). If

p∗
2 > p∗

1 , then the private firm serves residual demand, and therefore it could bene-
fit from switching to action (pm2 (q∗

1 ), q
m
2 (q∗

1 )),
(
max{P(k2), pM }, D (max{P(k2),

pM})), or (
p∗
1 − ε,min

{
k2, D

(
p∗
1 − ε

)})
, where ε is a sufficiently small positive

value. For all three cases we have obtained a contradiction. �
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3.1 Simultaneous Moves

For the case of simultaneousmoveswe have a pure-strategyNash equilibrium family,
which contains profiles where the private firm maximizes its profit on the residual
demand choosing p∗

2 = pm2 (q∗
1 ) and q

∗
2 = qm

2 (q∗
1 ), while the public firm can choose

any price level not greater than pd2 (q
∗
1 ) and produce any non-negative amount up to

its capacity. It is worth emphasizing that in case of pm2 (q∗
1 ) = pd2 (q

∗
1 ) the private firm

can sell its entire capacity.

Proposition 1 Let Assumptions 1–3, qm
2 (k1) < k2 and P(k1) > c be satisfied. A

strategy profile

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗
1, q

∗
1 , p

m
2

(
q∗
1

)
, qm

2

(
q∗
1

))
(5)

is for a quantity q∗
1 ∈ (0, k1] and for any price p∗

1 ∈ [
0, pd2

(
q∗
1

)]
or for any q∗

1 = 0
and any p∗

1 ∈ [0, b] a Nash-equilibrium in pure strategies if and only if

π1
(
pd2

(
q∗
1

)
, q∗

1 , p
m
2

(
q∗
1

)
, qm

2

(
q∗
1

)) ≥ π1
(
P (k1) , k1, p

m
2

(
q∗
1

)
, qm

2

(
q∗
1

))
, (6)

where there exists a nonempty closed subset H of [0, k1] satisfying condition (6)9

Finally, no other equilibrium in pure strategies exists.

Proof Assume that (p∗
1, q

∗
1 , p

∗
2, q

∗
2 ) is an arbitrary equilibrium profile. We divide

our analysis into three subcases. In the first case (Case A) we have p∗
1 = p∗

2 , in
the second one (Case B) p∗

1 > p∗
2 holds true, while in the remaining case we have

p∗
1 < p∗

2 (Case C).
Case A: We claim that p∗

1 = p∗
2 implies q∗

1 + q∗
2 = D(p∗

2). Suppose that q∗
1 +

q∗
2 < D(p∗

2). Then
10 because of p∗

2 > max{pc, c} by a unilateral increase in output
the public firm could increase social surplus or the private firm could increase its
profit; a contradiction. Suppose that q∗

1 + q∗
2 > D(p∗

2). Then the public firm could
increase social surplus by decreasing its output or if q∗

1 = 0, the private firm could
increase its profit by producing only D(p∗

2); a contradiction.
We know that we must have p∗

1 = p∗
2 ≥ pd2 (q

∗
1 ) by Lemma 1. Assume that

q∗
1 > 0. Then we must have q∗

2 = min{k2, D(p∗
2)}, since otherwise the private

firm could benefit from reducing its price slightly and increasing its output suffi-
ciently (in particular, by setting p2 = p∗

2 − ε and q∗
2 = min{k2, D(p2)}). Observe

that pm2 (0) = pd2 (0), p
m
2 (q1) = pd2 (q1) for all q1 ∈ [0, q̃1] and pm2 (q1) > pd2 (q1) for

all q1 ∈ (q̃1, k1].11 Moreover, it can be verified by the definitions of pm2 (q∗
1 ) and

pd2 (q
∗
1 ) that q∗

1 + k2 ≥ D(pd2 (q
∗
1 )) ≥ D(p∗

2), where the first inequality is strict if
q∗
1 > q̃1. Thus, q∗

1 > q̃1 is in contradiction with q∗
2 = min{k2, D(p∗

2)} since we

9In particular, there exists a subset [q, k1] of H .
10Observe that by Lemma 1, the monotonicity of pd2 (·), qm2 (k1) < k2 and P(k1) > c, we have
p∗
2 ≥ pd2 (q1) ≥ pd2 (k1) > max{pc, c}.

11We recall that q̃i has been defined after pdi (q j ).



164 T. L. Balogh and A. Tasnádi

already know that q∗
1 + q∗

2 = D(p∗
2) in Case A. Hence, an equilibrium in which

both firms set the same price and the public firm’s output is positive exists if and only
if pm2 (q∗

1 ) = pd2 (q
∗
1 ) (i.e., q

∗
1 ∈ (0, q̃1)) and (6) is satisfied. This type of equilibrium

appears in (5) with q∗
2 = qm

2 (q∗
1 ) = k2.

Moreover, it can be verified that (p∗
1, q

∗
1 , p

∗
2, q

∗
2 ) = (pm2 (0), 0, pm2 (0), qm

2 (0)) is
an equilibrium profile in pure strategies if and only if

π1(p
m
2 (0), 0, pm2 (0), qm

2 (0)) ≥ π1(P(k1), k1, p
m
2 (0), qm

2 (0)), (7)

where we emphasize that pm2 (0) = max{P(k2), pM} and qm
2 (0) = D(max{P(k2),

pM}).
Case B: Suppose that p∗

1 > p∗
2 ≥ pd2 (q

∗
1 ) and D(p∗

2) > q∗
2 . Then the public firm

could increase social surplus by setting price p1 = p∗
2 and q1 = min{k1, D(p∗

2) −
q∗
2 }; a contradiction.
Assume that p∗

1 > p∗
2 ≥ pd2 (q

∗
1 ) and D(p∗

2) = q∗
2 . Then in an equilibriumwemust

have q∗
1 = 0, p∗

2 = pm2 (0) and q∗
2 = qm

2 (0). Furthermore, it can be checked that these
profiles specify equilibrium profiles if and only if Eq. (6) is satisfied.

Clearly, p∗
1 > p∗

2 ≥ pd2 (q
∗
1 ) and D(p∗

2) < q∗
2 cannot be the case in an equilibrium

since the private firm could increase its profit by producing q2 = D(p∗
2) at price p∗

2 .
Finally, by Lemma 1 p∗

2 < pd2 (q
∗
1 ) cannot be the case either.

Case C: In this case p∗
2 = pm2 (q∗

1 ) and q∗
2 = qm

2 (q∗
1 ) must hold, since otherwise

the private firm’s payoff would be strictly lower. In particular, if the private firm sets a
price not greater than p∗

1 , we are not anymore inCaseC; if q∗
2 > min{Dr

2(p
∗
2, q

∗
1 ), k2},

then the private firm either produces a superfluous amount or is capacity constrained;
if q∗

2 < min{Dr
2(p

∗
2, q

∗
1 ), k2}, then the private firm could still sell more than q∗

2 ; and
if q∗

2 = min{Dr
2(p

∗
2, q

∗
1 ), k2}, then the private firm will choose a price-quantity pair

maximizing profits with respect to its residual demand curve Dr
2(·, q∗

1 ) subject to its
capacity constraint. In addition, in order to prevent the private firm from undercutting
the public firm’s price we must have p∗

1 ≤ pd2
(
q∗
1

)
.

Clearly, for the given values p∗
1 , p∗

2 and q∗
2 from our equilibrium profile the

public firm has to choose a quantity q ′
1 ∈ [0, k1], which maximizes function f (q1) =

π1
(
p∗
1, q1, p

∗
2, q

∗
2

)
on [0, k1]. We show that q ′

1 = q∗
1 must be the case. Obviously,

it does not make sense for the public firm to produce less than q∗
1 since this would

result in unsatisfied consumers. Observe that for all q1 ∈ [
q∗
1 ,min

{
D

(
p∗
2

)
, k1

}]

f (q1) =
∫ D(p∗

2)−q1

0
(R2(q, q1) − c) dq +

∫ q1

0
(P(q) − c) dq − c(q1 − q∗

1 ) =

=
∫ D(p∗

2)

0
P(q)dq − D(p∗

2)c − c(q1 − q∗
1 ). (8)

Since only −c(q1 − q∗
1 ) is a function of q1 we see that f is strictly decreasing on[

q∗
1 ,min

{
D

(
p∗
2

)
, k1

}]
.

Subase (i): In case of k1 ≤ D
(
p∗
2

)
we have already established that q∗

1 maximizes
f on [0, k1]. Moreover, (p∗

1, q
∗
1 ) maximizes π1

(
p1, q1, p∗

2, q
∗
2

)
on [0, p∗

2) × [0, k1]
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since Eq. (8) is not a function of p∗
1 . Hence, for any p1 ≤ pd2

(
q∗
1

)
such that p1 < p∗

2
we have that

(
p1, q∗

1 , p
m
2

(
q∗
1

)
, qm

2

(
q∗
1

))
specifies a Nash equilibrium for any q1 ∈

[0, k1] satisfying k1 ≤ D
(
pm2

(
q∗
1

))
. However, note that in case of q∗

1 ∈ [0, q̃1] and
p1 = pd2

(
q∗
1

)
we are leaving Case C and obtain a Case A Nash equilibrium.

Observe that pm2 (k1) > max {pc, c} implies that k1 < D
(
pm2 (k1)

)
, and therefore

we always have Subcase (i) equilibriumprofiles. Since D
(
pm2 (·)) is a continuous and

strictly increasing function, interval
[
q̃1, k1

] ∩ (0, k1] determines the set of quantities
yielding an equilibrium for Subcase (i).

Subase (ii): Turning to the more complicated case of k1 > D
(
p∗
2

)
, we also have

to investigate function f above the interval
[
D

(
p∗
2

)
, k1

]
in which region the private

firm does not sell anything at all at price p∗
2 and

f (q1) =
∫ min{q1,D(p∗

1)}
0

(P(q) − c) dq − cq∗
2 − c

(
q1 − D

(
p∗
1

))+
. (9)

Observe that we must have P(k1) < p∗
2 . If the public firm is already producing

quantity q1 = D
(
p∗
2

)
, the private firm does not sell anything at all and contributes to

a social loss of cq∗
2 . Therefore, f (q) is increasing on

[
D

(
p∗
2

)
,min

{
D

(
p∗
1

)
, k1

}]
.

Assume that k1 ≤ D
(
p∗
1

)
. Then for any p1 ≤ pd2

(
q∗
1

)
we get that

(
p1, q∗

1 ,

pm2
(
q∗
1

)
, qm

2

(
q∗
1

))
is a Nash equilibrium if and only if

π1
(
pd2

(
q∗
1

)
, q∗

1 , p
m
2

(
q∗
1

)
, qm

2

(
q∗
1

)) ≥ π1
(
pd2

(
q∗
1

)
, k1, p

m
2

(
q∗
1

)
, qm

2

(
q∗
1

)) =
= π1

(
P (k1) , k1, p

m
2

(
q∗
1

)
, qm

2

(
q∗
1

))
, (10)

where the last equality follows from the inequalities p∗
1 ≤ P(k1) ≤ p∗

2 valid for this
case and the fact that social surplus is maximized in function of (p1, q1) subject to
the constraint that the private firm does not sell anything at all if the public firm sets
an arbitrary price not greater than P (k1) and produces k1.

Assume that k1 > D
(
p∗
1

)
. Therefore, f (q)would be decreasing on

[
D

(
p∗
1

)
, k1

]
.

However, it can be checked that the public firm could increase social surplus by
switching to strategy (P(k1), k1) fromstrategy

(
p∗
1, D

(
p∗
1

))
. In addition, any strategy

(p1, k1) with p1 ≤ P(k1) maximizes social surplus subject to the constraint that the
private firm does not sell anything at all. Therefore,

(
pd2

(
q∗
1

)
, q∗

1 , p
m
2

(
q∗
1

)
, qm

2

(
q∗
1

))

is a Nash equilibrium if and only if condition (6) is satisfied. Comparing Eq. (10)
with Eq. (6), we can observe that we have derived the same necessary and suffi-
cient condition for a strategy profile being a Nash equilibrium, which is valid for
Subcase (ii).

So far we have established that there exists a function g, which uniquely deter-
mines the highest equilibrium price as a function of quantity q produced by the
public firm. Clearly, g(q) = pd2 (q), where the domain of g is not entirely specified.
At least we know from Subcase (i) that the domain of g contains

[
q̃1, k1

]
. Observe

also that the equilibrium profiles of Subcase (i) satisfy condition (6). Let u (q1) =
π1

(
pd2 (q1) , q1, pm2 (q1) , qm

2 (q1)
)
and v (q1) = π1

(
P (k1) , k1, pm2 (q1) , qm

2 (q1)
)
.

Hence, q1 determines a Nash equilibrium profile if and only if u(q1) ≥ v(q1). It can
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be verified that u and v are continuous, and therefore, set H = {q ∈ [0, k1] | u(q) ≥
v(q)} is a closed set containing

[
q̃1, k1

]
. �

For the illustration of the Nash equilibrium profile mentioned in the statement we
consider the following example.

Example 1 The firms moves simultaneously. Let D(p) = 1 − p, k1 = 0.5, k2 =
0.4, and c = 0.1.

The following values can be calculated directly from the exogenously given data
for Example 1: pc = 0.1, pm2 (k1) = 0.3, qm

2 (k1) = 0.2, pd2 (k1) = 0.2, q̃1 = 0.1. It
can be verified that (6) is satisfied with equality at q ′ = 1 − (0.1 + √

0.24) − k2 ≈
0.010102 resulting in an equilibrium price p′ = 0.1 + √

0.24 ≈ 0.589898 and equi-
librium profit

√
0.24k2 ≈ 0.195959 for the private firm. In particular, (5) takes the

form

(
p∗
1 , q∗

1 , p∗
2 , q∗

2
) =

(
p∗
1 , q∗

1 ,max

{
1 − q∗

1 + c

2
, P(q∗

1 + k2)

}
,min

{
1 − q1 − c

2
, k2

})

in equilibrium, where q∗
1 ∈ [q ′, 0.5] and p∗

1 ∈ [
0, pd2 (q

∗
1 )

]
.

In particular, if q∗
1 = k1 = 0.5 and p∗

1 = pd2 (k1) = 0.2, then p∗
2 = 0.3 and q∗

2 =
0.2 (see Fig. 2). Calculating the social surplus (the sum of dark gray and light gray
areas in Fig. 2) and the private firm’s profit (the light gray area indicated by π2), we
obtainπ1 = 0.435 andπ2 = 0.04. It is easy to check that for this profile the necessary
condition (6) is satisfied.

Clearly, p∗
1 and q

∗
1 can varywithin the given ranges. Decreasing p∗

1 results in lower
producer surplus for the public firm, but in an equally large increase in consumer
surplus. Thus, payoffs remain the same. Altering q∗

1 shifts the residual demand curve,
and results in varying payoffs. The possible payoff intervals can also be calculated
for Example 1: π1 ∈ [0.285, 0.435] and π2 ∈ [0.04, 0.196].

Fig. 2 The strong private firm case
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3.2 Public Firm Moves First

We continue with the case of public leadership. Here, we have a unique family of
pure-strategy subgame-perfect Nash equilibria, where the public firm produces its
capacity limit at a price not greater than pd2 (k1). The private firm serves residual
demand and acts as a monopolist on the residual demand curve, as presented in the
following proposition.

Proposition 2 Let Assumptions 1–3, qm
2 (k1) < k2 and P(k1) > c be satisfied. Then

the set of SPNE prices and quantities are given by

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p1, k1, p

m
2 (k1) , qm

2 (k1)
)

(11)

for any p1 ≤ pd2 (k1).

Proof First, we determine the best reply BR2 = (p∗
2(·, ·), q∗

2 (·, ·)) of the private
firm. Observe that the private firm’s best response correspondence can be obtained
from the proof of Proposition 1. BR2(p1, q1) =

⎧
⎪⎪⎨

⎪⎪⎩

{(
pm2 (q1), qm

2 (q1)
)}

if p1 < pd2 (q1);{(
pm2 (q1), qm

2 (q1)
)
, (p1,min {k2, D(p1)})

}
if p1 = pd2 (q1);{(p1,min {k2, D(p1)})} if pd2 (q1) < p1 ≤ pm2 (0);{(

pm2 (0), qm
2 (0)

)}
if pm2 (0) < p1.

Though there are two possible best replies for the private firm to the public firm’s
first-period action

(
pd2 (q1), q1

)
, in an SPNE the private firm must respond with(

pm2 (q1), qm
2 (q1)

)
because otherwise, there will not be an optimal first-period action

for the public firm. Hence, the public firmmaximizes social surplus in the first period
by choosing price p∗

1 = pd2 (k1) and quantity k1. Then the private firm follows with
price p∗

2 = pm2 (k1) and quantity q∗
2 = qm

2 (k1). �

Continuing with the example of linear demand D(p) = 1 − p, we focus on the
simultaneous-move outcome, which matches the SPNE emerging in case of public
leadership.

Example 2 The public firm moves first. Let D(p) = 1 − p, the capacities and the
unit cost be k1 = 0.5, k2 = 0.4 and c = 0.1, respectively.

Then the actions associated with the only subgame-perfect Nash equilibrium profile
are (

p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗
1, 0.5, 0.3, 0.2

)
.

where p∗
1 ∈ [0, 0.3]. The social surplus and the private firm’s profit are equal to

π1 = 0.435 and π2 = 0.04.
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3.3 Private Firm Moves First

Now we consider the case of private leadership. In this case, there exists one type of
subgame-perfect Nash equilibria in which the private firm produces on the original
demand curve at the highest price level not above its monopoly price for which it is
still of the public firm’s interest to remain on the residual demand curve and produce
less than it would produce on the original demand curve. Formally, the private firm
sets price p̃2 =

max
{
p2 ∈ [c, pm2 (0)] | π1(p2,min

{
Dr
1(p2,min{D(p2), k2}), k1

}
, p2,min{D(p2), k2})

≥ π1(P(k1), k1, p2,min{D(p2), k2})}

in the first stage. The equilibrium profiles with their necessary conditions are given
formally in the following proposition and the existence of the price p̃2 is shown in
its proof.

Proposition 3 Let Assumptions 1–3, qm
2 (k1) < k2 and P(k1) > c be satisfied. The

equilibrium actions of the firms associated with an SPNE are the following ones

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1,min
{
Dr

1( p̃2,min{D( p̃2), k2}), k1
}
, p̃2,min{D( p̃2), k2})

(12)
where p1 ∈ [0, p̃2] can be an arbitrary price; furthermore, p1 ∈ ( p̃2, b] are also
equilibrium prices in case of q∗

1 = 0.

Proof We determine the SPNE of the private leadership game by backwards induc-
tion without explicitly referring to the proof of Proposition 1. For any given first-
stage action (p2, q2) of the private firm the public firm never produces less than
min{Dr

1(p2, q2), k1} in the second stage. Moreover, if the public firm does not cap-
ture the entire market (i.e. the private firm’s sales are positive), it never produces
more than min{Dr

1(p2, q2), k1}. If

π1(p2,min{Dr
1(p2, q2), k1}, p2, q2) ≥ π1(P(k1), k1, p2, q2) (13)

is satisfied at a price p2 ∈ [c, b] and a quantity q2 ∈ (0, k2], then the private firm, by
choosing its first-stage action (p2, q2), becomes a monopolist on the market (in case
of q2 ≥ D(p2)) or sells its entire production (in case of q2 < D(p2)) since the public
firm cannot increase social surplus by setting a lower price than p2 and it definitely
does not set a price above p2. To be more precise if (13) is satisfied with equality
the public firm could also respond with price P(k1) and quantity k1; however, as it
can be verified later in an SPNE the public firm does not choose the latter response.
Clearly, if (13) is violated, the public firm responds with price P(k1) and quantity
k1. Therefore, we get BR1(p2, q2) =



Mixed Duopolies with Advance Production 169

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
p1,min

{
Dr
1(p2, q2), k1

} | p1 ≤ p2
)}

if π1(p1,min
{
Dr
1(p2, q2), p2, q2), k1

}

> π1(P(k1), k1, p2, q2);
{(p1, k1) | p1 ≤ P(k1)} if π1(p1,min

{
Dr
1(p2, q2), p2, q2), k1

}

< π1(P(k1), k1, p2, q2);{(
p1,min

{
Dr
1(p2, q2), k1

} | p1 ≤ p2
)} ∪

{(p1, k1) | p1 ≤ P(k1)} if π1(p1,min
{
Dr
1(p2, q2), p2, q2), k1

}

= π1(P(k1), k1, p2, q2);

Clearly, the private firmdoes not set a price below c jointlywith a positive quantity.
Furthermore, the private firm can make positive profits because of qm

2 (k1) < k2 and
P(k1) > c, and therefore it sets a price above c. For any given p2 > c the private
firm will never produce less than min{Dr

2(p2, k1), k2} and the left hand side of (13)
is constant in q2 on

[
min{Dr

2(p2, k1), k2},min{D(p2), k2}
]
, while the profits of the

private firm are strictly increasing in q2 on the latter interval. Therefore, the private
firm produces q2 = min{D(p2), k2} if it produces at all. Henceforth, we substitute
q2 = min{D(p2), k2} in Eq. (13). Then the private firm would like to set price pm2 (0)
if (13) is satisfied at this price level, otherwise it sets the highest price still satisfying
(13). Note that (13) is definitely satisfied at price pm2 (0) if P(k1) ≥ pm2 (0), and
otherwise the LHS of (13) is larger than its RHS at price P(k1), the LHS is strictly
decreasing and continuous, while the RHS is strictly increasing and continuous on
[P(k1), pm2 (0)], and therefore if (13) is not satisfied at pm2 (0), there exists a unique
price p̃ ∈ [P(k1), pm2 (0)) such that (13) is satisfied with equality at price p̃. In the
former case the private firm sets price pm2 (0), while in the latter case price p̃ in the
SPNE. �

To illustrate Proposition 3 take again the linear demand curve D(p) = 1 − p.

Example 3 The private firm moves first and let D(p) = 1 − p, k1 = 0.5, k2 = 0.4
and c = 0.1.

The following values can be calculated directly from the exogenously given data and
the result of the best possible outcome for the private firm from the set of equilibria
determined in Example 1. Thus, the actions associated with the SPNE in this case
are for all p1 ∈ [0, 0.589898]:

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1, 0.010102, 0.589898, 0.4)

The respective payoffs are as follows: π1 = 0.285 and π2 = 0.196.

4 The Weak Private Firm Case

The main assumption throughout this section is that the private firm does not have
sufficient capacity to influence themarket strategically, that is whywe call the private
firm weak. Formally, qm

2 (k1) = k2, and in addition P(k1) > c, which in turn implies
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pc > c. We begin the analysis with the following lemma which dictates that the
private firm is not intended to set any price below the market clearing price.

Lemma 3 Assume that Assumptions 1–3, qm
2 (k1) = k2 and P(k1) > c hold true.

Given any strategy (p1, q1) of the public firm, the private firm’s strategies (p2, q2)
with price level p2 < max{pc, c} and any quantity q2 > 0 are strictly dominated,
for instance by a strategy with p2 = max{pc, c} and q2 > 0, in all three possible
orderings.

Proof If p2 < max{pc, c}, then the private firm can sell its entire capacity or
makes losses, independently from the public firm’s strategy. Clearly, given any
(p1, q1) and q2 > 0, replacing the private firm’s price level by p2 = max{pc, c}, π2

increases, thus, the private firm’s strategies with lower price levels become strictly
dominated. �

4.1 Simultaneous Moves

Here, we have twomain types of subgame-perfect Nash equilibria. In the first type the
private firm sets the highest price level at which it can still produce on the original
demand curve. As a particular case of this equilibrium, clearing the market may
emerge. The second type contains profiles for which the private firm is a monopolist
on the original demand curve.

Proposition 4 Assume that Assumptions 1–3, qm
2 (k1) = k2 and P(k1) > c hold. A

strategy profile

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗
1,min

{
Dr

1( p̂,min
{
k2, D( p̂)

}
, k1

})
, p̂,min

{
k2, D( p̂)

}
)

(14)
where p∗

1 ∈ [0, p̂] in case of q∗
1 > 0 and p∗

1 ∈ [0, b] in case of q∗
1 = 0, defines a Nash

equilibrium family in pure strategies if and only if all of the following conditions hold:

pm2 (0) ≥ p̂ ≥ pm2 (q∗
1 ) (15)

and
π1(p

c, k1, p̂, q
∗
2 ) ≤ π1(p

∗
1, q

∗
1 , p̂, q

∗
2 ). (16)

In particular, if p̂ = pc, then
(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗
1, k1, p

c, k2
)
is a Nash equilib-

rium.

Proof Assume that (p∗
1, q

∗
1 , p

∗
2, q

∗
2 ) is an arbitrary equilibrium profile. It can be

verified that q∗
1 + q∗

2 = D(p′), where p′ stands for the highest price from p∗
1, p

∗
2

at which at least one firm sells a positive amount. Like in the analysis of the strong
private firm case, we divide our analysis into three subcases. In the first case (Case A)
we have p∗

1 = p∗
2 , in the second one (Case B) p

∗
1 > p∗

2 holds, while in the remaining
case we have p∗

1 < p∗
2 (Case C).
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Case A: By Lemma 3 we have p∗
1 = p∗

2 ≥ pc. First, we verify that the strat-
egy profile given by (14) is a Nash-equilibrium profile for any p̂ ≥ pc if (15)
and (16) are satisfied. Hence, firms set quantities q∗

2 = min
{
k2, D( p̂)

}
and q∗

1 =
Dr

1( p̂,min
{
k2, D( p̂)

}
). By the second inequality in (15), the private firm has no

incentive to increase its price. If D( p̂) ≥ k2, then decreasing p2 is trivially irrational
for the private firm that already sells its entire capacity. In case k2 > D( p̂), we obtain
a particular equilibrium

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p∗, 0, p̂, D( p̂)), which means that the
public firm is not present on the market, and therefore, by the first inequality in (15)
the private firm has no incentive to decrease its price.

Now we consider the public firm’s actions. Clearly, increasing the public firm’s
price would not increase, but in fact reduce total surplus if q∗

1 > 0. Moreover,
prices p∗

1 = p∗
2 = pc with quantities q∗

1 = Dr
1( p̂,min {k2, D(pc)}) = k1 and q∗

2 =
min {k2, D(pc)} = k2 would result in the best possible outcome for the public firm.
Hence, we still have to investigate the effect of a potential price decrease by the
public firm in case of p∗

1 = p∗
2 > pc. If the public firm reduces its price without

increasing its quantity, obviously total surplus cannot increase. To analyze the case
inwhich the public firm decreases its price and increases its quantity at the same time,
observe that the sum of consumer surplus and the two firms’ revenues (which equals
π1(p1, q1, p2, q2) + c(q1 + q2)) is only a function of the highest price at which sales
are still positive. Therefore, total surplus is strictly decreasing in q1 on

(
q∗
1 , D( p̂)

)

and strictly increasing in q1 on
[
D( p̂), k1

]
for a given p1 < p∗

1 . To see the latter
statement notice that within

[
D( p̂), k1

]
the superfluous production of the private

firm remains the same, that is its entire production. Hence, we have shown that the
benchmark action of the public firm in order to determine whether the public firm
has an incentive to reduce its price is (pc, k1), which is in line with (16).

Turning to the case where (15) is violated, we show that (14) cannot be a Nash-
equilibriumprofile. If p̂ < pm2 (q∗

1 ) the private firmwill increase its price until pm2 (q∗
1 )

to become a monopolist on the residual demand curve, where we are not anymore in
Case A of our analysis. Note that any p∗

1 ∈ [0, p̂] results in the same outcome, but if
p∗
1 �= p∗

2 , we are again either in Case B or in Case C. If pm2 (0) < p̂, the private firm
will switch to price pm2 (0).

As a special case of p̂ = pc, clearing the market is always a Nash equilibrium
for the following reason: by pc ≥ pm2 (k1) the private firm cannot be better off by
unilaterally increasing its price even by reducing its quantity, accordingly. Note that
the market-clearing equilibrium ensures that an equilibrium in pure strategies always
exists in the weak private firm case.

Now we show that no other equilibrium exists given that p∗
1 = p∗

2 ≥ pc. Assume
that q∗

2 < min
{
k2, D(p∗

1)
}
. In such cases the private firm gets better off by slightly

undercutting p∗
1 and selling q∗

2 = min
{
k2, D(p∗

1 − ε)
}
. Now assume that q∗

1 �=
Dr

1(p
∗
1,min

{
k2, D(p∗

1)
}
. If the left hand side is larger, then there is superfluous

production that results in surplus loss; if the left hand side is smaller, then there is a
loss in consumer surplus. Thus, there are no more equlibria, if p∗

1 = p∗
2 .

Case B: By Lemma 3 p∗
1 > p∗

2 ≥ pc. By decreasing p1 to p∗
2 , the public firm can

always increase social surplus, unless q∗
1 = 0. In the extreme case of q∗

1 = 0, p∗
1 can

obviously be any nonnegative amount. Besides, if k2 ≥ D(p∗
2) and (16) holds, we
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arrive to theNash equilibria inwhich the private firm sets price pm2 (0). If k2 < D(p∗
2),

then the public firm can increase social surplus by setting price p1 = p∗
2 and quantity

q∗
1 = D(p∗

2) − k2.
Case C: Nowwe have p∗

2 > p∗
1 . As already shown in Case A, this case emerges in

equilibrium if
(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗, Dr

1( p̂,min
{
k2, D( p̂)

})
, p̂,min

{
k2, D( p̂)

}
),

and p∗
1 < p̂, that is, we have the Nash equilibrium mentioned in the statement. It

remains to show that there is no other possible equilibrium in this case. If p∗
2 > p∗

1 ,
then p∗

2 = pm2 (q∗
1 ) and q∗

2 = min
{
Dr

2(p
∗
2, q

∗
1 ), k1

} = qm
2 (q∗

1 ) must hold, since oth-
erwise the private firm’s payoff would be strictly lower. The arguments for this are
analogous to those mentioned in the strong private firm case.12 As qm

2 (k1) = k2, due
to the fact that qm

2 (·) is decreasing13 in q1, for any q1 < k1, qm
2 (q1) > qm

2 (k1) = k2.
Thus, q∗

2 must equal k2. It is easy to see that for this case the only possible type of
equilibrium is characterized in the statement. �

The weak private firm case emerges in the following example.

Example 4 The firms moves simultaneously. Let D(p) = 1 − p, k1 = 0.9, k2 =
0.02, c = 0.01.

For the exogenously given values in Example 4 we get pc = 0.08 and p̂max = 0.102
as the highest possible price satisfying (15) and (16). In this case we have several
Nash equilibrium profiles, which are not payoff equivalent. For all p̂ ∈ [0.08, 0.102]
and any p1 ∈ [0, p̂],

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1, 0.98 − p̂, p̂, 0.02)

defines the family of Nash equilibrium profiles. In particular, if p̂ = pc, then

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1, 0.9, 0.08, 0.02)

and the social surplus associated to the market clearing equilibrium is π1 = 0.4876,
while the private firm’s profit is π2 = 0.0014.

In the case in which the firms do not choose the market clearing price, let p̂ =
0.102 (see Fig. 3). Then the equilibrium profile is

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1, 0.878, 0.102, 0.02),

the corresponding payoffs are π1 = 0.4858 (the sum of dark and light gray areas)
and π2 = 0.0018 (the light gray area indicated by π2).

12In particular, if the private firm sets a price not greater than p∗
1 , we are not anymore in Case

C; if q∗
2 > min

{
Dr
2(p

∗
2 , q

∗
1 ), k2

}
, then the private firm produces a superfluous amount; if q∗

2 <

min
{
Dr
2(p

∗
2 , q

∗
1 ), k2

}
, then the private firm could still sell more than q∗

2 ; and if q∗
2 = Dr

2(p
∗
2 , q

∗
1 ),

then the private firm will choose a price-quantity pair maximizing profits with respect to its residual
demand curve Dr

2(·, q∗
1 ).

13Because pm2 (·) is a decreasing function in q1.
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Fig. 3 The weak private
firm case—both firms have
positive output

Clearly, for the equilibrium family π2(·) is increasing in p̂, while π1(·) is
decreasing in p̂. The payoff intervals can also be calculated, in particular, π1 ∈
[0.4858, 0.4876], π2 ∈ [0.0014, 0.0018].

4.2 Public Firm Moves First

The case of public leadership is somewhat simpler. Namely, the firms clear themarket
in the only equilibrium family.14 The results of public leadership are collected in the
following proposition.

Proposition 5 Assume that Assumptions 1–3, qm
2 (k1) ≥ k2 and P(k1) > c hold.

Then the prices and quantities associated with the pure strategy SPNE are

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗, k1, pc, k2

)

where p∗ ∈ [0, pc].15
Proof We determine the reaction function BR2 = (p∗

2(·, ·), q∗
2 (·, ·)) of the private

firm. Like in the strong private firm case, the private firm’s best response correspon-
dence can be obtained from the proof of Proposition 4, the corresponding simulta-
neous case.

BR2(p1, q1) =
{

(p1,min
{
k2, Dr

2(p1, q1)
}
) if pm2 (q1) ≤ p1;

(pm2 (q1), qm
2 (q1)) if pm2 (q1) > p1.

(17)

The reaction function dictates that the public firm maximizes social surplus in the
first period by choosing any price level p∗

1 ≤ pc and quantity k1. �

14We speak about family, because p∗
1 can vary within a given range.

15As mentioned earlier in the weak private firm case we have pc > c.
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Example 5 The public firm moves first. Let D(p) = 1 − p, the capacities and the
unit cost be k1 = 0.9, k2 = 0.02 and c = 0.01.

Then pc = 0.08. The public firm will sell its entire capacity at a p∗
1 ∈ [0, pc] market

clearing price. The private firm will react with the market clearing price, and will
also sell its entire capacity. This ensures the highest possible social surplus in this
setting. Thus, for all p1 ∈ [0, 0.08] the actions associated with the SPNE are

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1, 0.9, 0.08, 0.02),

where the corresponding payoffs are π1 = 0.4876 and π2 = 0.0014.

4.3 Private Firm Moves First

Finally,we consider the case of private leadership. Theonly pure-strategy equilibrium
family of this case also appears in the simultaneous-moves subcase of the weak
private firm case. Namely, the private firm produces on the original demand curve at
the highest possible price level for which it is still in the public firm’s interest to allow
the private firm to do so. The equilibrium family is given formally in the following
proposition.

Proposition 6 Assume that Assumptions 1–3, qm
2 (k1) ≥ k2 and P(k1) > c hold.

Then the prices and quantities associated with the pure strategy SPNE are

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p∗, Dr
1( p̂,min

{
k2, D( p̂)

}
), p̂,min

{
k2, D( p̂)

}
)

where p∗ ∈ [0, p̂], if and only if p̂ ≥ pc and p∗
2 = p̂ is the highest price level for

which

π1(p
c, k1, p̂,min

{
k2, D( p̂)

}
) ≤ π1(p

∗, Dr
1( p̂,min

{
k2, D( p̂)

}
), p̂,min

{
k2, D( p̂)

}
)

(18)

Proof We determine the reaction function BR1 = (p∗
1(·, ·), q∗

1 (·, ·)) of the public
firm. The public firm’s best response correspondence can also be obtained from the
proof of Proposition 4, the corresponding simultaneous-move case. BR1(p2, q2) =
⎧
⎪⎪⎨

⎪⎪⎩

(p1, k1) if π1(pc, k1, p2, q2)
> π1(p1, Dr

1(p2,min {k2, D(p2)}), p2,min {k2, D(p2)});
(p2, Dr

1(p2, q2)) if π1(pc, k1, p2, q2)
≤ π1(p1, Dr

1(p2,min {k2, D(p2)}), p2,min {k2, D(p2)}),

where p1 ∈ [0, p̂].
The reaction function dictates that the private firm maximizes its profit in the

first period by choosing the highest possible price level, where the public firm is
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still better off (i.e. the social surplus is higher) by reacting with the same price and
serving residual demand, than by undercutting p2.16 A highest price level p̂ exists
for every demand function, because if both firms choose price level pc and sell their
entire capacities (i.e. they clear the market), then (18) always holds. �

The following example illustrates Proposition 6.

Example 6 The private firm moves first. Let D(p) = 1 − p, the capacities and the
unit cost be k1 = 0.9, k2 = 0.02 and c = 0.01.

For the value of Example 6 we get p̂ = 0.102. The private firm will choose p∗
2 = p̂

and sells its entire capacity. The public firm will serve residual demand as it is
not worth to undercutting the private firm’s price which would cause superfluous
production. Thus, for all p1 ∈ [0, 0.102] the actions associated with the only SPNE
are (

p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p1, 0.878, 0.102, 0.02),

where the corresponding payoffs are π1 = 0.4858 and π2 = 0.0018.

5 The High Unit Cost Case

Themain assumption of this case is c ≥ P(k1). In this case if the public firm produces
at its capacity level, then the private firm will not enter the market because of the
high cost level.

5.1 Simultaneous Moves

In this subcase we have two types of pure-strategy Nash equilibria. The first type
consists of profiles in which the private firm sets a price and produces a quantity on
the residual demand curve, where in the particular case when the public firm does
not produce anything in equilibrium, the residual demand curve coincides with the
demand curve. In the second type, the public firm produces its capacity limit, while
the private firm does not enter the market.

Proposition 7 Assume that c ≥ P(k1) and Assumptions 1–3 hold. A strategy profile
N E1 (

p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗
1, q

∗
1 , p

m
2

(
q∗
1

)
, qm

2

(
q∗
1

))

16Depending on the parameters, it can also occur that the public firm has zero output on the residual
demand curve.
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is for any price-quantity pair

(p∗
1, q

∗
1 ) ∈ {

(p1, q1) | 0 < q1 < D(c), 0 ≤ p1 ≤ pd2 (q1)
}⋃

(19)

{(p1, q1) | q1 = 0, 0 ≤ p1 ≤ b} (20)

a Nash-equilibrium in pure strategies17 if and only if

π1(0, D(c), pm2
(
q∗
1

)
, qm

2

(
q∗
1

)
) ≤ π1(p

∗
1, q

∗
1 , p

m
2

(
q∗
1

)
, qm

2

(
q∗
1

)
). (21)

A strategy profile N E2

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗
1, D(c), p∗

2, 0
)

where p∗
1 ∈ [0, c], and p∗

2 ∈ [0, b], also defines a Nash equilibrium family. Finally,
no other equilibrium exists in pure strategies.

Proof Assume that (p∗
1, q

∗
1 , p

∗
2, q

∗
2 ) is an arbitrary equilibrium profile.We divide our

analysis into two subcases. In the first case the private firm is inactive (i.e. q∗
2 = 0),

while in the second case it is active on the market (i.e. q∗
2 > 0).

Case A: Assume that q∗
2 = 0, which means that only the public firm’s production

is positive, and since c > P(k1) it sets a price p∗
1 ≤ c and quantity q∗

1 = D(c) in
order to maximize social surplus. Therefore, only NE2 type equilibria can emerge.
We verify that indeed NE2 specifies equilibrium profiles. Clearly, the public firm
would reduce social surplus by switching unilaterally from its NE2 strategy to a
non NE2 one. The private firm makes losses when producing a positive amount at
a price p∗

2 < c. In addition, Dr
2(p

∗
2, D(c)) = 0 for all prices p∗

2 ≥ c by c > P(k1) if
the public firm plays an NE2 strategy, and thus once again the private firm will just
make losses if it produces a positive amount at a price p∗

2 ≥ c.
Case B: Assume that q∗

2 > 0, which implies p∗
2 ≥ c since otherwise the private

firm would make losses. We divide our analysis into four subcases.
Subcase (i): Assume that p∗

1 = p∗
2 > c. Clearly, we cannot have q∗

1 + q∗
2 <

D(p∗
1) since otherwise the public firm could increase social surplus by increasing

its production because of c > P(k1). Obviously, we cannot have q∗
1 + q∗

2 > D(p∗
1)

since then the public firm would have an incentive to reduce its production if q∗
1 > 0

or the private firm could gain from decreasing its production if q∗
1 = 0. In case of

q∗
1 + q∗

2 = D(p∗
1) we must have

q∗
2 = min

{
k2, D(p∗

2)
}
and q∗

1 = Dr
1(p

∗
2,min

{
k2, D(p∗

2)
}
) (22)

since otherwise the private firm could radically increase its sales by a unilateral and
sufficiently small price decrease.

Nowwe investigatewhen a strategyprofilewith prices p∗
1 = p∗

2 > c andquantities
given by (22) constitutes aNash equilibriumprofile. The private firm can benefit from

17Recall that q1 < D(c) ⇔ P(q1) > c. In addition, q1 > 0 implies c < pd2 (q1) < pm2 (q1).
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setting higher prices if and only if p∗
2 < pm2

(
q∗
1

)
. Moreover, the private firm can

benefit from setting lower prices if and only if p∗
2 > pm2

(
q∗
1

)
, which in fact can only

be the case18 if q∗
1 = 0, because the private firm is not constrained by the production

of the public firm by (22). Therefore, in a Subcase (i) equilibrium profile we must
have p∗

1 = p∗
2 = pm2

(
q∗
1

) = pd2
(
q∗
1

)
> c.19 Clearly, if q∗

1 > 0, then the public firm
would decrease social surplus by a price increase (independently of a simultaneous
quantity adjustment). If q∗

1 = 0, then the public firm still will not benefit from setting
higher prices. In addition, the public firm would not gain from setting a lower price
if and only if (21) is satisfied.

To summarize, Subcase (i) admits those price-quantity pairs (p∗
1, q

∗
1 ) from the set

specified by (19) for which p∗
1 = pd2

(
q∗
1

)
results in equal prices.

Subcase (ii): Assume that p∗
1 = p∗

2 = c. As shown in Subcase (i) we must have
q∗
1 + q∗

2 = D(p∗
1). In addition, it can be easily checked that the private firm can

benefit from a unilateral deviation if and only if pm2 (q∗
1 ) ∈ (c, a). Since q∗

1 < D(c)
implies pm2 (q∗

1 ) ∈ (c, a) it follows that q∗
1 = D(c) should be the case, which would

imply q∗
2 = 0, leading to a departure from Case B. Hence, a Subcase (ii) equilibrium

does not exist.
Subcase (iii): Assume that p∗

1 > p∗
2 ≥ c. Then there cannot be an equilibrium in

which q∗
1 > 0 because the public firm could increase social surplus by switching to

price p∗
2 and quantity

(
D(p∗

2) − q∗
2

)+
. Furthermore, in case of q∗

1 = 0 we must have
q∗
2 = D(p∗

2) ≤ k2 since otherwise the public firm could again increase social surplus
by switching to price p∗

2 and quantity
(
D(p∗

2) − q∗
2

)+
. Therefore, in a Subcase (iii)

type equilibrium the private firm behaves as a monopolist, and thus p∗
2 = pm2 (0)

must be the case, which in turn is an equilibrium if and only if the public firm has no
incentive to enter the market, that is (21) is satisfied.

Observe that the derived equilibrium is an NE1 type equilibriumand the respective
price-quantity pairs (p∗

1, q
∗
1 ) are a subset of the set specified by (20).

Subcase (iv): Assume that p∗
1 < p∗

2 and p∗
2 ≥ c. In case of Dr

2(c, q
∗
1 ) = 0 we

must have q∗
2 = 0, which has been already investigated in Case A. Therefore, in what

followswe can assume that Dr
2(c, q

∗
1 ) > 0,which in turn implies that pm2 (q∗

1 ) ∈ (c, a)

and that pd2 (q
∗
1 ) ∈ (c, pm2 (q∗

1 )) is well defined. Observe that wemust have q∗
1 + q∗

2 =
D(p∗

2) since otherwise, for instance, the public firm could increase social surplus by
either increasing or decreasing its output. It can be checked that the private firm
does not undercut the public firm’s price if and only if p∗

1 ≤ pd2 (q
∗
1 ). Moreover, if the

private firm does not undercut the public firm’s price, then it will set price pm2 (q∗
1 ) and

quantity qm
2 (q∗

1 ). The derived strategy profile constitutes a Nash equilibrium profile
if and only if the public firm has no incentive to deviate, that is (21) is satisfied.

18If k2 ≤ D(p∗
2), a price decrease cannot increase the private firm’s profit, and if k2 > D(p∗

2),
q∗
1 = 0.

19Observe that this also implies P(q∗
1 ) > c.
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It can be checked that we have determined an NE1 type equilibrium and the
respective price-quantity pairs (p∗

1, q
∗
1 ) lie in the set specified by (19), where

q∗
1 > 0 and p∗

1 ∈ [0, pd2 (0)] ⊂ [0, pm2 (0)] resulting in a higher price for the private
firm.20 �
Example 7 The firms move simultaneously. Pick the capacities and unit cost levels
k1 = 0.5, k2 = 0.1, c = 0.6 and let D(p) = 1 − p, which lead to the high unit cost
case.

Focusing on NE1 type equilibria, from the values of Example 7 we get that any
q1 ∈ [0, 0.4] leads to a Nash equilibrium. Let us fix q1 = 0.3. Now pm2 (0.3) = 0.65
an pd2 (0.3) = 0.325. Thus, p∗

1 ∈ [0, 0.325]; q∗
1 = 0.3; p∗

2 = 0.65; q∗
2 = 0.05. In this

case, π1 = 0.0787 and π2 = 0.0013. Depending on q1, profit levels can vary in the
following intervals: π1 ∈ [0.06, 0.08] and π2 ∈ [0, 0.04].21

5.2 Public Firm Moves First

In the high unit cost case with public leadership we obtain that the private firm does
not enter the market, while the public firm’s output equals its capacity. This result is
formalized in the following proposition.

Proposition 8 Assume that c > P(k1) and Assumptions 1–3 hold. Then the prices
and quantities associated with the pure strategy SPNE are

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (
p∗, D(c), p∗

2, 0
)

where p∗ ∈ [0, c] and p∗
2 ∈ [0, b].

Proof We determine the reaction function BR2 = (p∗
2(·, ·), q∗

2 (·, ·)) of the private
firm. The private firm’s best response correspondence can be obtained from the proof
of Proposition 7, the corresponding simultaneous-move case.

BR2(p1, q1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(p, 0) | p ∈ [0, b]} if D(c) ≤ q1 ≤ k1 and p1 ≤ c;
{(p1,min {k2, D(p1)})} if pd2 (q1) < p1 and p1 > c;
{(p1,min {k2, D(p1)})} ∪{

(pm2 (q1), qm
2 (q1))

}
if pd2 (q1) = p1 and p1 > c;{

(pm2 (q1), qm
2 (q1))

}
if pd2 (q1) ≥ p1 and p1 > c.

(23)

Note that the above four areas partition [0, b] × [0, k1] since q1 < D(c) implies
pd2 (q1) > c. From the derived reaction function it follows that the public firm max-

20It can be verified that we have obtained all NE1 type equilibria.
21We note that here p∗

1 < c, still, it is of the public firms interest to produce a positive amount,
as this action leads to a positive change in consumer surplus. This is the reason why there is no
producer surplus indicated on Fig. 4.
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Fig. 4 The high unit cost case

imizes social surplus in the first period by choosing any price level p∗ ∈ [0, c] and
quantity k1. �

Example 8 The public firm moves first. Let k1 = 0.5, k2 = 0.1, and c = 0.6, and
pick demand curve D(p) = 1 − p.

For the values given in Example 8 the private firm is not present on the market, and
we obtain p∗

1 ∈ [0, 0.5], q∗
1 = 0.5, p∗

2 ∈ [0, 1], and q∗
2 = 0. Payoffs equal π1 = 0.08

and π2 = 0.

5.3 Private Firm Moves First

Finally, we consider the case of private leadership. We will establish for this case
that in equilibrium the private firm chooses the highest price level at which the public
firm does not capture the entire market at price c or smaller. The respective price
is determined either as the price at which the public firm is indifferent between
matching the private firm’s price and capturing the entire market at a price less than
or equal to c and producing D(c), despite the fact that the production of the private
firm may be wasted, or by the private firm’s monopoly price.

Proposition 9 Assume that c ≥ P(k1) and Assumptions 1–3 hold. Then there exists
a unique price p̂ ∈ (c, pm2 (0)] such that the prices and quantities associated with the
pure strategy SPNE are

(
p∗
1, q

∗
1 , p

∗
2, q

∗
2

) = (p∗
1, D

r
1( p̂,min

{
k2, D( p̂)

}
), p̂,min

{
k2, D( p̂)

}
)

where p∗
1 ∈ [0, p̂], and p̂ is defined as the smallest price satisfying

π1(0, D(c), p̂,min
{
k2, D( p̂)

}
) ≤ π1(p

∗
1 , Dr

1( p̂,min
{
k2, D( p̂)

}
), p̂,min

{
k2, D( p̂)

}
).
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Proof Clearly, if the private firm does not produce anything, i.e. q2 = 0, then the
public firm follows with (p1, D(c)) such that p1 ≤ c. If the private firm’s production
is positive, i.e. q2 > 0, thenwemust have p2 ≥ c. Furthermore, the private firm never
produces more than D(p2).

Focusing on the SPNE, we determine the best replies of the public firm only to
the first-stage actions of the private firm lying in

A = {(p2, 0) | p2 ∈ [0, b]} ∪ {(p2, q2) | p2 ∈ [c, b] and q2 ∈ (0, D(p2)]} .

For a given (p2, q2) ∈ A such that q2 ∈ (0, D(p2)] the public firm never sets a price
above p2 if it decides to produce at all, i.e. q1 > 0. Moreover, in the latter case the
public firm’s production has to equal q1 = Dr

1(p2, q2), since if it does not capture
the entire market, social surplus will be determined at price p2 and superfluous
production decreases social surplus. Therefore, the response of the public firm is
determined by inequality

π1(0, D(c), p2, q2) ≤ π1(c, D
r
1(p2, q2), p2, q2), (24)

where its response equals BR1(p2, q2) = {(p1, Dr
1(p2, q2)) | p1 ≤ c} if q2 > 0 and

(24) is satisfied, and BR1(p2, q2) = {(p1, D(c) | p1 ≤ c} if q2 = 0 or (24) is vio-
lated.22

Taking the best responses of the public firm into consideration, the private firm
will produce q2 = min{k2, D(p2)} at price p2 if (24) is satisfied.23 By substituting
q2 = min{k2, D(p2)} into (24) it follows that the right-hand side of (24) is continuous,
strictly decreasing in p2 on [c, pm2 (0)], and it is larger than its left-hand side at price
p2 = c. Since the private firm does not set a price above pm2 (0) it will either set the
price in (c, pm2 (0)) for which (24) is satisfied with equality or price pm2 (0). �

Example 9 The private firm moves first. Pick linear demand and let the capacities
and the unit costs be k1 = 0.5, k2 = 0.1, c = 0.6.

It can be determined for the values given in Example 6 that p̂ = 0.8. This leads us to
p∗
1 ∈ [0, 0.8]; q∗

1 = 0.1; p∗
2 = 0.8; q∗

2 = 0.1, which implies π1 = 0.06; π2 = 0.04.

6 Solution of the Timing Game

We consider a timing in which the firms in stage 1 can choose between two periods
for the announcement of their price and quantity decision. Thereafter, knowing each
others timing decision, the firms in stage 2 set their prices and quantities in the

22To be precise if (24) is satisfied with equality, then both mentioned types are best responses;
however, as it can be verified in a SPNE only the former type can be selected.
23Note that the distribution of production between the two firms does not effect (24).
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Table 1 Example payoff levels for the demand function D(p) = 1 − p

Cases Strong private firm Weak private firm High unit cost

k1 0.5 0.9 0.5

k2 0.4 0.02 0.1

c 0.1 0.01 0.6

π1: Public firm’s equilibrium payoff (social surplus)

sim. moves ∈ [0.285, 0.435] ∈ [0.4858, 0.4876] ∈ [0.06, 0.08]
As leader 0.435 0.4876 0.08

As follower 0.285 0.4858 0.06

π2: Private firm’s equilibrium payoff (profit)

sim. moves ∈ [0.04, 0.196] ∈ [0.0014, 0.0018] ∈ [0, 0.04]
As leader 0.196 0.0018 0.04

As follower 0.04 0.0014 0

selected periods. Hence, we investigate a timing game with observable delay à la
Hamilton and Slutsky (1990).

Before we turn to the solution of the timing game, we provide a summary of the
payoffs that were calculated in the numerical Examples 1–9, respectively. Table1
provides numerical evidence of the solution of the timing game for the particular
demand function D(p) = 1 − p, with exogenously given capacities and cost levels.

It is easy to see from Table1 that in all the three main cases any firm has the
highest payoff with certainty in case it is the first mover. Thus, intuitively as every
firm wants to become the leader and there cannot be two leaders at the same time,
the outcome of the timing game is simultaneous moves. To be more precise the
firms strictly prefer the role of the leader to moving simultaneously and they prefer
moving simultaneously to the role of the follower if in the simultaneous-move game
neither the best one nor the worst one is realized from the continuum of pure-strategy
equilibria. The equilibrium of the timing game for any concave, twice continuously
differentiable demand function is precisely stated in the following proposition.

Proposition 10 Under Assumptions 1–3 and that in the simultaneous-move game
from the set of all possible pure-strategy equilibria for both firms neither the best
one nor the worst one is realized,24 in the subgame-perfect Nash equilibrium of the
timing game both firms choose to set their price-quantity pairs in the first period,
and therefore the firms play the simultaneous-move game in the second stage.

Proof The equilibrium of the timing game can be derived from Propositions 1–9,
by comparing the payoffs of both firms for different orderings of moves.

Let us focus on the the strong private firm case, hence we have to consider Propo-
sitions 1–3. If both firms select to chose their price-quantity decisions in the first
period, then neither of them would benefit from moving in the second period. Since

24The latter assumption can be explained by risk dominance.
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we assumed that in the simultaneous-move game not the worst possible equilibrium
outcome will be chosen, moving second would be definitely worse. From this it
also follows that none of the sequential games can be an equilibrium outcome of
the timing game. If both firms select to chose their price-quantity decisions in the
second period, then unilaterally becoming the leader is strictly better than moving
simultaneously since we have assumed that in the simultaneous-move game the best
possible equilibrium outcome will not be chosen.

The same argument applies to the weak private firm and the high unit cost
cases. �

7 Corollaries and Concluding Remarks

Our main results are collected in the following corollaries. We focus on the dif-
ferences between the production-to-order case—which was investigated in earlier
work—and the production-in-advance case from the point of view of equilibrium
strategies, social surplus effects and equilibrium analysis of the timing game. The
first corollary focuses on the public firm’s influence on social surplus. One can carry
out a comparisonwith the results for the production-to-order case presented inBalogh
and Tasnádi (2012). In the PIA case the social surplus becomes lower—let them play
any pure-strategy Nash equilibria—than that of the PTO case. This result is put down
in the next corollary.

Corollary 1 When playing the production-in-advance type of the Bertrand-
Edgeworth game, the equilibrium strategies lead to a decrease in social surplus
compared to the PTO case.

The second main result of the paper is implicitly given in Sect. 5: independently
from the parameters and the orderings of firms’ decisions, the production-in-advance
type Bertrand-Edgeworth mixed duopoly always has at least one pure-strategy Nash
equilibrium. This result remained the same as that of the mixed PTO case. However,
we emphasize that in case of standard Bertrand-Edgeworth duopolies, there is a lack
of pure-strategy equilibria (see e.g. Deneckere and Kovenock 1992). We state the
existence of a pure-strategy equilibrium in the third corollary.

Corollary 2 Wehave at least one pure-strategy (subgame-perfect) Nash equilibrium
in all three analyzed cases and for all three orderings of moves.

These results are summarized in Table2.
The results suggest that it is by far not all the same whether a public firm has

some influence on an oligopoly market. Further research directions may include
the application of our model to markets with asymmetric information, partial pub-
lic ownership, and oligopolies with more than two firms. One can notice that our
assumptions were quite general in the present paper. However, to present plausible
results in the mentioned topics, more strict assumptions may be needed.
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Table 2 Comparison of the PTO and PIA cases

Production-to-order Production-in-advance

Equilibrium in pure strategies Yes Yes

Timing game equilibrium All possible orderings Simultaneous moves

Public firms’s social surplus
effect

Positive Negativea

aCompared to the mixed PTO case
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Necessary Conditions for Concave
and Cournot Oligopoly Games

Ferenc Forgó and Zoltán Kánnai

Abstract Necessary conditions for the existence of pure Nash equilibria introduced
by Joó (A note on minimax theorems, Annales Univ. Sci. Budapest, 39(1996), 175–
179) for concave non-cooperative games are generalized and then applied to Cournot
oligopoly games. If for a specified class of games there always exists a pure Nash
equilibrium, then cost functions of the firms must be convex. Analogously, if for
another specified class of games there always exists a pure Nash equilibrium, then
revenue functions of the firms must be concave in their respective variables.

Keywords Concave games · Cournot oligopoly · Necessary conditions

JEL-code: L13

1 Introduction

Oligopoly is a market structure where a few competing firms are present and their
individual decisions about production and/or selling price influence not only their
own profit but everybody else’s as well. Thus oligopoly lends itself to beingmodelled
as a non-cooperative gamewhere the players are the firms and payoffs are determined
by profit functions usually defined as revenues less costs. Oligopolies have long
been in the focus of economic research and practical market design. The ground
breakingworkofCournot (1838) had laid down the foundations but intensive research
only began when game theory became available to provide the necessary tools for
deep analysis. Our focus will be on classical Cournot games where firms make
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decisions on the production volume of a single homogeneous product subject to
capacity constraints.

Among many other aspects the existence and uniqueness of equilibria of non-
cooperative games as defined by Nash (1950) has drawn much attention. Beyond
direct application of game theoretic existence theorems many papers utilized the
special features of an oligopoly game. Excellent reference books on the subject
are available e.g. Friedman (1977), Okuguchi and Szidarovszky (1990). In game
theory much effort has been devoted to weakening conditions imposed on strategy
sets/payoff functions to ensure the existence of a (pure) Nash equilibrium point (NEP
for short). Staying in finite dimensional spaces, this endeavor is demonstrated by the
series of papers marked by the milestone results of von Neumann (1928), Nash
(1950), Nikaido and Isoda (1955), Friedman (1977).

These results of course translate to oligopoly games but sufficient conditions
directly imposed on the primitives (demand, inverse demand and cost functions) are
preferable since their interpretation is more direct and closely related to economic
phenomena thus readily embraced by economists. It was realized early that there are
limits to generalizations of revenue and/or cost functions if we do not want to lose
the desirable property of the existence of a pure NEP. There are examples, a few of
them analyzed in Novshek (1985), for Cournot games without pure NEP’s. These
are, however, only examples but not necessary conditions. Necessary conditions in
relation to oligopoly games are quite rare.

In this paper we will study and apply to the Cournot game a special class of
necessary conditions first formulated and proved by Joó (1986, 1996) for general
concave games. The main message of our analysis, in loose terms, is that if for
a special class of revenue functions there always exists a pure NEP, then the cost
functions need to be convex in their respective variables. This can also be reversed: if
for a special class of cost functions there always exists a pure NEP, then the revenue
functions must be concave in their respective variables.

Thepaper is organized as follows. InSect. 2we set forth a special class of necessary
conditions applicable in mathematical programming and game theory. In Sect. 3 we
study and generalize necessary conditions for concave games due to Joó (1986,
1996). In Sect. 4 these conditions are discussed and applied to generalized Cournot
games. Section5 concludes.

2 A General Framework for Necessary Conditions in
Mathematical programming and Game Theory

In mathematical programming a major line of research has aimed at extending the
power of efficient solution methods to problems where assumptions about objective
functions and/or constraints (feasible sets) are weaker. This has led e.g. to replacing
concave (convex) objective functions with quasi-concave (quasiconvex) functions



Necessary Conditions for Concave … 187

(see e.g. Diewert et al. 1981) while maintaining the power of solution methods based
on local search.

The natural question emerges: where are the meaningful bounds for these gen-
eralizations? While sufficient conditions giving way to generalizations abound in
the literature, necessary conditions are hard to find. A rare exception is the work of
Kolstad and Mathiesen (1987) addressing the uniqueness of the NEP. The general
framework set forth in this paper for necessary conditions is inspired by Martos
(1975) in mathematical programming and Joó (1986, 1996) in game theory. While
Martos’ results are well known those of Joó’s have remained unnoticed. This is
mainly due to the titles not giving any orientation about what it is really all about.
Especially the title of Joó (1996) is misleading.

Define a general mathematical programming problem P( f, L) as

max f (x) (1)

subject to x ∈ L

where L ⊂ R
n is the feasible set, f : R

n → R is the objective function.
Let T be a particular property of P( f, L). Let furthermoreL be a family of feasible

sets and F a family of objective functions. The following two statements are said to
be Martos-type necessary conditions:

(i) If property T holds for any P( f, L), L ∈ L, then f ∈ F .
(ii) If property T holds for any P( f, L), f ∈ F , then L ∈ L.

An example of a Martos-type (i) condition is the following.

Theorem 1 Martos (1975) Let L ′ be a compact, convex subset of R
n. If for any

compact, convex set L ⊂ L ′ problem (1) has the property that every local maximum
point is also a global maximum point, then f is quasiconcave on L ′.

Here L is the family of all compact, convex subsets of L ′, F is the family of quasi-
concave functions defined on L ′, and property T is all local maximum points being
also global on a compact, convex set.

We will consider games in normal (strategic) form: G = {S1, ..., Sn; f1, ..., fn}
or briefly G = {S; f } where S = S1 × ...,×Sn is the set of strategy profiles and
f : S → R

n is the profile of payoff functions. Let T be a property of G = {S; f }.
Let� be a family of strategy profiles and� a family of payoff profiles. The following
two statements are said to be Joó-type necessary conditions:

(i) If property T holds for any G = {S; f }, S ∈ �, then f ∈ �.
(ii ) If property T holds for any G = {S; f }, f ∈ �, then S ∈ �.

We will call a function f defined on a convex, compact set C ⊂ R
n partially

concave if it is concave in each of its variables if the rest of the variables are held
fixed. An example of a Joó-type necessary condition is the following.
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Theorem 2 (Theorem 1 in Joó 1996) Let fk : [0, 1]n → R (k = 1, ..., n) be con-
tinuous functions, and f = f1 × ... × fn . Let T be the following property: If f ′

k :
[0, 1]n → R (k = 1, ..., n) is continuous and partially concave in the k-th variable,
then the game G = {[0, 1]n, f + f ′} has at least one NEP, where f ′ = f ′

1 × ... × f ′
n.

If property T holds, then each function fk (k = 1, ..., n) is partially concave in its
k-th variable.

Theorem 2 was extended to games with convex, compact strategy sets.

Theorem 3 (Theorem 2 in Joó 1996) Let K1, ..., Kn be convex, compact subsets
of finite dimensional euclidean spaces, fk : K1 × ... × Kn → R (k = 1, ..., n) be
continuous functions and f = f1 × ... × fn. Let T be the following property: If f ′

k :
K1 × ... × Kn → R (k = 1, ..., n) is continuous and partially concave in the k-th
variable, then the game G = {K1, ..., Kn; f + f ′} has at least one NEP, where f ′ =
f ′
1 × ... × f ′

n. If property T holds, then each function fk (k = 1, ..., n) is partially
concave in its k-th variable.

3 Joó-type Necessary Conditions for Concave Games

One of the standard existence theorems in noncooperative game theory is due to
Nikaido and Isoda (1955):

Theorem 4 Let G = {S1, ..., Sn; f1, ..., fn} be a game in normal form. If
(i) the strategy sets S1, . . . , Sn are non-empty, compact, convex sets of finite dimen-

sional euclidean spaces,
(ii) the payoff functions fk : ×n

j=1Sj → R (k = 1, ..., n) are continuous and par-
tially concave in the k-th variable, then G has at least one NEP.

Theorem 2 of Joó 1996 gives a necessary condition for the concavity of the payoff
functions when the payoff function is subjected to concave perturbations. One way to
generalizeTheorem2 is through requiring of the payoff functions less then continuity.
Key to the generalization is a characterization of concave functions which we will
give in the form of a lemma. We need two propositions to prove the lemma.

Proposition 1 If the function f : [a, b] → R is bounded from above, then the func-
tion

� : R → R

�(c) := sup
t∈[a,b]

(
f (t) + c · t

)

is Lipschitz continuous.
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Proof For any c, d ∈ R and x ∈ [a, b] we have

f (x) + d · x ≤ f (x) + c · x + (|a| + |b|) · |c − d| ≤ sup
t∈[a,b]

(
f (t) + c · t

)
+ (|a| + |b|) · |c − d| ,

or equivalently

sup
x∈[a,b]

(
f (x) + d · x

)
≤ sup

t∈[a,b]

(
f (t) + c · t

)
+ (|a| + |b|) · |c − d| .

Using the definition of � and rearranging we obtain

�(d) − �(c) ≤ (|a| + |b|) · |d − c| .

Changing the role of c and d we get

|�(d) − �(c)| ≤ (|a| + |b|) · |d − c|

which was to be proved. �

Proposition 2 Let f : [a, b] → R be a function bounded from above and a < x <

b. Then there exist c, d ∈ R such that

sup
t∈[a,x]

(
f (t) + c · t

)
≤ sup

t∈[x,b]

(
f (t) + c · t

)

sup
t∈[a,x]

(
f (t) + d · t

)
≥ sup

t∈[x,b]

(
f (t) + d · t

)
.

Proof Define

c := max

⎧
⎨
⎩ 0 ,

sup
[a,x]

f − f (b)

b − x

⎫
⎬
⎭ .

Then for every t ∈ [a, x] we have

c · (b − t) ≥ c · (b − x) ≥ sup
[a,x]

f − f (b) ≥ f (t) − f (b) ,

implying

f (t) + c · t ≤ f (b) + c · b ,

or equivalently

sup
t∈[a,x]

(
f (t) + c · t

)
≤ f (b) + c · b ,
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from which we get the first assertion of the proposition. Define

d := min

⎧⎨
⎩ 0 ,

f (a) − sup
[x,b]

f

x − a

⎫⎬
⎭ .

By similar reasoning as before we will arrive at

sup
t∈[x,b]

(
f (t) + d · t

)
≤ f (a) + d · a ,

leading to the second assertion of the proposition. �

Lemma 1 Let f : [a, b] → R be an upper semicontinuous function. If for any c ∈ R

the set {
x ∈ [a, b] : f (x) + c · x = max

t∈[a,x]( f (t) + c · t)
}

is a closed interval, then f is concave.

Proof We will show that at any point a < x0 < b there is a line supporting f from
above. Consider the function

� : R → R ,

� (c) := max
t∈[a,x0]

(
f (t) + c · t

)
− max

t∈[x0,b]

(
f (t) + c · t

)
.

� is continuous by Proposition 1, and by Proposition 2 there are numbers c, d ∈ R

such that �(c) ≤ 0 ≤ �(d). Thus by Bolzano’s theorem there is a number c∗ for
which �(c∗) = 0, i.e.

max
t∈[a,x0]

(
f (t) + c∗ · t

)
= max

t∈[x0,b]
( f (t) + c∗ · t).

This common maximum is also the maximum of the function t → f (t) + c∗ · t on
the interval [a, b]. Therefore there are numbers a ≤ x1 ≤ x0 ≤ x2 ≤ b such that

f (x1) + c∗ · x1 = max
t∈[a,b]

(
f (t) + c∗ · t

)
= f (x2) + c∗ · x2 . (2)

By the assumption, the level set H belonging to the maximum of the function t →
f (t) + c∗ · t is a closed interval and by (2) x1, x2 ∈ H . Thus by x1 ≤ x0 ≤ x2 we
have x0 ∈ H . Therefore for any t ∈ [a, b],

f (x0) + c∗ · x0 ≥ f (t) + c∗ · t

holds. After rearrangement we get
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f (t) ≤ f (x0) − c∗ · (t − x0) . (3)

The expression on the right-hand side of (3) is a straight line which supports f from
above at x0. �
Remarks

1. It is known that concave, upper semicontinuous functions over a closed interval
are continuous. Joó (1986) stated Lemma 1 for continuous functions but gave
no proof. Though a posterior we know that these functions are continuous but a
priori we only need to assume upper semicontinuity. This is why we think that
Lemma 1 is a generalization of Joó’s lemma.

2. Since in the proof of Theorem 2 Lemma 1 plays a crucial role and continuity
of the functions fk : [0, 1]n → R (k = 1, ..., n) is basically needed to ensure
that the set of maximum points of fk(y1, ..., yk−1, xk, yk+1, ..., yn) in xk for any
fixed y1, ..., yk−1, yk+1..., yn is a closed interval, the continuity of fk in xk can
be weakened to upper semicontinuity resulting in a generalization of Theorem
2.

3. It is not clear but seems probable that in Theorem 3 continuity, a priori, can also
be relaxed.

4. Similar characterization of quasiconcave functions based on the nature of the
set of maximum points was given by Forgó (1996): Let X ⊂ R

n be a non-empty
convex set and f : R

n → R a continuous function. Then f is quasiconcave on
X if and only if for any closed interval I ⊂ X the set of maximum points of
f over I is a closed interval. Interestingly, the continuity assumption cannot be
relaxed to upper semicontinuity.

4 Necessary Conditions for Cournot Oligopoly Games
to Have a Pure Nash Equilibrium

In Cournot oligopolies firms make decisions about the volume of production of a
homogeneous product. Production may have capacity bounds other than the natural
lower bound 0. Selling price is determined by the production of the entire industry via
an inverse demand function. Cost of production may vary from firm to firm. Gross
profit is defined as revenue (volume times selling price) minus cost. This model
gives rise to a game, called the Cournot game, defined by strategy sets Si = [ai , bi ]
for firm i = 1, ..., n (bi = ∞ is allowed for some or all i), payoff (profit) functions
fi (q) = qi P(1T q) − Ci (qi ), where P : R+ → R+ is the inverse demand function
assigning to total industry output the highest price the market clears at, 1 denotes a
vector of 1′s, Ci → R is the cost function assigning to the production qi of firm i
the total cost incurred at that level of production. So the Cournot game G in normal
form is given as G = {S1, ..., Sn; f1, ..., fn}.

It has long been a major line of research in economics in general and industrial
organization in particular, to give ever weaker sufficient conditions imposed on the
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ingredients of the Cournot game that ensure the existence (uniqueness) of a pure
NEP. From an ocean of contributions we only mention three landmarks:

(i) The classical works of Szidarovszky and Yakovitz (1977, 1982) where inverse
demand is assumed to be concave and the cost functions convex.

(ii) The paper of Novshek (1985) where concavity/convexity assumptions are con-
siderably relaxed: concavity of inverse demand is replaced by the condition that
each firm’s marginal revenue be a declining function of the total output of the
others, convexity of the cost function is abandoned altogether and it is only
assumed that it be a nondecreasing lower semicontinuous function.

(iii) Ewerhart (2014) brings many known sufficient conditions under the umbrella of
biconcavity.

In the efforts to get ever weaker sufficient conditions, after Novshek’s result where
the cost function is very general, attention has been focused on the inverse demand
function and more generally on the revenue function. It turns out that if we allow
more general revenue functions not just the conventional “quantity times price” form,
then the existence of a pure NEP necessitates the convexity of the cost function.

Let us redefine the Cournot oligopoly game G = {S1, ..., Sn; f1, ..., fn} where
Si = [0, 1], fi (x) = Ri (x) − Ci (x), i = 1, ..., n. Here Ri ,Ci : S = × j=n

j=1Sj → R

are the (generalized) revenue and cost functions. Notice that in this set-up revenues
and costs of each firmmay depend on the industry production profile. Revenue in the
classical model does depend on the production profile of the industry, specifically
on the firm’s own level of production and the total industry production. In case of a
generalized revenue function this is not necessarily so, other functional dependence
of the revenue on the production profile of the industry is allowed. For cost functions,
as opposed to the classical form, the cost of each firm may depend not only on its
own production volume but on the production profile of the whole industry.

The general revenue function allows for getting different levels of revenue for
two production profiles with the same total production. Indeed, an evenly distributed
production profile gives less chance for the firm to get extra leverage by utilizing its
position marked by a dominant market share. Also, a general revenue function can
take into account other market forces than price (discounts, all sorts of promotions,
etc.). By not assuming anything a priori about the monotonicity and the shape of
the inverse demand function, unusual markets, such as markets of Giffen and Veblen
goods (see Varian 1922) can be studied in the same model.

Costs can also depend on the whole production profile. Overuse of natural
resources may incur costs that increase much faster as industry output increases
compared to the situation when only an individual firm uses more of the resource.
Even monotonicity can be violated in special cases. In some countries zero-level
production in agriculture is rewarded by subsidies which disappear as production
moves away from zero. This is also an example of the presence of discontinuities as
well.

The following theorem emphasizes the importance of convexity of the cost func-
tions if we want to ensure the existence of a pure NEP.
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Theorem 5 Let all the cost functions Ci of a generalized Cournot game be continu-
ous. If the generalized Cournot oligopoly game G = {S1, ..., Sn, R1 − C1, ..., Rn −
Cn} has a pure NEP for any partially concave continuous revenue function Ri

i = 1, ..., n, then all Ci i = 1, ..., n are partially convex.

Proof By Theorem 2 −Ci is partially concave implying that Ci is partially convex
for all i = 1, ..., n. �

The following question comes naturally to mind: If we only consider Cournot
games (not generalized!) which means that we only require the existence of a pure
NEP for a special class of revenue functions, what can be said about the cost function?
Surely less than convexity. Maybe quasi-convexity?

The role of the revenue and cost functions can be reversed in a natural way. We
then obtain the following necessary condition.

Theorem 6 Let all the revenue functions Ri of a generalized Cournot game be
continuous. If the generalizedCournot oligopoly gameG = {S1, ..., Sn, R1 − C1, ...,

Rn − Cn} has a pure NEP for any partially convex continuous cost function Ci

i = 1, ..., n, then all Ri i = 1, ..., n are partially concave.

Theorems similar to Theorems 5 and 6 can be stated for multiproduct oligopolies
as defined in Forgó (1999) page 67–72. In this case Theorem 3 has to be invoked in
order to arrive at the same results.

5 Conclusion

Necessary conditions for the existence of pure NEP’s were derived for generalized
Cournot oligopoly games. If for all revenue functions there exists at least one pure
NEP for a fixed continuous cost function, then the cost function must be convex.
The question of how to characterize cost functions within the framework of the
classical Cournot game where revenues are calculated as the product of volume and
price determined by the total production of the industry through an appropriately
conditioned inverse demand function remains open.

Acknowledgements Research was done in the framework of Grant NKFI K-1 119930.
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Set-Valued Techniques in Dynamic
Economic Models

Zoltán Kánnai, Imre Szabó and Peter Tallos

Abstract Existence of solutions in optimization problems is usually hard to prove.
Mostly, deep results from set-valued analysis are employed and convexity assump-
tions are imposed. In this paper we show that the theory of differential inclusions can
successfully be used for solving nonconvex problems, such as nonconvex optimal
control problems, or implicit differential schemes. Results are applied to a general-
ized dynamic input-output economic model.

Mathematics Subject Classifications: 34A60 · 49K15 · 93D15

1 Introduction

Several problems in the theory of economic dynamics lead to optimal control, see
Sethi and Thompson (2006) and the references within. Some other problems are for-
mulated in terms of implicit equations, like classical input-output Leontief processes.
In both cases we propose the use of set-valued analysis for verifying the existence
of solutions in some types of problems.

The present paper is principally divided into two parts and is organized as follows.
The first 5 Sections deal with a special type of nonconvex optimal control problems.
Section2 introduces the basic problem. In Sect. 3 we give a brief review of conjugate
functions. Section4 contains a short account on differential inclusions, and in Sect. 5
we prove the existence of optimal control. In Sects. 6, 7 and 8 we show how differ-
ential inclusions can be used for examining implicit differential equations, including
a generalized dynamic input-output model.
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2 Nonconvex Control Problems

Consider the following simple optimal control problem:

H(x, u) =
∫ T

0
h(x(t), u(t)) dt → min

x ′(t) = u(t), x(0) = x0 (1)

u(t) ∈ K almost everywhere.

The Pontryagin maximum principle (see Kánnai et al. 2014) formulates a necessary
condition for the optimal control u, but provides no hint onwhether or not the optimal
control exists. In general, the problem of existence can be approached by exploit-
ing rather deep results of set-valued analysis, and most works impose some sort of
convexity assumptions on the functions involved. Here we refer to the classic com-
prehensive work of Rockafellar (1976) or the monograph by Aubin and Frankowska
(1990).

Below we demonstrate that the existence of optimal control can be verified in
an interesting class of optimization problems by using the technique of differential
inclusions and without setting strong convexity or differentiability assumptions.

3 Conjugate Functions

Let X be a real Hilbert-space, X∗ its dual and f : X → R a given function.

Definition 1 The function f ∗ : X∗ → R defined by

f ∗(p) = sup
x∈X

{〈p, x〉 − f (x)}

for every p ∈ X∗ is called the conjuagte function of f .

Definition 2 The subdifferential ∂ f (x) of f at x ∈ X is defined by

∂ f (x) = {
p ∈ X∗ : f (x) − f (y) ≤ 〈p, x − y〉 ∀y ∈ X

}

which is a convex subset of X∗. The elements of this set are called the subgradients
of f at the point x .

For basic properties of conjugate functions and subdifferentials we refer to themono-
graph by Aubin and Cellina (1984).

Proposition 1 For every x ∈ X and p ∈ ∂ f (x) we have x ∈ ∂ f ∗(p).
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Proof In view of the definition, for an arbitrary y ∈ X we have 〈p, y − x〉 ≤ f (y) −
f (x), and hence 〈p, y〉 − f (y) ≤ 〈p, x〉 − f (x). This implies f ∗(p) = 〈p, x〉 −
f (x), so it follows

f (x) = 〈p, x〉 − f ∗(p) ≤ f ∗∗(x) .

Making use of the Fenchel-inequality we get f ∗∗(x) = f (x) and f ∗∗(x) = 〈p, x〉 −
f ∗(p). Therefore, for any y ∈ X

〈y, x〉 − f ∗(y) ≤ 〈p, x〉 − f ∗(p) ,

which means x ∈ ∂ f ∗(p). �

4 Differential Inclusions

Consider a set-valued mapping F defined on Rn , with nonempty, compact values in
R

n . Find an absolutely continuous function x with

x ′(t) ∈ F(x(t)) x(0) = x0 (2)

almost everywhere on an interval [0, T ]. Such a function x is called a solution to the
differential inclusion (2) on [0, T ].

A set-valued map F defined onRn with nonempty values inRn is said to be upper
semicontinuous if for every x in the domain and every ε > 0 there exists a δ > 0
such that

F(x + δB) ⊂ F(x) + εB

where B stands for the unit ball in R
n . We note that if the range of F lies in a

fixed compact set, then upper semicontinuity of F is equivalent to having a closed
graph. (i.e. if yn ∈ F(xn) and xn → x , yn → y, then y ∈ F(x). We refer to Aubin
and Cellina (1984) for more details.)

As is well known, the differential inclusion (2) admits a solution, if the map F
is upper semicontinuous and has convex values (see for instance Aubin and Cellina
1984). In fact, a fixed point argument shows that the map

�(x) = {y : y′(t) ∈ F(x(t)), y(0) = x0}

posesses a fixed point in the space of absolutely continuous functions. The fixed
point x ∈ �(x) is then clearly a solution to the original problem.

A simple counterexample shows that the convexity assumption cannot be omitted.
Indeed, if F is defined on the real line by
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F(x) =
⎧⎨
⎩

{+1} if x < 0
{−1; +1} if x = 0
{−1} if x > 0

then the differential inclusion (2) has no solution starting from the origin. The reason
is the lack of convexity at x = 0. If F is convexified at x = 0, then the constant zero
is the obvious solution.

However, the convexity assumption can be relaxed by assuming the existence of
a convenient potential function (see Bressan et al. 1989).

Theorem 1 Consider the (not necessarily convex-valued) set-valued F on X. Sup-
pose that there exists a lower semicontinuous and convex function V : X → R such
that

F(x) ⊂ ∂V (x) (3)

for every x ∈ X. Then the differential inclusion (2) posesses a solution on the interval
[0, T ].

The convexity assumption was replaced by the (weaker) lower regularity on the
potential function V by Kánnai and Tallos (1998). For the extension of this result to
the non-autonomous case by regularization of the set-valuedmap F , we refer toTallos
and Kánnai (2003). The basic constructive idea is that for the approximate solutions
xn the sequence of derivatives x ′

n is not only weakly convergent, but convergent with
respect to the L2-norm as well.

5 The Existence of Optimal Control

Let K be a nonempty compact subset of the Hilbert-space X , and c > 0 be a given
constant. Consider the real-valued functions f and g defined on X and suppose that
both are continuous, and f is convex.

Introduce the following set-valued map F on X :

F(x) = argmin {u ∈ K : f (u) − c〈x, u〉 + g(x)} . (4)

It is easy to verify that F has nonempty compact values in X . Moreover, in view of
Berge’s theorem (see Aubin and Cellina 1984) we have that F is upper semicontin-
uous.

Proposition 2 For every x ∈ X

F(x) ⊂ ∂

(
1

c
f + δK

)∗
(x)

where δK denotes the characteristic function of the set K .
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Proof Take a point u ∈ F(x) arbitrarily. Then for any v ∈ K we obtain

f (u) − c〈x, u〉 + g(x) ≤ f (v) − c〈x, v〉 + g(x)

which means

〈x, v − u〉 ≤ 1

c
f (v) − 1

c
f (u) .

Consequently, for every v ∈ X we have

〈x, v − u〉 ≤
(
1

c
f + δK

)
(v) −

(
1

c
f + δK

)
(u) .

In view of the definition of the subdifferential, we deduce

x ∈ ∂

(
1

c
f + δK

)
(u) .

Now making use of Proposition 1, we conclude that

u ∈ ∂

(
1

c
f + δK

)∗
(x).

�

Under the above conditions consider the following optimal control problem:

∫ T
0 ( f (u(t)) − c〈x(t), u(t)〉 + g(x(t))) dt → min
x ′(t) = u(t), x(0) = x0
u(t) ∈ K almost everywhere,

which is not necessarily convex with respect to the state variable x .

Theorem 2 The above optimal control problem has a solution.

Proof Create the set-valued map F in (4) and consider the differential inclusion

x ′(t) ∈ F(x(t))

x(0) = x0

It is easy to see that every solution of this inclusion provides an optimal trajectory of
the control problem. Obviously, the pointwise minimum yields the minimum value
of the integral.

On the other hand, in view of Proposition 2 the potential condition (3) is fulfilled
for the map F . Indeed, by introducing the function



200 Z. Kánnai et al.

V (x) =
(
1

c
f + δK

)∗
(x)

(x ∈ X ), the map F satisfies the conditions of Theorem 1. Therefore, the differential
inclusion has a solution on the interval [0, T ]. �

6 Implicit Differential Schemes

Consider the differential relation

0 ∈ G(x(t), x ′(t)) (5)

where G is an upper semicontinuous map with nonempty closed images in R
n . A

solution to (5) is an absolutely continuous function x such that the inclusion holds
on an interval almost everywhere.

Such problems arise naturally in economic dynamics. For instance, the classi-
cal Leontief’s dynamic input-output model is governed by the implicit differential
equation

x(t) = Ax(t) + Bx ′(t) + c

x(0) = x0

where A is the productivity matrix, B is the investment matrix and c stands for the
final consumption. The problem can be reformulated in a more general setting:

x(t) − Ax(t) − Bx ′(t) ∈ U (6)

x(0) = x0

where U is a given nonempty closed set in Rn .
This implicit scheme can be regarded as a differential inclusion by introducing

the set-valued map

H(x) = {v ∈ R
n : x − Ax − Bv ∈ U } .

Then the differential relation (6) is equivalent to the explicit differential inclusion

x ′(t) ∈ H(x(t)) (7)

x(0) = x0

This type of problem was extensively studied (including the nonautonomous case)
in Kánnai and Tallos (1999). We present a more direct approach below.
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7 A Set-Valued Inverse-Continuity Theorem

Let M be a nonempty convex and compact set in R
n and consider a set-valued map

A defined on M with nonempty convex and compact images in Rn . Set

S = I − A

where I stands for the n × n identity matrix. Introduce the set

V0(S) = M ∩ S(M)

where S(M) is the range of S on M :

S(M) = ∪x∈M S(x) .

The effective domain of the map S is given by

D(S) = {z ∈ M : (A(x) + z) ∩ M = ∅ ∀x ∈ bd M}

where bd M denotes the boundary of the set M .
Consider the generalized inverse S− of the map S that is defined by

S−(z) = {x ∈ M : z ∈ S(x)}

Then S− is a set-valued map defined on V0(S) and with closed images in R
n . The

following theorem is due to Liu and Zhang (2008) and it is an important application
of the Rogalski-Cornet surjectivity theorem.

Theorem 3 Suppose that D(S) is not empty. If the set-valued map A is upper semi-
continuous, then

D(S) ⊂ V0(S)

moreover S− is upper semicontinuous with nonempty closed images.

8 Application to a Generalized Dynamic Input-Output
Economic Model

Let M be a nonempty convex and compact set in R
n and consider a set-valued map

A defined on M with nonempty convex and compact images in Rn . The generalized
dynamic input-output model is definded by the implicit differential relation
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0 ∈ x(t) − Bx ′(t) − A(x(t)) (8)

x(0) = x0 ∈ M

where B is an n × n matrix.
The static version of this model with B = 0 was studied by Liu and Zhang (2008).
Following Liu and Zhang (2008), we set the following conditions.

• Feasibility condition:
(x − A(x)) ∩ im B = ∅ . (9)

• Regularity condition:

∃ z ∈ M ∀ v ∈ bd M ∃ x ∈ M : v + z − x ∈ M, Bv ∈ A(v + z − x) − (v + z − x)

Theorem 4 Under the above conditions the inclusion (8) has at least one solution
for every x0 in M.

Proof First introduce the following set-valued map on M

F(x) = {v ∈ R
n : 0 ∈ x − Bv − A(x)} .

In view of condition (9) the values of F are not empty, and they are obviously closed
and convex sets. It is easy to verify that relation (8) and the explicit differential
inclusion

x ′(t) ∈ F(x(t)) (10)

x(0) = x0

have precisely the same solution set.
Now consider another set-valued map defined by

S(v) = {x ∈ M : Bv ∈ x − A(x)}

Then S has a closed graph, since the graph of A is closed. Further, the values are in
a fixed compact set M , consequently S is upper semicontinuous. For the generalized
inverse we have:

S−(x) = {v ∈ R
n : x ∈ S(v)} = F(x) .

By using the notations of the previous section we also observe that the regularity
condition and the feasibility condition (9) imply that D(S) = ∅. Making use of
Theorem 3 we conclude that F is upper semicontinuous.

Exploiting the classical result of the theory of differential inclusions (see Aubin
and Cellina 1984), we get that the initial value problem
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x ′(t) ∈ F(x(t))

x(0) = x0

has a solution for every x0 in M that yields a solution to (8). �
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Agent Behavior and Transitions
in N-Person Social Dilemma Games

Ugo Merlone, Daren R. Sandbank and Ferenc Szidarovszky

Abstract One of the most common way of analyzing the evolution of networks of
interacting agents is based on simulation. The interactions among the agents can
be modeled by N -person social dilemma games, and the evolution of the network
can be characterized by repeated transitions. The nature of the transitions as well
as the long-term behavior of the state of the network depend on the structures of
the particular games under consideration. The purpose of this paper is to present the
transitions that occur between N -person social dilemma games, the agent behavior
causing these transitions, and the impacts of various parameters. Formerly, N -person
social dilemma games such as Prisoners’ Dilemma, Chicken, Stag Hunt and Battle
of the Sexes have been separately researched and analyzed. In this paper the specific
behavior of Pavlovian agents are explored in a two dimensional cellular automaton
environment using parameters that extend over all of these games. It is found that
there are three significantly different types of agent behavior: bipartisan, partisan,
and unison. Bipartisan agents stochastically decide to cooperate or defect based on
a cooperating probability greater than zero and less than one, partisan agents either
cooperate with certainty or defect with certainty, and unison agents cooperate 100%
of the time. Each agent behavior can be associated with a set of social dilemma
games and be represented as plateaus on a three dimensional graph. These plateaus
themselves and the transitions between them are investigated in terms of where
and why they occur. Lastly, this paper reviews the impact of initial cooperating
probability, neighborhood size, learning factors, and grid size on these plateaus and
transitions.
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1 Introduction

Agent-based social simulation started in the 1990s (Davidsson 2001, 2002) and this
research area is growing significantly. The main advantage of agent-based simu-
lation is that it is a bottom-up approach to analyze networks of agents where the
agents’ attributes may include behavioral traits, characteristics and learning capabil-
ities. Agent-based simulation can be used to study artificial societies (Epstein and
Axtell 1996) for emergence of groups with common attributes or social segregation.
In this paper the specific behavior of Pavlovian agents in a two dimensional cellular
automaton environment to cooperate or defect is based on reinforcement learning
with linear payoff functions. This model has been used to study several real world
applications in the literature. In Power (2009) the towns of Catalina, New Foundland
and Labrador, Canada are modeled as a cellular automaton environment with Pavlo-
vian agents, who’s behaviors are identical to those studied in this paper in order to
examine the collective communication and N -person prisoner’s dilemma coopera-
tion within a socio-geographic community. Pavlovian agents are considered also in
Szilagyi (2009) in order to model and examine an N -person chicken dilemma game
where agents in a large city decide to either cooperate with each other for the col-
lective best interest and use public transportation or defect and drive their car. Other
potential fields where this type of model is applicable include military expenditures,
oil cartels, and climate change. In each of these areas countries or agents can be
modeled in a cellular automaton environment where each must decide to cooperate
for the collective best interest or defect for their own self interest. The collective best
interest for military expenditures would be to limit arms production, for oil cartels to
set monopolistic prices and market share, and for climate change to curb CO2 emis-
sions. The self interest temptation for each country or agent respectively is to raise
arms production and become a dominate military force, lower price and increase
profits by picking up more market share, and allow CO2 emissions and spend less to
save the environment. The worst situation is if all agents defect since in each case
discussed above the country or agent would be negatively impacted without getting
any competitive advantage.

Two player social dilemma games are defined with a payoff matrix shown in
Table1. The rows show the strategies of player 1, and the columns indicate the
strategies of player 2. For each corresponding strategy pair the first number in each
position gives the payoff of player 1, and the second value is the payoff of player 2.
The parameters P, R, S and T are derived from the Prisoners’ Dilemma game and are
referred to as Punishment, Reward, Sucker’s Bet, and Temptation respectively. The
Prisoners’ Dilemma game will be described in more detail in upcoming paragraphs.

A multi-person or N -person extension of the model takes into account the collec-
tive behavior in society where agents of a network may cooperate with each other
for the collective best interests or defect to pursue their own self interest. This paper
assumes a two dimensional cellular automaton environment where each agent is rep-
resented by a cell on a rectangular grid andmay interact with its immediate neighbors
or with all the agents as a collective set. An example of a cellular automaton environ-
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Table 1 Payoff matrix for two player games

2

1
Cooperate Defect

Cooperate
R

R

T

S

Defect
S

T

P

P

(a) 1 (b) 2 (c) All

Fig. 1 Cellular automaton environment with Moore neighborhoods

ment with Moore neighborhoods is shown in Fig. 1. In this figure the gray cells are
the neighbors for the black cell with Moore neighborhoods of one, two, and all. For
a discussion about spatial structures in agent-based models and how explicit spatial
(lattice based) structures are related to networks, the reader may refer to Ausloos
et al. (2015).

In each iteration the agents decide whether to cooperate or defect based on a
certain probability distribution. After each agent chooses to cooperate or defect a
reward or punishment is received that depends on the accumulated choices of the
other agents in its designated neighborhood. The amount of reward or punishment
an agent receives is derived from a payoff function. A typical linear payoff function
is shown in Fig. 2. In this payoff function x is the percentage of cooperators, C(x)
is the payoff for those agents that are cooperating and D(x) is the payoff for those
agents that are defecting.

In an N -person social dilemma game each agent is characterized by a behavioral
styles which dictates how the agent will decide to cooperate or defect. In Szilagyi
(2003) several potential behavioral style are presented includingGreedy, Conformist,
and Pavlovian. Greedy agents duplicate the decision of the agent in their neighbor-
hood that receives the highest payoff. Conformist agents make their decision in line
with the majority in their neighborhood. Pavlovian agents base their decision on
reinforced learning. This paper will deal with the Pavlovian agent type only. Rein-
forcement learning has been used extensively in the literature for two player repeated
games (Bush and Mosteller 1955; Macy and Flache 2002; Flache and Macy 2002)
and is based on Thorndike’s law of conditioning based on Pavlov’s experiments
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Fig. 2 Linear payoff
functions for cooperators
(C) and defectors (D)

where positive outcomes to an action reinforce the subject to continue that action
(Thorndike 1911). The model in this paper is the same used in Szilagyi (2003), Zhao
et al. (2007) and Merlone et al. (2018). They all analyze N -person social dilemma
games, so the results found here can be related directly to those papers. In this model
the Pavlovian agent has a certain probability p of cooperating in each time period,
which changes for the next time period or iteration by a proportion of the reward
or punishment received. The probability that an agent i will be cooperating at time
period t can be computed as

pi (t) =
⎧
⎨

⎩

pi (t − 1) + αC (x (t − 1)) if the agent cooperated at time period t − 1

pi (t − 1) − βD (x (t − 1)) if the agent is a defector at time period t − 1
(1)

where x(t − 1) is the percentage of cooperating agents in the population at time
period t − 1, α is the proportion or learning factor for cooperators and β is the
learning factor for defectors. α and β are set parameters between zero and one.
Since pi (t) is a probability it must also be between zero and one. So whenever
pi (t) becomes larger than one it is adjusted to be one. Likewise, whenever pi (t)
becomes negative it is adjusted to be zero. A similar model extensively analyzed for
two player repeated games in the literature is a variant of Bush and Mosteller (1955)
linear stochastic model which was proposed by Macy and Flache (2002), Flache
and Macy (2002). In these models a stimulus is calculated for any action based on
a payoff and an aspiration level. This stimulus with a learning factor is used in an
algorithm similar to Eq. (1) where the probability to cooperate is increased if either
the cooperating agent is rewarded or defecting agent is punished; and the probability
to cooperate is decreased if either the cooperating agent is punished or defecting
agent is rewarded. In our model we use a similar concept with the assumption that
the aspiration level is zero and the payoff values are the stimulus. Finally, it should
be observed that, as in Pavlonian agents the process in which learning occurs is a
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function of the consequences of behavior, they are called, more correctly Skinnerian
agents in Merlone et al. (2013).

The model works as follows. An instantiation for the payoff parameters
(P, R, S, T ) and the learning factors (α, β) are given. The initial conditions and
simulation parameters required for a single simulation run are the initial cooperating
probability for each agent, the cellular automaton grid size, the neighborhood size,
and the number of iterations to be performed. To start the simulation each agent in the
cellular automaton grid is given the initial probability to cooperate. Time is moved
forward in iterations. In the first iteration agents simultaneously decide to cooperate
or defect based on the assigned initial probabilities to cooperate. Then the percent-
age of cooperators of the entire grid is determined and used as a statistic to evaluate
the state of the system. The payoffs are then computed for each agent. Each agent’s
payoff is attained by determining the percentage of cooperators x in that specific
agent’s neighborhood and implementing the proper payoff function, which is C(x)
if that agent cooperated in that iteration or D(x) if that agent defected. Then each
agent’s probability to cooperate is adjusted by usingEq. (1). The second iteration then
begins. In the second iteration the agents now simultaneously decide to cooperate or
defect based on their own updated probabilities to cooperate. The system percentage
of cooperators is determined and each agent’s probability to cooperate is updated
using the same methodology as described for the first iteration. This repeats for the
designated number of iterations. Again, the main statistic tracked for the system is
the percentage of cooperators of the entire population in each iteration.

The Prisoners’ Dilemma game is an important example of a social dilemmawhich
is frequently examined in the literature. In this game two suspects are arrested and
separated by the police. If after questioning both suspects cooperate by remaining
silent, each one is sentenced to minimal jail time on a lesser charge. If one suspect
testifies against the other (defects) and the other stays silent (cooperates), the defector
is released and the cooperator is sentenced to full jail time on the accused charge.
If both suspects defect by testifying against each other, then both are sentenced to
reduced jail time on the accused charge. In accordance with the above description
a Prisoners’ Dilemma game occurs when the parameters of the payoff functions
satisfy the relation T > R > P > S. There are several social games other than Pris-
oners’ Dilemma with much literature including Chicken which is characterized by
the inequality T > R > S > P , Stag Hunt which follows when R > T > P > S,
and Deadlock when T > P > R > S is satisfied. These games have a colorful story
and many real life applications including such topics as world politics, law, and other
fields (Poundstone 1992; McAdams 2009; Axelrod and Keohane 1985). Other social
games characterized in this paper include Battle of the Sexes (Zhao et al. 2008),
Harmony, Coordination, Leader and two unnamed games. Harmony occurs when
the highest payoff is received when both players or agents cooperate and the low-
est payoff is received when both agents defect. This occurs when R > S > P and
R > T > P . The Coordination game is derived when agents receive higher payoffs
if they coordinate their decision by either both cooperating or defecting. That is, they
receive the highest payoff if both cooperate and the next highest payoff is if both
defect. This occurs when R > P > S and R > P > T . The Leader game is defined
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when two drivers want to merge into traffic from opposite directions when a single
gap opens up. The highest payoff is for the agent who defects by entering the single
gap while the other agent who cooperates by waiting gets the second highest payoff.
The next highest payoff is that they both cooperate and wait for a gap large enough
for both to enter. The lowest payoff is if both defect by entering the single gap and
collide. Leader occurs when S > R > P .

In order to represent these games graphically, which will be done throughout
this paper, we assume without loss of generality that R > P for all games and then
normalize the payoff function values such that R = 1 and P = 0. If R < P for
a particular game then we simply interchange the definitions of cooperation and
defection to derive an equivalent game with R > P . For example, Battle of the
Sexes is a game where a man and a woman are deciding where to go out on a date.
The man prefers a sporting event while the woman prefers ballet. However, both of
them prefer going out together rather than alone. Cooperation is defined as a person
going to the event the other person prefers and defection is going to the event he or she
prefers. If both cooperate (man goes to ballet and woman goes to sporting event) than
both are most disappointed because they both are going to an activity they do not like
and they are by themselves. If one person defects and the other person cooperates,
then the defector is most happy since this person is going to an event he/she likes
with their partner and the cooperator is somewhat happy because she/he is with the
other person. If both defect and go to the event they enjoy alone, they are not as
happy as if they could be if they went somewhere with their partner. Battle of the
Sexes is typically characterized by the inequality T > S > P > R. However, if we
simply interchange the definition of cooperate to be going to the event the individual
prefers and defect to be to going to the activity the other individual prefers, then the
inequality for the same story becomes S > T > R > P . This is an equivalent game
with R > P . This method is also used for the Deadlock game discussed above where
T > P > R > S becomes S > R > P > T with a different definition of cooperate
and defect.

Using the above convention, each game can be represented by a region in the
S, T plane as shown in Fig. 3. This type of graphical representation has been used to
analyze various topics in the literature including the efficiency of adapting aspiration
levels (Posch et al. 1999), fundamental clusters in spatial 2 × 2 games (Hauert 2001)
and effects of space in 2 × 2 games (Hauert 2002). The ordering of R, S, T , and
P with the normalized values R = 1 and P = 0 divides the plane into 12 regions
where the various games are depicted graphically by name and color. That is, Pris-
oners’ Dilemma is teal, Chicken is red, Leader and Battle of the Sexes is green, Stag
Hunt is dark blue, Harmony is yellow, Coordination is light blue, and Deadlock is
white. Unnamed games are colored brown and magenta. These color designations
for specified games will be used throughout much of this paper.

As stated above, in Fig. 3 it is assumed that R = 1 and P = 0. Later in this
paper this assumption will be dropped and similar graphical representations will be
presentedwith various values of R and P . This will not change the relative location of
the games in these figures as long as R > P , which as stated above will be assumed
without loss of generality. Furthermore, for the first part of this paper it will be
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Fig. 3 Classifications of games

assumed that R is positive and P is negative. This is a reasonable assumption since R
represents reward which we define as a positive payoff and P represents punishment
which will be considered a negative payoff. Later in the paper, the special cases
where R and P are either both positive or both negative will be investigated.

Figure4 shows the simulation results using the linear payoff function parameters
as shown in Fig. 2 (R = 1, P = −0.5, T = 1.5, and S = −1) and equal learning
factors (α = β = 0.05). The initial conditions and simulation parameters for this
run are the initial cooperating probability 0.5, cellular automaton grid size 50 × 50,
neighborhood size 50, and number of iterations 100. A neighborhood size 50 in this
simulation essentially means the neighborhood is the entire automaton grid or all of
the other agents. The figure depicts the percentage of cooperators after each iteration.
The results show that the percentage of cooperators reaches a steady state just under
0.2 after about 50 iterations. In order to evaluate the dynamics of the initial conditions
this simulation was repeated 1000 times. The simulation results over the 1000 runs
were very similar having an average 0.1801 with a standard deviation 0.0080. This
is about the same mean and standard deviation that can be seen in Fig. 4 after 50
iterations when the system becomes stable (mean 0.1798 with a standard deviation
0.0072). The variation of the final iteration of 1000 runs has a similar mean and
standard deviation as a single iteration after it becomes stable.

A three dimensional simulation plot with varying payoff function parameters
using the above representation will now be presented. Figure5 shows the simulation
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Fig. 4 Simulation results for a single set of payoff function parameters

results where R = 1 and P = −1, with T and S varying between −10 and 10. Each
intersection in the mesh represents a separate simulation run on a 50 × 50 cellular
automaton grid with each Pavlovian agent having an initial cooperating probability
0.5 and equal learning factors 0.05. The height of the plot is the percentage of
cooperators after the final iteration of each simulation run. For this simulation each
T and S axis is broken into 40 subdivisions. Thus Fig. 5 represents the results of 1600
single simulation runs, each with different values of T and S. Mesh intersections in
close proximity have close T and S values. It can be seen in this figure that individual
single runs with T and S points in close proximity to each other do yield similar
results. In any case, small variances or any outliers that occur from single runs are
readily seen as irregularities in the planar structure of this mesh graph. The color
coding depicts the associated game as shown in Fig. 3. There are three plateaus in
these simulation results. The first plateau is predominately the Prisoners’ Dilemma
region where T is large positive and S is large negative, but also includes portions of
Chicken and Stag Hunt. In this paper this plateau is called the Prisoners’ Dilemma
plateau. The second plateau contains Leader and Battle of the Sexes games where
both T and S are large positive. This plateau is a step higher than the Prisoners’
Dilemma plateau. This plateau is called the Leader/Battle of the Sexes plateau. The
third plateau includes the Harmony and Deadlock games where T is large negative
and S is large positive. All of the agents are cooperating in this plateau. It is called
the Harmony/Deadlock plateau. The purpose of this paper is to understand the agent
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Fig. 5 Simulation result with varying S and T values

behavior in these plateaus and the transitions that occur between them. The impacts
of the initial cooperating probability, neighborhood size, learning factors, and grid
size on these plateaus and the transitions between them are also evaluated.

2 Agent Behavior on the Plateaus

2.1 Prisoners’ Dilemma Plateau

The Prisoners’ Dilemma plateau is the teal flat region in the simulation results shown
in Fig. 5 where T is a high positive value and S is a high negative number. It is
predominately the Prisoners’ Dilemma game, but also includes portions of Chicken,
Stag Hunt, and Coordination games.

Figure6 shows the agent activity in the Prisoners’ Dilemma plateau for a specific
realization with R = 1, P = −1, T = 5, and S = −5. The agent simulation is run
on a 10 × 10 cellular automaton grid with each Pavlovian agent having an initial
cooperating probability 0.5 and equal learning factors 0.1. Each of the first eight
iterations is shown in the figure. The black and white two dimensional charts show
the decision of each agent at each iteration; white is if the agent cooperates and black
is if the agent defects. In the first iteration shown in the top left hand corner it can be
seen that 46 of the 100 agents are cooperating and that the number reduces to 14 in
the eighth iteration shown in the bottom right hand corner. Also, it can be seen that
the agents stochastically change their decision from iteration to iteration. The three
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Fig. 6 Agent activity in Prisoners’ Dilemma plateau

dimensional color charts show the cooperating probability for each agent at each iter-
ation. In the first iteration, in the top left, each agent starts with an initial cooperating
probability 0.50 and in the following iterations the cooperating probability fluctuates
around a steady state equilibrium around 0.15. This activity of having fluctuation in
the cooperating probability around a steady state equilibrium between zero and one
is unique to this plateau. Agents with this unique trait are called bipartisan in this
paper since they are willing to change their minds between cooperating and defecting
from iteration to iteration based on their cooperating probability being greater than
zero and less than one.

The steady state equilibrium for this model where agents are acting in a bipartisan
manner by adjusting the cooperating probabilities around a stable value in the Pris-
oner’sDilemmagamehas been already analyzed in the literature (Szilagyi 2003;Mer-
lone et al. 2018). In Szilagyi (2003) it was presented that the stabilization point for the
percentage of cooperators in this system occurs when x∗C (x∗) = (1 − x∗) D (x∗).
Equal learning factors were assumed and it was described that this stabilization point
occurs when the total payoff for cooperators equals the total payoff for the defectors.
In Merlone et al. (2018) the stabilization point was expanded to allow for different
learning factors and the equilibrium state was derived analytically by determining the
percentage of cooperators from the expected value of the probability of each Pavlo-
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vian agent to cooperate and thenfinding the steady state equilibrium.The stabilization
point in the more general system occurs when x∗αC (x∗) = (1 − x∗) βD (x∗). Note
that if α = β �= 0 then this equation simplifies to x∗C (x∗) = (1 − x∗) D (x∗). For
linear payoff functions x∗αC (x∗) = (1 − x∗) βD (x∗) becomes the solution to a
quadratic equation with zero, one or two steady states.

It is discussed in Szilagyi (2003) that the steady state solutionsmay be attractors or
repellers. An attractor occurs when the equilibrium solution is such that the payoffs
of cooperating and defecting agents are both negative. Since both types of agents
are punished the equilibrium solution is an attractor because an agent’s cooperating
percentage decreases when cooperating and increases when defecting. In this state an
agent is unlikely to cooperate or defect several iterations in a rowsince the cooperating
percentage would change significantly in the direction that causes different decision.
This leads to agents alternating between cooperating and defecting. Alternatively, a
repeller equilibrium occurs when both cooperating and defecting agents are rewarded
with positive payoff. A diversion from the analytical solution occurs because agents
that receive reward for their behavior will have their probability to cooperate move
in a direction that will make repeating that decision more likely.

Figure7 shows the simulation results for a case in the Prisoner’s Dilemma plateau.
The payoff parameters are R = 1, P = −1, S = −1.5, T = 1.5. The parameters for
this simulation are a grid size 50 × 50, neighborhood all, 100 iterations and equal
learning factors 0.05. This plot shows the percentage of cooperators in each itera-
tion with the initial cooperating percentages of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0. The simulation results for these 11 separate simulations are shown
in blue and the solutions to the equilibrium equation x∗αC (x∗) = (1 − x∗) βD (x∗)
are shown in red. It is clear that the steady state solution 0.2764 is attracting and the
solution 0.7236 is repelling.

2.2 Leader/Battle of the Sexes Plateau

TheLeader/Battle of the Sexes plateau is the green flat region in the simulation results
shown in Fig. 5 where both T and S are high positive numbers. It is predominately
the Leader and Battle of the Sexes games, but also includes a portion of the Chicken
game.

Figure8 shows the agent activity in the Leader/Battle of the Sexes plateau for a
specific realization R = 1, P = −1, T = 5, and S = 5. The same Pavlovian agent
type, initial cooperating probability, learning factors, and cellular automaton setup
are used as in the case of Fig. 6. As in Fig. 6 simulation, eight iterations are shown.
The simulation results for this scenario show that the cooperating probability for the
agents either decreases to zero and remains there or increases to one and remains at
unit level. Each agent either continually defects thereafter if its cooperating prob-
ability is zero or continually cooperates if its cooperating probability is one. This
activity where agents eventually cooperate or defect continually is a significantly
different case than the bipartisan behavior seen in the Prisoners’ Dilemma plateau.
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Fig. 7 Percentage of cooperators in Prisoner’s Dilemma plateau with initial cooperating probabil-
ities 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0

Agents with this trait are going to be called partisan in this paper since they will
always defect or cooperate forever once their probability to cooperate reaches either
zero or one, which will always be in this plateau.

In this plateau the analytical solution presented in Merlone et al. (2018) does not
apply. In steady state a proportion of the agents are cooperating with certainty and the
rest are defecting with certainty. The method used to derive the analytical solution
in Merlone et al. (2018) does not account for this activity of limiting and adjusting
the cooperating probability to zero and one. The rest of this section will present the
reason why this type of activity occurs and provides an estimate of the number of
partisan cooperators and defectors that will be in the system at the steady state.

In this plateau the payoff parameters R, S and T are all positive. For low percent-
age of cooperators this percentage will rise since cooperation is rewarded (since S
and T are positive) and defection is punished (since P is negative). At some point the
percentage of cooperators rises and the payoff for defecting becomes positive (since
T is positive). For these higher percentages of cooperators the agents are rewarded
whether they cooperate or defect. Some agents will follow a trajectory where they
cooperate several iterations in a row and then cooperate with certainty and the rest
of the agents will follow a trajectory where they defect several iterations in a row
and then defect with certainty.

The percentage of cooperators at the end is determined by the number of
agents on the continual cooperating trajectory and also by agents on the continu-
ous defecting trajectory. In an extreme case (high S, high T ) the cooperating prob-
ability for each agent will jump to zero or one in a single iteration and remains
there. This means that in this extreme case the percentage of cooperators will
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Fig. 8 Agent activity in Leader/Battle of the Sexes plateau

approximately be the initial cooperating probability. A simulation of this case is
shown in Fig. 9 with R = 1, P = −1, S = T = 30. This plot shows the percent-
age of cooperators in each iteration given the initial cooperating percentages of
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. For the first iteration the initial
cooperating probability and the percentage of cooperators should be approximately
the same since the percentage of cooperators depends on the cooperating probabil-
ity which is the same for all agents in the first iteration. It can be seen for the low
initial cooperating probability that the percentage of cooperators increases and for
higher initial cooperating probabilities the percentage of cooperators ends up being
approximately the initial cooperating probability. This is to be expected from the
above discussion.

2.3 Harmony/Deadlock Plateau

The Harmony/Deadlock plateau is the top flat region in the simulation shown in
Fig. 5 where T is a high negative value and S is a high positive number. It is predom-
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Fig. 9 Percentage of cooperators in extreme case (S = T = 30) in the Leader/Battle of Sexes
plateau

inately the Harmony, Deadlock, and Unnamed games, but also includes a portion of
Coordination game. In this plateau all of the agents cooperate 100% of the time.

For much of the region in this plateau including the Harmony and Deadlock
games the payoff for cooperation is positive and the payoff for defection is nega-
tive for all percentages of cooperators. That is, cooperating is rewarded and defect-
ing is punished. In this case each agent’s probability to cooperate will increase by
Eq. (1) regardless if they cooperate or defect. Eventually each agent’s probability to
cooperate will reach unity and each agent will cooperate with certainty thereafter.

In an unnamed and in the coordination game S can be negative meaning that
the payoff for cooperation will become negative when the percentage of coopera-
tors is small and positive when the percentage of cooperators is high. In the region
where R is positive and the other payoff parameters S, T and P are negative the
determination whether the state of the system results in all agents cooperating with
certainty in the Harmony/Deadlock plateau or fluctuating their probability to coop-
erate around a stable percentage in the Prisoner’s Dilemma depends on the values of
the payoff parameters. This transition where this dramatic change in behavior occurs
is discussed in the next section.

Figure10 shows the simulation results for a case in the Harmony/Deadlock
plateau. The payoff parameters are R = 1, P = −1, S = 2, T = −2. The parameters
for this simulation are a grid size 50 × 50, neighborhood all, 100 iterations and equal
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Fig. 10 Percentage of cooperators in Harmony/Deadlock plateau with initial cooperating proba-
bilities 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0

learning factors 0.05. This plot shows the percentage of cooperators in each itera-
tion with the initial cooperating percentages of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9and1.0.The results for these 11 separate simulations show that the percentage
of cooperators always rises to one regardless of the initial cooperating probability.

3 Analysis of Transitions Between Plateaus

This section will analyze the transitions between the three previously defined
plateaus. Figure11 shows these plateaus and transitions. These simulation results
use the same parameter values as are used for Fig. 5 except with a different coloring
scheme. In this figure the color is dependent on the percentage of cooperating agents
at the end of the run. The left hand side plot is an isometric view and the right hand
plot is a top view for the same simulation result data. In these plots the plateaus and
transitions can be clearly seen.

In order to evaluate a wider solution set Fig. 12 repeats Fig. 11 for various positive
R and negative P values. The results show that the existence of three plateaus with
associated transitions occurs for a wide range of positive R and negative P values.
The transition between the Prisoners’ Dilemma and Harmony/Deadlock plateaus
will first be investigated. Then the transition between the Prisoners’ Dilemma and
Leader/Battle of the Sexes plateaus will be examined. Finally the transition between
the Leader/Battle of the Sexes andHarmony/Deadlock plateaus will be studied. After
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Fig. 11 Simulation result showing three plateaus and transitions

Fig. 12 Simulation results with varying P and R values

that we will look at the two special cases where R and P are either both positive or
both negative.

First we will look at the transition between the Prisoners’ Dilemma and Har-
mony/Deadlock plateaus. This is a steep transition where the agent behavior changes
from bipartisan to unison. By simple observation it is apparent that this transition is
a ridge or line starting in Harmony and runs though Stag Hunt and sometimes into
Coordination. To evaluate where this ridge or line occurs we first have to review
analytical solutions to the Prisoners’ Dilemma (Szilagyi 2003; Merlone et al. 2018).
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As previously discussed in these papers it is proved that for at least a portion of
the Prisoners’ Dilemma the analytical steady state solution x∗ for Pavlovian agents
in a cellular automaton environment is the solution of the equation x∗αC (x∗) =
(1 − x∗) βD (x∗)which simplifies to x∗C (x∗) = (1 − x∗) D (x∗)when α = β �= 0.
For the linear payoff functions C(x) = S + (R − S)x and D(x) = P + (T − P)x
the analytical steady state solution is derived by solving a quadratic equation. The
solution is

x∗ = −αS − 2βP + βT ± √
α2S2 − 2αβST + β2T 2 + 4αβPR

2 (αR − αS + βT − βP)
.

Since x∗ is the steady-state, it has to be real meaning the value under the square root
must be nonnegative. Thus

α2S2 − 2αβST + β2T 2 + 4αβPR ≥ 0

(βT − αS)2 ≥ −4αβPR

|βT − αS| ≥ 2
√−αβPR. (2)

It is expected that the analytical solution will not work with complex roots, but
additionally it appears that the line βT − αS = 2

√−αβPR is in fact the boundary
in this transition region. If we set the values of α, β, P and R then this equation gives
a straight line in the S, T plane. Figure13 repeats Fig. 5 with this line shown in white
on the plot. It is evident that in this example the transition is occurring when the roots
to the analytical solution become complex. This is confirmed also for all examples
given in Fig. 12. The other line generated fromEq. (2),−βT + αS = 2

√−αβPR, is
inside the region when cooperating probabilities are adjusted to unity, that is, where
the analytical solution cannot be applied due to unison agent behavior. So this second
line has no meaning and has no effect on the structure of the steady state.

Next we will look at the transition between the Prisoners’ Dilemma and
Leader/Battle of the Sexes plateaus. This transition is a step increase shown in Fig.
5 where the agent behavior changes from bipartisan to partisan. The reason for this
transition is that the equilibrium attractor solution that occurs when cooperating and
defecting are both punished as discussed for the Prisoner’s Dilemma plateau disap-
pears when transitioning into the Leader/Battle of the Sexes plateau. This specifically
happens when S goes from negative to positive. The result of this is that bipartisan
behavior will not work when S > 0 because this equilibrium attractor solution is
nonexistent. Figure13 repeats Fig. 5 with S = 0 as a gray line where this transition
occurs. This transition is also confirmed for all examples given in Fig. 12.

Nowwewill look at the transition between the Leader/Battle of the Sexes andHar-
mony/Deadlock plateaus. This transition is a steep transition shown in Fig. 5 where
the agent behavior changes from partisan to unison. The reason for this transition is
that in the Harmony/Deadlock plateau cooperators are rewarded and defectors are
punished for all percentages of cooperators where in the Leader/Battle of the Sexes
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Fig. 13 Simulation with lines showing transitions

plateau there are percentage of cooperators values where defectors are rewarded and
thus some agents go on a defecting trajectory with certainty. This specifically hap-
pens when T goes from negative to positive. Figure13 shows Fig. 5 with T = 0 as
a black line where this transition occurs. This transition is also confirmed for all
examples given in Fig. 12.

Nowwewill look at two special cases. In Fig. 12 various positive R and negative P
values were considered. Now we will examine simulation results for the case where
R and P are either both positive or both negative. Figure14 shows the simulation
results using the same parameter values as are used for Fig. 5 except R and P are
both positive. The results in terms of plateaus and transitions are similar to those
in Fig. 12 except that all agents defect in the Prisoners’ Dilemma plateau and the
transition between the Leader/Battle of the Sexes and Harmony/Deadlock plateaus
moves. The reason for all agents defecting in the Prisoner’s Dilemma plateau is
that when P changes to a positive value the equilibrium attractor solution where
both cooperators and defectors are punished disappears. For low percentages of
cooperators, cooperators are punished and defectors are rewarded which lowers each
agent’s cooperating percentage whether they cooperate or defect. This pushes all
agents to defecting. The reason the transition moves between the Leader/Battle of
the Sexes and Harmony/Deadlock plateaus is that when P is positive there are some
scenarios with a low percentage of cooperators where defectors are rewarded. It is
shown in Fig. 10 that when both P and T are negative and both R and S are positive
all defectors are punished and so all agents cooperate. If either P or T turns positive
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Fig. 14 Simulations when both R and P are positive

Fig. 15 Simulations when both R and P are negative

this situation changes. Figure13 describes what happens when T turns positive with
P remaining negative and Fig. 14 describes what happens when P turns positive.

Figure 15 shows the simulation results using the same parameter values as are used
for Fig. 5 except R and P are both negative. The results are similar to those in Fig. 12
except that agents are not all cooperating with certainty in the Harmony/Deadlock
plateau. This is because when R turns negative the equilibrium attractor solution
where both cooperators and defectors are punished is existent and thus the same type
of bipartisan behavior occurs as in the Prisoner’s Dilemma plateau. The solution
to x∗αC (x∗) = (1 − x∗) βD (x∗) now is applicable in this region since there is an
equilibrium attractor solution. The partisan behavior in the Leader/Battle of the Sexes
plateau still exists as in the previous discussion. Although this bipartisan behavior is
not typical in the harmony and deadlock stories, making R and P both negative does
appear to be a way to expand bipartisan behavior beyond the Prisoners’ Dilemma
plateau.



224 U. Merlone et al.

4 Impacts of Changing Parameters

In this section we will review the impact of initial cooperating probability, neighbor-
hood size, learning factors, and grid size on the plateaus and transitions.

For most of this paper an initial cooperating probability 0.5 is assumed. Now we
will review the impacts of changing this value. Figure 16 shows simulation results for
the same parameter values as are used for Fig. 5 except with the initial cooperating
probabilities 0.4, 0.6, and 0.8. The results show that the Leader/Battle of the Sexes
plateau height or value is greater as the initial cooperating probability increases. In
fact, the percentage of cooperators is approximately the same as the initial cooperat-
ing probability. This is expected since an agent with a higher cooperating probability
ismore likely to be on the continual cooperating trajectory as previously described for
this plateau and ends up cooperating with certainty. This is because more agents will
initially cooperate with a higher initial cooperating probability and fewer sequential
cooperating decisions are required tomove the agents to unit cooperating probability.

In all previous simulations it is assumed that each agent is interacting with all
agents as awhole. In otherwords, each agent’s neighborhood is all of the other agents.
We will now look at the impacts of different neighborhood sizes on the plateaus and
transitions. Figure 17 presents the simulation results using the same parameter values
as are used for Fig. 5 except withMoore neighborhoods of one, two, and five. In Fig. 5
the neighborhood is defined as the entire collection of agents. The results show that the
plateaus and transitions are very similarwhen neighborhood sizes change. There are a
couple of differences when the neighborhood has close proximity or low values. One
difference is that the transition between the Prisoners’ Dilemma and Leader/Battle
of the Sexes plateaus starts when S is slightly more negative and the transition step
is slightly steeper. Also the percentage of cooperators in the Leader/Battle of the
Sexes plateau is slightly higher. These differences can be explained by the fact that
when the neighborhoods are in close proximity then their payoff values becomemore
discreet making an agent’s cooperating probability oscillate more. For example, in a
neighborhood equal to one there are only eight other neighbors plus the agent itself
in the neighborhood. This means that there are only ten possible percentages of the
cooperating agents (0, 11, 22, 33, 44, 56, 67, 78, 89, and 100%) and thus only ten
possible discreet payoff values. In a 50 × 50 grid with the neighborhood being all

Fig. 16 Comparison of simulation results with different initial cooperating probabilities
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Fig. 17 Comparison of simulation results with varying neighborhoods

agents there are 2500 neighbors and possible payoff values. This is much more of
a continuum or continuous case. The lower number of and wider range between
payoff values in the Moore neighborhood of one will make an agent’s cooperating
probability oscillate more from iteration to iteration which will have an impact on
this transition and plateau level. The values are slightly higher in this case because the
higher oscillation results in more instances of an agent’s probability being negative
per Eq. (1) and having it artificially increased to zero. This periodic artificial upward
adjustment in an agent’s cooperating probability from a negative number to zero
results in a slight raise in the percentage of cooperators in the system.

Up to this point all of the simulations have assumed that the learning factors α

and β are equal. Now we will examine the impacts when α �= β. Figure 18 shows
simulation results for same parameter values as are used for Fig. 5 except with
different learning factors. These results show that the transition line between the
Prisoners’ Dilemma and Harmony/Deadlock Plateaus moves and the height or value
of the Leader/Battle of the Sexes plateau changes as α and β differ. The transition
line between the Prisoners’ Dilemma and Harmony/Deadlock Plateaus moves as
expected to where the roots to the analytical solution become complex per relation
(2). It is interesting to note that the transition line does not move if both learning
factors change, but remain equal. This can be seen by comparing Fig. 11 with the
bottom row of Fig. 18 where the only difference is that the learning factors change
from α = β = 0.05 to α = β = 0.08. This is because if the learning factors are equal
then they cancel out in Eq. (2) regardless of their specific value. The height or value
of the Leader/Battle of the Sexes plateau changes as α and β differ because these
values impact how fast each agent’s cooperating probability changes per Eq. (1) and
thus influences the number of agents that will cooperate or defect with certainty. For
example, ifα is raised in a given scenario, than an agent’s cooperating probabilitywill
raise more when it cooperates per Eq. (1). We know from previous discussion that in
the Leader/Battle of the Sexes plateau that the percentage of cooperators at the end is
determined by the number of agents on the continual cooperating trajectory and by
the agents on the continual defecting trajectory. If an agent’s cooperating probability
raises faster, then the agent will more likely be on a continually cooperating trajectory
and at the end will cooperate with certainty. This can be seen in Fig. 18 where the
height or value of the Leader/Battle of the Sexes plateau is higher when α > β

(middle row) and lower when α < β (top row).
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Fig. 18 Comparison of simulation results with different learning factors

For most of this paper the cellular automaton environment is assumed to be a
50 × 50 grid. Now we will review the impacts of smaller grid sizes. Figure 19 shows
simulations results for the same parameter values as are used for Fig. 5 except with
grid sizes 10 × 10 and 25 × 25. It is clear that there is more irregularity in the output
for smaller grid sizes in the Prisoners’ Dilemma and Leader/Battle of the Sexes
plateaus. Since there is an element of randomness for the agents in these plateaus
we would expect more regular results with larger grid sizes due to the Law of Large
Numbers.
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Fig. 19 Comparison of simulation results with varying different grid sizes

5 Conclusions

This paper presented the plateaus and transitions to the N -person social dilemma
game assuming Pavlovian agents with linear payoff functions in a two-dimensional
cellular automaton environment when the parameter R is positive and P is negative.
The behavior of the agents in each of these plateaus was analyzed.

It was discovered that there are three plateaus where agents act in different man-
ners. The first plateau consists of predominately the Prisoners’ Dilemma gamewhere
each agent’s cooperating probability fluctuates around a steady state equilibrium.
These agents are called bipartisan agents since they are willing to change their minds
from iteration to iteration. The second plateau consists of a region consisting of
Leader and Battle of the Sexes games where the agents decide to either cooperate or
defect and then never change their minds. These agents are called partisan because
of their reluctance to change their decision. The final plateau consists of the region
including Harmony and Deadlock games where all agents decide to cooperate. These
agents are called unison since they all make the same decision.

The transitions between each of these three plateaus were evaluated. It was found
that the transition between the Prisoners’ Dilemma and Harmony/Deadlock plateaus
occurs when the roots to the analytical solution become complex, that the transi-
tion between the Prisoners’ Dilemma and Leader/Battle of the Sexes plateaus hap-
pens when S goes from negative to positive, and that the transition between the
Leader/Battle of the Sexes and Harmony/Deadlock plateaus takes place when T
goes from negative to positive. Each of these transitions was analyzed and verified
using agent simulation.

The special cases where either both R and P are positive or negative were con-
sidered. When both R and P are positive all of the agents in the Prisoners’ Dilemma
plateau defect because when P is positive there is no equilibrium attractor solu-
tion. All agents defect in this plateau since cooperators are punished and defectors
are rewarded. Also the transition between the Leader/Battle of the Sexes and Har-
mony/Deadlock plateaus shifts in the negative T direction because there are circum-
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stances when defectors in the Harmony/Deadlock plateau are rewarded. When both
R and P are negative the agents in the Harmony/Deadlock plateau become bipartisan
and do not cooperate 100% of the time as when R is positive and P is negative. This
is because in this plateau when P is negative there is a equilibrium attractor solution.

The impact of initial cooperating probability, neighborhood size, learning factors,
and grid size were evaluated. The impact of changing the initial cooperating prob-
ability is mainly on the percentage of cooperators in the Leader/Battle of the Sexes
plateau. The percentage of cooperators in this plateau is approximately equal to the
initial cooperating probability.

The plateaus and transitions are similar for different neighborhood sizes. There
is a slightly steeper transition for smaller neighborhood sizes between the Prisoners’
Dilemma and Leader/Battle of the Sexes plateaus because the payoff function values
are fewer and more discrete in nature.

Changing the learning factors significantly changes the location of the transition
between the Prisoners’ Dilemma and Harmony/Deadlock plateaus, but the location
is always consistent with where the roots to the analytical solution become complex.
The percentage of cooperators in the Leader/Battle of the Sexes plateau can also be
affected since higher learning factors can cause an agent to reach a cooperating or
defecting state with certainty more quickly.

Lastly, it was found that smaller grid sizes make the simulation results more
irregular in the Prisoners’ Dilemma and Leader/Battle of the Sexes plateaus. This
is due to the fact that these plateaus involve a stochastic element and more regular
results will occur with larger grid sizes due to the Law of Large Numbers.
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Optimizing Imperfect Preventive
Maintenance Policy for a Multi-unit
System with Different Virtual Ages

Maryam Hamidi, Reza Maihami and Behnam Rahimikelarijani

Abstract A special game against nature is examined in this paper, in which nature
controls timings of repairable and non-repairable failures of a system of equipment,
and preventive maintenance, repairs and preventive replacement policies are the
countermeasures. We optimize the imperfect preventive maintenance policy for a
multi-unit system with different initial virtual age units. We develop a binary integer
programming problem, where the management decides on the optimal preventive
maintenance policy to minimize the total expected maintenance cost not to exceed
a given budget. The mathematical formulation is developed for a multi-unit sys-
tem, considering different preventive maintenance levels for each unit. Numerical
examples with sensitivity analysis are performed to illustrate the performance and
efficiency of the proposed model. Also, the model is examined for a real case study
from railway industry. The results determine the optimal preventive maintenance
policy and provide managerial insights based on computational analysis.

Keywords Multi-unit system · Imperfect preventive maintenance · Initial virtual
age · Selective maintenance · Optimization

1 Introduction

The study of games against nature is an important field of game theory. The payoff
of the active player might depend on weather conditions, rainfall, currency exchange
rates, timings of breakdowns of systems of equipment to mention only a few. All
these uncertain factors can be predicted with mathematical statistical methods and so
some probabilistic characterizations become available making these factors random
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variables. There are usually two different ways to deal with such situations. In one
case the probabilities of unfavorable outcomes are limited or minimized considering
the situation as a zero-sum two-person game. In the other approach the expected
payoff is optimized. This second type of approach is the usual method in reliability
and quality engineering. In this paper we will also follow this approach.

In competing industries, units and machines are subject to failure by usage and
time (Wang 2002). Performing perfect maintenance is not always possible for all
the units due to the limitation in resources, budgets and time (Liu and Huang 2010).
Maintenance can be performed imperfectly at different levels to return the system to
somewhere between as good as new and as bad as old. Different models of imper-
fect maintenance have been developed by academic researchers, such as virtual age
models. A comprehensive review is presented in (Pham and Wang 1996).

Virtual age models are developed by Kijima (1989). In one model, the virtual
age of a system after nth maintenance is yn = yn−1 + αXn , where yn−1 is the
virtual age of the system before nth maintenance, α is the level of maintenance
(0 ≤ α ≤ 1) and Xn is the nth time to failure. In another model, the nth repair
decreases all the accumulated damage up to nth failure, yn = α(yn−1 + Xn). Two
extensions of the Kijima model; proportional age reduction (PAR) and proportional
age setback (PAS), have been studied by different researchers (Sanchez et al. 2009;
Martorell et al. 1999; Zhou et al. 2007). Ferreira et al. (2015) presented a Weibull-
based generalized renewal process using mixed virtual age model. Tanwar et al.
(2014) provided a survey for imperfect repair models for repairable systems using
the concepts of Generalized Renewal Process (GRP), arithmetic reduction of age
(ARA), and arithmetic reduction of intensity (ARI).

Due to limitations in budget, resources, and time,maintenancemight be performed
at different levels and managers should make the decision according to actual condi-
tion of each unit. This sort ofmaintenance action is called selectivemaintenance (Cao
et al. 2018; Rice 1999; Cassady et al. 2001), which is widely used in industry. Cas-
sady et al. (2001) developed a mathematical programming model to select a subset
of maintenance actions for making selective maintenance decisions, where compo-
nent life length followed Weibull distribution. Cassady et al. (2001) established a
framework for modeling and optimizing selective maintenance, considering differ-
ent models and concluded different models resulted in different optimal selective
maintenance decisions. Lüx et al. (2012) proposed a non-linear binary mathematical
model for selective maintenance considering cannibalization and multiple mainte-
nance actions. Pandey et al. (2013) addressed a selective maintenance model for a
binary system under imperfect maintenance. They consider age reduction and hazard
adjustment tomake themodel assumptionmore realistic. Cao et al. (2017) proposed a
simulation method for selective maintenance model to maximize system availability.
Time and budget are the most frequent constraints in selective maintenance models,
which could be negligible, certain or uncertain (Ali et al. 2011). We consider the
budget as a challenging constraint to select the best subset of maintenance actions.

Optimizing maintenance model of a system is more complex when the system
consists ofmany components.Multi-unitmaintenancemodels are focused on optimal
maintenance policies for a system with several units (Nicolai and Dekker 2008;
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Cho and Parlar 1991). A multi-unit system might be affected by competing risks,
which is modeled in (Zhang and Yang 2015). The authors considered a repairable
multi-component system, where maintenance policy restores the entire system to as-
good-as-new state after maintenance. Such assumptions are not realistic. Combining
multi-unit system assumption and virtual age is used in (Liu and Huang 2010; Dao
and Zuo 2017) to select optimal maintenance strategies. Liu et al. (2018) developed
a selective maintenance model to choose a subset of maintenance actions, where
maintenance time is stochastic. The authors applied the proposed model on a three-
unit system and proposed their model application in industry. A systematic review
of the selective maintenance models in multi-unit systems is presented in (Cao et al.
2018).

In this paper, we introduce a model for a selective maintenance policy of a multi-
unit system with different initial virtual ages and different maintenance levels. The
objective is to find the optimal preventivemaintenance level for each unit tominimize
the total maintenance cost subject to budget constraints. The imperfect preventive
maintenance cost, replacement cost (for non-repairable failures) andminimalmainte-
nance cost (for repairable failures) are included in themaintenance costs.We develop
a binary integer programming model to analyze the proposed problem. To the best
of our knowledge, this is the first study that optimizes the maintenance program for
a multi-unit system with considering initial virtual ages, imperfect maintenance, and
various maintenance levels.

This paper is organized as follows. InSect. 2,wepresent the problemdefinition and
problem formulation. Numerical examples are given in Sect. 3 to illustrate the model
and its efficiency. Sensitivity analysis is performed in this section as well. Section 3
includes a real case study from the railway industry. Finally, Sect. 4 concludes the
paper and provides future research directions.

2 Problem Definition

The basic problem is finding the optimal preventive maintenance policy for a multi-
unit system with different initial virtual ages. In this problem, we assume that there
are different preventive maintenance levels for each unit. First, we briefly describe
the maintenance level concept.

In many industrial environments, there are different maintenance levels for differ-
ent machines and units. As an example, based on the information of Mobility Work
website (Giorgio and Pulcini 2018), the maintenance levels could be categorized
in 5 different levels. Level 1 of maintenance includes simple maintenance actions
that are necessary for the operations, such as condition monitoring rounds and daily
lubrication. Amaintenance Level 2 is the simple procedures performed for the equip-
ment that is usually implemented by a qualified worker with a brief training, such
as controlling the operation parameters in equipment, breaking and safety devices
control. Level 3 consists of operations which need complex procedures and a quali-
fied technician with detailed procedure. Level 4 maintenance, performed by a team,
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takes care of operations whose procedures use specific techniques or technologies,
such as measuring and analyzing the machine vibration and Level 5 maintenance,
which is named renovation or reconstruction operations, includes operations whose
procedures apply a particular know-how and need special techniques, technologies
or processes, like complete inspection on dismantled machines. In here, first differ-
ent maintenance levels for each unit needs to be determined and next the following
formulation can be used to determine the optimal maintenance policy.

2.1 Problem Formulation

The following notations are used throughout the paper.

k = (1, 2, . . . , N ) Set of all units
Mk Number of possible preventive maintenance levels for

each unit k
i(0 ≤ i ≤ Mk) Preventive maintenance level i, which decreases the

virtual age of each unit k from Tk to αki Tk where
αki ∈ [0, 1]

C (m)
ki Preventive maintenance cost for unit k at maintenance

level i
Rk Number of repairable failure types for each unit k
ρk j (t) for j = 1, 2, . . . , Rk The failure rate of each repairable failure type j for each

unit k
c(r)
k j Cost of minimal repair for repairable failure type j for

each unit k
Fk(t) The CDF of time to the first non-repairable failure for

each unit k from zero virtual age
C (R)
k Cost of failure replacement for unit k

B(m) Preventive maintenance budget
B(R) Replacement budget
B(r) Minimal corrective repair budget

Consider a multi-unit system with N units and initial virtual ages T1, T2, . . . , TN .
Themanagement wants to decide on the optimal preventive maintenance plan, which
wouldminimize total expected cost. The preventivemaintenance is performed at time
zero and the planning horizon is the next T time periods. For each unit k, preventive
maintenance with level i decreases the virtual age of the unit from Tk to αki Tk , where
αki ∈ [0, 1]. There are Mk possible preventive maintenance levels, for each unit, i.e.
0 ≤ i ≤ Mk . The preventive maintenance cost C (m)

ki depends on the unit k and the
maintenance level i. For each unit k, maintenance level 0 means that no preventive
maintenance is performed with factor αk0 = 1 and cost C (m)

k0 = 0, while the value
αki = 0 refers to preventive replacement.

Each unit is subjected to both non-repairable failure and Rk types of repairable
failures, with failure rate ρk j (t) for j = 1, 2, . . . , Rk . Let c

(r)
k j and C (R)

k be the costs
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of minimal repairs for repairable failure type j and that of the failure replacement
including possible damages. So generally three types of maintenance is considered
for each unit: preventive maintenance, minimum repair for repairable failures and
replacement for non-repairable failures.

During any time period of length X, the expected number of type j repairable
failures is clearly

αki Tk+X∫

αki Tk

ρk j (t)dt (1)

So the total expected repair cost becomes:

Rk∑
j=1

c(r)
k j

αki Tk+X∫

αki Tk

ρk j (t)dt (2)

Let t denote the time of the first non-repairable failure, then the conditional CDF
considering the initial virtual age and imperfect preventive maintenance is given as

Fki (t) = Fk(t + αki Tk) − Fk(αki Tk)

1 − Fk(αki Tk)
(3)

For simplicity, we assume that at most one non-repairable failure might occur
during the considered time period of length T. If it occurs at time X ∈ (0, T ), then
the unit becomes as new, so the expected number of repairable failures until the end
of the planning horizon is

T−X∫

0

ρk j (t)dt (4)

for failure type j, so the expected total repair cost for all types of repairable failures
after the non-repairable failure is

Rk∑
j=1

c(r)
k j

T−X∫

0

ρk j (τ )dτ (5)

If the time of the non-repairable failure X ∈ (0, T ) were known, then the total
minimal repair cost for repairable failures would have the following form:
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Γki (X) =
Rk∑
j=1

c(r)
k j

⎡
⎣

αki Tk+X∫

αki Tk

ρk j (t)dt +
T−X∫

0

ρk j (t)dt

⎤
⎦ (6)

Let fki (t) = F ′
ki (t). The total expected cost of preventive maintenance, minimal

repairs and possible replacement during time period T is given as

ψki (T ) =
T∫

0

Γki (X) fki (X)dX + Γki (T )(1 − Fki (T )) + C (R)
k Fki (T ) + C (m)

ki

=
Rk∑
j=1

c(r)
k j

T∫

0

⎡
⎣

αki Tk+X∫

αki Tk

ρk j (t)dt +
T−X∫

0

ρk j (t)dt

⎤
⎦ fki (x)dx

+
Rk∑
j=1

c(r)
k j

⎡
⎣

αki Tk+T∫

αki Tk

ρk j (t)dt

⎤
⎦(1 − Fki (T )) + C (R)

k Fki (T ) + C (m)
ki (7)

Now, we can formulate the optimization problem:

min
N∑

k=1

Mk∑
i=0

xkiψki (T ) (8)

Subject to:

Mk∑
i=0

xki = 1, ∀ k (9)

N∑
k=1

Mk∑
i=0

xkiC
(m)
ki ≤ B(m) (10)

N∑
k=1

Mk∑
i=0

xki

⎛
⎝

T∫

0

Γki (X) fki (X)dX + Γki (T )(1 − Fki (T ))

⎞
⎠ ≤ B(r) (11)

N∑
k=1

Mk∑
i=0

C (R)
k xki Fki (αki Tk + T ) ≤ B(R) (12)

In the proposed model, the decision variables are as follows:

xki =
{
1
0
if maintenance level i is chosen for unit k

otherwise
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Equation (8) is the objective function which is the overall expected maintenance
cost. Equation (9) implies that for each unit only one maintenance level should be
considered and constraint (10) shows the limitation in total preventive maintenance
cost. The budget limitation for total corrective repair cost and replacement cost are
required by inequalities (11) and (12), respectively.

It should be noted that if the unit failure rate follows Weibull distribution, then
we have

ρk j (t) = βk j

ηk j

(
t

ηk j

)βk j−1

,∀ k, j (13)

Fk(t) = 1 − e
−

(
t

ηk

)βk

,∀ k (14)

Fki (X) = Fk(X + αki Tk) − Fk(αki Tk)

1 − Fk(αki Tk)
,∀ k, i (15)

fki (X) = F ′
ki (X) = fk(X + αki Tk)

1 − Fk(αki Tk)

= 1

1 − Fk(αki Tk)

βk j

ηk j

(
X + αki Tk

ηk j

)βk j−1

e
−

(
X+αki Tk

ηk j

)βk j

∀ k, i (16)

So Eq. (6) can be rewritten as:

Γki (X) =
Rk∑
j=1

c(r)
k j

⎡
⎣

αki Tk+X∫

αki Tk

ρk j (t)dt+
T−X∫

0

ρk j (t)dt

⎤
⎦

=
Rk∑
j=1

c(r)
k j

(
1

ηk j

)βk j [
(αki Tk + X)βk j − (αki Tk)

βk j + (T − X)βk j
]

Then, we can obtain Eq. (7) as follows:

ψki (T ) =
T∫

0

	ki (X) fki (X)dX + 	ki (T )(1 − Fki (T )) + C (R)
k Fki (T ) + C (m)

ki

=
Rk∑
j=1

c(r)
k j

(
1

ηk j

)βk j
T∫

0

[(αki Tk + X)βk j − (αki Tk)
βk j

+ (T − X)βk j ] fki (X)dX

+
Rk∑
j=1

c(r)
k j

(
1

ηk j

)βk j [
(αki Tk + T )βk j − (αki Tk)

βk j
]
(1 − Fki (T ))

+ C (R)
k Fki (T ) + C (m)

ki (17)
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We can compute the equations of constraints accordingly. We use Weibull
distribution as the unit failure rate in the following numerical examples.

3 Numerical Examples

In this section,we solve two simple numerical examples and one realworld case study
by utilizing CPLEX software to illustrate the efficiency of the proposed model.

3.1 Example 1

We consider a 3 unit system K = (1, 2, 3) with initial virtual ages Tk = (1, 1, 1.5)
years. Each unit has 3 preventive maintenance levels and 4 repairable failure types,
j = (1, 2, 3, 4). The planning horizon is T = 3 years, and the budget for preventive
maintenance, minimal repair and replacements are B(m) = $40, B(r) = $1000,
B(R) = $200, respectively. The Weibull scale parameter and shape parameter for
each repairable failure for each unit is presented in Tables 1 and 2, respectively.
Cost of replacement is C (R)

k = (5, 5, 5) and cost of minimal repair and preventive
maintenance is presented in Tables 3 and 4, respectively. Effect of each preventive
maintenance level for each unit can be seen in Table 5.

Applying the above parameters, we first compute the total expected maintenance
costs, ψki (T ), and the results are presented in Table 6. The total maintenance cost
includes preventive maintenance, minimal repair for all repairable failure types and
replacement cost for non-repairable failure.

Table 1 Value of scale parameter ηk j of Weibull distribution for Example 1

ηk j (scale parameter of repairable failure of type j)

1 2 3 4

Units, k 1 1 0.9 1 1

2 0.8 0.6 0.4 0.9

3 0.6 0.7 0.5 0.3

Table 2 Value of shape parameter βk j of Weibull distribution for Example 1

βk j (shape parameter of repairable failure of type j)

1 2 3 4

Units, k 1 1.1 1.2 1.3 1.4

2 1.4 1.3 1.2 1.1

3 1.6 1.6 1.6 1.6
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Table 3 Cost c(r)
k j of minimal repair of failure of type j for each machine k for Example 1

c(r)
k j (cost of minimal repair for repairable failure of type j)

1 2 3 4

Units, k 1 2 2.1 2.2 2.3

2 1.5 1.4 1.3 1.2

3 1.7 1.7 1.7 1.7

Table 4 Preventive maintenance cost C (m)
ki for unit k at maintenance level i for Example 1

C (m)
ki (preventive maintenance cost at maintenance

level i)

1 2 3

Units, k 1 1 1.5 2

2 2 2.5 3

3 2 2.5 3

Table 5 Age reduction coefficient αki in virtual age model for Example 1

αki (age reduction coefficient, level i)

1 2 3

Units, k 1 0.9 0.8 0.7

2 0.5 0.4 0.3

3 0.7 0.6 0.5

Table 6 The total expected cost ψki (T ) of preventive maintenance, minimal repairs and possible
replacement for Example 1

ψki (T ) (total expected maintenance cost at level i)

Level 1 Level 2 Level 3

Units, k Unit 1 40.705 40.882 41.223

Unit 2 45.003 45.517 46.240

Unit 3 139.032 136.161 137.086

Next, we optimize function (14) and obtain $222.318 as the optimal objective
value. The optimal decision variables can be seen in Table 7. It shows that the
management should consider preventive maintenance level 1 for unit 1 and unit 2,
and level 2 for unit 3. It is clear that any other combination of maintenance levels for
the units would lead to larger maintenance costs.
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Table 7 The optimal preventive maintenance policy for Example 1

Maintenance level, i

Level 1 Level 2 Level 3

Units, k Unit 1 1 0 0

Unit 2 1 0 0

Unit 3 0 1 0

3.1.1 Discussion on Weibull Distribution Parameters

The Weibull parameters are the critical factors in determining the optimal solutions.
We are now examining how the value of shape and scale parameters affect the optimal
solution. First, we solve the proposed example for random values of shape parameter
βk j . The results are shown in Table 8. It is pretty clear that even a small change in
shape parameter would lead to change in optimal solution. Likewise, we perform

Table 8 Optimal solution corresponding to various values of shape parameter βk j

βk j (shape parameter of each repairable failure type j
for each unit k)

Optimal maintenance level

Case 1

βk j =

⎡
⎢⎢⎣
1.2 1.3 1.4 1.5

1.5 1.4 1.3 1.2

1.7 1.7 1.7 1.7

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 2

βk j =

⎡
⎢⎢⎣
1.3 1.4 1.5 1.6

1.6 1.5 1.4 1.3

1.8 1.8 1.8 1.8

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 3

βk j =

⎡
⎢⎢⎣
1.4 1.5 1.6 1.7

1.7 1.6 1.5 1.4

1.9 1.9 1.9 1.9

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 4

βk j =

⎡
⎢⎢⎣

1 1.1 1.2 1.3

1.3 1.2 1.1 1

1.5 1.5 1.5 1.5

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 5

βk j =

⎡
⎢⎢⎣
0.9 1 1.1 1.2

0.9 1.2 1.8 0.8

1.1 1.5 0.9 2

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 6

βk j =

⎡
⎢⎢⎣
0.8 0.9 1 1.1

0.8 1.7 0.6 1.2

1 0.8 1.9 1.4

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 1 0

⎤
⎥⎥⎦
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Table 9 Optimal solution corresponding to various value of scale parameter ηk j

ηk j (scale parameter of each repairable failure type j for
each unit k)

Optimal maintenance level

Case 1

ηk j =

⎡
⎢⎢⎣
1.5 1.2 0.8 1.8

0.3 1.2 1 0.6

0.9 1.7 1.5 0.9

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

0 0 1

0 0 1

⎤
⎥⎥⎦

Case 2

ηk j =

⎡
⎢⎢⎣

1 1.5 2 2.5

0.3 0.4 0.5 0.6

4 3 2 1

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

0 0 1

0 0 1

⎤
⎥⎥⎦

Case 3

ηk j =

⎡
⎢⎢⎣
0.7 1.7 1.2 0.4

1.3 0.2 1.9 1.6

1.9 0.7 0.5 1.8

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 1

1 0 0

0 1 0

⎤
⎥⎥⎦

Case 4

ηk j =

⎡
⎢⎢⎣
1.2 1.2 1.2 1.2

1 1 1 1

0.8 0.8 0.8 0.8

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
1 0 0

1 0 0

0 0 1

⎤
⎥⎥⎦

Case 5

ηk j =

⎡
⎢⎢⎣
1 0.9 0.6 0.3

2 1.6 1.2 0.8

3 2 1 0.1

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

0 0 1

⎤
⎥⎥⎦

Case 6

ηk j =

⎡
⎢⎢⎣
0.3 0.9 1.4 0.3

1.2 0.6 1.2 0.6

0.5 2 0.3 0.1

⎤
⎥⎥⎦ xki =

⎡
⎢⎢⎣
0 1 0

1 0 0

1 0 0

⎤
⎥⎥⎦

the optimization problem for various value of scale parameter ηk j (Table 9). Like
as shape parameter, any deviation in scale parameter value remarkably changes the
optimal solution. Therefore, it is very important for decision makers to indicate the
precise and correct value ofWeibull parameters if theywant to obtain the real optimal
solution.

There are different methods to estimate the distribution parameters. Generally,
these methods categorized into two groups: (1) the graphically method such as prob-
ability plotting and hazard plotting, and (2) the analytically methods such as method
of moment (MOM) least square method (LSM), maximum likelihood estimation
(MLE) and density power method (DPM). All these methods depend on the data
quality that are used to estimate the parameters. Many of data analysis and statistical
packages easily compute the Weibull parameters based on the given data.
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3.2 Example 2

In this example, we consider a system with 10 units, 5 preventive maintenance levels
for each unit, and 8 types of possible repairable failures. The planning horizon is T =
5 years and we assume the maintenance budgets as B(m) = $4000, B(R) = $20000,
and B(r) = $100000. The rest of the parameters are presented in Tables 10, 11, 12,
13, 14 and 15.

We next compute the total expected maintenance costs for all units in all possible
preventive maintenance levels, and the results can be seen in Table 16.

We then solve the optimum problem to find the optimal solution. The results show
that minimum total maintenance cost for all units is $64768.95 The corresponding
optimal decision variable are given in Table 17. Based on the results, we conclude
that the management should apply maintenance level 1 for all units except for units
7 and 10, where maintenance level 2 is optimal.

Next, we perform sensitivity analysis based on the Example 2 information. First,
we vary the value β11 ofWeibull distribution shape parameter of unit 1 at failure type
1. The results are shown in Fig. 1.

It is clear that when the shape parameter is increased, the total maintenance cost
is increased, as well. The same process for the Weibull scale parameter η11 of failure
type 1 can be done.

Next we repeat the analysis of the maintenance costs based on different values of
T for all units in maintenance level 1. The results given in Fig. 2 show that increase
in the total life cycle for each unit leads to an increase in the maintenance cost. Thus,
when the considered unit age becomes larger, the maintenance cost increases as
well. From managerial point of view, it is implied that the unit replacement strategy
is justified when the unit age becomes old.

3.3 Case Study

In this section we present a real world application of the model for railroad tracks.
Track repairable failure types are categorized into twomain categories, structural and
geometrical failures. While structural defects are created by structural conditions of
the track, including rail, sleeper, fastening, sub-grade and drainage system, geometry
failures are related to bad condition of the rail geometry parameters, such as profile
and alignment (He et al. 2015). In this study, we consider three of themajor repairable
geometry failure types as follow:

• The first is the surface failure type, which measures any non-uniformity of the top
surface of a single rail. As can be seen in Fig. 3, the surface measurement can be
positive or negative when there is a hump or a dip, respectively.

• The second repairable failure type, demonstrated in Fig. 4, is DIP, which measures
a fall or a rise in the centerline of the track.
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Table 13 Preventive maintenance cost C (m)
ki for unit k at maintenance level i for Example 2

C (m)
ki (preventive maintenance cost at maintenance level i)

1 2 3 4 5

Units, k 1 18 16 14 12 10

2 20 18 16 14 12

3 22 20 18 16 14

4 24 22 20 18 16

5 26 24 22 20 18

6 10 8 6 4 2

7 12 10 8 6 4

8 14 12 10 8 6

9 16 14 12 10 8

10 18 16 14 12 10

Table 14 Age reduction coefficient αki in virtual age model for Example 2

αki (age reduction coefficient at maintenance level i)

1 2 3 4 5

Units, k 1 0.5 0.6 0.7 0.8 0.9

2 0.4 0.5 0.6 0.7 0.8

3 0.3 0.4 0.5 0.6 0.7

4 0.2 0.3 0.4 0.5 0.6

5 0.1 0.2 0.3 0.4 0.5

6 0.5 0.6 0.7 0.8 0.9

7 0.4 0.5 0.6 0.7 0.8

8 0.3 0.4 0.5 0.6 0.7

9 0.2 0.3 0.4 0.5 0.6

10 0.1 0.2 0.3 0.4 0.5

• The third is the cross level (X-level) failure type, which measures the difference
in elevation of top surface of two rails at any specific point of the railroad track.
The cross level measurement is mostly performed under load since the rails can
move up or down under a load. Figure 5 presents cross level defect.

Geometry cars equipped with sensors, GPS and measurement devices, periodically
inspect tracks and record different track geometries such as track alignment, ele-
vation, curvature and track surface. Part of the data that geometric cars gather are
segment number, milepost, defect amplitude, and class. A brief definition of these
variables is as follows.

• Segment number: Segment is like tracks connecting two cities
• Milepost: Point on the track segment
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Table 16 The total expected cost ψki (T ) of preventive maintenance, minimal repairs and
replacements for Example 2

ψki (T ) (total expected maintenance cost at level i)

Level 1 Level 2 Level 3 Level 4 Level 5

Units, k Unit 1 7434.66 7595.41 7770.12 7936.26 8077.1

Unit 2 6797.55 6939.69 6863.79 7027.83 7026.21

Unit 3 5903.92 6039.37 6200.2 6370.71 6536.61

Unit 4 6677.03 6723.92 6686.54 6831.1 6870.19

Unit 5 3908.57 4275.88 4112.81 4174.67 4296.98

Unit 6 7578.84 7826.99 8422.37 8079.31 8233.5

Unit 7 6995.12 6706.4 7100.34 7271.06 7251.42

Unit 8 6339.08 6490.41 6813.02 6861.25 7087.52

Unit 9 6873.41 7029.82 7283.39 7502.28 7892.27

Unit 10 7061.84 6549.49 6724.75 7376.53 7224.52

Table 17 Optimal solutions for Example 2

Maintenance level, i

Level 1 Level 2 Level 3 Level 4 Level 5

Units, k Unit 1 1 0 0 0 0

Unit 2 1 0 0 0 0

Unit 3 1 0 0 0 0

Unit 4 1 0 0 0 0

Unit 5 1 0 0 0 0

Unit 6 1 0 0 0 0

Unit 7 0 1 0 0 0

Unit 8 1 0 0 0 0

Unit 9 1 0 0 0 0

Unit 10 0 1 0 0 0

• Defect type: Geometry defect types
• Defect amplitude: Size of defect in inches or degrees
• Class: All tracks get a number between one and five. Each class represents oper-
ating speed limits for passenger and freight traffic. Class one has the lowest speed
limit and class five has the highest speed limit.

Federal Railroad Administration (FRA) defines the defect amplitude threshold of
each failure type and a defect amplitude recorded by geometry cars is considered a
failure if greater than the threshold. Such defects violate FRA safety standards and
need immediate maintenance. The failure threshold for each failure type is presented
in Table 18.
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Fig. 2 Total expected maintenance costs for all units at maintenance level 1 regard to various T

Fig. 3 Graphical representation of surface failure

In this study we consider segments as different units of the system, where each
segment can have three types of repairable failure; DIP, surface and X-level. A unit
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Fig. 4 Graphical representation of DIP failure

Fig. 5 Graphical representation of cross level failure

Table 18 Failure amplitude threshold for each failure type in different rail classes (inch)

Class of rails

Class 1 Class 2 Class 3 Class 4 Class 5

Failure type DIP 3 2.75 2.25 1.75 1.5

Surface 3 2.75 2.25 2 1.25

Cross level 3 2 1.75 1.25 1

is considered failed when the defect amplitude of at least one milepost is greater than
the FRA threshold. That milepost needs to be minimally repaired.

To elaborate the real application of the model, the required data has been obtained
from Burlington Northern and Santa Fe (BNSF) Railway Company. BNSF Railway
is one of the major freight railroad networks in North America and is one of the
seven class I railroads in US. We consider the track geometry failures from 2007 to
2013. We consider a track with three segments. For each segment, we analyze the
failure time data recorded by geometry cars and estimate a Weibull distribution for
each failure type in class 5 rails. Table 19 shows the results.

The cost of minimal repair for each unit based on the failure type is presented in
Table 20. The minimal repair cost is the same for each segment.

There are two maintenance levels to preventively maintain any track segment;
tamping and stone blowing. In tamping process, a tampingmachine raise the sleepers
and ballast the stone under them, while in the stone blowing process the ballast rests
and the stone will be blown under them. The preventive maintenance cost for each
segment is shown in Table 21. The age reduction coefficient αki for all segments in
tamping process is 0.6 and in stone blowing maintenance is 0.8.



Optimizing Imperfect Preventive Maintenance Policy … 253

Table 19 Estimated Weibull parameters for different modes of failure in rail segments

Segment, k Shape parameter, βk j Scale parameter, ηk j

Failure type DIP 3 1.5 146

Surface 2 1.2 212

3 1.4 181

Cross level 1 1.3 211

2 1.3 238

3 1.4 211

Table 20 Cost c(r)
k j of minimal repair of failure type j in segment k

Cost of minimal repair for each failure type

DIP Surface Cross level

Segment, k 1 $1125 $1125 $1534

2 $1125 $1125 $1534

3 $1125 $1125 $1534

Table 21 Preventive

maintenance cost C (m)
ki for

segment k at maintenance
level i

Preventive maintenance level, i

Level 1, stone
blowing

Level 2, tamping

Segment, k 1 $125460 $139400

2 $157658 $175175

3 $117551 $130613

The initial virtual age of each segment is Tk = (4, 5, 3) years respectively. The
replacement cost for all segments is same and is equal to $480000. We assume
the time horizon of T = 5 years and maintenance budgets as B(m) = $500000,
B(r) = $1000000, B(R) = $600000.

Using the above data, the total maintenance cost for each segment is shown in
Table 22.

Table 22 The total expected
cost, ψki (T ) of maintenance,
repairs and possible
replacement

Maintenance level, i

Level 1 Level 2

Segment, k 1 $129189 $142472

2 $160854 $178247

3 $120121 $133675
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Table 23 Optimal solutions
for case study

Maintenance level, i

Level 1 Level 2

Segment, k 1 1 0

2 1 0

3 1 0

The optimal solution shows that to minimize the total maintenance cost, all
segment should consider the maintenance level 1 (Table 23). The minimal total
maintenance cost for the whole system is $410167.

4 Conclusion

In this paper, we developed a new model to study imperfect maintenance of a multi-
unit system with different maintenance levels and different initial virtual ages. The
mathematical formulation was given and numerical examples were presented. A real
world case study of rail tracks was presented and the optimal maintenance level
for each unit and the corresponding total maintenance costs for each maintenance
policy were presented in the results. Moreover, sensitivity analysis was performed
to study the impact of changing some model parameter values. This result can assist
the management to realize the importance of the correct estimation of the model
parameters.

Themodel introduced in this paper canbe extended in severalways.Thepreventive
maintenance time can be optimized in addition to the current maintenance level.
Instead of expected cost we could also consider expected cost per unit time, when
the cycle ends either at time T or at the time of non-repairable failure, which occurs
first. These model variants will be the subject of our next project.
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Newton-Type Solvers Using Outer
Inverses for Singular Equations

Ioannis K. Argyros and Stepan Shakhno

Abstract We are motivated by a seminal paper of Nashed and Chen on Newton-
type solvers for Banach space valued operators equations. The novelty of our paper
lies in the fact that we present a more flexible, finer semi-local convergence analysis
and without additional hypotheses. We also study the local convergence analysis not
given in the aforementioned paper.

1 Introduction

Let B1, B2 stand for Banach spaces, � ⊆ B1 be convex, open and nonempty,
L(B1, B2) := {Q : B1 → B2 is linear and continuous} and U (x, ρ) := {y ∈ B1 :
‖y − x‖ < ρ, ρ > 0}. Consider H : � → B2 to be a continuous operator. One of
the most challenging and important tasks is to find a solution x∗ of equation

RH(x) = 0, (1)

where R ∈ L(B2, B1).
Numerous problems fromdiverse branches such asMathematical:Biology,Chem-

istry, Economics, Medicine, Physics and also and Engineering to mention a few
are reduced to solving equation (1) using mathematical modelling (Argyros and
Magrenán 2017, 2018; Argyros and Shakhno 2019a, b; Argyros et al. 2019; Ben-
Israel 1966, 1968; Ben-Israel and Greville 1974; Chen and Yamamoto 1989; Deufl-
hard and Heindl 1979; Nashed and Chen 1993; Häußler 1986; Akilov 1981; Nashed
1976, 1987; Potra and Ptak 1984; Ortega andRheinboldt 1970; Traub 1964; Shakhno
2014, 2010, 2009; Shakhno et al. 2014; Yamamoto 1986, 1987, 1989). The desired

I. K. Argyros (B)
Department of Mathematics, Cameron University, Lawton 73505, USA
e-mail: iargyros@cameron.edu

S. Shakhno
Department of Theory of Optimal Processes, Ivan Franko National University of Lviv,
Lviv 79000, Ukraine
e-mail: stepan.shakhno@lnu.edu.ua

© Springer Nature Singapore Pte Ltd. 2020
F. Szidarovszky and G. I. Bischi (eds.), Games and Dynamics in Economics,
https://doi.org/10.1007/978-981-15-3623-6_14

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3623-6_14&domain=pdf
mailto:iargyros@cameron.edu
mailto:stepan.shakhno@lnu.edu.ua
https://doi.org/10.1007/978-981-15-3623-6_14


258 I. K. Argyros and S. Shakhno

closed form solution can only be found in rare cases. Therefore, iterative solvers are
introduced of the form

xn+1 = xn − T (xn)#H(xn), n = 0,1,2, . . . , (2)

where T (xn)# stands for a bounded outer inverse operator (BOIO). That is it satisfies

T (xn)
#T (xn)T (xn)

# = T (xn)
#. (3)

In the seminal paper by Nashed and Chen (1993) a semi-local convergence anal-
ysis of solver (2) was given based on Yamamoto type Ben-Israel (1968) conditions
for Newton-type solvers

yn+1 = yn − T (xn)−1H(xn) (4)

but extended to BOIO from T−1.
The convergence analysis in Nashed and Chen (1993) extended and generalized

earlier results by Häußler (1986), Deuflhard and Heindl (1979) and others. The
problem with all these results is that the sufficient convergence criteria are strong
leading to a small convergence region in general. Moreover, the error bounds and the
information on the solution are not optimal. We address all these problems in this
paper, and introduce a finer convergence analysis which is not involving additional
hypotheses. Furthermore, our choice of the BOIO is more flexible also allowing the
studyof equationswith a non-differentiable term.Wealso study the local convergence
of solver (2) not given in Nashed and Chen (1993) with similar advantages.

The layout of the rest of the paper involves: mathematical background semi-local,
local convergence and conclusion in Sect. 2–Sect. 4, respectively.

2 Mathematical Background

In order to make the paper as self continued as possible, we reproduce some results
from Ben-Israel (1968), Nashed and Chen (1993), Häußler (1986), Nashed (1987),
Yamamoto (1989).

Let N (Q), R(Q) stand for the null-space, and the range respectively of a linear
operator Q.

We need the following auxiliary results.

Lemma 1 If Q# is a BOIO of Q ∈ L(B1, B2), then B1 = R(Q#) ⊕ N (Q#Q),
B2 = N (Q#) ⊕ R(QQ#).

Lemma 2 Let Q# be an outer inverse of Q ∈ L(B1, B2) satisfying ‖Q#(Q1 −
Q)‖ < 1 for Q1 ∈ L(B1, B2). Then, Q#

1 := (I + Q#(Q1 − Q))−1Q# is a BOIO of
Q1, N (Q#

1) = N (Q), R(Q#
1) = R(Q),
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‖(Q#
1 − Q#)‖ ≤ ‖Q#(Q1 − Q)Q#

1‖
1 − ‖Q#(Q1 − Q)‖ ≤ ‖Q#(Q1 − Q)‖‖Q#‖

1 − ‖Q#(Q1 − Q)‖
and

‖Q#
1Q‖ ≤ 1

1 − ‖Q#(Q1 − Q)‖ .

Lemma 3 Let Q, Q1 ∈ L(B1, B2) with Q#, Q#
1 denoting outer inverses of Q, and

Q1, respectively. Then, the following implication holds

Q#
1(I − QQ#

1) = 0 ⇔ N (Q#) ⊂ N (Q#
1).

3 Semilocal Convergence

The semi-local convergence is based on the conditions (A):
(A1) T (x) ∈ L(B1, B2). There exist an open convex subset �0 of �, BOIO T #

of T with T (x0) = T , and constant η > 0 such that ‖T #H(x0)‖ ≤ η0.

(A2) For L0, l0 ≥ 0, x ∈ �0

‖T #(T (x) − T (0))‖ ≤ L0‖x − x0‖ + l0, and l0 = 0, if x = x0.

Set �1 = � ∩U
(
x0,

1 − l0
L0

)
for L0 = 0, and l0 ∈ [0, 1].

(A3) There exist K0 > 0, M0, μ0 ≥ 0 such that for each x, y ∈ �1

‖T #(H(y) − H(x) − T (x)(y − x))‖ ≤ K0

2
‖y − x‖2 + (M0‖x − x0‖ + μ0)‖y − x‖.

(A4) b0 := μ0 + l0 < 1.
(A5) For δ0 := max{K0, M0 + L0}

h0 = δ0η0 ≤ 1

2
(1 − b0)

2

and
Ū (x0, u

∗) ⊂ �0,

where u∗ = 1 − b0 − √
(1 − b0)2 − 2h0
δ0

. It is also relevant to define scalar functions

f0(t) = δ0

2
t2 − (1 − b0)t + η0,

g0(t) = 1 − L0t − l0,
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as well as a sequence {un} by

u0 = 0, un+1 = un + f0(un)

g0(un)
.

Clearly, by the inequality in (A5), f0(t) has roots u∗ and u∗∗ with 0 < u∗ ≤ u∗∗,
and un ≤ un+1, so limn→∞ un = u∗, where

u∗∗ = 1 − b0 + √
(1 − b0)2 − 2h0
δ0

.

Next, the preceding conditions and notation suffice to present the semi-local con-
vergence.

Theorem 1 Under the conditions (A), the following items hold:
(a) The sequence generated by solver (2) stays in U (x0, u∗), and converges to a

solution x∗ ∈ Ū (x0, u∗) of equation T #H(x) = 0, provided that

T (xn)
# = (I + T #(T (xn) − T ))−1T #.

(b) The point x∗ is the only solution of equation T #H(x) = 0 in �2 = Ũ0 ∩
{R(T #) + x0}, where

Ũ0 =

⎧
⎪⎨

⎪⎩

Ū0(x0, u∗) ∩ �0, h0 = 1

2
(1 − b0)

2

U0(x0, u∗∗) ∩ �0, h0 <
1

2
(1 − b0)

2,

and
R(T #) + x0 = {x + x0 : x ∈ R(T #)}.

Proof We use mathematical induction to show:

‖xn+1 − xn‖ ≤ un+1 − un. (5)

By (A1), we have

‖x1 − x0‖ ≤ η = u1 − u0, (6)

so (5) is true for n = 0. Using (A2), the definition of u∗, and (6), we get

‖T #(T (x1) − T ‖ ≤ L0‖x1 − x0‖ + l0 ≤ L0u1 + l0 ≤ L0u
∗ + l0 < 1. (7)

It follows by Lemma 2 that

(T (x1)
# := (I + T (T (x1) − T ))−1T #
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is an outer inverse of T (x1),

‖(T (x1)
#T ‖ ≤ 1

1 − L0‖x1 − x0‖ − l0
≤ 1

1 − L0u1 − l0
, (8)

and N (T (x1)#) = N (T #).

Suppose that
‖xm − xm−1‖ ≤ um − um−1 (9)

and
N (T (xm−1)

#) = N (T #) (10)

for each m = 1, 2, ..., n.

Then, we have

‖xm − x0‖ ≤ ‖xm − xm−1‖ + ‖xm−1 − xm−2‖ + ... + ‖x1 − x0‖

≤ (um − um−1) + (um−1 − um−2) + ... + (u1 − u0) = um − u0 = um ≤ u∗
(11)

and
N (T (xm)#) = N (T (xm−1)

#) = N (T #). (12)

Using Lemma 3, we get

T (xn)
#(I − T (xn−1)T (xn−1)

#) = 0. (13)

Moreover, by solver (2), we get in turn that

xn+1 − xn = −T (xn)#H(xn)

= −T (xn)#(H(xn) − T (xn−1)(xn − xn−1) − T (xn−1)T (xn−1)
#H(xn−1)

= −[T (xn)#T ][T #(H(xn) − H(xn−1) − T (xn−1)(xn − xn−1))].

(14)

Notice that by Lemma 3, and N (T (xn)#) = N (T #), we have

T (xn)
#(I − T (xn)T

#) = 0. (15)

In view of (A3), (8), the definition of sequence {un}, and (14), we obtain in turn that
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‖xn+1 − xn‖ = ‖[T (xn)#T ][T #(H(xn) − H(xn−1) − T (xn−1)(xn − xn−1)]

≤ 1

1 − L0un − l0
[K0

2
‖xn − xn−1‖2 + (M0‖xn−1 − x0‖ + μ0)‖xn − xn−1‖]

≤ 1

1 − L0un − l0
[δ0
2

(un − un−1)
2 + (M0un−1 + μ0)(un − un−1)]

= 1

g0(un)
[δ0
2

(un − un−1)
2 + (M0(un − un−1)un−1+

+ f0(un−1) + μ0(un − un−1) − g0(un−1)(un − un−1)]

= 1

g0(un)
[δ0
2
u2n − (1 − b0)un + η0 + (δ0 − M0 − L0)un−1(un − un−1)]

≤ f0(un)

g0(un)
= un+1 − un,

(16)

which terminates the induction for (9). Then, so far we have for each n

‖T #(T (xn+1) − T )‖ ≤ L0‖xn+1) − x0‖ + l0 ≤ L0un+1 + l0 ≤ L0u
∗ + l0 < 1

(17)
‖xn − x0‖ ≤ un ≤ u∗ (18)

and
T (xn+1)

# := (I + T #(T (xn+1) − T ))−1T # (19)

is an outer inverse of T (x). By (9), sequence {xn} is fundamental, and as such it
converges to some x∗ ∈ Ū (x0, u∗). Moreover, by (19), we get that

T #(H(u∗)) = lim
n→∞ T #H(xn) = lim

n→∞(I + T #(T (xn) − T ))(xn − xn−1) = 0,

so T #H(x∗) = 0.
(b) By Lemma 1, we can write R(T (xn)#) = R(T #) for each n, so

xn+1 − xn = −T (xn)
#H(xn) ∈ R(T (xn)

#) = R(T #).

Then, by Lemma 2, we get R(T #) = R(T #T ) leading to xn+1 ∈ xn + R(T #) and
xn ∈ x0 + R(T #) for each n. Let y∗ ∈ Ū0 ∩ {x0 + R(T #)} be a solution of equation
T #H(x) = 0, and y∗ − x∗ ∈ R(T #). Then, we can write for each n

T #T (y∗ − xn) = T #T (y∗ − x0) + T #T (xn − x0) = y∗ − xn. (20)

Hence, by (A1), (A3) and (20)
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‖y∗ − x1‖ = ‖y∗ − x0 + T #H(x0) − T #H(y∗)‖

= ‖T #T (y∗ − x0) + T #(H(x0) − H(y∗))‖
= ‖T #(H(x0) − H(y∗)) + T (y∗ − x0)‖
= ‖‖T #(H(y∗)) − H(x0) − T (y∗ − x0)‖ ≤ ( δ0

2
‖y∗ − x0‖ + l0 + μ0

)‖‖y∗ − x0‖ = p(ρ)

for ρ = ‖y∗ − x0‖. It then follows from

‖y∗ − x0‖ ≤ ‖y∗ − x1‖ + ‖x1 − x0‖ ≤ p(ρ) + η0 = f0(ρ) + η0,

so p(ρ) ≥ 0, and consequently y∗ ∈ Ū (x0, u∗). We must show by induction that

‖y∗ − xn‖ ≤ u∗ − un. (21)

By y∗ ∈ Ū (x0, u∗), (21) holds for n = 0. Suppose (21) holds for all i = 0, 1, 2, ..., n.
In view of (A2), (A3), (8) and (21), we obtain in turn that

‖y∗ − x j+1‖ = ‖y∗ − x j + T (x j )
#H(x j ) − T (x j )

#H(y∗)‖

= ‖[T (x j )
#T (x j )][T (x j )

#(T (x j )(y∗ − x j ))] + H(x j ) − H(y∗)‖

≤ 1

1 − L0u j − l0
[K0

2
‖y∗ − x j‖2 + (M0‖x j − x0‖ + μ0)‖y∗ − x j‖]

≤ 1

g0(u j )
[δ0
2

(u∗ − u j )
2 + (M0u j + μ0)(u

∗ − u j )]

= 1

g0(u j )
[δ0
2

(u∗)2 + μ0u
∗ − (δ0 − M0)u j )(u

∗ − u j )]

= 1

g0(u j )
[δ0
2

(u∗ − η − l0u
∗ − (δ0 − M0)u j (u

∗ − u j ) − δ0

2
u2j − μ0u j ]

= u∗ − u j + 1

g0(u j )
[−(u∗ − u j )g0(x j ) + u∗ − η

−l0u∗ − δ0

2
u2j − μ0u j − (δ0 − M0)u j (u

∗ − u j )]

= u∗ − u j − 1

g0(u j )
[δ0
2
u2j − (1 − μ0 − l0)u j + η + (δ0 − M0 − L0)u j (u

∗ − u j )]

≤ u∗ − u j+1,

(22)
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which completes the induction for (21). It then follows from (21) that limn→∞ xn =
y∗. But we showed limn→∞ xn = x∗, so x∗ = y∗.

Remark 1 (a) The proof of Theorem 1 extends the corresponding one in Nashed
and Chen (1993). In particular, set H = H1 and H2 = 0. Then, the corresponding
conditions in Nashed and Chen (1993) are:

‖T #H(x0)‖ ≤ η,

‖T #(T (x) − T (x0))‖ ≤ L‖x − x0‖ + l for each x ∈ �,
‖T #(H1(x) − H1(x))‖ ≤ K‖y − x‖ for each x, y ∈ �,
‖T #(H1(x) − T (x))‖ ≤ M‖x − x0‖ + μ for each x ∈ �,
b = μ + l < 1,

h = δη ≤ 1

2
(1 − b)2, δ = max{K , M + L},

v∗ = 1 − b − √
(1 − b)2 − 2h

δ
,

v∗∗ = 1 − b + √
(1 − b)2 − 2h

δ
,

f (t) = δ

2
t2 − (1 − b)t + η, g(t) = 1 − Lt − l,

v0 = 0, vn+1 = vn + f (vn)

g(vn)
,

and
D1 = Ũ 1

0 ∩ {R(T ∗) + x0},

Ũ 1
0 =

⎧
⎪⎨

⎪⎩

Ū0(x0, v∗) ∩ �0, h = 1

2
(1 − b)2

U0(x0, v∗∗) ∩ �0, h <
1

2
(1 − b)2.

Then, by �1 ⊆ �, we have
η0 = η,

L0 ≤ L ,

l0 ≤ l,

K0 ≤ K ,

M0 ≤ M,

μ0 ≤ μ,

b0 ≤ b,

δ0 ≤ δ,
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h ≤ 1

2
(1 − b)2 =⇒ h0 ≤ 1

2
(1 − b0)

2 (23)

but not vice versa unless, if δ0 = δ and b0 = b. Hence, we have extended the appli-
cability of solver (2) without adding hypotheses, since in practice the computation
of L , l, K , M, μ, b, δ requires that of L0, l0, K0, M0, μ0, b0, δ0 as special cases.

(b) If T # = T−1, Theorem 5 reduces to the one in Yamamoto (1987) for Newton-
like solvers.

(c)Let us specialize further for the case of Newton’s solver, i.e. for T = H
′
1. Then,

we obtain η0 = η, L = l0 = M = M0 = μ = μ0 = b = b0 = 0, δ0 = max{K0, L},
δ = K . Moreover, we have

h = Kη ≤ 1

2
=⇒ h0 = δ0η ≤ 1

2
, (24)

and from the uniqueness part of the proof

‖x∗ − xn+1‖ ≤ K0

2(1 − L0u∗)
‖x∗ − xn‖2 (25)

instead of the old

‖x∗ − xn+1‖ ≤ K

2(1 − Kv∗)
‖x∗ − xn‖2 (26)

u∗ = 1 − √
1 − δ0η

δ0
≤ v∗ = 1 − √

1 − Kη

η
. (27)

It is also worth noticing that if we replace Ū (x0, u∗) ⊂ �0 byU (x1, u∗ − η) ⊂ � in
the proof of Theorem 1 (similarly for the old case), then under the assumptions of
Theorem 1 we obtain the estimates as in Yamamoto (1986, 1987)

‖x∗ − xn‖ ≤ e0n ≤ u∗ − un
un+1 − un

αn ≤ u∗ − un
un − un−1

αn−1 ≤ u∗ − un,

instead of

‖x∗ − xn‖ ≤ en ≤ v∗ − vn
vn+1 − vn

αn ≤ v∗ − vn
vn − vn−1

αn−1 ≤ v∗ − vn,

so
e0n ≤ en, (28)

where

e0n := 2αn

1 +
√
1 − 2δ0αn

1−δ0�n

,
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en := 2αn

1 +
√
1 − 2Kαn

1−K�n

,

�n := ‖xn − x0‖, and αn := ‖xn+1 − xn‖. Hence, again not only the sufficient con-
vergence criteria (23) and (24) are weakened but the location of the solution is more
precise (see 27) and the error estimations are tighter (see 28).

(d) The convergence conditions can become even more general, if (A2) and (A3)

are replaced, respectively by
(A2)

′
‖S#(T − S(x0))‖ ≤ L0‖x − x0‖ + l0,

and l0 = 0, if x = x0, where S(x) ∈ L(B1, B2), and there exist BOIO S# of S with
S = S(x0) = T (x0)

and
(A3)

′ there exist K0 > 0, M0, μ0 ≥ 0 such that for each x, y ∈ �1

‖S#(H(y) − H(x) − T (x)(y − x))‖ ≤ K0

2
‖y − x‖2 + (M0‖x − x0‖ + μ0)‖y − x‖.

Then, the conclusions of Theorem 1 hold true, if (A2)
′ and (A3)

′ reduce (A2) and
(A3), if S = T . Condition (A2) is used to show the existence of T (x)#. The same goal
however is achieved by the more flexible (A2)

′. Concerning the proof in this setting
T (x) is simply replaced T #SS#. Clearly this setting allows a greater flexibility in the
choice of T . These results allow us to see equations containing a nondifferentiable
term in a new, more usefull and more flexible setting. Moreover, earlier methods can
be compared in a unified setting.

Clearly, if appropriately specialized and along the same lines the results of other
solvers such as Secant, Steffensen, Stirling’s, Newton-Secant, Newton-Kurchatov,
Aitken and other solvers can be extended along the same lines, and the same condi-
tions (A). Therefore these methods are compared to each other under the same set
of conditions.

4 Local Convergence

The local convergence is based on the conditions (C):
(C1) H : � → B2 is continuous, T (x) ∈ L(B1, B2). There exist an open convex

subset �0 of �, BOIO T # of T , x∗ a solution of T #H(x) = 0, such that T = T (x∗).
(C2) For L0, l0 ≥ 0, x ∈ �0

‖T #(T (x) − T )‖ ≤ L0‖x − x∗‖ + l0

and l0 = 0, if x = x∗.
Set �1 = � ∩ Ū (x∗, 1−l0

L0
), L0 = 0.
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(C3) There exist K0 > 0, M0, μ0 ≥ 0 such that for each x ∈ �1

‖T #(H(x∗) − H(x) − T (x)(x∗ − x))‖ ≤ K0

2
‖x∗ − x‖2 + (M0‖x∗ − x‖ + μ0)‖‖x∗ − x‖.

(C4) = (A4).
(C5) Ū (x∗, r∗) ⊂ �0, where

r∗ = 1 − l0 − μ0
K0
2 + M0 + L0

. (29)

Next, we present the local convergence of solver (2) utilizing (C), and the preceding
notation.

Theorem 2 Under the conditions (C), choose x0 ∈ U (x∗, r∗). Then, the following
items hold

{xn} ⊂ U (x∗, r∗). (30)

lim
n→∞ xn = x∗, (31)

‖xn+1 − x∗‖ ≤ qn‖xn − x∗‖ ≤ ‖xn − x∗‖ ≤ r∗, (32)

and x∗ is the only solution of equation T #H(x) = 0 in �4 = � ∩ Ū (x∗, r∗), where

qn =
K0
2 ‖x∗ − xn‖ + M0‖x∗ − xn‖ + μ0

1 − L0‖xn − x∗‖ − l0
∈ [0, 1]. (33)

Proof in view of the uniqueness part in Theorem 1 (see 22 for x0 = x∗), but using
the (C) instead of the (H) conditions, we obtain the conclusions of Theorem 2.

Remark 2 (a) Local results were not given in Nashed and Chen (1993). But if they
were, the radius would have been

r̄∗ = 1 − l − μ
K
2 + M + L

,

where the constants are related as before.
(b) In the case of Newton’s solver

r∗ = 2

2L0 + K0
,

where as

r̄∗ = 2

3K
,
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was given independently by Rheinboldt Ortega and Rheinboldt (1970) and Traub
Traub (1964). Notice that

r̄∗ ≤ r∗.

(c) As in the semi-local case consider instead of (C2) and (C3), respectively
(C2)

′
‖S#(T (x) − S)‖ ≤ L0‖x − x∗‖ + l0,

and l0 = 0, if x = x∗, where S(x) ∈ L(B1, B2), and there exist BOIO S# of S with
S = S(x∗) = T (x∗).

(C3)
′ There exist K0 > 0, M0, μ0 ≥ 0 such that for each x ∈ �1

‖S#(H(∗x) − H(x) − T (x)(x∗ − x))‖ ≤ K0

2
‖x∗ − x‖2 + (M0‖x∗ − x‖ + μ0)‖‖x∗ − x‖.

The rest of the comments are similar to the ones in Remark 1.
Corresponding error estimations are as in Remark 1, and our information on

the location of solution is more accurate. Hence, we have a wider choice of initial
guesses x0, and fewer iterations are needed to obtain a desired error tolerance, and the
new information on the location of the solution is more accurate. Concrete examples,
where the new constants are smaller than the old ones (so the advantages are obtained)
can be found in Argyros and Magrenán (2017), Argyros and Magrenán (2018),
Argyros and Shakhno (2019a), Argyros and Shakhno (2019b), Argyros et al. (2019).

5 Conclusion

We presented a finer semi-local as well as a local convergence solver (2) using more
general conditions than before. Despite this fact, in the

semi-local case: We obtained weaker sufficient convergence criteria, tighter error
estimations, and a better information on the location of the solution;

local case: We deliver a larger radius of convergence and rest same as above.
These extensions are also obtained using the same computational effort, since the

new constants are special cases of the old ones. Hence, we extended the applicability
of solver (2), and without additional hypotheses.

References

Argyros, I. K., & Magrenán, Á. A. (2017). Iterative methods and their dynamics with applications:
A contemporary study. CRC Press.

Argyros, I. K., & Magrenán, Á. A. (2018). A contemporary study of iterative methods. New York,
NY, USA: Elsevier (Academic Press).



Newton-Type Solvers Using Outer Inverses for Singular Equations 269

Argyros, I. K., & Shakhno, S. (2019). Extended local convergence for the combined newton-
kurchatov method under the generalized lipschitz conditions. Mathematics, 7(2), 207. https://
doi.org/10.3390/math7020207.

Argyros, I. K., & Shakhno, S. (2019). Extending the applicability of two-step solvers for solving
equations. Mathematics, 7(1), 62. https://doi.org/10.3390/math7010062.

Argyros, I. K., Shakhno, S., & Yarmola, H. (2019). Two-step solver for nonlinear equations. Sym-
metry, 11(2), 128. https://doi.org/10.3390/sym11020128.

Ben-Israel, A. (1968). On applications of generalized inverses in nonlinear analysis. In T. L. Boul-
lion,&P. P.Odell (Ed.),Theory and application of generalized inverses ofmatrices (pp. 183–202).
Lubbock: Texas Tech University Press.

Ben-Israel, A. (1966). Newton-Raphson method for the solution of equations. Journal of Mathe-
matical Analysis and Applications, 15, 243–253.

Ben-Israel, A., & Greville, T. N. E. (1974). Generalized inverses: Theory and applications. New
York: Wiley and Sons.

Chen, X., & Yamamoto, T. (1989). Convergence domains of certain iterative methods for solving
nonlinear equations. Numererical Functional Analysis and Optimization, 10, 37–48.

Deuflhard, P., & Heindl, G. (1979). Affine invariant convergence theorems for Newton’s method
and extensions to related methods. SIAM Journal of Numerical Analysis, 16, 1–10.

Häußler, W.M. (1986). A Kantorovich-type convergence analysis for the Gauss-Newton-method.
Numerische Mathematik, 48, 119–125.

Kantorovich. L. V., Akilov, G. (1981). Functional analysis in normal spaces. Fizmathiz, Moscow
(1959); English translation (2nd edn.). Pergamon Press, London.

Nashed, M. Z. (1976). Generalized inverses and applications. New York: Academic Press.
Nashed,M.Z. (1987). Inner, outer, andgeneralized inverses inBanach andHilbert spaces.Numerical
Functional Analysis and Optimization, 9, 261–325.

Nashed, M. Z., & Chen, X. (1993). Convergence of Newton-like methods for singular operator with
outer inverses. Numerische Mathematik, 66, 235–257.

Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several
variables. New York: Academic Press.

Potra, F. A., Ptak, V. (1984). Nondiscrete induction and iterative processes. Research Notes in
Mathematics, vol. 103. Pitman, Boston.

Shakhno, S. M. (2009). On an iterative algorithm with superquadratic convergence for solving
nonlinear operator equations. Journal of Computational and Applied Mathematics, 231, 222–
235.

Shakhno, S. M. (2010). On a two-step iterative process under generalized Lipschitz conditions for
first-order divided differences. Journal of Mathematical Sciences, 168, 576–584.

Shakhno, S. M. (2014). Convergence of the two-step combined method and uniqueness of the
solution of nonlinear operator equations. Journal of Computational and Applied Mathematics,
261, 378–386.

Shakhno, S.M.,Mel’nyk, I. V., &Yarmola, H. P. (2014). Analysis of the convergence of a combined
method for the solution of nonlinear equations. Journal of Mathematical Sciences, 201, 32–43.

Traub, J. F. (1964). Iterative methods for the solution of equations. Englewood Cliffs, New York:
Prentice-Hall Inc.

Yamamoto, T. (1989). Uniqueness of the solution in a Kantorovich-type theorem of Häußler for the
Gauss-Newton method. Japan Journal of Industrial and Applied Mathematics, 6, 77–81.

Yamamoto, T. (1986). A method for finding sharp error bounds for Newtons method under the
Kantorovich assumptions. Numerische Mathematik, 49, 203–320.

Yamamoto, T. (1987). A convergence theorems for Newton-like methods in Banach spaces.
Numerische Mathematik, 51, 545–557.

https://doi.org/10.3390/math7020207
https://doi.org/10.3390/math7020207
https://doi.org/10.3390/math7010062
https://doi.org/10.3390/sym11020128


Properties of Linear Time-Dependent
Systems

Sandor Molnar and Mark Molnar

Abstract In economicmodelling time-dependent linear systems are frequently used
to analyse a multitude of interesting situations. One interesting area of application
is reachability which can drive the state of the system to a given desired state in
any future time. In this study we elaborate a generalisation of the Kalman-type rank
conditions which provide the sufficient and necessary conditions for reachability of
such systems.

1 Introduction

For economic models it is very important to study market behaviour and interactions
which are typically represented by a dynamic price function and the dynamics of
market share (Bischi et al. 2010). These processes can be represented by state and
time-dependent systems (Matsumoto and Szidarovszky 2018; Szidarovszky and Yen
1993). This study focuses on the latter approach and provides a general discussion
of reachability.

Under system qualities reachability from 0, controllability, observability and
reconsctructability and a sort of stability of input-output systems is meant. We don’t
discuss the latter comprehensively as the classical Lyapunov-type methods and the
characterisation with Ricatti-equations essentially solve the problem in this system
class (see e.g. Pontryagin et al. 1964; Kaplansky 1976).
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For the classical canonical form of time dependent parametric systems

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(1)

R. Kalman solved all fundamental issues (Szigeti 1992; Molnár et al. 1993; Mol-
nár and Szidarovszky 1994; Molnár 2001; Serre 1992). He proved the dualities for
the basic qualities he defined, e.g. controllability, reachability, observability and
reconstructibility. Furthermore he proved the equivalence for the reachability and
controllability and observability and reconstructability pairs for continuous time
systems (of form (1)). For example price and demand change in state and time due
to the change of preferences of consumers, market saturation, technological devel-
opment, etc. Complying with this we will only deal with one quality, reachability.
The classical results concerning the main features of linear systems are summarised
in Szidarovszky and Bahill (1998).

2 Preliminaries

Let’s consider the reachability of the system on a given fixed [0,T ] interval, where
we assume that functions

A : [0, T ] → R
n×n, B : [0, T ] → R

n×k,

C : [0, T ] → R
l×n, D : [0, T ] → R

l×k,

are at least continuous.
R. Kalman characterised reachability with the invertibility of the so called

Kalman-Gram-type matrix. For this we need to define the fundamental matrix of
the system. Let us consider the initial value problem

ẋ(t) = A(t)x(t), x(τ ) = I (2)

on R
n×n . In case of a continuous coefficient matrix this has a singular solution on

the entire [0, T ] interval

t �→ �(t, τ ) ∈ R
n×n

which is continuously differentiable as a bivariate (t, τ ) -function for which �(t, τ )

can be inverted for all (t, τ ) pairs. Consider for this the solution t �→ �(t, τ ) of the
initial value problem

Ẏ (t) = −Y (t)A(t), Y (τ ) = I
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which has a domain on the entire [0, T ] interval. Then
d
dt (Ψ (t, τ )Φ(t, τ )) = Ψ̇ (t, τ )Φ(t, τ ) + Ψ (t, τ )Φ̇(t, τ )

= (−Ψ (t, τ )A(t)Φ(t, τ ) + Ψ (t, τ )(A(t)Φ(t, τ ))) = 0,

that is,Ψ (t, τ )Φ(t, τ ) = I ,which is sufficient onRn for having�(t, τ ) = �(t, τ )−1.
Furthermore �(t, τ ) = �(t, 0)�(τ, 0)−1, since t �→ �(t, 0)�(τ, 0)−1 is a solu-

tion of the equation ẋ(t) = A(t)x(t) and �(τ, 0)�(τ, 0)−1 = I . Switching the role
of variables t and τ

�(τ, t) = �(τ, 0) �(t, 0)−1 = �(τ, 0) �(t, 0),

that is

d
dt �(τ, t) = �(τ, 0) d

dt �(t, 0) = �(τ, 0)(−�(t, 0)A(t))
= −�(τ, 0)�(t, 0)−1 A(t) = −�(τ, t)A(t),�(τ, τ ) = I.

Thus

�(t, τ )−1 = �(τ, t).

After these preparations following up on R. Kalman we can define the Kalman-
Gram type reachability matrix:

R[0, T ] =
T∫

0

Φ(T, t)B(t)B(t)∗Φ(T, t)∗dt

2.1 The Kalman-Type Reachability Theorem

The system in (1) is reachable from state 0 if and only if the Kalman-Gram type
reachability matrix is invertible, or, equivalently if it is positive definite (Kalman
and Falb 1969). We note here that similar theorem stands for controllability. For this
define the Kalman-Gram-type controllability matrix as follows:

C[0, T ] =
T∫

0

Φ(0, t)B(t)B(t)∗Φ(0, t)∗dt.
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If we define the dual system of (1)

ẋ(t) = A(t)∗x(t) + C(t)∗u(t)
y(t) = B(t)∗x(t) + D(t)∗u(t),

(3)

we could denote input with y and output with u thus indicating that their roles switch.

2.2 The Kalman-Type Duality Theorem

Important system properties like controllability, observability and reconstructability
is defined in many sources, see e.g. Szidarovszky and Bahill (1998) and Okoguchi
and Szidarovszky (1997). The system described in (1) is controllable if and only if
(3) can be reconstructed and (1) is reachable if and only if (3) is observable (Kalman
and Falb 1969).

Since the dual system’s dual pair is the original system therefore it is also true
that (1) is observable if and only if (3) is reachable and (1) is reconstructible if and
only if (3) is controllable.

The observability Kalman-Gram-type matrix is

O[0, T ] =
T∫

0

�(T, t)∗C(t)∗C(t)�(T, t)dt,

while reconstructability is equivalent with the invertibility and positive definiteness
of the Kalman-Gram-type matrix

Re[0, T ] =
T∫

0

�(0, t)∗C(t)∗C(t)�(0, t)dt

In the followings we focus on the reachability of system (1) and the reachability
of the more general canonical form systems

ẋ(t) = A(t)x(t) + ∑
j

B j (t)u( j)

y(t) = C(t)x(t) + ∑
j

D j (t)u( j) (4)

Multiple studies examine the system described in (1) see e.g. (Molnár 1993; Mol-
nár 2001; Molnár 1993; Molnár and Szidarovszky 1994; Molnár and Szigeti 1994;
Molnár and Szigeti 1994). Starting from these we examine the general canonical
form systems with special regards to the theoretical constructibility of persistent
excitation conditions.



Properties of Linear Time-Dependent Systems 275

3 Lie-Algebras

We will need a few new terms, which we define herewith. Let L be a vector space
on R, where we also define a productive operation: the so-called Lie-product or Lie-
brackets: if l1, l2 ∈ L then [l1, l2] ∈ L , l1 �→ [l1, l2] and l2 �→ [l1, l2] are linear
mappings and

(1) [l, l] = 0 for all l ∈ L ,
(2) [l1, l2] + [l2, l1] = 0 for all l1, l2 ∈ L ,
(3) [l1, [l2, l3]] + [l2, [l3, l1]] + [l3, [l1, l2]] = 0, for all l1, l2, l3 ∈ L .

According to the second attribute [l1, l2] = −[l2, l1] is an expression of anti-
commutativity, while 3 is the extent of non-associativity.

In fact

[l1, [l2, l3]] = −[l2, [l3, l1]] − [l3, [l1, l2]]
= [[l1, l2], l3] − [l2, [l3, l1]],

since if [l2, [l3, l1]] = 0, then the remaining

[l1, [l2, l3]] = [[l1, l2], l3]

equation exactly means associativity.

Examples

(1) Let L = R
n×n , [A, B] = AB − B A. The Lie-product defined in this manner

renders
(
R

n×n, [., .]) a Lie-algebra.
(2) Consider on the � ⊂ R

n open set the vector space of the analytic functions
f : � → R

n over R. Define the Lie-bracket in the following manner:

[ f, g](x) = f ′(x)g(x) − g′(x) f (x). (5)

Denote with A(�) the vectorspace of all the analytical Rn -valued functions
(the analytic vectorfields on �) over R with the Lie-product. Then we get the
(A(�), [·, ·]) Lie-algebra.

(3) Consider the vector fieldsC∞ on the open set domainof� ⊂ R
n . Proceeding in a

similar manner define the Lie-product using (5) over the vector space C∞(�)R.
Then the (C∞(�), [·, ·]) Lie-algebra is defined.

3.1 Application for Solving System States

Let us now return to our system.Consider the partial Lie-algebra L ⊂ R
n×n, (L , [., .])

generated by the subset
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{A(t) : t ∈ [0, T ]} ⊂ R
n×n

that is, the smallest Lie-algebra for which {A(t) : t ∈ [0, T ]} ⊂ L stands. Such
exists, since the set of containing partial Lie-algebras is not empty, obviously it
containsRn×n , therefore there is a minimal element of it, like for example the section
of all such partial Lie-algebras. We call this the L = L(A(t)) ⊂ R

n×n Lie-algebra
generated by {A(t)}-s. Since the dimension of Rn×n is n2, it is finite, therefore the
L ⊂ R

n×n Lie-algebra’s partial Lie-algebra has also finite dimension. Consider an
A1, A2, . . . , AI ∈ L basis of L.

In this basis

A(t) =
I∑

i=1

ai (t)Ai

Express the Lie-product [Ai , A j ] ∈ L in the basis A1, A2, . . . , AI :

[Ai , A j ] =
I∑

k=1

�k
i j Ak .

Since X �→ [Ai , X ] = Ad Ai (X) is a linear mapping on the L vectorspace
(it is also a Lie-algebra), therefore the matrix representation of Ad Ai in the base
A1, A2, . . . , AI can be expressed with the �k

i j numbers.

Let X =
I∑

j=1
x j A j ; then

[Ai , X ] =
⎡
⎣Ai ,

I∑
j=1

x j A j

⎤
⎦ =

∑
j

x j

(
I∑

h=1

�h
i j

)
Ah,

where
∑

j
�h

i j x j is the hth component of the following matrix product:

⎛
⎜⎜⎜⎜⎜⎝

�1
i1 �1

i2 . . . �1
i I

�2
i1 �2

i2 . . . �2
i I

...
...

...
...

� I
i1 � I

i2 . . . � I
i I

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1
x2
...

xI

⎞
⎟⎟⎟⎠ = �ix
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That is, due to the Ad Ai X ↔ �ix and X ↔ x compliances �i is the matrix
representation of Ad Ai in the basis A1A2 . . . AI ∈ L . We know that based
on the Cauchy-formula the solution of system (1) satisfying the initial condition
x(0) = ξ is

x(t) = �(t, 0)ξ +
t∫

0

�(t, τ )B(τ )u(τ )dτ,

moreover, a similar solution holds for the generalised canonical form system

x(t) = �(t, 0)ξ +
t∫

0

�(t, τ )

⎛
⎝∑

j

B j (τ )u j (τ )

⎞
⎠dτ.

This is handsome, but we can calculate the fundamental matrix �(t, τ ) only in
few cases. For the constant coefficient systems the basic system is the solution of

ẋ(t) = Ax(t), x(τ ) = I

that is

�(t) = exp A(t − τ).

Moreover if the system’s structure matrix A(t) has the form A(t) = a(t)A then
the basic system is

�(t, τ ) = expA

t∫

τ

a(s)ds.

For a general time dependent structure system

ẋ(t) =
∑
i=1

ai (t)Ai x+
∑

j

B j (t)u
( j)(t)

the basic system has a

�(t, τ ) = (expA1g1(t, τ )), (expA2g2(t, τ )), . . . , (expAI gi (t, τ ))

form. We assume here also that in the L Lie-algebra generated by A(t)’s
A1,A2, . . . ,AI is a basis and the matrix representation of Ad Ai is the matrix
�i ∈ R

I×I . Then the existence of the above representation is provided by the
Wei-Norman theorem.
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Theorem. Wei-Norman-theorem Let γ(t) = g(t, τ ) ∈ R
k be the solution of

(
I∑

i=1
(exp�1γ1), (exp�2γ2), . . . , (exp�i−1γi−1)Eii

)−1

γ̇ = a

γ(τ ) = 0

so called Wei-Norman differential equation. (The solution for this equation
exists locally since due to the inital condition γ (τ) = 0 the matrix to be inverted in
τ = 0 is the identity matrix, thus it is invertible in an appropriate neighbourhood of
τ therefore it can be made explicit.)

Then

�(t, τ ) = exp A1g1(t, τ ), exp A2g2(t, τ ), . . . , exp AI gi (t, τ )

has the exponential product form.

For the proof, see (Wei and Norman 1964).
We consider knowing that

exp Ai gi (t, τ ) =
n−1∑
j=0

qi j
(
gi j (t, τ )

)
A j

i

is polynomial in Ai with a maximum degree of n − 1, quasi-polynomial in g(t, τ )

that it is polynomial in gi (t, τ ), sin αl gi (t, τ ), cosβl gi (t, τ ) and exp λl gi (t, τ )where
λl is the real part of the eigenvalues of Ai while αl , βl are the imaginary parts. The
related fundamental results can be found in classical monographies of matrix theory
and ordinary differential equations, see e.g. (Coddington and Levinson 1955).

Substituting the formulation in the exponential product we get

�(t, τ ) =
∑
n

Qn(g(t, τ ))An1
1 An2

2 , . . . , AnI
I ,

where Qn are the quasi polynomials of g(t, τ ) = (g1(t, τ ), g2(t, τ ), . . . , gI (t, τ )),
(certain products of the gi j (gi (t, τ )) quasi-polynomials).

3.2 Determination of Terminal State

Let’s consider now the terminal state of the generalised time dependent coefficient
linear system (4) at time T = 0 under the initial condition x(0) = 0. Based on the
Cauchy-formula
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x(T ) =
T∫

0

�(T, t)

⎛
⎝∑

j

B j (t)u
( j)(t)

⎞
⎠dt .

We make this formula more practical with the application of an integration by
parts procedure. If the highest order u-derived term is u(J )(t), then we assume that
for all j = 1,2, …, J − 1 the boundary conditions u( j)(0) = 0, u( j)(T ) = 0 hold.
This condition has no influence on the subspace of reachable terminal states on Rn:

x(T ) =
T∫

0

�(T, t)B0(t)u(t)dt +
∑
j=1

T∫

0

�(T, t)B j (t)u
( j)(t)dt

=
T∫

0

�(T, t)B0u(t)dt +
∑
j≥1

[�(T, t)B j (t)u
j−1(t)]T

0

−
∑
j=1

T∫

0

d

dt

(
�(T, t)B j (t)

)
u( j−1)(t)dt =

T∫

0

�(T, t)B0(t)u(t)dt

+
T∫

0

�(T, t)
(

A(t)B1(t) − B ′
1(t)

)
u(t)dt

+
∑
j≥2

T∫

0

�(T, t)(A(t)B j (t) − B ′
j (t))u

( j−1)(t)dt.

Repeating this for the last element we get the equations of the next step:

∑
j≥2

T∫

0

�(T, t)(A(t)B j (t) − B′
j (t))u

( j−1)(t)dt

=
∑
j≥2

[�(T, t)(A(t)B j (t)−B′
j (t))u

( j−2)(t)]T
0

−
T∫

0

d

dt
(�(T, t)(A(t)B2(t) − B′

2(t)))u(t)dt

−
∑
j≥3

T∫

0

d

dt
(�(T, t)(A(t)B j (t) − B′

j (t)))u
( j−2)(t)dt

=
T∫

0

�(T, t)
(

A(t)2B2(t) − 2A(t)B′
2(t) − A′(t)B2(t) + B′′(t)

)
u(t)dt
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+
∑
j≥3

T∫

0

�(T, t)
(

A(t)2B j (t) − 2A(t)B′
j (t) − A′(t)B j (t) + B′′

j (t)
)

u( j−2)(t)dt.

Repeating the integration by parts for the last element we get a similar equation:

∑
j≥3

T∫

0

�(T, t)(A(t)2B j (t) − 2A(t)B ′
j (t) − A′(t)B j (t) + B ′′

j (t))u
( j−2)(t)dt

=
T∫

0

�(T, t)(A(t)3B3(t) − 2A(t)A(t)′ B3(t) − A′(t)A(t)B3(t) − 3A(t)2B ′
3(t)

+ 3A′(t)B ′
3(t) + 3A(t)B ′′

3 (t) − B ′′′
3 (t))u(t)dt

+
∑
j≥4

T∫

0

�(T, t)(A(t)3B j (t) − 3A(t)2B ′
j (t) − 2A(t)A′((t))B j (t)

+ 3A(t)B ′′
j (t) − A′(t)A(t)B j (t) + 3A′(t)B ′

j (t) + A′′(t)B j (t)

− B ′′′
j (t))u( j−3)(t)dt.

Continuing, after the Jth step the derivative of u(t) will not be in the integral.
We can summarise the results of our calculations after introducing some abbrevi-
ating notations. Let 0 ≤ α1, α2, . . . , αγ , 1 ≤ β1, β2, . . . , βγ be integer numbers.
Then introducing a vector notation α = (α1, α2, . . . , αγ ), β = (β1, β2, . . . , βγ ) not
highlighting dimension γ . We also introduce the |α| = ∑ |αi | notation of norm.

For the product
(

A(t)(α1)
)β1

,
(

A(t)(α2)
)β2

, . . . ,
(

A(t)(αγ )
)βγ we introduce the

abbreviation
(

A(α)(t)
)β
. Thus

x(T ) =
T∫

0

�(T, t)B0(t)u(T )dt +
T∫

0

�(T, t)(A(t)B1(t) − B ′
1(t))u(t)dt

+
T∫

0

�(T, t)(A(t)2 − A′(t)B2(t) − 2A(t)B ′
2(t) + B ′′

2 (t))u(t)dt

+
T∫

0

�(T, t)((A(t)3 − 2A(t)A(t)′ − A(t)′ A(t))B3(t)

− (3A(t)2 − 3A′(t))B ′
3(t) + 3A(t)B ′′

3 − B ′′′
3 )u(t)dt

+ . . .
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=
T∫

0

�(T, t)

⎡
⎢⎣

J∑
j=0

⎛
⎜⎝ ∑

|α+β|= j−�
j

Cα,β

(
A(α)(t)

)β

⎞
⎟⎠B(

�
j )

j (t)

⎤
⎥⎦ u(t)dt.

For example in the third element for the coefficient of B3(t) the possible α, β

indices are (0, 3), (1, 1) + (0, 1), for which |α + β| = 3 − 0.
The coefficient of B ′

3(t) complying with indices (0, 2), (1, 1) fulfills the |α+β| =
3 − 1 = 2 condition, the coefficients Cα,β are always integer.

4 General Reachability Conditions

In accordance with the classical Kalman-type discussion we can introduce the
Kalman-Gram-type reachability matrix for the generalised systems:

R[0, T ] =
T∫
0

�(T, t)

⎡
⎣ J∑

j=0

⎛
⎝ ∑

|α+β|= j−�
j

Cα,β

(
A(α)(t)

)β

⎞
⎠B(

�
j )

j (t)

⎤
⎦·

·
⎡
⎣ J∑

j=0

⎛
⎝ ∑

|α+β|= j−�
j

Cα,β

(
A(α)(t)

)β

⎞
⎠B(

�
j )

j (t)

⎤
⎦

T

�(T, t)T dt,

and the following theorem can be stated.

Theorem 1 The generalised linear system with time dependent coefficients is
completely reachable on the [0,T ] interval if and only if the R[0, T ] Kalman-Gram-
type matrix is invertible, or equivalently, positive definite.

Proof The proof is similar to the classical time dependent linear case.
Let L be the Lie-algebra generated by {A(t); t ∈ [0, T ]} ⊂ R

n×n and
A1, A2, . . . , AI ∈ L is one basis of this, as mentioned earlier. In this basis

A(t) =
I∑

i=1

ai (t)Ai .

Let’s proceed in a similar manner with the matrices B0(t), B1(t), . . . , BJ (t). If
V = V {B0(t), B1(t), . . . , BJ (t) : t ∈ [0, T ]} ⊂ R

n×k is the subspace of the vec-
torspace Rn×k spanned by B j (t)’s then we can select a B1, B2, . . . , B�

I
basis in V in

which

B j (t) =
�
I∑

i=1

b
j
�
i
(t)B�

i
.
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Since �(T, t) can be written as a polynomial of A1, A2, . . . , AI as the quasi-
polynomial of theWei-Norman-type equation’s g1, g2, . . . , gI solutions and the x(T )

integral representation’s core function
J∑

j=0

⎛
⎝ ∑

|α+β|= j−�
j

Cα,β

(
A(α)(t)

)β

⎞
⎠B(

�
j )

j (t) can

bewritten as the polynomial of A1, A2, . . . , AI and B1, B2, . . . , B�
I
as the differential

polynomial of ai (t) and b
j
�
i
(t) (with integer coefficients and first order B�

i
’s). From

this, exploiting that the exponents of Ai can be easily arranged in the natural order
(Am1

1 , Am2
2 , . . . , Am I

I , where for all inequalities 0 ≤ mi < n or 0 ≤ m < n holds) by

exchanging the neighbouring elements with the aid of Ai1 Ai2 = Ai2 Ai1 +
I∑

h=1
�i1i2 Ah ,

and An
i = ∑

�
i =0

C
i
�
i

A
�
i
i equalities, assuming that the characteristic polynomial of Ai ’s

has the form λn =
n−1∑
i=0

C
i
�
i
λi .

The above yields the following:

x(T ) =
∑

0≤m<n

�
I∑

�
i =0

A
m1
1 , A

m2
2 , . . . , A

m I
I B�

i

T∫

0

P
m,

�
i

(
g(T, t), a[∞)(t), b[∞)

1 (t), . . . , b[∞)
J (t)

)
u(t)dt.

Here the P
m,

�
i

(
g(T, t), a[∞)(t), . . . , b[∞)

j (t), . . .
)

expressions are

quasi-polynomials in g1(T, t), g2(T, t), . . . , gI (T, t) -and differen-
tial polynomials in a1(t), a2(t), . . . , aI (t), b11(t), b12(t), . . . , b

1
�
I
(t),

b21(t), . . . , b
2

�
I
(t), . . . , bJ1(t), bJ2(t), . . . , b

J
�
I
(t)′s.

From this it is visible that the reachable subspace on [0,T ] of the generalised
system has to be in the image space

Im
{
. . . , Am1

1 , Am2
2 , . . . , Am I

I B�
i
, . . .

}

which is the same as for the classical canonical system, seemingly not extending the
reachability subspace with the derivatives acting as additional inputs.

In fact, the extension can be reviewed as follows:
Let V0 = V {B0(t); t ∈ [0, T ]} ⊂ R

n×k and V0 =
VJ {B0(t), B1(t), . . . , BJ (t); t ∈ [0, T ]} ⊂ R

n×k ′
be the vectorspaces gener-

ated by the respective BJ (t) matrices. Choose the basis of VJ so that the first
�

I 0
elements will be the basis of V0:

V0 = V

{
B1, B2, . . . , B�

I 0

}
,
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VJ = V

{
B1, B2, . . . , B�

I 0

, B�
I 0+1

, B�
I 0+2

, . . . , B�
I J

}

From this it is obvious that for the relevant generalised Kalman-Gram-type matrix
(from now shortly referred to as Kalman-type matrices) for the generalised system
it holds that their image space contains the image space of the classical system’s
Kalman-type matrix’ image space.

Proceeding with these results proven for the canonical system, it can be easily
deduced what is the excitation condition for having the reachability subspace of
the generalised system match the image space of the general Kalman-type matrix
assigned to the system. Assume that ξ is a vector which is in the image space of the

Kalman-type matrix, denoted by Im
{
. . . , Am1

1 , Am2
2 , . . . , Am I

I B�
i
, . . .

}
= Kgen .

This image space is not identical with the generalised system’s reachability sub-
space over [0, T ] if and only if there exists ξ �= 0, ξ ∈ Kgen for which 〈ξ, x(T )〉 = 0
for all possible u(t) inputs.

This means, that

0 = 〈ξ, x(T )〉 =

=
〈
ξ,

∑
0≤m<n

�
I∑

�
i =0

Am1
1 Am2

2 , . . . , Am I
I B�

i

T∫
0

P
m,

�
i

(
g(T, t), a[∞)(t), . . . , b[∞)

j , . . .
)

u(t)dt

〉

=
T∫
0

〈 ∑
0≤m<n

�
I∑

�
i =0

P
m,

�
i

(
g(T, t), a[∞)(t), . . . , b[∞)

j , . . .
)

(
AT

I

)m I
,
(

AT
I−1

)m I−1
, . . . ,

(
AT
1

)m1
BT

�
i
ξ, u(t)

〉
dt.

From the classical Lagrange-type lemma it follows that if this holds for all „good”
functions (e.g. continuous functions) then

∑
0≤m<n

�
I∑

�
i =0

P
m,

�
i

(
g(T, t), a[∞)(t), . . . , b[∞)

j , . . .
)(

AT
I

)m I
,
(

AT
I−1

)m I−1
, . . . ,

(
AT
1

)m1
BT

�
i
ξ = 0.

(10)

To replace the analytical functions of exp λg, cosαg, sin αg type we can intro-
duce the new variables, denote these with ḡ = exp λg,

�

g = cosαg, g = sin αg. The
respective differential equations can be easily derived:

˙̄g = λġ exp λg = λġḡ,

�

g = −αġ sin αg = −αġg,

g = αġ cosαg = αġ
�

g. (11)
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It is visible that these are not explicit differential equations, both sides contain
derivatives.

Consider now the Wei-Norman-type differential equation:

(
I∑

i=1

exp�1g1, exp�2g2, . . . , exp�i−1gi−1Eii

)
ġ = a, g(0) = 0,

where

Eii = (
δi j

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
. . . . .

.

1

. .
. . . .

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
I×I .

This also contains exponential products, but these are the �1, �2, . . . , �I−1 Lie-
algebra’s product table’s exponentials (the Cristoffel symbols) (Serre 1992). In these,
similarly to the previous steps the exp λg, cosαg, sin αg non-polynomial forms can
be introduced as new variables which yet again will bring the addition of more—
already polynomial—differential equations and the Wei-Norman equation will also
become polynomial but not an explicit equation.

From here, if we want ġ can be made explicit with inverting in the original
derivatives:

ġ =
(

I∑
i=1

exp�1g1, exp�2g2, . . . , exp�i−1gi−1Eii

)−1

a,

which will make the equations also explicit but with a fraction denominator:

det

(
I∑

i=1

exp�1g1, exp�2g2, . . . , exp�i−1gi−1Eii

)
.

Multiplying the explicit system of equations with these eventually we will get a
polynomial differential equation implicit on g, ḡ,

�

g,
�

g variables which will contain
one derivative in each equation. This means that this is a regular differential equation
which can be made explicit in the derivatives (with fractional right hand sides).

As a result, instead of the quasi-polynomials

P
m,

�
i

(
g(T, t), a[∞)(t),b[∞)

1 (t),b[∞)
2 (t), . . . ,b[∞)

I (t)
)
we will get polynomials

P
m,

�
i

(
g(T, t), g(T, t),

�

g(T, t), g(T, t), a[∞)(t),b[∞)
1 (t),b[∞)

2 (t), . . . ,b[∞)
I (t)

)
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in variables g, ḡ,
�

g,
�

g and differential polynomials in a(t), b0(t),b1(t), . . . ,bJ (t)
functions.

We will rewrite the implicit polynomial equation developed above introducing
vector variables x = (x1, x2, . . . , xN ) for g, ḡ,

�

g, g and u = (u1, u2, . . . , uK ) for
a,b1,b2 , . . . ,bJ, then

F(x, ẋ,u, u̇, . . .) = 0.

Equation (10) can also be rewritten with x, u as

∑
0≤m<n

I∑
�
i =0

P
bm,

�
i
(x, ẋ,u, u̇, . . .)

(
AT

I

)m I
,
(

AT
I−1

)m I−1
, . . . ,

(
AT
1

)m1 BT
�
i
ξ = 0.

From this define the output equation

y =
∑

0≤m<n

I∑
ki2=0

Pm,ki2
(x, u, u̇, . . . , )(AT

I )m I , (AT
I−1)

m I−1 , . . . , (AT
I )m I BT

ki2ξ

= G(x, u, u̇, . . . , ξ)

This yields the

F(x, ẋ,u, u̇, . . . , ξ ) = 0
y = G(x,u, u̇, . . . , ξ)

(12)

input-output system, which is polynomial and implicit in the derivatives of ẋ , with
a regularity condition ∂ẋ F(x, ẋ,u, u̇, ü, . . . , ξ) �= 0. Here u are inputs, x are states,
and y are outputs.

Consider another representation with perhaps different states but with the same
inputs and outputs:

F
(
x, ˙̄x,u, u̇, . . . , ξ

) = 0
y = G(x̄,u, u̇, . . . , ξ).

(13)

Let us consider (12) and (13) as input-output systems. They are equivalent if for
all (u, y) input-output pair it holds that (12) has a solution x if and only if when (13)
has an x solution. This means that the two systems function identically.
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Systems (12) and (13) can be written in a more compact form, allowing for the y
outputs’ derivatives,

J (x, ẋ,u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) = 0, (14)

and

J (x̄, ˙̄x,u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) = 0.

Diop prooved (1991) that there exists a finite purely algebraic algorithm which
can provide differential polynomials

�

J (u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ)
�

G(u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ)

for which if we consider the implicit equation and non-equality condition

�

J (u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) = 0
�

G(u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) �= 0
(15)

then based on the above system-equivalence the input output system u �→ y definable
from these is equivalent with system (14).

It is visible that the latter does not have a state variable x that’s the reason we
can say that the Diop-type algorithm is a state elimination algorithm. We repeat the
definition of equivalence. The correspondences (14) and (15) define an equivalent
input-output system if for a (u, y) input-output pair system (14) has a solution for
state x (in other words the triplet (x, u, y) is a solution for (14)) if (u, y) is a solution
of the polynomial equation

�

J (u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) = 0

and it holds that

�

G(u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) �= 0.
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This latter comes from the stepwise division in the algorithm by a differential
polynomial, which naturally can not be 0, thus this assertion has to be made. The

products of these provide the
�

G(u, u̇, ü, . . . , y, ẏ, ÿ, . . . , ξ) differential polynomials.
If this product is not 0, then none of its factors can be 0.

Returning to our originally acquired input-output system, regarding the linewise-
continuously ordered u = (a,b0,b1, . . . ,bJ ) input we get

F(x, ẋ, (a,b0,b1, . . . ,b j ), (ȧ, ḃ0, ḃ1, . . . , ḃ j ), . . . , ξ) = 0,
G(x, (a,b0,b1, . . . ,b j ), (ȧ, ḃ0, ḃ1, . . . , ḃ j ), . . . , ξ) = 0.

Writing in the state eliminated system derived from system (12) the correspon-
dences following from the system equivalence.

Entering the correspondences from the system equivalence

�

J
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . , 0, 0, 0, . . . , ξ

) = 0
�

G
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . , 0, 0, 0, . . . , ξ

) �= 0
(16)

into the state eliminated system for the input-output pair ((a,b0,b1, . . . ,bJ ), 0) we
can consider these as the sufficient condition for all u input the x(T) final state to be
perpendicular to the

ξ ∈ I m
{
. . . , Am1

1 , Am2
2 , . . . , Am I

I B j , . . .
}

(17)

vector.

Definition We say that the time dependent coefficients a,b0,b1, . . . ,bJ excite our
system persistently if the subspace of reachable states matches the image space of
the generalised Kalman-type rank condition’s matrix. In other words it will be the
greatest dimensional subspace possible. This means, based on our equations that if
the conditions of (14) hold then state ξ must be 0.

The most interesting is the special case when the image space of the generalised
Kalman-type rank condition’s matrix is the complete R

n . Then it holds that coef-
ficients a,b0,b1, . . . ,bJ excite the system persistently if and only if the system is
completely reachable on the [0,T ] interval.

So if the coefficients do not excite the system persistently then

�

J
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . , 0, 0, 0, 0, . . . , ξ

) = 0
�

G
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . , 0, 0, 0, 0, . . . , ξ

) �= 0
ξ �= 0

can be solved. Considering the equation as an implicit function of ξ it can be solved
for ξ ,
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ξ = �

f
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . ,

)
, (18)

Substituting this into the two inequalities we get that the condition of „persistent
non-excitation” is that the following two inequalities hold simultaneously:

0 �= �

G((a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . , 0, 0, . . . ,
�

f
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . .

)
0 �= �

f (a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ) . . .)

The contradiction of this is the condition of persistent excitation:

0 = �

G((a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . . , 0, 0, . . . ,
�

f
(
(a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ), . . .

)

or

0 = �

f ((a,b0,b1, . . . ,bJ ), (ȧ, ḃ0, ḃ1, . . . , ḃJ ) . . .).

We return to the solvability of the implicit function of ξ in order to get (18).
We can also apply here the Diop-type elimination theorem (algorithm). For this

consider vector ξ a state vector which can be eliminated. For this we would need an
equation for the system state, a dynamics which is a differential equation of ξ . For
this simply consider that ξ is constant, that is, the dynamics simply is ξ̇ = 0.

Results discussed above starting from Theorem 1. are concluded herewith in
Theorem 2 as the main result. Specify system (4) in the following manner.

Let A1, A2, . . . . , AI ∈ R
n×n be given structure matrices and B ∈ R

n be the input
matrix of 1 dimension. Consider

ẋ(t) =
I∑

i=1

ai (t)Ai x + b(t)Bu (19)

LTV-system. For this system the above discussion and results are summarised in
the following theorem.

Theorem 2 If the generalised Kalman-type rank condition holds for system in (19),
that is (9) is the complete R

n , and the excitation condition from the Diop-type
elimination holds then (19) is reachable.
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5 Conclusions

Similar theorems hold for state-dependent parametric linear systems as above. There,
the difficulty is the lack of Diop-type elimination theorem for the partial differential
algebras. Therefore in that case a different approach has to be applied to find the
results for the sufficient and necessary conditions to hold. The Diop-type elimination
procedure can be represented in such cases by excitation conditions.
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