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Abstract An unsteady two-dimensional transport equation is considered to investi-
gate the distribution of suspended sediment in an open channel turbulent flow, where
the mechanism of hindered settling is also taken into account. Due to the consid-
eration of concentration-dependent settling velocity on sediment transportation, the
transport equation is a partial differential equation with a highly nonlinear term,
which has been solved numerically by using the alternating direction implicit (ADI)
finite-difference method. It is found that the sediment concentration increases along
the vertical direction due to the inclusion of hindered settling effect.
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1 Introduction

In an open channel turbulent flow, the study of sediment transport is a challenging
task due to the irregular behavior of the turbulence. Sediment transport is mainly
classified into two categories: suspended sediment transport and bed-load transport.
The transportation of non-equilibrium suspended sediment is one of the important
problems in the area of sediment transport.

Hjelmfelt and Lenau [1], Liu and Nayamatullah [2], Liu [3] and Jing et. al. [4]
worked on the transportation of non-equilibrium suspended sediments. Hjelmfelt
and Lenau [1] and Liu [3] studied the steady two-dimensional suspended sediment
transport problem, and Liu and Nayamatullah [2] solved the one-dimensional un-
steady non-equilibrium suspended sediment transport problem by GITT technique.
The problems of non-equilibrium sediment transport are generally governed by par-
tial differential equations. It is observed by researchers that in high concentrated

S. Mohan · S. Debnath · K. Ghoshal (B) · J. Kumar
Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India
e-mail: koeli@maths.iitkgp.ac.in

© Springer Nature Singapore Pte Ltd. 2020
S. Bhattacharyya et al. (eds.), Mathematical Modeling and Computational Tools,
Springer Proceedings in Mathematics & Statistics 320,
https://doi.org/10.1007/978-981-15-3615-1_6

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3615-1_6&domain=pdf
mailto:koeli@maths.iitkgp.ac.in
https://doi.org/10.1007/978-981-15-3615-1_6


84 S. Mohan et al.

flows, the settling velocity of the suspended sediment particles decreases in compar-
ison with that in clear fluid. This physical phenomenon is commonly known as the
hindered settling effect. Inclusion of this phenomenon makes the governing equation
nonlinear in nature, and hence, the problem becomes more challenging.

In this model, we consider the unsteady two-dimensional non-equilibrium trans-
port problem considering the hindered settling effect and solve the problem by al-
ternating direction implicit (ADI) finite-difference scheme. The obtained results are
discussed with figures and based on that important conclusions are drawn.

2 Mathematical Modeling

We consider an unsteady two-dimensional transport equation to describe the dis-
tribution of suspended sediment in an open channel (separation width h) turbulent
flow. The flow in the axial (stream-wise) and vertical directions is represented by
a Cartesian coordinate system, say, x and y. We assume that the flow is uniform in
the axial direction and also independent of time; thus, the velocity varies only in the
vertical direction. In the following subsections, the problem has beenmathematically
formulated.

2.1 Governing Equation

The governing equation for the unsteady two-dimensional suspended sediment con-
centration distribution in a wide open channel flow is given as follows:
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where c is the volumetric sediment concentration, t denotes time. u is the flowvelocity
in stream-wise direction, εs is the sediment diffusivity in the vertical direction, and
ωs is the settling velocity of the sediment particles which is treated as a function of
concentration c. In high concentrated flow, the magnitude of ωs is less than that of
ω0 and the relationship between them is provided by Richarson and Zaki [5] as

ωs = ω0(1 − c)nH , (2)

where ω0 is the settling velocity of the particles in clear fluid and nH is the exponent
of reduction whose value depends on the particle Reynolds number. In the present
work, taking the average value of nH as 4, the governing equation (1) becomes:
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2.2 Initial and Boundary Conditions

The boundary conditions at top and bottom surface are considered according to
Hjelmfelt and Leanu [1] as follows

c = 0 at y = h, (4)

and
c = ca at y = a, (5)

respectively, where ca is the reference concentration at the reference level y = a. At
the inlet, we consider that there is uniform sediment concentration, i.e.,

c = 1 at x = 0, (6)

and at initial time
c = 1 at t = 0. (7)

2.3 Dimensionless Form of Governing Equation Together
with Initial and Boundary Conditions

The governing equation (3) and the boundary conditions (4–7) are non-dimensionali-
zed as per the following scales:

C = c

ca
, Y = y

h
, X = x

h
, T = tu∗

h
,

A = a

h
, K(Y ) = εt

βu∗h
, U (Y ) = u
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, V0 = ω0

u∗
,

where u∗ is the shear velocity and β is the ratio of turbulent diffusivity εt to sed-
iment diffusivity εs. Accordingly, the dimensionless form of Eq. (3) and boundary
conditions (4–7) becomes:
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C(T ,X ,Y ) = 0 at Y = 1, (9)

C(T ,X ,Y ) = 1 at Y = A, (10)

C(T ,X = 0,Y ) = 1, (11)
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and
C(T = 0,X ,Y ) = 1, (12)

So, finally, we have a PDE with nonlinear term (1 − caC)4 given by Eq. (8) together
with the boundary conditions (Eqs. 9 and 10) and the initial conditions (Eqs. 11 and
12) which we will solve numerically.

3 Numerical Solution

In the present problem, the concentration distribution of suspended sediment in
an open channel flow is described by the two-dimensional unsteady convection-
diffusion Eq. (8). Due to the complexity in Eq. (8), we have adopted an alternating
direction implicit (ADI) finite-difference scheme [6] to solve Eq. (8) together with
initial and boundary conditions (9)–(12). In ADI method, the finite-difference equa-
tion can be factored into a multistage process to step ahead one-time increment in
such a way that the solution of the nonlinear equations emerging at each time level
is very easy to handle computationally.

The whole width of the channel is divided into (M − 1) equal parts, having length
�X in the axial direction and �Y in the vertical direction. The time increment is
denoted by �T . The lengths in the vertical and axial directions are represented by
the grid point j and k, whereas time is represented by the grid point i. So the general
formulae are: Yj = A + (j − 1)∗�Y , Xk = (k − 1) × �X and Ti = (i − 1) × �T ,
respectively.

Utilizing Douglas–Rachford [7] procedure on the convection diffusion equation
(8), the finite difference equation splits into two implicit equations, as

[
1 − �T

{
∂K

∂Y
+ V0(caC(i, j) − 1)3(5caC(i, j) − 1)

}
SY − K�TSYY

]
C∗(i + 1)

= (1 −U (Y )�TSX )C(i), (13a)

(1 +U (Y )�TSX )C(i + 1) = C∗(i + 1, j) +U (Y )�TSXC(i), (13b)

where SYC∗ = C∗(j+1,k)−C∗(j−1,k)
2�Y , SYYC∗ = C∗(j+1,k)−2C∗(j,k)+C∗(j−1,k)

�Y 2 and SXC =
C(j,k+1)−C(j,k−1)

2�X are the discretized operators.

Clearly, the process needs two steps: In the first step, we solve C∗ from Eq. (13a),
and in the next step, we solve C from Eq. (13b) by using the values of C∗. To find the
solution, we have considered a mesh size: �T = 0.00001, �Y = (1 − A)/(M − 1)
and �X = 1/(M − 1) for the present problem, where M = 500. Different cases
have been considered to investigate the hindered settling effect on the distribution
of sediment concentration. In all the cases, we have assumed fixed value of V0 =
0.2, Y0 = 0.001, and A = 0.05, respectively. The considered spatial and temporal
discretization parameters ensure a precision of 10−6 in the results.
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4 Results and Discussion

4.1 Input Functions

It is clear from Eq. (8) that to assess the solution, known expression for the functions
K(Y ) and U (Y ) are needed. So, in the present problem we consider the following
expressions (Liu [3]):

K(Y ) = κY (1 − Y ), (14)

and

U (Y ) = 1 − Y0
Y0 − ln Y0 − 1

ln
Y

Y0
for Y0 ≤ Y ≤ 1, (15)

where κ is the universal von Karman constant (= 0.41) and Y0 = 0.001.

4.2 Validation of the Solution

In this section, we validate our obtained solution with the existing models. In Fig. 1a,
the concentration profile is the same as the well-known Rouse profile [8], who found
the analytical solution for steady transport equation and Fig. 1b agrees with the work
of Liu [3] for two-dimensional steady non-equilibrium sediment transport. It is clear
from the figure that as one tends toward the surface of the channel from the bottom,
concentration profiles decrease and tend to zero which is usual characteristics of
sediment concentration profile. It happens because at the surface suspended sediment
particles are negligible.
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Fig. 1 Vertical distribution of sediment concentration when ca = 0.02, V0 = 0.2, Y0 = 0.001 and
A = 0.05. a For T → ∞, X → ∞; b for T → ∞, X = 2
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Fig. 2 Concentration contours at time T = 5 (1st row) and T = 10 (2nd row), when V0 = 0.2,
Y0 = 0.001 and A = 0.05. a, c For ca = 0.005; b, d for ca = 0.02

4.3 Contour Plot of Concentration Profiles

Figure2 shows the variation of suspended sediment concentration in the stream-wise
and vertical directions simultaneously. Figures2a, b is plotted at a fixed time T = 5
with different reference concentration and Figs. 2c, d is plotted for the same but
at a fixed time T = 10. From Figs. 2a, b it is clear that the area of concentration
distribution is higher in Fig. 2b than Fig. 2a because of higher value of reference
concentration. A similar kind of behavior can be seen in Fig. 2c, d for large time
T = 10.

4.4 Impact of Hindered Settling Mechanism on
Concentration Profile

The effect of hindered settlingmechanism is shown in Fig. 3 where the vertical distri-
bution of sediment concentration is plotted at different time. In Fig. 3a, b, reference
concentration is taken as ca = 0.005 and ca = 0.02, respectively, and it can be seen
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Fig. 3 Vertical distribution of sediment concentration under the effect of settling velocity of par-
ticles, when V0 = 0.2, Y0 = 0.001, A = 0.05 and X = 3. a For ca = 0.005, nH = 0 (solid line),
nH = 4 (dashed line); b For ca = 0.02, nH = 0 (solid line), nH = 4 (dashed line)

from the figures that the effect is more in Fig. 3b comparison with Fig. 3a. It happens
because the hindered settling effect is more effective in high concentrated flow due
to the presence of surrounding particles.

5 Conclusions

Distribution of suspended sediment is studied in the present work for an unsteady
two-dimensional turbulent flow through an open channel. The presence of sediment
affect the settling velocity of a particle which is commonly known as the hindered
settling effect, and accordingly, the concentration profile is also changed. This phe-
nomenon is taken into account in the governing partial differential equation, and ADI
method is adopted to solve the equation numerically. At large time and far from the
downstream, the concentration shows similarity with Rouse [8] profile of concentra-
tion. Contour plots of concentration at different times are plotted to see the variation
of concentration along vertical and axial direction. Also that, at a fixed time and axial
direction, concentration is plotted with and without hindered settling effect and it
is found that higher the concentration, more is the change in concentration due to
inclusion of hindered settling effect.
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