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Abstract This paper presents a discrete-time prey–predatormodel inwhich the prey
exhibits herd behavior, and hence, the predator interacts along the outer corridor of
the herd of the prey. Due to the unavailability of numerical information of the bio-
logical parameters, we consider the model with interval parameters in the parametric
functional form. The existence and stability of the proposed model are analyzed.
We give a flip bifurcation analysis and chaos control procedure. The bifurcation dia-
grams, phase portraits and time graphs are presented for different model parameters.
Here, we introduce a new concept in bifurcation analysis. The codimension of a
bifurcation is the number of parameters which must be varied for the bifurcation to
occur. When we consider p as bifurcation parameter, ultimately, we consider here 4
bifurcation parameter in a certain range, but interesting fact is that using our technic,
we convert this 4 codim bifurcation in 1 codim. Numerical simulations exhibit that
the present model is a chaotic with rich dynamics.

Keywords Discrete prey–predator model · Stability · Bifurcation · Chaos ·
Interval parameters

1 Introduction

Oneof the important interactions among species is the predator-prey relationship. The
words “predator” and “prey” are almost always used to mean only animals that eat
animals, but this idea also applies to plants. The dynamics of prey–predator has been
extensively studied because of its universal existence. Several factors affecting the
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dynamics of predator-prey models, such a familiar factors is the functional response.
The functional response is linear in the Lotka–Volterra model, which is valid first-
order approximations of more general interaction.

In general, researchers [1–20] always developed the prey–predator system with
the assumption that the biological parameters are exactly known; however, the sce-
nario is different in practical world. In reality, each of the biological parameters may
not be fixed rather varying due to several reasons. Therefore, the biological param-
eters are very sensible and treated as nonnegative imprecise number instead of fixed
real number. Peixoto et al. [21] studied predator-prey fuzzy model. Pal et al. [22]
proposed optimal harvesting prey–predator bio-economic model with interval bio-
logical parameters. Pal et al. [23] presented quota harvesting model under fuzziness.
In our work, we use interval approach.

This paper considers one-prey one-predator discrete system and calculates equi-
librium points, stability and bifurcation of the prey–predator system, where at least
one biological parameters of the model is an interval number. We present the interval
parameters in the parametric function form and then study the parametric prey–
predator discrete model. A parametric mathematical program is formulated to find
the different behavior of the system for different value of parameter. The proposed
procedure is more effective and interesting since we get different behavior of the
model using functional form of an interval parameter based on interval-valued tech-
nique. The proposed procedure can present different characteristics of the model in
a single framework.

The rest of the paper is organized as follows: The second section introduces
mathematics for this paper. In section3, a discrete-time prey– predator model under
non-overlapping generation with refuge is formulated. Section4 expands this model
under imprecise biological parameters. Section 5 presents the local stability analysis
around the interior fixed point of the proposed model. Discussion on flip bifurcation
is on Sect. 6 Chaos Control procedure is given in Sect. 7. Section8 gives a numer-
ical simulations to support of the proposed model. Finally, this paper ends with a
conclusion in Sect. 9.

2 Prerequisite Mathematics

An interval number A is represented by closed interval [al, ar] and defined by A =
[al, ar] = {x : al ≤ x ≤ ar, x ∈ R} , where R is the set of real numbers and al, ar are
the left and right limit of the interval number, respectively.

Interval-valued function: Let a, b > 0 and the interval [a, b] can represent by
the interval-valued function as h (p) = a1−pbp for p ∈ [0, 1].

Here, we present some arithmetic operations as follows:
Let A = [al, au] and B = [bl, bu] be two interval numbers.
Addition: The interval-valued function for the interval A + B = [al + bl, au+

bu] , provided al + bl > 0, is given by h (p) = a1−p
L apU where aL = al + bl and aU =

au + bu.
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Subtraction: The interval-valued function for the intervalA − B = [al − bu, au−
bl] , provided al − bu > 0, is given by h (p) = b1−p

L bpU where bL = al − bu and aL =
au − bl .

Scalar Multiplication: ηA = η [al, au] =
{
[ηal, ηau] ; if η ≥ 0
[ηau, ηal] ; if η < 0

provided al > 0 and bl > 0. The interval-valued function ηA is given by h (p) =
c1−p
L cpU if α ≥ 0 and h (p) = −d1−p

U dp
L if η < 0, where cL = ηal, cU = ηau, dU =

|η|au and dL = |η|al .

3 Description of Prey–Predator Model

We consider populations with non-overlapping generation, where all the adults die
after they have given birth. General form of prey–predator system in discrete time is
as follows:

xn+1 = xnf (xn, yn) = axn(1 − xn) − b
√
xnyn (1)

yn+1 = yng(xn, yn) = c
√
xnyn − dyn

where df
dyn

≤ 0 and dg
dxn

� 0.Here, a, b, c andd are the nonnegativemodel parameters.
The dynamical properties of the above system allow us to get information about the
long-run behavior of prey–predator populations. Starting from given initial condition
(x0, y0), the iteration of Eq. (1) uniquely determines a trajectory of the states of
population output in the form of (xn, yn) = Tn(x0, y0), where n = 0, 1, 2, ....

4 Proposed Model Under Impreciseness

So far, most of the prey–predator model are considered in precise environment, but
data can not be recorded or collected precisely due to several reasons in reality.
Hence, analysis of the model with imprecise parameters gives better results in mod-
eling respect. Uncertain growth rate of prey populations, interspecific competition
rates of prey species, predation coefficient and reduction rates of predator species
are usually considered as an effect of environmental fluctuations. Reproduction of
species depends on various factors, such as temperature, parasites, pathogens, hu-
midity and environmental pollution. Since biological environments of populations
are not entirely predictable, the biological parameters of modeling of prey–predator
system should be considered as imprecise in nature.

The proposed discrete-time prey–predator model is presented here with the inter-
val coefficient due to the uncertainty of parameter of practical problem in nature.
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4.1 Model with Interval Coefficient

Let â, b̂, ĉ and d̂ be the interval counterparts of a, b, c and d , respectively. Then, the
modified model is

xn+1 = âxn(1 − xn) − b̂
√
xnyn (2)

yn+1 = ĉ
√
xnyn − d̂ yn

where â ∈ [al, au], b̂ ∈ [bl, bu], ĉ ∈ [cl, cu] and d̂ ∈ [dl, du] .Also, al > 0, bl > 0,
cl > 0, and dl > 0.

4.2 Model with Parametric Interval Coefficient

The Eq. (2) can be written in the parametric form as follows

xn+1 = (al)
1−p(au)

pxn(1 − xn) − (bl)
1−p(bu)

p√xnyn (3)

yn+1 = (cl)
1−p(cu)

p√xnyn − (dl)
1−p(du)

pyn

for p ∈ [0, 1].

5 Fixed Points and Stability Analysis of Prey–Predator
System

To find the fixed points of the system, we have to solve the following nonlinear
system of equations:

x = (al)1−p(au)px(1 − x) − (bl)1−p(bu)p
√
xy

y = (cl)1−p(cu)p
√
xy − (dl)1−p(du)py

From the above nonlinear system of equations, we get these nonnegative fixed
points as follows:

(i)P0 = (0, 0) , (ii)P1 =
(
(al)1−p(au)p−1
(al)1−p(au)p

, 0
)
, (al)1−p(au)p > 1, (iii)P2 = (x∗, y∗)

where x∗ =
(
(dl)1−p(du)p+1
(cl)1−p(cu)p

)2

and y∗ = (al)1−p(au)p((dl)1−p(du)p+1)
(bl)1−p(bu)p(cl)1−p(cu)p

[
1 − 1

(al)1−p(au)p
−

(
(dl)1−p(du)p+1
(cl)1−p(cu)p

)2
]
,[

1
(al)1−p(au)p

+
(
(dl)1−p(du)p+1
(cl)1−p(cu)p

)2
]
< 1
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5.1 Dynamic Behavior of the Model

This section presents the local behavior of themodel (3) for each equilibriumpoints of
the prey–predator system. The stability of the system (3) is carried out by computing
the Jacobian matrix corresponding to each equilibrium point. The Jacobian matrix J
for the system (3) is

J =
[
(al)1−p(au)p(1 − 2x) − (bl)1−p(bu)py

2
√
x

−(bl)1−p(bu)p
√
x

(cl)1−p(cu)py
2
√
x

(cl)1−p(cu)p
√
x − (dl)1−p(du)p

]

Characteristic equation of matrix J is λ2 − Tr (J )λ + Det (J ) = 0 where

Tr (J ) = Trace of matrix J

=
[
(al)

1−p(au)
p(1 − 2x) − (bl)

1−p(bu)py

2
√
x

]
+

[
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
]

Det(J ) = Determinant of matrix J

= (al)
1−p(au)

p(1 − 2x)
(
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
)

+ (bl)1−p(bu)p(dl)1−p(du)py

2
√
x

Hence, the model (3) is a dissipative dynamical system if∣∣∣(al)1−p(au)p(1 − 2x)
(
(cl)1−p(cu)p

√
x − (dl)1−p(du)p

) + (bl )1−p(bu)p(dl )1−p(du)py
2
√
x

∣∣∣ < 1

conservative dynamical one, if and only if∣∣∣(al)1−p(au)p(1 − 2x)
(
(cl)1−p(cu)p

√
x − (dl)1−p(du)p

) + (bl )1−p(bu)p(dl )1−p(du)py
2
√
x

∣∣∣ = 1

and is an un-dissipated dynamical system otherwise.
In order to study the stability of the fixed points of the model, we first give the

following lemma

Lemma 1 Let F(λ) = λ2 − Bλ + C. Suppose that F(1) > 0, λ1 and λ2 are the two
roots of F(λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F(−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(iv) λ1 = −1 and |λ2| �= 1 if and only if F(−1) = 0 and B �= 0, 2;
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if B2 − 4C < 0 and

C = 1.
Let λ1and λ2 be the two eigenvalues of the fixed point (x, y). We recall some

definitions of topological types for a fixed point (x, y).
A fixed point (x, y) is called
(i) a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally asymptotically stable.
(ii) a source if |λ1| > 1 and |λ2| > 1, so the source is locally unstable.
(iii) a saddle if |λ1| > 1 and |λ2| < 1 or ( |λ1| < 1 and |λ2| > 1).
(iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.
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5.2 Stability and Dynamic Behavior of P1

At P1 =
(
(al)1−p(au)p−1
(al)1−p(au)p

, 0
)
, the Jacobian matrix J for the system is

J =

⎡
⎢⎢⎣
2 − (al)1−p(au)p −(bl)1−p(bu)p

√[
(al )1−p(au)p−1
(al)1−p(au)p

]

0 (cl)1−p(cu)p
√[

(al)1−p(au)p−1
(al)1−p(au)p

]
− (dl)1−p(du)p

⎤
⎥⎥⎦

Equilibrium point is

Sink if
∣∣2 − (al)1−p(au)p

∣∣ < 1 and
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ < 1

Source if
∣∣2 − (al)1−p(au)p

∣∣ > 1 and
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ > 1

Saddle if
∣∣2 − (al)1−p(au)p

∣∣ > 1 and
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ <
1 or∣∣2 − (al)1−p(au)p

∣∣ < 1 and

∣∣∣∣(cl)1−p(cu)p
√[

(al )1−p(au)p−1
(al)1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ > 1

Non-hyperbolic if
∣∣2 − (al)1−p(au)p

∣∣ = 1 or
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ = 1

If (al)1−p(au)p = 3 and

∣∣∣∣(cl)1−p(cu)p
√[

(al)1−p(au)p−1
(al)1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ �= 1, then

P1 =
(
(al )1−p(au)p−1
(al)1−p(au)p

, 0
)
can undergo flip bifurcation when the parameters vary in the

neighborhood of (al)1−p(au)p = 3.

5.3 Local Stability and Dynamic Behavior Around Interior
Fixed Point

The dynamic behavior for the interior equilibrium point of the system is presented
here:

1 − Tr (J ) + Det (J )

= 1 −
[
(al)

1−p(au)
p(1 − 2x) − (bl)1−p(bu)py

2
√
x

]

− [
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
]

+ (al)
1−p(au)

p(1 − 2x)
(
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
)

+ (bl)1−p(bu)p(dl)1−p(du)py

2
√
x
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1 + Tr (J ) + Det (J )

= 1 +
[
(al)

1−p(au)
p(1 − 2x) − (bl)1−p(bu)py

2
√
x

]

+ [
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
] + (al)

1−p(au)
p(1 − 2x)

(
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
) + (bl)1−p(bu)p(dl)1−p(du)py

2
√
x

Det (J ) = (al)
1−p(au)

p(1 − 2x)
(
(cl)

1−p(cu)
p√x

−(dl)
1−p(du)

p
) + (bl)1−p(bu)p(dl)1−p(du)py

2
√
x

At P2 = (x∗, y∗) , if 1 − Tr (J ) + Det (J ) > 0, then interior equilibrium point is
Sink if 1 + Tr (J ) + Det (J ) > 0 and Det (J ) < 1
Source if 1 + Tr (J ) + Det (J ) > 0 and Det (J ) > 1
Saddle if 1 + Tr (J ) + Det (J ) < 0
Non-hyperbolic if 1 + Tr (J ) + Det (J ) = 0 and Tr (J ) �= 0, 2. or [Tr (J )]2 −

4Det (J ) < 0 and Det (J ) = 1.
At P2 = (x∗, y∗) , if 1 − Tr (J ) + Det (J ) > 0, 1 + Tr (J ) + Det (J ) = 0, and

Tr (J ) �= 0and2, then (x∗, y∗) can undergo flip bifurcation.
At P2 = (x∗, y∗) , if 1 − Tr (J ) + Det (J ) > 0, (Tr (J ))2 − 4Det (J ) < 0 and

Det (J ) = 1, then (x∗, y∗) can undergo Hopf bifurcation.

6 Flip Bifurcation

From Lemma 1, one of the eigenvalues of the positive fixed point P2 = (x∗, y∗) is
λ1 = −1 and the other (λ2) is neither 1 nor−1 if parameters of the model are located
in the following set A = {(al, au, bl, bu, cl, cu, dl, du, p): 1 − Tr (J ) + Det (J ) > 0,
1 + Tr (J ) + Det (J ) = 0, Tr (J ) �= 0, 2 and p ∈ [0, 1]}.

Here,wediscuss flip bifurcation of themodel (3) atP2 = (x∗, y∗)whenparameters
vary in a small neighborhood of A. In analyzing the flip bifurcation, p is used as the
bifurcation parameter. Further, p∗ is the perturbation of p,we consider a perturbation
of the system as follows:

xn+1 = (al)
1−(p+p∗)(au)(p+p∗)xn(1 − xn) − (bl)

1−(p+p∗)(bu)(p+p∗)√xnyn ≡ f (xn, yn, p
∗) (4)

yn+1 = (cl)
1−(p+p∗)(cu)(p+p∗)√xnyn − (dl)

1−(p+p∗)(du)(p+p∗)yn ≡ g(xn, yn, p
∗)

where |p∗| ≪ 1
Let un = xn − x∗, vn = yn − y∗, then equilibrium P2 = (x∗, y∗) is transformed

into the origin, and further expanding f and g as a Taylor series at (un, vn, p∗) =
(0, 0, 0) to the third order, the model (4) becomes
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un+1 = α1un + α2vn + α11u
2
n + α12unvn + α13unp

∗ + α23vnp
∗ + (5)

α111u
3
n + α112u

2
nvn + α113u

2
np

∗ + α123unvnp
∗ + O((|un| + |vn| + ∣∣p∗∣∣)4)

vn+1 = β1un + β2vn + β11u
2
n + β12unvn + β22v

2
n + β13unp

∗ + β23vnp
∗ + β111u

3
n +

β112u
2
nvn + β113u

2
np

∗ + β123unvnp
∗ + β223v

2
np

∗ + O((|un| + |vn| + ∣∣p∗∣∣)4)
where α1 = fx(x∗, y∗, 0), α2 = fy(x∗, y∗, 0), α11 = fxx(x∗, y∗, 0), α12 = fxy(x∗, y∗,
0),α13 = fxp∗(x∗, y∗, 0),α23 = fyp∗(x∗, y∗, 0),α111 = fxxx(x∗, y∗, 0),α112 = fxxy(x∗,
y∗, 0), α113 = fxxp∗(x∗, y∗, 0), α123 = fxyp∗(x∗, y∗, 0)

β1 = gx(x∗, y∗, 0),β2 = gy(x∗, y∗, 0),β11 = gxx(x∗, y∗, 0), β12 = gxy(x∗, y∗, 0),
β22 = gyy(x∗, y∗, 0), β13 = gxp∗(x∗, y∗, 0), β23 = gyp∗(x∗, y∗, 0), β111 = gxxx(x∗, y∗,
0), β112 = gxxy(x∗, y∗, 0), β113 = gxxp∗(x∗, y∗, 0), β123 = gxyp∗(x∗, y∗, 0), β223 =
gyyp∗(x∗, y∗, 0)

We define T =
[

α2 α2

−1 − α1 λ2 − α1

]
, where T is invertible, and using the trans-

formation

[
un
vn

]
= T

[
xn
yn

]
, the model (5) becomes

xn+1 = −xn + f1(un, vn, p
∗) (6)

yn+1 = λ2yn + g1(un, vn, p
∗)

where the functions f1 and g1 denote the terms in the model (6) in variables
(un, vn, p∗) with the order at least two.

From the theorem of center manifold, there exists a center manifoldWc(0, 0, 0) of
themodel (6) at (0, 0) in a small neighborhoodofp∗ = 0,which canbe approximately
described as follows:

Wc(0, 0, 0) = {(
xn, yn, p

∗) εR3 : yn+1 = α1x
2
n + α2xnp∗ + O((|xn| + |p∗|)3)}

whereα1 = α2[(1 + α1)α11 + α2β11]
1 − λ2

2

+ β22(1 + α1)
2

1 − λ2
2

− (1 + α1)[α12(1 + α1) + α2β12]
1 − λ2

2

,

α2 = (1 + α1)[α23(1 + α1) + α2β23]
α2(1 + λ2)2

− (1 + α1)α13 + α2β13]
(1 + λ2)2

.

We obtain the system (6) restricted to center manifoldWc(0, 0, 0), which has the
following form

xn+1 = −xn + h1x2n + h2xnp∗ + h3x2np
∗ + h4xnp∗2 + h5x3n + O((|xn| + |p∗|)3) ≡ F(xn, p∗)

h1 = α2[(λ2 − α1)α11 − α2β11]
1 + λ2

− β22(1 + α1)
2

1 + λ2
− (1 + α1)[(λ2 − α1)α12 − α2β12]

1 + λ2
,

h2 = (λ2 − α1)α13 − α2β13
1 + λ2

− (1 + α1)[(λ2 − α1)α23 − α2β23]
α2 (1 + λ2)

,

h3 = (λ2 − α1)α1α13 − α2β13
1 + λ2

+ [(λ2 − α1)α23 − α2β23](λ2 − α1)α1

α2 (1 + λ2)

− (1 + α1)[(λ2 − α1)α123 − α2β123]
1 + λ2

+ α2[(λ2 − α1)α113 − α2β113]
1 + λ2
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− β223(1 + α1)
2

1 + λ2
+ 2α2α2[(λ2 − α1)α11 − α2β11]

1 + λ2
− 2β22α2(1 + α1)(λ2 − α1)

1 + λ2

+ α2[(λ2 − α1)α12 − α2β12](λ2 − 1 − 2α1)

1 + λ2
,

h4 = α2[(λ2 − α1)α13 − α2β13]
1 + λ2

+ [(λ2 − α1)α23 − α2β23](λ2 − α1)α2

α2 (1 + λ2)

+ 2α2α2[(λ2 − α1)α11 − α2β11]
1 + λ2

+ 2β22α2(1 + α1)(λ2 − α1)

1 + λ2
+ α2[(λ2 − α1)α12 − α2β12](λ2 − 1 − 2α1)

1 + λ2
,

h5 = 2α2α1[(λ2 − α1)α11 − α2β11]
1 + λ2

+ 2β22α1(λ2 − α1)(1 + α1)

1 + λ2

+ [(λ2 − α1)α11 − α2β11](λ2 − 1 − 2α1)α1

1 + λ2

+ α2
2[(λ2 − α1)α111 − α2β111]

1 + λ2
− α2(1 + α1)[(λ2 − α1)α112 − α2β112]

1 + λ2
.

For flip bifurcation, we require the two discriminatory quantities ξ1 and ξ2 to be
nonzero,

ξ1 =
(

∂2F
∂x∂p∗ + 1

2
∂F
∂p∗

∂2F
∂x2

)
|(0,0)

ξ2 =
(

1
6

∂3F
∂x3

+
(
1
2

∂2F
∂x2

)2
)

|(0,0)
Finally, from the above analysis , we have the following result.

Theorem 2 If ξ1 �= 0 and ξ2 �= 0 then the model (3) undergoes flip bifurcation at
P2 = (x∗, y∗), if ξ2 > 0 (resp. ξ2 < 0), then the period-2 points that bifurcation from
P2 = (x∗, y∗) are stable.

7 Chaos Control

This section presents a feedback control method to stabilize chaotic orbits at an
unstable positive fixed point of system (3).

Consider the following controlled form of model (3):

xn+1 = (al)
1−p(au)

pxn(1 − xn) − (bl)
1−p(bu)

p√xnyn + S (7)

yn+1 = (cl)
1−p(cu)

p√xnyn − (dl)
1−p(du)

pyn

with the following feedback control law as the control force:

S = −q1
(
xn − x∗) − q2

(
yn − y∗)

where q1 and q2 are the feedback gain and (x∗, y∗) is a positive fixed point of
model.
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The Jacobian matrix J for the system (7) at (x∗, y∗) is

J =
[
a11 − q1 a12 − q2

a21 a22

]

wherea11 = al1−paup(1 − 2x∗)− bl 1−pbupy∗

2
√
x∗ , a12 = −bl1−pbup

√
x∗, a21 = cl 1−pcupy∗

2
√
x∗ ,

a22 = cl1−pcup
√
x∗ − dl1−pdup. The corresponding characteristic equation of matrix

J is
λ2 − (a11 + a22 − q1)λ + a22 (a11 − q1) − a21 (a12 − q2)
Let λ1 and λ2 are the eigenvalues

λ1 + λ2 = a11 + a22 − q1 (8)

and
λ1λ2 = a22 (a11 − q1) − a21 (a12 − q2) (9)

The lines of marginal stability are determined by solving the equation λ1 = ±1
and λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and λ2 have mod-
ulus less than 1.

Suppose λ1λ2 = 1; from (9) we have line l1 as follows:
a22q1 − a21q2 = a22a11 − a21a12 − 1
Suppose λ1 = ±1; from (8, 9), we have line l2 and l3 as follows:
(1 − a22) q1 + a21q2 = a11 + a22 − 1 − a22a11 + a21a12
and
(1 + a22) q1 − a21q2 = a11 + a22 + 1 + a22a11 − a21a12
The stable eigenvalues lie within a triangular region by line l1, l2 and l3.

8 Numerical Simulation

Here, we consider a numerical example of the above model and carried out math-
ematical calculation that depends on some artificial data. We calculated the equi-
librium points and analyzed their stability. For the model (3) given in the paper,
we consider the parameter values â ∈ [al, au] = [4.0, 4.2], b̂ ∈ [bl, bu] = [1.8, 2.0],
ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] = [0.1, 0.2] . Performing computer simulation
on that chosen data, we calculate the equilibria points, eigenvalues and stability of
every equilibrium points for different values of p. The obtained results are given in
Table1.

Figures1 and 2 are drawn in the basis of the parameter values â ∈ [al, au]
= [4.0, 4.2], b̂ ∈ [bl, bu] = [1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] =
[0.1, 0.2] . Here, we observe damped oscillation for time plot in Fig. 1 for p =
0.0, 0.2, 0.4, 0.6, 0.8. In Fig. 2, all trajectories spiral into the stable fixed point for
p = 0.0, 0.2, 0.4, 0.6, 0.8. Here, we found constant oscillation about interior equi-
librium points for time plot in Fig. 1 for p = 1.0 . In Fig. 2, trajectories are attracted
to a limit cycle about interior equilibrium points for p = 1.0. Hence, there exist a bi-
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Table 1 Equilibrium points, Eigenvalues and stability of equilibrium points

Value of p Equilibrium
points

Eigenvalues Stability

p = 0.0 (0.7500, 0) −2.0000, 1.3722 Unstable point

p = 0.0 (0.4187, 0.4764) 0.4939 − 0.6876i, 0.4939 + 0.6876i Stable point

p = 0.2 (0.7524, 0) −2.0390, 1.3929 Unstable point

p = 0.2 (0.4114, 0.4806) 0.5135 − 0.7288i, 0.5135 + 0.7288i Stable point

p = 0.4 (0.7548, 0) −2.0786, 1.4122 Unstable point

p = 0.4 (0.4056, 0.4832) 0.5289 − 0.7644i, 0.5289 + 0.7644i Stable point

p = 0.6 (0.7572, 0) −2.1187, 1.4298 Unstable point

p = 0.6 (0.4015, 0.4841) 0.5394 − 0.7946i, 0.5394 + 0.7946i Stable point

p = 0.8 (0.7596, 0) −2.1595, 1.4454 Unstable point

p = 0.8 (0.3992, 0.4836) 0.5445 − 0.8200i, 0.5445 + 0.8200i Stable point

p = 1.0 (0.7619, 0) −2.2000, 1.4585 Unstable point

p = 1.0 (0.3989, 0.4815) 0.5434 − 0.8405i, 0.5434 + 0.8405i Unstable point
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Fig. 1 Time graph for different p
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Fig. 3 Bifurcation diagram for varying p
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Fig. 4 Bifurcation diagram for varying p

furcation for p. This bifurcation is supercritical—after the fixed point loses stability,
it is surrounded by a stable limit cycle.

Figure3 depicts smooth invariant circle bifurcates for both prey and predator from
stable equilibrium.As the p value increases, the behavior becomesmore complex and
more unpredictable for both species. When p exceeds 0.91, there appears a circular
curve enclosing equilibrium and its radius becomes larger with chaotic behavior
for both species. This figure is drawn with respect to â ∈ [al, au] = [4.0, 4.2], b̂ ∈
[bl, bu] = [1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] = [0.1, 0.2] .

Figure4 shows a smooth invariant circle bifurcates from stable equilibrium.
When p exceeds 0.7, there appears a circular curve enclosing equilibrium and
its radius becomes larger with the increasing of p.This figure is drawn with re-
spect to â ∈ [al, au] = [4.2, 4.4], b̂ ∈ [bl, bu] = [1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9],
d̂ ∈ [dl, du] = [0.1, 0.2] .

The above figure is drawn with respect to â ∈ [al, au] = [4.5, 4.7], b̂ ∈ [bl, bu] =
[1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] = [0.1, 0.2] .Figure5 shows smooth
invariant circle bifurcates for both species from stable equilibrium. Furthermore, if
p exceeds 0.45, there appears a circular curve enclosing equilibrium and its radius
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Fig. 5 Bifurcation diagram for varing p

becomes larger with the growth of p. At p values above 0.83, the systems behave as
a limit cycle for both species.

9 Conclusion

Thiswork is related to the qualitative behavior of a discrete-time predator-preymodel
under imprecise biological parameters. We have found the fixed points of the system
and discussed their stability analytically.We give a flip bifurcation analysis and chaos
control procedure. The phase portraits, bifurcation and time graphs are obtained for
different parameters of the model. Here, we introduce a new concept in bifurcation
analysis. The codimension of a bifurcation is the number of parameters which must
be varied for the bifurcation to occur. When we consider p as bifurcation parameter,
ultimately, we consider here 4 bifurcation parameter in a certain range, but interesting
fact is that using our technic we convert this 4 codim bifurcation in 1 codim. The
proposed study will be very useful for the mathematical modeling and analysis of a
wide range of predator–prey interactions. Our study suggests that herd behavior has
stabilizing effect on population dynamics.
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