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Abstract We study the causal relation in a fluid dynamical system, for the impulse
and frequency response approaches as instability theories and corresponding experi-
ments. The zero-pressure-gradient (ZPG) boundary layer is analyzed to find comple-
mentary aspects of these approaches. The drawbacks of instability study are in for-
mulating it as a homogeneous system. Another difficulty for the instability is in clas-
sifying it for either temporal or spatial growth. When viscous effects were included
in the spatial theory, it predicted wave solution (known as Tollmien–Schlichting (TS)
waves), which left many scientists unconvinced. Experimental verification remained
difficult as instability does not require explicit excitation, and dependence on back-
ground noisemakes experiment non-repeatable. The classic experiment of Schubauer
and Skramstad for the boundary layer (J Aero Sci 14(2), 69–78, [24]) excited a
monochromatic source inside to obtain spatially growing TS waves—considered as
the frequency response of the boundary layer. In contrast, Gaster and Grant (Proc R
Soc A 347(1649), 253–269, [13]) tried to create TS waves by a localized impulse
excitation and endedup creating awave-packet by the impulse response of the dynam-
ical system. Here, we focus mainly on the impulse response of the ZPG boundary
layer using Bromwich contour integral method (BCIM) developed by the authors for
spatio-temporal growth of disturbance field in creating spatio-temporal wave-front
(STWF). The main achievement of BCIM is in identifying the cause for the creation
of STWF by both the approaches.
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1 Introduction

One of the principal tenets in developing dynamical system theory is to study the
relationship between cause and effects. This is true for a fluid dynamical system
characterized by large degrees of freedom, as compared to other dynamical systems
in many fields of physics. While experimental verification of any theory is imper-
ative, however, this is a difficult task for theories of instabilities. This is because
instability theories rely on the omnipresent imperceptible ambient disturbances to
produce the response which is difficult to quantify. Mathematically, the instability
problem is posed as the output of a system governed by a homogeneous differential
equation, for homogeneous boundary and initial conditions. Implicit in this scenario
is the requirement of an equilibrium state, in which the imperceptible omnipresent
disturbance resides and draws energy for its growth. For example, flow past a cir-
cular cylinder displays unsteadiness above a critical Reynolds number (based on
oncoming flow speed and diameter of the cylinder), even when one is considering
uniform flow over a perfectly smooth cylinder. While this can be rationalized for
experimental investigation, where the prevalence of background disturbances cannot
be ruled out, the situation is far from straightforward for computational efforts. Roles
of various numerical sources of error triggering instability for uniform flow past a
smooth circular cylinder are complicated. This issue has been dealt in [31]. Inability
to compute the equilibrium flow past a circular cylinder is due to the presence of
adverse pressure gradient experienced by the flow on the lee side of the cylinder.

The situation is equally difficult for the ZPG flow over a flat plate. As the equi-
librium flow is obtained with significant precision, it is possible to study the ZPG
flow past a flat plate as a receptivity problem, as has been done experimentally to
study the existence of TS waves by Schubauer and Skramstad [24], where the dis-
turbances were effectively created by a vibrating ribbon inside the boundary layer.
The computations have been done with varying degrees of success in [12, 3, 6, 7,
20, 29, 39] for 2D and 3D instability routes, with results improving with advent
of better computers and numerical methods. Early results obtained in small com-
putational domain managed to show TS wave-packets (and not waves), but starting
with the theoretical finding of STWF due to a linear mechanism [32] along with TS
wave-packet has completely changed our perception of the field, both in terms of
theoretical and computational approaches.

While the experiment in [24] virtually rescued the theoretical instability studies,
it is necessary to understand the motivation of that experiment. Concomitant with
the developed spatial instability studies by solving Orr–Sommerfeld equation (OSE)
(as given in [10, 27]), the boundary layer was excited by a monochromatic localized
source, and hence, this can be termed as the frequency response of the boundary layer.
In the experiment, the authors could not create TS waves by acoustic excitation,
and this drew the attention on the subject of receptivity of equilibrium flows to
different types of input to the system. As the existence of TS wave-packet cannot
be demonstrated outside the strict confines of the laboratory, Gaster and Grant [13]
studied the ZPG boundary layer excited by a localized impulse. Mathematically,
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this is equivalent to using an input, which is a delta function in space and time,
and the results provide the impulse response of the dynamical system. Interestingly,
this experiment produced a wave-packet, which can be identified with the STWF
found in [32]. It is noted that the search for STWF was sought in other branches
of physics, with early efforts recounted in Brillouin [8] for electromagnetic wave
propagation and by Bers [2] in plasma physics. Unfortunately, the authors in [13]
thought that the impulse response was an ensemble of TS waves, which can be
obtainedby spatial instability theory for a parallel boundary layer,whichwas summed
for the eigenfunctions with empirical weights. In a recent numerical study, Bhaumik
and Sengupta [4] have shown the creation of the STWF by solving the complete
Navier–Stokes equation (NSE) with an accurate numerical method. The authors
identified the impulse response as the STWF,which is the building block that explains
diverse physical and geophysical events, such as transition to turbulence, roguewaves
and tsunamis. The role of STWF in creating transition to turbulence via frequency
response route has been conclusively established in [3, 29, 30]. There aremany efforts
[19, 37] which have talked about transient growth, algebraic growth, as alternative
routes of transition, without involving TS waves.

Thus, it is essential to bridge the theoretical gap between the impulse and the
frequency response of a dynamical system, which are used in theoretical and exper-
imental studies. Here, the results for ZPG boundary layer are used to theoretically
explain the common elements of the impulse and frequency responses. In the con-
text of flow instability, the difference between the two responses continues to baffle
the research community. The primary goal of the present research is to theoretically
explain from the solution of OSE, the existence of STWF and its ubiquitous role in
manifesting unsteady effects, even when the excitation is imposed impulsively once,
which continues to grow indefinitely. Such an exercise can show the presence of
STWF even when the amplitude of the STWF is small at the onset. We note that the
STWF was found due to a change of point of view when flow instability was solved
for generic spatio-temporal growth.

In the beginning,Orr andSommerfeld [21, 34] proposedOSEwithout anyqualifier
on the disturbance growth, whether it is in space or in time.WhenRayleigh’s theorem
for temporal growth failed to explain the instability of ZPG boundary layer [10], it
was assumed that the growth must be in space. Although Heisenberg, Tollmien and
Schlichting [10, 17, 23, 27, 36] solved the temporal instability for OSE, the results
were interpreted as growth in space, using the growth in time to growth in space,
using the group velocity [8, 27]. With the advent of computers, OSE has been solved
by few methods for stiff differential equations. Of all the methods, the most reliable
one appears to be the compound matrix method (CMM) described in [10, 26, 27]. In
Sengupta [25], CMMwas used along with discrete fast Fourier transform (DFFT) to
solve the problem corresponding to the experiment of [24] using the signal-problem
assumption. This is the first numerical solution, while theoretical conjectures exist
in [1, 14, 15].

Here, we explain how the STWF is created for different start-up conditions by
BCIM in solving OSE for a 2D response field. The corresponding solution of NSE
has been shown for impulsive and non-impulsive start-ups in [5]. The formulation
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of the problem is shown in Sect. 2. This is followed by a description of the utility
of the signal problem in Sect. 3. Next, the impulse response for the ZPG boundary
layer is shown in Sect. 4, for three different Reynolds numbers, based on displace-
ment thickness. The frequency response cases are shown next in Sect. 5, for three
streamwise exciter locations, with identical physical frequency of excitation, to con-
firm with the parallel flow approximation in solving OSE. In the following Sect. 6,
we describe the receptivity of ZPG boundary layer, when the input has no specific
time scale imposed, while the time variation of input corresponds to a Heaviside
function, a ramp and a rapidly varying function, but with smooth variation at the
onset and the final state. To emphasize the importance of boundary layer growth and
the corresponding shortcoming of parallel flow approximation, the case of frequency
response described in Sect. 5 by solving OSE is computed again by solving NSE in
Sect. 7. The paper closes with a summary and conclusion.

2 Formulation of the Impulse and the Frequency Response

The schematic of the problem is shown in Fig. 1a in the physical plane, while it
is solved in the spectral plane, involving streamwise wavenumber (α) and circular
frequency (ω0). For the 2D problem, the response is calculated for the linearized field
following the governing OSE given by

D4φ = i R̃e
[
(αU (ỹ) − ω0)D

2φ − αU ′′(ỹ)φ
]

(1)

where D2 = d2

dỹ2 − α2, R̃e = Ueδ
∗

ν
. Here, the displacement thickness at the exciter

location has been used as the length scale, while the free stream speed is used as
the velocity scale. The time scale is derived with the help of these two scales. The
disturbance stream function is given by its spectral transform as

ψ̄ = ∫
αBr

∫
ωBr

φ(α, ỹ, ω0)e
i(αx̃−ω0t)dαdω0 (2)

which is solved for both the signal and spatio-temporal problems using BCIM. The
difference between these two lies in choosing integration contours in the spectral
plane, in the respective strip of convergence—known as the Bromwich contour [22,
27, 38]. Here, the response to wall excitation is studied for three types of excitation
fields: (i) Case-I—where the input is simply a product of delta functions in space
and time that represents the pure impulse response. The other cases are shown in
Fig. 1b, with the impulsive start represented by the Heaviside function (Case-II) and
the other represents a non-impulsive start (Case-III) given by

U1(t − t0) = 0.5

[
1 + erf

(
t − t0
2
√

παE

)]
(3)
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Fig. 1 a Schematic of the computation domains for the wall excitation of an equivalent parallel
flow given by Blasius profile at a location indicated by the dashed line and b the envelope of the
time-dependent excitations given by the Heaviside function (H(t)) and an error function (U1(t)),
triggered at the indicated times; t = 0 for H(t) and t = t0 for U1(t − t0)

which is related to the error function. One can study the impulse and frequency
response cases, where H(t) and U1(t) represent the envelope for the amplitude
of input disturbance stream function, ψ̄ . If the excitation frequency is ω̄0, then the
excitation for the frequency response case is given by ψ̄e−iω̄0t . Here,we have reported
only one frequency response case, which is started impulsively using H(t). We have
also studied cases, where the dynamical system is excited by inputs, as shown in
Fig. 1b without any imposed time scale, which will be termed as non-oscillatory
transient cases. Additionally, a case of ramp start (Case-IV) is also studied which
is non-oscillatory. Note that when αE approaches zero in Eq. (3), one recovers the
Heaviside function, H(t). Also in Fig. 1b, the non-impulsive caseU1(t − t0) becomes
nonzero from t = 0 onwards, while it is centered around t0. For this reason, the
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Fourier transform has been calculated, using time-scaling, frequency and time-shift
theorems of Fourier transform [27].

We want to highlight the fact that for the frequency response case, the finite start-
up with Heaviside function introduces all possible circular frequencies. Even in the
case where U1(t) is characterized by αE, with a small value, one excites a wide
range of frequencies, apart from ω̄0, for the frequency response case. For an unstable
system, it is not necessarily guaranteed that the response will be dictated by ω̄0 only.
Thus, for the study of instability, there are hardly any differences between impulse
and frequency responses, as both the cases are excited by wide-band input by finite
start-up.

In the signal problem, it is assumed that the response is at the frequency of excita-
tion, ω̄0, and as a consequence, the frequency is fixed, i.e., ω0 = ω̄0, and one solves
Eq. (1) along the Bromwich contour in α(= αr + i ᾱi )-plane only. Choice of constant
ᾱi facilitates use of DFFT for the inverse transform. The Bromwich contours used
in BCIM are shown in Fig. 2, with the choice of contour dictated by the position of
various eigenvalues in complex α and ω0 planes, with details explained in [16, 27,
28].

As noted for unstable systems, the signal-problem assumption is incorrect. To
solve the problems correctly, the BCIM was proposed [27, 28], where the dynamical
system picks up the correct space-time scales for the fixed R̃e, consistent with the
physical dispersion relation. After solving Eq. (1) along the Bromwich contours in
the complex α- and ω0-planes, as shown in Fig. 2, one performs double inverse
transforms to recover the response field in the physical plane. Using BCIM, the
STWF was noted first in [32], which was shown to cause 2D turbulence in [29,
30] and 3D turbulence in [3], in the framework of experiments performed using the
frequency response approach. The existence of STWF by the impulse response has
also been shown by solving 3D NSE for 3D routes of transition in [4, 35].

In the present work, the linearized problem is solved theoretically and computa-
tionally by considering different impulse and frequency response approaches. Only

Fig. 2 Bromwich contours used here have been shown in complex α and ω0-planes for the BCIM
approach. For signal problems, only the contour in α-plane is used
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one frequency response case is included here to demonstrate the difference between
solution of OSE by BCIM and by direct simulation of NSE.

3 The Utility of the Signal Problem

Results of Eq. (1) have been obtainedwith the signal-problem assumption for the first
time in [25] using CMM [27]. The same method has been used here, by considering
the height of the domain in the wall-normal direction given by the similarity variable
used in Blasius solution as ηmax = 12 with 3000 points. Along the Bromwich
contour (αBr), 8192 points are taken, for which Eq. (1) is solved, along with ᾱi =
−0.008. While it has been reasoned above that the signal problem is inconsistent
for instability studies, and instead, one should treat these as spatio-temporal growth
problem, as in [27, 28, 32] to study frequency response cases. Thus, one should solve
Eq. (1) for any type of excitation implied in Eq. (3), along the Bromwich contours
shown in Fig. 2. Finally, double inverse Fourier transform is performed to obtain ψ̄ ,
as given in Eq. (2). This is the BCIM technique followed in [27, 28, 32], which led
to the finding of the STWF. It is readily noted in BCIM that one needs to solve the
signal problem, for every point along the Bromwich contour, ωBr in the ω0-plane.

In Fig. 3, ψ̄ is plotted for three different cases with R̃e and ω̄0 combinations
given by (1000, 0.1), (1500, 0.15) and (2000, 0.20), such that the physical frequency
F = ω̄0

R̃e
remains the same. The results are shown at a height which is close to the

inner maximum of the disturbance field. The solution is determined by the instability
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Fig. 3 Signal-problem solution for three representative R̃e values, with results shown at the indi-
cated height, ỹ = 0.278. The non-dimensional frequencies are so chosen that one is tracking the
same physical frequency. The Bromwich contour in α-plane is at ᾱi = −0.008, and αr ranges from
−4π to +4π , with 8192 points
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property of the Blasius boundary layer, as given by the spatial analysis. Thus, the
first combination shows growing TS wave. These results show the unique feature
of receptivity analysis, in the form of a local solution in the vicinity of the exciter
at x̃ = 0, whose full view is shown in the inset, on the top right. These features of
solution for the signal problem is noted in the solution using BCIM, except that the
STWF is not seen, as one noted the STWF from the spatio-temporal solution of OSE
and NSE in [28, 29, 32].

4 The Impulse Response of the Blasius Boundary Layer

In studying the spatio-temporal dynamics for the Blasius boundary layer, we first
consider the case of pure impulse, with the wall excitation given by

ψ̄(x̃, 0, t) = δ(x̃)δ(t) (4)

This is the type of wall excitation investigated in [13]. The results are obtained here
by solving Eq. (1), for the input given by Eq. (4), using BCIM along the Bromwich
contours, αBr and ωBr, using 8192 and 2048 points, respectively. The Bromwich
contours are parallel to the real axis, located below at ᾱi = −0.008 in α-plane and
above at ω̄0i = 0.01 in the ω0-plane. The height of the domain in the wall-normal
direction is same, as that has been used in the signal problem. For eachω0, one solves
an equivalent signal problem, as described in the previous section. The results shown
in Fig. 4 are for three R̃e indicated in the frame. At the location of the exciter (x̃ = 0),
one notices the local solution which rapidly decays with time. However, in this case,
one does not also see the TS wave, and instead the STWF is noted, that convects
in the downstream direction, at nearly the same speed. For R̃e = 1000, the STWF
appears at a downstream location, despite the fact that the excitation for this case is
applied at the most upstream station. These results here are shown from the solution
of OSE, which requires the parallel flow approximation, while the solution of 3D
NSE has been shown in [4, 35]. In [13], it was assumed that the STWF is a weighted
sum of TS waves created by the corresponding signal problem. The present solution
not only shows the superiority of BCIM but also establishes the correct interpretation
of STWF as the basic unit process of disturbance growth for the equilibrium flow
arising as the impulse response.

5 The Frequency Response of the Blasius Boundary Layer

It has been noted already that the frequency response of a dynamical system is a
misnomer for a physically unstable system, as the unstable modes are going to be
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Fig. 4 Impulse response of the Blasius boundary layer to excitation as given by Eq. (4) for three
representative R̃e values, with results shown at the indicated height, ỹ = 0.278. The Bromwich
contour in α-plane is at ᾱi = −0.008, and αr ranges from −4π to +4π with 8192 points, and in
the ω0-plane the Bromwich contour is placed at ω̄i = 0.01, and ω0r varying from −π/2 to +π/2
with 2048 points

dominant, as compared to the forced response at the excitation frequency. Histor-
ically, this wrong perception arose due to adoption of spatial instability theory for
fluid flow, in which one looks for spatial growth at the imposed frequency, associ-
ated with the signal-problem assumption. We have already noted in describing the
various wall excitation cases that the finite-time start-up excites all possible circular
frequencies, and the roles of various modes of transient variation have been noted in
the previous section on impulse response. In this case the wall excitation is given by

ψ̄(x̃, 0, t) = δ(x̃)ψ̄0e
−iω̄0t (5)

where ψ̄0 = H(t) or U1(t) with a chosen value of αE , depending on whether the
start-up is impulsive (as given by Heaviside function) or non-impulsive (as given by
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error function-type variation, with U1(t)). The frequency response with impulsive
start given by Heaviside function has been solved originally in [28] for a case with
R̃e = 1000 and ω̄0 = 0.1, which has been pronounced as spatially unstable. Here,
we have solved the same problem, with significantly higher number of points in x̃-
and ỹ-directions.

The results shown in Fig. 5 are for the spatially unstable case (R̃e = 1000 and
ω̄0 = 0.10) solved by BCIM. In the depicted solution, apart from the local solution,
the TS wave-packet and the STWF are also present. It is not readily apparent that
there exists the STWF, as it was also not identified in [28], where this set of results
were presented for the first time. For this spatially unstable case, the TS wave-packet
and the STWF are fused together in the displayed solution of OSE, shown for the
indicated times. We would like to emphasize that this typical structure of blended
TS wave-packet and STWF is a consequence of the parallel flow assumption used to
formulate and solve OSE. Otherwise, the solutions of OSE for other stable cases, as
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Fig. 5 Frequency response of the Blasius boundary layer to excitation as given by Eq. (5) for
R̃e = 1000 and ω̄0 = 0.1, with results shown at ỹ = 0.278. The Bromwich contours are the same
used in Fig. 4
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will be shown later, display the separation of TS wave-packet and the STWF. Later,
when BCIM was used to investigate spatially stable cases in [32, 33], the presence
of STWFwas easily discerned, with the TS wave-packet is seen to decay with space,
while STWF grows and convects downstream. Two such stable cases are shown here
in Fig. 6 for the indicated parameters.

The emergence of TS wave-packet is clearly visible from the local solution in all
the frames. The property of the TS wave-packet is dictated primarily by the spatial
stability property of the OSE at the location of the exciter, and it is easy to rationalize
the decay of the TS wave-packet. However, the STWF has the property of growth in
space and time and has little to do with spatial theory properties. The propagation
properties are the same, as seen inFig. 4.Consistentwith the parallel flowassumption,
the solutions shown in Figs. 5 and 6 are for the same constant physical frequency
( f ), for which ω̄0

R̃e
remains constant, which in this case provides the non-dimensional

physical frequency as F = 2π f ν/U 2∞.
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Fig. 6 Frequency response of the Blasius boundary layer to excitation as given by Eq. (5) for
R̃e = 1500 and 2000, for ω̄0 = 0.15 and 0.20, respectively. The results are shown at ỹ = 0.278.
The Bromwich contours are described in Fig. 4
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6 Non-oscillatory Start-up Cases Solved by BCIM

Having noted the distinction between the impulse and the frequency response in the
previous two sections, we note the absence of TS wave-packet for the former. At the
same time, both cases have a local solution and STWF.However, the local solution for
the impulse response is significantly smaller, and which furthermore rapidly decays
with time. Thus, after some time, only the STWF will be the common link between
the solutions of the impulse and the frequency response cases. It has been shown that
the STWF is the precursor of transition to turbulence for 2D in [29] and 3D transition
in [3, 4, 35]. It has also been shown that it is not necessary that STWF is created
due to impulsive start for frequency response cases in [5]. The ever-growing STWF
for both the impulse and frequency response cases shows that it is not necessary
to impose any specific time scale to cause transition. However, imposition of time
scale helps in creating TSwave-packets, which helps in transition for the frequencies
which are closer to Branch-I of the neutral curve, where STWF is constantly fed by
TSwave-packet and which does not remain stationary. These cases have been termed
as interacting or I-type transition cases in [5]. Keeping this in view, next, we report
response of Blasius boundary layer to wall excitations which are associated with a
sudden jump used as the input, without any oscillation frequency associated with the
input.

6.1 Impulsive Excitation at the Wall by a Heaviside Function

In this case, the exciter is placed at a location, where R̃e = 1000, and the input
excitation is given by the Heaviside function. Given that the present investigation is
for a linearized system, the amplitude of excitation is in non-dimensional form of
unity value. Thus, the discussion here pertains to unit amplitude of excitation applied
on the disturbance stream function, which can be scaled to the actual value of wall
perturbation.

In Fig. 7, the streamwise component of disturbance velocity is shown as a function
of streamwise distance at a height of ỹ = 0.278, for the indicated time instants. In
this case also, one can clearly observe the evolution of the STWF with space and
time. The fact that the STWF is created by a delta and Heaviside function clearly
establishes that transition to turbulence can be caused by such an impulsive excitation,
as shown in Figs. 4 and 7. This clearly underlines the fact that for ZPG boundary
layer, the transition to turbulence can be caused by the STWF without the presence
of TS waves or wave-packets.
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Fig. 7 Response of the Blasius boundary layer to excitation given by the Heaviside function for
R̃e = 1000. Results are shown for ỹ = 0.278. The Bromwich contours are as in Figs. 4, 5 and 6.
The input is given in the form of unit disturbance stream function at the exciter location

6.2 Non-impulsive Excitation at the Wall Given by Ramp
and Error Function

In these cases, we have used input disturbance stream function from Eq. (3) for the
error function with αE = 100 and t0 = 150, and the ramp function increases linearly
from zero at t = 0 to unit value at t = 300. To solve OSE, the boundary conditions
are obtained using DFFT of the time signal at the exciter. The results are obtained
by solving OSE using BCIM, and Bromwich contours are chosen as before for the
impulse and frequency response cases.

In Fig. 8, the streamwise component of disturbance velocity is shown as a function
of streamwise distance for the two cases at the indicated times. We observe that these
cases produce response fieldswhich are one order ofmagnitude lower, as compared to
the case shown in Fig. 7. Due to the faster growth rate of the error function excitation
case, as compared to the ramp function case, the response field amplitude is higher
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Fig. 8 Response of the Blasius boundary layer to excitation given by error function and ramp
function for R̃e = 1000 during the time interval of 0 ≤ t ≤ 300, with results shown for ỹ = 0.278.
The Bromwich contours are as in Figs. 4, 5 and 6. The input is given in the form of constant
disturbance stream function at the exciter location

for the former. However, small is the approach of the input disturbance field to the
same final value, one expects creation of the STWF, implying the ubiquitous nature
of the STWF. Due to slope discontinuity during onset and terminal stage of the ramp
start-up, one can see two distinct STWFs in the disturbance field as shown in Fig. 8.
Given sufficient length and presence of wall shear, the STWF will grow eventually
to cause transition to turbulence.

Although the response for the case of non-oscillatory Heaviside function is one
order of magnitude higher than the other two cases, the spectrum of the response
fields as shown in Fig. 9 indicates that the scales of the STWF for all the three cases
are similar. One also notices that the STWF occurs not at a particular length scale
but is a wide-band phenomenon centered around αr ≈ 0.3 for the displayed time,
t = 450. Subsequently, all the three cases amplify which is the universal feature of
the STWF.
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Fig. 9 Fourier transform of ud for the three non-oscillatory input cases, whose responses are shown
in Figs. 7 and 8 at the indicated time, t = 450

7 The Frequency Response Obtained from the Solution
of the Navier–Stokes Equation

We have noted in Fig. 5 that the TS wave-packet and the STWF are together at
all times. This led to confusion in [28], whereby the STWF was not recognized.
Subsequently, when the spatial stable cases were solved by BCIM in [32, 33], one
could distinguish between the TS wave-packet and the STWF, as also seen in Fig. 6.
This particular feature for the spatially unstable cases is due to the parallel flow
approximation, as was noted from the solution of NSE in [29].

The case considered in [29]waswith a simultaneous blowing-suction strip extend-
ing from R̃e = 656–676, and such an excitation led to fully developed turbulence
studied for different amplitude of excitation, displaying k−3 spectrum for ud. For the
case considered here in Fig. 5, we report the corresponding solution by solving NSE
in Fig. 10.

We would like to point out that the scales used in representing the NSE are based
on convection scales, while those used for OSE are viscous scales. For example,
the viscous time scale is given by Tsc = δ∗

U∞ , whereas in solving the NSE, we have
used a length scale (L), such that the corresponding Reynolds number is given by
ReL = 105 and the corresponding time scale is Tc = L

U∞ . As a consequence, the

ratio of the two time scales is given by Tc
Tsc

= ReL
R̃e

. For the solution of NSE, the non-
dimensional coordinates are given by x and y. From the top frame at tc = 25, one
can clearly observe that the STWF is distinctly different from the TS wave-packet.
The solutions of OSE shown have extraordinarily high resolution as compared to
the solution obtained by the NSE, because of the different time resolution of NSE
and OSE. Thus, it is not possible to show solution of OSE corresponding to the
top frame of Fig. 10 with the number of points taken in ω0-plane. In Fig. 10, one
notices continual growth and downstream propagation of the STWF, while the TS
wave-packet appears to remain stationary, although this is a progressive wave, whose



166 T. K. Sengupta et al.

-0.02

0

0.02 Re = 1000, ω0 = 0.1

ud

tc = 25
~ _

0 10 20 30
-0.02

0

0.02

x

ud

tc = 60

-0.02

0

0.02

ud

tc = 35

-0.02

0

0.02

ud

tc = 40

-0.02

0

0.02

ud

tc = 50

Fig. 10 Frequency response of the Blasius boundary layer to excitation as given by Eq. (5) with
the exciter located where R̃e = 1000 for ω̄0 = 0.1, and the results for ud are shown at y = 0.278
for the indicated times

amplitude decays with downstream co-ordinate x . The observed stationary nature of
the TS wave-packet is determined by the wave properties of the packet as determined
by its growth and decay for the constant frequency wall excitation. The solution
displayed in Fig. 10 is all during the linear growth stage of the STWF. The detailed
2D solution of similar cases has been reported in [29, 30].

8 Summary and Conclusion

Here, we have studied the impulse and frequency response cases to reconcile between
the experiments reported in [24] (which has been termed as frequency response, as the
input is provided at a fixed frequency consistent with the practice in spatial stability
theory) and those in [13], where awave-packet is created by a localized delta function
excitation in space and time, as given in Eq. (4). The output of such an excitation can
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be termed indeed as the impulse response. Such an experimental approach is used in
[13] to provide help with understanding natural transition. In contrast, the theoretical
TS waves have been created only in a strict laboratory setting with a monochromatic
excitation at a fixed frequency. In real flows, transition to turbulence is often noted as
a turbulent spot or puff [11, 18]. We have reasoned that even the so-called frequency
response starts at a finite time, and therefore, such an excitation is also similar to
impulse excitation, and we have investigated three different start-ups: Impulsive (as
given by Heaviside function), non-impulsive with varying acceleration [as given by
Eq. (3)] and a linear ramp function. Only in the frequency response case, the input
[as given by Eq. (5)] produces TS wave-packet as obtained from the solution of
Navier–Stokes equation in Fig. 10, which have also been reported in [29, 30].

For both the cases of the impulse and frequency responses, one notices the com-
mon elements of the local solution and the spatio-temporal wave-front (STWF) here
from the solution of linearized analysis of Orr–Sommerfeld equation (OSE). How-
ever, for impulse response, the local solution is insignificantly smaller for the impulse
response, and furthermore, the amplitude of which decays with time. The presented
results are from the solution of governing Navier–Stokes equation (NSE) in its full
form or in its linearized version of OSE. This is distinctly different from various
other approaches reported in the literature [9, 19]. It has been shown in [3, 29, 32]
that frequency response cases create STWF, which is the precursor of transition to
turbulence obtained from the solution of OSE and NSE. For the impulse response
case, the existence of STWF has been shown from the solution of NSE in [4, 35].
It is shown here from the solution of OSE for the input excitation given by strictly
delta function in space and time. Apart from this, existence of STWF is also shown,
when the input is given by a Heaviside function, linearly varying ramp function and
an error function. All of these excitations have varying degree of time variation of
the input excitation for impulsive and non-impulsive start-ups. While all of these
demonstrate the creation of STWF, none of these show TS wave-packets. The spec-
tra of the various STWFs shown in Fig. 9 show the universality of the STWF. It is
also explained that for the spatially unstable case shown in Fig. 5, one does not see
the distinct STWF due to parallel flow assumption, as the same case solved using
NSE in Fig. 10 display the STWF and the TS wave-packet. However, in Fig. 6, one
can clearly see the demarcated STWF from the decaying TS wave-packet. All of
these observations lead us to conclude that the STWF is the precursor of transition
for both the impulse and frequency responses for the boundary layer and is created
by the linear mechanism, governed by OSE. This point of view perfectly blends with
experimentally observed transition to turbulence for not only wall-bounded flows
but also for internal flows and free shear layers.
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