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An Overview on Analytic Expressions
for Electrophoretic Velocity of Rigid
Colloids

Partha P. Gopmandal, Saurabh K. Maurya and Somnath Bhattacharyya

Abstract Electrophoresis is a process by which a charged colloid is propelled in a
polar media under the action of an externally imposed electric field. This has been
recognized as a useful tool to characterize macromolecules such as DNA, microor-
ganisms, biocolloids or synthetic nanoparticles. Electrophoresis is also found to be
an efficient method in separating, sorting and purification process. The microfluidic
technology to address problems in biology, medical technology, such as controlled
drug delivery and disease diagnostic are based on the electrophoresis phenomena.
Thus, a correct relation between the electrostatic parameters and the electrophoretic
velocity constitutes an important research topic. In this chapter, we have elaborated
some of the existing simplifiedmodels for electrophoretic velocity. The shortcomings
of these linear models or models based on weak-field consideration are illustrated
in this chapter. An account of improved theory on electrophoresis is provided. The
electrophoresis of a hydrophobic colloid is also addressed in the present chapter.

Keywords Rigid colloid · Surface charge · Debye–Huckel parameter ·
Hydrophobicity · Electrophoretic velocity
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1 Introduction

When a charged colloidal particle is exposed to an external electric field, the particle
moves toward the electrode of opposite polarity and the counterion cloud surrounding
the particle opposes the particle motion. Such electrokinetic phenomena are termed
as electrophoresis. It was first observed by Reuss [1] for the clay particles dispersed
in water under the influence of electric field. Electrophoresis in the present day
is established to be important phenomena in the context of microfluidics, colloid
science, separation and purification technology. Over the years, a large body of
literature is devoted to establish a relation between the electrophoretic velocity, the
velocity by which a charged particle translates under the action of an applied electric
field, and the strength of the applied field.

The theory of electrophoresis is based on the concept of the electric double layer
(EDL) formed along the rigid surface-electrolyte solution interface. Under the ap-
plication of electric field, the net mobile charge within the diffuse part of the EDL
induces Columbic force. At the same time, the viscous forces exerted by the liquid
on the particles tend to retard the particle motion. At steady state, both the force bal-
ances each other and the charged particle moves with a uniform velocity known as
electrophoretic velocity (UE). It is interesting to note that, from the electrophoretic
velocity, one can easily measure the surface ζ-potential, which is the indicator of
electrical charge carried by the surface.

The first mathematical approach to consider the electrophoresis of colloidal par-
ticle is made by von Smoluchowski [2] under thin double layer assumption valid
for electrolyte with high concentration. Later, Huckel [3] derived the theoretical de-
scription of electrophoretic phenomena of rigid colloid for a dilute electrolyte for
which the characteristic length scale (i.e., particle radius a, say) is much smaller
than the thickness of the EDL (κ−1). Henry [4] further extends the study of elec-
trophoresis of rigid colloids to consider the effect of Debye–Huckel parameter κa
on the particle motion. Besides the theory proposed by Henry, later Ohshima [5]
made a similar study based on linear perturbation analysis to obtain the closed-form
analytical expression for the particle’s velocity.

All the aforementioned theoretical studies are based onweak electric field and low
potential assumption for which the EDL around the charged particle remains con-
centric. However, for higher values of surface potential (i.e., ζ-potential) and strong
electric field, the EDL may distort from its spherical shape due to strong fluid con-
vection. Such a nonlinear phenomenon is termed as double layer polarization (DLP)
or relaxation effect. O’Brien andWhite [6] studied electrophoresis of highly charged
particle by considering the DLP effect and have shown that the DLP effect has a
prominent role for moderate values of Debye–Huckel parameter (κa). Subsequently,
several authors studied the effects of DLP on the particle electrophoresis—Hsu
et al. [7], Hsu and Chen [8], Sang et al. [9], Bhattacharyya and Gopmandal [10],
Khair [11]—under various electrokinetic conditions.
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The above-mentioned studies have considered the particle surface is hydrophilic
in nature. However, there are various practical situations where the particle may
exhibit hydrophobicity and the conventional no-slip velocity boundary condition
may not valid across the rigid surface, e.g., for the fabricated engineered micro/nano-
particle, the fluid can slip over the surface of the particle (Tretheway and Meinhart
[12], Moyano et al. [13]). For such a particle, the fluid velocity along the particle
surface can be modeled by Navier boundary condition (Lauga et al. [14]), which
state that the slip velocity is proportional to the rate of strain at the rigid surface. The
proportionality constant is often known as slip length and it may vary from several
nanometer to micrometer (Bocquet and Barrat [15]). Hence, for typical colloidal
dispersion, where the characteristic length scale is of the order of hydrodynamic slip
length, the particle velocity is influenced greatly by the hydrophobic nature of the
particle surface.

Several authors attempt to study the effect of hydrodynamical slippage on the elec-
trophoresis of hydrophobic rigid colloids. Khair and Squires [16], Park [17] studied
the electrophoresis problem for hydrophobic rigid colloid. Later, based on low charge
and weak-field assumption, Gopmandal et al. [18] derived a closed-form analytical
expression for electrophoretic velocity. In their study, they have also established a
similarity between charged hydrophobic particle and charged droplet. Subsequently,
Bhattacharyya andMajee [19] studied the nonlinear effects on the electrophoresis of
highly charged hydrophobic colloids by considering the fluid convection on the ion
distribution. Recently, Ohshima [20] studied the electrophoresis and sedimentation
of charged hydrophobic particle under low surface potential and weak electric field
assumptions.

In the current study, the concept of particle electrophoresis along with the full
set of governing equations for the electrohydrodynamics of charged colloids are
illustrated rigorously. In this review, we focus on the pioneering theoretical works on
electrophoresis provided byHenry [4] andOhshima [5] for hydrophilic rigid colloids.
In addition, we have also discussed two limiting situations where the characteristic
length scale is much smaller or much larger than the EDL thickness. We have further
considered the electrophoresis of charged hydrophobic rigid colloid. The detailed
steps for the derivation of electrophoretic velocity of charged colloids under weak
electric field and low potential limits are discussed for each individual case.

2 Governing Equations

In this chapter, we have presented the mathematical theory of electrophoresis of
charged rigid colloids subject to the following assumptions. (i) The motion is slow
enough for which the inertia term in the fluid flow equation can be neglected. (ii) The
liquid is incompressible in nature. (iii) The applied electric fieldE is weak enough so
that the particle velocity UE is proportional to the electric field strength E0 (= |E|).
(iv) The slipping plane is located on the particle surface. (v) The rigid surface of the
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colloidal particle is impenetrable to the mobile electrolyte ions. In addition, we have
also assumed that the surface potential of the particle is small so that the potential
drop across the EDL is lower than the thermal voltage drop. For such a case, we
may invoke the Debye-Huckel approximation to linearize the governing equations
for electrophoresis. It is interesting to note that all the assumptions mentioned above
are almost certainly valid for the electrokinetics of rigid colloids.

From the classical electrophoresis problem, the particle moves with an uniform
electrophoretic velocity UE under the applied electric field E. We have considered a
reference frame where the particle is kept fixed and the liquid at far-field moves with
far-streamvelocity−UE. In order to study the problem,we have employed a spherical
polar coordinate (r, θ,ϕ)with the origin is at the center of particle and z-axis is along
the migration direction (Fig. 1). The governing equations for electrophoresis are as
follows

∇2φ = 0 (1)

εe∇2ψ = −ρe (2)

η∇ × (∇ × v) + ∇P = −ρe∇(φ + ψ) (3)

∇.v = 0 (4)

where φ and ψ are the potential due to the applied electric field and double layer
potential, respectively. Here, v = (vr, vθ, vϕ) is velocity vector, P is pressure and η
is the viscosity. The net charge density is given by ρe = eΣzini, where zi and ni are
valance and ionic concentration of mobile ions, respectively, and e is the elementary
charge. The permittivity of the electrolyte medium is given by εf = εrε0, where εr is
the relative permittivity and ε0 is the permittivity of vacuum. It may be noted that for

Fig. 1 Schematic
illustrations depicting the
electrophoresis of charged
rigid colloid with radius a
and surface potential ζ. A
spherical polar coordinate
system with the origin at the
center of the particle is
adopted to study the
problem. Here, the applied
electric field with a strength
E0 is applied along the
z-direction along which the
suspension moves with
constant electrophoretic
velocity UE
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liquid motion within low Reynolds number regime, the velocity components vr, vθ

along radial and cross-radial direction does not depends on the azimuthal coordinate
ϕ with vϕ = 0.

Under a low potential limit, we may assume the Boltzmann distribution for the
spatial distribution of contribution of ionic species, given as

ni = n0 exp

(
− zieψ

KBT

)
(5)

where KB and T are the Boltzmann constant and absolute temperature, respectively,
andn0 is the bulkvalueof the concentrationwhere the effect ofEDL-inducedpotential
is absent. Under low electric field assumption, the deviation of ni,ψ and ρe from their
equilibrium values are small. It may be noted that equilibrium values correspond to
the value of the respective variables in the absence of the electric field E. In fact
under these assumptions, i.e., weak electric field and low surface potential, the fluid
convection is low enough to create the distortion of EDL and is remains always
spherically concentric, and hence the DLP and relaxation effects are insignificant.

3 Electrophoresis of Hydrophilic Rigid Colloid

Belowwehave provided the classical theories for electrophoresis provided bySmolu-
chowski [2], Huckel [3], Henry [4] and Ohshima [5] for hydrophilic rigid colloids.

3.1 Smoluchowski Equation for Thin EDL

In the year 1921, Smoluchowski [2] derive the velocity expression under thin double
layer approximation, i.e.,κa � 1whereκ−1 is the EDL thickness and a is the particle
radius. With this assumption, the electric field can have only the components along
the particle surface and the particle surface may be considered as planner, and the
applied electric field E is set parallel to the surface of the particle (Fig. 2). This
reasonable assumption for a particle with dielectric constant much lower than that of
the aqueous media (Hunter [21]). For such a typical situation, the governing equation
for fluid flow can be written as

η
d2u

dx2
= −ρeE0 = εe

d2ψ

dx2
E0 (6)

Integrating Eq. (6) subject to no-slip boundary condition along the particle surface
(x = a) and far-field condition u → −UE as x → ∞; we can write the velocity field
as
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Fig. 2 a Schematic illustrations depicting the electric field lines. The red dashed line represents
the edge of the EDL with thickness κ−1. b Schematic illustrations depicting plate-like rigid particle

u(x) = εeE0

η
(ψ − ζ) (7)

where ψ is the EDL-induced potential and ζ is the surface potential. It may be noted
that far from the particle the induced potential ψ → 0 where u → −UE. Hence, the
electrophoretic velocity may be derived as

UE = εeζ

η
E0 (8)

3.2 Huckel’s Limit for Thick EDL

Another limiting situation for dilute electrolyte is considered by Huckel [3]. For
such a case, the EDL is thick and its thickness is much larger than the particle radius,
i.e., κ−1 � a. For such a situation, the deflection of the electric field lines due to
the presence of the particle is almost negligible (Fig. 3). Here, the neutralization of
particle charge due to counterion present in the aqueous media is almost negligible.
Hence, the net electric force experienced by charged particle within aqueousmedium
is given by

Fe = QE0 (9)

where Q is the net surface charge of the particle and is given by Q = 4πa2σ where
σ is surface charged density. For a spherical particle, the potential equation under
spherical symmetry and low potential limit can be written as
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Fig. 3 a Schematic illustrations depicting the electric field lines. The red dashed line represents
the edge of the EDL. b Schematic illustrations spherical polar coordinate systemwith axisymmetry.
Here, the applied electric field E0 is applied along the z-direction along which the suspension moves
with constant electrophoretic velocity UE

d2ψ

dr2
+ 2

r

dψ

dr
= κ2ψ (10)

Here, r is the radial coordinate. The solution of Eq. (10) subject to the boundary
conditions on the particle surface and along the far-field, given by ψ = ζ at r = a
and ψ → 0 as r → ∞, respectively, may be derived as follows

ψ(r) = ζ
(a
r

)
e−κ(r−a) (11)

The surface charge density σ can be obtained from the following relation

σ = −εe
dψ

dr
|r=a= εe

(1 + κa)ζ

a
(12)

Hence, the net electric experienced by the particle may be derived as

Fe = 4πa2εe
(1 + κa)ζ

a
E0

Under the limit κa � 1 in which the aqueous medium contain no free charge, the
net electric force is given by

Fe = 4πa2
(

εeζE0

a

)
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At steady state, the driving force must be balanced with the Stokes’ drag given by
Fh = 6πηUEa. Hence, the electrophoretic velocity of the rigid colloid under the limit
κa � 1 can be obtained as

UE = 2

3

εeζ

η
E0 (13)

3.3 Henry’s Theory

The general solution of (1) together with the boundary condition φ → −E0r cos θ
as r → ∞ and dφ

dr = 0 on the surface of the particle (r = a) can be written as

φ = −E0

(
r + 1

2

a3

r2

)
cos θ (14)

Let p1 = P − ∫ r
∞ ρe

(
∂ψ
∂r

)
dr. With this we may write

∇P = ∇p1 + ∇
⎡
⎣

r∫
∞

ρe

(
∂ψ

∂r

)
dr

⎤
⎦ = ∇p1 + ρe∇ψ

and hence the Stokes’ equation further reduces to

η∇ × (∇ × v) + ∇p1 = −ρe∇φ (15)

Taking divergence on both sides of Eq. (15) we get

∇2p1 = −∇.(ρe∇φ) = −∂φ

∂r

∂ρe

∂r

Using (2) and (14), we may write

∇2p1 = −∇.(ρe∇φ) = −εe

(
1 − a3

r3

)
cos θ

∂

∂r

(∇2ψ
)

(16)

Following Henry [4], we may write the pressure filed using (2) and (14), we may
write

p =
r∫

∞
ρe

∂ψ

∂r
dr − εeE0 cos θ

⎡
⎣∂ψ

∂r
− a3r

r∫
∞

1

r4
∇2ψdr

⎤
⎦ (17)
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Again taking curl of the Eq. (15), we may write

η∇ × ∇ × (∇ × v) = −∇ × (ρe∇φ) (18)

Assuming Ω = ∇ × v and hence the reduced form of the fluid flow equation can be
written in simplified form as

η∇ × ∇ × Ω = −∇ × (ρe∇φ) (19)

It may be noted that for two-dimensional steady axisymmetry flow past spherical
particle, the velocity vector v has a zero azimuthal component, and it leads to a
zero radial and cross-radial components of Ω and ∇ × Ω . The nonzero azimuthal
component of Ω can be written as

Ωϕ = 1

r

{
∂

∂r
(rvθ) − ∂vr

∂vθ

}
(20)

In addition azimuthal component of ∇ × ∇ × Ω is given as

(∇ × ∇ × Ω)ϕ = −1

r

{
∂2

∂r2
(rΩϕ) + 1

r

∂

∂θ

[
1

sin θ

∂

∂θ
(Ωϕ sin θ)

]}
(21)

On the other hand, only the nonzero azimuthal component of ∇ × (ρe∇φ) is given
by

∇ × (ρe∇φ)ϕ
1

r

∂ρe

∂r

∂φ

∂θ
(22)

Thus, (21) can be written in component form as

η(∇ × ∇ × Ω)ϕ = −1

r

∂ρe

∂r

∂φ

∂θ
(23)

Using Eqs. (2) and (14), one can write Eq. (23) as

(∇ × ∇ × Ω)ϕ = εeE0

η
sin θ

(
1 + 1

2

a3

r3

)
∂

∂r
∇2ψ (24)

The solution of Eq. (24) can be obtain as (Henry [4])

Ωϕ = −εeE0

η
sin θ

⎧⎨
⎩

∂ψ

∂r
+ 1

2
a3r

r∫
∞

1

r4
∇2ψdr

⎫⎬
⎭ (25)
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Consider

ξ = ∂ψ

∂r
+ a3r

2

r∫
∞

1

r4
∇2ψdr (26)

With this we may write

Ωϕ = −εeE0ξ

η
sin θ (27)

Using (20), we may write

1

r

{
∂

∂r
(rvθ) − ∂vr

∂vθ

}
= −εeE0ξ

η
sin θ (28)

In addition, the continuity equation for two-dimensional incompressible axisymmet-
ric flow can be written as

1

r2
∂

∂r

(
r2vr

) + 1

r sin θ

∂

∂θ
(sin θvθ) = 0 (29)

Solving Eqs. (28) and (29), we may write the velocity components along the radial
and cross-radial directions, respectively, as

vr = 2
3εeE0 cos θ

(
r∫
ξdr − 1

r3

r∫
r3ξdr

)

vθ = − 2
3εeE0 sin θ

(
r∫
ξdr + 2

r3

r∫
r3ξdr

)
⎫⎪⎪⎬
⎪⎪⎭

(30)

Here, the lower limit of integration appears in Eq. (30) can be determined from
the appropriate velocity condition. It may be noted that Eqs. (17) and (30) are the
particular solution of the Stokes’ equation (3) alongwith the continuity condition (4).
The complete solution may be obtained by adding these solutions with the general
solution of

η∇ × ∇v + ∇P = 0
∇.v = 0

}
(31)

By using the boundary conditions for velocity components and EDL potential, given
as

r → ∞; vr = −UE cos θ, vθ = UE sin θ; ψ = 0
and vr = vθ = 0; ψ = ζ; on r = a

}
(32)
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The complete solution of the fluid flow Eqs. (3) and (4) can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vr = cos θ

{
−

(
1 − 3

2
a
r + a3

2r3

)
UE −

(
a
r − a3

3r3

)
εeE0

η

r∫
∞

ξdr

− 2
3

(
r∫

∞
ξdr − 1

r3

r∫
a
r3ξdr

)}

vθ = sin θ

{(
1 − 3

4
a
r − a3

4r3

)
+

(
a
r + a3

6r3

)
εeE0

η

r∫
∞

ξdr

− 2
3

(
r∫

∞
ξdr + 1

2r3

r∫
a
r3ξdr

)}

vϕ = 0

P =
r∫

∞
ρe

∂ψ
∂r dr + cos θ

{
3ηa
2r2 UE − a

r2 εeE0
∫ a
∞ ξdr − εeE0

(
3 ∂ψ

∂r ξ
)}

(33)

The electrophoretic velocity can be obtained from the force balance for a steady-state
migration of the charged particle. The hydrodynamic drag force exerted by the fluid
on the particle is given by

Fh = 2πa2
π∫

0

[−τrr cos θ + τrθ sin θ]r=a sin θdθ (34)

with

τrr = −P + 2η
∂vr

∂θ
, τrθ = μ

{
∂vθ

∂r
− vθ

r
+ 1

r

∂vr

∂θ

}
.

Using the velocity components and pressure field given in (33), one can obtain the
hydrodynamic drag force experienced by the particle. On the other hand, the electric
driving force experienced by the charged colloid of radius a can be obtained form

Fe = −2πa2
π∫

0

εe

[
Ez

∂ψ

∂r

]
r=a

dθ (35)

where Ez is the component of total electric field along migration direction of the
particle and can be obtained form

Ez = sin θ

r

∂

∂θ
(φ + ψ) − cos θ

∂

∂r
(φ + ψ) (36)

It may be noted that the electric double layer potential ψ depends only on r and
∂φ
∂r = 0, where φ is potential due to applied electric field. It results

Ez = 1

r

∂ψ

∂θ
sin θ − ∂ψ

∂r
cos θ (37)
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Under Debye–Huckel limit-induced electric potential (ψ) is given in (11). Using
EDL potential ψ and potential due to applied electric field (φ) from (14), one can
obtain the net electric force Fe experienced by the particle. From the force balance
at steady state (i.e., Fh = Fe), the expression for the electrophoretic velocity can be
written as

UE = 2

3

εeE0

η

⎡
⎣ζ + 1

2
a3

⎧⎨
⎩3a2

a∫
∞

1

r5
∂ψ

∂r
dr − 2

a∫
∞

1

r3
∂ψ

∂r
dr

⎫⎬
⎭

⎤
⎦ (38)

Using the value of ψ(r) given in Eq. (12), Eq. (38) takes the following form

UE = 2

3

εeE0ζ

η

{
1 + 3

2
eκa[E7(κa) + κaE6(κa)] − eκa[E5(κa) + κaE4(κa)]

}

(39)
where nth order exponential integral is given by

En(κa) =
∞∫
1

e−κa.r

rn
dr (40)

Using the following recurrence relation for exponential integrals

eκaEn(κa) = 1

κa
− n

κa
eκaEn+1(κa) (41)

we may further simplify the expression for electrophoretic velocity UE as

UE = εeE0ζ

η

[
1 − eκa (5E7(κa) − 2E5(κa))

]
(42)

In terms of Henry function, the general expression for electrophoretic velocity can
be written as

UE = εeE0ζ

η
fH(κa) (43)

where the Henry function is defined as

fH(κa) = 1 − [5E7(κa) − 2E5(κa)]eκa (44)

Using the series expansion of En(x) as

En(x) = xn−1�(1 − n) +
[
− 1

1 − n
+ x

2 − n
− x2

2(3 − n)
+ x3

6(4 − n)
− · · ·

]

(45)
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we may write the expression for electrophoretic velocity as

UE = 2

3

εeE0ζ

η

⎡
⎣1 + (κa)2

16
− 5

48
(κa)3 − (κa)4

96
+ (κa)5

96
− 11

96

κa∫
∞

e−t

t
dt

⎤
⎦ (46)

For extremely dilute electrolyte solution (i.e., when κa → 0), the electrophoretic
velocity UE approaches to

UE = 2

3

εeE0

η
ζ

which is well known as Huckel result. On the other hand, using the following asymp-
totic expansion of En(x)

En(x) = e−x

x

[
1 − n

x
+ n(n + 1)

x2
+ n(n + 1)(n + 2)

x3
+ · · ·

]
(47)

we may write the expression for electrophoretic velocity as

UE = εeE0

η
ζ

[
1 − 3

κa
+ 25

(κa)2
− 220

(κa)3
+ · · ·

]
(48)

For strong electrolyte solution (i.e., κa → ∞), the electrophoretic velocity UE ap-
proaches to the corresponding Smolchowski’s result as follows

UE = εeE0ζ

η

These are two extreme situation and the electrophoretic velocity lies between the
Huckel’s results (i.e., UE = 2εeE0ζ/3η) and Smolchowski’s results (i.e., UE =
εeE0ζ/η).

3.4 Ohshima’s Model

A modified model on electrophoresis is introduced by Ohshima [5], which differs
from that byHenry [4]. In order to understand the new technique, one need to consider
the motion of mobile ions present into the system along with the flow fluid equations
associated with the EDL-induced as well as externally applied electric field. The
electrokinetic flow equation at low Reynolds number is given as

η∇ × (∇ × v) + ∇P = −ρe∇� (49)

∇.v = 0 (50)
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Here, � is the total potential that includes the equilibrium double layer potential,
potential due to applied electric field and potential due to polarization of particle and
electric double layer (EDL). The governing equation for the total electric potential
is as follows

εe∇2ψ = −ρe (51)

The ionic velocity caused by the liquid flow and the gradient of the electrochemical
equation is given by

vi = v − 1

λi
∇μi (52)

where the electrochemical potential μi is given as

μi = μ∞
i + zieψ + κBT ln ni (53)

Here, μ∞
i is the equilibrium electrochemical potential. The continuity equation for

the mobile ions is given as
∇.(nivi) = 0 (54)

Introducing the osmotic pressure,

Posmotic = κBTΣini(r) (55)

one may write the Stokes’ equation (49) as

η∇ × ∇ × v + ∇{P − Posmotic} + Σini(r)∇μi = 0 (56)

Under theweakelectricfield assumption,wemayassume thedeviationofni,ψ,μi, ρe
from their equilibrium values are quit small. With this we may write

ni = n0i + δni
ψ = ψ0 + δψ
μi = μ0

i + δμi

ρe = ρ0e + δρe

⎫⎪⎪⎬
⎪⎪⎭

(57)

where the quantities with superscript ‘0’ denotes the corresponding equilibrium val-
ues and are follows from the given relations as

n0i = n∞
i exp

(
− ziψ0e

κBT

)
(58)

εe∇2ψ0 = −ρ0e (59)

ρ0e = Σizien
0
i (60)



An Overview on Analytic Expressions for Electrophoretic … 17

∇μ0
i = 0 (61)

In addition the perturbs terms, due to the presence of applied voltage drop, may be
written as

δμi = zieδψ + κBT
δμi

n0i (r)
(62)

δρe = Σizieδni (63)

∇2δψ = − 1

εe
Σizieδni (64)

Subsisting the first and third relations of (57) into the (56) and neglecting the products
of small quantities, one can obtain the linearized equation for fluid flow equation as

η∇ × ∇ × v + ∇{P − kBTΣn0i (r) − kBTΣδni} + Σin
0
i (r)∇δμi = 0 (65)

To eliminate the second term involving the pressure field, we take curl operator on
both sides of Eq. (65) and it leads the simplified form of the fluid flow equation as

η∇ × ∇ × ∇ × v = Σi∇δμi × ∇n0i (66)

In a similar manner, we can obtain the linearized form the conservation equation for
ionic species (54), as

∇.

(
n0i v − 1

λi
n0i ∇δμi

)
= 0 (67)

The particle surface is ion impenetrable and no slip in nature and it bears surface
potential ζ, which lead to the following boundary conditions on the variables appears
in Eqs. (66) and (67) as

∂μi

∂r |r=a= 0
vr = 0, vθ = 0 on r = a
ψ0 |r=a= ζ

⎫⎬
⎭ (68)

The far away of the particle is not affected by the presence of the particle which leads
the far away boundary condition as

ψ = −E0r cos θ as r → ∞
ni → n∞

i as r → ∞
}

(69)

Using the relations (68) and (69), the boundary conditions for the perturb terms can
be written as
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∂δμi

∂r |r=a= 0
δψ = −E0r cos θ as r → ∞
δni → 0 as r → ∞
δμi → −zieE0r cos θ as r → ∞

⎫⎪⎪⎬
⎪⎪⎭

(70)

Introducing φi(r), we may write

δμi = −zieφi(r)E cos θ (71)

From the first equation of relation (68), and last equation of the relation (70), one
may write

dφi(r)
dr |r=a= 0

φi(r) → r as r → ∞
}

(72)

Introducing h(r), the spherical symmetry permits us to write the velocity field as

v =
(

−2

r
h(r)E0 cos θ,

1

r

d

dr
(rh)E0 sin θ, 0

)
(73)

It may be noted that the velocity field (73) automatically satisfies the equation of
continuity for incompressible fluid. Using (73), we may write

∇ × ∇ × ∇ × v = (0, 0,−L(Lh)E sin θ) (74)

where the differential operator L is given as

L = d2

dr2
+ 2

r

d

dr
− 2

r2
(75)

Using Eqs. (58), (71) and (74), we may write the governing equation for h(r) may
be written as

L(Lh(r)) = G(r) (76)

where

G(r) = − e

ηr

dy

dr
Σz2i n

∞
i e−ziyφi (77)

with y(r) = ψ0/φ0 is the scaled EDL potential, scaled by φ0 = kBT/e. It may be
noted that Eq. (77) involves φi. Using the equation of continuity for incompressible
fluid, we may write

∇.

(
u − 1

λi
∇δμi

)
= − 1

λi
∇2δμi (78)

Using the relation (71), the above equation further reduces to
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∇.

(
u − 1

λi
∇δμi

)
= 1

λi
zie(Lφi)E0 cos θ (79)

With the help of Eq. (79), we may write Eq. (67) in terms of φi(r) and h(r) as

Lφi = dy

dr

{
zi
dφi

dr
− 2λi

e

h

r

}
(80)

The electrophoretic problem is now reduced to the boundary value problem for h(r)
and φi(r) constituting Eqs. (76) and (80). To solve the above the set of differen-
tial equations, we need to specify the boundary conditions on the particle surface
(r = a) and along the far-field (r → ∞). The boundary conditions for φi(r) are al-
ready provided in (72). The boundary conditions for h(r) may be obtained from the
corresponding velocity boundary conditions. It may be noted that the rigid surface
is considered to be non-slip in nature and at steady state the particle migrates with
the uniform electrophoretic velocity UE which leads to the boundary conditions for
h(r) on the particle surface and along the far-field as

h = dh
dr |r=a= 0

h
r → U

2E as r → ∞
}

(81)

Solving the boundary value problem (BVP) constituting Eqs. (76) and (80) subject
to the boundary conditions given in Eqs. (72) and (81), the general expression for
electrophoretic velocity per unit field strength (i.e., electrophoretic velocity) is given
as

UE

E0
= lim

r→∞
2h(r)

r
= a2

9

∞∫
a

(
1 − 3r2

a2
+ 2r3

a3

)
G(r)dr (82)

where the reduced form of G(r) is given by

G(r) = −εeκ
2

η

(
1 + a3

2r3

)
dψ0

dr
(83)

where
ψ0 = ζ

a

r
e−κ(r−a) (84)

Substituting Eq. (83) into (82), the expression for electrophoretic velocity may be
written as

UE = −εeE0κ
2a2

9η

∞∫
a

(
1 − 3r2

a2
+ 2r3

a3

) (
1 + a3

2r2

)
dψ0

dr
(85)
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Using the EDL potential given in (84), we may derive the expression for elec-
trophoretic velocity as

UE = εeζE0

η
fH(κa) (86)

with
fH(κa) = 1 − eκa(5E7(κa) − 2E5(κa)) (87)

The function fH(κa) is known as Henry function. Ohshima [5] further introduced a
simple approximate formula for Henrys function fH(κa), given as

fH(κa) ≈ 2

3

[
1 + 1

2(1 + (2.5/κa{1 + 2 exp(−κa)}))3
]

(88)

It may be noted that such a function can approximate the Henry function with relative
error is less than 1%.

4 Electrophoresis of Hydrophobic Rigid Colloid

In this section, we have provided the theories for electrophoresis of rigid colloids
with charged hydrophobic surface. We adopt a similar linear perturbation technique
due toOhshima as discussed earlier. It may be noted that for hydrophobic particle, the
linearized form of the governing equations and boundary conditions are the same as
illustrated in the earlier section, except for the velocity boundary condition along the
particle’s surface (r = a). For a hydrophobic rigid colloid, the radial and cross-radial
velocity components along the particle’s surface are given by

ur = 0 and uθ = βr
d

dr

(uθ

r

)
on r = a (89)

where β is the slip length. In term of electrokinetic variable h(r), introduced earlier
for velocity components, we may write above boundary conditions as follows

h(r) |r=a= 0
dh
dr |r=a= β d2h

dr2 |r=a

}
(90)

Using the boundary condition given in Eq. (90), and after some lengthy algebra, we
may derive expression for electrophoresis velocity as follows

U = εeE0ζ

η
f MH (κa) (91)
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where the modified Henry function for hydrophobic rigid colloid is given as

f MH (κa) = [1 + 2eκaE5(κa) − 5eκaE7(κa)]

+ 2β

3(a + 2β)

[
1 + κa + (κa)2

2
eκaE5(κa)

]
(92)

It may be noted that under thick and thin EDL for which κa � 1 and κa � 1,
respectively, the limiting value of electrophoretic velocity may be obtained as

UE(κa � 1) = 2

3

εeE0ζ

η

(
a + 3β

a + 2β

)
(93)

and

UE(κa � 1) = εeE0ζ

η

{(
a + 3β

a + 2β

)
+

(
βκa

(a + 2β)

)}
(94)

5 Conclusion

In this chapter, we have illustrated the existing simplified models for electrophoresis
of a rigid colloid suspended in an aqueous media.We have provided an outline on the
derivation of the Henry formula for the velocity. The improved theory of Ohshima to
determine the velocity is also illustrated. These models neglect the polarization and
relaxation of the Debye layer, which may become pronounced for a stronger applied
field as well as high surface charge density. The velocity based on Ohshima’s model
agreeswellwith the experimental resultswhen the voltage drop created by the applied
electric field is lower than the thermal potential. However, the nonlinear effects arise
due to the stronger surface conduction, polarization and relaxation of the double
layer become inevitable on electrophoresis for moderate range of applied field and
surface charge density. The velocity of the hydrophobic colloids for the limiting
situations of the Debye layer is derived. The surface hydrophobicity, characterized
by the slip length, produces a large enhancement in the effective ζ-potential and
hence the electrophoretic velocity of a charged colloid.

The linear models or the simplified models under the weak-field consideration are
based on the Boltzmann distribution for mobile ions, which neglects the convection
and diffusion fluxes. The models based on the Nernst–Planck equations for ions
take into account the surface conduction, double layer polarization and relaxation,
however, it leads to a set of nonlinear partial differential equations, which can have
a seldom analytic solution.
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Solute Transport and Mixing Efficiency
on Electrokinetic Flow in a
Heterogeneous Microchannel

Subrata Bera and Somnath Bhattacharyya

Abstract The motivation of the present work is to form vortical flow by designing
potential heterogeneity in a different manner on both walls of a microchannel. A
complete mathematical model of two-dimensional is considered to control the solute
transport andmixing efficiency in the combined flow for electroosmotic and pressure
gradient. The characteristics equation of this model is governed by simultaneously
solving the nonlinear Poisson equation, the Nernst–Planck equations and modified
Navier–Stokes equations. The pressure gradient forms in flow direction due to po-
tential heterogeneity of microchannel wall. The vortex forms on patch, increases
with ionic concentration and diminishes with the favorable pressure gradient case.
The average flow is always increased for pressure-assisted electroosmotic flow. The
vortex formation in electroosmotic flow has very much essential for solute mixing.
The potential heterogeneity in walls develops a vortex which generates the pressure
gradient to promote themixing efficiency. Themixing performance is comparedwith
the plane channel and several other forms of surface heterogeneity such as patches
with symmetric and asymmetric manners and single patch. The mixing performance
increases by introducing potential heterogeneity in channel surface. The potential
heterogeneity in an asymmetric manner gives maximum mixing performance of a
solute. There is no such effective variation on solute mixing between symmetric and
asymmetric potential heterogeneity cases. The mixing index decreases with imposed
pressure gradient for all forms of surface heterogeneity.
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1 Introduction

Themicrofluidic technology has large aspect of chemical and biological applications
such as solute control and mixing, molecular analysis, pumping and separation [1–5]
among many other applications. Studies on transport phenomena of charged species
and neutral solute in microchannel have made a great advancement in colloidal
and biochemical sciences. Due to its enormous importance, several research groups
worldwide are engaged in enlightening the physics behind those physicochemical
phenomenons.When an electrolyte comes in contact with channel wall, a layer forms
near microchannel wall with nonzero charge is called electric double layer (EDL).
The thickness of this layer can be measured by the Debye length. The ζ potential is
the potential drop between the liquid–solid interface and the bulk solution outside
the EDL. Electroosmosis [6] is the movement of liquid through a channel or capillary
under the influence of an external electric field, by interacting with the surplus ion
charged in EDL. The electroosmotic flow direction and rate depend upon electric
field strength, concentration of electrolytes, surface charge the channel or capillary,
viscosity, pressure, temperature, etc. [7].

Different authors investigated the several aspects of EOF in microchannel both
theoretically and experimentally. Conlisk and McFerran [8] investigated the elec-
troosmotic flow in a nanochannel with overlapping EDL by applying electric field.
Experimental studies of EOF were carried out by Sadr et al. [9] in microchannel
where the height and double layer thickness are in same order. Park et al. [10] stud-
ied the difference in the linear Nernst–Planck model and the Poisson–Boltzmann
model for EOF in microchannel. The parametrical studies were carried out numer-
ically by Červenka et al. [11] to achieve the specified nature of micropumps. Chai
and Shi [12] studied the EOF in microchannel with lattice Boltzmann model (LBM).
Bera and Bhattacharyya [13] numerically studied the electrokinetic effects near a
polarizable material situated on lower wall of a microchannel. Xuan et al. [14] stud-
ied theoretically and experimentally about the different aspects of Joule heating on
EOF in microcapillary.

The nature of EOF depends upon the magnitude and sign of zeta-potential in
microchannel wall. This non-uniformity in potential develops variation on electroki-
netic flow and causes the microvortices which are important for mixing performance,
ion separation, etc. The formation of microvortices on electroosmotic flow in mi-
crochannels with heterogeneous surface potential was studied by Ajdari [15]. Yariv
[16] investigated electroosmotic flow in the vicinity of microchannel wall surface
charge transitions. They examined the validity on the thin-Debye-layer (TDL) ap-
proximation and linearized Boltzmann–Poisson (LBP) model for different circum-
stances in the neighborhood of charge discontinuity. Ghosal [17] investigated the
electroosmotic flow at arbitrary cross-section of a microchannel. Erickson and Li
[18] observed the circulation region by introducing potential heterogeneity in chan-
nel wall.

Different aspects of mixed electroosmotic flow and pressure driven flow are in-
vestigated by different authors, considering the linear Boltzmann distribution. The
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analytic solutions for mixed flow have been established by Dutta and Beskok [19].
Dutta [20] theoretically studied the separation method of analytes by introducing a
pressure gradient combined with EOF. Bera and Bhattacharyya [21] investigated the
mixed effects of electroosmotic flow and pressure driven flow and mass transport in
a microchannel using the Poisson–Nernst–Plank model. A mathematical model for
mixed EO-pressure driven flow has been developed by Mondal et al. [22] for high
surface potential and overlapping EDL. Xuan and Li [23] theoretically studied that
the solutewall interactions in nanochannel in mixed EO-pressure driven flow.

Species mixing in microchannel and nanochannel becomes challenging task be-
cause of small value of Reynolds number. Several authors studied different ways to
enhance the mixing performance. The mixing depends on the vortex strength which
is induced by the potential patches and surface heterogeneity of the channel. Jain
and Nandakumar [24] studied the minimum pattern in heterogeneous potential for
improved electrokinetic micromixing performance in three-dimensional microchan-
nel. Alizadeh et al. [25] developed the mixing enhancement method by inserting
temperature-patterned walls in microchannels. Loucaides et al. [26] demonstrated
the array devices for combined pumping and mixing by alternative current. Tian
et al. [27] studied trade-off between solute transport and mixing through heteroge-
neous microchannels. Dutta [28] investigated the sidewalls’ effects for the transport
of neutral samples with low zeta-potential within conduits.

In view of the current status, the present work is a great significance as it pro-
vides a complete numerical solution by considering the full nonlinear mathematical
model. The mathematical model and the numerical tool to simulate the combined
EO-pressure driven flow problems are found to be efficient in analyzing the inherent
mechanism of the ion dynamics. The fluid convection also plays an important role in
the present study. In addition, fluid flow is based on Stokes equation without consid-
ering the inertia effects. We considered the Nernst–Planck equations, the modified
Navier–Stokes equations and Poisson equation. The investigation has been made to
enhance the mixing efficiency by introducing different values of pressure gradient
and heterogeneity ζp potential. The effective Reynolds number (Re) depends upon
height of channel and average flow of mixed EO-pressure driven flow. The external
pressure and heterogeneous ζp-potential have a strong impact on electroosmotic flow
and solutes mixing.

2 Mathematical Model

We have considered a microchannel, filled with an incompressible Newtonian elec-
trolyte. The height of the channel is h and channel width is W where (h � W ).
Electrodes are placed at the upstream and the downstream of the channel, and thus,
the electric field and pressure gradient (dp/dx) are acting along axial direction. The
surface potential heterogeneity is designed by introducing different zeta-potential of
microchannel wall (Fig. 1). The non-dimensional number� = E0h/φ0 indicates the
strength of the electric field E0.
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Fig. 1 Diagram of an
asymmetric potential
heterogeneous microchannel
of length h = 10 µm and
applied electric filed
E0 = 104 V/m

The net-charged density ρ∗
e is expressed as

∇ · (εeE∗) = −εe∇2Φ∗ = ρ∗
e =

∑

i

zien
∗
i (1)

Here, e is the elementary electric charge, Φ∗ is the electric potential, zi are the
valance, n∗

i are ionic concentration, and εe is the permittivity. The parameter κ =
[(2e2n0)/(εekBT )]1/2 is called the electric double layer thickness. We scale potential
Φ∗ by φ0 (= kBT/e) and concentration of the electrolyte n∗

i by bulk value n0, the
coordinates (x, y, z) by (l, h, W ), respectively. Here, T is the absolute temperature,
and kB is the Boltzmann constant. We have taken symmetric electrolyte of valence
zi = ±1 and denoted them, respectively, as cations (g) and anions ( f ). The equation
of induced potential is given in non-dimensional form as

B2 ∂2φ
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The distribution of the ion concentration is expressed by the Nernst–Planck equa-
tion as

∂n∗
i

∂t∗
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i = 0 (3)

here, N∗
i (= −Di∇n∗

i + n∗
i ωi zi FE + n∗

i q
∗) is the net ion flux. Here, Di is the diffu-

sivity, Faraday’s constant is F , andωi is the mobility of ions.We scale velocity q∗ (=
u∗, v∗, w∗) byUHS(= εeE0φ0/µwhich is called the Helmholtz–Smoluchowski ve-
locity) and time t∗ by h/UHS). The Reynolds number, ReHS = UHSh/ν, Schmidt
number, Sc = ν/Di , and Peclet number, Pe = ReHSSc. Here, kinematic viscosity,
ν = μ/ρ; ρ is the density, and μ is the viscosity. We have denoted B = h/ l and
C = h/W . The transport equations for ions can be expressed in dimensionless form
as follow
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The fluid transport equation is generated by the Navier–Stokes equations as

∇ · q∗ = 0 (6)

ρ

[
∂q∗

∂t∗
+ (q∗ · ∇)q∗

]
= −∇ p∗ + μ∇2q∗ + ρ∗

eE
∗ (7)

where the q∗ velocity of component u∗, v∗ and w∗ are, respectively, acting in x , y
and z axis. Here, we scaled pressure p∗ byμUHS/h. The non-dimensional equations
for fluid flow are given as,
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where ∇2 = B2 ∂2

∂x2 + ∂2

∂y2 + C2 ∂2

∂z2 . We considered the channel width (W ) as order
of the length scale, and hence, C = h/W � 1. Thus, we can consider it as 2D flow.
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The boundary condition in channel wall is taken as follows

φ = ζ, Ni · n = 0, u = v = 0, y = 0, 1 (12)

where n is unit normal in outwards direction. The potential along homogeneous
part is ζ , and for heterogenous parts, ζ = ζp. The upstream and downstream con-
ditions are followed by the Bera and Bhattacharyya [21] using the Debye–Huckel
approximation.

φ = [ζ1 sinh(κh(1 − y)) + ζ2 sinh(κhy)]/ sinh(κh) (13)

u = Gy(1 − y) + y(ζ1 − ζ2) − ζ1(1 − φ/ζ1) (14)

g = e−φ and f = eφ (15)

Here, ζ1, ζ2 are, respectively, the zeta-potential values at y = 0 and y = 1. The
pressure gradient is determined by the scaled quantity as G = − 1

μ

dp
dx

h2

2 /UHS.

2.1 Mass Transport Equation

We have also considered the transport of electrokinetic sample with considering no
absorption of sample through channel wall. The solute transport equation is given in
non-dimensional form as

∂c

∂t
+ (q.∇)c = 1

Pes
∇2c (16)

Here, c(x, t) is the non-dimensional sample concentration, and Peclet number is de-
fined as Pes = UHSh/D; diffusion coefficient of the sample is D.We assume nomass
flux condition at the wall of the microchannel and

c = cin on the upstreamat x = −L; ∂2c
∂x2 = 0 on the downstream x = L and ∂c

∂y =
0 on the channel wall y = 0 and 1
where cin is defined as cin = 1 in lower half of upstream (0 ≤ y ≤ 0.5) and cin = 0
in upper half of upstream (0.5 ≤ y ≤ 1).

3 Numerical Schemes

These coupled dimensionless governing equations are solved simultaneously in fi-
nite volume method over the staggered grid scheme. The discretized form of these
equations is calculated by integrating these equations within each control volume.
An upwind scheme named as Quadratic Upwind Interpolation Convective Kinemat-
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(a) (b)

Fig. 2 Comparing the numerical results with Mirbozorgi et al. [31] and considering the grid size
effects in pure electroosmotic flow (G = 0.0) within a microchannel of height h as 10 µm, Debye–
Huckel parameter κh = 32 (λ = 0.3125 µm) and zeta-potential ζ = −1. a Axial velocity u and b
species concentration g, f

ics (QUICK) [29] is used to discretize the convective and electromigration terms.
A first-order implicit method is used in time derivative terms. These equations are it-
eratively solved through the Semi-Implicit Method for Pressure link Equation (SIM-
PLE) [30]. We have assumed the initial approximation for induced potential φ in
every cell.

We have taken the non-uniform grid distribution along vertical direction of the
channel and uniform grids in horizontal direction (Fig. 2), and δt is considered as
0.001. To validate grid size independency, these computational works have been
done in three different meshes as grid 1: 200 × 240, grid 2: 400 × 240 and grid 3:
400 × 500 for pure EOF(G = 0) and compared with Mirbozorgi et al. [31]. We have
taken a non-uniform meshes where δy is varying between 0.005 to 0.01 with δx is
either 0.02 (grid 1) or δx = 0.01 (grid 2). In grid 3, we have taken δx = 0.01 and
0.0025 ≤ δy ≤ 0.005. It concludes that the results (Fig. 2a, b) obtained by grid 2 and
3 agree very well and are close with Mirbozorgi et al. [31]. In this away, we consider
that the grid 2 is for suitable for our computation.

4 Results and Discussions

We considered that the channel height h = 10 µm and electric field E0 = 104 V/m,
and thus, the scaled parameter for strength of electric field � = 4.0. The zeta-
potential (ζp) along the modulated surface is taken to be of different sign to that
ζ -potential on the other portions of channel wall. The diffusion coefficient is con-
sidered to be as equal as D± = 1.3 × 10−10 m2/s.
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We described the streamline patterns for different ionic concentration, i.e.,
κh = 15, 40 and 100, when channel height h = 10µm in pure electroosmotic flow
(i.e., G = 0) in Fig. 3a–c. The zeta-potential at the homogeneous and heterogeneous
parts of the channel surface is considered as −1 and 1, respectively. The flow field
near the patches is two dimensional. However, far away of the heterogeneous patches,
the streamline shows parallel flow. We find that the recirculation zones appear above
the each patch and these zones expandwhen ionic concentration, i.e., κh is increased.
This electrostatic force is very high within electric double layer where the net-charge
density is prominent. The negative body force near patch potential induces the sep-
aration of fluid flow, and hence, recirculation region appears above the patch.

The distribution of cross-sectional averaged pressure is presented in Fig. 4 for
different values of ionic strength (i.e., κh). The effects of non-uniformity in EDL
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Fig. 3 Streamline profile for different concentration for EOF (G = 0) when surface potential
ζ = −1, heterogeneous potential ζp = 1 and electric field E0 = 104 V/m. a For κh = 15; b for
κh = 40 and c for κh = 100
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Fig. 4 Variation of averaged pressure (Pavg) at various values of ionic strength surface potential
ζ = −1, heterogeneous potential ζp = 1 and electric field E0 = 104 V/m at G = −5, 0, 5. Here,
p0 = 0.018 Pa
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Fig. 5 Streamline profile for different Reynolds number (Re) when surface potential ζ = −1,
heterogeneous potential ζp = 1 and electric field E0 = 104 V/m. a For G = −2; b for G = 0 and
c for G = 3

due to the heterogeneity of surface potential lead an important role in vortical flow,
and hence, an induced pressure gradient develops close to this region. Figure4 shows
that the pressure distribution becomes strong as the value of ionic concentration is
increased.

We now consider the effect of Reynolds number by varying pressure gradient G
whileUHS is kept constant. Figure5a–c shows the different patterns of streamline for
different positive and negative pressure gradients cases such as G = −2, 0, 3. We
have presented the streamlines patterns for three different casesmainly pureEOFcase
(G = 0), pressure-assisting EOF (G = 3) and pressure-opposing EOF (G = −2).
The average flow is increased by 60% with comparing between the pure EOF G = 0
and favorable pressure gradient G = 3. These streamline patterns indicate the occur-
rence of separation in fluid flow and cause the vortex formation on the heterogeneous
potential surface for the low external pressure gradientG. The separation of flow and
formation of vortex cannot be expressed by a linear Poisson–Boltzmann model. We
observe that vortex increases when the external pressure gradient G acts in opposite
direction of electroosmotic flow and vortex shrinks for favorable pressure gradient
cases. The electroosmotic forces have a significant impact in the EDL region near the
channel wall. The fluid flow away from the wall is dominated by pressure gradient
and viscosity.

Velocities’ profiles (u, v) for various values of imposed pressureG at x = −2 and
x = 0 are shown in Fig. 6, respectively. There is surface heterogeneity in potential
in the lower surface at −2.5 ≤ x ≤ −1.5 and the upper surface at −0.5 ≤ x ≤ 0.5,
respectively.Here,wehave considered that the value of potential is 1 in heterogeneous
surface and −1 in the rest of the channel surface. First column of Fig. 6 shows
that both the axial and transverse velocities u and v increase with the increase of
pressure gradient G when the potential patch is in the lower surface of the channel
at x = −2. But at x = 0, i.e., where the potential patch is in the upper surface
of microchannel, the axial velocity u increases with the pressure gradient G and
transverse velocity v decreases with the imposed pressure. The imposed pressure
G which is applied along x-direction mainly affects the axial velocity u. There is a
small contribution on transverse velocity v in this region. For all the above cases, the
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Fig. 6 Distribution of velocity profiles (u, v) at different Re when h = 10 µm, λ = 0.6 µm, ζ =
−1, ζp = 1 and E0 = 104 V/m at different G. a First column corresponds to x = −2.0; b second
column corresponds to x = 0.0. Arrows are indicating the increasing direction of G such as G =
−5,−3,−1, 0, 1, 3, 5. Here, UHS = 1.8 × 10−4 m/s

effect of external pressure gradientG is more prominent in the u velocity profile than
v velocity. The general electroosmotic flow characteristic such as plug-like profile
and core neutrality happens for pure EOF G = 0 with same surface potential cases
as pointed in Fig. 2 The electroosmotic forces have great impact in microchannel
wall region where electric double layer is formed. This double layer along with
potential heterogeneity produces an opposite effect in electroosmotic flow compared
to the electric double layer along with homogenous part of microchannel. This non-
uniformity in electric double layer is the main cause to develop the vortical flow on
potential heterogeneity region. We presented the both positive and negative values
of external pressure gradient G in Fig. 6.

4.1 Solute Mixing

We regulated the solute mixing by introducing non-homogeneity in surface potential
and imposed pressure gradient. We have considered C = 1 at lower half and C = 0
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Re=0.15× 10−2 Re=0.24× 10−2
(a) (b)

Fig. 7 Distribution of solute concentration within the channel at different times, i.e., t∗ = 0.5, 5.5,
55.6, 556.5 s, when h = 10 µm, λ = 0.6 µm (κh = 15), ζ = −2, ζp = 2 and E0 = 104V/m. a
EOF with G = 0 and b mixed EOF with G = 3. Here, Pes = 13.83

at upper half of upstream of channel. The distribution of solute near the close vicinity
of the potential heterogeneity portion is illustrated in Fig. 7a, b for pure EOF and
combined favorable pressure gradient (G = 3) cases, respectively, for different times.
The average flow rate increases for favorable pressure-assisted flow than Pure EOF.
In pure electroosmotic flow, solute transport is governed by the diffusion, but the
effects of advection are prominent for favorable pressure gradient case G = 3.
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To calculate the mixing at certain cross-section, we defined mixing efficiency (η)

by Wang et al. [32] as follow

η =
(
1.0 −

∫ |c − c∞|dy∫ |c − c0|dy
)

× 100% (17)

where c is the concentration distribution, c∞ is the solute concentration at fully
mixing stage at downstream which is 0.5 and c0 is solute concentration at upstream
for unmixed solute, i.e., 0 or 1.

Here, we have compared themixing efficiency with different forms of surface het-
erogeneity including the plane channel with homogeneous surface potential.We con-
sidered some forms of patch such as single patch at the lower wall −0.5 ≤ x ≤ 0.5,
patches with symmetric and asymmetric at lower and upper wall in a unit distance
(starting from −2.5 ≤ x ≤ 1.5). A perfect solute mixing can be achieved when
C = 0.5. Fig. 8a shows the distribution of solute concentration at the outlet region.
These results indicate that the solute concentration become flat in channel outlet and
close to 0.5 for symmetric and asymmetric patch cases, and hence, the efficiency
of solute mixing increases. These circulation zones which appear above the modu-
lated surface increases solute mixing efficiency. The vortices form on the top of the
heterogeneous surface and promote the unmixed solute in inlet to shift with mixed
fluid in outlet of the channel. The variation of mixing index is shown in Fig. 8b for
different forms of surface heterogeneity configurations including the plane homo-
geneous channel. We demonstrated results for asymmetric heterogeneous potential,
symmetric heterogeneous potential and single heterogeneous potential with the con-
stant potential of the rest of channel wall. Our results show that the asymmetric
patches with potential heterogeneity configuration produce 12% mixing enhance-
ment with respect to the plane channel. It shows from Fig. 8b that there is no much
significant difference for symmetric and asymmetric patch potential cases. The mix-
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Fig. 8 Profile for a non-dimensional solute concentration at outlet (x = 3) and bmixing efficiency
(η) along the channel length for EOF G = 0 for different position of the patch when h = 10 µm,
λ = 0.1 µm, ζp = 2, ζ = −2 and E0 = 104V/m
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Fig. 9 Variation of mixing
efficiency (η) with imposed
pressure gradient (G), when
h = 10 µm, λ = 0.1 µm,
ζp = 2, ζ = −2 and
E0 = 104 V/m
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ing efficiency is increased for single potential patch case than plane homogeneous
channel, and it is maximum for asymmetric patch cases.

Figure9 presents the pressure gradient effects on the mixing efficiency (η) for var-
ious models for potential heterogeneity. The increase of pressure gradient decreases
the mixing efficiency for all the above flow configurations. The advection effects
increase with Peclet number which leads the reduction of mixing efficacy for all the
above cases.

5 Conclusions

The current article presents a numerical study of mixed EO-pressure driven flow and
solute mixing in different forms of surface heterogeneity in a rectangular microchan-
nel. A novel model is presentedwhich patterns of surface potential heterogeneous are
preferable in order to increase mixing efficacy. Since EOF depends upon the amount
and the polarity of surface potential of thewall, a vortex is generated near the adjacent
of patch potential. The recirculating vortex forms above the heterogeneous surface,
and the average EOF velocity increases with ionic concentration. The nonlinear char-
acteristic is prominent for combined flow on heterogeneity potential region for lower
values of external pressure gradient. For large pressure gradient, mixed flow takes the
form as Poiseuille flow, but there exists a transverse velocity. The vortex, appeared
in heterogeneous region, diminishes for favorable pressure gradient and increases
for adverse pressure gradient. The mixed EO-pressure driven flow above the patch
indicates nonlinear characteristics for the lower value of external pressure gradient
where the electric body force is comparable with this external pressure gradient.
Inertial effects on heterogeneous region are not negligible for small values of ex-
ternal pressure gradient. The variation of body force factor is faster in lower value
of external pressure gradient. The microvortex formation has very important role in
producing solute dispersion and hence promotes mixing. The mixing performance
is increased with the potential heterogeneity in the channel wall, and it is maximum
for asymmetric surface potential patch cases.
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Effect of Temperature-Dependent
Electrostatic Parameters
on Electroosmotic Flow
with Hydrophobic Patches

Sirsendu Sekhar Barman and Somnath Bhattacharyya

Abstract Microfluidics has broad utilizations in the field of medical science. The
architecture of microfluidic devices desires an improved compassionate of the action
of flow and heat transfer attributes in micro- or nano-channel. Electroosmosis is one
of the main electrokinetic effects. For the hydrophobic surfaces, a slip boundary
condition is established. The present study investigates the effect of temperature-
dependent electrostatic parameters on electroosmotic flowwith hydrophobic patches.
The present study comprises the coupled Poisson–Boltzmann equation, the modified
Navier–Stokes equations, the modified Nernst–Planck equation, and the modified
energy equation. Governing equations with proper boundary conditions are solved
numerically through control volume approach over a staggered grid arrangement.
The results are expressed in terms of velocity profiles and surface temperature. Also,
we have considered average entropy generation, Savg; average Bejan number, Beavg.

Keywords Debye length · Slip coefficient · Joule number · Average entropy ·
Average Bejan number

1 Introduction

For the last fewyears, lab-on-a-chip (orBiochip) technologyhas a rapid development.
Electroosmosis is being broadly exploited as the propulsive forces to control liquid
flows in microfluidic devices used for chemical diagnosis and medical diagnosis
[1–4]. Electrosmosis is the procedure of moving of an ionized liquid relative to an
immobile charged surface under the response of an applied electric field. The rate
of flow and direction of electroosmotic flow (EOF) are conducted by many aspects,
such as the electric field strength, electrolyte concentration, surface charge density
on the surface of the channel or capillary, temperature, pressure, and viscosity. For a
negatively charged inner part of the channel wall, the positive charge forms beside to
the surface, and thus a diffuse layer of dense charge forms. This layer is termed as an
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electric double layer (EDL). A wide variety of literature are available regarding EOF
in microcapillaries of various geometric shapes such as rectangular microchannel
[5], T-shaped structure, and Y-shaped structure [6], cylindrical capillary [7], annulus
[8], elliptical pore [9], slit parallel plate [10].

In hydrophilic surfaces, there is no difference between fluid velocity and the wall
velocity, and this is shaped by a no-slip boundary condition. On the other hand, for
hydrophobic surfaces, the fluid velocity is not the same as wall velocity and it varies
with velocity gradient (Navier 1823)

The Navier slip equation defines a slip coefficient β as

u = β
∂u

∂y
(1)

where y is the normal coordinate and u(y) is the velocity of the fluid tangen-
tial to the wall. h is the channel height. Recently, many researchers have shown
their immense interest toward hydrophobic surfaces. Choi et al. [11] experimentally
observed microflows by considering slip and no-slip boundary conditions. Choi et al.
[12] calculated effective slip in superhydrophobic microchannel. Devakar et al. [13]
obtained analytical derivations of couple stress fluid in hydrophobic surfaces. De
et al. [14] studied electroosmotic flow with superhydrophobic boundary in a long
channel.

Our main focus is to study the effect of temperature-dependent electrostatic
parameters on EOF on a long slit nanochannel with hydrophobic patches. The
characteristics of the electrokinetic flows are derived by numerically solving the
coupling Poisson–Boltzmann equation, modified Navier–Stokes equation, modified
Nernst–Planck equation, and modified energy equation simultaneously.

2 Physical Model

We have considered a slit nanochannel of height h, filled with an incompressible
conductive Newtonian (e.g., NaCl with water) electrolyte (Fig. 1). The length of the
channel is taken L = 5 h. The channel walls consist of hydrophobic patches. We
also consider a shift δ between the upper and lower walls as depicted in (Fig. 1). The
walls of the channel are non-conductive and a constant heat flux is imposed along

Fig. 1 Schematic diagram
of the model geometry in the
Cartesian coordinate system
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the wall of the channel. The electric field is applied externally along the axis of the
channel (Fig. 1).

3 Mathematical Formulation

We have considered X-axis along the length of the channel. The governing equations
characterizing themotion of the fluid in the liquidmedium are considered to be based
on Navier–Stokes equations. The ion transport in liquid is commanded through the
Nernst–Planck equation. The electric potential of the applied electric field is governed
by the Laplace equation and induced electric potential is conducted by the Poisson
equation. The energy equation can be asserted as

ρcp

(
∂T

∂t
+ (q.∇)T

)
− ∇.(k(T )∇T ) − G = 0 (2)

where q= (u; v) is the velocity field of the fluidwith (u; v) are the velocity component
in theX,Y directions, respectively. Here,ρ is the density of the liquid.E is determined
by −∇ϕ, where ϕ is the total electric potential.

cp is the specific heat capacity and k(T ) is the temperature-dependent thermal
conductivity. G is the Joule heating term which is given as

G = (uρe + Eλ(T ))2

λ(T )

ρe is the charge density and furthermore the contribution to the Joule heating
due to the convection electric current (i.e., uρe) is negligible. Therefore, G can be
approximated as

G = (E.E)λ(T )

The temperature-dependent parameter dynamic viscosity (μ(T )), electrical con-
ductivity (λ(T )), permittivity (ε(T )), diffusivity (Di (T )), and thermal conductivity
(k(T )) are expressed as follows [15–18]:

μ(T ) = 2.761e(1713/T ) × 10−6kg/(m s)

λ(T ) = 126.4[1 + 0.025(T − Tref)] × 10−4m2s/mol

ε(T ) = 305.7e(−T/219)C/V m

Di (T ) = Di0 + 0.0309Di0(T − Tref)m
2s,

Di0 is the diffusion coefficient of corresponding ions at fluid temperature (i.e.,
298 K)
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k(T ) = 0.61 + 0.0012(T − Tref)W/(m K )

We have taken slip boundary condition and temperature jump condition in the
hydrophobic surfaces. For hydrophilic surfaces, we have taken no-slip boundary
condition and constant heat flux. And also constant ζ -potential is taken in the
homogeneous surface of the wall.

4 Numerical Methods

The equations governing the fluid flow, coupled with the equations for ion transport,
temperature, and the Poisson equations for electric field, along with the prescribed
boundary conditions are solved numerically in a coupled manner through a control
volume approach over a staggered grid arrangement. The pressure link between the
continuity andmomentum equations is accomplished by transforming the discretized
continuity equation into a Poisson equation for pressure correction. This procedure
is similar to the SIMPLE algorithm, which is based on a cyclic guess-and-correct
operation to solve the governing equations.

5 Results and Discussion

In the present analysis, we have considered the height of the channel h = 100 nm.
The thermo–physical properties at room temperature, used in this study, have been

given in Table 1.
We have taken ζ surface potential along the homogeneous channel walls and the

imposed external electric field is E0 = 104 V/m.

Table 1 Thermophysical
properties

Parameter Value

Density (kg/m3) 1000

Specific heat capacity (J/kg K) 4180

Reference viscosity (kg/(m s)) 0.001

Reference permittivity (C/V m) 695.39 × 10−12

Reference diffusivity (m2s) 2.0 × 10−9

Reference thermal conductivity (W/m K) 0.613

Reference electrical conductivity (m2s/mol) 10−2
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Fig. 2 aNumerically (lines) and analytically [19] (symbols) computed velocity profiles in a channel
with planar, homogeneously chargedwalls for Re= 0.89× 10−5; Pe= 0.44× 10−2; ζ = −0.1. The
different curves correspond to κh = 1; 2; 5; 10; 30; 50. b Comparison of surface temperature along
the channel with the analytic results (symbols) presented by Matin and Ohshima [20]. Different
curves correspond to G = 0.1; 0.5; 1.0

5.1 Comparison with Existing Results

In order to establish our numerical scheme, we have treated the case of EOF in
a nanochannel with a hydrophilic surface of a given ζ -potential. We compared our
result with the corresponding analytical solution ofMasliyah and Bhattacharjee [19].
In Fig. 2a, the numerical and analytical results for the velocity profile are shown
for different values of the dimensionless Debye–Huckel parameter κh, which is
reciprocal to the electric double layer thickness. We have obtained a good agreement
of our computed solutions with the corresponding analytical solutions [19].

In Fig. 2b, the surface temperature for three different Joule heating terms, G =
0.1; 0.5; 1.0 for κh = 1.0 across the channel has been validated with the result
of the analytical expressions given by Matin and Ohshima [20]. They have taken a
polyelectrolyte layer on the channelwall. In order to comparewith our result, we have
neglected the term consisting of the effect of polyelectrolyte layer. The numerical
solutions are in good agreement with the analytical estimation ofMatin and Ohshima
[20].

5.2 Comparison with Slip Model

In Fig. 3, we have compared the velocity and temperature profiles with the results
given by Nayak et al. [21]. They have considered a hydrophobic channel and a
power-law fluid. Also, they have considered the height of the channel as 2 h and it is
symmetric with respect to the centerline of the channel. We have recognized the case
for Newtonian fluid. The velocity profiles with different κh have been demonstrated
in Fig. 3a, for both the numerical results and the analytical estimation given byNayak
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Fig. 3 a Comparison of u-velocity along a hydrophobic channel with analytic results presented by
Nayak et al. [21] for different κh = (3; 10; 20) with fixed β = 0.001. b Comparison of θ along a
hydrophobic channel with analytical results presented by Nayak et al. [21] for different temperature
jump factors, ST with fixed β, and Joule heating term

et al. [21]. In their estimation, they have examined fully developed flowwith Debye–
Huckel linearization technique and also they have contemplated with negligible ζ—
potential and slip parameter. For κh = 10.0 and 20.0, our numerical results match
with the results given by Nayak et al. [21]. But for thick Debye layer, our result
deviates from the solution due to the limitation of Debye–Huckel approximation.

In Fig. 3b, we have plotted surface temperature for different temperature jump
factors with a fixed Joule heating parameter. We have considered three temperature
jump factors as ST = 0.1, 0.3 and 0.5. There is a significant deviation between the
results [21] and our results. They have taken the linearized model by considering the
linear equations for temperature.

5.3 Flow and Temperature Field

In our analysis, the electrostatic parameters are temperature dependent. The velocity
distributions are mainly provoked by the change of surface temperature due to the
temperature dependency of electrostatic parameters and the EOF field is strongly
coupled with the temperature field. The influence of temperature on the EOF veloc-
ity is attributed to the dependence of solution viscosity on temperature. Therefore,
increment of solution temperature causes a decrease in the solution viscosity and
dielectric constant and hence increases the dimensionless EOF velocity than the ref-
erence Smoluchowski velocity. In our analysis, we have varied slip coefficient (β)
from 0 to 1.

The influence of slip coefficient is studied in Fig. 4. Different values of β = 0.01;
0.1; 0.5 and 1.0 are considered. De et al. [14] have obtained that the average velocity
is maximized when a shift δ = L/2 between the upper and lower surfaces occurs, i.e.,
a solid-wall segment of one surface is facing a gas–liquid interface segment of the
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Fig. 4 Variation of velocity profiles along the length of the channel when ζ = −0.1, κh = 1, ST
= 0.5, J = 1 for different (β = 0.01; 0.1; 0.5; 1.0) a for parameters temperature independent;
b for parameters temperature dependent. c variation of surface temperature along the length of the
channel when ζ = −0.1, κh = 1, ST = 0.5, J = 1 for different (β = 0.1; 0.5; 1.0)

opposite surface. So we have considered δ = L/2. Also previously, many researchers
have obtained the hydrophobic problems analytically by considering thin Debye-
layer analysis. But here, we have analyzed the thick Debye-layer consideration.
In Fig. 4a, b we have plotted the velocity profiles along the length of the channel
for different slip coefficients, (β = 0.01; 0.1; 0.5; 1.0) for both the cases when
electrostatic parameters are temperature independent and dependent. As usual, the
temperature-dependent velocity is greater than the temperature independent velocity
and also the velocity increases with the increase of β.

The normalized surface wall temperature, θS, distribution along the channel is
plotted in Fig. 4c for different slip coefficients. For positive values of Joule number,
J, the surface temperature will increase due to both heat generation in the entire
volume and heat addition through the top and bottom walls. In Fig. 4c, we have
plotted θS along the channel at J = 1.0. Here, different curves correspond to β =
0.1; 0.5; 1. In both cases, the surface temperature, θS, increases along the channel.
This is due to the hydrophobic nature of the wall.
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5.4 Average Entropy Generation

Many researchers have gone through the calculation of entropy generation. Zhao
et al. [22] estimated entropy generation of electrokinetic flows in open- and closed-
end microchannels. Matin [23] obtained entropy generation in mixed electrokinetic
and pressure-driven flow. For our present problem, the entropy generation [22] rate
due to heat conduction is determined as:

S′′′
gen,c = k(T )

T 2
(∇T )2 (3)

where k(T ) is the thermal conductivity of the liquid, and T is the local temperature.
The local volumetric entropy generation rate due to Joule heating is described as:

S′′′
gen, j = G

T
(4)

where G = (E.E). λ(T ) is the joule heating. The total entropy generation can be
written as:

S′′′
gen = S′′′

gen,c + S′′′
gen, j (5)

The average entropy generation is obtained by integrating the total entropy
generation into the domain.

From Fig. 5, it has been deduced that with the increase of Joule heating, the
average entropy generation increases. The average entropy generation rate always
increases with the increase of J. But in the hydrophobic surface, the heat transfer rate
increases more. So, for an arbitrary fixed J, the average entropy generation decreases

Fig. 5 Variation of average entropy a with β for ζ = −0.1, κh = 1, ST = 0.5 for different Joule
numbers, (J = 0.3; 0.5; 0.8; 1.0); b with Joule number, J for ζ = −0.1, κh = 1, ST = 0.5 for
different slip coefficients, (β = 0.0; 0.1; 0.5; 0.8; 1.0). The red-dashed lines correspond to (β =
0.1; 0.3; 0.5; 0.8). The blue solid line corresponds to (β = 0.0)
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with the increase of β. The surface temperature, θS, and the fluid temperature, θ ,
increase with the increase of β. So by using a hydrophobic surface, we can reduce
the average entropy generation rate.

5.5 Average Bejan Number

The relative dominance of entropy generation due to heat transfer and Joule heating

is determined by the Bejan number Be, which is defined by Be = S′′′
gen,c

S′′′
gen

. The average

Bejan number Beavg is obtained by integrating Be in the whole domain. The value of
the average Bejan number varies from 0 to 1. At any location of the domain, if Beavg
> 0.5, then the heat transfer irreversibility dominates the Joule heating irreversibility
and if Beavg < 0.5, it implies that the Joule heating irreversibility dominates the
process. If Beavg = 0.5, then both the heat transfer irreversibility and Joule heating
irreversibility have equal contributions to the entropy generation.

Now, as J has increased Beavg decreases (Fig. 6). For J = 1.0, Beavg is always less
than 0.5 for varyingβ, 0 to 1. So for J = 1.0 J, heating irreversibility always dominates
the heat transfer irreversibility. But as β increases, the dominance of Joule heating
reduces at J = 1.0. Now for other Source terms (J) as β increases, local entropy
generation increases and Be is the ratio of Beavg, also increases. So Beavg increases
with the increase of β. For 0.1 < J < 0.5, always heat transfer irreversibility dominates
the Joule heating irreversibility.

Fig. 6 Variation of average Bejan number Beavg a with β for ζ = −0.1, κh = 1, ST = 0.5 for
different Joule numbers, (J = 0.3; 0.5; 0.8; 1.0); b with Joule number, J for ζ = −0.1, κh = 1, ST
= 0.5 for different slip coefficients, (β = 0.0; 0.1; 0.5; 1.0)
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6 Conclusions

Effect of temperature-dependent electrostatic parameters on EOF is analyzed and
also we have considered hydrophobic patches to enhance the velocity. In this article,
our aim is to enhance the velocity and also simultaneously to reduce the entropy. The
temperature-dependent velocity is much higher than the temperature-independent
velocity and also it increases with the increase of slip coefficient and slip length.
Finally, our illustration captures an average entropy and it has been observed that
entropy is mainly dependent on joule heating and it reduces with the increase of slip
coefficient. Also average Bejan number increases with the increase of slip coefficient
and simultaneously decreases with the increase of Joule number. For J = 1.0, average
Bejan number is always <0.5 and for 0.1 < J < 0.5, always heat transfer irreversibility
dominates the Joule heating irreversibility.
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Influence of Thermophoresis
and Brownian Motion on MHD Mixed
Convective Chemically Reacting Couple
Stress Fluid Flow in Porous Medium
Between Parallel Plates

Swapna Jawalkar, Odelu Ojjela and Debasish Pradhan

Abstract In the present chapter, we have investigated an unsteady incompressible
laminar electrically conducting heat and mass transfer distributions of couple stress
nanofluid flow through parallel plates with porous medium having the thermal slip
boundary condition. By applying the suitable similarity transformations, the gov-
erning partial differential equations are reduced to nonlinear ordinary differential
equations, which are numerically solved by the shooting method along with Runge–
Kutta fourth-order scheme. The influence of different non-dimensional numbers on
the fluid flow, heat and mass transfer characteristics of the fluid is presented in
graphs and discussed in detail. Numerical values of skin friction, Sherwood number
and Nusselt number with different parameters are also computed and presented in
the form of tables. The Hartmann number, chemical reaction parameter and ther-
mophoresis parameter were having the same result on velocity, concentration and
temperature distributions. The data presented are compared with the recent viscous
case conditions and are concluded to be in better agreement.

Keywords Couple stress fluid · Mixed convection · Thermophoresis · Brownian
motion · MHD · Shooting method
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1 Introduction

Nowadays,many researchers focus on a studyof the characteristics of non-Newtonian
fluid flows passing between channels because of wide range of applications in indus-
try such as glass fibre production, movement of lubrication, heavy oil recovery, liq-
uid polymer moulding, food preservation, aerodynamic heating, petroleum industry,
transpiration cooling, MHD pumps, artificial dialysis and cosmetic industry. Sochi
[1] has studied the flow of non-Newtonian fluid in a porous medium and notice
that the non-Newtonian fluid was highly complex and they required mathematical
modelling for a proper description.Wu et al. [2] developed the one-dimensional non-
Newtonian fluid flow through porous medium and described an exact solution for the
displacement mechanism. Recently, Huang et al. [3] derived a single-dimensional
flow analytical solution based on the Barree–Conway approach that explains the non-
Darcy displacement in porous media for a non-Newtonian model. Fayed et al. [4]
investigated an incompressible laminar flow using the Carreau model to generalize
Newtonian fluid flow in a single pore. Narvaez et al. [5] worked on the porous parallel
walls having continuous injected or ejected the conducting fluid which comes out on
both sides along the channel. Belhouideg [6] developed the laminar two-dimensional
flowmodel through a porous tube combinedwithDarcy’s law and numerically solved
using the finite element method. Sandeep [7] found out for constant wall permeabil-
ity, and an exact solution is presented for pressure drop in fluid flow in a cylindrical
tube and rectangular slit with porous boundaries.

The couple stress fluid described as a special case of non-Newtonian fluids. The
concept of couple stresses in fluids developed by Stokes [8]which allows the classical
theory the easiest generalization by permitting the existence in the fluid medium of
body pairs and couple stresses. The important characteristic of the couple stress fluid
flow is the stress tensor as asymmetric, and the normal theory of Newtonian fluid
cannot predict its precise flow. The examples of these fluids are blood, electrorheo-
logical liquids, lubricants containing small polymer additives and synthetic liquids.
Srinivasacharya et al. [9, 10] noted that the incompressible laminar couple stress fluid
between porous plates and expanding/contractingwalls having continuous injection–
suction on upper and lower walls, respectively, and the reduced nonlinear standard
equations are solved by quasilinearization method. Eldabe et al. [11] have studied an
unsteady laminar that conducts electrically non-Newtonian fluid flow in the presence
of couple stresses and external uniform magnetic field in the Eyring–Powell model
and accumulated a numerical solution for nonlinear PDEs using a finite differenti-
ation technique. Adesanya et al. [12] have investigated the second law of analysis
of the MHD convective flow of couple stress nanofluid through the vertical channel
and obtained an exact solution by the technique of homotopy evaluation. Opanuga
et al. [13] have investigated the entropy generation through porous medium on an
electrically conductive couple stress fluid, and the improved streamflow equations
are solved using Adomian decomposition (ADM) technique.

Magnetohydrodynamics (MHD) is an important interdisciplinary field. MHD is
a mixture of fluid mechanics theory and electromagnetism. The main assumption
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behind MHD is that in a moving conductive fluid, the magnetic fields can induce
currents that in combination produce the forces on fluid and affect the magnetic field
itself. The main applications of MHD are pumps commonly used in astrophysics for
extra kinematic treatments, earthquakes, sensors for accurate measurement in metal-
lurgical and nuclear industry, nuclear reactors, geophysics, MHD power generators,
etc. Davidson [14] has discussed in detail the fundamental concepts and applica-
tions of MHD in his book. Rehaman et al. [15] have been examined the impacts
of thermophoresis, Brownian motion on MHD chemically reacting Eyring–Powell
nanofluid flow to both cylindrical and flat tilting surfaces with dual stratification and
appropriate transformations are regarded to be used to transform flow field equations
into ODEs then solved using shooting technique together with Runge–Kutta tech-
nique. Dastagiri Babu et al. [16] have examined a laminar unsteady convective flow
of non-Newtonian fluid over a semi-infinite moving porous plate with heat absorbing
and hall current and obtained an analytical solution with non-harmonic and two-term
harmonic functions. Ahmed [17] has researched the effect of Soret and continuous
heat source of the laminar incompressible viscousMHDflow between two horizontal
isothermal parallel walls. Mateen [18] explored through a horizontal channel with
Joule dissipation an electrically conducting incompressible properly developed by
the continuous flow of two immiscible fluids.

Thermophoresis is the migration of molecules along with a temperature gradi-
ent while Brownian motion is a random movement of tiny colloidal particles sus-
pended in the fluid resulting in rapid and continuous movement of molecules. Ojjela
et al. [19] have considered the UCM fluid passing through parallel plates with an
inclined magnetic field and the impacts on thermophoresis and Brownian motion.
Anbuchezhian et al. [20] have analysed the thermal stratification, Brownian motion
and thermophoresis of the nanofluids flowwith variable solar-powered stream condi-
tions. Shit et al. [21] have explored the effect ofMHDonmixed convective viscoelas-
tic nanofluid flow on a linear stretching sheet, and the issue is numerically resolved
by the finite difference technique. Falana et al. [22] have discussed the effects of
flow, temperature and concentration through a stretching sheet of Brownian motion
and thermophoresis. Michaelides [23] has researched the impact of thermophoresis
and Brownian motion using Monte Carlo simulations with several common nanoflu-
ids. Mahdi et al. [24] have done an elaborate review on nanofluid flows through
porous media along with other properties like inertia coefficient, effective conduc-
tivity of heat. Das et al. [25] have experimentally researched thermal conductivity
improvements for water-based nanofluids carrying CuO or Al2O3 as nanoparticles
with temperature from 21 to 51 °C.

Mixed convection is an effect of mixture free and forced convection heat transfer.
For improving the cooling effect in engineering, mixed convection flow through
parallel plates is of significant value. This involves the contemporary exchange of
heat, solar cells, atomic reactor, etc. Khan et al. [26] researched an unsteady laminar
incompressible couple stress nanofluid flows through stretching surface with mixed
convection and obtained an analytical solution form by reducing governing equations
with the help of HAMmethod. Ojjela and Naresh Kumar [27] have consideredMHD
chemically reacting radiative flow of couple stress fluidwith Soret andDufour effects
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throughparallel plates.Kaladhar andSrinivasacharya [28] have considered the couple
stress fluid flow between the circular annulus with the Dufour, Soret and chemical
reaction effects and obtained an analytical by HAM. Yirga and Tesfay [29] have
considered the Soret and chemical reaction effects on MHD flow of nanofluid with
Ag-water and Cu-water through porous media over a stretching sheet and solved
numerically with the Keller-Box technique.

In the present paper, we have investigated the impact of Brownian motion and
thermophorosis on an electrically conducting flowof couple stress nanofluid between
porous parallel plates with the thermal slip boundary conditions. The reduced ordi-
nary differential equations are solved using shooting technique along with R-K
fourth-order method. The results are analysed in detail for different flow proper-
ties such as dimensionless axial, radial velocities, concentration and temperature
distributions for different fluid and geometric parameters and shown in tables and
graphs.

2 Formulation of the Problem

Considered an unsteady incompressible laminar non-Newtonian electrically con-
ducting flow under the effect of couple stresses passing through two parallel porous
plates situated at a distance ‘h’ apart.We have selectedX- and Y-axes along and trans-
verse to the plats also assuming B as an uniformmagnetic field applied perpendicular
to the XY-plane as shown in Fig. 1. The upper and lower plates are kept at different
temperatures and concentrations T2eiωt , C2eiωt and T1eiωt , C1eiωt , respectively.

The flow characteristics of couple stress nanofluid in the presence of a magnetic
field are described through the governing equations without body forces and couples
as follows

∇.q̄ = 0 (1)

ρ

[
∂q̄

∂t
+ (q̄.∇)q̄

]
= −∇ p + μ∇2q̄ − η∇4q̄ + J × B − μ

k1
q̄ + Fb (2)

Fig. 1 Fluid geometry for
flow through parallel porous
plates
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(ρc) f

[
∂T

∂t
+ (q̄.∇)T

]
= K∇2T + μ

[
(∇q̄) : (∇q̄)T + (∇q̄) : (∇q̄)

]

+ η
[
(∇ω̄) : (∇ω̄)T

] + η′[(∇ω̄) : (∇ω̄)] + J 2

σ
+ μ

k1
q̄2

+ (ρc)p

[
DB

(
∂T

∂x

∂C

∂x
+ ∂T

∂y

∂C

∂y

)
+ DT

T∞

((
∂T

∂x

)2

+
(

∂T

∂y

)2
)]

(3)

[
∂C

∂t
+ (q̄.∇)C

]
= DB

(
∂2C

∂y2
+ ∂2C

∂x2

)
+ DT

T∞

((
∂T

∂x

)2

+
(

∂T

∂y

)2
)

− K2
(
C − C1e

iwt
)

(4)

Here, Fb is the buoyancy force given as,

Fb = (
ρgBT

(
T − T1e

iwt
) + ρBc(C − C1e

iwt )
)
î (5)

Convert Eqs. (1)–(4) in u and v, we obtain

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= −∇ p + μ∇2u − η∇4u − μ

k1
u

+ σβ0u + ρgBT
(
T − T1e

iwt
) + ρBc(C − C1e

iwt ) (6)

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= −∇ p + μ∇2v − η∇4v − μ

k1
v + σβ0v (7)

(ρc) f

[
∂T

∂t
+ (q.∇)T

]
= K∇2T + μ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+
(

∂v

∂x
+ ∂u

∂y

)]

+ η

[(
∂2u

∂x2
+ ∂2u

∂y2

)2

+
(

∂2v

∂x2
+ ∂2v

∂y2

)2
]

+ J 2

σ
+ μ

k1

(
∂ ū

∂x
+ ∂v̄

∂y

)2

+ (ρc)p

[
DB

(
∂T

∂x

∂C

∂x
+ ∂T

∂y

∂C

∂y

)
+ DT

T∞

((
∂T

∂x

)2

+
(

∂T

∂y

)2
)]

(8)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

(
∂2C

∂y2
+ ∂2C

∂x2

)
+ DT

T∞

((
∂T

∂x

)2

+
(

∂T

∂y

)2
)

− K2
(
C − C1e

iwt
)

(9)

The couple stress tensor M and force stress tensor τ are given by

M = mI + 2η∇(∇ × q̄) + 2η′(∇(∇ × q̄))T (10)
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τ = (−p + λ1∇.q̄)I + μ
[∇q̄ + ∇q̄T

] + 1

2
I x[∇.M + ρC] (11)

The material constants satisfy the inequalities as,

μ ≥ 0.3λ + 2μ ≥ 0, η ≥ 0, η′ ≤ η (12)

The Maxwell and generalized Ohm’s law equations after neglecting the displace-
ment currents are,

∇.B = 0, ∇ × E = ∂B

∂t
, ∇ × B = μ′ J , where J = σ

(
E + q̄ × B

)
(13)

B = B0k̂ + b̄, where b̄ is induced magnetic field and
The following similarity transformations have been considered,

u(x, λ, t) =
(
U0

a
− V1x

h

)
f ′(λ)eiωt

v(x, λ, t) = V1 f (λ)eiωt

T (x, λ, t) =
(
T1 − μV1

ρhc

(
φ1(λ) +

(
U0

V1a
− x

h

)2

φ2(λ)

))
eiωt

C(x, λ, t) =
(
C1 − ṅ A

h ϑ

(
g1(λ) +

(
U0

V1a
− x

h

)2

g2(λ)

))
eiωt (14)

where U0 = average entrance velocity, λ = y
h , a = 1 − v0

v1
, i.e. suction–injection

ratio
The boundary conditions are

u = 0; V = V0e
iωt ; ∇ × q̄ = 0; −K

∂T

∂y
= h1

(
T − T1e

iωt
)
; C = C1e

iωt at y = 0

u = 0; V = V1e
iωt ; ∇ × q̄ = 0; T = T2e

ωt ; C = C2e
iωt at y = h (15)

Substituting (14) in (6)–(9), we obtain

α2 f vi = Re
(
f ′ f ′′ − f f ′′′) cosωt − f iv − D−1 f ′′ − Ha2 f ′′ + 1

ξ

[
GrEc

(
φ′
1 + ξ2φ′

2

)
.

+ShGm
(
g′
1 + ξ2g′

2

)]
(16)

φ′′
1 = [

Re Pr
(
f φ′

1 − α2 f ′′2 − 4 f ′2 − D−1 f 2 − Ha2 f 2
)

−τ
(
ShNb(g′

1φ
′
1

) + NtEc(φ′2
1 ))

]
cosωt (17)

φ′′
2 = [

Re Pr
(
f φ′

2 − f ′′2 − 2 f ′φ2 − α2 f ′′′2 − Ha2 f ′2 − D−1 f ′2)−
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τ
(
ShNb(4g2φ2 + g′

1φ
′
2 + g′

2φ
′
1 + ξ 2g′

2φ
′
2

) + Nt Ec(2φ′
2 + ξ 2φ′2

2 ))
]
cosωt

(18)

g′′
1 = ReSc cosωt

(
f g′

1

) − Nt

Nb
Ec Sh

(
2φ2 + φ′′

1

) − 2g2 + K2g1 (19)

g′′
2 = ScRe cosωt

(−2 f ′g2 + f g′
2

) − Nt

Nb
Ec Sh

(
φ′′
2

) + K2g2 (20)

The boundary conditions in f, φ1, φ2, g1 and g2 are given as

f (0) = 1 − a, f (1) = 1
f ′(0) = 0, f ′(1) = 0
f ′(0) = 0, f ′(1) = 0
φ′
1(0) = −γφ1(0), φ1(1) = 1

Ec
φ′
2(0) = −γφ2(0), φ2(1) = 0

g1(0) = 0, g1(1) = 1
Sh

g2(0) = 0, g2(1) = 0

The non-dimensional skin friction, the heat transfer rate in terms of the Nusselt
number and the mass transfer rate in terms of the number of Sherwood on the plates
are given by,

Sf =
(
2τk1
ρv2

1

)

λ=0.1

=
(

2

Re

(
U0

V1a
− x

h

)
f ′(λ) cosβ

)

λ=0.1

(21)

Nu = − ∂T
∂y

(T2−T1)
h

= −
[
Ec

(
φ′
1(λ) +

(
U0

V1a
− x

h

)2

φ′
2(λ)

)
cosβ

]

λ=0.1

(22)

Sh =
∂C
∂y

(C2−C1)

h

=
[
Sh

(
g′
1(λ) +

(
U0

V1a
− x

h

)2

g′
2(λ)

)
cosβ

]

λ=0.1

(23)

3 Problem Solution

The nonlinear Eqs. (16)–(20) are transformed into first-order differential equations
as

(
f, f ′, f ′′, f ′′′, f iv, f v, φ1, φ

1
1 , φ2, φ

1
2 , g1, g

1
1 , g2, g

1
2

)

= (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14)

dx1
dλ

= x2

dx2
dλ

= x3
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dx3
dλ

= x4

dx4
dλ

= x5

dx5
dλ

= x6

dx6
dλ

= 1

α2

[
Re cosβ(x2x3 − x1x4) + x5 − D−1x3 − Ha2x3 + EcGr

ξ

(
x8 + ξ2x10

) + ShGm

ξ

(
x12 + ξ2x14

)]

dx6
dλ

= x8

dx6
dλ

= cosβ
[
Re Pr

(
x1x7 − 4x22 − α2x23 − Ha2x21 − D−1x21

) − τ
(
ShNb x11x8 + EcNt x28

)]

dx9
dλ

= x10

dx10
dλ

= cosβ

[
Re Pr

(
x1x10 − 2x2x9 − x23 − α2x24 − Ha2x22 − D−1x22

)−
τ
(
ShNb

(
4x9x13 + x10x12 + x14x8 + ξ2x10x14

) + EcNt
(
2x10 + ξ2x210

))
]

dx11
dλ

= x12

dx12
dλ

= ReSc cosβ(x1x12) − Nt

Nb
Ec Sh

(
2x9 + dx8

dλ

)
− 2x13 + K2x11

dx13
dλ

= x14

dx14
dλ

= ReSc cosβ(x1x14 − 2x2x13) − Nt

Nb
Ec Sh

dx10
dλ

+ K2x11

The boundary conditions in terms of x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12,
x13, x14 are

x1(0) = 1 − a, x2(0) = 0, x3(0) = 0, x7(0) = −γφ1(0), x9(0) = −γφ2(0), x11(0) = 0, x13(0) = 0

x1(1) = 1, x2(1) = 0, x3(1) = 0, x7(1) = 1
Ec , x9(0) = 0, x11(0) = 1

Sh , x13(1) = 0

At this point, the solution depends on 7 initial assumptions; this can be achieved
by Newton-Raphson method in such a manner that the boundary conditions are met
at λ = 1. Further, the Runge–Kutta fourth-order method is introduced in order to
present at least 10−6 convergence criteria.

4 Results and Discussions

The axial and radial velocities, the temperature as well as concentration distribu-
tions are plotted having the various values of parameters like ‘a’ (suction–injection
ratio), Pr (Prandtl number), Sc (Schmidt number), K (Chemical reaction parameter),
Nt (thermophoresis parameter), Ha (Hartmann number) and Nb (Brownian motion
parameter). From Fig. 2, it is analysed that the suction–injection ratio increases
with the axial velocity, while the secondary velocity, concentration and temperature
decrease towards the upper plate. From Fig. 3, it is analysed that as the value of
Schmidt number increases, the radial velocity, temperature and concentrations are
increased, whereas the primary velocity profiles increase up to the middle of the
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Fig. 2 Variation of a (suction–injection ratio) for a axial velocity, b radial velocity, c temperature
and d concentration for Re = 2; Pr = 0.5; beta = 10; G = 0.1; Ec = 2; a = 0.2; D = 1.2; Ha = 2;
Sc = 1; Gm = 4; Gr = 4; b = 0.2; Nt = 0.002; Sh = 0.01; T = 0.8; Nb = 3; α = 0.1; K = 0.2

channel then decrease. Schmidt number is a dimensionless number defined as the
ratio of viscosity andmass diffusivity. Hence, the concentration profile increaseswith
Schmidt number. Figure 4 shows that the radial velocity, temperature and concen-
tration also improve with Prandtl numbers. The axial velocity, however, is increased
from λ = 0 to λ = 0.5 then reduced towards λ = 1. Figure 5 shows that as the
chemical reaction parameter increases, the profiles of temperature, secondary veloc-
ity and concentration are decreases towards the upper plate, whereas the primary
velocity profiles are decreases up to the middle of the plates then increases. This
is because of the relation between the chemical reaction rate and mass diffusivity
is inversely proportional to each other. Figure 6 shows the impact of the external
magnetic field imposed across the flow. As the magnetic field intensity parameter Ha
increases, the temperature, radial velocity and concentration decrease towards the
upper plate due to the particle accumulation and retarding action of Lorentz forces.
Also, the axial velocity decreases from λ = 0 to λ = 0.5 then increases further.
Figure 7 depicts that as thermophoresis parameter increases, the profiles of velocity
components, temperature and concentration distributions are following the Hartman
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Fig. 3 Variation of Sc (Schmidt number) for a axial velocity, b radial velocity, c temperature and
d concentration for Re = 2; Pr = 0.5; beta = 10; G = 0.1; Ec = 2; a = 0.2; Ha = 2; D = 1.2; Gm
= 4; Gr = 4; b = 0.2; Nt = 0.002; Sh = 0.01; T = 0.8; Nb = 3; α = 0.1; K = 0.2

number and the chemical reaction parameter. From Fig. 8, it is understood that as
the Brownian motion parameter increases, the profiles of temperature, concentration
distributions and velocity components follow the reversed trend of thermophoresis
parameter. Brownianmotion takes place due to fluid particles randommotion; hence,
it disturbed the laminar flow of the fluid as given in the graph and it increases the fluid
inter-particle collision. That is why when the Brownian motion parameter increases,
the temperature profiles of the fluid raises.

Table 1 indicates the heat transfer rate on the plates λ = 0 and λ = 1. From
this, we noticed that as Ec increases, the Nusselt number also increases at both the
plates. As Sc and Pr increase, the heat transfer rate decreases at λ = 0. Also, as the
temperature slip parameter increases, the Nusselt number also increases at the lower
plate. Table 2 shows a comparison study for f ′(0) for the viscous fluid, and it shows
that the present results have good agreement with published work [27, 30].
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Fig. 4 Variation of Pr (Prandtl number) for a axial velocity, b radial velocity, c temperature and
d concentration for Re = 2.0; beta = 10; G = 0.1; Ec = 2; a = 0.2; Ha = 2; D = 1.2; Sc = 4; Gm
= 4; Gr = 4; b = 0.2; Nt = 0.002; Sh = 0.01; T = 0.8; Nb = 3; α = 0.1; K = 0.2

5 Conclusions

In this paper, we have considered an incompressible laminar unsteady MHD mixed
convective couple stress flow through porous parallel plates with thermophoresis and
Brownian motion. The reduced ODEs are solved using shooting method with R-K
fourth-order scheme, and the results are analysed in relation to various geometric
and fluid parameters for non-dimensional velocities, concentration and temperature
distributions and presented in graphs and tables. We therefore conclude that

• Brownian parameter enhanced the temperature and concentration of the fluid
• The impact of Brownian and thermophoresis parameter is opposite on temperature
and concentration.

• The primary velocity of the fluid increases with increasing the suction–injection
velocity, while the temperature distribution and concentration reduce from lower
to upper plates.
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Fig. 5 Variation of K (chemical reaction parameter) for a axial velocity, b radial velocity, c tem-
perature and d. concentration for Pr = 2.0; Re = 2.0; beta = 10; G = 0.1; Ec = 2; a = 0.2; Ha =
1.5; D = 1.2; Sc = 0.65; Gm = 4; Gr = 4; b = 0.2; Sh = 0.01; T = 0.8; Nb = 2; α = 0.1; Nt =
0.0025

• The Schmidt number, Prandtl number and Brownian motion parameter show a
similar influence on the temperature, concentration and velocity profiles of the
fluid.

• The Hartmann number, chemical reaction parameter and thermophoresis param-
eter were having the same result on velocity, concentration and temperature
distributions.

• The present results are compared with previously published work for Newtonian
fluid and are found to be in good agreement.
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Fig. 6 Variation of Ha (Hartmann parameter) for a axial velocity, b radial velocity, c temperature
and d concentration for Pr = 2.0; Re = 2.0; beta = 10; G = 0.1; Ec = 2; a = 0.2; D = 1.2; Sc =
4; Gm = 4; Gr = 4; b = 0.2; Sh = 0.01; T = 0.8; Nb = 3; α = 0.1; K = 0.8; Nt = 0.002
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Fig. 7 Variation of Nt (thermophoresis parameter) for a axial velocity, b radial velocity, c temper-
ature and d concentration for Pr = 2.0; Re = 2.0; beta = 10; G = 0.1; Ec = 2; a = 0.2; Ha = 1; D
= 1.2; Sc = 2; Gm = 4; Gr = 4; b = 0.2; Nb = 3; Sh = 0.01; T = 0.8; α = 0.1; K = 0.025
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Fig. 8 Variation of Nb (Brownian motion) for a axial velocity, b radial velocity, c temperature and
d concentration for Pr = 2.0; Re = 2.0; beta = 10; G = 0.1; Ec = 2; a = 0.2; Ha = 1; D = 1.2; Sc
= 2; Gm = 4; Gr = 4; b = 0.2; Nt = 0.0033; Sh = 0.01; T = 0.8; α = 0.1; K = 0.025
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Table 1 Numerical values of Nusselt number with respect to various parameters like Re = 2.0;
beta = 10; a = 0.2; Ha = 1; D = 1.2; Gm = 4; Gr = 4; b = 0.2; Nt = 0.0033; Nb = 3; Sh = 0.01;
T = 0.8; α = 0.1; K = 0.025

Ec Sc Pr G Nusselt number (Nu)

λ = 0 λ = 1

2 1 2 0.1 −158.807 −0.5

2 2 2 0.1 −222.74 −0.5

2 3 2 0.1 −263.303 −0.5

2 4 2 0.1 −284.012 −0.5

0.5 2 2 0.1 −417.688 −2

1 2 2 0.1 −335.031 −1

1.5 2 2 0.1 −270.893 −0.67

2 2 2 0.1 −222.74 −0.5

2 2 0.5 0.1 −93.652 −0.5

2 2 1 0.1 −110.034 −0.5

2 2 1.5 0.1 −142.045 −0.5

2 2 2 0.2 −75.2311 −0.5

2 2 2 0.3 −61.7626 −0.5

2 2 2 0.4 −51.2232 −0.5

Table 2 Validation of skin friction results with published paper [27, 30] for Newtonian case

Lower plate

a Re Terril and Shresta Ojjela and Kumar Present

−0.00505 19.2038 −0.01129 −0.01129 −0.01128

−0.01573 11.8647 −0.03803 −0.03803 −0.03790

−0.12621 10.9454 −0.3220 −0.32224 −0.31267

−0.26170 12.1760 −0.679 −0.68433 −0.64285
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Computational Fluid Dynamics Studies
of Effect of Blockage Ratio on Drag

Vishal Kumar, Vivek Kumar Srivastav and Akshoy Ranjan Paul

Abstract There are several real-life problems exist where fluid flows over the
heated solid body. In the present work, drag force and Nusselt number are stud-
ied for centrally fixed heated sphere. Computational fluid dynamics tool is used to
simulate the present problem. The heated sphere is fixed radially at the centre of
the cylinder. Total four cases corresponding to Reynolds numbers 100, 200, 300
and 500 are simulated to analyse the effects of blockage ratio of drag. The simulated
results show that drag reduction is about 5%. The maximum value of drag coefficient
is computed for the blockage ratio 0.8, and it decreases as the Reynolds numbers
increases.

Keywords Computational fluid dynamics · Drag force · Blockage ratio · Nusselt
number

1 Introduction

Fluid flow over solid bodies frequently occurs in practice, and it is responsible for
numerous physical phenomena in which drag force plays an important role. The
force of a flowing fluid exerts on a body in the flow track is drag. It is usually an
adverse effect, like friction that should be reduced as much as possible. The drag
is widely investigating under various conditions. The flow fields and geometries for
most of the external flow problems are too complicated to be solved analytically,
and therefore, either computer simulation or experiment is the optimum options to
know the external flow physics. The scope of such types of design is to underlying
various transport phenomena like food processing, fluidization and combustion. In
this application, a heated sphere is fixed radially at the centre of the cylinder.
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Bharti and Chhabra [1] have numerically studied two-dimensional steady
Poiseuille flow of power-law fluids across a circular cylinder. They have presented
total drag coefficients, surface pressure coefficients and their values at stagnation
points and streamline patterns to provide physical insights into the hydrodynamics
of the confined power-law fluid flow over a cylinder [1]. Krishnan and Kanan [2]
have discussed about effect of blockage ratio on drag and heat transfer from a cen-
trally located sphere in pipe flow. They have found that at higher Re, the drag and
Nusselt number values have not attained steady state particularly at lower blockage
ratios and Re exceeding 300 [2]. Gupta et al. [3] were presented numerical studied
of laminar and steady free convection of power-law fluids from a heated spheroidal
particle. They have correlated the average Nusselt number and drag coefficient in
simple analytical form based on a general composite parameter proposed for power-
law fluids [3]. Golani and Dhiman [4] studied on fluid flow and heat transfer across a
circular cylinder in the unsteady flow regime in range of Reynolds number 50 ≤ Re
≤ 180. They have found that the average Nusselt number increases with increasing
Reynolds number. As the Reynolds number increases, the drag coefficient increases
[4]. Samantaray et al. [5] studied the wall effects for Newtonian fluid flow over a
cone and calculated the drag coefficient which increases with increasing the diameter
ratio. This effect was more significant in low Reynolds numbers in comparison with
higher Reynolds number [5]. The present work is focused on to understand how the
drag coefficient is affected by blockage due to the presence of sphere at the centre
of cylinder.

2 Geometrical Model

A three-D model of sphere inside a cylinder is created using Ansys Workbench. The
diameter of cylinder is fixed to 60mm,while diameter of sphere varies corresponding
to different blockage ratio. The blockage ratio is defined as the ratio of the sphere
diameter to that of cylinder diameter. Total five blockage ratio (BR) was used as
0.2, 0.4, 0.5, 0.6 and 0.8. The length of cylinder is divided into upstream (Lu) and
downstream (Ld) from the centre of sphere. The length of upstream is 10Ds and
downstream is 12Ds (where Ds is diameter of sphere). The geometrical model of the
flow domain is shown in Fig. 1.

3 Grid Generation

The pre-processor Ansys Workbench is used for the grid generation. The computa-
tional fluid domain is divided into three sub-domains, upstream sub-domain, sphere
sub-domain and downstream sub-domain. In the upstream and downstream sub-
domain, 60 divisions of sweep method are used to make all structural quadrilater-
als shape. Patch independent method along with inflation layer of thickness about
0.05 mm is used to make unstructured grid (tetrahedron shape elements) of spherical
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Fig. 1 Isometric view of geometrical model

sub-domain. Total 398,349 unstructured elements are created after grid independency
test. The grid generated model of flow domain is shown in Fig. 2.

4 Boundary Conditions

In the present studies, flow has occurred over the sphere which implies external flow,
and therefore, the following boundary conditions are used.

Inlet velocity Parabolic velocity profile

Pressure outlet 0 Gauge pressure

Fluid Water

Inlet temperature 29 °C

Surface temperature of sphere 32 °C

Density of water 997 kg/m3

Viscosity of water 7.64 × 10−4 kg/m−s

5 Results and Discussion

5.1 CFD Validation

The present result is validated with the result reported byKrishnan andKannan [2]. It
is found that at the blockage ratio 0.5, drag coefficient (Cd) is computed 0.589 against
0.62 computed byKrishnan andKannan. Total five percent deviation is found against
the Cd reported by Krishnan and Kannan. The comparisons of drag coefficient are
summarized in Table 1.
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Fig. 2 Grid generation of flow domain

The total pressure on the surface of sphere was compared with the result shown
by Krishnan and Kannan [2], which is found good agreement with the present result
(Fig. 3).
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Fig. 3 Total pressure contours of the two models

5.2 Velocity Contours

Velocity contours are plotted at different locations of the flow domain. Velocity
contours at the centre of cylinder are shown in Fig. 4. Parabolic velocity profile is
fixed at the inlet of the cylinder however as the flow proceeds towards the sphere, it

Line 1 Line 2 Line 3

Fig. 4 Velocity contour of BR = 0.4 at Re = 300
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Fig. 5 Velocity profile of Line-1, Line-2 and Line-3

bifurcated into two parts (up and down). This is because of the presence of sphere
as the obstruction in the flow path. In this work, the velocity profile was plotted at
Line-1, Line-2 and Line-3 for Reynolds number 300 as shown in Fig. 5.

It was observed that the velocity profile at the Line-1 is very smooth but the
same at Line-2 and Line-3 is not smooth due to existance of sphere in the flow path.
As a result, a large deviation occurs in the velocity profile.

The velocity and pressure contours for blockage ratio 0.6 and 0.8 at Reynolds no.
200 and 300 are plotted. It was seen that an increase in blockage ratio increases the
velocity in the pipe, and therefore, the pressure in the pipe is significantly changed
as shown in Figs. 6 and 7.

6 Conclusions

In the present study, total four cases corresponding to Reynolds numbers 100, 200,
300 and 500 are simulated to analyse the effects of blockage ratio on drag. The
simulated results show that drag reduction is about 5%. Drag coefficient is found
to be suddenly increased as BR increases beyond 0.6 for Re = 100. The maximum
value of Cd is found to be 11.557 at BR = 0.8, and it decreases as the Reynolds
number is increased.
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Fig. 6 Velocity contours for blockage ratio (BR) 0.6 and 0.8 at Re number 200 and 300

Fig. 7 Pressure contours for BR 0.6 and 0.8 at Re No. 200 and 300
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Distribution of Two-Dimensional
Unsteady Sediment Concentration
in an Open Channel Flow

Shiv Mohan, Sudip Debnath, Koeli Ghoshal and Jitendra Kumar

Abstract An unsteady two-dimensional transport equation is considered to investi-
gate the distribution of suspended sediment in an open channel turbulent flow, where
the mechanism of hindered settling is also taken into account. Due to the consid-
eration of concentration-dependent settling velocity on sediment transportation, the
transport equation is a partial differential equation with a highly nonlinear term,
which has been solved numerically by using the alternating direction implicit (ADI)
finite-difference method. It is found that the sediment concentration increases along
the vertical direction due to the inclusion of hindered settling effect.

Keywords Open channel flow · Diffusion equation · Hindered settling
mechanism · Suspended sediment concentration

1 Introduction

In an open channel turbulent flow, the study of sediment transport is a challenging
task due to the irregular behavior of the turbulence. Sediment transport is mainly
classified into two categories: suspended sediment transport and bed-load transport.
The transportation of non-equilibrium suspended sediment is one of the important
problems in the area of sediment transport.

Hjelmfelt and Lenau [1], Liu and Nayamatullah [2], Liu [3] and Jing et. al. [4]
worked on the transportation of non-equilibrium suspended sediments. Hjelmfelt
and Lenau [1] and Liu [3] studied the steady two-dimensional suspended sediment
transport problem, and Liu and Nayamatullah [2] solved the one-dimensional un-
steady non-equilibrium suspended sediment transport problem by GITT technique.
The problems of non-equilibrium sediment transport are generally governed by par-
tial differential equations. It is observed by researchers that in high concentrated
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flows, the settling velocity of the suspended sediment particles decreases in compar-
ison with that in clear fluid. This physical phenomenon is commonly known as the
hindered settling effect. Inclusion of this phenomenon makes the governing equation
nonlinear in nature, and hence, the problem becomes more challenging.

In this model, we consider the unsteady two-dimensional non-equilibrium trans-
port problem considering the hindered settling effect and solve the problem by al-
ternating direction implicit (ADI) finite-difference scheme. The obtained results are
discussed with figures and based on that important conclusions are drawn.

2 Mathematical Modeling

We consider an unsteady two-dimensional transport equation to describe the dis-
tribution of suspended sediment in an open channel (separation width h) turbulent
flow. The flow in the axial (stream-wise) and vertical directions is represented by
a Cartesian coordinate system, say, x and y. We assume that the flow is uniform in
the axial direction and also independent of time; thus, the velocity varies only in the
vertical direction. In the following subsections, the problem has beenmathematically
formulated.

2.1 Governing Equation

The governing equation for the unsteady two-dimensional suspended sediment con-
centration distribution in a wide open channel flow is given as follows:

∂c

∂t
+ u

∂c

∂x
− ∂

∂y

(
ωsc

) = ∂

∂y

(
εs

∂c

∂y

)
, (1)

where c is the volumetric sediment concentration, t denotes time. u is the flowvelocity
in stream-wise direction, εs is the sediment diffusivity in the vertical direction, and
ωs is the settling velocity of the sediment particles which is treated as a function of
concentration c. In high concentrated flow, the magnitude of ωs is less than that of
ω0 and the relationship between them is provided by Richarson and Zaki [5] as

ωs = ω0(1 − c)nH , (2)

where ω0 is the settling velocity of the particles in clear fluid and nH is the exponent
of reduction whose value depends on the particle Reynolds number. In the present
work, taking the average value of nH as 4, the governing equation (1) becomes:

∂c

∂t
+ u

∂c

∂x
− ω0

∂

∂y

[
c(1 − c)4

]
= ∂

∂y

(
εs

∂c

∂y

)
. (3)



Distribution of Two-Dimensional Unsteady Sediment Concentration … 85

2.2 Initial and Boundary Conditions

The boundary conditions at top and bottom surface are considered according to
Hjelmfelt and Leanu [1] as follows

c = 0 at y = h, (4)

and
c = ca at y = a, (5)

respectively, where ca is the reference concentration at the reference level y = a. At
the inlet, we consider that there is uniform sediment concentration, i.e.,

c = 1 at x = 0, (6)

and at initial time
c = 1 at t = 0. (7)

2.3 Dimensionless Form of Governing Equation Together
with Initial and Boundary Conditions

The governing equation (3) and the boundary conditions (4–7) are non-dimensionali-
zed as per the following scales:

C = c

ca
, Y = y

h
, X = x

h
, T = tu∗

h
,

A = a

h
, K(Y ) = εt

βu∗h
, U (Y ) = u

u∗
, V0 = ω0

u∗
,

where u∗ is the shear velocity and β is the ratio of turbulent diffusivity εt to sed-
iment diffusivity εs. Accordingly, the dimensionless form of Eq. (3) and boundary
conditions (4–7) becomes:

∂C

∂T
+U (Y )

∂C

∂X
− V0

∂

∂Y

[
C(1 − caC)4

] = ∂

∂Y

(
K(Y )

∂C

∂Y

)
, (8)

C(T ,X ,Y ) = 0 at Y = 1, (9)

C(T ,X ,Y ) = 1 at Y = A, (10)

C(T ,X = 0,Y ) = 1, (11)
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and
C(T = 0,X ,Y ) = 1, (12)

So, finally, we have a PDE with nonlinear term (1 − caC)4 given by Eq. (8) together
with the boundary conditions (Eqs. 9 and 10) and the initial conditions (Eqs. 11 and
12) which we will solve numerically.

3 Numerical Solution

In the present problem, the concentration distribution of suspended sediment in
an open channel flow is described by the two-dimensional unsteady convection-
diffusion Eq. (8). Due to the complexity in Eq. (8), we have adopted an alternating
direction implicit (ADI) finite-difference scheme [6] to solve Eq. (8) together with
initial and boundary conditions (9)–(12). In ADI method, the finite-difference equa-
tion can be factored into a multistage process to step ahead one-time increment in
such a way that the solution of the nonlinear equations emerging at each time level
is very easy to handle computationally.

The whole width of the channel is divided into (M − 1) equal parts, having length
�X in the axial direction and �Y in the vertical direction. The time increment is
denoted by �T . The lengths in the vertical and axial directions are represented by
the grid point j and k, whereas time is represented by the grid point i. So the general
formulae are: Yj = A + (j − 1)∗�Y , Xk = (k − 1) × �X and Ti = (i − 1) × �T ,
respectively.

Utilizing Douglas–Rachford [7] procedure on the convection diffusion equation
(8), the finite difference equation splits into two implicit equations, as

[
1 − �T

{
∂K

∂Y
+ V0(caC(i, j) − 1)3(5caC(i, j) − 1)

}
SY − K�TSYY

]
C∗(i + 1)

= (1 −U (Y )�TSX )C(i), (13a)

(1 +U (Y )�TSX )C(i + 1) = C∗(i + 1, j) +U (Y )�TSXC(i), (13b)

where SYC∗ = C∗(j+1,k)−C∗(j−1,k)
2�Y , SYYC∗ = C∗(j+1,k)−2C∗(j,k)+C∗(j−1,k)

�Y 2 and SXC =
C(j,k+1)−C(j,k−1)

2�X are the discretized operators.

Clearly, the process needs two steps: In the first step, we solve C∗ from Eq. (13a),
and in the next step, we solve C from Eq. (13b) by using the values of C∗. To find the
solution, we have considered a mesh size: �T = 0.00001, �Y = (1 − A)/(M − 1)
and �X = 1/(M − 1) for the present problem, where M = 500. Different cases
have been considered to investigate the hindered settling effect on the distribution
of sediment concentration. In all the cases, we have assumed fixed value of V0 =
0.2, Y0 = 0.001, and A = 0.05, respectively. The considered spatial and temporal
discretization parameters ensure a precision of 10−6 in the results.
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4 Results and Discussion

4.1 Input Functions

It is clear from Eq. (8) that to assess the solution, known expression for the functions
K(Y ) and U (Y ) are needed. So, in the present problem we consider the following
expressions (Liu [3]):

K(Y ) = κY (1 − Y ), (14)

and

U (Y ) = 1 − Y0
Y0 − ln Y0 − 1

ln
Y

Y0
for Y0 ≤ Y ≤ 1, (15)

where κ is the universal von Karman constant (= 0.41) and Y0 = 0.001.

4.2 Validation of the Solution

In this section, we validate our obtained solution with the existing models. In Fig. 1a,
the concentration profile is the same as the well-known Rouse profile [8], who found
the analytical solution for steady transport equation and Fig. 1b agrees with the work
of Liu [3] for two-dimensional steady non-equilibrium sediment transport. It is clear
from the figure that as one tends toward the surface of the channel from the bottom,
concentration profiles decrease and tend to zero which is usual characteristics of
sediment concentration profile. It happens because at the surface suspended sediment
particles are negligible.
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Fig. 1 Vertical distribution of sediment concentration when ca = 0.02, V0 = 0.2, Y0 = 0.001 and
A = 0.05. a For T → ∞, X → ∞; b for T → ∞, X = 2
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Fig. 2 Concentration contours at time T = 5 (1st row) and T = 10 (2nd row), when V0 = 0.2,
Y0 = 0.001 and A = 0.05. a, c For ca = 0.005; b, d for ca = 0.02

4.3 Contour Plot of Concentration Profiles

Figure2 shows the variation of suspended sediment concentration in the stream-wise
and vertical directions simultaneously. Figures2a, b is plotted at a fixed time T = 5
with different reference concentration and Figs. 2c, d is plotted for the same but
at a fixed time T = 10. From Figs. 2a, b it is clear that the area of concentration
distribution is higher in Fig. 2b than Fig. 2a because of higher value of reference
concentration. A similar kind of behavior can be seen in Fig. 2c, d for large time
T = 10.

4.4 Impact of Hindered Settling Mechanism on
Concentration Profile

The effect of hindered settlingmechanism is shown in Fig. 3 where the vertical distri-
bution of sediment concentration is plotted at different time. In Fig. 3a, b, reference
concentration is taken as ca = 0.005 and ca = 0.02, respectively, and it can be seen
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Fig. 3 Vertical distribution of sediment concentration under the effect of settling velocity of par-
ticles, when V0 = 0.2, Y0 = 0.001, A = 0.05 and X = 3. a For ca = 0.005, nH = 0 (solid line),
nH = 4 (dashed line); b For ca = 0.02, nH = 0 (solid line), nH = 4 (dashed line)

from the figures that the effect is more in Fig. 3b comparison with Fig. 3a. It happens
because the hindered settling effect is more effective in high concentrated flow due
to the presence of surrounding particles.

5 Conclusions

Distribution of suspended sediment is studied in the present work for an unsteady
two-dimensional turbulent flow through an open channel. The presence of sediment
affect the settling velocity of a particle which is commonly known as the hindered
settling effect, and accordingly, the concentration profile is also changed. This phe-
nomenon is taken into account in the governing partial differential equation, and ADI
method is adopted to solve the equation numerically. At large time and far from the
downstream, the concentration shows similarity with Rouse [8] profile of concentra-
tion. Contour plots of concentration at different times are plotted to see the variation
of concentration along vertical and axial direction. Also that, at a fixed time and axial
direction, concentration is plotted with and without hindered settling effect and it
is found that higher the concentration, more is the change in concentration due to
inclusion of hindered settling effect.
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Solution to One-Dimensional Diffusion
Equation with Concentration-Dependent
Mixing Length

Punit Jain and Koeli Ghoshal

Abstract The present study focuses on vertical distribution of concentration in a
turbulent flow where the swapping of fluid parcels and suspended sediment parcels
takes place over a vertical distance lm, the mixing length and generates a net verti-
cal flux of momentum and sediment. The Fickian diffusivity of sediment has been
considered not to be equal to the Fickian diffusivity of momentum, i.e., the eddy
viscosity. Also, the study assumes that in the stream-wise direction the velocity of
fluid and solid particles is identical, and in the transverse direction, they differ by
the particle settling velocity ws. Apart from these, the study considers the reduction
of mixing length due to the presence of suspended solid particles which damp the
characteristic oscillation of turbulent flow. The model is solved numerically and is
validated by comparing the solution with relevant set of laboratory experimental
data.

Keywords Turbulent flow · Mixing length · Sediment suspension · Hindered
settling effect · Concentration distribution

1 Introduction

Investigation of concentration distribution along a vertical in a turbulent flowcarrying
sediment is a topic of research since long. Several models have been developed by
researchers to address the vertical distribution of sediment in an open channel flow.
The present study is an addition to those studies where the concentration is viewed
from the mixing length aspect.

The mixing length theory of turbulent flow was originally developed by Prandtl
[1] which proposes that the fluctuating velocity components in the longitudinal and
vertical directions are each proportional to l0 dudz where l0 is the mixing length in clear
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water, and u is the longitudinal velocity of fluid, and z is the vertical distance from
channel bed. Bialik [2, 3] explained the mixing length as that small distance which
is lump of fluid particles may randomly travel before mixing with the surrounding
fluid. Prandtl used a very simple form of mixing length for clear water as l0 = κz
which was used to obtain the universal log-law velocity distribution. Later on, he
gave a parabolic form of mixing length as l0 = κz

√
1 − z

h for clear water flow. Van
Driest [4] suggested that near the wall the mixing must be damped with a damping
factor (1 − e

−z
A∗ ), A∗ being the damping function. Nishioka and Iida [5] proposed

a differential equation describing the mixing length. Galbraith et al. [6] showed
that when substantial variation of shear stress occurs, the mixing length must be a
function of wall shear stress. Umeyama and Gerritsen [7] proposed a mixing length
for sediment-laden flow as l0 = κz

(
1 − z

h

)α
where α is a function of sediment

concentration; but they were unable to justify why the form of α should be like that.
Kovacs [8] formulated the mixing length including a damping factor D(C) where
D = 1 − C1/3. He gave a proper justification for such type of damping factor.
The explanations are like this—the suspended particles in a fluid–sediment mixture
occupy a volume given by their concentration C. If a little cube is imagined to be
occupied by sediments, then the cube has a length proportional to C1/3 and the
mixing length lm will be reduced by the length taken by the particles in suspension.
Consequently, the damping function takes the above-mentioned form. The present
study takes into account themixing length formulated byKovacs [8] as it is a function
of concentration which can be used to study sediment-laden flow and also as the form
of mixing length was proposed with a proper physical justification.

The governing equations to study vertical concentration distribution were given
by Rouse [9] and Hunt [10] and since then these equations were widely used by
the researchers in the study of sediment transport. Nielsen and Teakle [11] looked
at the same problem through mixing length concept where they developed the gov-
erning equation for concentration by considering the turbulent mixing in terms of
interchanging fluid–sediment mix parcels over a vertical distance, which is the mix-
ing length in a sediment carrying fluid. They expressed the sediment flux density in
terms of concentration and mixing length and developed the governing equation of
time-averaged concentration of suspended sediment by balancing the upwardmixing
flux with downward settling flux. But for solving the governing equation, they did
not take the mixing length and settling velocity of sediment as function of concen-
tration. The present study takes the governing equation of concentration from [11]
and solves it numerically taking into account the mixing length and settling velocity
both as function of concentration. It has been shown graphically the changes in con-
centration values for the inclusion of the above-mentioned effects, and at the end,
comparison of the model with laboratory data has been made to check the validity
of the model.
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2 Mathematical Model

A steady uniform flow is considered where the swapping of fluid parcels with sed-
iment occurs between different levels (Fig. 1). As a result, a net vertical flux of
momentum is generated. The lower parcel has the sediment concentrationC

(
z − lm

2

)
,

and the upper parcel has C
(
z + lm

2

)
. If the parcels travel vertically with equal and

opposite velocities ±wm, the resulting sediment flux density is [11]

qm = wm

[
C

(
z − lm

2

)
− C

(
z + lm

2

)]
(1)

and the Taylor series expansion of C
(
z ± lm

2

)
up to 2 terms gives

qm = −lmwm
dC

dz
(2)

where lm is the mixing length in a sediment mixed fluid. In a sediment-laden flow,
a balance between an upward mixing flux and downward settling flux occurs and
result in time-averaged concentration of suspended sediment. Mathematically, it can
be written as

qm − wsC(z) = 0 (3)

wherews is the settling velocity of sediment. After putting the expression of sediment
flux density qm from Eq. (2) in Eq. (3), we can rewrite Eq. (3) as

Fig. 1 Swapping of fluid parcels (including suspended sediment) over a vertical distance lm, the
mixing length. (Fig. from [11])



94 P. Jain and K. Ghoshal

lmwm
dC

dz
+ wsC = 0 (4)

As mentioned previously, in this study, we take mixing length lm as a function of
suspended sediment concentrationC and vertical distance zwhich is given as follows
[8]

lm = l0(1 − C1/3) (5)

where l0 = κz
√
1 − z

h is the mixing length in clear water flow [8]. In a sediment-
laden flow, it was observed by the experiment that the flow around the neighboring
settling particles exhibits a larger drag as compared to the clear water flow. Due
to this, the settling velocity ws of sediment in sediment-laden flow is less than the
settling velocity w0 in clear fluid, which is known as hindered settling. In this study,
expression ofws is chosen from Richardson and Zaki [12] which is given as follows:

ws = w0(1 − C)η (6)

where that η is the exponent of reduction of settling velocity that depends on the
particle Reynolds number Out of several expressions available for η in the literature,
we choose the expression of Richardson and Zaki [12] in this study, which is given
as

η =

⎧
⎪⎪⎨

⎪⎪⎩

4.65 whenRe < 0.2
4.4Re−0.03 when 0.2 < Re < 1
4.4Re−0.1 when 1 < Re < 500
2.4 whenRe > 500

(7)

where Re = w0Dp

νf
, Dp is the particle diameter and νf denotes the kinematic viscosity

of clear fluid. Here settling velocity of particle in clear fluid is calculated from the
widely used formula given as [13]

w0 = νf

Dp

(√
25 + 1.2D2∗ − 5

)1.5

(8)

where D∗
(

=
(

�g
ν2
f

)1/3
Dp

)
is the dimensionless particle diameter, g is the gravita-

tional acceleration and �= s − 1, s being the specific gravity of sediment particle.
After using Eqs. (5) and (6) in Eq. (4), we get

κz

√
1 − z

h
(1 − C1/3)wm

dC

dz
+ w0C(1 − C)η = 0 (9)

The non-dimensionalization of Eq. (9) gives
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κ ẑ
√
1 − ẑ

(
1 − C

1
3

)dC
dẑ

+ w0C(1 − C)η = 0 (10)

where ẑ = z
h ,h being theflowdepth, andw0 = w0

wm
. In this study,we takewm = u∗, u∗

being the shear velocity. Equation (10) represents the one-dimensional distribution
equation which is solved numerically to obtain the concentration distribution along a
vertical. A reference concentration Ca at a reference level a is taken as the boundary
condition for the numerical solution.

3 Result and Discussion

3.1 Variation of Concentration Profile with η

Two concentration profiles of suspended sediment particles are plotted in Fig. 2 with
and without hindered settling. It can be seen from the figure that the concentration
values are more in the main flow region due to the presence of hindered settling.
Effect of hindered settling can be seen only in main flow but not near the bed and
surface; this may be due to the reason that the particles are not present near the water
surface and not in suspension near the bed. The difference in concentration values
in the main flow region with and without hindered settling says the importance of
including this effect in the mathematical model of concentration.

Fig. 2 Effect of η on the
vertical concentration of
suspended particles
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Fig. 3 Effect of mixing
length with and without
function of concentration on
vertical concentration
distribution

3.2 Variation of Concentration Profile with lm and l0

In Fig. 3, two concentration profiles of suspended particles are displayed. Black curve
stands for concentration profile with mixing length as a function of concentration
lm = l0(1−C1/3) and red curve stands for concentration profile with mixing length
as clear water mixing length (lm = l0). From the figure, it can be observed that the
for a fixed height say z = z0, value of concentration is less when mixing length is
taken as function of concentration, i.e., mixing length is damped in the presence of
sediments.

3.3 Validation of the Model

In this section, we validate our model with existing experimental data of Vanoni
[14], Einstein and Chien [15] and Lyn [16]. To check the accuracy of proposed
model, two runs from each of the data of Vanoni [14], Einstein and Chien [15]
and Lyn [16]are compared with the numerical solution and displayed in Figs. 4,
5, and 6. From Einstein and Chien [15], data of Run-S6 is chosen which is for
medium sand (D50 = 0.94mm) and data of Run-S12 is chosen which is for fine
sand (D50 = 0.27mm). FromVanoni [14], data of Run-4 and Run-6 is chosen which
is for fine sand (D50 = 0.16mm) and from Lyn [16] data of Run-1957ST-2B and
1957ST-2C is chosenwhich is for fine sand (D50 = 0.19mm). It can be seen from the
figures that the proposed model agrees well with observed values of concentration
throughout the water depth.
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Fig. 4 Comparison between computed particle concentration profile and observed data of Vanoni
[14] a Run-4 and b Run-6

Fig. 5 Comparison between computed particle concentration profile and observed data of Einstein
and Chien [15] a Run-S6 and b Run-S12

4 Conclusions

The present study derives amodel for vertical concentration distribution in a sediment
carryingfluid using the governing equation fromNielsen andTeakle [11]whoderived
it using a finite mixing length theory. Unlike most of the researchers, the study uses
the mixing length as a function of concentration from Kovacs [8] where the mixing
length has been derived with a proper physical justification. Apart from that, the
settling velocity of sediment particles has been taken as a function of concentration.
Themodified governing equationwhich is a nonlinear first-order ordinary differential
equation is solved numerically. The changes in the concentration values for including
the above-mentioned effects are shown graphically. It is found that the hindered
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Fig. 6 Comparison between computed particle concentration profile and observed data Lyn (1988)
a Run-1957-2B and b Run-1957-2C

settling effect can be seen only in the main flow region, and the concentration values
are higher when hindered settling effect is present in the model, and also that the
presence of concentration in the expression ofmixing lengthmakes the concentration
values to be less. At the end, the validation of the model has been done by comparing
the numerical solution with existing laboratory data. A good agreement confirms the
efficiency of the model.

References

1. Schlichting, H., Gersten, K.: Boundary-layer theory. Springer, New York (2016)
2. Bialik, R.J.: Particle–particle collision in lagrangian modelling of saltating grains. J. Hydraul.

Res. 49(1), 23–31 (2011)
3. Bialik, R.J.: Numerical study of near-bed turbulence structures influence on the initiation of

saltating grains movement. J. Hydrol. Hydromech. S. 61(3), 202–207 (2013)
4. Van Driest, E.R.: The problem of aerodynamic heating. Institute of the Aeronautical Sciences

(1956)
5. Nishioka, M., Iida, S.: The mixing length derived from k´arm´ans similarity hypothesis.

Aeronaut. Q. 24(1), 71–76 (1973)
6. Galbraith, R.M., Sjolander, S., Head,M.:Mixing length in thewall region of turbulent boundary

layers. Aeronaut. Q. 28(2), 97–110 (1977)
7. Umeyama, M., Gerritsen, F.: Velocity distribution in uniform sediment-laden flow. J. Hydraul.

Eng. 118(2), 229–245 (1992)
8. Kovacs, A.: Prandtl’s mixing length concept modified for equilibrium sediment-laden flows. J.

Hydraul. Eng. 124(8), 803–812 (1998)
9. Rouse, H.: Modern conceptions of the mechanics of turbulence. Trans. ASCE 102, 463–543

(1937)
10. Hunt, J.: The turbulent transport of suspended sediment in open channels. Proc. R. Soc. Lond.

A 224(1158), 322–335 (1954)
11. Nielsen, P., Teakle, I.A.: Turbulent diffusion of momentum and suspended particles: a finite-

mixing-length theory. Phys. Fluids 16(7), 2342–2348 (2004)



Solution to One-Dimensional Diffusion Equation … 99

12. Richardson, J., Zaki, W.: Sedimentation and fluidisation: part 1. Trans. Inst. Chem. Eng. 32,
35–53 (1954)

13. Cheng,N.S.: Simplified settling velocity formula for sediment particle. J. Hydraul. Eng. 123(2),
149–152 (1997)

14. Vanoni, V.A.: Transportation of suspended sediment by water. Trans. of ASCE 111, 67–102
(1946)

15. Einstein, H., Chien, N.: Effects of heavy sediment concentration near the bed on velocity and
sediment distribution. Missoury river division, corps of engineers. US Army (1955)

16. Lyn, D.: A similarity approach to turbulent sediment-laden flows in open channels. J. Fluid
Mech. 193, 1–26 (1988)



A Study on the Effect of Various Fluid,
Flow and Mechanical Parameters
on the Flow of Newtonian Fluid
in an Expanding and Contracting Pipe

A. Karthik, K. Sashank and T. S. L. Radhika

Abstract In this paper, a study has been carried out to understand the effect of
the fluid, flow and the mechanical parameters on a pulsatile flow of a Newtonian
fluid in an expanding and contracting pipe. The fluid parameters considered are the
viscosity and the density, flow parameters are the amplitude of the pressure gradient
and the frequency of oscillations, and the mechanical parameter considered is the
radius of the pipe. A mathematical model is constructed in the cylindrical polar
coordinate system with the fluid flow assumed to be axisymmetric. Further, the
fluid is taken to be incompressible, and the radius of the pipe to vary with time.
Navier–Stokes equations are used to describe this fluid flow problem. The resulting
nonlinear coupled system of equations together with an appropriate boundary and
initial conditions is solved using the homotopy perturbation method. The model is
then applied to the human circulatory system, and the effect of the three sets of
parameters on wall shear stress and volumetric flux is studied. Data for the model
parameters are taken from literature on human blood, and human circulatory system
and graphs have been plotted to understand their effect on the flow.

Keywords Expanding and contracting pipe · Newtonian fluid · Homotopy
perturbation method

1 Introduction

Unsteady flow of viscous fluids in pipes produced by a simple contraction or expan-
sion of thewalls has applications in biological systems [1, 2]. This studywas initiated
by Uchida and Aoki, who considered the flow of Newtonian fluid in a semi-infinite
contracting and expanding circular pipe [3]. They derived an exact solution to the
Navier–Stokes equation using similarity transformation. Secomb [4] extended the
work done by Uchida to understand the flow in a channel with pulsating walls. In his
work, the wall motion was taken to be sinusoidal with the amplitude of oscillations
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being small. Ohki, in his work [5], discussed the flow in a semi-infinite porous pipe
with expanding and contracting radius in the axial direction. Recently, Si et al. [6]
calculated multiple solutions for the contracting or expanding porous pipe using the
singular perturbation method.

As is seen, the focus of most of these studies was on the study of the effect
of the parameter representing the expansion/contraction of the pipe on the flow of
fluid under a constant pressure gradient, and however, in some biological systems,
e.g.. human circulatory system, the flow of fluid, i.e. the blood, is under a pulsatile
pressure gradient which is due to the pulsatile pumping of the heart. Also, the walls
of the pipes, i.e. the blood vessels, contract and expand to enable the blood to flow
through them. Thus, a study on the effect of the expanding/contracting parameter
on pulsatile flows is of interest in these studies. Hence, in this work, the effect of
pulsatile flow parameters, i.e. the amplitude of pressure gradient and the frequency
of oscillations, the fluid parameters, precisely, the density and the viscosity, and the
mechanical parameters, i.e. the radius of the pipe is studied.

2 Construction of Mathematical Model

To describe the contracting and expanding nature of the blood vessel, the expression
for the radius of the vessel is taken as considered by Uchida and Aoki (for circular
pipes) [3]. The flow is further assumed to be pulsatile, as described by Shankar and
Lee [7]. Under the assumption that the fluid is incompressible and the flow axisym-
metric, fluid flow equations have been derived using the Navier–Stokes equations.
These equations are then solved using homotopy perturbation method [8] for the
radial and the axial velocity components. These approximations are then used to
compute expressions for wall shear stress and volumetric flux. The model is then
applied for the blood flow in the human circulatory system by assigning data to
the flow parameters, fluid and mechanical parameters taken from published results.
Graphs have been plotted to understand the effect of these parameters on wall shear
stress and volumetric flux, and the results have been discussed.

3 Problem Formulation

Consider the flow of a Newtonian fluid in a pipe whose radius varies with time as
described in Uchinda [3]. Cylindrical polar coordinate system (r, θ, z) (where r and
z are the radial and the axial coordinates, respectively, and θ is the azimuthal angle)
is taken to describe the geometry of the problem, and it is assumed that the fluid flow
is in the z-direction. Further, the fluid is considered to be incompressible, and the
flow axisymmetric so that the velocity vector, and the pressure, denoted by q̄ and
p, respectively, are functions of r, z and time t only. Assume that the non-vanishing
components of the velocity vector are in radial and axial directions so that the velocity
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vector is q̄(r, z, t) = (u(r, z, t), 0,w(r, z, t)). Also, let the thermodynamic pressure
p be p(r, z, t).

Now, the continuity equation and momentum equations take the form [9, 10]:
Continuity equation:

∂u

∂r
+ u

r
+ ∂w

∂z
= 0. (1)

Momentum equation:

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= − 1

ρ

∂p

∂r
− 1

ρ

(
1

r

∂

∂r
(rτrr ) + ∂

∂z
(τr z)

)
, (2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
− 1

ρ

(
1

r

∂

∂r
(rτr z) + ∂

∂z
(τzz)

)
. (3)

Here, ρ is the density of the blood, and τi j are the components of the deviatoric
stress tensor.

Under the assumption that the radial flow velocity and the convective acceleration
terms are, respectively, of a smaller order of magnitude for the axial flow velocity,
and the local acceleration terms, the radial momentum Eq. (2) reduces to

−∂p

∂r
= 0. (4)

Thus, it can be seen that the pressure is independent of r. The pressure gradient
is taken to be a function of t as

−∂p

∂z
= A cosωt, (5)

where A is the amplitude of the pressure gradient and ω = 2π f1, f1 being the
frequency of oscillations [7].

The fluid is taken to be Newtonian whose constitutive equation is [9]

τi j = −pδi j + 2μei j , (6)

where p is the thermodynamic pressure, μ is the viscosity and ei j is the rate of
deformation tensor.

The contraction and expansion of the walls of the pipe is described as in [3] as

R(t) = R0(1− ωαt)1/2, (7)

where R0 is the radius of the pipe when t = 0, and α is the parameter that describes
the behavior of the wall. Positive values of α indicate contraction while negative
values of this parameter describe the expansion of the walls of the pipe.
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Using the constitutive equation (6), Eqs. (1) and (3) take the form

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (8)

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂P

∂z
+ μ

(
1

r

∂

∂r

(
r
∂w

∂r

)
+ ∂2w

∂z2

)
. (9)

Now, the problem is to solve the above coupled system of partial differential
equations together with the boundary conditions given by

w = 0 on r = R(t), (No− slip boundary condition)
u = dR

dt on r = R(t), (Velocity of the fluid matches with wall velocity)
∂w
∂r = 0 at r = 0, (Velocity is finite at the center of the pipe)

(10)

4 The Solution to the Problem

The above system of partial differential equations together with the initial and bound-
ary conditions is solved using the homotopy perturbationmethod (HPM) [8]. For this,
we take

u(r, z, t) = u0(r, z, t) + pu1(r, z, t) + p2u2(r, z, t) + · · ·
w(r, z, t) = w0(r, z, t) + pw1(r, z, t) + p2w2(r, z, t) + · · · (11)

Also, the initial approximation satisfying the conditions (10) is taken asw0(r, z, t) =
r2 − R(t)2, u0(r, z, t) = dR

dt . The subsequent approximations for u(r, z, t), and
w(r, z, t) are found by defining homotopy functions as,

H1(p) = (1− p)

(
∂u

∂r
− ∂u0

∂r

)
+ p

(
∂u

∂r
+ u

r
+ ∂w

∂z

)
, (12)

for Eq. (8), and that for Eq. (9) as

H2(p) = (1− p)

(
∂2w

∂r2
− ∂2w0

∂r2

)
+ p

(
ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)

+ ∂p

∂z
− μ

(
1

r

∂w

∂r
+ ∂2w

∂r2
+ ∂2w

∂z2

))
, (13)

Comparing the coefficient of p, we get the equations governing u1(r, z, t) and
w1(r, z, t) as
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∂u1
∂r

= −
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r

)
, (14)
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∂r2
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. (15)

And the conditions are

u1 = 0 on r = R(t)

w1 = 0 on = R(t),
∂w1

∂r
= 0 at r = 0 (16)

Solving these equations, the expressions for the first approximation of the velocity
components can be obtained. Similarly, the coefficient of p2, and higher powers have
been collected to find the next approximations.

5 Results and Discussions

A code has been developed inMathematica to compute approximations for the radial
and axial components of the velocity and wall shear stress (WSS) and volumetric
flux are evaluated. The effect of the fluid parameters, flow parameters, mechanical
parameters and the contracting/expanding parameter, on these quantities, has been
studied, and the results are presented and discussed. Data related to all parameters
except for the contracting/expanding parameter, which is given the set of values −
0.05, −0.01, 0, 0.01, and 0.05 has been taken from data published [11–14] related
to the human blood, and the human circulatory system. The following table shows
the set of values of the parameters taken for study (Table 1).

5.1 Effect of the Fluid Parameters on the Flow

5.1.1 Effect of the Density of the Fluid (ρ) onWSS and Volumetric Flux

The plots of wall shear stress (WSS) with time for different values of density (ρ),
with other parameters fixed, are shown in Figs. 1 and 2, respectively, for expanding
pipe (α negative) and contracting pipe (α positive). From expression (7), it is seen
that positive values of α indicate an increase in radius with time ‘t’ while negative
values of α show decrease in radius with time.

It is known that WSS increases with an increase in the radius of the pipe, and the
model developed in this study can be seen to predict the same in both expanding and
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Table 1 Values of the parameters taken from literature for the study

Density (ρ) (in kg m−3) 1055

1058.1

1061.2

Viscosity (μ) (in Pa s) 0.00552

0.00619

0.00686

Pulse difference (A) (in mmHg) 42

43

44

Heart rate (in bpm) 72

75

76

Fig. 1 Plot of WSS versus time when ω = 2π*72/60 s−1, μ = 0.00552 Pa s, A = 41 mmHg, α =
−0.05

Fig. 2 Plot of WSS versus time when ω = 2π*72/60 s−1, μ = 0.00552 Pa s, A = 41 mmHg, α =
0.05
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Fig. 3 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, μ = 0.00552 Pa s, A =
41 mmHg, α = −0.05

Fig. 4 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, μ = 0.00552 Pa s, A =
41 mmHg, α = 0.05

contracting pipes. Further, in expanding pipes, denser fluids are found to experience
greater WSS, while in contracting pipes, denser fluids are found to experience lesser
WSS.

Figures 3 and 4 show the plots of volumetric flux with time for different values
of density ρ in expanding and contracting pipes, respectively. As is seen in the plots,
an increase in radius increases the volumetric flux in both expanding and contracting
pipes. In case of expanding pipe, denser fluids are seen to have higher volumetric
flux, while in contracting pipes, they are seen to have lesser volumetric flux.

5.1.2 Effect of the Viscosity of the Fluid (μ) on WSS and Volumetric
Flux

The plots of WSS with time for different values of viscosity are shown in Figs. 5 and
6. In expanding as well as contracting pipes, fluids with higher viscosity are seen
to experience greater WSS. Further, for a particular value of μ, WSS increases with
time in case of expanding pipes while it decreases for contracting pipes.
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Fig. 5 Plot of WSS versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, A = 41 mmHg, α =
−0.05

Fig. 6 Plot of WSS versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, A = 41 mmHg, α =
0.05

Figures 7 and 8 show the variation of volumetric flux with μ. It is seen that
volumetric flux is greater for more viscous fluids in both expanding and contracting
pipes while not much significant effect on it is seen with time.

Fig. 7 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, A =
41 mmHg, α = −0.05
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Fig. 8 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, A =
41 mmHg, α = 0.05

5.2 Effect of the Flow Parameters on the Flow

5.2.1 Effect of the Amplitude (A) on WSS and Volumetric Flux

Variation of WSS with the amplitude of oscillations is depicted in Figs. 9 and 10.
WSS is seen to be more at higher amplitudes than that at a lesser. Further, at a
particular amplitude, WSS is seen to decrease with time.

Figures 11 and 12 show the variation of volumetric flux with the amplitude of
oscillation. Greater amplitudes resulted in higher flux in both expanding and con-
tracting pipes. Further, for a given amplitude, it can be seen that flux is increasing
with time in expanding pipes, whereas it is decreasing in contracting pipes.

5.2.2 Effect of the Frequency of Oscillations (ω) on WSS
and Volumetric Flux

Figures 13 and 14 depict the variation of WSS with the frequency of oscillations. In
expanding pipes, higher frequency resulted in greater WSS, whereas greater values

Fig. 9 Plot of WSS versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, μ = 0.00552 Pa s, α
= −0.05
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Fig. 10 Plot of WSS versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, μ = 0.00552 Pa s,
α = 0.05

Fig. 11 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, μ =
0.00552 Pa s, α = −0.05

Fig. 12 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, μ =
0.00552 Pa s, α = 0.05

resulted in lesserWSS in contracting pipes. Further, it can be seen thatWSS increases
with time in the expanding pipes while it is decreasing with time in contracting pipes.

Variation of volumetric fluxwith the frequency of oscillations is shown in Figs. 15
and 16. It can be seen that a greater frequency of oscillations resulted in higher
volumetric flux in expanding pipes while it resulted in lower flux in contracting
pipes.
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Fig. 13 Plot of WSS versus time when ρ = 1055 kg m−3, μ = 0.00552 Pa s, A = 41 mmHg, α =
−0.05

Fig. 14 Plot of WSS versus time when ρ = 1055 kg m−3, μ = 0.00552 Pa s, A = 41 mmHg, α =
0.05

Fig. 15 Plot of volumetric flux versus time when ρ = 1055 kg m−3, μ = 0.00552 Pa s, A =
41 mmHg, α = −0.05

5.3 Effect of the Material Parameters on the Flow

5.3.1 Effect of Contracting/Expanding Parameter (α) on WSS
and Volumetric Flux

An increase in α indicates a decrease in radius, which results in a decrease in the
WSS. Also, a decrease in volumetric flux as is seen in Figs. 17 and 18.
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Fig. 16 Plot of volumetric flux versus time when ρ = 1055 kg m−3, μ = 0.00552 Pa s, A =
41 mmHg, α = 0.05

Fig. 17 Plot of WSS versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, μ = 0.00552 Pa s,
A = 41 mmHg

Fig. 18 Plot of volumetric flux versus time when ω = 2π*72/60 s−1, ρ = 1055 kg m−3, μ =
0.00552 Pa s, A = 41 mmHg
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6 Conclusions

In the present work, the pulsatile flow of the Newtonian fluid in an expanding and
contracting pipe has been studied. HPM has been used to find approximate solutions
to the fluid flow equations developed in the model. The expressions for the velocity
components derived are then used to derive expressions for wall shear stress and
volumetric flux. Graphs have been plotted to visualize the effect of the flow, fluid and
mechanical parameters on these quantities computed. Some interesting observations
of this study are as follows: In expanding pipes, denser fluids are found to experience
greater WSS and had higher volumetric flux, while in contracting pipes, they are
found to experience lesser WSS and had less volumetric flux. The study also reveals
that, in the case of both expanding and contracting pipes, an increase in viscosity
increasesWSS and volumetric flux under the pulsatile pressure gradient with a given
amplitude and frequency. Also, an increase in the amplitude of oscillations resulted
in an increase in WSS as well as the volumetric flux in case of both expanding and
contracting pipes. In expanding pipes, higher frequency of oscillations resulted in
greaterWSS, whereas they resulted in lesserWSS in contracting pipes. It is also seen
that a higher frequency of oscillations produced greater volumetric flux in expanding
pipes while it produced lower values in contracting pipes.
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Unsteady Stagnation Point Nanofluid
Flow Over a Stretching Sheet
with Thermal Radiation

B. Kumar and G. S. Seth

Abstract This research work is done to investigate the magnetohydrodynamic
unsteady stagnation point nanofluid flow and the heat transfer influenced by the
thermal radiation. The suitable transformations give rise to ordinary differential equa-
tions. A similar form of differential equations is solved numerically by successive
linearization method (SLM). The influence of various active flow parameters, such
as thermal radiation parameter, and stagnation parameter on the flow field, concen-
tration field, and temperature field are plotted graphically and described in detail.
Various critical outcomes are uncovered in this investigation. The outcome indicates
that increment in stretching parameter increases the fluid velocity but it decreases
fluid temperature and nanoparticle concentration.

Keywords Successive linearization method (SLM) · Unsteady flow · Brownian
and thermophoretic diffusions

Nomenclature

a Constant
A Unsteadiness parameter
B Magnetic field
B0 Constant magnetic field
DB Brownian diffusion (coefficient)
DT Thermophoretic diffusion (coefficient)
g Gravitational acceleration
k Thermal conductivity
k∗ Rosseland mean absorption coefficient
M Magnetic parameter
Nb Brownian motion parameter
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T Temperature
t Time
u Velocity along x direction
v Velocity along y direction
λ Stretching parameter
(ρc)f Specific heat capacity of the base fluid
σ Electrical conductivity
ρf Density
ρp Nanoparticle mass density
ρf∞ Base fluid density in free stream
τ = (ρc)p

/
(ρc)f Ratio of nanoparticles specific heat capacity to fluid specific heat

capacity
Nt Thermophoresis parameter
Nr Buoyancy ratio parameter
Pr Prandtl number
Pref f Effective Prandtl number
Ra Mixed convection parameter
Rex Local Reynolds number
Sc Schmidt number
αn f Thermal diffusivity
β∗ Thermal expansion coefficient
C Nanoparticle concentration
θ Dimensionless temperature
ν Kinematic coefficient of viscosity
σ ∗ Stefan Boltzmann constant

1 Introduction

Nanofluid is envisioned to expound a fluid in which the nanometer-sized particles
are suspended in base fluids like ethylene glycol, oil, water, and so forth. The main
aim for suspending nanometer-size particle in base fluid is to get a strange increment
in the thermal conductivity. This kind of act assists the heat transfer rate of the fluid
astoundingly by changing its thermophysical properties. Choi [1] was the first who
noticed that how the thermal conductivity of fluid enhances with the suspension of
nanoparticles into it. Eastman et al. [2] found that when copper nanoparticles disperse
into ethylene glycol, then its thermal conductivity anomalously enhanced. Recently,
some studies regarding nanofluid flow are due to Kumar et al. [3] and Hayat et al.
[4].

Thermal radiation plays an exceptionally huge job in the heat exchange when
there is a very small convection heat transfer. The wide uses of it are in nuclear
plant, different drive gadgets for aircraft, satellites, and space vehicle. The thermal
radiation is used immensely in the processes in which high temperature is required.
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Rahman andEltayeb [5] used convective boundary condition to analyze radiative heat
transfer in nanofluid. Rashidi et al. [6] studied the thermal radiation and convection
effect on nanofluid flow adjacent to stretching surface. This study is dedicated to
find flow behavior of nanofluid adjacent to linearly stretching sheet but there are
several situations in which stretching sheet velocity cannot be linear, for example,
in the metallurgical and production of plastic sheets. Keeping this in mind, Mabood
et al. [7] numerically studied nanofluid flow adjacent to a nonlinear stretching surface
by considering the effect of viscous dissipation. They noticed that thermophoresis
phenomenon enhances the fluid temperature.

Unsteady flow occurs in many situations. Therefore, Ahmed et al. [8] described
axisymmetric unsteadyflowof nanofluid.Reddy andChamkha [9] studied theDufour
and Soret effect on unsteady flow of nanofluid by taking thermophoresis and heat
absorption/generation into account. Recently, Shen et al. [10] considered Maxwell
viscoelastic nanofluid to observe unsteady flowwith different shapes of particles and
Cattaneo heat flux.

The investigation of the flow near stagnation point is likewise an essential subject
in fluid dynamics. It occurs when fluid collides on the solid material. It has pulled
legitimate concerns of various researchers because of its applications in industry,
submarines, aircrafts, etc. Stagnation point flow is usually noticed in the blowing and
spinning of fiber glass. Lok et al. [11] studied non-orthogonal flow near stagnation
point of a micropolar fluid over a vertical stretching surface. Recently, Hayat et al.
[12] studied the internal heat generation and melting heat effect on stagnation point
Jeffrey fluid flow over a stretchable surface with variable thickness.

In the present article, we have investigated the unsteady stagnation point nanofluid
flow over a stretching sheet with Brownian motion, thermophoresis, and thermal
radiation. For numerical solution of governing equations, we have used a spectral
technique, in particular successive linearization method.

2 Formulation of the Problem

In the present model, we have considered two-dimensional, unsteady, electrically
conducting, and viscous stagnation point flow of a nanofluid adjacent to stretching
surface. Figure 1 represents the geometry of the problem. The stretching sheet veloc-
ity is taken as uw(x, t) and the fluid velocity in free stream, i.e., far from the sheet,
is taken as ue(x, t). The nanofluid temperature and concentration at the sheet are,
respectively, Tw, and Cw. The constant concentration and temperature of fluid in free
stream are, respectively, C∞ and T∞. Themagnetic field having strength B is exerted
perpendicular to the sheet. Induced magnetic field is neglected.

Using these assumptions, the governing equations are
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Fig. 1 Boundary layer flow model

∂v

∂y
+ ∂u

∂x
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
+ ∂u

∂t
= υ

∂2u

∂y2
+ ∂ue

∂t
+ ue

∂ue
∂x

+ σ B

ρf

2

(ue − u)

+ g

ρf

[−(
ρp − ρf∞

)
(C − C∞) + (1 − C∞)ρf∞β∗(T − T∞)

]
,

(2)

u
∂T

∂x
+ v

∂T

∂y
+ ∂T

∂t
= αnf

∂2T

∂y2
+ 1

(ρc)f

16σ∗T 3∞
3k∗

∂2T

∂y2
+ τ

[

DB
∂C

∂y

∂T

∂y
+ DT

T∞

(
∂T

∂y

)2
]

,

(3)

u
∂C

∂x
+ v

∂C

∂y
+ ∂C

∂t
= DT

T∞
∂2T

∂y2
+ DB

∂2C

∂y2
. (4)

The initial and boundary constraints are assumed as

t ≤ 0 : {T = Tw,C = Cw , v(x, t) = 0, u(x, t) = 0, (5)

t > 0 :
{
T = Tw,C = Cw, v = 0, u = λuw(x, t), at y = 0,
C → C∞, T → T∞, u → ue(x, t), as y → ∞ (6)

For getting similarity solutions of Eqs. (2)–(4) with initial and boundary
constraints (5) and (6), we have taken ue(x, t), uw(x, t) and B2(t) as

B2(t) = B2
0

(1 − βt)
, ue(x, t) = ax

(1 − βt)
, uw(x, t) = ax

(1 − βt)
.

The similarity transformations for Eqs. (2)–(4) are
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here ψ is a stream function and

(u, v) =
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)
. (8)

Here η, φ(η), θ(η) correspond to independent similarity variable, nanoparticle
concentration, and temperature, respectively.

Using Eqs. (7) and (8) in Eqs. (2)–(6), we get

f ′′′ + 1 − f ′ 2 + f f ′′ + M
(
1 − f ′) − A

(
f ′ − 1 + η

2
f ′′

)
+ Ra[θ − Nrφ] = 0,

(9)

1

Preff
θ ′′ + Nbθ ′φ′ + ( f − Aη)θ ′ + Ntθ ′2 − 2

(
A + f ′)θ = 0, (10)

φ′′ + Sc

[
f − Aη

2

]
φ′ − 2Sc

[
f ′ + A

]
φ + Nt

Nb
θ ′′ = 0. (11)

Subject to boundary constraints:

θ(η) = 1, f (η) = 0, φ(η) = 1, f ′(η) = λ, at η = 0,
θ(η) → 0, φ(η) → 0, f ′(η) → 1, as η → ∞,

}
(12)

where Ra = g(1−C∞)(Tw−T∞)β∗ρf∞
ρfa2

, NR = (ρp−ρf∞)(Cw−C∞)

(1−C∞)(Tw−T∞)β∗ρf∞ , M = σ B2
0

ρfa
, A = β

a ,

Pr = υ
αnf
, Preff = Pr

(1+R)
, Nt = τDT(Tw−T∞)

T∞υ
, R = 16T 3∞σ ∗

3kk∗ , Nb = τDB(Cw−C∞)

υ
and

Sc = υ
DB

.
The local Nusselt number Nux and skin friction coefficient C fx are as follows

Nux = −x(1 − βt)1/2

(Tw − T∞)

(
∂T

∂y

)

y=0

,C fx = υ(1 − βt)−1/2

u2w

(
∂u

∂y

)

y=0

, (13)

Using Eqs. (7) and (8), Eq. (13) reduced to

C fxRe
1/2
x = f ′′(0),NuxRe−1/2

x = −θ ′(0). (14)

where Rex = ur (x)x
υ

is local Reynolds number with ur (x) = ax .
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3 The Numerical Solution

Successive linearization method is utilized to solve coupled nonlinear Eqs. (9)–(11)
with boundary conditions (12). This spectral scheme is briefly explained in the article
by Motsa and Sibanda [13]. The initial guesses which we have chosen for using this
method are as follows

f0 = −e−λη + e−η + η, θ0 = e−η, s0 = e−η.

4 Results and Discussion

To give the physical knowledge of the present flow problem, complete numerical
calculations are performed for various appropriate parameters and the results are
explained graphically. The default values of parameters for this computation are
A = 0.5, Pr = 1, λ = 0.5, M = 0.5, Ra = 0.5, Nr = 0.5, R = 0.5, Nt =
1, Nb = 1, and Sc = 1 .

Figures 2, 3, 4, and 5 show the effect of some active parameters on fluid velocity.
The effect of parameter M on velocity profile for λ = 0.5 and λ = 1.5 is presented
in Fig. 2. It is perceived here that in case of λ = 1.5, velocity profile depreciates with
the increasing values of magnetic parameter. This event may be the reason of Lorentz
force which reduces the velocity of the fluid.When λ = 0.5,magnetic parameter has
tendency to enhance fluid velocity and increase boundary layer thickness. Figure 3
shows the sway of parameter Nr on velocity profile. It can be observed here that
velocity profiles diminish as parameter Nr rises. Figure 4 shows the effect of mixed

Fig. 2 Velocity distribution
for M
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Fig. 3 Velocity distribution
for Nr

Fig. 4 Velocity distribution
for Ra

convection parameter Ra on fluid velocity. It is worthy to note here that velocity
distribution enhances with rising values of Ra. This event is contribution of buoyancy
force acting on it. Figure 5 shows the effect of parameter λ on fluid velocity and it
indicates that as we increase parameter λ, fluid velocity increases and boundary layer
width also tends to increase.

Temperature profile for different parameters is shown from Figs. 6, 7, 8, 9, and 10.
The variation of temperature distribution corresponding to parameterλ is depicted via
Fig. 6, which indicates that temperature decreases with enhancement in parameter λ.
The behavior of temperature of nanofluid due to variation in unsteadiness parameter
is explained via Fig. 7. It is observed here that temperature distribution decrease near
the sheet as increment in parameter A but as going away from the sheet, temperature
profiles rise up. Influence of parameter R on temperature of fluid is displayed in
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Fig. 5 Velocity distribution
for λ

Fig. 6 Temperature
distribution for λ

Fig. 8, which indicates that the thermal radiation parameter enhances the temperature
profile. It is very obvious because in the presence of thermal radiation, more heat is
absorbedby thefluid; therefore, enhancement in temperature profile is found. Figure 9
shows the nature of temperature profile against parameter Nb and it is observed that
parameter Nb has tendency to enhance temperature since Brownian motion is the
particle analogue phenomenon; therefore, heat is produced due to direct collisions
of fluid particles and hence enhancement in temperature is found. The influence of
parameter Nt on temperature distribution is presented by Fig. 10. It indicates that
temperature increases with increment in parameter Nt because thermophoresis force
tends to push nanoparticles from hot area to cold area.
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Fig. 7 Temperature
distribution for A

Fig. 8 Temperature
distribution for R

Figures 11, 12, 13, and 14 are plotted to understand the behavior of nanopar-
ticle concentration corresponding to some parameters. Figure 11 shows the effect
of parameter A on nanoparticle concentration. It is evident here that increment in
unsteady parameter reduces the nanoparticle distribution throughout the boundary
layer. Figure 12 represents the influence of parameter λ on concentration profile
which indicates that reduction in concentration profile is found as we increase param-
eter λ. The influence of Brownian motion parameter on concentration distribution
can be seen from Fig. 13, which indicates that concentration profiles impede with
enhancement in parameter Nb. This event occurs because parameter Nb represents
random motion of nanoparticles. As Nb increases, random motion of nanoparticles
increases and they collide each other very frequently. Influence of parameter Nt
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Fig. 9 Temperature
distribution for Nb

Fig. 10 Temperature
distribution for Nt

is displayed in Fig. 14. It is visible here that concentration profiles increase with
enhancement in parameter Nt because of thermophoresis force.

Table 1 is presented to explain that how skin friction and local Nusselt number
vary with variation in different parameters. It is visible here that enhancement in
parameters A, Ra and Nb lead to enhance skin friction at the surfacewhile parameters
Nr , Nt and λ do the vice versa. On the other hand, parameters Nr, Nb and Nt have
tendency to boost local Nusselt number, while parameters A, Ra and λ reduce it
significantly.
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Fig. 11 Concentration
distribution for A

Fig. 12 Concentration
distribution for λ

5 Outcomes of the Investigation

The important outcomes of the present investigation include:

i. Velocity of nanofluid increases with increment in parameters R and λ, while
parameter Nr decreases it. Parameter M has tendency to enhance fluid velocity
for λ < 1, however, for λ > 1, this effect is reversed.

ii. With the enhancement in parameters R, Nb, and Nt , nanofluid temperature
increases while parameter λ does the vice versa. The parameter A decreases it
near the sheet but increases it as going away from the sheet.

iii. Nanoparticle concentration is decreased with the enhancement in parameter
λ, A and Nb, while parameter Nt increases it significantly.
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Fig. 13 Concentration
distribution for Nb

Fig. 14 Concentration
distribution for Nt

iv. The parameters A, Ra, and Nb lead to enhance skin friction at the surface while
parameters Nr , Nt , and λ do the vice versa. On the other hand, parameters
Nr, Nb and Nt have tendency to boost local Nusselt number, while parameters
A, Ra, and λ reduce it significantly.
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Table 1 The values of f ′′(0) and θ ′ (0) for different parameters

A Ra Nr Nb Nt λ f ′′(0) −θ ′(0)
0.1 0.918385 0.7276

0.3 0.936408 0.78976

0.5 0.954249 0.84862

0.1 0.870652 0.84401

0.3 0.912565 0.84633

0.5 0.954249 0.84862

0.1 1.020451 0.85195

0.4 0.970844 0.84946

0.7 0.920966 0.84693

0.1 0.833371 1.06019

0.5 0.936604 0.96518

0.7 0.945795 0.91683

0.1 0.954487 0.97346

0.5 0.954133 0.91393

0.7 0.954111 0.88667

0.1 1.531376 0.73332

0.5 0.954249 0.84862

1.5 −0.89935 1.09297
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New Universal Classification of Fluid
Flows Structural Components

Yuli D. Chashechkin

Abstract New classification of fluid flow components which includes ligaments
describing fine filaments or interfaces, together with waves and products of their
nonlinear interactions is proposed. The classification is based on total solutions of the
linearized system of the fundamental equations taking into account the compatibility
condition. General analysis of periodic motion structures is illustrated by numer-
ical calculations and schlieren visualizations of flow fields generated by uniform
motion of a vertical plate in a stratified medium. Both the numerical and laboratory
visualization results show that the flow patterns, which contain complex systems of
internal waves, including upstream and attached waves, as well as thin interfaces,
such as ligaments, formed due to the combined influence of the stratification and
dissipation effects. The observation and calculation results are in good qualitative
and quantitative agreement. Visualization of ligaments in a flow induced by a drop
impact in targeted fluid presents to support the universality of classification.

Keywords Stratified flow · Fundamental equations · Complete solutions ·
Ligaments · Waves · Vortices · Drop · Visualization

1 Introduction

The attempts of an intuitive classification of fluid flow components can be traced
throughout the history of civilized humanity, starting with the oldest rock carvings
where systems of a wavy line are commonly thought of as waves and spirals—as
vortices. Beautiful sketches ofwaves and vortices in fluid flows are presented inmany
renaissancepaintings (widespreaddrawings byLeonardodaVinci). Thedevelopment
of mathematics contributed to the formalization of the process and giving the clearly
marked content of selected components.

Analysis of the properties of the solutions of the first closed system of equations
allowed Euler and D’Alembert to introduce the concepts of potentials and stream
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functions—scalar functionswhose derivatives display the components of the velocity
vector, as a consequence, establish the properties of potential waves, and define the
vorticity as a differential property of the velocity fields [1].

The Industrial Revolution in Europe was accompanied by the intensive devel-
opment of mathematics in general and the theory of fluid flows, respectively. The
derivation of the C. Navier equation, which contains a term describing the viscous
friction, has been carefully analyzed and justified in the framework of the theory
of continuous functions by G. G. Stokes [1]. He constructed a number of particular
solutions to the problems of linear and nonlinear waves propagation, calculated the
flow around a sphere and in a channel, together with a number of other problems.

At the same time, the physical limits of the obtained solutions validity, the mis-
match of which with experiment grew with increasing a flow velocity, were experi-
mentally found. A narrow range of parameters for the consistency of the calculations
C. Navier and G. G. Stokes results with Hagen and Poiseuille experiments ques-
tioned the validity of proposed theory to solve the practically important problems.
Among developed alternative models were equations of nonlinear waves proposed
by Russell, Rayleigh, Korteweg, de Vries, and many others, as well as the constitu-
tive models, among which the theory of turbulence proposed by O. Reynolds, based
on visualization of flow patterns in tube, became the most widespread.

Onlywith the publication ofLamb’s treatise [2], theNavier–Stokes equationswere
finally accepted as the fundamental basis of fluidmechanics, whichwas subsequently
confirmed by Landau and Lifshitz, Batchelor, Müller, Vallis, and in many other
monographs [3–6] devoted to the study of the dynamics and thermodynamics of
fluids and gases flows.

Simultaneously with the construction of solutions of the fundamental equations
system and the study of their properties, the development of specialized models
describing the dynamics of specific structural components continued. One of the
most widely spread models is the theories of the boundary layer [7], as well as
the theories of various waves—acoustic, surface and internal gravity, inertial, and
hybrid, each one is connected with real physical properties of the environment—het-
erogeneity in composition and density, compressibility, general rotation [8], as well
as for separate vortices [9]. Correspondingly, the experiment is developed by mainly
focusing on the study of boundary layers, waves, vortices, jets or wakes, and other
flow components. At the same time, different forms of the theory of stability were
developed to define the conditions for the occurrence and duration of the existence
of separate structural components of flows. Due to technical difficulties, many cal-
culations were characterized by relatively low accuracy, and the experiments were
incomplete. The creation of every group of models was accompanied by the for-
mulation of a new classification of forms or components of flows based on some
mathematical or geometric features of selected models.

L. Euler was the first who investigated the flows and the velocity v fields in
which are described by scalar ϕ (v = ∇ϕ) or vector A potential (v = rotA). The
properties of both irrotational (rot gradϕ = 0) and vortex flows (rot v = rot rotA =
grad divA − �A, ∇ is Hamilton and � = ∂2

∂x2i
is the Laplace operators) continue to
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be actively studied in the theory of an actually homogeneous fluid (with identically
constant density). In the actually homogeneous fluid, the velocity and momentum,
which are themeasures of the kinematics of the velocity field and the physicalmotions
of liquid particles, became identical. Experimental and theoretical verifications of
some conclusions of the homogeneous fluid theory are difficult due to the unreality of
hypothesis of density constancy and the absence of proof for the 3D Navier–Stokes
equations solution (6th Millennium problem [10]).

The popular method uses the geometric separation of the flow on the “boundary
layer” near the obstacle [7], which is described by the own set of equations, and
the external flow, for which the equations of Euler and Navier–Stokes are used.
The formalization of the description is difficult due to the absence of a criterion for
determining the position of outer frontier of the boundary layer.

The most common classification includes laminar flow, which is described by
different versions of the Navier–Stokes equations, and turbulent flow, which assumes
a high level of fluctuations and activemixing. The boundary between the two regimes
is determined by the values of characteristic parameters (“numbers” of Reynolds and
others). The most common disadvantage is that the definition of “turbulence” is not
proposed and, as a result, a variety of mathematical models is used in practice. The
scale invariance of the equations of fluid mechanics was emphasized by G. G. Stokes
in a review of the manuscript of the first experimental paper by O. Reynolds: “In one
part the language seems to imply (whichwas not perhaps intended) that he discovered
new dimensional properties of fluids, and might even lead to the supposition that he
supposed that he had shown that another constant beyond those recognized was
necessary in order to define a fluid mechanically. This certainly is not the case, the
dimensional properties are already obviously involved in the equations of motion;
and there is absolutely nothing to prove that he has discovered the necessity of an
additional constant to define a fluid” (G. G. Stokes, 19 April 1883, reproduced in
[11]).

The situation began to change significantly in the second half of the twentieth
century, when with the creation of satellites, pronounced structures of the global
pattern of flows began to be recognized in the Earth atmosphere, in the ocean, in the
atmospheres of other planets and stars, and in the interstellar medium on galactic
scales [12], as well as in small-scale laboratory flows, both slow [13] and fairly fast,
initiated by immersion a free-falling drop into a liquid [14], where the pattern of the
matter is not described by common theory of flows.

At the same time, the intensive development of computing and programming
provided the room for implementing previously developed complex algorithms, and
realization new ones, more efficient, for calculating the dynamics and structure of
flows, both stratified (strongly for laboratory and weakly for natural systems) and
homogeneous—potentially (extremelyweak) and actually (identically homogeneous
liquids [15]). The emergence of theoreticalmodels, the results ofwhich are consistent
with experiment in general properties, and in fine details of the flow [16], justify the
need to analyze the criteria for choosing the system of equations and the properties
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of complete solutions, which give a room to formulate universal requirements for the
methods of calculations and experiments that are consistent with the completeness
and consistency criteria.

2 Determination of Fluid State

In classical hydrodynamics, it is accepted to state that the properties of a fluid motion
completely determine the density together with one of the thermodynamic parame-
ters, for example, pressure, and indicator of a fluid flow is velocity [3, 4]. However,
the recent development of theoretical and experimental studies of the structures of
the flows has led to a radical change in the ideas about the nature of the flows and
the properties of the fluid. The changes are related to the reassessment of the role of
energy as an independent parameter describing the complex nature of flows patterns
in truly multicomponent, thermally and concentration inhomogeneous media with
free surfaces due to a variety of energy transport mechanisms.

Basing on ideas of interrelations of atomic physics and macroscopic hydrody-
namics, the International Association for Water and Steam recommended to select
one of the thermodynamic potentials, namely the free enthalpy, or the Gibbs poten-
tial, as the main parameter of the fluid state [17]. Derivatives of the Gibbs potential
dG = −sdT + VdP − Sddσ + μi dni determine the entropy s, the specific volume
V and density ρ = 1

V = (
∂G
∂P

)−1

T,Sd,ni
, the surface tension coefficient σ and the chem-

ical potential component μi due to the presence of the ith dissolved impurity with
concentration ni (here T is the temperature, Sd is the area of the free surface).

Relations between thermodynamic quantities determining the equation of state of
the medium usually are represented in the form of the dependence of density ρ on
other thermodynamic quantities—in temperature T pressure P,, and salinity Si

ρ = ρ(T, P, Si ) (1)

It should be noted that free enthalpy, like other types of thermodynamic potentials,
is a natural macroscopic parameter that takes into account the anisotropy of atomic–
molecular interactions in structured multicomponent fluids with a free surface. Due
to the non-uniform distribution of internal energy in a fluid and the intrinsic features
of its structure, transport of the energy can occur with different characteristic time
intervals.

Energy is transported rather slowly in the processes of molecular diffusion and
dissipation; more quickly together with the velocity of macroscopic flows, at special
celerity characterizing propagation of a wave and very fast for directly atomic–
molecular processes during chemical reactions, the elimination of the free surface or
the release of chemical energy. The processes of transfer of the energy in fluid flows
are not fully understood.
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Therefore, thermodynamic parameters, such as density or temperature, can change
in flows quite slowly and extremely rapidly. The diversity of the intrinsic scales of the
structural components of fluids, includingmolecular clusters with a size from 10−7 to
10−6 cm, and larger macroscopic structural components, characterizing by different
rates of energy exchange, provides the necessary conditions for the formation of
macroscopic flow structures of various scales. Among them, the separate scales of
the studied phenomena, the magnitude of which is determined by the governing
equations, initial and boundary conditions, are well distinguished.

3 The System of Governing Equations

One of the key achievements of theoretical physics is the discovery of a relation
between symmetries of the space and time as well as the governing equations system
and the laws of conservation of physical quantities. Selection of basic conserved
quantities that are mass, momentum, energy predetermined the choice of the system
of governing equations of fluidmechanics,which, in addition to the equations of state,
contains the equations of continuity and of momentum, entropy or temperature, and
substances transport [3, 5, 6].

The behavior of the angular momentum is not studied in flows due to the absence
of stability of an inertia tensor, which is the characteristic physical parameter of a
medium in description of a body rotation. Due to the continuous variation of the
forms of the components and the complex three-dimensional structure of real flows,
as well as irregular variations of “liquid particles” positions, the tensor of inertia of
a rotating fluid is not constant and continuously changes unpredictably.

The conventional system of fluid mechanics equations has the form [3, 5, 6]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G = G(x, t)
ρ(x, t) = ρ(T, P, Si )
∂ρ

∂t + ∇ · (ρv) = QM
∂Sn
∂t + ∇ · (Snv + In) = Qn
∂(ρvi )

∂t + ∇ j�
i j = ρgi + Qi

∂E
∂t + ∇i (Evi ) + ∇i

(
qi + Pvi − σ i jv j + ∂w

∂Sn
I in

)
= Qe

(2)

where x is the absolute coordinate frame, t is time, v is the velocity field, Sn, In
are the mass concentration and the vector of the specific diffusion flux for the nth
impurity, respectively, �i j = ρ viv j + Pδi j − σi j is the specific momentum flux,

σi j = μ
(

∂vi

∂x j + ∂vi

∂xi − 2
s δ

i j ∂vk

∂xk

)
+ζ2δ

i j ∂vk

∂xk is the symmetric tensor of viscous stresses,

δi j is the Kronecker metric tensor, μ, ζ2 are the first and second dynamic viscosities,

E = ρ
(

v2

2 + ε + 

)
is the specific total energy, ε is the specific internal energy,

w = ε + P
ρ
is the specific enthalpy, 
 is the gravity potential, g = −∇
 is the
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acceleration of gravity, q is the vector of the heat flux, QM , Qn , Qi , Qe are the
density of sources of mass—impurity, momentum and energy—respectively, ∇, �

are Hamilton and Laplace operators.
The combination of the equations of the system (2) is used to transform the energy

transport equation into the evolution equation for the temperature field

ρ cp

(
dT

dt
− �

dP

dt

)
= −∇i q

i + 1

2
σ i j ei j + I in∇i

∂w

∂Sn
+ QT (3)

where cP is heat capacity at constant pressure, � is adiabatic temperature gradi-

ent, ei j = 1
2

(
∂vi
∂x j

+ ∂v j

∂xi j

)
is the strain rate tensor, QT is density of the source of

temperature.
The system of Eqs. (2) is considered taking into account the compatibility con-

dition, which determines its rank, the order of the linearized version, and the degree
of the characteristic equation (dispersion) equation in the case of a solution repre-
sented by periodic functions [16]. The system (2) determines the flow of fluids as
forced fluxes of momentum and energy, accompanied by self-consistent changes in
the thermodynamic parameters of the medium fields that are density, temperature,
pressure, and concentration of components.

The intrinsic parameters of a fluid include the coefficients in the equations of
state for thermodynamic quantities—thermal expansion, salt contraction, adiabatic
compressibility, and kinetic coefficients in transport equations that are dynamic μ

or kinematic ν = μ/ρ viscosity, temperature κT or thermal κq conductivity, and
diffusion of a substance κi that are parameters of molecular diffusion of momentum,
energy, and impurities.

Since the medium is, in most cases, bounded either solid boundaries or a free
surface, the equations of motion (2) must also be supplemented by boundary
conditions.

On solid impermeable boundaries, the conditions for fluid flow and absence of
impurity and heat fluxes (in the absence of sources of corresponding thermodynamic
variables at the boundary) are

v · n |� = In · n |� = q · n |� = 0 (4)

where n is the normal to the boundary surface.
In a viscous fluid, the boundary condition for the velocity is transformed into

no-slip condition

v |� = 0 (5)

If temperature or impurity sources with known values are placed on solid boundaries,
conditions (4) for thermal q and density In fluxes change

κT
∂T

∂n
+ γTT = φT, κn

∂Sn
∂n

+ γSn Sn = φSn (6)
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where γT, γSn are coefficients of heat andmass transfers (temperature andmass trans-
fers), κT, κn are temperature diffusivity and diffusion coefficients of this impurity,
φT, φSn are given source functions.

The boundary conditions on the free surface ζ(r, t) are derived from the integral
formulations of the laws of conservation for the mass of the medium and impurities
supplemented by the conditions of the momentum and energy transfer. They are
conventionally divided into three types that are kinematic, dynamic, and energetic.

The kinematic boundary conditions describe the motion of a free surface and the
transport processes on it

∂ζ

∂t
+ u · ∇ζ = b|∇ζ |, In · ∇ζ = −bSn|∇ζ | (7)

where b is the flow of pure water caused by evaporation, precipitation, formation,
and melting of ice (there is no impurity fluxes from outside).

Dynamic boundary conditions are the formulation of the condition for mutual
compensation of all forces acting on the surface [3]

(
P1 − P2 + α

(
1

R1
+ 1

R2

))
ni =

(
σ
i j
1 − σ

i j
2

)
∇ jζ + ∇iα (8)

where P1, P2 and σ
i j
1 , σ i j

1 are the pressures and tensors of viscous stresses in media
separated by a free surface,α is the surface tension coefficient, R1, R2 are the principal
radii of curvature of the free surface.

The energetic boundary condition describes the influx of heat into the medium
from outside

q · ∇ζ = Q |∇ζ | (9)

where Q is the total heat flux.
Until now, the properties of a high-rank nonlinear system (2), with deepmultilevel

internal connections between physical quantities, have not been studied. In practice,
reduced versions of the systemof fundamental equations are considered.Usually, due
to the high heat capacity of water and aqueous solutions, the effect of dissipation on
medium parameters and momentum transfer is usually neglected; the energy transfer
equation is excluded from consideration in hydrodynamics.

To simplify the analysis, nonlinear functions of several variables in the equations
of state and transport equations are replaced by constant coefficients and the system
of Eqs (2) in the Boussinesq approximation and incompressibility takes the form [3,
16]
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ = ρ0 + ρ00 · s,
div v = 0,
∂s
∂t + ∇ · (s v) = ∇ · (κS∇s) + vz

�
∂v
∂t + ∇ · (v v) = − 1

ρ00
∇P + ∇ · (ν∇v) − s · g

(10)

Physically valid no-slip and no-flux boundary conditions have the following form,

u|t≤0 = 0, s|t≤0 = 0, P|t≤0 = 0,

ux |� = uz|� = 0,

[
∂s

∂n

]∣∣∣∣
�

= 1

�

∂z

∂n
,

ux |x,z→∞ = U, uz|x,z→∞ = 0. (11)

The unperturbed medium, which is selected as the initial state, is supposed to be
salinity stratified ρ0 = ρ0(S0(z)), where ρ00 = ρ0(z = 0) is reference density. The
density is described by a linearized equation of state, which permits to include the
coefficient of salt contraction in the definition of salinity. The exponential profile
of density over height ρ0 = ρ00 exp(−z/�) is characterized by a constant values

of the stratification length scale � =
∣∣∣ 1ρ

dρ
dz

∣∣∣
−1
, buoyancy frequency N =

√
g
�
and

period Tb = 2π
N . In practice, calculations are carried out in the approximation of

strong stratification (for laboratory conditions Nb ∼ 1 s−1), weak stratification (in
the earth environment Nb ∼ 10−2 s−1), potentially homogeneous (Nb ∼ 10−5 s−1),
and actually homogeneous (N = 0) liquids [15].

Basic flow components, described by the complete solution of the fundamental
equations system (2) or (10) for given initial and boundary conditions, which consist
of several independent functions, exist in the whole space; however, their relative
intensity can be distinguished in different domains of flows.Due to the nonlinearity of
the basic Eqs. (2), all the distinguished flow components, both large, and small, inter-
act with each other and produce new components. Existence of multiple components
with different incommensurable scales is manifested in the spatial heterogeneity of
the flow pattern, as well as, and its evolution and fast variations over time.

Of practical interest is the determination of the minimum number of independent
functions that make up the complete solution of the system (10). To carry out such a
classification, it is necessary to consider a complete solution of the linearized problem
for describing periodic flows in viscous fluids. The analysis of periodic solutions is
usually limited to the investigation of the waves representing large-scale regular
components which are only a part of a general set of solutions [3].

4 Classification of Components of Periodic Fluid Flows

With the action of each physical factor, such as the general rotation, stratification,
surface tension, compressibility of the fluid, the existence of a characteristic type of
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waves is associated. General properties of inertial, gravitational surface or internal,
capillary, acoustic, and hybrid waves are analyzed, as a rule, separately in specified
frequency ranges, and for clarifying the physical sense, in approximation of an ideal
fluid. However, elementary waves do not fully describe the properties of periodic
motions in a real dissipative medium, where all the above-mentioned factors act
simultaneously and waves are described by complex dispersion relations. Detailed
analysis shows that all types of waves coexist with the fine dissipative components
of the flows, caused by the viscosity, thermal diffusivity, and diffusion effects.

Traditionally, the heat conductivity and diffusion effects on wave properties are
neglected, and the effect of viscosity is taken into account phenomenologically, by
introducing attenuation factors that ensure damping ofmotions, with the exception of
thin regions near the boundaries where the boundary layers, described by own spec-
ified equations, are formed [3]. However, the dissipation effects lead to an increase
in the order and change in the type of the system of governing equation, and, accord-
ingly, the degree of the dispersion equation. In practically important case of weak
dissipation, the system (10) belongs to the class of singularly perturbed equations
[18], whose solutions describe various forms of fluid motions. In this section, a com-
plete classification of the components of three-dimensional infinitesimal periodic
flows inside a continuously stratified fluid and examples of some total solutions of
dispersion equations are presented.

Three-dimensional periodic flows with a constant positive frequency ω and a
complex wave number k = (

kx , ky, kz
)
, k = k1+ ik2 are considered. The imaginary

part of the wave vector characterizes the spatial attenuation of the wave fields. The
motions themselves are assumed to be low-intensity, allowing linearization of the
governing equations. Stratification is considered to be weak, and dissipative factors
(kinematic viscosity and diffusion coefficients) are small.

The analysis is carried out in a Cartesian coordinate frame (x, y, z) in which the
axis z is vertical and oriented against the direction of the gravity acceleration. In the
linear approximation, the system of fundamental Eq. (2.1) in traditional variables
takes the form [3, 5, 19]

⎧
⎨

⎩

∂ρ

∂t + divρv = 0
∂v
∂t = −∇P + ρν�v + (

ζ + 1
3ρν

)∇divv + g
∂ρSi
∂t = κSi �ρSi

(12)

with the no-slip boundary conditions for velocity and no-flux for the substance
concentration or temperature.
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5 Dispersion Equation of the Linearized Fundamental
Equations System

The equations of system (12), in which the small coefficients stand for terms with
the highest derivatives with respect to spatial variables, belong to the class of singu-
larly perturbed equations [18]. To obtain complete solutions of such equations, it is
necessary to use both converse and reverse expansions in the small parameter of the
form

k = k0 + ε k1 + ε2k2 + . . . (13)

kz = ε−γ
(
k0 + εk1 + ε2k2 + . . .

)
, γ > 0 (14)

The value of the coefficient γ is determined by substituting (14) into the system
of equations under consideration from the precedence condition of the resulting
principal term of the expansion.

When studying small periodic motions with a real frequency ω and a complex
wave vector k, all the variables are chosen in the form [19]

v = v0τ(r, t), p̄ = p0τ(r, t), ρ̄ = ρ0τ(r, t), τ (r, t) = exp(i(kr − ω t)) (15)

The solution of the linearized system (12) in the unlimited space is searched in
the form of expansions in plane waves

A =
∑

j

+∞∫

−∞

+∞∫

−∞
a j

(
kx , ky

)
exp

(
i
(
kzj

(
kx , ky

)
z + kx x + ky y − ωt

))
dkxdky (16)

where A are components of velocity, density, pressure, and salinity.
The summation in the expansion (16) is carried out over all the roots of the

dispersion equation expressing the condition for the solvability of the linearized
system (12), which satisfy the boundary conditions of the problem or the radiation
condition in an infinite distance from the source (or attenuation of all perturbations
at infinity).

Substituting expansions of functions for all physical variables into the system (12)
and taking into account the compatibility condition for equations, one can find the
dispersion relation, which has the form

Dν(k, ω) · F(k, ω) = 0 (17)

where

F(k, ω) = −Dν(k, ω)DκS(k, ω)

(
k2 + i

kz
�

)
+ DκS(k, ω)

(
ω kz
�T

Dν(k, ω) − N 2
Tk

2
⊥

)
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Dν(k, ω) = −iω + ν k2, DκS(k, ω) = −iω + κS k
2,

k2 = k2x + k2y + k2z , k
2
⊥ = k2x + k2y .

Disregarding the dissipative effects, the dispersion equation of the eighth degree
(17) goes into a quadratic equation describing the internal and surface gravitational
waves in an ideal fluid.

The spectral components in which |k1| � |k2|, and the damping factor is propor-
tional to the kinetic coefficients (here γ = i(ν + κT + κS)k2), are regular perturbed
components of flow which describe the large-scale wave components of periodic
flows. Regularly perturbed solutions of the algebraic equation correspond to the sys-
tem of differential Eq. (12) solutions of which, satisfying to the boundary conditions,
determine the conical beams of periodic internal waves.

The remaining six roots of Eq. (17), the imaginary part of which is not small
(|k1| ∼ |k2|) and inversely proportional to the kinetic coefficients, define ligaments—
singular perturbed components, characterizing the fine structure of flows. In the case
of an infinite medium, four of them, which do not satisfy the damping boundary
condition at infinity, were discarded. The remaining solutions form two distinct
groups.

From the form of Eq. (17), in which the multiplier Dν(k, ω) = 0 is present,
it follows that all fluid flows are structured and the waves always coexist with liga-
ments—fine singularly perturbed components. They are similar to the periodic Stokes
boundary layer on an oscillating surface in a viscous liquid [3, 4]. However, they
are located not only near the boundaries, but also inside the fluid volume involved
in the wave motion. The transverse length scale (thickness) of such components are
determined by the kinematic viscosity and frequency of the wave δν

ω = √
ν/ω (or

buoyancy frequency δν
N = √

ν/N ).
Simultaneously, the viscosity effects determine the existence of other flow com-

ponents whose properties are described by the second terms in (17). Their transverse
sizes depend on the frequencies or and the values of the kinetic coefficients, as well
as on the direction of wave propagation. In case of internal waves, they are oriented
along the direction of the group velocity vector. Ligaments are linear precursors of
vortices, vortex systems, and shock waves in fluid flows [19].

All solutions of the set (10), which are regularly and singularly perturbed, form
a single family described by the functions of the unique form (16), which differ in
the magnitude of the ratios of the real and imaginary parts. All of them are formed,
transferred, and disappear simultaneously, despite the differences in characteristic
length scales. Each of the flows components impacts on the transport of energy,
matter, and vorticity. Mechanical energy is transported mainly by slow large-scale
components. Dissipation of the motion energy occurs both in largescale and in fine-
structure components, which are characterized by large derivatives of all quantities.
The pressure distribution in the fine-structure fast components is hydrostatic that is
the pressure perturbations are absent inside ligaments. From analysis of the solutions
properties follow the next definitions of periodic flows components.
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Definitions.

Waves are large-scale periodic flow components, whose characteristic of local tem-
poral evolution (real positive frequency ω) is connected by functional (dispersion)
relation ω = ω

(
k,k2, . . . kn

)
with instantaneous parameters of spatial flow pattern

that arewavelength λ orwave vector k = (
kx , ky, kz

)
.The imaginary part of complex

wave number k = k1 + ik2 is small with respect to the real part |k2| 
 |k1|.
Ligaments are thin in the transverse direction but extended in other directions 2D

(interfaces) or 3D (trickles or filaments) components of periodic flows with the same
frequency of variations ω, in which real and imaginary parts of the wave numbers
are equal or of the same order on magnitude |k1| ∼= |k2|.

As rectilinear motion is a limiting case of circular flows with an infinite radius of
a fluid particle trajectory, the ligaments fill the rectilinear flow pattern as well. Their
thickness is defined by Prandtl’s scale δν

U = ν/U.

Transient ligaments also are formed in the process of beginning or restructuring of
the flow. In this case, their transverse length scale δν

�t is determined by the temporal
variability parameter �t whose order of magnitude is the duration of the interval for
formation or restructuring the flow pattern.

To reduce the system of equations for periodic motions (10) of an incompressible
homogeneous fluid in the phase space (ω, k)

(ω + iν)vi 0 + ki P0 = 0, kxvx 0 + kyvy 0 + kzvz 0 = 0 (18)

Corresponds to the next dispersion equation

k2(ω + iνk2)2 = 0 (19)

The firstmultiplierk2 = 0 in Eq. (19)with the solution in the form kz = ± i
√
k2x + k2y

represents in a collapsed form all kinds of wave processes caused by the effects of
compressibility, stratification, rotation, and other physical factors in inhomogeneous
liquids in external force fields.

The second multiplier in the dispersion Eq. (19) defines a pair of identically
singular perturbed solutions of the boundary layer type

(
ω + i ν k2

)2 = 0. Since
k �= 0, from (18) it follows) that P = 0.The solution has the character of a degenerate
internal thin layer, in the plane of whose centers vz = 0, and the values vx , vy depend
on the local normal coordinate z.

In a compressible medium, the dispersion equation corresponding to the reduced
part of the complete system, which includes only Eq. (10), has the form

(
k2

(
1 − iω ν̃

c2s

)
− ω2

c2s

)(
ω + iν k2

)2 = 0 (20)
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where ν̃ = ζ + 4ν/3; ν, ζ are shear (first) and convergence (second) kinematic
viscosity, cs is the sound velocity.

The first multiplier in (20) is the classical dispersion relation for a sound wave in a
dissipativemedium [3], which describes waves with a frequencyω andwave vector k
propagating with a velocity cs. The second multiplier is twice degenerated singularly
perturbed solution of the Stokes type. Consequently, the account of compressibility
does not remove the degeneracy of the equations set for a homogeneous fluid. The
system of equations of motion for a viscous inhomogeneous incompressible fluid is
usually written in the form [3, 8]

∂ρ̃

∂t
− vz

�
= 0, div v = 0

ρ0(z)
∂vi

∂ t
= − ∂ p̃

∂ xi
+ ν ρ0(z)� vi − δi3ρ̃ g (21)

where ρ = ρ0(z) + ρ̃(x, t), P = P0(z) + P̃(x, t).
The dispersion equation for system (21) has the form

(
ω2k2 − N 2k2

⊥ + iων k4
)(

ω + iν k2
) = 0 (22)

Regular solutions (22) describe internal waves whose oscillations occur in the direc-
tion of the wave propagation and group velocity of the waves. They are supplemented
by two kinds of different singularly perturbed solutions describing the fine-structure
components of the flows in the volume and on the boundary of the medium.

It should also be noted, that from the no-slip boundary condition on the fixed
reflecting wave plane, it follows that the oscillations in the internal waves (incident
and reflected) and in fine flow components are in antiphase.

In one-dimensional and two-dimensional formulations, all the considered model
equations are solvable. In the three-dimensional case, in a homogeneous com-
pressible and incompressible fluid, the complete solution of the linear system is
degenerated with respect to the singular components.

Stratification ensures the existence of two different types of singularly perturbed
solutions, which removes second-order degeneracy in problems of radiation, prop-
agation, or reflection of internal waves from an inclined surface. More detailed
descriptions of periodic internal wave beams of various types and accompanying
fine-structure components are given in [20].

Incorporating into analysis of all singular perturbed components gives a room
to construct exact in the linear approximation solutions for problems of generation,
propagation and reflection of periodic internal wave beams from a solid wall or a
critical level where frequencies of the wave and buoyancy equal, without application
of additional hypothesis or constants. Results of calculations for 2D periodic internal
waves beams generation by oscillating plate [21] and 3D conical wave beams, pro-
duced by vertically oscillating horizontal disk [22], as well as propagation of plane
periodic wave beams in a stratified fluid with an arbitrary profile of density [23],
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are in good agreement with schlieren visualization and PIV measurements of wave
velocities patterns even near the critical level where frequencies of the wave and
buoyancy equal [24]. In generally posed problems, nonlinear interactions between
waves and ligaments create new flow components including waves, ligaments, and
vortices. Due to complex status and co-existence of components, which are charac-
terized by different spatio-temporal scales, all fluid flows are nonstationary and have
no stationary limit in time and space.

Because, as noted by G. G. Stokes, the system of fundamental equations is scale-
invariant and applicable for any parameter values, the proposed classification, includ-
ing an estimation of the scales of linear components for unsteady, uniform, or periodic
flow is universal as well. Accordingly, nonlinear components such as nonlinear and
shock waves or vortices, which are the product of the nonlinear interaction of pri-
mary components, conserve in their structures the traces of all primary components,
including ligaments forming their fine internal structure.

6 Nonlinear Effects: Example of Complete Solutions
of the Basic System

Progress in the construction of high-performance computers and programming tech-
niques has enabled the solution of systems of Eqs. (2) and (10) in complete nonlinear,
physically sound statements. The evolution of diffusion-induced flow patterns, which
is formed on an impermeable obstacle, which was introduced without a disturbance
into a stably stratified fluid at rest and a fixed, was studied in [25]. Both calculated and
observed schlieren images of diffusion-induced flows on a horizontal and inclined
plate are in good agreement with each other.

The solutions obtained are used as initial conditions for solving the problem
of flow formation by a body starts moving at a constant velocity from a rest. The
calculations were performed in a wide range of 2D obstacle shapes [26] at different
orientation relative to the trajectory of motion [27], the values of velocities and
the buoyancy frequency [28], which corresponds to the range of Reynolds numbers
from 1 to 100,000 [27]. The numerical codes were written taking into account the
condition of the observability for large components (internal wavelengths), which
determine the size of the calculation region or observation field and the resolution of
thin ligaments with thickness δν

U and δν
N, which are defining the fine structure of the

flow.
Comparison of calculations data on high-resolution observations of the flow pat-

tern, conducted by the schlieren instrument IAB-458 at the LMT stand of the URF
“HPC IPMech RAS,” presented in Fig. 1 shows a good qualitative and quanti-
tative agreement. The experiments were conducted using a vertical slit illumina-
tion diaphragm and a flat vertical Foucault knife [29]. Changes in illumination are
proportional to variations in the horizontal component of refraction index gradient.
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Fig. 1 Comparison of schlieren images (gradient of light refraction index) and calculated flow
patterns (horizontal component of density gradient) around a vertical plate (h = 2.5 cm, Tb =
12.5 s): a–c U = 0.03, 0.18, 0.75 cm/s
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The refraction index, salinity, and density are related by linear ratios for the
aqueous sodium chloride solution, which was used to create the stratification. The
coloring is due to the pronounced light dispersion in such a medium [28].

The vertical plate was moving with constant velocity from right to left. In the
creeping flow regime, at a slow body motion, the schlieren image of flow pattern
is characterized by the existence of a set of flow structural components, including
upstream oblique rays of transient internal waves, attached internal waves past the
body. Fine ligaments, bounding the density wake, touch the rear side of the plate at
some distance from its edges (Fig. 1a).

In the regime of intense wave generation, both waves and a rich family of liga-
ments forming a thin-layered wake are presented (Fig. 1b). Moreover, both in the
calculations and in the experiments, the fine structure inside the upstream perturba-
tion is visualized, indicating the existence of ligaments both past the body and in
front of it. In the experiments, the phase surfaces of the attached internal waves are
deformed by the wake flow a bit stronger as compared to the calculation results, and
the split pattern of thin-layered perturbations is more pronounced (Fig. 1c).

The numerically calculated large-scale wave components of the flow around a uni-
formly moving vertical strip, based on common versions of the theory of turbulence,
agree well with the experimental observation of the flow pattern, but calculations do
not reproduce the fine structure of density wake and its boundary [30].

7 Fine Structure of Flows Induced by Free-Falling Drop
Impact

Ligaments, due to the universality of the nature of their formation, exist in all types
of flows, both fairly large and small, in slow (for example in diffusion-induced flows)
and in the wakes past moving obstacles as well as in fast compact flows. In particular,
nonstationary ligaments are formed in a rapidly varying flow that formswhen a freely
falling drop is immersed into a liquid. They play an important role in the processes
of formation of the selected structural components, transfer, and distribution of the
drop substance in the target fluid.

At the initial stage of the contact of liquids, the expanding thin sheet-like circular
jet (“ejecta”) with narrow edge streamers is formed. In the initial stage of the drops
immersion, the plane of jet is tilted at a small angle to the horizon and the most
part of forming small droplets fly outside from the domain of the fluids confluence.
First droplets fly out at small angles, and with time at more steep. Moreover, even in
the early stages of the cavity and crown formation, some of the droplets fly inwards
and fall onto the surface of the immersing drop [31]. Photographs of typical impact
markers produced by the shock of small droplets at surface of the immersing drop
surrounded by short capillary waves are shown in Fig. 2.

The formation of fibers and thin trickles is a result of the spatial inhomogeneity
of an internal energy distribution. The energy takes different values at and near the
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Fig. 2 Capillary waves on the surface of immersing drop produced by small hitting droplets: a drop
of water with a diameter of D = 0.42 cm falling into water at a velocity U = 2.5 m/s; b drops of
brine are immersing in water, D = 0.5 cm, U = 2.5m/s

surface of a liquid, where the effects of surface tension are manifested, and in the
bulk of the liquid. Excessive surface potential energy is quickly released when the
free surfaces of confluent liquids are eliminated. Released energy is transformed into
other forms, including the energy of mechanical motion of thin layers of liquids.

The thin fibrous structure of the flow is observed at all stages of the rapid evolution
of the flow pattern. With beginning of the fluid confluence, the ligaments, which
appear in the form of thin jets containing the drop matter, form a fairly regular-ruled
pattern on the crown [14] and netted at the bottom of the cavity (Fig. 3a).

Separately isolated radially directed colored jets with vortex tips, which are also
observed at later stages of the flow evolution, in the mode of a thick ascending
(cumulative) jet formation, are shown in Fig. 3b.

Slow ring vortices, propagating inside the targeted fluid at the final stage of flow
evolution, also have a thin fibrous structure, which was noted in the first experiments
of Rogers [32] and Thomson and Newall [33], performed in the nineteenth century
and stably reproduced in many experiments [34].

Fig. 3 Images of the discrete distribution of the drop substance, colored with alizarin inks, on the
surface of the crown and trough under the splash
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8 Discussion of Results

In accordance with modern views, the physical properties of a liquid (gas) are deter-
mined by thermodynamic potentials, and their derivatives determine traditional vari-
ables of thermodynamic and mechanistic nature that are density, pressure, tempera-
ture, and concentration of solutes. Parameters of media are connected by state equa-
tions, containing their own sets of parameters (coefficients of thermal expansion, salt
contraction, compressibility). Kinetic coefficients of molecular transfer for momen-
tum, temperature, and substance, which are written in fundamental equations, are
important parameters of studied media as well.

An important role in the structuration of flows plays the energy, whose distribution
in a medium with boundaries and contact surfaces is non-uniform and includes thin
interfaces and filaments with high density (in particular, in the vicinity of the free
surface and in areas of high gradients of thermodynamic quantities). Energy exchange
in flows can occur slowly in dissipative processes with molecular transfer rates, more
quickly in flows with transport velocity, with characteristic group velocity in waves,
and extremely quickly under the influence of direct atomic-molecular interactions.

Changes in the state of the investigated medium are described by the traditional
system of fundamental partial differential equations that characterize the transport
of matter (the density of the medium as a whole and its constituent components),
momentum, and energy. The equations are supplemented by physically reasonable
initial and boundary conditions. The variety of forms of energy distribution and the
difference in exchange rates provides the possibility of the formation and existence
of complex evolving flow structures.

A complete system of equations of fluid mechanics, including the equations of
state, which is scale-invariant, closed, self-consistent and solvable, was selected as
the basis for determining the flow of liquids as:

Flows are a forced flux of momentum and energy, accompanied by self-consistent
changes in the fields of other physical quantities—density, temperature, pres-
sure, impurity concentration, and physical parameters (velocity of sound, index of
refraction, specific conductivity, and others).

Analysis of the system of equations, taking into account the compatibility condi-
tion, which determines its rank, the order of the linearized version, and the degree
of the characteristic equation, shows that the flows are characterized by a whole set
of functions describing structural components, each one is characterized by its own
spatial and temporal scales, generally incommensurable.

In weakly dissipative media, in the linear approximation, large-scale components
are described by regularly perturbed solutions and fine-structure components are
singularly perturbed asymptotic solutions. The number of components is determined
by the form of the state equation, but not less than four, taking into account only
viscosity from the set of dissipative factors.

The key structural components of the flows are the waves and ligaments com-
pounding the total solutions of the linearized system. Waves are characterized by
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dispersion relations connecting real positive frequency ω with instantaneous param-
eters of spatial flow pattern (wavelength λ or wave vector k). Ligaments are thin in
the transverse direction but extended in other directions 2D (interfaces) or 3D (trick-
les or filaments) components of periodic flows with the same frequency variations
ω, in which real and imaginary parts of the wave numbers are equal or of the same
order on magnitude |k1| ∼= |k2|.

Ligaments exist in all types of flows—innonstationary, translational, vortex,wave,
and creeping.Their transverse spatial scales are determinedbydissipative coefficients
and a characteristic time interval that is by the duration of the flow formation, inverse
frequency of a wave, or ratio of length scale to the flow velocity.

In the nonlinear description, all the components of the flows interact with each
other and generate new ones, both with large and small length scales including
vortices, jets interfaces, fibers, shock waves, and others. In practice, ligaments are
observed as high-gradient surfaces and fibers in all the spatial scales are available for
observation, frommolecular cluster size to galactic scales. Due to complex status and
co-existence of components, which are characterized by different spatio-temporal
scales, all fluid flows are nonstationary and have no stationary limit in time and
space.

The solutions of the fundamental system of equations, chosen as the basis of
analytical, numerical, and laboratory modeling techniques, provide the ability to
directly compare the results and determine the error of the data.

9 Conclusion

The system of fundamental governing equations for transport of substance, momen-
tum, and energy together with equations of state for thermodynamics potential and
density is used as basis for compatible analytical, numerical, and experimental study
of a stratified fluid flow. The system is analyzed taking into account the compatibil-
ity conditions which define its rank, power of linearized version, and degree of the
characteristic (dispersion) relation. The total solutions of the system contain several
independent functions characterized by their individual spatial and temporal scales,
generally incommensurable.

New classification of fluid flows components including ligaments (fine interfaces
and filaments) as precursors supplementing all conventional flows components that
arewaves, vortices, jets, wakes is proposed basing on total solutions of linearized sys-
tem of fundamental fluid dynamics equations. The thickness of ligaments is defined
by dissipative factors and characteristic time interval or frequency, the length—by
boundary condition and prehistory of the flow.

High-resolution visualization of stratified flows past obstacles in the laboratory
tank was performed on the stand of Unique Research Facility “Hydrophysical com-
plex IPMech RAS (HPC IPMechRAS)” and numerically calculated within the frame
of the open-source CFD utility OpenFOAM using computing resources of cluster
systems and supercomputers SRCC Lomonosov Moscow State University.
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Both in the calculated and visualized patterns of flow perturbations formed by
uniformmovement of a vertical plate, systems of internal waves, including advanced,
attached and short ones, and thin interfaces such as ligaments, formed due to the
combined influence of the stratification and dissipation effects, are distinguished. The
observation and calculation results are in good qualitative and quantitative agreement
with each other.
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Abstract We study the causal relation in a fluid dynamical system, for the impulse
and frequency response approaches as instability theories and corresponding experi-
ments. The zero-pressure-gradient (ZPG) boundary layer is analyzed to find comple-
mentary aspects of these approaches. The drawbacks of instability study are in for-
mulating it as a homogeneous system. Another difficulty for the instability is in clas-
sifying it for either temporal or spatial growth. When viscous effects were included
in the spatial theory, it predicted wave solution (known as Tollmien–Schlichting (TS)
waves), which left many scientists unconvinced. Experimental verification remained
difficult as instability does not require explicit excitation, and dependence on back-
ground noisemakes experiment non-repeatable. The classic experiment of Schubauer
and Skramstad for the boundary layer (J Aero Sci 14(2), 69–78, [24]) excited a
monochromatic source inside to obtain spatially growing TS waves—considered as
the frequency response of the boundary layer. In contrast, Gaster and Grant (Proc R
Soc A 347(1649), 253–269, [13]) tried to create TS waves by a localized impulse
excitation and endedup creating awave-packet by the impulse response of the dynam-
ical system. Here, we focus mainly on the impulse response of the ZPG boundary
layer using Bromwich contour integral method (BCIM) developed by the authors for
spatio-temporal growth of disturbance field in creating spatio-temporal wave-front
(STWF). The main achievement of BCIM is in identifying the cause for the creation
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1 Introduction

One of the principal tenets in developing dynamical system theory is to study the
relationship between cause and effects. This is true for a fluid dynamical system
characterized by large degrees of freedom, as compared to other dynamical systems
in many fields of physics. While experimental verification of any theory is imper-
ative, however, this is a difficult task for theories of instabilities. This is because
instability theories rely on the omnipresent imperceptible ambient disturbances to
produce the response which is difficult to quantify. Mathematically, the instability
problem is posed as the output of a system governed by a homogeneous differential
equation, for homogeneous boundary and initial conditions. Implicit in this scenario
is the requirement of an equilibrium state, in which the imperceptible omnipresent
disturbance resides and draws energy for its growth. For example, flow past a cir-
cular cylinder displays unsteadiness above a critical Reynolds number (based on
oncoming flow speed and diameter of the cylinder), even when one is considering
uniform flow over a perfectly smooth cylinder. While this can be rationalized for
experimental investigation, where the prevalence of background disturbances cannot
be ruled out, the situation is far from straightforward for computational efforts. Roles
of various numerical sources of error triggering instability for uniform flow past a
smooth circular cylinder are complicated. This issue has been dealt in [31]. Inability
to compute the equilibrium flow past a circular cylinder is due to the presence of
adverse pressure gradient experienced by the flow on the lee side of the cylinder.

The situation is equally difficult for the ZPG flow over a flat plate. As the equi-
librium flow is obtained with significant precision, it is possible to study the ZPG
flow past a flat plate as a receptivity problem, as has been done experimentally to
study the existence of TS waves by Schubauer and Skramstad [24], where the dis-
turbances were effectively created by a vibrating ribbon inside the boundary layer.
The computations have been done with varying degrees of success in [12, 3, 6, 7,
20, 29, 39] for 2D and 3D instability routes, with results improving with advent
of better computers and numerical methods. Early results obtained in small com-
putational domain managed to show TS wave-packets (and not waves), but starting
with the theoretical finding of STWF due to a linear mechanism [32] along with TS
wave-packet has completely changed our perception of the field, both in terms of
theoretical and computational approaches.

While the experiment in [24] virtually rescued the theoretical instability studies,
it is necessary to understand the motivation of that experiment. Concomitant with
the developed spatial instability studies by solving Orr–Sommerfeld equation (OSE)
(as given in [10, 27]), the boundary layer was excited by a monochromatic localized
source, and hence, this can be termed as the frequency response of the boundary layer.
In the experiment, the authors could not create TS waves by acoustic excitation,
and this drew the attention on the subject of receptivity of equilibrium flows to
different types of input to the system. As the existence of TS wave-packet cannot
be demonstrated outside the strict confines of the laboratory, Gaster and Grant [13]
studied the ZPG boundary layer excited by a localized impulse. Mathematically,
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this is equivalent to using an input, which is a delta function in space and time,
and the results provide the impulse response of the dynamical system. Interestingly,
this experiment produced a wave-packet, which can be identified with the STWF
found in [32]. It is noted that the search for STWF was sought in other branches
of physics, with early efforts recounted in Brillouin [8] for electromagnetic wave
propagation and by Bers [2] in plasma physics. Unfortunately, the authors in [13]
thought that the impulse response was an ensemble of TS waves, which can be
obtainedby spatial instability theory for a parallel boundary layer,whichwas summed
for the eigenfunctions with empirical weights. In a recent numerical study, Bhaumik
and Sengupta [4] have shown the creation of the STWF by solving the complete
Navier–Stokes equation (NSE) with an accurate numerical method. The authors
identified the impulse response as the STWF,which is the building block that explains
diverse physical and geophysical events, such as transition to turbulence, roguewaves
and tsunamis. The role of STWF in creating transition to turbulence via frequency
response route has been conclusively established in [3, 29, 30]. There aremany efforts
[19, 37] which have talked about transient growth, algebraic growth, as alternative
routes of transition, without involving TS waves.

Thus, it is essential to bridge the theoretical gap between the impulse and the
frequency response of a dynamical system, which are used in theoretical and exper-
imental studies. Here, the results for ZPG boundary layer are used to theoretically
explain the common elements of the impulse and frequency responses. In the con-
text of flow instability, the difference between the two responses continues to baffle
the research community. The primary goal of the present research is to theoretically
explain from the solution of OSE, the existence of STWF and its ubiquitous role in
manifesting unsteady effects, even when the excitation is imposed impulsively once,
which continues to grow indefinitely. Such an exercise can show the presence of
STWF even when the amplitude of the STWF is small at the onset. We note that the
STWF was found due to a change of point of view when flow instability was solved
for generic spatio-temporal growth.

In the beginning,Orr andSommerfeld [21, 34] proposedOSEwithout anyqualifier
on the disturbance growth, whether it is in space or in time.WhenRayleigh’s theorem
for temporal growth failed to explain the instability of ZPG boundary layer [10], it
was assumed that the growth must be in space. Although Heisenberg, Tollmien and
Schlichting [10, 17, 23, 27, 36] solved the temporal instability for OSE, the results
were interpreted as growth in space, using the growth in time to growth in space,
using the group velocity [8, 27]. With the advent of computers, OSE has been solved
by few methods for stiff differential equations. Of all the methods, the most reliable
one appears to be the compound matrix method (CMM) described in [10, 26, 27]. In
Sengupta [25], CMMwas used along with discrete fast Fourier transform (DFFT) to
solve the problem corresponding to the experiment of [24] using the signal-problem
assumption. This is the first numerical solution, while theoretical conjectures exist
in [1, 14, 15].

Here, we explain how the STWF is created for different start-up conditions by
BCIM in solving OSE for a 2D response field. The corresponding solution of NSE
has been shown for impulsive and non-impulsive start-ups in [5]. The formulation
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of the problem is shown in Sect. 2. This is followed by a description of the utility
of the signal problem in Sect. 3. Next, the impulse response for the ZPG boundary
layer is shown in Sect. 4, for three different Reynolds numbers, based on displace-
ment thickness. The frequency response cases are shown next in Sect. 5, for three
streamwise exciter locations, with identical physical frequency of excitation, to con-
firm with the parallel flow approximation in solving OSE. In the following Sect. 6,
we describe the receptivity of ZPG boundary layer, when the input has no specific
time scale imposed, while the time variation of input corresponds to a Heaviside
function, a ramp and a rapidly varying function, but with smooth variation at the
onset and the final state. To emphasize the importance of boundary layer growth and
the corresponding shortcoming of parallel flow approximation, the case of frequency
response described in Sect. 5 by solving OSE is computed again by solving NSE in
Sect. 7. The paper closes with a summary and conclusion.

2 Formulation of the Impulse and the Frequency Response

The schematic of the problem is shown in Fig. 1a in the physical plane, while it
is solved in the spectral plane, involving streamwise wavenumber (α) and circular
frequency (ω0). For the 2D problem, the response is calculated for the linearized field
following the governing OSE given by

D4φ = i R̃e
[
(αU (ỹ) − ω0)D

2φ − αU ′′(ỹ)φ
]

(1)

where D2 = d2

dỹ2 − α2, R̃e = Ueδ
∗

ν
. Here, the displacement thickness at the exciter

location has been used as the length scale, while the free stream speed is used as
the velocity scale. The time scale is derived with the help of these two scales. The
disturbance stream function is given by its spectral transform as

ψ̄ = ∫
αBr

∫
ωBr

φ(α, ỹ, ω0)e
i(αx̃−ω0t)dαdω0 (2)

which is solved for both the signal and spatio-temporal problems using BCIM. The
difference between these two lies in choosing integration contours in the spectral
plane, in the respective strip of convergence—known as the Bromwich contour [22,
27, 38]. Here, the response to wall excitation is studied for three types of excitation
fields: (i) Case-I—where the input is simply a product of delta functions in space
and time that represents the pure impulse response. The other cases are shown in
Fig. 1b, with the impulsive start represented by the Heaviside function (Case-II) and
the other represents a non-impulsive start (Case-III) given by

U1(t − t0) = 0.5

[
1 + erf

(
t − t0
2
√

παE

)]
(3)
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Fig. 1 a Schematic of the computation domains for the wall excitation of an equivalent parallel
flow given by Blasius profile at a location indicated by the dashed line and b the envelope of the
time-dependent excitations given by the Heaviside function (H(t)) and an error function (U1(t)),
triggered at the indicated times; t = 0 for H(t) and t = t0 for U1(t − t0)

which is related to the error function. One can study the impulse and frequency
response cases, where H(t) and U1(t) represent the envelope for the amplitude
of input disturbance stream function, ψ̄ . If the excitation frequency is ω̄0, then the
excitation for the frequency response case is given by ψ̄e−iω̄0t . Here,we have reported
only one frequency response case, which is started impulsively using H(t). We have
also studied cases, where the dynamical system is excited by inputs, as shown in
Fig. 1b without any imposed time scale, which will be termed as non-oscillatory
transient cases. Additionally, a case of ramp start (Case-IV) is also studied which
is non-oscillatory. Note that when αE approaches zero in Eq. (3), one recovers the
Heaviside function, H(t). Also in Fig. 1b, the non-impulsive caseU1(t − t0) becomes
nonzero from t = 0 onwards, while it is centered around t0. For this reason, the
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Fourier transform has been calculated, using time-scaling, frequency and time-shift
theorems of Fourier transform [27].

We want to highlight the fact that for the frequency response case, the finite start-
up with Heaviside function introduces all possible circular frequencies. Even in the
case where U1(t) is characterized by αE, with a small value, one excites a wide
range of frequencies, apart from ω̄0, for the frequency response case. For an unstable
system, it is not necessarily guaranteed that the response will be dictated by ω̄0 only.
Thus, for the study of instability, there are hardly any differences between impulse
and frequency responses, as both the cases are excited by wide-band input by finite
start-up.

In the signal problem, it is assumed that the response is at the frequency of excita-
tion, ω̄0, and as a consequence, the frequency is fixed, i.e., ω0 = ω̄0, and one solves
Eq. (1) along the Bromwich contour in α(= αr + i ᾱi )-plane only. Choice of constant
ᾱi facilitates use of DFFT for the inverse transform. The Bromwich contours used
in BCIM are shown in Fig. 2, with the choice of contour dictated by the position of
various eigenvalues in complex α and ω0 planes, with details explained in [16, 27,
28].

As noted for unstable systems, the signal-problem assumption is incorrect. To
solve the problems correctly, the BCIM was proposed [27, 28], where the dynamical
system picks up the correct space-time scales for the fixed R̃e, consistent with the
physical dispersion relation. After solving Eq. (1) along the Bromwich contours in
the complex α- and ω0-planes, as shown in Fig. 2, one performs double inverse
transforms to recover the response field in the physical plane. Using BCIM, the
STWF was noted first in [32], which was shown to cause 2D turbulence in [29,
30] and 3D turbulence in [3], in the framework of experiments performed using the
frequency response approach. The existence of STWF by the impulse response has
also been shown by solving 3D NSE for 3D routes of transition in [4, 35].

In the present work, the linearized problem is solved theoretically and computa-
tionally by considering different impulse and frequency response approaches. Only

Fig. 2 Bromwich contours used here have been shown in complex α and ω0-planes for the BCIM
approach. For signal problems, only the contour in α-plane is used
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one frequency response case is included here to demonstrate the difference between
solution of OSE by BCIM and by direct simulation of NSE.

3 The Utility of the Signal Problem

Results of Eq. (1) have been obtainedwith the signal-problem assumption for the first
time in [25] using CMM [27]. The same method has been used here, by considering
the height of the domain in the wall-normal direction given by the similarity variable
used in Blasius solution as ηmax = 12 with 3000 points. Along the Bromwich
contour (αBr), 8192 points are taken, for which Eq. (1) is solved, along with ᾱi =
−0.008. While it has been reasoned above that the signal problem is inconsistent
for instability studies, and instead, one should treat these as spatio-temporal growth
problem, as in [27, 28, 32] to study frequency response cases. Thus, one should solve
Eq. (1) for any type of excitation implied in Eq. (3), along the Bromwich contours
shown in Fig. 2. Finally, double inverse Fourier transform is performed to obtain ψ̄ ,
as given in Eq. (2). This is the BCIM technique followed in [27, 28, 32], which led
to the finding of the STWF. It is readily noted in BCIM that one needs to solve the
signal problem, for every point along the Bromwich contour, ωBr in the ω0-plane.

In Fig. 3, ψ̄ is plotted for three different cases with R̃e and ω̄0 combinations
given by (1000, 0.1), (1500, 0.15) and (2000, 0.20), such that the physical frequency
F = ω̄0

R̃e
remains the same. The results are shown at a height which is close to the

inner maximum of the disturbance field. The solution is determined by the instability
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Fig. 3 Signal-problem solution for three representative R̃e values, with results shown at the indi-
cated height, ỹ = 0.278. The non-dimensional frequencies are so chosen that one is tracking the
same physical frequency. The Bromwich contour in α-plane is at ᾱi = −0.008, and αr ranges from
−4π to +4π , with 8192 points
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property of the Blasius boundary layer, as given by the spatial analysis. Thus, the
first combination shows growing TS wave. These results show the unique feature
of receptivity analysis, in the form of a local solution in the vicinity of the exciter
at x̃ = 0, whose full view is shown in the inset, on the top right. These features of
solution for the signal problem is noted in the solution using BCIM, except that the
STWF is not seen, as one noted the STWF from the spatio-temporal solution of OSE
and NSE in [28, 29, 32].

4 The Impulse Response of the Blasius Boundary Layer

In studying the spatio-temporal dynamics for the Blasius boundary layer, we first
consider the case of pure impulse, with the wall excitation given by

ψ̄(x̃, 0, t) = δ(x̃)δ(t) (4)

This is the type of wall excitation investigated in [13]. The results are obtained here
by solving Eq. (1), for the input given by Eq. (4), using BCIM along the Bromwich
contours, αBr and ωBr, using 8192 and 2048 points, respectively. The Bromwich
contours are parallel to the real axis, located below at ᾱi = −0.008 in α-plane and
above at ω̄0i = 0.01 in the ω0-plane. The height of the domain in the wall-normal
direction is same, as that has been used in the signal problem. For eachω0, one solves
an equivalent signal problem, as described in the previous section. The results shown
in Fig. 4 are for three R̃e indicated in the frame. At the location of the exciter (x̃ = 0),
one notices the local solution which rapidly decays with time. However, in this case,
one does not also see the TS wave, and instead the STWF is noted, that convects
in the downstream direction, at nearly the same speed. For R̃e = 1000, the STWF
appears at a downstream location, despite the fact that the excitation for this case is
applied at the most upstream station. These results here are shown from the solution
of OSE, which requires the parallel flow approximation, while the solution of 3D
NSE has been shown in [4, 35]. In [13], it was assumed that the STWF is a weighted
sum of TS waves created by the corresponding signal problem. The present solution
not only shows the superiority of BCIM but also establishes the correct interpretation
of STWF as the basic unit process of disturbance growth for the equilibrium flow
arising as the impulse response.

5 The Frequency Response of the Blasius Boundary Layer

It has been noted already that the frequency response of a dynamical system is a
misnomer for a physically unstable system, as the unstable modes are going to be
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Fig. 4 Impulse response of the Blasius boundary layer to excitation as given by Eq. (4) for three
representative R̃e values, with results shown at the indicated height, ỹ = 0.278. The Bromwich
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with 2048 points

dominant, as compared to the forced response at the excitation frequency. Histor-
ically, this wrong perception arose due to adoption of spatial instability theory for
fluid flow, in which one looks for spatial growth at the imposed frequency, associ-
ated with the signal-problem assumption. We have already noted in describing the
various wall excitation cases that the finite-time start-up excites all possible circular
frequencies, and the roles of various modes of transient variation have been noted in
the previous section on impulse response. In this case the wall excitation is given by

ψ̄(x̃, 0, t) = δ(x̃)ψ̄0e
−iω̄0t (5)

where ψ̄0 = H(t) or U1(t) with a chosen value of αE , depending on whether the
start-up is impulsive (as given by Heaviside function) or non-impulsive (as given by



160 T. K. Sengupta et al.

error function-type variation, with U1(t)). The frequency response with impulsive
start given by Heaviside function has been solved originally in [28] for a case with
R̃e = 1000 and ω̄0 = 0.1, which has been pronounced as spatially unstable. Here,
we have solved the same problem, with significantly higher number of points in x̃-
and ỹ-directions.

The results shown in Fig. 5 are for the spatially unstable case (R̃e = 1000 and
ω̄0 = 0.10) solved by BCIM. In the depicted solution, apart from the local solution,
the TS wave-packet and the STWF are also present. It is not readily apparent that
there exists the STWF, as it was also not identified in [28], where this set of results
were presented for the first time. For this spatially unstable case, the TS wave-packet
and the STWF are fused together in the displayed solution of OSE, shown for the
indicated times. We would like to emphasize that this typical structure of blended
TS wave-packet and STWF is a consequence of the parallel flow assumption used to
formulate and solve OSE. Otherwise, the solutions of OSE for other stable cases, as
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Fig. 5 Frequency response of the Blasius boundary layer to excitation as given by Eq. (5) for
R̃e = 1000 and ω̄0 = 0.1, with results shown at ỹ = 0.278. The Bromwich contours are the same
used in Fig. 4
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will be shown later, display the separation of TS wave-packet and the STWF. Later,
when BCIM was used to investigate spatially stable cases in [32, 33], the presence
of STWFwas easily discerned, with the TS wave-packet is seen to decay with space,
while STWF grows and convects downstream. Two such stable cases are shown here
in Fig. 6 for the indicated parameters.

The emergence of TS wave-packet is clearly visible from the local solution in all
the frames. The property of the TS wave-packet is dictated primarily by the spatial
stability property of the OSE at the location of the exciter, and it is easy to rationalize
the decay of the TS wave-packet. However, the STWF has the property of growth in
space and time and has little to do with spatial theory properties. The propagation
properties are the same, as seen inFig. 4.Consistentwith the parallel flowassumption,
the solutions shown in Figs. 5 and 6 are for the same constant physical frequency
( f ), for which ω̄0

R̃e
remains constant, which in this case provides the non-dimensional

physical frequency as F = 2π f ν/U 2∞.
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Fig. 6 Frequency response of the Blasius boundary layer to excitation as given by Eq. (5) for
R̃e = 1500 and 2000, for ω̄0 = 0.15 and 0.20, respectively. The results are shown at ỹ = 0.278.
The Bromwich contours are described in Fig. 4
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6 Non-oscillatory Start-up Cases Solved by BCIM

Having noted the distinction between the impulse and the frequency response in the
previous two sections, we note the absence of TS wave-packet for the former. At the
same time, both cases have a local solution and STWF.However, the local solution for
the impulse response is significantly smaller, and which furthermore rapidly decays
with time. Thus, after some time, only the STWF will be the common link between
the solutions of the impulse and the frequency response cases. It has been shown that
the STWF is the precursor of transition to turbulence for 2D in [29] and 3D transition
in [3, 4, 35]. It has also been shown that it is not necessary that STWF is created
due to impulsive start for frequency response cases in [5]. The ever-growing STWF
for both the impulse and frequency response cases shows that it is not necessary
to impose any specific time scale to cause transition. However, imposition of time
scale helps in creating TSwave-packets, which helps in transition for the frequencies
which are closer to Branch-I of the neutral curve, where STWF is constantly fed by
TSwave-packet and which does not remain stationary. These cases have been termed
as interacting or I-type transition cases in [5]. Keeping this in view, next, we report
response of Blasius boundary layer to wall excitations which are associated with a
sudden jump used as the input, without any oscillation frequency associated with the
input.

6.1 Impulsive Excitation at the Wall by a Heaviside Function

In this case, the exciter is placed at a location, where R̃e = 1000, and the input
excitation is given by the Heaviside function. Given that the present investigation is
for a linearized system, the amplitude of excitation is in non-dimensional form of
unity value. Thus, the discussion here pertains to unit amplitude of excitation applied
on the disturbance stream function, which can be scaled to the actual value of wall
perturbation.

In Fig. 7, the streamwise component of disturbance velocity is shown as a function
of streamwise distance at a height of ỹ = 0.278, for the indicated time instants. In
this case also, one can clearly observe the evolution of the STWF with space and
time. The fact that the STWF is created by a delta and Heaviside function clearly
establishes that transition to turbulence can be caused by such an impulsive excitation,
as shown in Figs. 4 and 7. This clearly underlines the fact that for ZPG boundary
layer, the transition to turbulence can be caused by the STWF without the presence
of TS waves or wave-packets.
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Fig. 7 Response of the Blasius boundary layer to excitation given by the Heaviside function for
R̃e = 1000. Results are shown for ỹ = 0.278. The Bromwich contours are as in Figs. 4, 5 and 6.
The input is given in the form of unit disturbance stream function at the exciter location

6.2 Non-impulsive Excitation at the Wall Given by Ramp
and Error Function

In these cases, we have used input disturbance stream function from Eq. (3) for the
error function with αE = 100 and t0 = 150, and the ramp function increases linearly
from zero at t = 0 to unit value at t = 300. To solve OSE, the boundary conditions
are obtained using DFFT of the time signal at the exciter. The results are obtained
by solving OSE using BCIM, and Bromwich contours are chosen as before for the
impulse and frequency response cases.

In Fig. 8, the streamwise component of disturbance velocity is shown as a function
of streamwise distance for the two cases at the indicated times. We observe that these
cases produce response fieldswhich are one order ofmagnitude lower, as compared to
the case shown in Fig. 7. Due to the faster growth rate of the error function excitation
case, as compared to the ramp function case, the response field amplitude is higher
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Fig. 8 Response of the Blasius boundary layer to excitation given by error function and ramp
function for R̃e = 1000 during the time interval of 0 ≤ t ≤ 300, with results shown for ỹ = 0.278.
The Bromwich contours are as in Figs. 4, 5 and 6. The input is given in the form of constant
disturbance stream function at the exciter location

for the former. However, small is the approach of the input disturbance field to the
same final value, one expects creation of the STWF, implying the ubiquitous nature
of the STWF. Due to slope discontinuity during onset and terminal stage of the ramp
start-up, one can see two distinct STWFs in the disturbance field as shown in Fig. 8.
Given sufficient length and presence of wall shear, the STWF will grow eventually
to cause transition to turbulence.

Although the response for the case of non-oscillatory Heaviside function is one
order of magnitude higher than the other two cases, the spectrum of the response
fields as shown in Fig. 9 indicates that the scales of the STWF for all the three cases
are similar. One also notices that the STWF occurs not at a particular length scale
but is a wide-band phenomenon centered around αr ≈ 0.3 for the displayed time,
t = 450. Subsequently, all the three cases amplify which is the universal feature of
the STWF.
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Fig. 9 Fourier transform of ud for the three non-oscillatory input cases, whose responses are shown
in Figs. 7 and 8 at the indicated time, t = 450

7 The Frequency Response Obtained from the Solution
of the Navier–Stokes Equation

We have noted in Fig. 5 that the TS wave-packet and the STWF are together at
all times. This led to confusion in [28], whereby the STWF was not recognized.
Subsequently, when the spatial stable cases were solved by BCIM in [32, 33], one
could distinguish between the TS wave-packet and the STWF, as also seen in Fig. 6.
This particular feature for the spatially unstable cases is due to the parallel flow
approximation, as was noted from the solution of NSE in [29].

The case considered in [29]waswith a simultaneous blowing-suction strip extend-
ing from R̃e = 656–676, and such an excitation led to fully developed turbulence
studied for different amplitude of excitation, displaying k−3 spectrum for ud. For the
case considered here in Fig. 5, we report the corresponding solution by solving NSE
in Fig. 10.

We would like to point out that the scales used in representing the NSE are based
on convection scales, while those used for OSE are viscous scales. For example,
the viscous time scale is given by Tsc = δ∗

U∞ , whereas in solving the NSE, we have
used a length scale (L), such that the corresponding Reynolds number is given by
ReL = 105 and the corresponding time scale is Tc = L

U∞ . As a consequence, the

ratio of the two time scales is given by Tc
Tsc

= ReL
R̃e

. For the solution of NSE, the non-
dimensional coordinates are given by x and y. From the top frame at tc = 25, one
can clearly observe that the STWF is distinctly different from the TS wave-packet.
The solutions of OSE shown have extraordinarily high resolution as compared to
the solution obtained by the NSE, because of the different time resolution of NSE
and OSE. Thus, it is not possible to show solution of OSE corresponding to the
top frame of Fig. 10 with the number of points taken in ω0-plane. In Fig. 10, one
notices continual growth and downstream propagation of the STWF, while the TS
wave-packet appears to remain stationary, although this is a progressive wave, whose



166 T. K. Sengupta et al.

-0.02

0

0.02 Re = 1000, ω0 = 0.1

ud

tc = 25
~ _

0 10 20 30
-0.02

0

0.02

x

ud

tc = 60

-0.02

0

0.02

ud

tc = 35

-0.02

0

0.02

ud

tc = 40

-0.02

0

0.02

ud

tc = 50

Fig. 10 Frequency response of the Blasius boundary layer to excitation as given by Eq. (5) with
the exciter located where R̃e = 1000 for ω̄0 = 0.1, and the results for ud are shown at y = 0.278
for the indicated times

amplitude decays with downstream co-ordinate x . The observed stationary nature of
the TS wave-packet is determined by the wave properties of the packet as determined
by its growth and decay for the constant frequency wall excitation. The solution
displayed in Fig. 10 is all during the linear growth stage of the STWF. The detailed
2D solution of similar cases has been reported in [29, 30].

8 Summary and Conclusion

Here, we have studied the impulse and frequency response cases to reconcile between
the experiments reported in [24] (which has been termed as frequency response, as the
input is provided at a fixed frequency consistent with the practice in spatial stability
theory) and those in [13], where awave-packet is created by a localized delta function
excitation in space and time, as given in Eq. (4). The output of such an excitation can
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be termed indeed as the impulse response. Such an experimental approach is used in
[13] to provide help with understanding natural transition. In contrast, the theoretical
TS waves have been created only in a strict laboratory setting with a monochromatic
excitation at a fixed frequency. In real flows, transition to turbulence is often noted as
a turbulent spot or puff [11, 18]. We have reasoned that even the so-called frequency
response starts at a finite time, and therefore, such an excitation is also similar to
impulse excitation, and we have investigated three different start-ups: Impulsive (as
given by Heaviside function), non-impulsive with varying acceleration [as given by
Eq. (3)] and a linear ramp function. Only in the frequency response case, the input
[as given by Eq. (5)] produces TS wave-packet as obtained from the solution of
Navier–Stokes equation in Fig. 10, which have also been reported in [29, 30].

For both the cases of the impulse and frequency responses, one notices the com-
mon elements of the local solution and the spatio-temporal wave-front (STWF) here
from the solution of linearized analysis of Orr–Sommerfeld equation (OSE). How-
ever, for impulse response, the local solution is insignificantly smaller for the impulse
response, and furthermore, the amplitude of which decays with time. The presented
results are from the solution of governing Navier–Stokes equation (NSE) in its full
form or in its linearized version of OSE. This is distinctly different from various
other approaches reported in the literature [9, 19]. It has been shown in [3, 29, 32]
that frequency response cases create STWF, which is the precursor of transition to
turbulence obtained from the solution of OSE and NSE. For the impulse response
case, the existence of STWF has been shown from the solution of NSE in [4, 35].
It is shown here from the solution of OSE for the input excitation given by strictly
delta function in space and time. Apart from this, existence of STWF is also shown,
when the input is given by a Heaviside function, linearly varying ramp function and
an error function. All of these excitations have varying degree of time variation of
the input excitation for impulsive and non-impulsive start-ups. While all of these
demonstrate the creation of STWF, none of these show TS wave-packets. The spec-
tra of the various STWFs shown in Fig. 9 show the universality of the STWF. It is
also explained that for the spatially unstable case shown in Fig. 5, one does not see
the distinct STWF due to parallel flow assumption, as the same case solved using
NSE in Fig. 10 display the STWF and the TS wave-packet. However, in Fig. 6, one
can clearly see the demarcated STWF from the decaying TS wave-packet. All of
these observations lead us to conclude that the STWF is the precursor of transition
for both the impulse and frequency responses for the boundary layer and is created
by the linear mechanism, governed by OSE. This point of view perfectly blends with
experimentally observed transition to turbulence for not only wall-bounded flows
but also for internal flows and free shear layers.
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Entropy Generation for a Mixed
Convection Nanofluid Flow in an Inclined
Channel Filled with Porous Medium
with Thermal Radiation

Lalrinpuia Tlau and Surender Ontela

Abstract The current paper analyzes the generation of entropy in a sloped chan-
nel with a Cu–H2O nanofluid-saturated porous media for the mixed convection of
nanofluids under the influence of thermal radiation. The entropy characteristics and
their dependence on flow parameters are studied and analyzed thoroughly, namely
Darcy numbers, Brinkman numbers, Peclet numbers, radiation parameters, channel
angle inclination, mixed convection parameters and volume fractions of nanoparti-
cles. The results achieved are comparedwith the existing literature for limiting values
and found to be excellent.

Keywords Nanofluid · Thermal radiation · Entropy generation · Inclined
channel · Mixed convection

1 Introduction

Recent research niche has mainly focused on minimizing machines and maximizing
their performances. Maximizing performances leads to the greater workload which
leads to thermal energy generation. Optimizing performance requires machines to be
at a stable temperature, hence requiring constant cooling. This has led to the devel-
opment of nanofluid and its research, pioneered by Choi [1]. Nanofluids consist of
nanoparticles, of the size of 1–100 nm in diameter, suspended in fluids. Applications
are diverse and still under intense investigation, many of which can be found in [2–5].

Heat transfer for inclined channel problems has been studied by many researchers
but lacks diversity as compared to other problems. In the investigation of an inclined
parallel-walled channel with heat flux and impermeable walls, Barletta et al. [6]
observed that there were a large number of flow solutions when viscous dissipation
was neglected. The problemof the porousmedia-filled slopewith amixed-convective
nanofluid flow was investigated by Cimpean and Pop [7]. They came to the conclu-
sion that adding nanoparticles into the liquid significantly improves the heat transfer.
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Liu et al. [8] deliberated heat transfer on a sloping channel for the Poiseuille–Cou-
ette flow. They observed,with theBrinkman number increasing, that hydrodynamical
and thermal profiles are increasing. In a tilt channel filled with porous medium with
periodic conditions on the boundary, Jha et al. [9] investigated the hydrodynamic
and thermal behavior for a mixed convection flow. It was perceived that for partic-
ular Darcy number values the flow reversal could be controlled. Reddy et al. [10]
investigated a hydromagnetic peristaltic flow in an asymmetric porousmedium-filled
tilted channel of a radiating and reacting couple stress fluid. They observed that the
temperature increased with the Prandtl number and decreased by radiation increase.

The generation of entropy and its related field is paramount to the exploration of
heat transfer. Bejan [11] instigated the field of research. Baytas [12] was responsible
for deliberation of entropy generation in a sloping porous cavity. He intimated that the
irreversibility by heat transfer began to dominate entropy generation as the Rayleigh
number declined. In an inclined channel, Cimpean and Pop [13] studied entropy gen-
eration reduction. They came to the conclusion that irreversibility by heat transfer
dominated the mechanism of entropy generation. Dehsara et al. [14] have carried
out a numerical study in the presence of radiation and magnetic field of entropy
production in nanoflow on the transparent plate in a porous medium. The entropy
generation surged with the hike in the Brinkman and Hartman numbers, respectively.
Srinivasacharya and Hima Bindu [15] probed entropy production in flow of microp-
olar fluid in a tilted channel. The increasing angle of inclination increased the rate of
entropy production. In a sloping channel filled with ferrofluids, Baskaya et al. [16]
investigated the magnetic field effects on the generation of entropy. At a small angle,
the magnetic field increase was shown to decrease the rate of entropy generation.
Hussain et al. [17] conducted the investigation of the generation of entropy in an
inclined channel with a nanofluid-filled cavity.

The present article investigates the generation of entropy in an inclined channel
for a mixed convection flow with porous media and thermal radiation effects. By
relevant substitution, non-dimensionalization of the governing equations is done. The
equations are then analytically solved with the boundary conditions. Therefore, for
the calculation of entropy and Bejan number, the temperature and velocity profiles
are used. The ramifications of various relevant parameters on entropy and Bejan
numbers are analyzed and displayed graphically.

2 Mathematical Formulation

Consider a fully developed mixed convection of a Cu–water nanofluid in a two-
dimensional channel, bounded by impermeable walls at a D separation and full of
a fluid-saturated porous medium as shown in the figure. The walls of the channel
are heated with a qw thermal flux, fluid has a uniform U0 stream velocity and an
approximation by Rossel and is utilized to define the thermal flux radiation in the
energy equation.DarcyLawandBoussinesq approximation are used, and thermal and
local equilibrium is considered in the porous medium. Thus, the governing equations
in Cartesian coordinates can be described as follows (Fig. 1):
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where u• and v• denote velocity along the Cartesian components, respectively,β is
the thermal expansion, Y is the nanofluid temperature, τ is the density, K is the
permeability of the porous medium, μnf is the viscosity of the nanofluid, αnf is the
thermal diffusivity of the nanofluid, γ is the inclination angle of the channel, and χnf

is the thermal conductivity of the nanofluid.
The forced flow condition is given by

D∫
0

u•dy = 	 (5)

where 	 is the constant nanofluid inflow prescribed at the entrance of the channel.
The speed u depends on the transverse y coordinate as the flow is fully developed.
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Hence,

∂u•

∂x
= 0 ⇒ u• = u•(y)

Now, from Eq. 1 and the boundary conditions 4, we have v = 0. Hence, Eqs. 2 and
3 are reduced to
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= αnf

∂2ϒ

∂y2
(7)

For nanoparticles, nanofluid and base fluid, we consider the following terms for their
physical characteristics:

(τβ)nf = (1 − φ)(τβ)f + φ(τβ)s

χnf

χf
= (2χf + χs) + 2φ(χs − χf)

(2χf + χs) − φ(χs − χf)

τnf = (1 − φ)τf + φτs

μnf = μf

(1 − φ)2.5

Implementing the following non-dimensional variables into Eqs. 6 and 7

Y = y

D
, X = x

D
,U = u•

U0
, θ = ϒ − ϒ0

qD/χf
(8)

such that U0 = 	/D is the uniform velocity and ϒ0 is the uniform inflow fluid
temperature, we have

∂U

∂Y
= λ(1 − φ)2.5

[
(1 − φ) + φ

(τβ)s

(τβ)f

][
∂θ

∂Y
Sinγ − ∂θ

∂X
Cosγ

]
(9)

UPe
∂θ

∂X
=

[
χnf

χf
+ 4Rd

3

]
1[

(1 − φ) + φ
(τ⊂p)s
(τ⊂p)f

] ∂2θ

∂Y 2
(10)

with the associated non-dimensionalized conditions at the boundary

∂θ

∂Y

∣∣∣∣
Y=0

= −1 (11a)
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∂θ

∂Y

∣∣∣∣
Y=1

= 1 (11b)

and the forced flow condition
∫ 1
0 U (Y )dY = 1.

The mixed convection parameter λ, radiation parameter $Rd$ and Peclet number
$Pe$ are defined as

λ = g(τβ)fKqD

U0μfχf
, Rd = 4σϒ3

0

�χ f
,Pe = U0D

αf
(12)

3 Solution of the Problem

We now solve Eqs. 9 and 10. Following the method used by Cimpean and Pop [7],
the velocity and temperature are expressed as

U = U (Y ), θ(X,Y ) = C1X + F(Y ) (13)

Substituting Eq. 14 into 10, we get

UPeC1 =
[
χnf

χf
+ 4Rd

3

]
1[

(1 − φ) + φ
(τ⊂p)s
(τ⊂p)f

] ∂2θ

∂Y 2
(14)

Integrating the above equation across the channel cross section, we get

PeC1

1∫
0

UdY =
[
χnf

χf
+ 4Rd

3

]
1[

(1 − φ) + φ
(τ⊂p)s
(τ⊂p)f

]
1∫

0

∂2θ

∂Y 2
dY (15)

⇒ C1 = 2

Pe

[
χnf

χf
+ 4Rd

3

]
1[

(1 − φ) + φ
(τ⊂p)s
(τ⊂p)f

] (16)

Using Eqs. 17 and 14 in 9 and 10, we obtain

∂U
∂Y = λ

[
(1 − φ) + φ

(τβ)s
(τβ)f

]
(1 − φ)2.5[

∂F
∂Y Sinγ − 2

Pe

[
χnf

χf
+ 4Rd

3

]
Cosγ[

(1−φ)+φ
(τ⊂p)s
(τ⊂p)f

]
]

(17)

U = 1

2

d2F

dY 2
(18)
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Combining Eqs. 20 and 21, we get a third-order differential equation

d3F

dY 3
− 2ASinγ

dF

dY
+ 4λAA1

Pe
Cosγ = 0 (19)

where

A =
[
(1 − φ) + φ

(τβ)s

(τβ)f

]
(1 − φ)2.5,

A1 =
[
χnf

χf
+ 4Rd

3

]
1[

(1 − φ) + φ
(τ⊂p)s
(τ⊂p)f

]

and the boundary equations

dF

dY

∣∣∣∣
Y=0

= −1 (20a)

dF

dY

∣∣∣∣
Y=1

= 1 (20b)

As per the proposed solution form, F(Y ) has to be calculated so as to determine
the temperature profile. A solution for dF

dY is obtained from Eq. 22. This expression
is integrated but an arbitrary constant is introduced into the expression. This can be
determined by integrating Eq. 10 and using Eqs. 14 and 19

∂

∂X

(∫ 1

0
θUdY

)
= 2

Pe

[
χnf

χf
+ 4Rd

3

][
(1 − φ) + φ

(
τ ⊂p

)
s(

τ ⊂p
)
f

]−1

(21)

⇒
∫ 1

0
θUdY = 2X

Pe

[
χnf

χf
+ 4Rd

3

][
(1 − φ) + φ

(
τ ⊂p

)
s(

τ ⊂p
)
f

]−1

(22)

Now, using Eq. 14 into 25 and using Eq. 12, the arbitrary constant can be
determined using the obtained expression

1∫
0

F(Y )U (Y )dY = 0 (23)
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4 Entropy Generation

The thermal gradient between the two media, i.e., fluid and channel wall, causing an
unbalanced state, is the reason for the entropy generation in fluid transmission. In
the present study under consideration, the commutation of energy and momentum
within the saturated porous nanofluid media and the channel walls reinforces the
setting of imbalance that generate entropy in the flow field. The local volumetric
entropy generation rate for a viscous fluid, therefore, is specified under the influence
of thermal radiation [18]:

SG = χnf

Y0

[(
∂Y

∂y

)2

+ 16σY 3
0

3χχf

(
∂Y

∂y

)2

+
(

∂Y

∂x

)2
]

+ μnf

Y0

(
∂u

∂y

)2

+ μnf

KY0
u2 (24)

Using the non-dimensional terms introduced in 8 and using the dimensionless
entropy generation formula

Ns = D2ϒ2
0

χf(�ϒ)2
SG (25)

we get the expression for dimensionless entropy generation rate as

Ns = χnf

χf

[(
1 + 4

3
Rd

)(
∂θ

∂Y

)2

+
(

∂θ

∂X

)2
]

+ 1

(1 − φ)2.5
Br

�

[(
∂U

∂Y

)2

+ U 2

Da

]
(26)

where Br = Ec · Pr = μfU 2
0

χf�ϒ
is the Brinkman number and Da = K

D2 is the Darcy
number.

The volumetric entropy is generated in a viscous, incompressible flow due to heat
transfer and fluid friction. Therefore, we can write

Ns = Nh|heat transfer + Nv|fluid friction (27)

such that

Nh = χnf

χf

[(
1 + 4

3
Rd

)(
∂θ

∂Y

)2

+
(

∂θ

∂X

)2
]

(28)

Nv = 1

(1 − φ)2.5
Br

�

[(
∂U

∂Y

)2

+ U 2

Da

]
(29)
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Bejan number, Be, is the ratio between the heat transfer entropy generation and
the total entropy generation and takes values from 0 to 1. Thus, we have

Be = Nh

Nh + Nv
(30)

For Be = 1, irreversibility by heat transfer completely dominates the generation
of entropy in fluid flow. With Be = 0, the entropy generation in the flow field is
dominated completely by fluid friction. At Be = 0.5, heat transfer and fluid friction
contribute equally to the entropy generation in the fluid flow.

5 Results and Discussion

The expression is acquired analytically for the velocity and temperature. Shown
in Table 1 are the thermophysical properties of the nanoparticles and base fluid in
question. Unless stated otherwise, we take the parameter values as λ = 1, γ = π/4,
φ = 1%, Br = 0.01, Da = 10−3,Rd = 1 and Pe = 1 for all cases. The solution
expression is compared to limiting cases. The graphs for U and F as functions of
λ are obtained as shown in Figs. 2 and 3, respectively, for φ = 0 and Rd = 0 and
likened with the results procured by Cimpean and Pop [7]. As shown in Figs. 4 and
5, graphs for Bejan number are also obtained as a function of the mixed convection
parameter and entropy generation rate as a function of Peclet number for φ = 0
and Rd = 0 and compared with the results obtained by Cimpean and Pop [13]. All
comparisons have been found to be well-conformed.

Figures 6 and 7 show the effects on the entropy generation rate and the Bejan
number, respectively, of the varying Brinkman number (Br). An increase in Br results
in a surge in the rate of entropy generation. An upsurge in Br shows a heat transfer
increase due to viscous dissipation.Br has an inverse proportional impact on theBejan
number. Augmentation in Br shows that the Bejan number has declined. There is an
increase in the Bejan number when onemoves across the channel. Thismay therefore
be due to a decrease in the heat transfer through viscous dissipation as you move
through the channel from Y = 0 to Y = 1.

Darcy number’s impact on the entropy and Bejan number is shown in Figs. 8
and 9, respectively. An increase in the number of Darcy leads to a fall in entropy.

Table 1 Base fluid (water) and nanoparticles’ thermophysical properties

Property Water Copper

⊂p (Jkg−1 K−1) 4079 385

K
(
Wm−1 K−1

)
0.613 401

β × 10−5
(
K−1

)
21 1.67

τ
(
kgm−3

)
997.1 8933
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Fig. 2 Reaction of λ on velocity [7]

This is because of the inverse proportionality of the rate of entropy production and
Darcy numbers. In addition, increasing the Darcy number results in escalating the
permeability of the pore media which makes the flow of the fluid easier. In turn that
reduces the rate of entropy production. The number of Bejan is growing with the
number of Darcy. It can be seen that the irreversibility of heat transfer dominates the
entropy generation of all Da values in the top half of the channel.

In Figs. 10 and 11, the effect of variation on the channel angle on the rate of
generation of entropy and Bejan number is shown. Note that ψ = 0 represents
the horizontal flow and ψ = π/2 depicts the vertical channel flow. The entropy
generation at the base of the channel is at maximum for the horizontal channel flow
and decreases slowly as we move upward. There is a minimum, and the entropy
rate increases slightly at the top of the channel. The entropy generation rate for a
vertical channel is similar near the channel wall but shows a little slump in the center
of the channel. For an incline angle less than π/2, irreversibility by fluid friction
dominates entropy generation close to the channel’s lower wall, and irreversibility
by heat transfer commands the entropy generation near the top of the channel. For a
vertical channel, irreversibility by heat transfer is the prominent feature of entropy
throughout the channel and is maximum at the center.

As shown in Fig. 12, the mixed convection parameter greatly affects the rate of
entropy generation. Generation of entropy reduces near the center of the channel and
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Fig. 3 Reaction of λ on F [7]

maximizes as you approach the walls of the channel. Variation of the mixed convec-
tion parameter leads to irreversibility by heat transfer, as seen in Fig. 13, dominating
the entropy generation completely. The fluid friction dominates the entropy genera-
tion at the bottom wall of the channel at λ = 1 where buoyancy forces and velocity
forces act equally on the flow. The irreversibility by heat transfer slowly takes prece-
dence and reaches complete entropy generation domination near the channel’s upper
wall. The point where heat transfer completely dominates the rate of entropy gen-
eration occurs near the center of the channel as buoyancy forces dominate the flow.
However, the irreversibility of fluid friction dominates the entropy generation close
to the channel walls when the fluid flow is dominated by buoyancy forces.

Figures 14 and 15, respectively, show the influence of the Peclet numbers on
entropy generation rates and Bejan numbers. The entropy generation rate, for high
values of Peclet numbers, slightly decreases near the channel center and increases
gradually as one moves in the direction of the channel walls. Irreversibility by fluid
friction prevails in the entropy generation of high Peclet number flows. The irre-
versibility by the heat transfer totally dominates the rate of entropy generation in the
center of the channel for higher Peclet number values.

FromFigs. 16 and 17, the variation in the volume of nanoparticles and their impact
on entropy generation rates and Bejan numbers can be noted. Alongwith the increase
of nanoparticle volume fraction, the entropy rate is progressively increasing. This is
because the rate of generation of entropy and the volume fraction of nanoparticles
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Fig. 4 Reaction of λ on Be [7]

are inversely proportional. For the subjected values of nanoparticle volume fraction,
however, the entropy generation rate declines across the channel. Bejan number also
shows an upsurge with the increase in the volume fraction of nanoparticles. The
irreversibility by fluid friction dominates on the bottom while the irreversibility by
heat transfer is domineering on the upper wall of the conduit.

Figures 18 and 19 show the radiation parameter influence on the entropy genera-
tion rates and Bejan number. Radiation increases lead to a surge in the rate of entropy
generation. This is an expected phenomenon. The Bejan number shows growth with
radiation parameter increase as well. It can be observed that the irreversibility by
fluid friction prevails at the bottom of the canal, while heat transfer predominates at
the top. There is a point near the channel top, where heat transfer dominates entropy
generation completely.

6 Conclusion

This article explores the entropy generation analysis for amixed nanofluid convection
flow in a sloping conduit,with thermal radiation, filledwith saturated porousmedium.
Analytically, the governing equations are solved. Inspection of the entropy generation
is conducted for several relevant flow parameters. Graphs are plotted and studied
meticulously. The following conclusions are made from our analysis:
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Fig. 5 Reaction of Pe on Ns [13]

• A radiation parameter increase stimulates flow entropy generation. The same is
true of the Bejan number.

• In the entropy generation rate, a mixed convection parameter has a great influence.
The entropy generation for the buoyancy-driven flows is commanded by fluid
friction irreversibility.

• Brinkman number has a highly significant effect on the rate of entropy generation
and Bejan number.

• The inclination angle of the channel and its effect on entropy andBejan numbers are
studied. For horizontal and vertical channel flows, there is a significant difference.
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Fig. 6 Reaction of Br on entropy generation rate

Fig. 7 Reaction of Br on Be
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Fig. 8 Reaction of Da on Ns

Fig. 9 Reaction of Da on Be
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Fig. 10 Reaction of ψ on Ns

Fig. 11 Reaction of ψ on Be
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Fig. 12 Reaction of λ on Ns

Fig. 13 Reaction of λ on Be
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Fig. 14 Reaction of Pe on Ns

Fig. 15 Reaction of Pe on Be
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Fig. 16 Reaction of φ on Ns

Fig. 17 Reaction of φ on Be
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Fig. 18 Reaction of Rd on Ns

Fig. 19 Reaction of Rd on Be
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Mixed Convection in a Lid-Driven
Inclined Cavity with Discrete Heater
on the Lower Wall

Subhasree Dutta and Somnath Bhattacharyya

Abstract The analysis of fluid flow and heat transfer enhancement in a lid-driven
square enclosure inclined at an angleψ and partially heated from below is developed
numerically. A heater is placed at the middle of the bottom wall whereas the upper
wall,movinghorizontally at a constant speed, ismaintained at a lessened temperature.
Governing discretized equations are solved by applying the finite volume method
with a pressure correction-based SIMPLE algorithm. Results are obtained for various
parameters such as Richardson number (0.1 ≤ Ri ≤ 3), solid volume fraction (0 ≤ φ

≤ 0.1) with the inclination angle varying from−60° to 60°. The change in the rate of
heat transfer due to inclusion of the nanoparticles is investigated. Flow field as well
as the heat transfer has dependency on the inclination angle of the enclosure. The
augmentation in heat transfer is obtained at a comparatively higher rate than that of
the entropy generation in our proposed model.

Keywords Mixed convection · Inclination angle · Entropy generation · Nanofluid

1 Introduction

Convective heat transfer is widely used because of its utilization in engineering,
technological and natural processes [1–3]. Many analysis on heat transfer and cavity
flow have been conducted using experimental or numerical methods during the last
three decades using fluids such as clear fluid and nanofluid. Nanofluid is considered
to be a mixture of solid and liquid in where the metallic nanoparticles of approximate
size 1–100 nm are suspended within the clear fluid, is considered due to its high heat
transfer performance than that of the base fluid. Thermal conductivity as well as
the heat transfer rate increases due to the consideration of nanoparticles [4] within
the base fluid. The heat transfer characteristics of the nanofluid have a dependency
on the volume fraction, shape, size and the thermophysical properties of the base
fluid as well as the nanoparticles. Many studies have been done on convection in
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an enclosure using nanofluid and their heat transfer performance. The experimental
study of Xuan and Li [5] shows that the enhancement in heat transfer in the presence
of nanofluid is due to the randommovement of nanoparticles,which raises the thermal
conductivity of the fluid. The experimental results of Ho et al. [6] on Al2O3-water
nanofluid in the vertically placed enclosures represent that low nanoparticle volume
fraction (φ � 1%) attains higher heat transfer rate in comparison with the higher
solid volume fraction (φ � 2%). Several numerical studies on the utilization of
nanofluid in the convective heat transfer have been reported by researchers [7–11].
Mohammad [12] studied numerically the effect of heat transfer as well as the drop in
pressure due to different composition of nanoparticles and clear fluid and concluded
that for the water-based nanofluids the pressure drop is minimum, whereas the heat
transfer coefficient ismaximum in comparisonwith the others. Convective flowusing
nanofluid based on different viscosity models on single as well as double lid-driven
square enclosures is studied by Chamkha and Abu-Nada [13]. A notable increment is
observed in heat transfer for higher values of Ri on the presence of the nanoparticles.
The analysis of heat transfer using nanofluid is numerically made by Tiwari and
Das [14] considering the variation of solid volume fraction and observed that the
increment in heat transfer varies with the solid volume fraction. The flow pattern
differs for natural and forced convection-dominated regime due to the presence of
nanoparticles.

There are mainly two different approaches for modeling the heat transfer and fluid
flow properties of the nanofluid, one of which is homogeneous model. In single-
phase model, a thermal equilibrium is maintained between the base fluid and the
nanoparticles, moving with the same velocity. On the contrary, in the two-phase
model, a velocity is considered between the nanoparticles and the base fluid, and the
nanofluid is assumed as nonhomogeneous composition of base fluid along with the
nanoparticles. There are several slip mechanisms to generate the relative velocity of
which Brownian diffusion and thermophoresis are considered to be themost effective
slip mechanisms [15, 16]. For the evaluation of the thermophysical properties of
nanofluid, several models are proposed in the literature [17–21]. For the estimation
of the thermal conductivity of the nanofluid, Maxwell-Garnett’s model [20] is highly
used, whereas the Brinkman model [21] is used to estimate the effective viscosity.

Convective heat transfer in rectangular enclosure for natural andmixed convection
is studied by several researchers [22–30]. The inclined enclosure is studied by many
researchers nowadays because of its importance on the heat and fluid flow [3, 31–33].
Consideration of the inclination angle of the enclosure is also taken into account to
study the effect of heat transfer as the inclination angle has amajor role on temperature
and velocity field. Abu-Nada and Chamkha [34] analyzed numerically the convective
heat transfer in an inclined lid-driven square enclosure in presence of nanofluid. They
found that the heat transfer varies linearly with the increment of inclination angle for
natural and mixed convection-dominated regime whereas remain almost invariable
in forced convection-dominated case. Effect of inclination angle and nanoparticles
on natural convection is studied by Abu-Nada and Ozotop [35]. They observed that
the effect of inclination angle on heat transfer has a strong dependency on Rayleigh
number and the heat transfer becomes almost negligible at low Rayleigh number.
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Ghasemi and Aminossadati [36] considered a suitable range of inclination angle to
analyze the effect of heat transfer and found an optimal value of the inclination angle
to achieve the maximum rate of heat transfer.

The effect fluid flow and heat transfer due to the convective heat transfer within an
enclosure with localized heat source has importance in nowadays research because
of its various technological and industrial applications such as in solar energy col-
lectors, air-cooled electronic devices, nuclear reactors and many others. The study
of Sivakumar et al. [37] concluded that the effect of size and location of the heat
source has an important impact in the heat transfer augmentation as it has depen-
dency on both the position and length of the heater. Studies on buoyancy-dominated
heat transfer in the presence of heat sources in the wall of the enclosures were studied
by several researchers [38–42]. Mansour and Habib [43] represented the importance
of nanofluid for cooling in the presence of three symmetrically spaced heaters. Elif
et al. [41] studied the effect of natural convection in inclined cavity, differentially
heated, in the presence of different water-based nanofluids. Guo and Muhammad
[44] analyzed the effect of partial heat source of constant heat flux on the mixed con-
vection of a square enclosure at different aspect ratios and found an optimal aspect
ratio for which the heat transfer rate is maximum.

In our study, we consider the mixed convection using Al2O3-water nanofluid
in an inclined enclosure. A localized heat source of uniform temperature is kept
on the lower wall of the enclosure, whereas the top wall of the enclosure, sliding in
horizontally is kept at a lower temperature. The viscosity and thermal conductivity are
determined by using MG-Brinkman model. The single-phase model, which ignores
the slip velocity of the nanofluid, having the capability of the evaluation of the heat
transfer characteristics of the nanofluid, is considered. Consequently, flow pattern,
thermal field and heat transfer due to the variation of bulk volume fraction (0 ≤ φ ≤
0.05), inclination angle (−60° ≤ ψ ≤ 60°) and Richardson number (0.1 ≤ Ri ≤ 3)
are discussed.

2 Mathematical Model

The physical model of our computation consists of a square enclosure of dimension
H, filled with water-Al2O3 nanofluid, inclined at an angle ψ with the horizontal
(Fig. 1). A heat source of length l is assumed at the center of the bottom wall
having an uniform temperature T h. The top wall, moving with constant speed U0, is
considered to be cold (T c). The left and right vertical wall and the rest portion of the
lower wall are kept thermally insulated. The nanofluid is assumed to be sufficiently
dilute with volume fraction φ ≤ 0.1.

The flow is assumed to be two dimensional, Newtonian, laminar and incompress-
ible. The base fluid and the nanoparticles are presumed to be in thermal equilibrium
having no slip velocity between them. All the thermophysical properties are assumed
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Fig. 1 Geometry of the
present model
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to be constant, where the density follows the Boussinesq approximation. The chem-
ical reaction between the nanoparticles and the base fluid is assumed to have a
negligible effect.

The governing equations in non-dimensional can be expressed as
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)
θ sinψ (2)
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+ u
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+ 1

Re
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ρnf

1
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ρnf

(
1 − φ + φ

ρpβp
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)
θ cosψ (3)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= knf

kf

(
ρCp

)
f(

ρCp
)
nf

1

Re Pr

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
(4)

The applied boundary conditions for the defined computational domain are as
follows:

u = 1, v = 0, θ = 0 at y = 1 and 0 ≤ x ≤ 1.
u = v = 0, ∂θ

∂x = 0 at x = 0, 1 and 0 ≤ y ≤ 1.
u = v = 0, θ = 1 at y = 0 and l ≤ x ≤ l + ε.

u = v = 0, ∂θ
∂x = 0 at y = 0 and 0 ≤ x ≤ l, l + ε ≤ x ≤ 1.
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Table 1 Thermophysical
properties of clear fluid and
Al2O3 nanoparticles

Parameter Water Al2O3

ρ (kg/m3) 993 3970

k (W/mK) 0.628 40

cp (J/kgK) 4179 765

β (K−1) 3.6 × 10−4 0.85 × 10−5

l and ε being the dimensionless length of the heater and the distance of the heat
source from origin, respectively, i.e. ε = l = 1/3.

The defined non-dimensional variables are characterized by x = x∗/H, y =
y∗/H, t = t∗U0/H, h = h ∗ /H, u = u∗/U0, v = v∗/U0, θ =
(T − Tc)/(Th − Tc), p = p∗/ρnfU 2

0 . The dimensionless parameters are defined as

Richardson number Ri = Gr/Re2, Grashof number Gr = βfg(Th −Tc)H 3

ν2
f

, Prandtl

number Pr = νf
αf
and Reynolds number Re = ρfU0H

μf
.

The heat capacitance for nanofluid is
(
ρcp

)
nf = (1−φ)

(
ρcp

)
f+φ

(
ρcp

)
p. The effec-

tive density of nanofluid is given by (ρ)nf = (1 − φ)ρf+φ ρp. The thermal diffusivity
is given by αnf = knf

(ρcp)nf
. The thermal conductivity of the nanofluid is determined

usingMaxwell-Garnett’smodel as knf
kf

= kp+2kf−2φ(kf−kp)
kp+2k f +φ(kf−kp)

[20]. The effective viscosity

is obtained as μnf = μf

(1−φ)2.5
using Brinkman model [21].

The thermophysical properties for clear fluid and Al2O3 used in our computation
are in Table 1.

2.1 Nusselt Number and Entropy Generation

The expression for the local Nusselt number in non-dimensional form is given by
Nu = − knf

kf
∂θ
∂n , n being the unit normal to the bottom wall. Averaged value of Nusselt

number (Nuav) can be obtained by integrating the local Nu along the heater.
The non-dimensional entropy generation can be defined as

Sgen = knf
kf

[(
∂θ

∂x

)2

+
(

∂θ

∂y

)2
]

+ χ
μnf

μf

[
2

(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂u

∂y
+ ∂v

∂x

)2
]

= Sh + Sf

Sh and Sf being the entropy generated by the heat transfer and fluid fric-
tion irreversibility and χ is the irreversibility factor, can be defined as χ =(
μfT0U 2

0

)
/kf(�T ), where T0 = (Th+Tc)/2 is the reference temperature. The average

entropy generation Sav is defined as
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Sav = 1

A
∫
A
Sgen dx dy.

3 Numerical Procedure

The governing equations in non-dimensional form are solved numerically using finite
volume method. The nonlinear governing equations are integrated over each cell of
the control volume. A pressure correction-based Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) [45] algorithm is used for computation. In the staggered
grid arrangement, each of the velocity components (u, v) is stored at the midpoint of
the sides onwhich they are normal whereas the pressure and temperature are stored at
the center of each cell. The algebraic equation is solved iteratively by a cyclic series
of guess and correct operations using block elimination algorithm. The convergence
criterion of this iteration is expressed as maxi j |ξ k+1

i j −ξ k
i j | ≤ 10−5 where the symbol

ξ denotes for the nondimensional velocities and temperature and the subscripts i, j
indicates the index of cell, and superscript k is the index of the computed iteration.

4 Grid Independence Test and Validation of Code

The grid independence test to evaluate the proper grid size for the present model
is performed. For this, we compute the local Nusselt number for grid size 150 ×
150, 180 × 180, 270 × 270 at Re = 100, φ = 0.05, Ri = 1, and ψ = 0° along
the heated portion of the bottom wall (Fig. 2a). It is evident from the result that
further improvement from 180 × 180 does not make any noticeable change in the
result (Fig. 2a). The 180 × 180 grid system is considered to be optimal. To validate
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Fig. 2 Grid independence test and code validation with existing result; (a) effect of mesh sizes for
computing local Nu with different grid sizes, (b) comparative result for Nuav with the numerical
result by Sivasankaran et al. [42] at φ = 0, (c) comparative study for Nuav with several models for
viscosity and thermal conductivity Ri = 1 and Re = 100.



Mixed Convection in a Lid-Driven Inclined Cavity … 199

our present code, the result for the Nuav is compared with the numerically obtained
results by Sivasankaran et al. [42] in a lid-driven square enclosure considering the
pure fluid (φ = 0) and Re = 100, with the heater at the bottom of the left wall.
Analysis indicates a good agreement between the existing result and the present one.
Figure 2c presents a comparative study of several models to compute the thermal
conductivity and viscosity for obtaining theNuav for themixed convection in a square
cavity filled with Al2O3-water nanofluid with Re = 100 and Ri = 1. It is observed
from the result (Fig. 2c) that the heat transfer due to Corcione model [17], MG-Pak
and Cho [18] model and MG-Brinkman model [20, 21] is almost same compared to
the model suggested by Patel [19]. In the present study, to determine the viscosity
and the thermal conductivity, we use MG-Brinkman model in our computation.

5 Results and Discussions

Mixed convection of Al2O3-water nanofluid in a square cavity with discrete heat
source has been studied for different inclination angles (−60° ≤ ψ ≤ 60°), bulk
volume fraction (0 ≤ φ ≤ 0.1). In our present study, we kept fixed the value of the
Reynolds number at Re= 100 and varied the value of the Grashof number (Gr) from
103 to 3× 104 to study the relative effect of buoyancy-dominated natural convection
and lid-driven forced convection. Streamlines and isotherms are studied to describe
the effect of nanofluid on flow and thermal field. Enhancement in heat transfer and
the analysis of energy variation of the system are discussed through the variation of
Nuav and Sav.

5.1 Fluid Flow and Thermal Fields

Figure 3 illustrates the variation of the flow field with the deviation of inclination
angle (ψ) at different Ri. Streamlines are studied in the presence of nanoparticles
in all modes of convection. Due to the existence of temperature gradient between
the hot and cold walls and movement of the top lid, the cold fluid goes downward
whereas the heated fluid rises from the bottom wall in upward direction forming a
clockwise flow pattern inside the cavity. The flow strength rises, and the streamlines
become denser for increased value of Ri. The effect of buoyancy force is negligible
in comparison with the shear effect for lower values of Ri. Figure 3 shows that
in forced convection-dominated regime (Ri < 1) (at ψ = −30°, 0° and 30°), the
dominating primary eddy occupies most of the cavity generated by the moving lid
and two negligible secondary eddies are formed near the bottom wall of the cavity.
For higher values of Ri (Ri = 1 and 3), where the buoyancy effect becomes stronger,
the primary eddy becomes stronger as compared with the shear-dominated case. In
fact, the buoyancy effect grows up when the inclination angle becomes positive (ψ >
0). It is found that for a positive inclination angle (ψ = 30°) increment in Ri causes
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Fig. 3 Variation of flow field with inclination angle (ψ) and bulk volume fraction (φ) at different
Ri = 0.1, 1 and 3. Dotted and solid lines represent clear fluid (φ = 0) and nanofluid (φ = 0.1),
respectively

the formation of strong secondary eddy due to the fact that the primary vortex is
created for the presence of shear effect whereas the secondary one for the thermal
buoyancy. In fact, recirculation flow size becomes increasing near the bottom wall
with the development of buoyancy force. It also should be noted that the inclusion of
nanoparticles increases the strength of the flow within the cavity. The primary vortex
expands, whereas the secondary eddy reduces with the increase of solid volume
fraction.
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Figure 4 shows the effect of inclination angle (ψ) and Ri on the thermal field
for nanofluid as well as the clear fluid. From the figure, it is seen that the isotherms,
heavily clustered near the heated bottomwall, are almost parallel to each other due to
the formation of a steep temperature gradient in this region. They are also clustered
near the left vertical walls due to the movement of the top wall to the right side. The
temperature gradients are weak in the remaining area of the cavity, indicating lower
temperature difference in the interior of the enclosure. Due to the increment of Ri, the
isotherms move in an upward direction indicating a moderate temperature gradient
along the vertical direction of the enclosure. For ψ = 0° i.e. when the enclosure
is parallel to the horizontal, the isotherms are nearly parallel to the adiabatic wall
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on the left portion of the cavity, indicating a stratification. The thermal distortion
occurs when the inclination angle ψ > 0°, indicating a well mixing. The inclusion of
nanoparticle enhances the thermal conductivity of the nanofluid as well as thermal
gradient near the heated wall. This shows that the inclusion of nanoparticles has a
significant effect in the enhancement of heat transfer throughout the enclosure.

5.2 Effect of Different Parameters on Nuav

Figure 5a presents the influence of solid volume fraction on heat transfer rate at
different values of Ri. The variation of Nuav shows that at a fixed Gr and inclination
angleψ the heat transfer enhanceswith the increment inRi. This is because increment
in Ri enhances the buoyancy force reducing the thickness of the thermal boundary
layer.As a result, the rate of heat transfer increases. TheNuav enhancesmonotonically
with the increment of solid volume fraction φ [30]. Increment of nanoparticles inside
the enclosure augmented the thermal conductivity of the nanofluid, resulting a higher
amount of heat absorption and removal from the hotwall by the nanofluid. As a result,
the rate of heat transfer is increased.

Figure 5b shows the variation of Nuav along the heated portion of the bottom wall
because of the presence of nanoparticles for several Reynolds number Re = 50, 100,
200, 300. It is found from the result that at a fixed inclination angle, the value of
Nuav enhances with the increment of Re. The heat transfer rate increases with the
augmentation of Reynolds number. It is evident from the result that the rate of heat
transfer rises linearly with the nanoparticle volume fraction for all values of Re.

Figure 6a–c represents the effect of inclination angle ψ on heat transfer rate for
different values of Ri. Increment of inclination angle ψ produces a decrease in Nuav
for different volume fractions φ. As the angle of inclination increases, the secondary
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vortex appears within the enclosure. So the flow being trapped, the intensity reduces.
At Ri = 0.1, the pattern reduces monotonically with the increment of inclination
angle. In mixed convection-dominated regime, where the buoyancy force and the
shear force are relatable in the flow field, the heat transfer rate reduces with the
increase of ψ . It again increases after ψ = 30° due to the enhancement in buoy-
ancy force with the increment of inclination angle. Similar pattern occurs for higher
inclination angle where the natural convection dominates. The maximum Nuav is
obtained at ψ = −60° in all modes of convection. It is also found that the Nuav
increases significantly due to the rise of bulk volume fraction, for considered values
of the inclination angle ψ and Ri.

5.3 Effect of Different Parameters on Sav

The impact of fluid friction and heat transfer irreversibility on the generation of
entropy is shown in Fig. 7a–c. Results represent the distribution of local entropy
generation for clear fluid (φ = 0) as well at ψ = −30°, ψ = 0°, ψ = 30° in mixed
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Fig. 7 Variation of local entropy generation as a function of ψ at Ri = 1; inclination angle (a) ψ

= −30°, (b) ψ = 0°, and (c) ψ = 30° for clear fluid (φ = 0 by dotted lines) and nanofluid (φ = 0.1
by solid lines)
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convection-dominated regime. The local entropy generation seems to be confined
near the two horizontal walls, mainly the left part of the upper wall and the heated
portion of the bottom wall. We find that the entropy generation is maximum at the
center of the lower wall. This is because a greater temperature gradient occurs in the
bottom wall due to the presence of the heat source in this region. From the figure
(Fig. 7a–c), entropy generation because of the fluid friction irreversibility is found
at the left portion of the top wall due to the movement of the top lid. However,
the generated entropy in the vicinity of upper wall is lower as compared with the
bottom wall due to the lesser value of the temperature gradient at the upper portion
of the enclosure. Inside the core of the cavity, the entropy generation is almost
diminished due to negligible temperature gradient compared to the other segment of
the enclosure. Results show that the entropy generation is highly dependent on the
inclination angle. The maximum entropy generation decreases with the increment
of the inclination angle. It is noted that the inclusion of the nanoparticles inside the
enclosure enhances the entropy generation. Thermal gradient plays the leading role
in the enhancement of entropy generation due to the addition of nanoparticles. This
is because the presence of nanoparticle creates an increment in the fluid viscosity
and the fluid friction irreversibility rises, although it has negligible contribution in
entropy generation in comparison with the entropy due to the heat transfer.

Figure 8a presents the influence of the inclusion of nanoparticles on the entropy
generation for different inclination angles (ψ). From the result, it is seen that the
entropy generation rises with the increasing Ri at Re = 100. This is because the
buoyancy force enhances the heat transfer rate, with the increasing Ri. This creates
an enhancement in the velocity gradient, consequently the entropy generation due
to heat transfer irreversibility [46]. It is evident from the result that Sav obtained a
linear increment with the inclusion of nanoparticles as described earlier (Fig. 7a–c)
in all modes of convection. Figure 8b indicates the effect of the inclination angle
on the Sav at a fixed Ri = 0.1 for different bulk volume fractions (φ). Likewise
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the heat transfer, Sav also decreases monotonically with the increase of inclination
angle (ψ) in forced convection-dominated regime (Ri < 1). For small value of Ri,
the effect of fluid friction on entropy generation is negligible. Hence, the viscous
effect dominates the energy loss of the system. Also, the value of Sav is large for
higher φ. Inclusion of nanoparticle enhances the thermal conductivity and hence the
heat transfer irreversibility, resulting a higher entropy generation for the nanofluid
in comparison with the clear fluid (φ = 0). For the sake of brevity, other cases are
not shown here.

5.4 Enhancement Factor

We define enhancement factor of Nuav and Sav of nanofluid with respect to the clear
fluid (φ = 0) as Nu∗

av and S∗
av given by Nu∗

av = Nuav/Nuav(φ = 0) and S∗
av =

Sav/Sav(φ = 0), respectively. The ratios represent the enhancement of heat transfer
and entropy generation of the nanofluid in comparison with the clear fluid (φ = 0).
Figure 9 represents the effect of inclination angle on Nu∗

av and S∗
av for different φ.

Result shows that the ratios for heat transfer and the entropy generation are greater
than 1 indicating a strong influence in heat transfer and entropy generation due to
inclusion of nanoparticles inside the enclosure. The rate of enhancement in both
the cases increases with the rise of nanoparticle volume fraction as the addition of
nanoparticles enhances the thermal conductivity of the nanofluid, and hence, the
increment in heat transfer and entropy generation occurs. Figure 9 shows that the
heat transfer is enhanced at a higher rate than that of the entropy generation for each
nanoparticle volume fraction. In forced convection-dominated regime (Ri < 1), both
the ratios increase with the increment of the inclination angle as the buoyancy force

Fig. 9 Variation of Nu∗
av

(solid lines) and S∗
av (dotted

lines) with inclination angle
for different φ at Re = 100
and Ri = 0.1
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increases with the increment of inclination angle, creating an enhancement in both
the Nuav and Sav.

6 Conclusion

The analysis of the flow and thermal field for Al2O3-water nanofluid in the presence
of discrete heat source ismade for a range of inclination angles, bulk volume fractions
and the effects of the non-dimensional parameters are discussed in themixed convec-
tive heat transfer. The Nuav and Sav are plotted with respect to various parameters to
find the influence of nanoparticles on heat transfer and energy loss. Our computation
is based upon Maxwell-Garnett’s Model and Brinkman model, respectively, for the
computation of thermal conductivity and effective viscosity. The observations we
get from the analysis of the present study are as follows:

1. The rate of heat transfer as well as the entropy generation augmented with the
increment of solid volume fraction at a fixed inclination angle. Inclusion of
nanoparticles enhances the heat transfer due to the increment of thermal conduc-
tivity of the fluid. It is found that the Nuav is a strictly increasing function of Ri for
the reason that buoyancy force dominates the shear-dominated force. Increment
in inclination angle decreases the Nuav, and it occurs for higher Ri, when the
shear effect is dominated by the buoyancy force, maximum being obtained at ψ
= −60° in all modes of convection.

2. Likewise the heat transfer, entropy generation rate is also dependent on solid
volume fraction as well as Ri. Increment in Sav is due to the large influence
of buoyancy effect. It also increases with the increment of nanoparticle volume
fraction as the fluid friction irreversibility dominates.

3. The intensification in the rate of heat transfer due to nanofluid in comparisonwith
the clear fluid reduces with the enhancement in Ri, at a fixed inclination angle.
Also, the heat transfer enhancement increases with the increment of inclination
angle as well as with the increment of bulk volume fraction. The enhancement
rate for heat transfer aswell as entropy generation due to the presence of nanofluid
rises as the angle of inclination increases. In fact, the heat transfer increment rate
is higher than that of the entropy generation at a fixed Re.

4. Angle of inclination and solid volume fraction have a strong influence on flow
field and temperature distribution. Multicellular vortex appears when the buoy-
ancy effect is more pronounced. Distortion in thermal distribution develops for
higher inclination angle (ψ > 0°).
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Discrete Prey–Predator Model with
Square Root Functional Response Under
Imprecise Biological Parameters

P. Santra and G. S. Mahapatra

Abstract This paper presents a discrete-time prey–predatormodel inwhich the prey
exhibits herd behavior, and hence, the predator interacts along the outer corridor of
the herd of the prey. Due to the unavailability of numerical information of the bio-
logical parameters, we consider the model with interval parameters in the parametric
functional form. The existence and stability of the proposed model are analyzed.
We give a flip bifurcation analysis and chaos control procedure. The bifurcation dia-
grams, phase portraits and time graphs are presented for different model parameters.
Here, we introduce a new concept in bifurcation analysis. The codimension of a
bifurcation is the number of parameters which must be varied for the bifurcation to
occur. When we consider p as bifurcation parameter, ultimately, we consider here 4
bifurcation parameter in a certain range, but interesting fact is that using our technic,
we convert this 4 codim bifurcation in 1 codim. Numerical simulations exhibit that
the present model is a chaotic with rich dynamics.

Keywords Discrete prey–predator model · Stability · Bifurcation · Chaos ·
Interval parameters

1 Introduction

Oneof the important interactions among species is the predator-prey relationship. The
words “predator” and “prey” are almost always used to mean only animals that eat
animals, but this idea also applies to plants. The dynamics of prey–predator has been
extensively studied because of its universal existence. Several factors affecting the
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dynamics of predator-prey models, such a familiar factors is the functional response.
The functional response is linear in the Lotka–Volterra model, which is valid first-
order approximations of more general interaction.

In general, researchers [1–20] always developed the prey–predator system with
the assumption that the biological parameters are exactly known; however, the sce-
nario is different in practical world. In reality, each of the biological parameters may
not be fixed rather varying due to several reasons. Therefore, the biological param-
eters are very sensible and treated as nonnegative imprecise number instead of fixed
real number. Peixoto et al. [21] studied predator-prey fuzzy model. Pal et al. [22]
proposed optimal harvesting prey–predator bio-economic model with interval bio-
logical parameters. Pal et al. [23] presented quota harvesting model under fuzziness.
In our work, we use interval approach.

This paper considers one-prey one-predator discrete system and calculates equi-
librium points, stability and bifurcation of the prey–predator system, where at least
one biological parameters of the model is an interval number. We present the interval
parameters in the parametric function form and then study the parametric prey–
predator discrete model. A parametric mathematical program is formulated to find
the different behavior of the system for different value of parameter. The proposed
procedure is more effective and interesting since we get different behavior of the
model using functional form of an interval parameter based on interval-valued tech-
nique. The proposed procedure can present different characteristics of the model in
a single framework.

The rest of the paper is organized as follows: The second section introduces
mathematics for this paper. In section3, a discrete-time prey– predator model under
non-overlapping generation with refuge is formulated. Section4 expands this model
under imprecise biological parameters. Section 5 presents the local stability analysis
around the interior fixed point of the proposed model. Discussion on flip bifurcation
is on Sect. 6 Chaos Control procedure is given in Sect. 7. Section8 gives a numer-
ical simulations to support of the proposed model. Finally, this paper ends with a
conclusion in Sect. 9.

2 Prerequisite Mathematics

An interval number A is represented by closed interval [al, ar] and defined by A =
[al, ar] = {x : al ≤ x ≤ ar, x ∈ R} , where R is the set of real numbers and al, ar are
the left and right limit of the interval number, respectively.

Interval-valued function: Let a, b > 0 and the interval [a, b] can represent by
the interval-valued function as h (p) = a1−pbp for p ∈ [0, 1].

Here, we present some arithmetic operations as follows:
Let A = [al, au] and B = [bl, bu] be two interval numbers.
Addition: The interval-valued function for the interval A + B = [al + bl, au+

bu] , provided al + bl > 0, is given by h (p) = a1−p
L apU where aL = al + bl and aU =

au + bu.
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Subtraction: The interval-valued function for the intervalA − B = [al − bu, au−
bl] , provided al − bu > 0, is given by h (p) = b1−p

L bpU where bL = al − bu and aL =
au − bl .

Scalar Multiplication: ηA = η [al, au] =
{
[ηal, ηau] ; if η ≥ 0
[ηau, ηal] ; if η < 0

provided al > 0 and bl > 0. The interval-valued function ηA is given by h (p) =
c1−p
L cpU if α ≥ 0 and h (p) = −d1−p

U dp
L if η < 0, where cL = ηal, cU = ηau, dU =

|η|au and dL = |η|al .

3 Description of Prey–Predator Model

We consider populations with non-overlapping generation, where all the adults die
after they have given birth. General form of prey–predator system in discrete time is
as follows:

xn+1 = xnf (xn, yn) = axn(1 − xn) − b
√
xnyn (1)

yn+1 = yng(xn, yn) = c
√
xnyn − dyn

where df
dyn

≤ 0 and dg
dxn

� 0.Here, a, b, c andd are the nonnegativemodel parameters.
The dynamical properties of the above system allow us to get information about the
long-run behavior of prey–predator populations. Starting from given initial condition
(x0, y0), the iteration of Eq. (1) uniquely determines a trajectory of the states of
population output in the form of (xn, yn) = Tn(x0, y0), where n = 0, 1, 2, ....

4 Proposed Model Under Impreciseness

So far, most of the prey–predator model are considered in precise environment, but
data can not be recorded or collected precisely due to several reasons in reality.
Hence, analysis of the model with imprecise parameters gives better results in mod-
eling respect. Uncertain growth rate of prey populations, interspecific competition
rates of prey species, predation coefficient and reduction rates of predator species
are usually considered as an effect of environmental fluctuations. Reproduction of
species depends on various factors, such as temperature, parasites, pathogens, hu-
midity and environmental pollution. Since biological environments of populations
are not entirely predictable, the biological parameters of modeling of prey–predator
system should be considered as imprecise in nature.

The proposed discrete-time prey–predator model is presented here with the inter-
val coefficient due to the uncertainty of parameter of practical problem in nature.
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4.1 Model with Interval Coefficient

Let â, b̂, ĉ and d̂ be the interval counterparts of a, b, c and d , respectively. Then, the
modified model is

xn+1 = âxn(1 − xn) − b̂
√
xnyn (2)

yn+1 = ĉ
√
xnyn − d̂ yn

where â ∈ [al, au], b̂ ∈ [bl, bu], ĉ ∈ [cl, cu] and d̂ ∈ [dl, du] .Also, al > 0, bl > 0,
cl > 0, and dl > 0.

4.2 Model with Parametric Interval Coefficient

The Eq. (2) can be written in the parametric form as follows

xn+1 = (al)
1−p(au)

pxn(1 − xn) − (bl)
1−p(bu)

p√xnyn (3)

yn+1 = (cl)
1−p(cu)

p√xnyn − (dl)
1−p(du)

pyn

for p ∈ [0, 1].

5 Fixed Points and Stability Analysis of Prey–Predator
System

To find the fixed points of the system, we have to solve the following nonlinear
system of equations:

x = (al)1−p(au)px(1 − x) − (bl)1−p(bu)p
√
xy

y = (cl)1−p(cu)p
√
xy − (dl)1−p(du)py

From the above nonlinear system of equations, we get these nonnegative fixed
points as follows:

(i)P0 = (0, 0) , (ii)P1 =
(
(al)1−p(au)p−1
(al)1−p(au)p

, 0
)
, (al)1−p(au)p > 1, (iii)P2 = (x∗, y∗)

where x∗ =
(
(dl)1−p(du)p+1
(cl)1−p(cu)p

)2

and y∗ = (al)1−p(au)p((dl)1−p(du)p+1)
(bl)1−p(bu)p(cl)1−p(cu)p

[
1 − 1

(al)1−p(au)p
−

(
(dl)1−p(du)p+1
(cl)1−p(cu)p

)2
]
,[

1
(al)1−p(au)p

+
(
(dl)1−p(du)p+1
(cl)1−p(cu)p

)2
]
< 1
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5.1 Dynamic Behavior of the Model

This section presents the local behavior of themodel (3) for each equilibriumpoints of
the prey–predator system. The stability of the system (3) is carried out by computing
the Jacobian matrix corresponding to each equilibrium point. The Jacobian matrix J
for the system (3) is

J =
[
(al)1−p(au)p(1 − 2x) − (bl)1−p(bu)py

2
√
x

−(bl)1−p(bu)p
√
x

(cl)1−p(cu)py
2
√
x

(cl)1−p(cu)p
√
x − (dl)1−p(du)p

]

Characteristic equation of matrix J is λ2 − Tr (J )λ + Det (J ) = 0 where

Tr (J ) = Trace of matrix J

=
[
(al)

1−p(au)
p(1 − 2x) − (bl)

1−p(bu)py

2
√
x

]
+

[
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
]

Det(J ) = Determinant of matrix J

= (al)
1−p(au)

p(1 − 2x)
(
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
)

+ (bl)1−p(bu)p(dl)1−p(du)py

2
√
x

Hence, the model (3) is a dissipative dynamical system if∣∣∣(al)1−p(au)p(1 − 2x)
(
(cl)1−p(cu)p

√
x − (dl)1−p(du)p

) + (bl )1−p(bu)p(dl )1−p(du)py
2
√
x

∣∣∣ < 1

conservative dynamical one, if and only if∣∣∣(al)1−p(au)p(1 − 2x)
(
(cl)1−p(cu)p

√
x − (dl)1−p(du)p

) + (bl )1−p(bu)p(dl )1−p(du)py
2
√
x

∣∣∣ = 1

and is an un-dissipated dynamical system otherwise.
In order to study the stability of the fixed points of the model, we first give the

following lemma

Lemma 1 Let F(λ) = λ2 − Bλ + C. Suppose that F(1) > 0, λ1 and λ2 are the two
roots of F(λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F(−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(iv) λ1 = −1 and |λ2| �= 1 if and only if F(−1) = 0 and B �= 0, 2;
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if B2 − 4C < 0 and

C = 1.
Let λ1and λ2 be the two eigenvalues of the fixed point (x, y). We recall some

definitions of topological types for a fixed point (x, y).
A fixed point (x, y) is called
(i) a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally asymptotically stable.
(ii) a source if |λ1| > 1 and |λ2| > 1, so the source is locally unstable.
(iii) a saddle if |λ1| > 1 and |λ2| < 1 or ( |λ1| < 1 and |λ2| > 1).
(iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.



216 P. Santra and G. S. Mahapatra

5.2 Stability and Dynamic Behavior of P1

At P1 =
(
(al)1−p(au)p−1
(al)1−p(au)p

, 0
)
, the Jacobian matrix J for the system is

J =

⎡
⎢⎢⎣
2 − (al)1−p(au)p −(bl)1−p(bu)p

√[
(al )1−p(au)p−1
(al)1−p(au)p

]

0 (cl)1−p(cu)p
√[

(al)1−p(au)p−1
(al)1−p(au)p

]
− (dl)1−p(du)p

⎤
⎥⎥⎦

Equilibrium point is

Sink if
∣∣2 − (al)1−p(au)p

∣∣ < 1 and
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ < 1

Source if
∣∣2 − (al)1−p(au)p

∣∣ > 1 and
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ > 1

Saddle if
∣∣2 − (al)1−p(au)p

∣∣ > 1 and
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ <
1 or∣∣2 − (al)1−p(au)p

∣∣ < 1 and

∣∣∣∣(cl)1−p(cu)p
√[

(al )1−p(au)p−1
(al)1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ > 1

Non-hyperbolic if
∣∣2 − (al)1−p(au)p

∣∣ = 1 or
∣∣∣∣(cl)1−p(cu)p

√[
(al )1−p(au)p−1
(al )1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ = 1

If (al)1−p(au)p = 3 and

∣∣∣∣(cl)1−p(cu)p
√[

(al)1−p(au)p−1
(al)1−p(au)p

]
− (dl)1−p(du)p

∣∣∣∣ �= 1, then

P1 =
(
(al )1−p(au)p−1
(al)1−p(au)p

, 0
)
can undergo flip bifurcation when the parameters vary in the

neighborhood of (al)1−p(au)p = 3.

5.3 Local Stability and Dynamic Behavior Around Interior
Fixed Point

The dynamic behavior for the interior equilibrium point of the system is presented
here:

1 − Tr (J ) + Det (J )

= 1 −
[
(al)

1−p(au)
p(1 − 2x) − (bl)1−p(bu)py

2
√
x

]

− [
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
]

+ (al)
1−p(au)

p(1 − 2x)
(
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
)

+ (bl)1−p(bu)p(dl)1−p(du)py

2
√
x



Discrete Prey–Predator Model with Square Root … 217

1 + Tr (J ) + Det (J )

= 1 +
[
(al)

1−p(au)
p(1 − 2x) − (bl)1−p(bu)py

2
√
x

]

+ [
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
] + (al)

1−p(au)
p(1 − 2x)

(
(cl)

1−p(cu)
p√x − (dl)

1−p(du)
p
) + (bl)1−p(bu)p(dl)1−p(du)py

2
√
x

Det (J ) = (al)
1−p(au)

p(1 − 2x)
(
(cl)

1−p(cu)
p√x

−(dl)
1−p(du)

p
) + (bl)1−p(bu)p(dl)1−p(du)py

2
√
x

At P2 = (x∗, y∗) , if 1 − Tr (J ) + Det (J ) > 0, then interior equilibrium point is
Sink if 1 + Tr (J ) + Det (J ) > 0 and Det (J ) < 1
Source if 1 + Tr (J ) + Det (J ) > 0 and Det (J ) > 1
Saddle if 1 + Tr (J ) + Det (J ) < 0
Non-hyperbolic if 1 + Tr (J ) + Det (J ) = 0 and Tr (J ) �= 0, 2. or [Tr (J )]2 −

4Det (J ) < 0 and Det (J ) = 1.
At P2 = (x∗, y∗) , if 1 − Tr (J ) + Det (J ) > 0, 1 + Tr (J ) + Det (J ) = 0, and

Tr (J ) �= 0and2, then (x∗, y∗) can undergo flip bifurcation.
At P2 = (x∗, y∗) , if 1 − Tr (J ) + Det (J ) > 0, (Tr (J ))2 − 4Det (J ) < 0 and

Det (J ) = 1, then (x∗, y∗) can undergo Hopf bifurcation.

6 Flip Bifurcation

From Lemma 1, one of the eigenvalues of the positive fixed point P2 = (x∗, y∗) is
λ1 = −1 and the other (λ2) is neither 1 nor−1 if parameters of the model are located
in the following set A = {(al, au, bl, bu, cl, cu, dl, du, p): 1 − Tr (J ) + Det (J ) > 0,
1 + Tr (J ) + Det (J ) = 0, Tr (J ) �= 0, 2 and p ∈ [0, 1]}.

Here,wediscuss flip bifurcation of themodel (3) atP2 = (x∗, y∗)whenparameters
vary in a small neighborhood of A. In analyzing the flip bifurcation, p is used as the
bifurcation parameter. Further, p∗ is the perturbation of p,we consider a perturbation
of the system as follows:

xn+1 = (al)
1−(p+p∗)(au)(p+p∗)xn(1 − xn) − (bl)

1−(p+p∗)(bu)(p+p∗)√xnyn ≡ f (xn, yn, p
∗) (4)

yn+1 = (cl)
1−(p+p∗)(cu)(p+p∗)√xnyn − (dl)

1−(p+p∗)(du)(p+p∗)yn ≡ g(xn, yn, p
∗)

where |p∗| ≪ 1
Let un = xn − x∗, vn = yn − y∗, then equilibrium P2 = (x∗, y∗) is transformed

into the origin, and further expanding f and g as a Taylor series at (un, vn, p∗) =
(0, 0, 0) to the third order, the model (4) becomes
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un+1 = α1un + α2vn + α11u
2
n + α12unvn + α13unp

∗ + α23vnp
∗ + (5)

α111u
3
n + α112u

2
nvn + α113u

2
np

∗ + α123unvnp
∗ + O((|un| + |vn| + ∣∣p∗∣∣)4)

vn+1 = β1un + β2vn + β11u
2
n + β12unvn + β22v

2
n + β13unp

∗ + β23vnp
∗ + β111u

3
n +

β112u
2
nvn + β113u

2
np

∗ + β123unvnp
∗ + β223v

2
np

∗ + O((|un| + |vn| + ∣∣p∗∣∣)4)
where α1 = fx(x∗, y∗, 0), α2 = fy(x∗, y∗, 0), α11 = fxx(x∗, y∗, 0), α12 = fxy(x∗, y∗,
0),α13 = fxp∗(x∗, y∗, 0),α23 = fyp∗(x∗, y∗, 0),α111 = fxxx(x∗, y∗, 0),α112 = fxxy(x∗,
y∗, 0), α113 = fxxp∗(x∗, y∗, 0), α123 = fxyp∗(x∗, y∗, 0)

β1 = gx(x∗, y∗, 0),β2 = gy(x∗, y∗, 0),β11 = gxx(x∗, y∗, 0), β12 = gxy(x∗, y∗, 0),
β22 = gyy(x∗, y∗, 0), β13 = gxp∗(x∗, y∗, 0), β23 = gyp∗(x∗, y∗, 0), β111 = gxxx(x∗, y∗,
0), β112 = gxxy(x∗, y∗, 0), β113 = gxxp∗(x∗, y∗, 0), β123 = gxyp∗(x∗, y∗, 0), β223 =
gyyp∗(x∗, y∗, 0)

We define T =
[

α2 α2

−1 − α1 λ2 − α1

]
, where T is invertible, and using the trans-

formation

[
un
vn

]
= T

[
xn
yn

]
, the model (5) becomes

xn+1 = −xn + f1(un, vn, p
∗) (6)

yn+1 = λ2yn + g1(un, vn, p
∗)

where the functions f1 and g1 denote the terms in the model (6) in variables
(un, vn, p∗) with the order at least two.

From the theorem of center manifold, there exists a center manifoldWc(0, 0, 0) of
themodel (6) at (0, 0) in a small neighborhoodofp∗ = 0,which canbe approximately
described as follows:

Wc(0, 0, 0) = {(
xn, yn, p

∗) εR3 : yn+1 = α1x
2
n + α2xnp∗ + O((|xn| + |p∗|)3)}

whereα1 = α2[(1 + α1)α11 + α2β11]
1 − λ2

2

+ β22(1 + α1)
2

1 − λ2
2

− (1 + α1)[α12(1 + α1) + α2β12]
1 − λ2

2

,

α2 = (1 + α1)[α23(1 + α1) + α2β23]
α2(1 + λ2)2

− (1 + α1)α13 + α2β13]
(1 + λ2)2

.

We obtain the system (6) restricted to center manifoldWc(0, 0, 0), which has the
following form

xn+1 = −xn + h1x2n + h2xnp∗ + h3x2np
∗ + h4xnp∗2 + h5x3n + O((|xn| + |p∗|)3) ≡ F(xn, p∗)

h1 = α2[(λ2 − α1)α11 − α2β11]
1 + λ2

− β22(1 + α1)
2

1 + λ2
− (1 + α1)[(λ2 − α1)α12 − α2β12]

1 + λ2
,

h2 = (λ2 − α1)α13 − α2β13
1 + λ2

− (1 + α1)[(λ2 − α1)α23 − α2β23]
α2 (1 + λ2)

,

h3 = (λ2 − α1)α1α13 − α2β13
1 + λ2

+ [(λ2 − α1)α23 − α2β23](λ2 − α1)α1

α2 (1 + λ2)

− (1 + α1)[(λ2 − α1)α123 − α2β123]
1 + λ2

+ α2[(λ2 − α1)α113 − α2β113]
1 + λ2
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− β223(1 + α1)
2

1 + λ2
+ 2α2α2[(λ2 − α1)α11 − α2β11]

1 + λ2
− 2β22α2(1 + α1)(λ2 − α1)

1 + λ2

+ α2[(λ2 − α1)α12 − α2β12](λ2 − 1 − 2α1)

1 + λ2
,

h4 = α2[(λ2 − α1)α13 − α2β13]
1 + λ2

+ [(λ2 − α1)α23 − α2β23](λ2 − α1)α2

α2 (1 + λ2)

+ 2α2α2[(λ2 − α1)α11 − α2β11]
1 + λ2

+ 2β22α2(1 + α1)(λ2 − α1)

1 + λ2
+ α2[(λ2 − α1)α12 − α2β12](λ2 − 1 − 2α1)

1 + λ2
,

h5 = 2α2α1[(λ2 − α1)α11 − α2β11]
1 + λ2

+ 2β22α1(λ2 − α1)(1 + α1)

1 + λ2

+ [(λ2 − α1)α11 − α2β11](λ2 − 1 − 2α1)α1

1 + λ2

+ α2
2[(λ2 − α1)α111 − α2β111]

1 + λ2
− α2(1 + α1)[(λ2 − α1)α112 − α2β112]

1 + λ2
.

For flip bifurcation, we require the two discriminatory quantities ξ1 and ξ2 to be
nonzero,

ξ1 =
(

∂2F
∂x∂p∗ + 1

2
∂F
∂p∗

∂2F
∂x2

)
|(0,0)

ξ2 =
(

1
6

∂3F
∂x3

+
(
1
2

∂2F
∂x2

)2
)

|(0,0)
Finally, from the above analysis , we have the following result.

Theorem 2 If ξ1 �= 0 and ξ2 �= 0 then the model (3) undergoes flip bifurcation at
P2 = (x∗, y∗), if ξ2 > 0 (resp. ξ2 < 0), then the period-2 points that bifurcation from
P2 = (x∗, y∗) are stable.

7 Chaos Control

This section presents a feedback control method to stabilize chaotic orbits at an
unstable positive fixed point of system (3).

Consider the following controlled form of model (3):

xn+1 = (al)
1−p(au)

pxn(1 − xn) − (bl)
1−p(bu)

p√xnyn + S (7)

yn+1 = (cl)
1−p(cu)

p√xnyn − (dl)
1−p(du)

pyn

with the following feedback control law as the control force:

S = −q1
(
xn − x∗) − q2

(
yn − y∗)

where q1 and q2 are the feedback gain and (x∗, y∗) is a positive fixed point of
model.
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The Jacobian matrix J for the system (7) at (x∗, y∗) is

J =
[
a11 − q1 a12 − q2

a21 a22

]

wherea11 = al1−paup(1 − 2x∗)− bl 1−pbupy∗

2
√
x∗ , a12 = −bl1−pbup

√
x∗, a21 = cl 1−pcupy∗

2
√
x∗ ,

a22 = cl1−pcup
√
x∗ − dl1−pdup. The corresponding characteristic equation of matrix

J is
λ2 − (a11 + a22 − q1)λ + a22 (a11 − q1) − a21 (a12 − q2)
Let λ1 and λ2 are the eigenvalues

λ1 + λ2 = a11 + a22 − q1 (8)

and
λ1λ2 = a22 (a11 − q1) − a21 (a12 − q2) (9)

The lines of marginal stability are determined by solving the equation λ1 = ±1
and λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and λ2 have mod-
ulus less than 1.

Suppose λ1λ2 = 1; from (9) we have line l1 as follows:
a22q1 − a21q2 = a22a11 − a21a12 − 1
Suppose λ1 = ±1; from (8, 9), we have line l2 and l3 as follows:
(1 − a22) q1 + a21q2 = a11 + a22 − 1 − a22a11 + a21a12
and
(1 + a22) q1 − a21q2 = a11 + a22 + 1 + a22a11 − a21a12
The stable eigenvalues lie within a triangular region by line l1, l2 and l3.

8 Numerical Simulation

Here, we consider a numerical example of the above model and carried out math-
ematical calculation that depends on some artificial data. We calculated the equi-
librium points and analyzed their stability. For the model (3) given in the paper,
we consider the parameter values â ∈ [al, au] = [4.0, 4.2], b̂ ∈ [bl, bu] = [1.8, 2.0],
ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] = [0.1, 0.2] . Performing computer simulation
on that chosen data, we calculate the equilibria points, eigenvalues and stability of
every equilibrium points for different values of p. The obtained results are given in
Table1.

Figures1 and 2 are drawn in the basis of the parameter values â ∈ [al, au]
= [4.0, 4.2], b̂ ∈ [bl, bu] = [1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] =
[0.1, 0.2] . Here, we observe damped oscillation for time plot in Fig. 1 for p =
0.0, 0.2, 0.4, 0.6, 0.8. In Fig. 2, all trajectories spiral into the stable fixed point for
p = 0.0, 0.2, 0.4, 0.6, 0.8. Here, we found constant oscillation about interior equi-
librium points for time plot in Fig. 1 for p = 1.0 . In Fig. 2, trajectories are attracted
to a limit cycle about interior equilibrium points for p = 1.0. Hence, there exist a bi-
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Table 1 Equilibrium points, Eigenvalues and stability of equilibrium points

Value of p Equilibrium
points

Eigenvalues Stability

p = 0.0 (0.7500, 0) −2.0000, 1.3722 Unstable point

p = 0.0 (0.4187, 0.4764) 0.4939 − 0.6876i, 0.4939 + 0.6876i Stable point

p = 0.2 (0.7524, 0) −2.0390, 1.3929 Unstable point

p = 0.2 (0.4114, 0.4806) 0.5135 − 0.7288i, 0.5135 + 0.7288i Stable point

p = 0.4 (0.7548, 0) −2.0786, 1.4122 Unstable point

p = 0.4 (0.4056, 0.4832) 0.5289 − 0.7644i, 0.5289 + 0.7644i Stable point

p = 0.6 (0.7572, 0) −2.1187, 1.4298 Unstable point

p = 0.6 (0.4015, 0.4841) 0.5394 − 0.7946i, 0.5394 + 0.7946i Stable point

p = 0.8 (0.7596, 0) −2.1595, 1.4454 Unstable point

p = 0.8 (0.3992, 0.4836) 0.5445 − 0.8200i, 0.5445 + 0.8200i Stable point

p = 1.0 (0.7619, 0) −2.2000, 1.4585 Unstable point

p = 1.0 (0.3989, 0.4815) 0.5434 − 0.8405i, 0.5434 + 0.8405i Unstable point
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Fig. 1 Time graph for different p
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Fig. 3 Bifurcation diagram for varying p
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Fig. 4 Bifurcation diagram for varying p

furcation for p. This bifurcation is supercritical—after the fixed point loses stability,
it is surrounded by a stable limit cycle.

Figure3 depicts smooth invariant circle bifurcates for both prey and predator from
stable equilibrium.As the p value increases, the behavior becomesmore complex and
more unpredictable for both species. When p exceeds 0.91, there appears a circular
curve enclosing equilibrium and its radius becomes larger with chaotic behavior
for both species. This figure is drawn with respect to â ∈ [al, au] = [4.0, 4.2], b̂ ∈
[bl, bu] = [1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] = [0.1, 0.2] .

Figure4 shows a smooth invariant circle bifurcates from stable equilibrium.
When p exceeds 0.7, there appears a circular curve enclosing equilibrium and
its radius becomes larger with the increasing of p.This figure is drawn with re-
spect to â ∈ [al, au] = [4.2, 4.4], b̂ ∈ [bl, bu] = [1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9],
d̂ ∈ [dl, du] = [0.1, 0.2] .

The above figure is drawn with respect to â ∈ [al, au] = [4.5, 4.7], b̂ ∈ [bl, bu] =
[1.8, 2.0], ĉ ∈ [cl, cu] = [1.7, 1.9], d̂ ∈ [dl, du] = [0.1, 0.2] .Figure5 shows smooth
invariant circle bifurcates for both species from stable equilibrium. Furthermore, if
p exceeds 0.45, there appears a circular curve enclosing equilibrium and its radius
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Fig. 5 Bifurcation diagram for varing p

becomes larger with the growth of p. At p values above 0.83, the systems behave as
a limit cycle for both species.

9 Conclusion

Thiswork is related to the qualitative behavior of a discrete-time predator-preymodel
under imprecise biological parameters. We have found the fixed points of the system
and discussed their stability analytically.We give a flip bifurcation analysis and chaos
control procedure. The phase portraits, bifurcation and time graphs are obtained for
different parameters of the model. Here, we introduce a new concept in bifurcation
analysis. The codimension of a bifurcation is the number of parameters which must
be varied for the bifurcation to occur. When we consider p as bifurcation parameter,
ultimately, we consider here 4 bifurcation parameter in a certain range, but interesting
fact is that using our technic we convert this 4 codim bifurcation in 1 codim. The
proposed study will be very useful for the mathematical modeling and analysis of a
wide range of predator–prey interactions. Our study suggests that herd behavior has
stabilizing effect on population dynamics.

References

1. Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun.
Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

2. Pal, D., Mahapatra, G.S., Samanta, G.P.: A proportional harvesting dynamical model with
fuzzy intrinsic growth rate and harvesting quantity. Pac.-Asian J. Math. 6, 199–213 (2012)

3. Santra, P., Mahapatra, G.S.: Prey-predator model for optimal harvesting with functional re-
sponse incorporating prey refuge. Int. J. Biomath. 09, ID1650014 (2016)



224 P. Santra and G. S. Mahapatra

4. Santra, P., Mahapatra, G.S., Pal, D.: Analysis of deferential-algebraic prey-predator dynamical
model with super predator harvesting on economic perspective. Int. J. Dyn. Control 4, 266–274
(2016)

5. Pal, D., Santra, P., Mahapatra, G.S.: Dynamical behavior of three species predator prey system
with mutual support between non refuge prey. Ecol. Genet. Genomics 3–5, 1–6 (2017)

6. Pal, D., Santra, P., Mahapatra, G.S.: Predator-Prey dynamical behavior and stability analysis
with square root functional response. Int. J. Appl. Comput. Math. 3(3), 1833–1845 (2017)

7. Pal, D., Mahapatra, G.S.: Dynamic behavior of a predator-prey system of combined harvesting
with interval-valued rate parameters. Nonlinear Dyn. 83(4), 2113–2123 (2016)

8. Sarwardi, S., Mandal, P.K., Ray, S.: Analysis of a competitive prey-predator systemwith a prey
refuge. Biosystems 110(3), 133–148 (2012)

9. Huang, Y., Chen, F., Zhong, L.: Stability analysis of a prey-predator model with Holling type III
response function incorporating a prey refuge. Appl. Math. Comput. 182(1), 672–683 (2006)

10. Devi, Sapna: Nonconstant prey harvesting in ratio-dependent predator-prey system incorpo-
rating a constant prey refuge. Int. J. Biomathem. 5(2), 1250021 (2012)

11. Mukhopadhyay, B., Bhattacharyya, R.: Effects of deterministic and random refuge in a prey-
predator model with parasite infection. Math. Biosci. 239(1), 124–130 (2012)

12. Jing, Z.J., Yang, J.: Bifurcation and chaos discrete-time predator-prey system. Chaos, Solitons
Fractals 27, 259–277 (2006)

13. Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator-prey system. Chaos,
Solitons Fractals 32, 80–94 (2006)

14. Liu, X.: A note on the existence of periodic solution in discrete predator-prey models. Appl.
Math. Model. 34, 2477–2483 (2006)

15. Wang, W.X., Zhang, B.Y., Liu, C.Z.: Analysis of a discrete-time predator–prey system with
Allee effect. Ecol. Complex. 8, 81–85 (2011)

16. Elsadany, A.E.A.: Dynamical complexities in a discrete-time food chain. Comput. Ecol. Softw.
2(2), 124–139 (2012)

17. Wu, T.: Dynamic behaviors of a discrete two species predator-prey system incorporating har-
vesting. Discrete Dyn. Nat. Soc. Article ID 429076 (2012)

18. Jana, D.: Chaotic dynamics of a discrete predator-prey system with prey refuge. Appl. Math.
Comput. 224, 848–865 (2013)

19. Din, Q., Elsayed, E.M.: Stability analysis of a discrete ecological model. Comput. Ecol. Softw.
4(2), 89–103 (2014)

20. Tripathi, J.P., Abbas, S., Thakur, M.:. Dynamical analysis of a prey–predator model with
Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn.
80, 177–196 (2015)

21. Peixoto, M., Barros, L.C., Bassanezi, R.C.: Predator-prey fuzzy model. Ecol. Model. 214,
39–44 (2008)

22. Pal, D., Mahapatra, G.S., Samanta, G.P.: Optimal harvesting of prey-predator system with
interval biological parameters: a bioeconomic model. Math. Biosci. 24, 181–187 (2013)

23. Pal, D.,Mahapatra, G.S., Samanta, G.P.: Quota harvestingmodel for a single species population
under fuzziness. Int. J. Mathe. Sci. 12, 33–46 (2013)

24. Malthus, T.R.: An Essay on the Principle of Population, and a Summary View of the Principle
of Populations. Penguin, Harmondsworth, England (1798)

25. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)
26. Volterra, V.: Leconssen la theorie mathematique de la leitte pou lavie. Gauthier-Villars, Paris

(1931)
27. Zhao, M., Du, Y.: Stability of a discrete-time predator-prey systemwith Allee effect. Nonlinear

Anal. Diff. Equ. 4(5), 225–233 (2016)
28. Santra, P., Mahapatra, G.S., Pal, D.: Prey-predator nonlinear harvesting model with functional

response incorporating prey refuge. Int. J. Dyn. Control 4, 293–302 (2016)
29. Mahapatra, G.S., Mandal, T.K.: Posynomial parametric geometric programming with interval

valued coefficient. J. Optim. Theory Appl. 154, 120–132 (2012)



Discrete Prey–Predator Model with Square Root … 225

30. Bassanezi, R.C., Barros, L.C., Tonelli, A.: Attractors and asymptotic stability for fuzzy dy-
namical systems. Fuzzy Sets Syst. 113, 473–483 (2000)

31. Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: Fuzzy modelling in population dynamics. Ecol.
Model. 128, 27–33 (2000)

32. Tuyako, M.M., Barros, L.C., Bassanezi, R.C.: Stability of fuzzy dynamic systems. Int. J. Un-
certainty Fuzziness Knowl.-Based Syst. 17, 69–83 (2009)

33. Pereira, C.M., Cecconello, M.S., Bassanezi, R.C.: Prey-predator model under fuzzy uncer-
tanties. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing, NAFIPS 2018. Com-
munications in Computer and Information Science, vol. 831, Springer, Cham (2018)

34. Barros, L.C., Oliveira, R.Z.G., Leite, M.B.F., Bassanezi, R.C.: Epidemiological models of
directly transmitted diseases: an approach via fuzzy sets theory. Int. J. Uncertainty Fuzziness
Knowl.-Based Syst. 22(5), 769–781 (2014)

35. Gámeza, M., Lópeza, I., Rodrígueza, C., Vargab, Z., Garayc, J.: Ecological monitoring in a
discrete-time prey-predator model. J. Theor. Biol. 429, 52–60 (2017)

36. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator-prey model with
nonmonotonic functional response. J. Math. Anal. Appl. 464, 201–230 (2018)



Comparison of Explicit and Implicit
Finite Difference Schemes on Diffusion
Equation

Malabika Adak

Abstract In physics and mathematics, heat equation is a special case of diffusion
equation and is a partial differential equation (PDE). Partial differential equations
are useful tools for mathematical modeling. A few problems can be solved analyt-
ically, whereas difficult boundary value problem can be solved by numerical meth-
ods easily. A very popular numerical method known as finite difference methods
(explicit and implicit schemes) is applied expansively for solving heat equations
successfully. Explicit schemes are Forward Time and Centre Space (FTCS), Dufort
and Frankel methods, whereas implicit schemes are Laasonen and Crank-Nicolson
methods. In this study, explicit and implicit finite difference schemes are applied for
simple one-dimensional transient heat conduction equation with Dirichlet’s initial-
boundary conditions. MATLAB code is used to solve the problem for each scheme in
fine mesh grids. Comparing results with analytical results, Crank-Nicolson method
gives the best approximate solution. FTCS scheme is conditionally stable, whereas
other schemes are unconditionally stable. Convergence, stability and truncation error
analysis are investigated. Transient temperature distribution plot and surface temper-
ature plots for different time are presented. Also, unstable plot for FTCS method is
represented.

Keywords Dirichlet boundary condition · Finite difference scheme · Truncation
error · Convergence · Stability

1 Introduction

In most of the research work in the fields like applied elasticity, theory of plates and
shells hydrodynamics, quantum mechanics, the problem reduces to partial differen-
tial equations. The heat equation is fundamental in diverse scientific fields, which
describe the distribution of heat (or variation of temperature) in a given region over
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time. In the heat equation, there are derivatives with respect to time and derivatives
with respect to space. Different combinations ofmesh points in the different formulas
result in different schemes as used. As the mesh spacing (�x and �t) goes to zero,
the numerical solution obtained with any useful scheme will approach to the true
solution of the original differential equation. However, the rate at which the numer-
ical solution approaches the true solution varies with the scheme. In addition, some
practically useful schemes can fail to yield a solution for bad combinations of �x
and�t. Four different schemes for the solution to heat equation are developed. Ames
[1], Morton and Mayers [2], Cooper [3], Clive [4], Golub and Ortega [5], Burden
and Faires [6], Thomas [7], Strikwerda [8], Arnold [9], Trefethen [10], Olsen-Kettle
[11] and Ames [1] provide a development of finite difference methods and modern
introduction to the theory of partial differential equation along with a brief coverage
of numerical methods. The explicit and implicit Euler schemes are constructed and
investigated for hyperbolic heat conduction equation by Ciegis [12].

Recktenwald [13] discussed the three finite difference methods (FTCS, BTCS
and Crank-Nicolson) to solve one-dimensional boundary problem. Gerald used the
MATLAB code for numerical solution. Karatay et al. [14] obtained the solution
of time fractional heat equation using Crank-Nicolson method. Aswin et al. [15]
described three different numerical schemes to approximate the solution of the con-
vection–diffusion equation. Azad and Andallah [16] studied stability analysis for
two standard finite difference schemes forward time backward space and centered
space (FTBSCS) and forward time and centered space (FTCS) for convection–dif-
fusion equation. Mebrate [17] presented the comparative result of finite difference
and finite element method for one-dimensional heat equation. Finite element method
gave better result than the finite difference method. Olusegun [18] solved the one-
dimensional heat equation using explicit scheme. Adak [18–20] solved the transient
heat equation with convection boundary condition using explicit finite difference
scheme.

The main objective of this paper is to study the effect of explicit and implicit
schemes on one-dimensional diffusion equation with Dirichlet boundary condition.
The paper is organized in the following ways: First, the second time level scheme
to solve parabolic PDEs followed by the third time level scheme to solve parabolic
PDEs is discussed. Subsequently, convergence, stability and truncation error analysis
are presented for different schemes. Then, the numerical results are compared with
the exact solution.

2 Finite Difference Schemes

Consider one-dimensional diffusion equation in a Lm length rodwithout any sources
or sinks

∂T

∂t
= α

∂2T

∂x2
0 ≤ x ≤ L , t ≥ 0 (1)
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Fig. 1 Mesh grids along
distance and time direction

with initial condition T (x, 0) = f (x), and Dirichlet’s boundary conditions are

T (0, t) = T0, T (L , t) = TL

where T = temperature (°C), t = time (s), x = length (m). T 0 = TL = constant
temperature.
α = k

ρc = thermal diffusivity of material depends on k = thermal conductivity

(W/m °C) and c = heat capacity of material (J/m3 °C) and ρ = density (kg/m3).
This section represents the formulation of various numerical schemes with two

time level and three time level. An approximate solution for T (x, t) at a finite set of
x and t is obtained by using finite difference schemes. Divide the (x, t) plane into
smaller rectangular as shown in Fig. 1 by

x = i�x, i = 0, 1, 2 . . . t = k�t, i = 0, 1, 2 . . .

For the code developed in this article, the discrete x is uniformly spaced in the
interval such that

T (x, t) = T (i�x, k�t) = T k
i 0 ≤ x ≤ L

xi = (i − 1)�x, i = 1, 2, . . . N

whereN is the total number of special nodes, including those on the boundary. Given
L and N, the spacing between the xi is computed with �x = L

N−1 .
Similarly, the discrete t is uniformly spaced in 0 ≤ t ≤ tmax

tk = (k − 1)�t, k = 1, 2, 3 . . . M

where M is the number of time steps and �t is the size of a time step
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�t = tmax

M − 1

Derivatives in the heat equation are approximated by Taylor’s series expansion

∂T

∂t
= T n+1

i − T n
i

�t
+ O(�t) (Forward difference in time)

∂T

∂t
= T n

i − T n−1
i

�t
+ O(�t) (Backward difference in time)

∂T

∂t
= T n+1

i − T n−1
i

2�t
+ O

(
�t2

)
(Central difference in time)

∂2T

∂x2
= T n

i−1 − 2T n
i + T n

i+1

(�x)2
+ O

(
�x2

)
(Central difference in space)

The terms O
(
�t + �x2

)
and O

(
�t2 + �x2

)
denote the order of local truncation

error and is also known as the order of method. After neglecting the truncation, error
and simplifying, obtain the following difference schemes.

2.1 Explicit Scheme

Forward Time andCentre Space (FTCS)Method. In Eq. (1), first-order derivative
is replaced by forward difference in time aswell as second order is replaced by central
difference in space. We get

T n+1
i − T n

i

�t
= α

T n
i−1 − 2T n

i + T n
i+1

(�x)2

which can be written as

T n+1
i = (1 − 2λ)T n

i + λ
(
T n
i+1 + T n

i−1

)
(2)

where λ = α�t
�x2 is called mesh ratio parameter.

In Eq. (2), T n+1
i is expressed explicitly in terms of T n

i−1, T
n
i and T n

i+1.
Hence, it is called the explicit formula for the solution of one-dimensional heat

equation. It can be shown that Eq. (2) is valid only for 0 ≤ λ ≤ 1
2 , which is called

the stability condition for explicit formula. Using Dirichlet initial and boundary
condition in Eq. (2), we get system of linear equations for n = 0, 1, 2 . . . These
linear equations are solved to get the solution for new time step.

If we set λ = 1
2 in Eq. (2), we obtain the simple formula

T n+1
i = 1

2

(
T n
i+1 + T n

i−1

)
(3)
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which is called Bender-Schmidt scheme. It is clear that Eqs. (2) and (3) have limited
application because of the restriction on the values of λ.
Dufort and Frankel Scheme. In Eq. (1), first-order derivative is replaced by central
difference in time as well as second order is replaced by central difference in space.
We get

T n+1
i − T n−1

i

2�t
= α

T n
i−1 − 2T n

i + T n
i+1

(�x)2

Also, replace T n
i by the mean of the values T n+1

i and T n−1
i that means

T n
i ≈ 1

2

(
T n+1
i + T n−1

i

)
and simplifying, Eq. (1) is converted to

T n+1
i = 1 − 2λ

1 + 2λ
T n−1
i + 2λ

1 + 2λ

(
T n
i−1 + T n

i+1

)
(4)

where λ = α�t
�x2 is called mesh ratio parameter.

Equation (4) is explicit scheme. In this method, to calculate nth level approximate
solution (n−1)th time level value is used that for calculating first time level (when n =
0), (−1)th time level value is required. It is not possible physically. To overcome the
critical situation FCTS scheme is used at n = 0; remaining time level approximation
is calculated using Dufort-Frankel method. Therefore, FTCS scheme is very simple
and straightforward.

2.2 Implicit Scheme

Laasonen Scheme. In Eq. (1), first-order derivative is replaced by backward differ-
ence in time as well as second order is replaced by central difference in space. We
get

T n
i − T n−1

i

�t
= α

T n
i−1 − 2T n

i + T n
i+1

(�x)2

After rearranging equation and at (n + 1)th level equation is given by

−λT n+1
i−1 + (1 + 2λ)T n+1

i + λT n+1
i+1 = T n

i (5)

where λ = α�t
(�x)2 is called mesh ratio parameter.

Equation (5) is called Laasonen method, also called two level scheme since nth
and (n+ 1)th levels are involved in equation. It is also known as the implicit scheme.

Using boundary and initial conditions in Eq. (5), represent system of linear
equations
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⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

1 + 2λ −λ 0 0 0 0
−λ 1 + 2λ −λ 0 0 0
0 −λ 1 + 2λ −λ 0 0
0 0 −λ 1 + 2λ −λ 0
0 0 0 −λ 1 + 2λ −λ

0 0 0 0 −λ 1 + 2λ

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

T 1
1

T 1
2

T 1
3

T 1
4

T 1
5

T 1
6

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

T 0
1

T 0
2

T 0
3

T 0
4

T 0
5

T 0
6

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

which is solved to determine the solution. Since it is implicit scheme, it is
unconditionally stable method.

Crank-Nicolson Scheme. If we replace ∂T
∂t by forward difference approximation and

∂2T
∂x2 by average of central difference in space at n and n + 1 level, after simplifying
Eq. (1) becomes as

T n+1
i − T n

i

�t
= α

1

2

(
T n
i−1 − 2T n

i + T n
i+1

(�x)2
+ T n+1

i−1 − 2T n+1
i + T n+1

i+1

(�x)2

)

It can be written as

−λT n+1
i−1 + (2 + 2λ)T n+1

i − λT n+1
i+1 = λT n

i−1 + (2 − 2λ)T n
i + λT n

i+1 (6)

where λ = α�t
�x2 is called mesh ratio parameter.

This method is also implicit scheme and two level schemes.
The solution of Crank-Nicolson scheme represents the tri-diagonal matrix form

as
⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

2 + 2λ −λ 0 0 0 0
−λ 2 + 2λ −λ 0 0 0
0 −λ 2 + 2λ −λ 0 0
0 0 −λ 2 + 2λ −λ 0
0 0 0 −λ 2 + 2λ −λ

0 0 0 0 −λ 2 + 2λ

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

T 1
1

T 1
2

T 1
3

T 1
4

T 1
5

T 1
6

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

T 0
1

T 0
2

T 0
3

T 0
4

T 0
5

T 0
6

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

Convergence. If T n
i is the approximate solution of PDE and T is the true solution,

then the convergence is the requirement that lim�t, �x→0 ||T n
i − T || = 0 that means

that for very smaller value of �x, �t , approximate solution becomes very closer to
true value. At each level, convergence condition

∣∣T n+1 − T n
∣∣ < ε.

Truncation Error. It is seen that the truncation errors for forward and backward
differences are of first order, whereas centered differences are of second order in time
and space (using by Taylor series expansions). So, the terms O

(
k + h2

)
denote the

order of local truncation error of FTCS, Bender-Schmidt, Laasonen, Crank-Nicolson
and O

(
k2 + h2

)
denote the order of local truncation error of Dufort-Frankel scheme.
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Consistency. If FD scheme is presented without any error terms, then we can show
consistency by Taylor expansion in the spatial approximation and temporal approxi-
mation separately; thus, the total truncation error goes to zero. Then, finite difference
must be consistent at least for first-order truncation error (O(�t) + O(�x)).
Stability Criteria. For stability, error at (n + 1)th time level is less than equal to
the error at nth time level. So,

∥∥en+1
∥∥ ≤ ‖en‖ → ∥∥T n+1

i

∥∥ ≤ ∥∥T n
i

∥∥. Stability
condition for FTCS scheme is 0 < λ ≤ 1/2. λ depends on mesh size in time and
space. If λ > 1/2, scheme would be unstable, whereas Laasonen, Crank-Nicolson,
Dufort-Frankel methods are unconditionally stable.

3 Test Problem and Verification

Various level finite difference schemes are used to approximate solution of parabolic
Eq. (1). It is required to experiment with these numerical techniques. It is hoped that
by writing computer codes and analyzing the results, numerical techniques show
the gainful result. Therefore, this section proposes a simple example and presents
solutions by described schemes.

In this study, consider a 1-m-long thin metal rod at temperature of wave equation.
At t = 0, both of its ends are placed on ice 0 °C. Assume that the heat can only flow
between rod and ice.

Governing equation of the above problem is given by Eq. (1) with initial condition
T (x, 0) = sin πx, 0 ≤ x ≤ 1, and Dirichlet’s boundary conditions are T (0, t) =
T (1, t) = 0.

The exact solution of the problem is T (x, t) = e−π2t sin πx .
As the mesh spacing (�x and �t) goes to zero, truncation error tends to zero, so

approximate solution will be very nearer to the exact solution.

Case I Consider �x = 0.1429m, �t = 0.01 s.

So, λ = α�t
(�x)2

= 0.49 < 0.5.
Therefore, stability condition of explicit (FTCS) finite scheme is satisfied and a

stable condition is expected.
Other schemes that means Laasonen, Crank-Nicolson and Dufort-Frankle meth-

ods are unconditionally stable. The temperature profile for two-three level schemes
is presented for three iterations as shown in Fig. 2.

Figure 3 shows that the comparison result of explicit (FTCS) and exact solution
for 1st–25th iteration that means t = 0–0.25 s at point x = 0.1429m. The graph
indicates that temperature was high initially and then gradually was decreased due
to ends kept at ice 0 °C. FTCS scheme is stable for λ < 0.5, so scheme is stable for
λ = 0.49 from convergence plot which is shown in Fig. 4.

Figure 5 shows temperature at each point of x domain from initial to 25th time
level for λ = 0.49 of FTCS scheme. It follows from the presented results that the
temperature at middle of the x-axis is higher due to sine curve than ends of rod due
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Fig. 4 Convergence plot of FTCS scheme for �x = 0.1429, �t = 0.01

to boundary values 0 °C. Temperature distributions are calculated for FTCS scheme
at different time levels t = 0, 0.05, 0.1, 0.15, 0.2, 0.25 s as shown in Fig. 6.

Case II When time step is increased to 0.02 s with same space size. Therefore,
�x = 0.1429, �t = 0.02.

λ = α�t
(�x)2

= 0.98 > 0.5 which exceeds the stability requirement.
Therefore, FTCS scheme is unstable. So, unstable solution is appeared in Fig. 7.
In Case II, time step is increased with the same space size, so the λ is greater than

0.5.
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Table 1 Comparison of various explicit schemes at t = 0.1 s

X Exact FTCS/error Dufort-Frankel/error

0.142857 0.161712 0.173119 0.011407 0.17012 0.008408

0.285714 0.291395 0.311949 0.020554 0.30943 0.018035

0.428571 0.363363 0.388995 0.025632 0.385292 0.021929

0.571429 0.363363 0.388995 0.025632 0.385292 0.021929

0.714286 0.291395 0.311949 0.020554 0.30943 0.018035

0.857143 0.161712 0.173119 0.011407 0.17012 0.008408

Therefore, explicit scheme is given unstable plot at t = 0.66 and t = 0.7 s.
Figure 6 is showing the unstable plot. Approximate values for various schemes are
compared with exact values at 10th time level (t = 0.1 s) at all x points. Absolute
errors for explicit and implicit schemes are calculated as shown in Tables 1 and 2.
From the table, it is clear that the Crank-Nicolson method gave the more accurate
solution for transient heat conduction problem (Fig. 8).

Table 2 Comparison of various implicit schemes at t = 0.1 s

X Exact Laasonen/error Crank-Nicolson/error

0.142857 0.161712 0.1717 0.009988 0.1717 0.009988

0.285714 0.291395 0.3093 0.017905 0.3093 0.017905

0.428571 0.363363 0.3857 0.022337 0.3857 0.022337

0.571429 0.363363 0.3857 0.022337 0.3857 0.022337

0.714286 0.291395 0.3093 0.017905 0.3093 0.017905

0.857143 0.161712 0.1717 0.009988 0.1717 0.009988
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Fig. 8 Temperature profile for Laasonen scheme at various time levels for λ = 0.49
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Table 3 Percentile errors for various level schemes at t = 0.1 s

x FTCS % error Laasonen % error Crank-Nicolson %
error

Dufort-Frankel %
error

0.142857 7.053898 6.176412 0.425448 5.199367

0.285714 7.053656 6.14458 0.482163 6.189193

0.428571 7.054103 6.147296 0.533076 6.035012

0.571429 7.054103 6.147296 0.615638 6.035012

0.714286 7.053656 6.14458 0.688069 6.189193

4 Conclusion

Explicit and implicit finite difference schemes are described for approximate solu-
tion of unsteady state one-dimensional heat problem. From Fig. 2 and Tables 1, 2
and 3, one can say that Crank-Nicolson method gives the best numerical approxi-
mation to analytical solution. Laasonen, Crank-Nicolson, Dufort-Frankel schemes
are unconditionally stable, whereas explicit (FTCS) scheme is conditionally stable.
Therefore, explicit scheme is tested for stable and unstable conditions. Unstable solu-
tion is appeared in Fig. 7 for increased time step �t = 0.02 for FTCS scheme. Also,
convergence plot is presented for stability. The aim of this paper is comparative study
for various time level finite difference schemes. These numerical techniques can be
implemented for more dimensional heat problems, advection–diffusion and Burger
equations.
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Numerical Solution of Space and Time
Fractional Advection–Diffusion Equation
by Meshless Approach

Hitesh Bansu and Sushil Kumar

Abstract In this paper, fractional version of advection–diffusion equation (FADE)
has been considered for the numerical solution. It is acquired from the classical
advection–diffusion equation (ADE) by substituting the space and time derivatives
with a generalized Caputo fractional derivative. Moreover, we have proposed novel
discretization for space and time using radial basis functions and Chebyshev polyno-
mials, respectively. The proposed scheme is truly meshless thereby able to manage
both space and time fractional derivatives simultaneously with appropriate boundary
conditions. Lastly, we have discussed numerical example to affirm this proposed
scheme whilst revealing the accuracy and performance of the same.

Keywords Radial basis function · Chebyshev polynomials · Meshless method ·
Kronecker product · Fractional advection–diffusion equation

1 Introduction

There is a long history on the study of fractional calculus as an extension of classical
calculus. At the initial stage, the development process of fractional calculus was
slow and it was highly concentrated on the field of pure mathematics. In the last few
decades, fractional calculus gained considerable attention; during this time, it has
been implemented in numerous areas like appliedmathematics, science, engineering,
finance and so on [1, 2]. A massive quantity of works in technology and engineering
copes with dynamical systems which can be described via fractional-order equations
that include integrals and derivatives of fractional order. These new fractional models
aremore suitable than the formerly usedmodels of integer order; therefore, fractional
calculus is considered as a more practical technique nowadays [3].
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Many phenomena in various fields can be modelled more accurately by fractional
differential equations because of their nonlocal property. Above all, one of the most
vital mathematical models observed in a wide range of engineering and industrial
applications is the fractional advection–diffusion equation. For instance, it can be
used to describe water transfer in soil, dispersion of dissolved salts in groundwater,
transport in fluids [2, 4, 5].

In the present study, time and space fractional advection–diffusion equation is
considered as

∂αu

∂tα
+ p(x)

∂βu

∂xβ
= q(x)

∂1+βu

∂x1+β
+ f (x, t), 0 < x, t < 1, 0 < α, β ≤ 1 (1)

and initial and boundary conditions are taken as

u(x, 0) = f1(x),

u(0, t) = g1(t), u(1, t) = g2(t).

}
(2)

Due to its importance and applicability, many researchers have considered this
model from the perspective of numerical and analytic solutions. Gómez et al. [6]
derived analytic solution for fractional-order advection–diffusion equation by using
Mittag-Leffler functions. Agarwal et al. [7] investigated the analytic solution for
the time–space fractional-order advection–dispersion equation by applying the tech-
nique of Laplace and Fourier transforms. Safari and Danesh [8] implemented the
Adomian decomposition method (ADM) to present the analytic solution of space
fractional-order diffusion equations. Variable separation method was employed by
Zhang et al. [9] to find an analytical solution for the time fractional-order advection–
dispersion equation with variable coefficient. Xu et al. [2] used a new generalized
fractional derivative in the finite difference method for the solution of fractional
advection–diffusion equation numerically. Javadi et al. [10] developed a numerical
scheme based on the spectral–collocation method by using the Bernstein polyno-
mial approximation for the solution of space–time fractional advection–dispersion
equation. Jacobi collocation method was used by Parvizi et al. [11] for the numerical
solution of fractional-order advection–diffusion equation. Cao et al. [12] constructed
an improved difference scheme to solve the Caputo-type fractional advection–diffu-
sion equation numerically. Arshad et al. [13] formulated a numerical technique for
the solution of the space–time fractional-order advection–diffusion equation where
Riesz and the Caputo derivative were considered in space and time, respectively.
Meerschaert and Tadjeran [5] solved the fractional advection–diffusion equation
applied on groundwater hydrology by finite difference method. Jafari and Tajadodi
[14] employed the homotopy analysis method (HAM) to obtain the solution of the
space–time fractional advection–dispersion equation. Lian et al. [15] presented a
study on meshfree method to solve the space fractional-order advection–diffusion
equation via the reproducing kernel particle method (RKPM). Different techniques
have been applied by Zhuang et al. [16] to find an approximate solution of variable-
order fractional advection–diffusion equation with a nonlinear source term. Also,
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they have compared the results for various techniques like implicit and explicit Euler
approximation, matrix transfer technique and fractional method of lines. The frac-
tional advection–dispersion equation derived from Fick’s first law has been solved
with the finite difference method by Deng et al. [17].

In the present study, we have applied a new numerical meshless technique of col-
location with radial basis function and Chebyshev polynomials to solve fractional
advection–diffusion equation because whilst dealing with fractional models numer-
ical techniques are given higher preference. The key feature of this developed RBF
collocation technique is that it is truly meshless hence does not require generation
of any mesh or grid. Also, we have used two different and independent domain
discretization for space and time.

The layout of the current article is as follows. After a brief introduction, Sect. 2
deals with preliminaries about fractional derivatives, Chebyshev polynomials and
radial basis functions. In Sect. 3, we have presented the layout of the new tech-
nique. Section 4 shows the applicability of the proposed technique with a numerical
example. Lastly, Sect. 5 leads to the conclusion.

2 Preliminaries

We will start with a few important definitions and preliminaries about fractional
derivatives, the notations about Chebyshev polynomials and radial basis functions
(RBFs) [18, 19].

Definition 1 The Riemann–Liouville fractional derivative of order α of function
f (x) is defined as [20]

RL
a Dα

x f (x) = 1

�(n − α)

dn

dxn

x∫
a

(x − τ)n−α−1 f (τ ) dτ,

x > a, n − 1 < α ≤ n ∈ N .

Definition 2 The Caputo fractional derivative of order α of function f (x) for α >

0, t > a, (α, a, t ∈ R) is defined as [20]

C
a D

α
t f (t) = 1

�(n − α)

t∫
a

f (n)(τ )

(t − τ)α+1−n
dτ, t > a, n − 1 < α ≤ n ∈ N .

Definition 3 Caputo fractional derivative of a basic power function xk, k ≥ 0 is
defined as

Dαxk =
{

�(k+1)
�(k−α+1) x

k−α, for k ≥ α

0, for k < α.
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2.1 Radial Basis Functions

In the last four decades, RBFs have enjoyed considerable success and became a pow-
erful tool for interpolating scattered data. Furthermore, their theoretical and conver-
gence properties have been well established [21]. RBFs were widely imposed inside
the subject of multivariate interpolation as many applications resulted in the problem
of interpolating data at scattered locations. According to the process of interpolation
utilizing radial basis functions, the approximation of u(x) can be expressed as a linear
combination of N radial basis functions as

u(x) =
N∑
i=1

λiφi (r),

where N is the number of data points. {λi }Ni=1 are unknown coefficients to be deter-
mined. φ(r) indicates some radial basis function. and r = ‖x − xi‖ is the Euclidean
norm between points x and xi . The big advantage of RBF is that it contains Euclidean
distance as an independent variable irrespective of the dimension of the problem.

Most commonly used RBFs are the Gaussian φ(r) = e−(∈r)2 , the multiquadric
φ(r) = (r2+ ∈2)β/2, β = −1, 1, 3, 5, . . ., the polyharmonic splines φ(r) =
rn log r, n = 2, 4, 6, . . . and the conical type φ(r) = rn, n = 1, 3, 5, . . . In our
study, we have used conical type RBF with n = 3. For more knowledge about RBF
interpolation, reader is advised to refer [22, 23].

2.2 Chebyshev Polynomials

The Chebyshev polynomials Tn(x); n = 0, 1, . . ., defined on the interval [−1, 1],
are one of the solutions of the differential equation [18]

(1 − x2)y′′ − xy′ + n2y = 0.

The Chebyshev polynomials Tn(x) satisfy the following recurrence relation [18,
19]

Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1,
T0(x) = 1, T1(x) = x .

They are orthogonal with respect to the weight function w(x) = 1/
√
1 − x2 i.e.

[18, 19]
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1∫
−1

Tm(x)Tn(x)√
1 − x2

dx =
⎧⎨
⎩
0, ifm �= n,

π/2, ifm = n �= 0,
π, ifm = n = 0.

One of the unique features of Chebyshev polynomials is their explicit relationship
with trigonometric function [18]

Tn(x) = cos
(
n cos−1(x)

)
.

3 Proposed Scheme

In order to solve the problem in Eqs. (1)–(2), the function u(x, t) can be expressed
and approximated in terms of Chebyshev polynomials basis and radial basis function
as [24]

u(x, t) = uNn(x, t) ≈
N∑
i=1

n∑
j=1

T ∗
j (t)c ji
i (x)

= T(t)C
(x), (3)

where T(t) = [
T ∗
1 (t), T ∗

2 (t), T ∗
3 (t), . . . , T ∗

n (x)
]
, 
(x) =

[φ1(x), φ2(x), φ3(x), . . . , φN (x)]t are Chebyshev polynomials and cubic radial
basis functions, respectively.

The positive integersN and n are discretization parameters corresponding to space
and time, respectively. The unknowns c ji s are of the form

C =

⎡
⎢⎢⎢⎣
c11 c12 · · · c1N
c21 c22 · · · c2N
...

...
. . .

...

cn1 cn2 · · · cnN

⎤
⎥⎥⎥⎦.

In general, for time discretization, we have used nChebyshev nodes in any interval
[p, q] as

tk = 1

2
(p + q) + 1

2
(q − p) cos

(
2(n − k) − 1

2n
π

)
; k = 1, 2, . . . , n,

and for space discretization, we have followed m uniform nodes in any interval [p,
q] as
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xm = xm−1 + q − p

n − 1
; m = 1, 2, . . . , N , x0 = p.

It is important to note that here space and time discretization are totally
independent of each other.

From Eq. (3), we can write

C
0 D

α
t u(x, t) = C

0 D
α
t (TC
) = [

C Dα
t T

]
C
 = T

αC
, (4)

C
0 D

β
t u(x, t) = C

0 D
β
t (TC
) = TC

[
C Dβ

t 

]

= TC
β. (5)

Substituting Eqs. (4) and (5) in Eq. (1), we will have

T
αC
 + p(x)

{
TC
β

} = q(x)
{
TC
1+β

} + f (x, t). (6)

Collocating (6) in N − 2 uniform nodes, i.e. xm, m = 2, 3, . . . N − 1 and n − 1
Chebyshev nodes, i.e. tk, k = 2, 3, . . . , n, it will give (N − 2)(n − 1) equations of
the form

M1CL + p(x){MCL1} − q(x){MCL2} = f (x, t), (7)

where

L1 =

⎡
⎢⎢⎢⎣

C
0 D

β
x φ1(x2) C

0 D
β
x φ1(x2) . . . C

0 D
β
x φ1(x2)

C
0 D

β
x φ2(x3) C

0 D
β
x φ2(x3) . . . C

0 D
β
x φ2(x3)

...
... · · · ...

C
0 D

β
x φN (xN−1)

C
0 D

β
x φN (xN−1) . . . C

0 D
β
x φN (xN−1)

⎤
⎥⎥⎥⎦,

M =

⎡
⎢⎢⎢⎣
T1(t2) T2(t2) . . . Tn(t2)
T1(t3) T2(t3) . . . Tn(t3)

...
... · · · ...

T1(tn) T2(tn) . . . Tn(tn)

⎤
⎥⎥⎥⎦,

L2 =

⎡
⎢⎢⎢⎣

C
0 D

1+β
x φ1(x2) C

0 D
1+β
x φ2(x2) . . . C

0 D
1+β
x φN (x2)

C
0 D

1+β
x φ1(x3) C

0 D
1+β
x φ2(x3) . . . C

0 D
1+β
x φN (x3)

...
... · · · ...

C
0 D

1+β
x φ1(xN−1)

C
0 D

1+β
x φ2(xN−1) . . . C

0 D
1+β
x φN (xN−1)

⎤
⎥⎥⎥⎦,

M1 =

⎡
⎢⎢⎢⎣

C
0 D

α
x T1(t2)

C
0 D

α
x T2(t2) . . . C

0 D
α
x Tn(t2)

C
0 D

α
x T1(t3)

C
0 D

α
x T2(t3) . . . C

0 D
α
x Tn(t3)

...
... · · · ...

C
0 D

α
x T1(tn)

C
0 D

α
x T2(tn) . . . C

0 D
α
x Tn(tn)

⎤
⎥⎥⎥⎦.
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Implementing Eq. (3) on the initial and boundary conditions given in Eq. (2)

M2CL3 = f (x),

MCL4 = g1(t),

MCL5 = g2(t), (8)

where

L3 =

⎡
⎢⎢⎢⎣

φ1(x1) φ2(x1) . . . φN (x1)
φ1(x2) φ2(x2) . . . φN (x2)

...
... · · · ...

φ1(xN ) φ2(xN ) . . . φN (xN )

⎤
⎥⎥⎥⎦,

L4 = [
φ1(x1) φ2(x1) . . . φN (x1)

]t
, L5 = [

φ1(xN ) φ2(xN ) . . . φN (xN )
]t
andM2 =[

T1(t1) T2(t1) . . . Tn(t1)
]
.

By collocating Eq. (8), we get (N + 2n − 2) equations. These equations with
Eq. (7) will give Nn equations.

To solve Eq. (7), we will first modify it in a more simplified form. To accomplish
that task, we will use Kronecker product (indicated by ⊗) to express equation as
follows

{
Lt ⊗ M1 + p(x)

(
Lt
1 ⊗ M

) − q(x)
(
Lt
2 ⊗ T

)}
vec(c) = vec( f (x, t)),

which can be formed as

A1C = F1 (9)

where A1 is a matrix of size (N −2)(n−1)×Nn. vec(c) can be obtained by stacking
the columns of C on top of one another and is of size Nn × 1 [25, 26].

F1 is vector of size (N − 2)(n − 1) × 1. Superscript “t” stands for transpose of
the matrix.

Initial and boundary conditions can be expressed as

(
Lt
3 ⊗ M2

)
vec(c) = vec( f (x)),(

Lt
4 ⊗ M

)
vec(c) = vec(g1(t)),(

Lt
5 ⊗ M

)
vec(c) = vec(g2(t)),

which can be written as

A2C = F2,

A3C = F3,

A4C = F4, (10)
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where dimension of A2 is N × Nn. Vector F2 is of size N × 1. A3 and A4 are of the
same dimension, i.e. (n − 1) × Nn. Similarly, F3 and F4 are of the size (n − 1) × 1.

The resulting system of equation can be described from collecting Eqs. (9) and
(10)

AC = F (11)

where the dimension of A is Nn × Nn, and it has the form A = [A1, A2, A3, A4]t .
F is of the form F = [F1, F2, F3, F4]t and of the size Nn × 1.

After solving the linear system of Eq. (11), we can find the values of unknown
coefficients C. Putting C in Eq. (3), we will get the desired approximate solution
u(x, t) from (3) for the given problem (1).

4 Numerical Example

Example 1 To test the efficiency for the new technique, consider the following time
fractional advection–diffusion equation [27]

C Dα
t u(x, t) + Dxu(x, t) − D2

xu(x, t) = f (x, t) 0 < α ≤ 1

0 < x < 1, 0 < t ≤ 1, (12)

the initial and boundary conditions as

u(x, 0) = 0 0 < x < 1,
u(0, t) = 0 u(1, t) = t3, 0 < t ≤ 1,

(13)

where source term is given by

f (x, t) = 6

�(4 − α)
x2t3−α + 2t3(x − 1).

The exact solution of the above problem is u(x, t) = x2t3 and p(x) = q(x) = 1.

This problem has been solved by Fazio et al. [27] using the finite difference
method.Wehave solved this problemby the schemeproposed inSect. 3 and compared
the results with the results in [27]. Table 1 shows the comparison of the scheme
proposed in [27] with the current scheme. Results say that our scheme gives better
accuracy that is too with less number of points and less computational cost compared
to the scheme in [27].
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Table 1 Comparison of error for (12)

α Method in [27] Proposed method

N L∞ L∞ CPU time (s)

0.1 n = 100 n = 10

10 3.7869 × 10−5 2.9458 × 10−4 0.06

20 9.6542 × 10−5 6.7613 × 10−5 0.06

40 2.4674 × 10−5 1.5559 × 10−5 0.08

80 6.2843 × 10−6 2.2691 × 10−5 0.013

0.5 10 4.4597 × 10−4 2.8335 × 10−4 0.06

20 1.3436 × 10−4 6.4846 × 10−5 0.06

40 4.1920 × 10−4 1.4915 × 10−5 0.08

80 1.3435 × 10−4 3.4032 × 10−6 0.13

0.9 10 3.3229 × 10−3 2.6825 × 10−4 0.06

20 1.4844 × 10−3 6.1127 × 10−5 0.06

40 6.7617 × 10−4 1.4076 × 10−5 0.08

80 3.1119 × 10−4 3.3415 × 10−6 0.15

5 Conclusion

The computational results obtained from the technique proposed in Sect. 3 using
MATLAB® are shown in Table 1.

The results obtained from the proposed technique have been compared with the
results in [27].Wenote that the proposedmethodgives superior resultswith a very less
number of points in the time direction (only 10) and that reduces the computational
cost effectively compared to [27]. Also, the scheme proposed in the current study can
be implemented to solve other partial differential equations with appropriate initial
and boundary conditions.
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Numerical Studies of Blockage in Human
Heart
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Abstract In the present paper, computational fluid dynamics (CFD) simulation of
blood flow in the human heart is performed using angiography images. The angiogra-
phy was taken fromCT scan images of a healthy person. The two-dimensional model
is created using the Ansys Workbench software. Three inlet velocities (blood flow)
of 0.15, 0.3, and 0.65 m/s corresponding to normal, moderately, and exercise (run-
ning) conditions are considered in this study. The CFD prediction of blood flow in
the coronary artery is useful for diagnosis, prognosis, and prevention from coronary
diseases.

Keywords Human heart · Tumorous heart · Computational fluid dynamics

1 Introduction

Coronary arteries are the blood vessels that branch off from the ascending aorta. The
aorta is the largest artery in the body that transports precious oxygen blood to all
the arteries. The primary function of coronary arteries is to supply oxygenated and
nutrient-filled blood to the heart muscle. The coronary artery bifurcates into the left
and right coronary artery [1]. The left main coronary artery is further divided into
two parts: the left anterior descending (LAD) and left circumflex coronary artery
(LCX) [2]. The accumulation of cholesterol causes the narrowing of the coronary
artery, also termed as atherosclerotic plaques. The oxygen-rich blood flows into a
restricted path because of narrowed coronary arteries [3]. Plaque deposition is the
primary reason for the evolution of coronary artery disease (CAD). The yearly report
indicates that CAD is the sole reason behind the 47% of the deaths in Europe [4].

Coronary artery (LCA) has more complex branching as compared to right coro-
nary artery (RCA); this is why it is more prone to atherosclerosis plaque formation
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to RCA [5, 6]. Hemodynamic of blood is an eminent prospect to judge the plaque
formation in arteries. Hemodynamic factors include the density of blood, viscosity,
vorticity, wall shear stress (WSS), inlet velocity, oscillatory shear stress (OSI), and
operating pressure at the wall of arteries [7, 8]. Wall stress is most oscillatory during
the cardiac cycle in the left coronary artery. Taking these factors into consideration,
we analyze the hemodynamic of blood using a vital tool called computational fluid
(CFD). Thus, in the medical sector, CFD results contribute to a good approximation
of reality in available time duration [9].

In this paper, we attempt to highlight the blood flowmechanism in different levels
of blockage of the human coronary artery (human heart).

2 Geometry of the Human Heart Model (Left Coronary
Artery)

The 2D reconstruction of the human heart is done based on the three-dimensional
model constructed using CT scan data. After the construction of the 3D model, it
was converted into a 2D model using the image of the 3D picture. The human heart
model is demonstrated in Fig. 1.

Fig. 1 Human left coronary
artery
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3 Grid Generation

The grid generation of the two-dimensional human heart model (Fig. 2) was done
using the quadrilateral and triangular elements. The triangular elements fit the curved
surfaces with minimum skewness, therefore used in the present study.

The human heart models of different blockage percentages (normal model or 0,
25, 50, 75%) are shown in Fig. 3.

Fig. 2 Grid generation of human heart model

Fig. 3 Grid generation of different blockage models of human heart
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Fig. 4 Name selection for
boundary conditions

Table 1 Boundary
conditions

Fluid properties Boundary conditions

Fluid Blood

Inlet velocity 0.15, 0.3 and 0.65 m/s

Pressure outlet Outflow condition

Density 1000 kg/m3

4 Define Boundary Conditions

In the present heart model, different boundary conditions at the various locations of
the flow domain are defined. Figure 4 shows the inlet, outlets and wall of the left
coronary model. The boundary conditions are specified in Table 1.

5 Governing Equations

The blood flow was assumed to be steady and incompressible, therefore [10]
Continuity equation:

∂u j

∂x j
= 0 (1)

Momentum equation:



Numerical Studies of Blockage in Human Heart 253

Fig. 5 Velocity contours for different tumorous models (normal, 25, 50 and 75%)

∂
(
uiu j

)

∂x j
= − 1

ρ

∂p

∂xi
+ μ

ρ

∂2ui
∂xi∂x j

(2)

μ Viscosity coefficient
ui , u j (i, j = 1, 2, 3) are the velocity component in x-, y-, and z-direction
P Pressure
ρ Density of fluid.

6 Results and Discussion

The blood flow of the 2D human heart is carried out for two different flow rates,
namely regular, moderate, and heavy blood flow conditions. An in-depth analysis of
velocity contours performed in the following flow conditions.

Velocity Contours
The velocity contours for normal blood (Inlet velocity = 0.15 m/s) flow condition
of different blockage models are shown in Fig. 5. It is found that as the blockage
increases from 25 to 75%, then velocity gradients also increase near the blockage.
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Numerical Analysis of Partition
Clustering in a High-Temperature
Gradient Region for Suppression of Heat
Transfer in Porous Enclosure

Jayesh Subhash Chordiya and Ram Vinoy Sharma

Abstract Subdual of heat transfer rate across a porous medium is an important
aspect of many engineering applications like thermal insulations, energy storage and
contemporary building walls. One effective way is to employ diathermal partitions
within the porous enclosure. Yet, the literature is scarce with the knowledge on
the effect of partition orientation and configuration on free convection in porous
enclosures. The objective of current paper is to suppress the rate of heat transfer across
a differentially heated porous enclosure with the help of horizontally and vertically
orientated partition clustering and to assess the best combination of cluster that yields
the least value of the Nusselt number. The Darcy model is solved using successive
accelerated replacement (SAR) scheme with second-order finite difference method.
Streamlines and isotherms are observed for qualitative analysis while the Nusselt
number is evaluated for quantitative analysis. The computational code is validated
against the benchmark solutions available in the literature. The novelty of present
work is the approach of obstructing the fluid flow, which is targeted at only those
regions where temperature gradient is high.

Keywords Porous medium · Natural convection · Partition · Clustering

1 Introduction

Porous medium can be encountered in numerous engineering applications to curtail
or enhance the rate of heat transfer. This study primarily focuses on decreasing
the heat transfer rate across a differentially heated porous medium with the help
of clustered partition orientated horizontally and/or vertically and positioned in the
regions of higher thermal gradients which are obstructed. As thermal gradient within
the fluid-saturated porous enclosure rises, convection dominates. In these conditions,
the sole dependency on porous insulation to reduce the rate of heat transfer across it
may be fairly unreliable. Thus, a need to further lessen the convection heat transfer
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rate arises. Anderson and Bejan [3] reported that use of partitions decreases the
Nusselt number. Further, Anderson and Bejan [5] also employed baffles to examine
their effect on natural convection heat transfer. This was further explored by several
researchers, viz. Tatsuo et al. [15] studied the free convection in a rectangular porous
cavity with horizontal fluid and porous regions. Analysis of natural convection in
a fluid and heat-generating porous bed was numerically performed by Chen and
Lin [6]. Shu and Pop [14] used the Kármán–Pohlhausen theory to analyse the time-
varying exchange of heat between the boundary layer convection and vertical flat
plate within a porous enclosure. Baytas et al. [2] studied the horizontal conductive
thick walls at dissimilar temperatures in porous medium. Varol et al. [18] employed a
thin fin in porous cavity of triangular shape and reported that obstructions can act as
a control parameter for transport phenomena within porous enclosures. He extended
this study, Varol et al. [17], and analysed the free convection flow when a porous
enclosure is diagonally divided. It was reported that heat transfer rate is dropped
if the plate is inclined at 45°, and even lesser at 135°. A study on free convection
in porous media by Saha and Gu [13] with triangle-shaped enclosure with baffles
reported that heat transfer due to natural convection in the enclosure was reduced if
the length of baffle is increased.

In the current paper, partitions are in the form of clusters; this sort of study has
not been found in the literature. The clustering of partition increases the obstruction
degree and area. Fully extended partitions may not be feasible in all applications,
and therefore, grouping smaller partitions seems to be one of the best alternatives to
occupy smaller space with greater area of obstruction. Moreover, the orientation and
location of the clustered partitions are investigated to evaluate its effect on natural
convection using streamlines, isotherms and the Nusselt number.

2 Mathematical Formulation

Consider a laminar, 2D, laminar incompressible and steady flow in a square-shaped
enclosure of length L as depicted in Fig. 1. It is comprised of a pair of grouped
partitions, three in each pair, with distance dy between them, length Lp each and
middle partition placed at a distance of Hp from the top face. The left wall is at high
uniform temperature T h, and the top and bottom wall are insulated. The boundaries
are impermeable. The Boussinesq approximation is assumed valid. The solid matrix
of the porous media is assumed rigid; porous media are considered homogenous,
isotropic and saturated. Thermal equilibrium exists locally between porous medium
and fluid.

The governing equations for theDarcyflowmodel ofmass,momentumand energy
are,

∂u

∂x
+ ∂v

∂y
= 0 (1)
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Fig. 1 Physical domain

u = −K

μ

(
∂p

∂x

)
(2)

v = −K

μ

(
∂p

∂y
+ ρg

)
(3)

(
ρcp

)
f

(
u

∂T

∂x
+ v

∂T

∂y

)
= kp

(
∂2T

∂x2
+ ∂2T

∂y2

)
(4)

ρ = ρ f [1 − β(T − Tc)] (5)

Subject to following boundary conditions,

T = Th, u = 0, at x = 0

T = Tc, u = 0, at x = L

∂T

∂y
= 0, v = 0, at y = 0, L (6)

Conditions at the partitions, we have,

∂T

∂n

−
=∂T

∂n

+
and u = 0, v = 0.

Above equations are normalized using following the non-dimensional variables
and parameters,
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X = x

L
Y = y

L
U = u

α/L
V = v

α/L
θ = T − Tc

Th − Tc

Ra∗ = K Lgβ(Th − Tc)

αν
λ = Lp

L
δ = Hp

L
(7)

Non-dimensional stream function ψ is mathematically described as,

U = ∂ψ

∂Y
; V = −∂ψ

∂X
(8)

Equations (7)–(8) take the following form after simplification,

∂2ψ

∂X2
+ ∂2ψ

∂Y 2
+ Ra ∗ ∂θ

∂X
= 0 (9)

∂θ

∂τ
+ ∂ψ

∂Y

∂θ

∂X
− ∂ψ

∂X

∂θ

∂Y
= ∂2θ

∂X2
+ ∂2θ

∂Y 2
(10)

Boundary conditions

θ = 1, ψ = 0 at X = 0

θ = 0, ψ = 0, at X = 1

∂θ

∂Y
= 0, ψ = 0, at Y = 0, 1 (11)

Thermal condition at partitions is,

∂θ

∂n

−
= ∂θ

∂n

+
and ψ = 0

To manifest the heat transfer rate, the mean Nusselt number is calculated as,

Nu =
1∫

0

− ∂θ

∂X

∣∣∣∣
X=1,0

dY (12)

3 Numerical Procedure

Governing equations, boundary conditions and partition condition are discretized
using finite difference method. Successive accelerated replacement (SAR) scheme
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is used to solve the stream function and temperature equation until the convergence
is achieved.

SAR Scheme

Chordiya and Sharma [7–10] and Mishra et al. [11] have discussed its capability to
solve such two-dimensional free convection in porous media. If the error in equation
at (i, j) node of nth iteration is ψ̃n

i j , then in (n + 1)th iteration, the variable ψ is
obtained as,

ψn+1
i j = ψn

i j − ω
ψ̃n
i j

∂ψ̃n
i j/∂ψn

i j

(13)

The accelerating factor ω varies from 0 to 2. The criterion for convergence of
stream function and temperature at all grid points is,

∑imax−1
i=2

∑ jmax−1
j=2

∣∣∣ψn+1
i j − ψn

i j

∣∣∣
∑imax−1

i=2

∑ jmax−1
j=2

∣∣∣ψn+1
i j

∣∣∣ < ε (14)

Here, the value of ε is the tolerance error limit of 10−5.

4 Results and Discussions

Influence of clustered, diathermal partitions is examined by investigating the stream-
lines and temperature distribution for modified Ra* = 100 and 500, and Np value
is fixed at 3 while Lp and Hp are varied to change the orientation and position of
partition clustering within the enclosure. The value of the acceleration factor is set to
0.3. By performing grid sensitivity test, the grid size of 80 × 80 is chosen based on
both computational cost and precision. For validation, the length and height of parti-
tions, Lp and Hp, are set to 0 to remove the partition. The values of the mean Nusselt
number are compared with several studies found in literature as shown in Table 1. It
can be seen that the difference in values of the Nusselt number is smaller for smaller
Ra*. The validation results show good agreement with the results reported by other
authors. The developed code can be thus used with greater confidence to investigate
the problem stated in the current paper.

Figure 2 shows streamline contours and isotherms in porous enclosurewithout any
partition.Maximum absolute stream function |ψ |max value is 4.5. It may be noted that
the isotherm lines are extremely steep and grouped in the north-east and south-west
part of the square enclosure.

Figure 3 illustrates streamline contours and isotherm lines for various partition
clustering orientations having Np = 3, Lp = 0.3 and Hp = 0.3 for Ra* = 100. Four
types of orientations are under consideration, namely
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Table 1 Comparison of the Nusselt number with results available in literature

Authors Ra*

10 100 1000

Walker and Homsy [19] 3.097

Bejan [4] 4.200 12.96

Moya et al. [12] 1.065 2.801 15.800

Baytas and Pop [1] 1.079 3.160 14.060

Trevisan and Bejan [16] 1.080 3.270 18.380

Present study 1.079 3.279 16.913
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Fig. 2 Streamlines (left) and isotherms (right) for no partition enclosure (Ra* = 100; Lp = 0; and
Hp = 0)
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Fig. 3 Streamline (up) and isotherms for H-H, V-V, H-V and V-H type of clustering (Ra* = 100;
Lp = 0.3; Hp = 0.3)
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Fig. 4 Streamline (up) and isotherms for H-H, V-V, H-V and V-H type of clustering (Ra* = 500;
Lp = 0.3; Hp = 0.3)

1. H-H type: both clusterings are horizontal.
2. V-V type: both clusterings are vertical.
3. H-V type: Left-side clustering is horizontal while the right side is vertical.
4. V-H type: Right-side clustering is horizontal while the left side is vertical.

The stagnant inner portion of the streamlines can be seen from Fig. 1 to orient
differently in different cases. In all the cases, it can be seen that the value of |ψ |max

is lower than 4.5, which was the case for enclosure having no partition in Fig. 2.
The least value is found in H-H type. Further, the thermal gradients in Fig. 3 are not
clubbed as closely as that in Fig. 2. This is the indication of the fact that heat flux is
relieved considerably from this region. Higher amount of deviation can be found in
H-H type of partition.

Figure 4 demonstrates streamline contours and isotherm lines in various partition-
clustering orientations having Np = 3, Lp = 0.3 and Hp = 0.3 for Ra* = 500. Since,
the Darcy-modified Rayleigh number is higher, the buoyancy strength is higher. The
lowest value of |ψ |max is again for the H-H type. Also, the deviation in isotherms is
more for horizontally oriented partitions in all the cases considered individually.

Figure 5 shows the effect of position of clustered partition on the mean Nusselt
number values for all types of clustering for Ra* = 100; Lp = 0.3; and Np = 3. It
is clear from the figure that at the position of the cluster at around 0.3, all the types
of cluster yield the lowest value of the Nusselt number, with the lowest for H-H
type of clustering. The reason behind this might be the behaviour of free convection
flow within the enclosure. The effect of rising cold air from the bottom and falling
warm air from the top is more predominant in the one-third portion of the staring
length. In other words, the difference in temperature is higher in the initial part of the
length which then starts to decrease with increase in length. Higher the temperature
difference, higher is the rate of heat transfer. Placing the clustered partitions in these
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Fig. 5 Variation of the mean Nusselt number with Hp for various partition clustering (Ra* = 100;
Lp = 0.3; Np = 3)

regions affect the rate of heat transfer by obstructing the flow. Hence, the rate of heat
transfer drops higher at the location of one-third of the length.

5 Conclusions

The influence of a pair of clustered diathermal partitions on natural convection flow in
a differentially heated square fluid-saturated porous enclosure is investigated in this
paper. Four types of orientations were considered and studied for modified Rayleigh
number 100 and 500. Streamlines and isotherms were carefully noticed in all the
types of orientation, and value of the Nusselt number was calculated for quantitative
analysis.

It may be concluded that:

1. As compared to porous enclosure without any partition the flow obstruction is
greater and temperature distribution is not clubbed or less clubbed in case of
enclosure with clustered partition. The degree of flow obstruction depends upon
its orientation and position.

2. Least value of Nu is obtained for Hp ~ 0.3 for all types of clustering.
3. The H-H type of clustering yields the highest reduction in Nu of about 42%

relative to enclosure without partition
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Real-Time Numerical Scheme for Crater
Geometry Simulation in Micro-EDM
Process

Nithin Allwayin , Deepak G. Dilip , Satyananda Panda
and Jose Mathew

Abstract In this era of miniaturization, micro-EDM process plays a significant
role. Micro-EDM due to its characteristic non-contact nature and ability to machine
any material irrespective of its mechanical properties is ideal for the high precise
micro-machining operations. The model describes the transient machining process
using the two-dimensional heat conduction equation in cylindrical coordinates with
flux boundary conditions. It also incorporates the different process elements like
Gaussian distribution of heat flux and temperature-independent specific heat and
thermal conductivity. A novel numerical scheme for the simulation of the crater
shape formed on the workpiece during the micro-EDM process is introduced. This
numerical scheme based on the finite volume method in cylindrical coordinates is
developed for the real-time simulation of the process dynamics. The existing numer-
ical schemes describe the material removal phenomenon without taking into effect
the actual material removal mechanism. The proposed scheme is designed to repli-
cate the anode erosion mechanism, where the phase change in the material, once
the temperature exceeds the threshold value, is included. Single-spark micro-EDM
experiments are conducted for the same simulation process parameter. The predicted
crater shapes obtained from the real-time numerical scheme agree well with the
experimental results with a relative error of less than 3%.

Keywords Micro-EDM · Inconel 718 · Single-spark crater · Dynamic crater
simulation · 3D optical profilometer

1 Introduction

In the early 1950s, Lazarenko and Lazarenko studied the effectiveness of electrical
discharges as a material removal mechanism. Electrical discharge machining (EDM)
is a non-conventional material removal mechanism which removes material based
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on the heat generated between tool and workpiece by electrical discharges [1]. A
schematic of the EDM process is shown in Fig. 1. The tool is moved towards the
workpiece submerged in a dielectric fluid.Once the optimumgap is reached, the spark
occurs and machining takes place. EDM has the ability to machine all electrically
conductive materials with zero process forces.

In the modern era, the advancements in material development and the enormous
demands for miniaturization have led the manufacturing industries to go for micro-
machining. Micro-machining is the methodology for manufacturing products in the
rangeof 1–500µm.The ‘difficult tomachine’ nature of thesemodernmaterialsmakes
the traditionalmachining techniques cumbersome. Thus,micro-EDM, aminiaturized
form of EDM proves to be an ideal manufacturing technique. Before making any
improvements in a process, understanding the process mechanism is of paramount
importance. Due to the stochastic nature of micro-EDM, a comprehensive model
able to explain the entire process has not yet been developed. Many attempts have
been made in this regard, and the major findings are discussed below.

Researchers have used different approaches in EDM/micro-EDM modelling.
Some aimed at finding out the exact phenomenon behind the spark formation in
the plasma between the tool and the workpiece. However, others strived towards
finding the material removal mechanism, which can explain the material removal at
the tool and/or workpiece.

Patel et al. [2] considered a constant percentage of heat input and input heat flux in
Gaussian form to formulate an anode erosion model. The qualitative features which
are related to anode erosion were discussed. Dhanik and Joshi [3] predicted the
crater radius and plasma temperature by considering the plasma as a time variable
source of energy. The predicted results were in good agreement with previously
published experimental results. Joshi and Pande’s model [4] incorporated latent heat

Fig. 1 Schematic of EDM process
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of melting, discharge duration and current-based spark radius equation and Gaussian
distribution of heat flux to their model. The predicted crater shape was similar to
the experimentally obtained one. Yeo et al. [5] analytically modelled the material
removal from the anode and cathode in micro-EDM. They were able to predict the
crater volume to an error of less than 10%. Allen and Chen [6] used temperature-
independentmaterial properties and constant heat flux to analyse thematerial removal
in molybdenum using micro-EDM. The predicted and experimental results were in
good agreement.

Murali and Yeo [7] were able to predict the diameter-to-depth ratio of the crater
to an error of less than 15% by considering Gaussian heat input and temperature-
dependent material properties in the model. Zhang et al. [8] investigated different
heat source models in relation to the EDM plasma characteristics and inferred that
the Gaussian heat source is the most ideal as a heat source input while considering
EDM. Weingartner et al. [9] showed in the thermal modelling of the wire EDM
process that latent heat of fusion and vaporization had a significant influence on
simulation results.

Singh [10] studied experimentally that as current and pulse duration increased,
the input energy distribution to the workpiece varied between 6.1 and 26.82%. Bigot
et al. [11] presented a new approach for the calculation of quantity of energy dis-
tributed to the tool, workpiece and dielectric during the micro-EDM process. They
found that approximately 18% of the input energy goes to the anode for a rectangular
tool electrode. Shao and Rajurkar [12] proposed a model incorporating machining
conditions like Gaussian-distributed heat flux, temperature-dependent thermal prop-
erties, expanding plasma radius, etc., and it was able to predict the energy distribution
to anode and cathode as 7.37% and 6.78%, respectively. Somashekhar et al. [13] pro-
posed an electro-thermal theory approach for numerical approximation of the micro-
EDM process. The diameter-to-depth ratio observed numerically was 2.92, which
is in close agreement with the experimentally observed value of 2.67. Kuriachen
et al. [14] developed a predictive thermal model for the simulation of single-spark
micro-electric discharge machining using the finite volume approach for Ti-6Al-4V.
The numerical results were compared with experiments for the crater geometries,
and the results were in very close agreement.

From the literature review, it can be seen that a model which can comprehen-
sively describe the erosion mechanism in EDM has not been developed. In most
of the models, the predicted crater geometry is calculated based on the temperature
distribution on the electrode. The major issue associated with this approach is that
in most cases, the regions where the temperature has exceeded the melting point are
treated as solids during the simulation and thematerial removal is done after the entire
time period. This, in turn, results in an increased rate of conduction and extremely
high-temperature prediction, which in turn enhances the crater dimensions.

In the proposed model, a real-time simulation of the process dynamics is under-
taken where the region whose temperature has transcended the melting point is
treated as a fluid. The interaction between the fluid and the neighbouring solid
region by Newton’s law of cooling and conduction occurs within the liquid phase.
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The obtained crater dimensions were compared with the craters obtained from static
crater simulation scheme and experimental results.

2 Real-Time Numerical Scheme for Micro-EDM Process

2.1 Mathematical Formulation

The physical phenomenon of the EDM process can be better explained in 2D using
cylindrical coordinates rather than Cartesian. Before discussing the governing equa-
tion and the boundary conditions used, the assumptions taken in the numerical
modelling are:

1. Material is isotropic and homogeneous
2. The capacitor is fully charged and discharged during a spark
3. Heat transfer along the workpiece is governed by conduction and convection
4. The entire workpiece is at room temperature before sparking
5. Gaussian input heat distribution at the top of the workpiece
6. 100% dielectric flushing efficiency
7. Fixed fraction of heat energy to workpiece
8. The model is axisymmetric with respect to an axis normal to the workpiece

surface.

Fourier heat conduction equation in cylindrical coordinates, which was used as
the governing equation, is given as:

∂

∂t

(
ρCpT

) = 1

r

∂

∂r

(
rk

∂T

∂r

)
+ ∂

∂z

(
k
∂T

∂z

)
(1)

with T (r, z, t) being the temperature variable defined at position (r, z) and at time
t, and ρ, k and Cp are the material density, thermal conductivity and specific heat,
respectively. The heat energy used by the material to change its phase from solid to
liquid at the melting temperature is represented by the latent heat of fusion (L).

In order to incorporate the effect of latent heat of fusion (L) in the model, effective
specific heat was considered [15] which is given by

Cpeff = Cp + L

Tmelt
, (2)

where Tmelt is the melting temperature of Inconel 718 (1609 K). Initially, at t = 0,
the workpiece, placed at room temperature, T a is given by

T (r, z, t = 0) = Ta = 293K. (3)

The boundary conditions for the model are as shown in Fig. 2. The boundary
condition for the top surface where the spark occurs is given as:
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Fig. 2 Boundary conditions
for 2D cylindrical model

−k
∂T

∂z
=

{
qr, r ≤ R
h(T − Ta), r > R

(4)

Here, R is the radius of the spark. During toff time, the value of qr is zero and the
entire top surface is subjected to convection.

The heat flux qr for micro-EDM [7, 14] is defined as

qr = 3.157q0e
−3( r

R )
2

, (5)

where q0 is the amount of heat energy reaching the workpiece given by

q0 = ηE

πR2ton
, (6)

where η is the percentage of heat transferred to the workpiece, ton is the spark on
time and E is the input energy. In the case of an RC circuit-based micro-EDM, the
input energy per spark [13, 14, 16] is represented as

E = 1

2
CV 2, (7)

where the capacitance is represented by C and the discharge voltage by V. All other
faces are insulated and given by
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k
∂T

∂n̂
= 0, (8)

where n̂ is the unit normal vector.

3 Numerical Procedure

Themicro-EDMmodel consists of solvingEq. (1)with boundary conditions’ Eqs. (4)
and (8) and initial conditionEq. (3). The governing equations inCartesian coordinates
were solved using finite volume method (FVM) inspired by Kuriachen et al. [14].
The governing equation under consideration is in cylindrical coordinates, and special
treatment is needed for the discretization. In order to ease the finite volume method
discretization, we first recast Eq. (1) in conservative form as follows

r
∂

∂t

(
ρCpT

) = ∂

∂r

(
rk

∂T

∂r

)
+ ∂

∂z

(
kr

∂T

∂z

)
. (9)

The given domain [0, L]× [0, L] is discretized into N × N equal grid cells of size
�r × �z = L

N × L
N . We define ri = �r

2 + i�r, i = 0, 1, 2 . . . , N − 1, so that (ri,
zj) is the centre of the cell (Fig. 3). The edges of the cell (ri, zj) are located at (ri−1/2,
zj−1/2) and (ri+1/2, zj+1/2) where

ri−1/2 = ri − �r

2
and z j− 1

2
= z j − �z

2
.

In FVM, the unknown is approximated as the average of the solution over the

control volume
[
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2
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2

]
×

[
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2
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2

]
. An exact formula for temperature of

the internal nodes, i.e., i, j = 1, 2, … N − 2 is derived by integrating the governing

Eq. (9) over the interval
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]
, i.e.,
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Following the works of Sellier and Panda [17], who discretized the 1D partial
differential equation in cylindrical coordinates using FVM, Eq. (10) is discretized
assuming constant material properties. Applying the Taylor series expansion and
neglecting higher-order terms, the LHS of Eq. (10) can be written as
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Fig. 3 Finite volume discretization (the blue dots are the nodes, and the lines are cell faces)
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The right-hand side of the integral of Eq. (10) can be integrated in the following
way. The first integral of the RHS is
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where the discrete flux function F∗
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2 j
is given by
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with
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For the second term of the RHS integral, i.e.,
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Since the integrand g (r, z, t)= krT (r, z, t) is a function of r, z and time t, we follow
similar integration procedure described for the left part of the integral, Eq. (11). The
time derivative terms appearing in Eq. (11) are estimated using forward difference,
e.g.,

∂

∂t

(
Ti j

) = T n+1
i j − T n

i j

�t
.

For the boundary nodes, i, j = 0 and N, the discrete equations are obtained in a
similar way using boundary conditions’ Eqs. (4) and (8).

The symbol *∈ {n, n+ 1} appearing in Eqs. (12) and (13) represents the time step.
We can obtain three distinct schemes depending on which time we evaluate the terms
of Eqs. (12) and (13). The explicit first-order scheme can be obtained by evaluating
all terms from the old time step, i.e., * = n. A fully first-order implicit scheme can
be derived by approximating all terms at a new time step, i.e., * = n + 1. In this
work, we formulate a second-order Crank–Nicolson scheme by arithmetic averaging
of the explicit and fully implicit scheme. The entire function is discretized, and
the aforementioned initial and boundary conditions are applied using the numerical
parameters (Table 1). The temperature distribution is obtained, and the temperature
contour is plotted.

4 Crater Dimension Prediction Using Static Crater
Simulation Scheme

In this method, the implicit equations obtained after discretizing Eq. (9) is solved
using the fsolve routine in MATLAB. In this methodology, the program is made to
run for the entire time step, and the temperature contour at the end is plotted. The
material removal and re-initialization of region whose temperature has exceeded
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Table 1 Numerical
simulation parameters

Voltage (V ) 100 V

Capacitance (C) 0.4 µF

Convective heat transfer coefficient (h) 1000 W/m2K

Density (ρ) 8190 kg/m3

Latent heat of fusion (L) 250 kJ/kg

Specific heat (Cp) 435 kJ/kgK

Thermal conductivity (k) 11.2 W/mK

Melting temperature (Tmelt) 1609 K

Ton 3 µs

Toff 10 µs

the melting temperature are not taken into account in this model. The temperature
distribution along the radius and depth of the work domain under consideration are
given in Fig. 4a, b, respectively.

The contour plot (Fig. 5) is generated in the r-z plane at the end of the total
time of simulation with only heat conduction throughout the workpiece as the mode
of heat transfer. From the contour plot, the crater radius and depth are calculated.
An assumption was taken that all points above the melting temperature (1609 K)
are removed from the workpiece surface. Based on that the point corresponding to
1609 K along both the radius and depth is found by linear interpolation between the
points within which the temperature corresponding to 1609 K exists. The results are
compared with the crater dimensions obtained after single-spark experiments under
similar input conditions given by Dilip et al. [16].

The crater was made on DT 110 micro-machining centre, and the dimensions
were measured using Alicona Infinite Focus G5 non-contact 3D profilometer. The
crater experimentally observed is shown in Fig. 6.

Fig. 4 Temperature distribution along (a) radius and (b) depth
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Fig. 5 Temperature contour plot for 100 V and 0.4 µF

Fig. 6 Crater obtained after a single-spark experiment [16]

The actual crater dimensions were compared with the predicted values, and the
results are given in Table 2. It was observed that the relative error for the depth
calculation is over 20%.

Table 2 Crater dimensions predicted using static material removal model

Voltage
(V)

Capacitance
(µF)

Predicted
radius
(µm)

Actual
radius
(µm)

Predicted
depth
(µm)

Actual
depth
(µm)

Error
radius
(%)

Error
depth
(%)

100 0.4 30.38 27.93 11.95 9.66 8.77 23.70



Real-Time Numerical Scheme for Crater Geometry Simulation … 275

In actual condition, when the temperature of the material exceeds the melting
temperature, it gets removed from the surface. But in thismodel, thematerial removal
of the individual nodes is not taken into consideration, and the total material removed
was calculated after the entire time period based on the final simulated temperature
profile. This may be the underlying reason behind this high error in prediction. In
order to rectify this issue, a model which reinitializes the workpiece region whose
temperature has exceeded the melting temperature as the liquid was attempted.

5 Crater Dimension Prediction with Dynamic Crater
Simulation Scheme

In this methodology, the regions where the temperature exceeds the melting temper-
ature are treated as liquid with Newton’s law of cooling governing the heat transfer
between the solid and liquid boundary while conduction being the source of heat
transfer within the liquid and solid regions. This, in turn, helps in limiting the rapid
transfer of heat through the workpiece while considering conduction alone as the
form of heat transfer. The detailed description of the material removal mechanism
followed in the simulation is as follows:

1. At initial time t = 0, initialize temperature for all nodes to the room temperature;
2. Simulate a single time step;
3. Based on the temperature plot, the temperature at the nodes which are higher

than the melting temperature are found;
4. Identify the neighbouring nodes of the melting node and modify the discrete flux

condition as per the Newton’s law of cooling, i.e.,

−k
∂T

∂z
= h(T2 − T1),

where T 1 and T 2 are the temperatures of the neighbouring nodes. If the neigh-
bouring nodes are having a temperature higher than the melting temperature,
then the discrete flux condition will revert to the original condition as stated in
the model boundary condition;

5. Simulate for the next time step, i.e., t = t + dt;
6. If the total time for the process is less than the ton time, then go to step-2 and

continue the process;
7. If the total time exceeds ton, run the toff timewith convection boundary conditions;
8. Complete the total simulation time and calculate the crater dimensions.

The details of the procedure are also illustrated in Figs. 7, 8, 9, 10 and 11.
The resultswere tabulated based on the real-time crater simulation scheme, and the

temperature distribution along the radius and depth after the total time of simulation
is shown in Fig. 12a, b, respectively.
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Fig. 7 Finite volume nodes
at the initial time t = 0

Fig. 8 After simulation at
time t = dt, the nodes with
red circles represent the
temperature exceeding
melting point

It can be observed that the present scheme gives much lesser and more physically
realistic maximum temperature compared to the static crater simulation. In order to
validate the accuracy of the model, the results are compared with the experimentally
created crater at similar machining conditions. The temperature contour plot for the
real-time crater simulation scheme is shown in Fig. 13.
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Fig. 9 At simulation time
t = dt, the neighbouring
nodes are marked with cyan
colour

Fig. 10 After next time
simulation at time t = 2dt,
the nodes which are having
higher temperature than
melting temperature are
marked in red colour. The
neighbouring nodes shown in
Fig. 9 are in the melted zone

The crater dimensions were calculated and compared with the static scheme as
shown in Fig. 14. It can be observed that the crater dimensions predicted were much
lesser for the real-time crater prediction.
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Fig. 11 Re-initialization of
boundary nodes for the next
time simulation

Fig. 12 Temperature distribution along the (a) radius and (b) depth for static and dynamic material
removal

In order to test its validity, the resultswere comparedwith the experimental reading
(Table 3). It can be perceived that the relative error has reduced drastically and the
dynamic simulation scheme was able to predict results much closer to the actual
value.
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Fig. 13 Temperature contour plot at 100 V and 0.4 µF for dynamic material removal

Fig. 14 Predicted crater comparison for both static and dynamic crater simulation
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Table 3 Crater dimensions predicted using dynamic material removal model

Voltage
(V)

Capacitance
(µF)

Predicted
radius
(µm)

Actual
radius
(µm)

Predicted
depth
(µm)

Actual
depth
(µm)

Error
radius
(%)

Error
depth
(%)

100 0.4 27.35 27.93 9.89 9.66 2.08 2.38

6 Conclusions

The crater dimensions were calculated using static and dynamic material removal
schemes, and the results were compared with the experimentally obtained crater.
The error in prediction of the crater dimension was drastically reduced on using the
dynamic material removal. During the actual machining condition, the material gets
removed when the temperature exceeds the melting temperature. This is applied to
the model, and results with an error of less than 3% were obtained.

In spite of predicting the crater dimensions with very high accuracy, the model is
an approximation to the actual process dynamics. The energy transfer in the liquid
phase should be addressed using the Navier–Stokes equation and the phase change
conditions. This will be attempted as a future course of action.
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Existence, Bifurcation, and Multiplicity
Results for a Class of n× n p-Laplacian
System

Mohan Mallick and Subbiah Sundar

Abstract We study positive solutions to the n × n system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�p1u1 = λ
(
u(p1−1−α1)

1 + f1(u2)
)

in �;
−�p2u2 = λ

(
u(p2−1−α2)

2 + f2(u3)
)

in �;
... = ...

−�pn−1un−1 = λ
(
u(pn−1−1−αn−1)

n−1 + fn−1(un)
)

in �;
−�pn un = λ

(
u(pn−1−αn)
n + fn(u1)

)
in �;

u1 =u2 = · · · = un = 0 on ∂�.

where � is a bounded domain in R
N ; N ≥ 1 with smooth boundary ∂�, λ > 0,

pi > 1, αi ∈ (0, pi − 1) for i = 1, 2, . . . , n and �mw := div(|∇w|m−2∇w); m > 1
is the m-Laplacian operator of w. Here, fi : [0,∞) → [0,∞) are non-decreasing
continuous functions such that fi (0) = 0 for i = 1, 2, . . . , n and satisfy a combined
sublinear condition at infinity.Wewill discuss bifurcation, existence, andmultiplicity
results. We establish our results via the method of sub-super solutions.
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1 Introduction

Recently, in [1], the authors study positive solutions to the 2 × 2 system:

⎧
⎪⎪⎨

⎪⎪⎩

−�p1u1 = λ
(
u p1−1−α1
1 + f1(u2)

)
in �,

−�p2u2 = λ
(
u p2−1−α2
2 + f2(u1)

)
in �,

u j = 0 on ∂� ; j = 1, 2,

(1)

where � is a bounded domain in R
N ; N ≥ 1 with smooth boundary ∂�, λ > 0,

pi > 1, αi ∈ (0, pi − 1) for i = 1, 2 and �mw := div(|∇w|m−2∇w); m > 1 is the
m-Laplacian operator of w. Assuming fi : [0,∞) → [0,∞) are non-decreasing
continuous functions such that fi (0) = 0 for i = 1, 2, they first establish that for
λ ≈ 0 and there exist positive solutions of (1) bifurcating from the trivial branch
(λ, u1 ≡ 0, u2 ≡ 0) at (0, 0, 0). Further, under additional assumptions on fi for
i = 1, 2, they discuss an existence result for all λ > 0 and a multiplicity result for a
certain range of λ.

Motivated by these observations, in this paper, we study positive solutions to a
general n × n system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�p1u1 = λ
(
u(p1−1−α1)

1 + f1(u2)
)

in �;
−�p2u2 = λ

(
u(p2−1−α2)

2 + f2(u3)
)

in �;
... = ...

−�pn−1un−1 = λ
(
u(pn−1−1−αn−1)

n−1 + fn−1(un)
)

in �;
−�pn un = λ

(
u(pn−1−αn)
n + fn(u1)

)
in �;

u1 =u2 = · · · = un = 0 on ∂�.

(2)

where� is a bounded domain inR
N ; N ≥ 1 with smooth boundary ∂�, λ > 0, pi >

1, αi ∈ (0, pi − 1) for i = 1, 2, . . . , n and �mw := div(|∇w|m−2∇w); m > 1 is
the m-Laplacian operator of w. Assuming fi : [0,∞) → [0,∞) are non-decreasing
continuous functions such that fi (0) = 0 for i = 1, 2, . . . , n. By a positive solu-
tion u = (u1, u2, . . . , un), we mean ui ∈ [

W
1,pi (�) ∩ C(�̄)

]
with ui > 0 on � for

i = 1, 2, . . . , n. We first establish a bifurcation result at (0, 0) from the trivial branch
(λ, u ≡ 0). Namely, we prove:

Theorem 1.1 There exists λ0 > 0 such that for λ ∈ [0, λ0), (2) has a positive solu-
tion u = (u1, u2, . . . , un) such that

∑n
i=1 ‖ui‖∞ → 0 as λ → 0.

Next we assuming a combined sublinear condition at ∞, namely
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(F1) lim
s→∞

[ f [m]
1 ◦ f [m]

2 ◦ . . . f [m]
n−1 ◦ f [m]

n (s)]p1−1

s p1−1
= 0 for everym > 0,where f [m]

i (s)

= fi (ms)
1

pi−1 , and establish.

Theorem 1.2 Let F1 hold. Then, (2) has a positive solution (u1, u2, . . . un) for all
λ > 0.

Next we discuss the multiplicity of positive solutions for certain range of λ. Let
assume

(F2) There exist positive constants a and b(> a) such that

min
j=1,2,...,n

{
1

2‖ep j ‖p j−1
∞

min

{

aα j ,
a pj−1

f j (a)

}}

> max
j=1,2,...,n

{

A j
bp j−1

f j (b)

}

then we prove:

Theorem 1.3 Let F1 and F2 hold. Then, 2 has at least three positive solu-

tions for λ ∈ (λ∗, λ∗) where λ∗ = min
i=1,2,...,n

{
1

2‖epi ‖pi−1
∞

min

{

aαi ,
a pi−1

fi (a)

}}

, λ∗ =

max
i=1,2,...,n

{

Ai
bpi−1

fi (b)

}

.

We establish Theorems 1.1–1.3 by the method of sub-super solution. By a subso-
lution of (2), we mean a function n-tuples of functions (ψ1, ψ2, . . . , ψn) such that
ψi ∈ W

1,p j (�) ∩ C(�̄) with ψi = 0 on ∂� and for i = 1, 2, . . . , n − 1
∫

�

|∇ψi |pi−2∇ψi .∇ζ ≤
∫

�

λ
(
ψ

(pi−1−αi )

i + fi (ψi+1)
)

ζ, ∀ζ ∈ W

and for i = n
∫

�

|∇ψn|pn−2∇ψn .∇ζ ≤
∫

�

λ
(
ψ(pn−1−αn)

n + fn(ψ1)
)
ζ, ∀ζ ∈ W

And by a supersolution of (2), we mean a n-tuples of functions (φ1, φ2, . . . , φn) such
that φi = W

1,pi (�) ∩ C(�̄) with φi = 0 on ∂� and for i = 1, 2, . . . , n − 1
∫

�

|∇φi |pi−2∇φi .∇ζ ≥
∫

�

λ
(
φ

(pi−1−αi )

i + fi (φi+1)
)

ζ, ∀ζ ∈ W

and for i = n
∫

�

|∇φn|pn−2∇φn.∇ζ ≥
∫

�

λ
(
φ(pn−1−αn)
n + fn(φ1)

)
ζ, ∀ζ ∈ W

where W = {
h ∈ C

∞
0 (�) : h ≥ 0 in �

}
. By a strict subsolution of (2), we mean

a subsolution which is not a solution. By a strict supersolution of (2), we mean a
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supersolution which is not a solution. Then, the following results are well known
(see [2, 3]).

Proposition 1.1 If there exist a subsolution (ψ1, ψ2, . . . , ψn) and a supersolu-
tion (φ1, φ2, . . . , φn) of (2) such that (ψ1, ψ2, . . . , ψn) ≤ (φ1, φ2, . . . , φn), then
(2) has at least one solution (u1, u2, . . . , un) such that ui ∈ W

1,pi (�) ∩ C(�̄) for
i = 1, 2, . . . n, satisfying

(ψ1, ψ2, . . . , ψn) ≤ (u1, u2, . . . , un) ≤ (φ1, φ2, . . . , φn) .

Proposition 1.2 Let fi be non-negative and non-decreasing for i = 1, 2, . . . , n, and
suppose there exist a subsolution (ψ1, ψ1, . . . , ψ1), a supersolution (φ1, φ2, . . . , φn),

a strict subsolution
(
ψ̃1, ψ̃2, . . . , ψ̃n

)
, and a strict supersolution

(
φ̃1, φ̃2, . . . , φ̃n

)

for (2) such that

(ψ1, ψ2, . . . , ψn) ≤
(
φ̃1, φ̃2, . . . , φ̃n

)
≤ (φ1, φ2, . . . , φn) ,

(ψ1, ψ2, . . . , ψn) ≤
(
ψ̃1, ψ̃2, dots, ψ̃n

)
≤ (φ1, φ2, . . . , φn)

and
(
ψ̃1, ψ̃2, . . . , ψ̃n

)
≮

(
φ̃1, φ̃2, . . . , φ̃n

)
. Then, (2) has at least three distinct so-

lutions
(
ui1, u

i
2, . . . , u

i
n

)
, i = 1, 2, 3 such that

(
u11, u

1
2, . . . , u

1
n

) ∈
[
(ψ1, ψ2, . . . , ψn) ,

(
φ̃1, φ̃2, . . . , φ̃n

)]
,

(
u21, u

2
2, . . . , u

2
n

) ∈
[(

ψ̃1, ψ̃2, . . . , ψ̃n

)
, (φ1, φ2, . . . , φn)

]

and
(
u31, u

3
2, . . . , u

3
n

) ∈ K where

K := [(ψ1, ψ2, . . . , ψn) , (φ1, φ2, . . . , φn)] \
([

(ψ1, ψ2, . . . , ψn) ,
(
φ̃1, φ̃2, . . . , φ̃n

)]

∪
[(

ψ̃1, ψ̃2, . . . , ψ̃n

)
, (φ1, φ2, . . . , φn)

])
.

2 Proof of Theorem 1.1

Let epi be the unique positive solution of equation

{
−�pi e = 1 on �;

e = 0 on ∂�.
(3)
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Let 0 < γ < 1, be such that γ (pi − 1) < 1, for all i = 1, 2, . . . , n for sufficiently
small λ0

λ
1−γαi

0 ‖epi ‖pi−1−αi∞ + λ1−γ (pi−1)
o fi (λ

γ
o ‖epi+1‖∞) < 1 for i = 1, 2, . . . , n − 1. (4)

λ
1−γαn
0 ‖epn‖pn−1−αn∞ + λ1−γ (pn−1)

o fn(λ
γ
o ‖ep1‖∞) < 1 for i = n. (5)

For λ < λ0, define φi = λγ epi , i = 1, 2, 3, . . . , n − 1.
Then, −�pi φi = −�pi (λ

γ epi ) = λγ (pi−1)(−�pi epi ) = λγ (pi−1)

−�pi φi = λγ (pi−1).1

> λγ(pi−1)(λ
1−γαi
0 ‖epi ‖pi−1−αi∞ + λ1−γ (pi−1)

o fi (λ
γ
o ‖epi+1‖∞) [by (4)]

> λγ(pi−1)(λ1−γαi ‖epi ‖pi−1−αi∞ + λ1−γ (pi−1) fi (λ
γ ‖epi+1‖∞)

= λ
{(

λγ ‖epi ‖∞
)pi−1−αi + fi

(
λγ ‖epi+1‖∞

)}

> λ
{(

λγ epi
)pi−1−αi + fi

(
λγ epi+1

)}

∴ for i = 1, 2, . . . , n − 1

−�pi φi > λ
{
φ

pi−1−αi

i + fi (φi+1)
}

similarly for i = n,
−�pnφn > λ

{
φ pn−1−αn
n + fn(φ1)

}

and φi = 0 on ∂�.
∴ (φ1, φ2, . . . , φn) = (

λγ ep1 , λ
γ ep2 , . . . , λ

γ epn
)
is a supersolution.

Next we will construct a subsolution of (2). Let z pi > 0; be the eigenfunction
with ‖z pi ‖∞ = 1 corresponding the principal eigenvalue λ1,pi of the problem

{
−�pi z = λ|z|pi−2z on �,

z = 0 on ∂�.

Let for fix λ, we can find small mλ > 0 such that λ1,pi m
αi
λ ≤ λ for i = 1, 2, . . . , n.

Let ψi = mλz pi ,

−�pi ψi =λ1,pi (mλz pi )
pi−1−αi ≤ λ(mλz pi )

pi−1−αi , (∵ ‖z pi ‖∞ = 1)

≥λ
((
mλz pi

)pi−1−αi + fi (mλz pi+1)
)

Then, for i = 1, 2, . . . , n − 1

−�pi ψi ≤ λ
(
ψ

pi−1−αi

i + fi (ψi+1)
)
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and similarly for i = n

−�pnψn ≤ λ
(
ψ pn−1−αn

n + fi (ψ1)
)

Therefore, (ψ1, ψ2, . . . ψn) is a subsolution and
∂e

∂n
< 0 on ∂�, so we can make

mλ very small such that (ψ1, ψ2, . . . ψn) ≤ (φ1, φ2, . . . φn). So by Proposition 1.1
there exists solution (u1, u2, . . . un) such that (ψ1, ψ2, . . . ψn) ≤ (u1, u2, . . . un) ≤
(φ1, φ2, . . . φn). Since

∑n
i=1 ‖φi‖∞ = λγ

∑n
i=1 ‖epi ‖∞. Then

∑n
i=1 ‖ui‖∞ ≤ ∑n

i=1‖φi‖∞ → 0
(
∵ λ → 0,

∑n
i=1 ‖φ‖∞ → 0

)

∴
∑n

i=1 ‖ui‖∞ → 0. �

3 Proof of Theorems 1.2–1.3

Proof of Theorem 1.2 Let (ψ1, ψ2, . . . , ψn) as before in the previous theorem. Then,
(ψ1, ψ2, . . . , ψn) is a subsolution for all λ > 0, next we construct a positive su-
persolution (φ1, φ2, . . . , φn) of (2). For given λ > 0, choose mλ � 1 such that for
i = 2, 3, . . . , n

[
mλ f

[βi ]
i ◦ f [βi+1]

i+1 ◦ · · · ◦ f [βn−1]
n+1 ◦ f [βn ]

n

(
mλ‖ep1‖∞

)]αi ≥
(
(2λ)

1
pi−1 ‖epi ‖∞

)pi−1−αi

(6)

1

2λ‖ep1‖p1−1
∞

≥
[
f [β1]
1 ◦ f [β2]

2 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn ]

n
(
mλ‖ep1‖∞

)]p1−1

(mλ‖ep1‖∞)p1−1
(7)

mα1
λ

2
≥ λ‖ep1‖p1−1−α1∞ (8)

for i = 1, 2, . . . , n
mpi−1

λ � 1 (9)

where

βi =
{

(2λ)
1

pi+1−1mλ‖epi+1‖∞; i = 1, 2, . . . , n − 1

1; i = n.
(10)

Then choose

φi =
⎧
⎨

⎩

mλep1 ; i = 1,
(

(2λ)
1

pi−1 mλ f [βi ]
i ◦ f [βi+1]

i+1 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn ]

n
(
mλ‖ep1‖∞

)
)

epi ; i = 2, . . . , n.

(11)
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where epi is the solution of 3. Now, by using (5), (7), (8), (9), (10), and (F2)

− �p1φ1 = mp1−1
λ

2
+ mp1−1

λ

2

≥ mp1−1−α1
λ

mα1
λ

2
+ λ

[
f [β1]
1 ◦ f [β2]

2 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn ]

n

(
mλ‖ep1‖∞

)]p1−1

≥ λ

[
(
mλ‖ep1‖∞

)p1−1−α1 + f1

(

(2λ)
1

p2−1 mλ‖ep2‖∞ f [β2]
2 ◦ · · · ◦ f [βn−1]

n−1 ◦ f [βn ]
n

(
mλ‖ep1‖∞

)
)]

≥ λ

[
(
mλep1

)p1−1−α1 + f1

(

(2λ)
1

p2−1 mλ f [β2]
2 ◦ · · · ◦ f [βn−1]

n−1 ◦ f [βn ]
n

(
mλ‖ep2‖∞

)
e

)]

[∵ f1 ↑]

= λ
[
φ
p1−1−α1
1 + f1(φ2)

]

So we have,
−�φ1 ≥ λ

[
φ

p1−1−α1
1 + f1(φ2)

]

For i = 2, 3, . . . , n − 1,

− �pi φi =
[

(2λ)
1

pi−1 mλ f [βi ]
i ◦ f [βi+1]

i+1 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn ]

n (mλ‖e1‖∞)

]pi−1

= λ
[
mλ f [βi ]

i ◦ f [βi+1]
i+1 ◦ · · · ◦ f [βn−1]

n−1 ◦ f [βn ]
n (mλ‖ep1‖∞)

]αi

×
[
mλ f [βi ]

i ◦ f [βi+1]
i+1 ◦ · · · ◦ f [βn−1]

n−1 ◦ f [βn ]
n (mλ‖ep1‖∞)

]pi−1−αi

+ λ
[
mλ f [βi ]

i ◦ f [βi+1]
i+1 ◦ · · · ◦ f [βn−1]

n−1 ◦ f [βn ]
n (mλ‖ep1‖∞)

]pi−1

≥ λ

(

(2λ)
1

pi−1 ‖epi ‖∞
)pi−1−αi [

mλ f [βi ]
i ◦ f [βi+1]

i+1 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn−1]

n (mλ‖ep1‖∞)
]pi−1−αi

+ λ fi

(

(2λ)
1

pi+1−1 mλ‖epi+1‖∞ f [βi+1]
i+1 ◦ · · · ◦ f [βn−1]

n−1 ◦ f [βn ]
n (mλ‖ep1‖∞)

) [
∵ mpi−1

λ � 1
]

≥ λ

(

(2λ)
1

pi−1 mλ f [βi ]
i ◦ f [βi+1]

i+1 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn ]

n (mλ‖e1‖∞)epi

)pi−1−αi

+ λ fi

(

(2λ)
1

pi+1−1 mλ f [βi+1]
i+1 f [βi+2]

i+2 ◦ · · · ◦ f [βn−1]
n−1 ◦ f [βn ]

n (mλ‖ep1‖∞)epi+1

)

[∵ fi ↑]

≥ λ
(
φ
pi−1−αi
i + fi (φi+1)

)

⇒ −�pi φi ≥ λ
(
φ

pi−1−αi

i + fi (φi+1)
)

.
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For i = n,

− �pnφn =
(

(2λ)
1

pn−1mλ f [βn ]
n (mλ‖ep1‖∞)

)pn−1

= λ

{(
mλ f [βn ]

n (mλ‖ep1‖∞)
)pn−1 +

(
mλ f [βn]

n (mλ‖ep1‖∞)
)pn−1

}

= λ

{(
mλ f [βn ]

n
(
mλ‖ep1‖∞

))αn (
mλ f [βn ]

n
(
mλ‖ep1‖∞

))pn−1−αn + mpn−1
λ fn

(
mλ‖ep1‖∞

)
}

≥ λ

{(

(2λ)
1

pn−1 ‖epn ‖∞
)pn−1−αn (

mλ f [βn ]
n (mλ‖e‖∞)

)pn−1−αn + mpn−1
λ fn (mλ‖e‖∞)

}

≥ λ

{(

(2λ)
1

pn−1mλ f [βn ]
n (mλ‖e‖∞) epn

)pn−1−αn
+ fn (mλe)

}
(
∵ fn ↑ and mpn−1

λ � 1
)

= λ
{
φ
pn−1−αn
n + fn(φ1)

}
.

⇒ −�pnφn ≥ λ
{
φ pn−1−αn
n + fn(φ1)

}
.

Therefore, (11) is a supersolution of (2), for all λ > 0. Since
∂epi
∂n

< 0, and

mλ � 1. So, we can have (ψ1, ψ2, . . . , ψn) ≤ (φ1, φ2, . . . , φn). So for λ > 0,
∃ a solution (u1, u2, . . . , un) of (2) with (ψ1, ψ2, . . . , ψn) ≤ (u1, u2, . . . , un) ≤
(φ1, φ2, . . . , φn). �
Proof of Theorem 1.3 Let establish the result when � is a ball of radius R. Let

λ∗ = min
i=1,2,...,n

{
1

2‖epi ‖pi−1
∞

min

{

aαi ,
a pi−1

fi (a)

}}

(
φ̃1, φ̃2, . . . , φ̃n

)
=

(
a

‖ep1‖∞
ep1 ,

a

‖ep2‖∞
ep2 , . . . ,

a

‖epn‖∞
epn

)

(12)

for λ < λ∗

−�pi φ̃i = a pi−1

2‖e‖pi−1
∞

+ a pi−1

2‖e‖pi−1
∞

≥ λa pi−1−αi + λ fi (a)

≥ λ

(

(
a

‖epi ‖∞
epi )

pi−1−αi + fi (
a

‖epi+1‖∞
epi+1)

)

∴ for i = 1, 2, . . . , n − 1,

⇒ −�pi φ̃i ≥ λ
(
φ̃

pi−1−αi

i + fi (φ̃i+1)
)
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similarly, for i = n

−�pi φ̃n ≥ λ
(
φ̃ pn−1−αn
n + fn(φ̃1)

)

∴ (12) is a supersolution of (2) for λ < λ∗.
Now, we construct a positive strict subsolution (ψ̃1, ψ̃2, . . . , ψ̃n) of (2) when

λ > λ∗.

Where λ∗ = max
i=1,2,...,n

{
bpi−1

f (b)
Api

}

and Api = inf
ε

N RN−1

εN (R − ε)pi−1
= (N + pi − 1)(N+pi−1)

Rpi N N−1(pi − 1)(pi−1)
; and εi = N R

N + pi − 1
.

For 0 < ε < R; α, β > 1 define
ρ : [0, R] → [0, 1] by

ρ(r) =

⎧
⎪⎨

⎪⎩

1 0 ≤ r ≤ ε,

1 −
(

1 −
(
R − r

R − ε

)β
)α

ε < r ≤ R.

Then

ρ ′(r) =

⎧
⎪⎨

⎪⎩

0 0 ≤ r ≤ ε,

− αβ

R − ε

(

1 −
(
R − r

R − ε

)β
)α−1 (

R − r

R − ε

)β−1

ε < r ≤ R.

And hence, |ρ ′(r)| ≤ αβ

R − ε
. Let d(r) = bρ(r), then

|d ′(r)| ≤ bαβ

R − ε
(13)

Define
(
ψ̃1(r), ψ̃2(r), . . . , ψ̃n(r)

)
as the radially symmetric C

2(�) solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�p1ψ̃1 = λ ( f1(d(r))) in B(0, R);
−�p2ψ̃2 = λ ( f2((d(r))) in B(0, R);

... = ...

−�pn−1ψ̃n−1 = λ ( fn−1((d(r))) in B(0, R);
−�pn ψ̃n = λ ( fn((d(r))) in B(0, R);
ψ̃1 = ψ̃2 = · · · = ψ̃n = 0 on ∂B(0, R);
ψ̃ ′

1(0) = ψ̃ ′
2(0) = · · · = ψ̃ ′

n(0) = 0.

(14)

By changing variable we have,
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for i = 1, 2, . . . , n and f or t ∈ (0, R).

−
(
r N−1ϕpi (ψ̃

′
i (r))

)′ = λr N−1 fi (d(r))

where ϕpi (r) = |r |pi−2r for all r ∈ R. Integrating from 0 to r , we have

−ϕpi (ψ̃
′
i ) = λ

r N−1

∫ r

0
sN−1 fi (d(s))ds.

Since ϕpi is monotone, ϕ−1
pi is also continuous and monotone . Hence, we have

−ψ̃ ′
i = ϕ−1

pi

(
λ

r N−1

∫ r
0 sN−1 fi (d(s))ds

)

, for i = 1, 2, . . . , n.

for λ > λ∗, we claim that

ψ̃i (r) > d(r), 0 ≤ r < R (15)

If our claim is true,
(
ψ̃1, ψ̃2, . . . , ψ̃n

)
is a strict subsolution of (2) since

−�pi ψ̃i = λ fi (d) < λ
(
ψ̃

pi−1−αi

i + f (ψ̃i+1)
)

, i = 1, 2, . . . , n − 1 in BR and

−�ψ̃n = λ fn(d) < λ
(
ψ̃ pn−1−αn

n + f (ψ̃1)
)

in BR

It suffices to prove that ψ̃ ′
i (r) < d ′(r) on (0, R). Note that for 0 ≤ r < ε, for i =

1, 2, . . . , nψ̃ ′
i (r) < d ′(r) (∵ d ′(r) = 0 for 0 ≤ r < ε and ψ̃ ′

i < 0, ∀ r)
Now for r > ε

−ψ̃ ′
i = ϕ−1

pi

(
λ

r N−1

∫ r

0
sN−1 fi (d(s))ds

)

≥ ϕ−1
pi

(
λ

r N−1

∫ ε

0
sN−1 fi (d(s))ds

)

= ϕ−1
pi

(
λ

r N−1

∫ ε

0
sN−1 fi (b)ds

)

∵ d(s) = b for s ∈ (0, ε)

= ϕ−1
pi

(
λ

RN−1
fi (b)

∫ ε

0
sN−1ds

)

= ϕ−1
pi

(
λεN fi (b)

RN−1N

)

. (16)

Noting that from (13), it is easy to see that ψ̃ ′
i (r) < d ′(r) in (ε, R) provided

ϕ−1
pi

(
λεN fi (b)

RN−1N

)

>
αβb

R − ε
, for i = 1, 2, . . . , n.
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Equivalently, if

λ > max
i=1,2,...,n

{

(αβ)pi−1 N RN−1

εN (R − ε)pi−1

bpi−1

fi (b)

}

(17)

Now if λ∗ = max
1,2,...,n

{

Api
b

fi (b)

}

, maximum is taken over finite number of term so

maximum value will be for some i = j choose ε j = N R

N − p j − 1
, in the definition

of ρ, (17) reduce to showing

λ > max
i=1,2,...,n

{

(αβ)pi−1Api
bpi−1

fi (b)

}

(18)

Again since λ > λ∗, we can choose α > 1, β > 1 s.t. (18) satisfies, hence (15) hold

for λ > λ∗. Thus
(
ψ̃1, ψ̃2, . . . , ψ̃n

)
is a strict subsolution of (2), from the Theo-

rem 1.2, we have a sufficiently small positive subsolution (ψ1, ψ2, . . . , ψn) and a
sufficiently large supersolution (φ1, φ2, . . . , φn), s.t.

(ψ1, ψ2, . . . , ψn) ≤
(
φ̃1, φ̃2, . . . , φ̃n

)
≤ (φ1, φ2, . . . , φn) , and

(ψ1, ψ2, . . . , ψn) ≤
(
ψ̃1, ψ̃2, . . . , ψ̃n

)
≤ (φ1, φ2, . . . , φn) .

Since ‖ψ̃i‖∞ ≥ ‖d‖∞ = b and ‖φ̃i‖∞ = a.

(
ψ̃1, ψ̃2, . . . , ψ̃n

)
≮

(
φ̃1, φ̃2, . . . , φ̃n

)
.

By Proposition 1.2, (2) has atleast three distinct solution for λ ∈ (λ∗, λ∗). Next, when
� is a general bounded open subset of R

N let BR be the largest inscribed ball in �.
Define

χi (x) =
{

ψ̃i x ∈ BR,

0 x ∈ �\BR .

where
(
ψ̃1, ψ̃2, . . . , ψ̃n

)
is a second subsolution (2) constructed above when � =

BR . Then, χi ∈ W 1,pi (�)C(�̄), and further on BR we have, for i = 1, 2, . . . , n − 1

−�pi χi = −�pi ψ̃i ≤ λ{ψ̃ Pi−1−αi
i + fi (ψ̃i+1)} = λ{χ pi−1−αi + fi (χi+1)}

for i = n

−�pnχn = −�pn ψ̃n ≤ λ{ψ̃ pn−1−αn

i + fn(ψ̃1)} = λ{χ pn−1−αn + fn(χ1)}
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While outside BR , we have for i = 1, 2, . . . , n − 1

−�pi χi = 0 = λ{ψ̃ pn−1−αi

i + fi (ψ̃i+1)} = λ{χ pn−1−αi + fi (χi+1)}

for i = n

−�pnχn = 0 = λ{ψ̃ pn−1−αn

i + fn(ψ̃1)} = λ{χ pn−1−αn + fn(χ1)}.

Hence, (χ1, χ2, . . . , χn) is a strict subsolution to the previous case except that here
for the second subsolution we will use (χ1, χ2, . . . , χn) describe above. �

4 Example

We give an example that satisfy the hypothesis in Theorems 1.2 and 1.3. Consider
the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�p1u1 = λ
(
u(p1−1−α1)

1 + e
τu2

τ+u2 − 1
)

in �;
−�p2u2 = λ

(
u(p2−1−α2)

2 + uζ3
3

)
in �;

... = ...

−�pn−1un−1 = λ
(
u(pn−1−1−αn−1)

n−1 + uζn
n

)
in �;

−�pn un = λ
(
u(pn−1−αn)
n + uζ1

1

)
in �;

u1 =u2 = · · · = un = 0 on ∂�.

(19)

where τ > 0 and ζi > 0, for i = 1, 3, 4, . . . , n. Clearly, fi (0) = 0 and since f1 is
bounded for each τ > 0, then (H1) holds. Hence, Theorems 1.1–1.2 hold for all
τ > 0 and ζ > 0. Next by choosing a = 1 and b = τ , we have

min
i

{
1

2‖wpi ‖pi−1
∞

min

{

aαi ,
a pi−1

fi (a)

}}

maxi

{

Ai
bpi−1

fi (b)

}

≥
min

{
1

2‖ep1‖p1−1
∞ (e

τ
τ+1 − 1)

,
1

2‖ep2‖p2−1
∞

, . . . ,
1

2‖epn‖pn−1
∞

}

max
{
Api

τ p1−1

eτ/2−1 , Ap2τ
p2−1−ζ3 , . . . , Apnτ

pn−1−ζ1

}
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which is bigger than one if τ � 1 and min
1,3,4,...,n

{ζi } > max
2,3,...,n

{pi − 1}. Hence, (H2)

satisfied. Therefore, (19) has at least three positive solutions for λ ∈ (λ∗, λ∗) where
λ∗ = max

{
Api

τ p1−1

eτ/2−1 , Ap2τ
p2−1−ζ3 , . . . , Apnτ

pn−1−ζ1

}
and

λ∗ = min

{
1

2‖wp1‖p1−1
∞ (e

τ
τ+1 − 1)

,
1

2‖wp2‖p2−1
∞

, . . . ,
1

2‖wpn‖pn−1
∞

}

.
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Uniqueness and Asymptotic Behavior
of the Solutions to a Singular
Coagulation–Fragmentation Equation

Debdulal Ghosh and Jitendra Kumar

Abstract In this paper, we demonstrate the uniqueness and asymptotic property of
the solutions of a coagulation–fragmentation equation.We take into account coagula-
tion kernels with singularities and fragmentation kernels of the kindwhich influences
breaking of a particle into multiple ones. A numerical example of stability behavior
of the time-dependent solution for coagulation–fragmentation equation is given.

Keywords Coagulation–fragmentation process · Coagulation kernels ·
Fragmentation kernels · Uniqueness · Singularity

1 Introduction

Coagulation and fragmentation is a particulate process that describes the time evolu-
tion of a system in which clusters react in either coagulate together or break. This is
first studied by Smoluchowski [1]. It concerns about Brownian motion. The model
involves a set of differential equations. After that, Muller [2] introduced its contin-
uous version. Melzak [3] derived the coagulation–fragmentation equation which is
formulated as

∂w(x, t)

∂t
= − w(x, t)

∫ x

0

y

x
Γ (x, y)dy −

∫ ∞

x
Γ (y, x)w(y, t) dy

− w(x, t)
∫ ∞

0
K (x, y)w(y, t) dy

+ 1

2

∫ x

0
K (x − y, y)w(x − y, t)w(y, t) dy (1)
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In Eq. (1), w(x, t) represents the density of x-size clusters at time t . The term
w(x, t)dx denotes the average number of particle that lies in (x, x + dx) at time t .
The function Γ (x, y) is the multiple fragmentation kernel which shows the rate at
which y-sized particles are produced by the fragmentation of x-sized particle. The
function K (x, y), known as the coagulation kernel, gives the rate at which x-sized
and y-sized particles coalesce. The kernel Γ is known as a multiple fragmentation
kernel as a particle splits into many pieces at each fragmentation process.

In this study, we consider the following equation of coagulation–fragmentation
(C-F equation):

∂ f (x, t)

∂t
=

∫ ∞
x

b(x, y)S(y) f (y, t) dy + 1

2

∫ x

0
K (x − y, y) f (x − y, t) f (y, t) dy

− S(x) f (x, t) − f (x, t)
∫ ∞
0

K (x, y) f (y, t) dy

with the initial condition f (x, 0) = f0(x),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(2)

where f0 is a non-negative function in [0,∞). In Eq. (2), S(x) provides a description
of the overall breaking frequency of a particle of size x . The function b(x, y) is the
distribution function corresponding to formation of x-sized particles and the breakage
of y-sized particle. It is nonzero for x < y. The function b(x, y) further satisfies

∫ y

0
b(x, y) dx = N (y) for y > 0, (3)

where N (y) indicates the number of pieces from the y-sized particle breakage.
Throughout this paper, we assume

(i) N (y) is size dependent,
(ii) N (y) ≤ N , a constant, and
(iii) by fragmentation, number of particles is increased but mass remains same, i.e.,

b obeys the following relation

∫ y

0
xb(x, y) dx = y for all y > 0. (4)

The interrelations between the multiple fragmentation kernel, the breakage function,
and the selection function are:

Γ (x, y) = S(y)b(x, y) and S(x) =
∫ x

0

y

x
Γ (x, y) dy.

The model equation (2) is referred to as a continuous form of C-F equation.
Applications of thismodel equation arise in aerosol physics [4], population dynamics
of animal grouping [5], hematological red blood cell aggregation [6], astrophysics
[7], polymer science, colloidal chemistry [8, 9], etc.
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1.1 Literature on Eq. (2)

Aizenman and Bak [10] have analyzed an equation similar to (2) in the study of
chemical kinetics of systemof reacting polymers. Theyhave considered theBoltzman
equation and shown uniqueness result in the function space

F :=
{
φ : [0,∞) → R

∣∣∣ ‖φ‖ =
∫ ∞

0
(1 + x)|φ(x)|dx < ∞

}
.

Under the assumptions on the coagulation kernel that K (x, y) ≤ ψ(x)ψ(y), for
all x, y ∈ (0,∞),ψ : (0,∞) → (0,∞) being a continuous function, Norris [11] has
shown that there is a unique solution to (2).

Banasiak [12] analyzed a fragmentationmodel and described the existence ofmul-
tiple solutions. The reason behind the non-uniqueness is also given in [12]. Melzak
[3] investigated a coagulation fragmentation equation and showed that there exists a
unique solution under the following assumption on kernels

(i) 0 ≤ K (x, y) ≤ A, a constant, and
(ii) 0 ≤ F(x, y) ≤ B,

∫ x
0 yF(x, y) ≤ x and

∫ x
0 F(x, y)dy < ∞.

For constant kernels, Aizenman and Bak [10] showed the uniqueness of solutions
to (2). For a class of bounded kernels, Melzak [3] has proved the existence and
uniqueness of solutions.

Under a sufficient condition, Norris [11] investigated the unique solutions to the
problem (2) with a coagulation kernel that obeys K (x, y) ≤ φ1(x)φ2(y) where φ1

and φ2 are sublinear functions.
Banasiak [12] demonstrated the presence of several solutions and showed that

non-unique solutions hold for a wide range of sensible physical alternatives.
Giri et al. [13] have discussed the uniqueness of weak solution for the problem

(2). The coagulation kernel under consideration in [13] is bounded by ψ(x)ψ(y), for
x > 0 and y > 0, where ψ satisfies

ψ(x) ≤ k1(1 + xμ),μ ∈ [0, 1),

and the selection function obeys

S(x) ≤ k2(1 + x)ν, ν ∈ [0, 1).

Dubovski and Stewart [14] proved the global existence and uniqueness for (2)
with a linear K and an unbounded b.

It is to observe that the existing study on Eq. (2) with singular kernels is very
limited. The analysis of (2) with singular kernels can be found in the recent papers
[15, 16]. In this work, we show the uniqueness of the solutions to (2) with a singular
kernel in the function space that is defined in [16].

The paper is demonstrated in the following sequence. Section2 states some pre-
liminaries which are used in this paper. In Sect. 3, we derive the uniqueness of the
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solutions. A numerical example on asymptotic behavior of the solutions is presented
in Sect. 4. Finally, in Sect. 5, we conclude and give future scopes.

2 Preliminaries

We use the function space Ωλ,r2(T ). Which is defined as follows

(i) a function φ ∈ Ωλ,r2(T ) implies it is continuous, and
(ii) for an r2 in (0, 1),

‖φ‖λ,r2 := sup
t∈[0,T ]

∫ ∞

0

(
1

xr2
+ exp(λx)

)
|φ(x, t)|dx, a finite quantity.

For a given T > 0, let

Ω.,r2(T ) =
⋃
λ>0

Ωλ,r2(T ).

We denote cones of non-negative functions in Ωλ,r2(T ) and Ω.,r2(T ) by Ω+
λ,r2

(T )

and Ω+
.,r2(T ), respectively. We also use the following notation in the sequel

Π = {(x, t) : 0 ≤ t ≤ T, 0 < x < ∞}

3 Uniqueness Theorem

In [16], the existence of a solution to (2) is given. In this section, we demonstrate
the uniqueness of the solution to (2), within the function sphere Ω.,r2(T ), under
the hypothesis in Theorem 1 of [16]. The following lemma is used to derive the
uniqueness.

Lemma 1 (See [14]) Let w(λ, t) be a real-valued continuous function and wλ and
wλλ are continuous on D = {(λ, t) : t ∈ [0, T ],λ ∈ [0,λ0]}. Moreover, we assume
that the real-valued functions ϑ(λ, t), η(λ), τ (λ, t) and ρ(λ, t) are continuous onD.
Also, let their partial derivatives in λ are continuous and the function w,wλ,ϑ, ρ
are non-negative. Suppose in the region D that the following inequalities hold

w(λ, t) ≤ η(λ) +
∫ t

0
(ρ(λ, s)v(λ, s) + ϑ(λ, s)wλ(λ, s) + τ (λ, s))ds

and
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wλ(λ, t) ≤ ηλ(λ) +
∫ t

0

∂

∂λ
(ϑ(λ, s)wλ(λ, s) + ρ(λ, s)w(λ, s) + τ (λ, s))ds.

Let C0 = sup
λ∈[0,λ0]

η, C1 = sup
D

ϑ and C3 = supD τ . Then,

w(λ, t) ≤ C3
C2

(exp(C2t) − 1) + C0 exp(C2t)

in a region R ⊂ D:

R = {(λ, t) : λ ∈ [λ1 − C1t, λ0 − C1t], 0 ≤ t ≤ t ′ < T ′, λ1 ∈ (0,λ0)},

where T ′ = min{(λ1/C1), T }.
Theorem 1 (Uniqueness result) Suppose b(x, y) and K (x, y) are continuous and
non-negative in (0,∞) × (0,∞) and K (x, y) is symmetric in (0,∞) × (0,∞). Let
S(x) be a continuous and non-negative function in (0,∞). Furthermore, we assume
that

(i) K (x, y) ≤ k 1
(xy)μ ∀x, y ∈ (0,∞), where μ ∈ [

0, 1
2

)
and k is a positive con-

stant,
(ii) there exists S1 > 0 such that S(x) ≤ S1 xβ ∀x ∈ (0,∞), where β is a positive

real number,
(iii) for some γ ∈ (0, 1), and a constant n0 > 0,

∫ y
0

1
xγ b(x, y) dx ≤ n0

yγ , and

(iv) for 0 < x1 < x2, lim
y→∞ sup

x∈[x1,x2]
b(x, y) ≤ b̄, a constant.

Then, the solution to C-F equation (2) is unique in the function space Ω.,r2(T ).

Proof If possible let there exit two different solutions c and g, in Ω.,r2(T ), to the
initial value problem (2).
Let u(x, t) = c(x, t) − g(x, t) and ψ(x, t) = c(x, t) + g(x, t).
Since c, g ∈ Ω.,r2(T ), there exists a λ̂ > 0 such that the following inequalities hold
uniformly in 0 ≤ t ≤ T :

∫ ∞

0

(
1

xν
+ exp(λx)

)
u(x, t) dx < ∞

and
∫ ∞

0

(
1

xν
+ exp(λx)

)
ψ(x, t) dx < ∞.

⎫⎪⎪⎬
⎪⎪⎭

(5)

Let

0 ≤ λ < λ̂. (6)

Therefore, by the definition of u, we obtain
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∂u(x, t)

∂t
=

∫ ∞

x
b(x, y)S(y) {c(y, t) − g(y, t)} dy − S(x) {c(x, t) − g(x, t)}

−
∫ ∞

0
K (x, y) {c(x, t)c(y, t) − g(x, t)g(y, t)} dy

+ 1

2

∫ x

0
K (x − y, y) {c(x − y, t)c(y, t) − g(x − y, t)g(y, t)} dy

(7)

By the definition of signum function, we note that

d|Q(ξ)|
dξ

= sgn(Q(ξ))
d

dξ
Q(ξ).

We define

Ψ (λ, t) =
∫ ∞

0

(
exp(λx) + 1

xν

)
|ψ(x, t)| dx, (8)

and

U (λ, t) =
∫ ∞

0

(
exp(λx) + 1

xν

)
|u(x, t)| dx, (9)

where we choose ν such that 0 < ν ≤ r2 − μ.
By the integration after multiplying both sides of (7) by

(
1
xν + exp(λx)

)
, we get

U (λ, t) =
∫ t

0

∫ ∞

0

(
exp(λx) + 1

xν

)
sgn (u(x, s))

×
[
1

2

∫ x

0
K (x − y, y) {c(x − y, s)c(y, s) − g(x − y, s)g(y, s)} dy

+
∫ ∞

x
b(x, y)S(y) {c(y, s) − g(y, s)} dy − S(x) {c(x, s) − g(x, s)}

−
∫ ∞

0
K (x, y) {c(x, s)c(y, s) − g(x, s)g(y, s)} dy

]
dx ds.

By simplification, we get

U (λ, t) =
∫ t

0

∫ ∞

0

∫ ∞

0

[
1

2

(
exp(λ(x + y)) + 1

(x + y)ν

)
sgn (u(x + y, s))

−
(
exp(λx) + 1

xν

)
sgn (u(x, s))

]

× K (x, y) {c(x, s)c(y, s) − g(x, s)g(y, s)} dy dx ds (10)

+
∫ t

0

∫ ∞

0

(
exp(λx) + 1

xν

)
sgn (u(x, s))

×
[∫ ∞

x
b(x, y)S(y) {c(y, s) − g(y, s)} dy − S(x) {c(x, s) − g(x, s)}

]
dx ds. (11)
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We note that

c(x, s)c(y, s) − g(x, s)g(y, s) = u(x, s)c(y, s) + u(y, s)g(x, s).

We observe that

∫ t

0

∫ ∞

0

∫ ∞

0

[
1

2

(
exp(λ(x + y)) + 1

(x + y)ν

)
sgn (u(x + y, s))

−
(
exp(λx) + 1

xν

)
sgn (u(x, s))

]
c(y, s)K (x, y)u(x, s)dy dx ds

≤ k
∫ t

0

∫ ∞

0

∫ ∞

0

1

2

(
exp(λy) + 1

yν

)
exp(λx)

1

(xy)μ
c(y, s)|u(x, s)| dy dx ds.

(12)

In the next, we evaluate a few inequalities.

∫ ∞

0
exp(λx)

1

xμ
|u(x, t)|dx ≤ exp(λ)

∫ 1

0

(
1

xν
+ exp(λx)

)
|u(x, t)|dx

+
∫ ∞

1

(
1

xν
+ exp(λx)

)
|u(x, t)|dx

= U (λ, t)(1 + exp(λ)). (13)

By a similar approach,

∫ ∞

0

(
exp(λy) + 1

yν

)
1

yμ
c(y, t)dy ≤ (exp(λ) + 1) N̄−ν−μ + Ψ = Γ1, say.

(14)

By similar analysis of the expression (2.5) in [16], we note that

∫ ∞

0
xk

[
−S(x)

∣∣U (x, s)
∣∣ +

∫ ∞

x
b(x, y)S(y)

∣∣U (y, s)
∣∣ dy

]
dx ≤ 0,

for k = 1, 2, 3, . . . .

With the help of the hypothesis (iii) of Theorem 1 and get from Eq. (11) that
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∫ t

0

∫ ∞

0

(
1 + 1

xν

) [
−|U (x, s)|S(x) +

∫ ∞

x
S(y)b(x, y)|U (y, s)| dy

]
dx ds

≤ (n0 − 1)
∫ t

0

∫ ∞

0

(
1 + 1

yν

)
S(y)|U (y, s)| dy ds

≤ (n0 − 1)S1

∫ t

0

∫ ∞

0

(
1 + 1

yν

)
yβ |U (y, s)| dy ds

≤ (n0 − 1)S1

∫ t

0

[ ∫ 1

0

(
1 + 1

yν

)
yβ |U (y, s)| dy ds

+
∫ ∞

1

(
1 + 1

yν

)
yβ |U (y, s)| dy ds

]

≤ (n0 − 1)S1

∫ t

0

[ ∫ 1

0

(
1 + 1

yν

)
|U (y, s)| dy ds

+
∫ ∞

1
(1 + 1)yβ |U (y, s)| dy ds

]

≤ Γ3

∫ t

0
U (λ, s)ds. (15)

By the inequalities (13)–(14), we obtain from Eqs. (10) and (11) that

U (λ, t) ≤ 2
∫ t

0
[Γ1U (1 + exp(λ)) + Γ3U ]ds

= 2
∫ t

0
[(χ0 + Ψ )χ1U + χ2U ]ds, (16)

where χ0 + Ψ = (exp(λ̂) + 1)N̄−ν−μ + Ψ ≥ Γ1, χ1 = 1 + exp(λ̂) and χ2 = Γ3.
Till now we have attempted to obtain a bound for the function U (λ, t). In the next,
we endeavor to obtain an upper bound of the partial derivative function Uλ(λ, t).

We recall from (9) that

Uλ(λ, t) =
∫ ∞

0

(
1

xν
+ x exp(λx)

)
|u(x, t)| dx,

wherewe choose ν to be 0 < ν ≤ r2 − μ. To obtain the expression ofUλ, wemultiply
(7) by

(
x exp(λx) + 1

xν

)
after that by integrating we obtain
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Uλ(λ, t)

=
∫ t

0

∫ ∞

0

∫ ∞

0

[
1

2

(
(x + y) exp(λ(x + y)) + 1

(x + y)ν

)
sgn (u(x + y, s))

−
(
x exp(λx) + 1

xν

)
sgn (u(x, s))

]
K (x, y)

× {c(x, s)c(y, s) − g(x, s)g(y, s)} dy dx ds (17)

+
∫ t

0

∫ ∞

0

(
x exp(λx) + 1

xν

)
sgn (u(x, s))

×
[∫ ∞

x
b(x, y)S(y) {c(y, s) − g(y, s)} dy − S(x) {c(x, s) − g(x, s)}

]
dx ds.

(18)

We next proceed after executing the following inequalities:

∫ ∞

0
exp(λy)

1

yμ
c(y, s)dy ≤ [exp(λ) + 1]Ψ (λ, s) (19)

and
∫ ∞

0
x exp(λx)

1

xμ
|u(x, s)|dx ≤ exp(λ) Uλ. (20)

Here, we note that

∫ ∞

0

1

xμ
exp(λx)|u(x, s)|dx ≤ U (exp(λ) + 1),

and
∫ ∞

0
x1−μ exp(λx)|u(x, s)|dx ≤ Uλ(exp(λ) + 1).

⎫⎪⎪⎬
⎪⎪⎭

(21)

Further, ∫ ∞

0

1

xμ
exp(λx)c(x, s)dx ≤ Ψ (exp(λ) + 1),

and
∫ ∞

0
x1−μ exp(λx)g(x, s)dx ≤ Ψ,

⎫⎪⎪⎬
⎪⎪⎭

(22)

With the help of (21) and (22), the equation in (17) and (18) yields

Uλ(λ, t) ≤
∫ t

0

[
U

(
(exp(λ) + 1)Ψ + Γ3

)
+Uλ

(
(exp(λ) + 1)2Ψ

)]
ds

=
∫ t

0

[
U (χ1Ψ + χ2) +Uλ(χ

2
1Ψ )

]
ds. (23)
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The functionsU andΨ , defined in (9) and (8), respectively, are analytic forλ ∈ (0, λ̂)

and for any fixed values of t such that 0 ≤ t ≤ T .
Let us choose λ that satisfies

0 ≤ λ ≤ λ0 < λ̂. (24)

Then, the inequality (5) ensures that for i ≥ 1,

sup
0≤t≤T, 0≤λ≤λ0

{
∂i

∂λi
U (λ, t),

∂i

∂λi
Ψ (λ, t)

}
< ∞. (25)

Due to continuity of the functions ψ(x, t) and u(x, t) on Π , from (5), for any given
ε > 0, there exist δ(ε) > 0 and δi (ε) > 0 so that for any i ≥ 1, we have the following
for |t ′ − t | < δ with t ≥ 0 and t ′ ≤ T ,

sup
0≤λ≤λ0

{
|Ψ (λ, t) − Ψ (λ, t ′)|, |U (λ, t) −U (λ, t ′)|

}
< ε

and sup
0≤λ≤λ0

{ ∣∣∣∣ ∂i

∂λi
Ψ (λ, t ′) − ∂i

∂λi
Ψ (λ, t)

∣∣∣∣ ,
∣∣∣∣ ∂i

∂λi
U (λ, t ′) − ∂i

∂λi
U (λ, t)

∣∣∣∣
}

< ε

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)
To show the inequalities (26), we note from (5) for a sufficiently large ξ > 0 that

the term
∫ ∞
ξ

(
exp(λx) + 1

xν

) |u(x, t ′) − u(x, t)| dx can be made arbitrarily small.
Thus, there exists a δ1(ε) > 0 such that

sup
0≤λ≤λ0

|U (λ, t) −U (λ, t ′)| < ε

for |t ′ − t | < δ with t ≥ 0 and t ′ ≤ T . Similarly, the other three terms in (26) involv-
ing Ψ , ∂i

∂λi U and ∂i

∂λi Ψ are arbitrarily small in a range of t .
It follows from (25) and (26) thatU andΨ and their partial derivatives are contin-

uous on λ in D = {(λ, t) | 0 ≤ λ ≤ λ0, 0 ≤ t ≤ T }. Inequalities (16) and (23) imply
the existence a function c1(λ) = 2(χ2

1 + χ2)Ψ exp(λ̂) + χ0χ1 such that

U (λ, t) ≤
∫ t

0
U (λ, s)c1(λ, s)ds

and
∂

∂λ
U (λ, t) ≤

∫ t

0

{
∂c1
∂λ

U (λ, s) +Uλ(λ, t)c1(λ, s)

}
ds,

⎫⎪⎪⎬
⎪⎪⎭

(27)

and U , Ψ and their partial derivatives are non-negative in D. Then, by applying
Lemma 1 in D, we have for the region R, U (λ, t) = 0.

As u(x, t) belongs to the set of all continuous function, for t ∈ [0, t], x ∈ (0,∞),
we have u(x, t) = 0. Thus, U (λ, t) = 0 is not only true on R, but also for all λ ∈
[0,λ0], t ∈ [0, t ′]. Hence, u(x, t) = 0 for x ∈ (0,∞).
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Applying an identical logic for t ′ ≤ t ≤ 2t ′, we observe that u(x, t) = 0 where
0 ≤ t ≤ 2t ′, and x ∈ (0,∞). Repeating same procedure, we can conclude that for
(x, t) ∈ Π, u(x, t) = 0, i.e., c(x, t) = g(x, t) for (x, t) ∈ Π . Hence, the result fol-
lows.

4 Asymptotic Behavior of Time-Dependent Solution

In the mathematical study of a model equation, such as coagulation–fragmentation
equation, we often come across the problem to find its explicit solution. In many in-
stances, it is known that the model equation has a unique solution, but often a precise
closed form solution is difficult to find. In this circumstance, an important point of
analysis is to find the essential properties, such as the existence of a self-similar solu-
tion, gel formation, shattering, and asymptotic behavior of time-dependent solution
of the solutions.

In this section, we provide a numerical example where time-dependent solution
approaches to equilibrium. Though analytical proof is not given, researcher can get
help to investigate analysis on this problem, i.e., stability property of time-dependent
solution.

For the numerical computations, we have used the numerical scheme that is estab-
lished in [17, 18]. The computational range under consideration is [10−9, 512] and
it is broken into 20 non-uniform intervals �i := [xi−1/2, xi+1/2], i = 1, 2, . . . , 20,
where the end points satisfy xi+1/2 = r xi−1/2; r > 1 being the geometric ratio. The
mid-point of �i is considered to be the cell representative or the pivot. The system
of ODEs is solved inMatlab-R2015 software by adaptive Runge-Kutta 4(5) solver.

4.1 Example 1

In this example, we take

K (x, y) = (1 + x1.3 + y1.3)(xy)−0.15, F(x, y) = 1, and c0 = exp(−x).

The expression of the moment Mi is Mi (t) = ∫ ∞
0 xi c(x, t)dx . In Fig. 1, we plot

the moments. And in Fig. 2, the number density function is plotted with respect to
the pivots at four different times. Figure2 shows that the time-dependent solution is
stable after t = 3, since c(x, t) has fixed value for t = 3, 5, and 8. If look closely
at Fig. 1, we see that all the moments M0(t), M2(t), and M−σ(t) are constants after
t = 3. Hence, the system is stable after t = 3.

Thus, with c0 = exp(−x), the time-dependent solution c(x, t) converges to the
steady-state solution.
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Fig. 1 Normalized moments

dimensionless time
0 1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 m

om
en

ts

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
M2
M0
M-

Fig. 2 Particle number
density

dimensionless size of representative
10-10 10-5 100 105

pa
rti

cl
e 

de
ns

ity

10
-20

10-15

10-10

10-5

100

Time t=.01
Time t=3
Time t=5
Time t=8

5 Conclusion

In this paper, it has been showed that the solutions to C-F equation with a singular
coagulation kernel are unique. For the considered kernel, we note that it has singu-
larity in both the axes. In future, we will focus to prove uniqueness property for the
coagulation kernel in the form considered in [16]. Also, in this article, we do not
show the analytical proof of stability analysis. In the future, we will try to analyze
the convergence property of time-dependent solutions to a steady state solution.
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Natural Convection Melting of PCM:
Numerical Simulation Techniques
and Applications

Nadezhda S. Bondareva and Mikhail A. Sheremet

Abstract Creation of electronic equipment, heat exchangers, and thermal insulation
of buildings is related to the development of effective cooling systems or heat storage
systems. One of the solutions to the considered problem is the usage of phase change
materials (PCMs) that can essentially enhance the characteristics of the developed
system. Phase change materials are characterized by high phase transition heat at
a fixed temperature, and these materials have a thermal capacity higher than the
typical heat storage media. The aim of this study is a numerical simulation of free
convectionmelting of PCMwithin a chamberwith a heat-generating element of time-
dependent volumetric thermal production and finned radiator system. The presented
new numerical results for the effective cooling system for the heat-generating unit
including the copper heat sink, n-octadecane as PCM have been analyzed.

Keywords Phase change material · Melting · Numerical simulation

1 Introduction

Creation of electronic equipment and thermal power technology is related to the
development of effective cooling systems [1–4]. For this purpose, it is possible to
use active or passive cooling techniques. In the case of active systems, the presence
of external forced loading is necessary. Such approach demands an additional energy,
and therefore, it cannot be implemented in microelectronics and some energy sys-
tems. Nowadays, one of the most perspective cooling systems is the usage of phase
change material that allows to remove extra heating from the elements and to support
the temperature in a working range.

In spite of wide applications, numerical and experimental analysis of PCM free
convection melting is not so widely spread [5–20]. Thus, Naaktgeboren et al. [5]
studied analytically the natural convection melting of PCMwithin an electronic cab-
inet with heat sinks under the influence of external periodic temperature using the
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zero-phase formulation approach. Experimental and numerical analysis of PCM-
assisted heat pipe for electronics cooling was performed by Behi et al. [6]. It was
ascertained that the considered system can promote 86.7% to the cooling perfor-
mance and 11.7% reduction of the thermal dissipation due to a supplementary ther-
mal absorption. Dinesh and Bhattacharya [7] analyzed computationally the energy
transport properties of PCM-based system enhanced with the metal foam. Authors
showed that the energy transport strength enhances with a diminution of the pore
dimensions owing to large surface areas for the energy transport between the metal
foam and PCM. Rehman et al. [8] examined experimentally the heat sink behavior
with the copper foam enhanced by the phase changematerial andwithout PCM. They
ascertained that a combination of the metal foam and phase change material allows
reducing the maximum temperature of the system. Krishna et al. [9] performed an
experimental analysis of an opportunity to employ the heat pipe with PCM enhanced
or not by the nanoparticles. Authors studied awide range of governing characteristics
including the thermal inputs, PCM, and nanoparticle concentration. It was found that
tricosane (PCM) with alumina nanoparticles (1%) can save 53% of the fan power
consumption. Ali et al. [10] conducted an experimental analysis of the pin-fin con-
figuration influence on energy transport performance in PCM for electronics cooling
systems. Authors showed that pin fins of triangular shape have strong advantages
for the thermal transmission within the considered system. Computational analy-
sis of the energy transport in a cooling system using the heat sink with pin fins
and phase change material was performed by Xie et al. [11]. The obtained results
demonstrated that the optimized tree-shaped configuration of fins can decrease essen-
tially the heat source temperature. Moreover, the upward orientation of the heat sink
system is more effective in comparison with downward orientation. Ashraf et al.
[12] studied experimentally the pin-fin configuration effect combined with PCM on
the passive cooling system performance. The optimal configuration and PCM were
defined in dependence on the power level. Rakotondrandisa et al. [13] numerically
considered the phase transition cycle of PCMwithin a differentially heated chamber.
The finite element technique of the second-order accuracy combined with dynami-
cally adaptive mesh was used. Authors showed that convective energy transport is
the major mechanism for the melting phenomenon, thus intensifying the thermal
transmission, while heat conduction is the major energy transport mechanism for the
solidification process, illustrating the slower mode. Lin et al. [14] on the basis of
the lattice Boltzmann technique studied numerically the free convection melting of
PCMwithin a spherical capsule under the impacts of region size, thermal diffusivity
ratio, and Stefan number. Authors revealed that the dimensionless fully melting time
reduced when rising of the region size. Computational analysis of the free convec-
tion melting of PCM within the horizontal sleeve tube with longitudinal fins was
conducted byWang et al. [15] under the effects of the fins configuration. They found
that the low fin ratio allows decreasing the melting duration, and the angle between
neighbor fins characterizes by a weak influence on the melting phenomenon. Tasnim
et al. [16] conducted the mathematical modeling of the free convection melting in a
differentially heated porous chamber saturated with nano-enhanced PCM. Authors
considered the impacts of the buoyancy force and nanoparticles concentration on
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the melting process. It was ascertained that energy transport within the enclosure
degrades with nanoparticles, and the position of the phase transition line reflects the
melting phenomenon prolongation in the presence of nanoparticles.

The presented brief review illustrates the high level of applications for PCM
and the presence of experimental and numerical works for the considered topic.
Unfortunately, there are no papers concerning the periodical heat generation of the
element under the effects of PCM in a cavity with finned heat sink. Therefore, the
aim of this research is a computational study of 2D free convection melting of PCM
inside a chamberwith a local heater of the time-dependent internal volumetric thermal
production under the influence of the finned heat sink and external cooling of the
chamber.

2 Mathematical Model and Numerical Technique

Figure 1 demonstrates the analyzed region filled with PCM having heat-conducting
fins and a local heat element of periodic volumetric thermal production. Local energy
element of time-dependent heat generation mounted in the bottom wall is placed
under the heat-conducting fins of the heat sink. At the beginning of the phenomenon,
the considered region includes solid PCM (pure n-octadecane). Vertical borders and
the upper horizontal border are assumed to be cooling fromoutside,while the external
bottomwall is adiabatic. For an amplification of the heat thermal dissipation, the heat
sink with heat-conducting fins is located over the energy element. Melt, appeared
during the phenomenon, is satisfied with the Boussinesq approach. The volumetric
heat generation of the energy source is defined by the following function Q =
Q0{1 − sin( f t)}.

The liquid motion and thermal transmission within the considered domain of
interest (see Fig. 1) are described by the Oberbeck–Boussinesq partial differential
equations with an energy equation formulated using the enthalpy variable. The heat

Fig. 1 Analyzed region with
boundary conditions
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conduction equations within the heat sink and heat-generating element are added to
the mathematical model. The non-dimensional partial differential equations written
using the stream function, vorticity, and temperature are the following [17, 18]:

∂2ψ

∂x2
+ ∂2ψ

∂y2
= −ω (1)

∂ω

∂τ
+ ∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

√
Pr

Ra

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
+ ∂θ

∂x
(2)
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[
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∂θ
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− ∂ψ
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∂θ

∂y

]
+ Ste

[
∂ϕ

∂τ
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∂y

∂ϕ

∂x
− ∂ψ

∂x

∂ϕ
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]

= ξ(ϕ)√
Ra · Pr

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
(3)

The thermal conduction equations for the thermal radiator and the local energy
element are:

• for the energy source

∂θ

∂τ
= αhs,m√

Ra · Pr
(∇2θ + Os{1 − sin(γ τ)}) (4)

• for the heat sink

∂θ

∂τ
= αpl,m√

Ra · Pr∇
2θ (5)

Here ζ (ϕ) = (ρc)s
(ρc)m

+ ϕ
(
1 − (ρc)s

(ρc)m

)
, ξ(ϕ) = ks

km
+ ϕ

(
1 − ks

km

)
are the additional

functions; Pr = μmcm
km

is the Prandtl number; Ra = g(ρβ)m(ρc)m(Th−TF)L3

μmkm
is the Rayleigh

number; Ste = LF
cm(Th−TF)

is the Stefan number; Os = Q0L2

km(Th−TF)
is the Ostrograd-

sky number; γ is the non-dimensional thermal production oscillation frequency;

ϕ =

⎧⎪⎨
⎪⎩
0, θ < −η,
θ+η

2η , −η ≤ θ ≤ η,

1, θ > η;
is smoothing function; η describes the dimensions of

smoothing area having low magnitude.
Equations (1)–(5) are subjected to the following conditions:

• initial conditions are ψ = ω = 0, θ = −η
/

(Th − TF);
• boundary conditions at the internal interface between PCM and the heat sink are
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θmelt = θheat sink, kmelt
∂θ

∂ n̄

∣∣∣∣
melt

= kheat sink
∂θ

∂ n̄

∣∣∣∣
heat sink

• boundary conditions at the internal interface between the heat sink and the local
heater are

{
θheat source = θheat sink,

kheat source
∂θ
∂ n̄

∣∣
heat source

= kheat sink
∂θ
∂ n̄

∣∣
heat sink

• convective heat transport is simulated at the vertical and upper walls: ∂θ
∂ n̄ = Bi · θ ;

• boundary conditions at rigid walls and heat sink surfaces are ψ = 0, ω =
−

(
∂2ψ

∂x2 + ∂2ψ

∂y2

)
.

The non-dimensional control Eqs. (1)–(5) with additional conditions were calcu-
lated using the developed computational code created by the finite difference tech-
nique [17–20]. Comprehensive illustration of the considered numerical technique is
in [17–21].

Accuracy of the developed computational code was validated using the experi-
mental benchmark for pure gallium natural convection melting in a chamber [22].
Figure 2 demonstrates a good accordance between the calculated phase change line
location and experimental results [22].

Fig. 2 Experimental and
numerical phase change line
location
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3 Results and Discussion

Numerical analysis was performed for the Rayleigh number (Ra = 1.19 × 106),
Prandtl number (Pr = 48.36), Stefan number (Ste = 1.84), Biot number (Bi =
10), Ostrogradsky number (Os = 0.3515, 0.703), and heat generation oscilla-
tion frequency (γ = 0.02–0.0025). The impacts of oscillation frequency and non-
dimensional time on the melt circulation and energy transport performance were
examined.

Figure 3 demonstrates an evolution of isotherms within the enclosure for different
values of the oscillation frequency at Os = 0.3515. An initial time (τ = 636.3) illus-
trates a weak melting of PCM where the essential heating can be found near the fins
due to the heat conduction process from the energy source. At the same time, in gaps
between fins one can find a location of solid PCM due to the formation of descending
flows in these zones. Significant melting can be found for high magnitudes of the
oscillation frequency. An increment of the time (τ = 1060.5) characterizes more
essential melting of PCM and the formation of thermal plumes over the fins. The
formed temperature distribution is symmetrical relative to the middle vertical line.
The solid PCM is melted in zones between the fins, and some volume of solid PCM
can be found in the upper part near the upper horizontal wall. Taking into account of
these distributions, one can conclude that a rise of γ results in the strongest melting
of PCM. Further raise of non-dimensional time (τ = 1696.8) reflects an essential
melting and a formation of asymmetrical temperature distributions due to high Ra
value. It is interesting to highlight that for γ = 0.005π and γ = 0.01π , one can
find an appearance a descending flow over the central fin; while for γ = 0.02π , an
ascending flow is formed over this central fin and two descending flows can be found
over two neighbor internal fins. Therefore, value of the heat generation oscillation
frequency reflects also different liquid circulation behavior.

Fig. 3 Isotherms for Os = 0.3515 at: τ = 636.3 (a), τ = 1060.5 (b), τ = 1696.8 (c)
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Fig. 4 Isotherms for Os = 0.703 at: τ = 424.2 (a), τ = 848.4 (b), τ = 1272.6 (c)

Figure 4 demonstrates the temperature isolines inside the chamber for Os= 0.703,
variousmagnitudes of γ and τ . A rise of theOstrogradsky number illustrates an incre-
ment of the volumetric heat generation of the element; therefore, the melting process
occurs rapidly. As it wasmentioned above, low value of γ reflects less intensive PCM
melting within the chamber (see Fig. 4a). An appearance of the un-melting zones
between the solid fins for γ = 0.01π and γ = 0.02π is explained by the influence
of intensive cold descending flows in these zones. More intensive circulation of the
melt for τ ≥ 848.4 illustrates asymmetrical temperature distributions and various
liquid behaviors within the cavity. For the considered cases, the presence of external
convective cooling from the upper and vertical walls does not allow to suppress the
intensive melting of PCM.

Figure 5 presents the time profiles of the mean Nu and mean heated unit temper-
ature for various magnitudes of Os and heat generation oscillation frequency. For
the considered case, one can find that the analyzed non-dimensional time range is
enough for the formation of periodical variations, and this periodicity depends on the
oscillation frequency. As it is expected, a rise of the Ostrogradsky number results in
an amplification of the average Nu and average heater temperature and the time for
reaching the periodical mode increases also. An increase in the oscillation frequency
reflects a diminution of the oscillation amplitude and a decrease of the oscillation
period in Nu and average heater temperature.

4 Conclusions

Numerical modeling of PCM free convection melting within the enclosure having
the energy element of time-dependent volumetric heat generation and finned heat
sink under the Newtonian cooling from the upper and vertical walls was performed.
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Fig. 5 Time profiles of the mean heater temperature and mean Nu for various magnitudes of the
Ostrogradsky number and volumetric heat generation oscillation frequency: Os = 0.3515 (a), Os
= 0.703 (b)

The analysis was conducted for various magnitudes of the Ostrogradsky number and
volumetric heat generation oscillation frequency. Distributions of isotherms within
the cavity and time profiles for the mean Nusselt number and mean heated element
temperature were studied. It was ascertained, that a rise of Os characterizes signif-
icant heating of the chamber with a rise of the mean Nu and mean heated element
temperature while a decrease in the oscillation frequency illustrates the less intensive
melting of PCM within the enclosure and a growth of the oscillation amplitude for
Nu and �avg.

Acknowledgements This work was supported by the Russian Science Foundation (Project No.
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Hypersingular Integral Equation
Approach for Hydroelastic Analysis
of a Submerged Elastic Plate

Santanu Koley

Abstract In this paper, obliquely incident surface ocean waves interaction with a
horizontal submerged thin floating elastic plate is investigated in ocean water of
finite depth. Firstly, a proper Green’s function associated with the physical problem
is developed. Applying Green’s second identity on the upper plate and lower plate
regions and using the plate conditions, the BVP is converted into a hypersingular
integral equation. Most of the time, these kinds of hypersingular integral equations
are solved by using some standard numerical solution techniques. But in the present
case, this hypersingular integral equation is directly solved using the plate deflection
in terms of summations of horizontal components of eigenfunctions related to the
flexural gravity waves. In this way, a system of linear algebraic equations is obtained
from the hypersingular integral equation. Further, using the plate edge conditions,
some more equations involving the unknowns are obtained and solved to get the
required unknowns. Variations of reflection and transmission coefficients for a wide
range of physical parameters are evaluated, plotted, and analyzed.

Keywords Elastic plate · Green’s function · Hypersingular integral equation

1 Introduction

Recently, there is an increasing interest to use submerged wave barriers to protect
various marine structures by dissipating a major portion of incoming ocean wave
energy. The durability of these kinds of structures is more compared to the vertical
counterpart as the horizontal wave loads acting on these structures are almost neg-
ligible. Further, these horizontal plate structures are environmentally friendly, also
lightweight, easily handled, and reusable in nature.

The interaction of free surface oceanwaves by submergedbarriers has started since
the classical work of [1]. In [1], aWiener–Hopf solution technique is applied to solve
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thewaterwaves scatteringby a rigid thinwavebarrier infinitewater depth.Durgin and
Shiau [2] used a vortex sheet-based theory to calculate thewave loads on a submerged
plate floating in water waves. Patarapanich [3] studied the wave energy fluxes across
the regions around a rigid horizontal submerged plate and found the conditions
for the occurrences of zero wave reflections. Later on, [4] developed a numerical
solution technique to investigate the trapped modes above a submerged impermeable
submerged plate. Parsons and Martin [5] used a solution methodology based on
hypersingular integral equation approach to study the wave trapping by a submerged
curved and inclined rigid plates. Using the potential flow theory-based approach, [6]
studied the utility of multiple submerged impermeable plates placed parallel to each
other vertically in thewaterwave regime.Recently, [7] usedGalerkinmethod to study
the scattering and radiation problems involving forced motion by thin horizontal
plates. In the aforementioned studies, the plate was considered impermeable and
rigid in nature.

On the other hand, nowadays, flexible plates andmembranes are used as wave bar-
riers. One of the benefits in using these kinds of structures is that these can dissipate
a substantial portion of incoming ocean wave energy, and in this process, a tranquil-
ity zone is created at the lee side of the structures. Moreover, this will effectively
increase the durability of the structures. Meylan and Squire [8] used Fredholm inte-
gral equation-based solution approach to investigate the interaction of ocean surface
wave with a floating elastic sheet. Sahoo et al. [9] applied eigenfunction expansion
method to obtain the hydroelastic response of a semi-infinite floating horizontally
inclined elastic plate. A Wiener–Hopf-based solution technique is used by [10] to
model thewave scattering in the presence of a horizontally placed semi-infinite elastic
floating plate in deepwater case. Wang et al. [11] used a coupling between boundary
element method and eigenfunction expansion method to study the wave diffraction
by a thin elastic plate floating over undulated seabed. Andrianov and Hermans [12]
used integro-differential equation-based techniques to perform the hydroelastic anal-
ysis of a flexible floating barrier in water waves. By constructing suitable Green’s
function associated with the BVP, [13] studied the water wave scattering by an array
of flexible floating plates placed in a periodicmanner.Williams andMeylan [14] used
Wiener–Hopf technique to analyze the hydroelastic behavior of a submerged hori-
zontal floating plate in water domain. Recently, [15] used eigenfunction expansion
technique to study the oblique incident ocean surface waves by an elastic submerged
permeable barrier.

In this paper, the wave scattering by a floating flexible submerged horizontal sheet
under the action of obliquely incident surface gravity ocean waves is studied. The
solution methodology is based on hypersingular integral equation approach. The
overall structure of this paper is the following. Section 2 contains the mathematical
formulation of the associated BVP. In Sect. 3, the detailed solution procedure is
provided. Section 4 contains the results and discussions part. Finally, in Sect. 5, the
conclusion of the present study is briefly highlighted.
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2 Mathematical Formulation

Here, the governing equation and related boundary conditions obliquely impinge
on ocean surface wave scattering by submerged elastic sheet, provided under the
assumption of linearized potential waterwave theory. InCartesian coordinate system,
the horizontal plane coincides with the xy-plane the z-axis is considered vertically
upward positive with the plane z = 0 represents the mean free water surface. The
water having density ρ occupies the domain −∞ < x, y < ∞, −h < z < 0 as in
Fig. 1. A flexible plate of small thickness having width b is horizontally situated at
z = −d and occupies the domain 0 < x < b, −∞ < y < ∞ in the water domain. It
is assumed that the water flow follows the potential wave theory. Further, the water
flow is simple harmonic in time with circular frequency ω. The incident gravity
waves impinge on the horizontal elastic plate at an angle θ with the x-axis. These
assumptions ensure the total velocity potential will take the form �(x, y, z, t) =
Re

{
φ(x, z)ei(β0 y−ωt)

}
with β0 = k0 sin θ . It is to be noted that k0 is the real and

positive root of the dispersion equation ω2 = gk tanh kh. Thus, φ(x, z) satisfy the
governing equation

(∇2 − β2
0

)
φ = 0 (1)

with ∇2 ≡ (
∂2

/
∂x2 + ∂2

/
∂z2

)
. Now, the free surface boundary conditions are

provided as

∂φ

∂z
− Kφ = 0, on z = 0 (2)

Here K = ω2
/
g. The boundary condition for rigid impermeable bottom bed takes

the form

Fig. 1 Side view of the problem
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∂φ

∂z
= 0, on z = −h (3)

Elastic plate motion is assumed uniform in the y-direction and so the plate deflection
χ(x, y, t) is expressed as χ(x, y, t) = Re

{
ζ (x)ei(β0 y−ωt)

}
with ζ (x) represents the

deflection amplitude. Thus, the equation of motion for the flexible plate is given by
(for 0 < x < b)

EI

(
d2

dx2
− β2

0

)2

ζ + Q

(
d2

dx2
− β2

0

)
ζ − mpω

2ζ = −iρω(φ(x,−d+)

−φ(x,−d−)) (4)

where EI represents the flexural rigidity of the elastic plate. It is to be noted that in
Eq. (4), mp = ρpdp represents the plate mass/length. Further, ρp represents the plate
material density and dp is the plate thickness (negligible). The linearized version of
the kinematic boundary condition at the surface of the elastic plate is given by

−iωζ = ∂φ

∂z

∣∣∣∣
z=−d−

= ∂φ

∂z

∣∣∣∣
z=−d+

(5)

For fixed edge plate, the edge conditions are provided

(
d2

dx2
− υβ2

0

)
ζ = 0,

{
EI

(
d2

dx2
− (2 − υ)β2

0

)
d

dx
+ Q

d

dx

}
ζ = 0 at x = 0, b

(6)

whereas, for fixed edge plates, the plate edges conditions give

ζ = 0,
dζ

dx
= 0 at x = 0, b (7)

Similarly, for simply supported edges, the edge conditions are given by

ζ = 0,

(
d2

dx2
− υβ2

0

)
ζ = 0 at x = 0, b (8)

Continuity of fluid pressure and mass flux at z = −d yields

φ(x,−d−) = φ(x,−d+) for {−∞ < x < 0} ∪ {b < x < ∞},
∂φ

∂z (x,−d−) = ∂φ

∂z (x,−d+) for − ∞ < x < ∞
}

(9)

Finally, the boundary conditions at the far-field are given by

φ(x, z) ≈
{
Tφ I (x, z), as x → ∞
φ I (x, z) + Rφ I (−x, z), as x → −∞ (10)
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where |R| and |T | are the coefficients that represent the reflected and transmitted
wave heights, respectively, w.r.t. to the incident wave height. In Eq. (10), the incident
wave velocity potential φ I (x, z) is given by

φ I (x, z) = cosh k0(h + z)

cosh k0h
eiα0x , (11)

It may be noted that in Eq. (11), α0 = k0 cos θ . The solution procedure of the
aforementioned BVP is discussed subsequently.

3 Solution Methodology

In this section, using suitably derived Green’s function, the above BVP is converted
into hypersingular integral equations. For the same, we have to construct appropriate
Green’s function. Now, the free surface Green’s function G(�xr; �xs) corresponding to
the boundary values problem described in Sect. 2 will satisfy

(∇2 − β2
0

)
G(�xr; �xs) = 2πδ(�xr − �xs) (12)

along with the boundary conditions (2) and (3) takes the form

G(�xr; �xs) =
{

1
γ ′

γ ′ cosh ζγ ′+K sinh ζγ ′
K cosh hγ ′−γ ′ sinh hγ ′ cosh γ ′(h + z)ei(x−ξ)γ for z < ζ

1
γ ′

γ ′ cosh zγ ′+K sinh zγ ′
K cosh hγ ′−γ ′ sinh hγ ′ cosh γ ′(h + ζ )ei(x−ξ)γ for z > ζ

(13)

where γ ′2 = γ 2 + β2
0 . For notational convenience, in the rest of the discussion,

φ±(x, z) denotes the velocity potential for the regions z > −d and z < −d,
respectively. Applying Green’s second identity on the functions φ+(�xr) − φ I (�xr)
and G(�xr; �xs) on a domain of (x, z) plane bounded the contour �+ which con-
sists of external boundary {z = 0,−X ≤ x ≤ X ; x = −X,−d + 0 ≤ z ≤ 0;
z = −d + 0,−X ≤ x ≤ X ; x = X,−d + 0 ≤ z ≤ 0} and internal boundary (a
circle having small radius ε with center (ξ, ζ )), we get

2πφ+(�xs) = 2πφinc(�xs) −
b∫

0

(
φ+(�xr )∂G

∂z
(�xr; �xs) − G(�xr; �xs)∂φ+

∂z
(�xr)

)∣∣∣∣
z=−d+

dx

(14)

where �xr = (x, z) and �xs = (ξ, ζ ). Similarly, using Green’s second identity to
φ−(�xr) − φ I (�xr) and G(�xr; �xs) in a region of the (�xr) plane which is closed by �+ as
described above, it is derived that
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0 =
b∫

0

(
φ−(�xr)∂G

∂z
(�xr; �xs) − G(�xr; �xs)∂φ−

∂z
(�xr)

)∣∣∣∣
z=−d−0

dx (15)

Adding, Eqs. (14) and (15), we get

2πφ+(�xs) = 2πφinc(�xs) −
b∫

0

(
φ+(�xr) ∂G

∂z
(�xr; �xs) − G(�xr; �xs) ∂φ+

∂z
(�xr)

)∣∣∣∣
z=−d+

dx

+
b∫

0

(
φ−(�xr) ∂G

∂z
(�xr; �xs) − G(�xr; �xs) ∂φ−

∂z
(�xr)

)∣∣∣∣
z=−d−

dx (16)

Proceedings in a similar way as in Eq. (16), we get

2πφ−(�xs) = 2πφinc(�xs) −
b∫

0

(
φ−(�xr) ∂G

∂z
(�xr; �xs) − G(�xr; �xs) ∂φ−

∂z
(�xr)

)∣∣∣∣
z=−d−

dx

+
b∫

0

(
φ+(�xr) ∂G

∂z
(�xr; �xs) − G(�xr; �xs) ∂φ+

∂z
(�xr)

)∣∣∣∣
z=−d+

dx (17)

It is to be noted that to derive (16) and (17), the edge conditions of the plate are
not utilized. Now, utilizing Green’s function properties and using conditions (9), we
get

2πφ±(�xs) = 2πφinc(�xs) −
b∫

0

(
φ+(�xr) ∂G∓

∂z
(�xr; �xs) − G∓(�xr; �xs) ∂φ+

∂z
(�xr)

)∣∣∣∣
z=−d+

dx

+
b∫

0

(
φ−(�xr) ∂G∓

∂z
(�xr; �xs) − G∓(�xr; �xs) ∂φ−

∂z
(�xr)

)∣∣∣∣
z=−d−

dx (18)

Now, using (4) and (5), the plate boundary condition is written as

∂5φ

∂x4∂z
+ A

∂3φ

∂x2∂z
+ B

∂φ

∂z
= C(φ(x,−d+) − φ(x,−d−)) (19)

where A = −2β2
0 , B = β4

0 − ρpdpω2

EI , C = − ρω2

EI . Substituting (19) into (18) and
differentiate with respect to ζ , we get the following hypersingular integral equation

∂φ

∂ζ
(ξ, ζ ) = ∂φinc

∂ζ
+ 1

2πC

b∫

0

{(
∂4

∂x4
+ A

∂2

∂x2
+ B

)
∂φ

∂z

}
∂2G

∂z∂ζ
(x, z; ξ, ζ )

∣∣∣∣
z=−d

dx (20)
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where the expression for ∂2G
/

∂z∂ζ can be easily obtained from (13). Now to solve
(20), the vertical fluid velocity at z = −d, i.e., at the plate boundary, is expressed as
the following

∂φ

∂ζ
=

N∑

n=0

ane
ipnξ + bne

ipn(b−ξ) (21)

It is to be noted that the pn’s are the roots of the dispersion equation

p
(
p4 + Ap2 + B

)
sinh(p(d + h)) = K

K cosh ph − p sinh ph

K cosh pd + p sinh pd
(22)

Substituting (21) into (20), as well as equating the coefficients of e±i pnξ , we get
the following equations

N∑

n=0

(
p4n + Ap2n + B

)[ an
pn − ki

− bneipnb

pn + ki

]
= δ0i

h
(
K 2 − k20

) − K

k0K

sinh(k0h)

sinh(k0(h + ζ ))

(23)

N∑

n=0

(
p4n + Ap2n + B

)[ aneipnb

pn + ki
− bn

pn − ki

]
= 0 (24)

where i = 0, 1, 2, . . . , N − 1. The remaining set of four equations are obtained by
substituting (21) into the edge conditions, i.e., into (6), (7), or (8). Finally, these set
of 2N + 2 equations are solved to get the unknowns an and bn’s. The expressions for
R and T can be easily obtained from (18) by taking x → ±∞ and comparing with
(10).

4 Results and Related Discussions

For the computation part, different physical parameters are chosen as: d = h/2,
E = 5 GPa, ρp

/
ρ = 0.95, ρ = 1025 kgm−3, h = 20 m, υ = 0.3 unless it is

stated explicitly. Further, the fixed edge plate is considered. In Fig. 2, the reflection
coefficient Kr = |R| versus incident angle θ and non-dimensional wave number k0h
is plotted. It is seen that Kr increases for higher k0h. Further, the wave reflection
initially decreases as oblique angle θ increases. However, after reach a minimum,
Kr will increase for higher θ . In Fig. 3, Kt = |T | versus incident angle θ and non-
dimensional wave number k0h is plotted. The pattern of the transmission coefficient
Kt is reverse to that of Kr. Now, in Fig. 4, the vertical wave force Kv versus incident
angle θ and non-dimensional wave number k0h is plotted. It is seen that the wave
force Kv will take higher values for suitable combinations of k0h and θ . A comparison
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Fig. 2 Kr versus θ and k0h

Fig. 3 Kt versus θ and k0h

reveals that for the values of k0h and θ , for which Kr is minimum, the wave force
Kv takes maximum.

5 Conclusion

A hypersingular integral equation-based solution technique is used for analyzing the
hydroelastic responses of a floating submerged and horizontal elastic barrier/plate in
finite water depth. This solution technique is useful to get very accurate results and is
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Fig. 4 Kv versus θ and k0h

also computationally efficient. The same can be used to solve a number of problems
that appear in the broad area of applied mathematics and engineering.
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Dynamics of Bleustein–Gulyaev (BG)
Waves in Smart Composite Structure

Juhi Baroi and Sanjeev Anand Sahu

Abstract The Bleustein–Gulyaev (BG) waves propagation in bedded composite
structure is studied to calculate the dispersion relation by Liouville–Green (LG)
method. The composite structure is made of functionally graded piezoelectric mate-
rial (FGPM) layer over a dielectric substrate immersed in viscous liquid. Thevariation
of material variables are taken quadratic in nature for FGPM layer. The method of
separation of variables is employed in viscous liquid as well as dielectric medium.
Dispersion relations are obtained for electrically open and short circuit cases. To
portray the dependencies of different material variables on the phase velocity of the
considered wave, numerical examples have been taken into account. The proposed
work bestows a theoretical model for the purpose of designing of surface acoustic
wave (SAW) devices and sensors.

Keywords Functionally graded piezoelectric material (FGPM) · Viscous liquid ·
Liouville–Green (LG) method · Dielectric material · BG waves · Saw devices

1 Introduction

The materials with linear electro-mechanical coupling are familiar as piezoelectric
materials. Because of its piezoelectric effect (i.e., existence of electric field in contact
with mechanical force and deformation of material when excited electrically), it has
tremendous outcome on implementation of acoustic devices such as sensors as well
as in the field of bio-medical, electrical and mechanical engineering [4, 6].

To heighten the sensitivity of such device, a new type of materials has been intro-
duced with varying property along thickness known as functionally graded materials
(FGM). The FGM combined with piezoelectric effect is called functionally graded
piezoelectric materials [3, 7]. Dielectric medium works as an electric insulator when
combined with materials which generates an electric field. Nie et al. [5] studied the
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Rayleigh-type wave in A Rotated Piezoelectric Crystal Imperfectly Bonded on a
Dielectric Substrate. In order to recognize the different compounds in liquids, the
SAW sensors are used and immersed in liquids for better results [1, 2].

The present paper deals with the significance of layer width of the FGPMmaterial
and viscous liquid on the BG waves propagation in composite material. Dispersion
matrix is obtained applying appropriate boundary conditions for both electrically
open and short cases using the Liouville–Green (LG) method.

2 Mathematical Formulation of the Problem

Propagation of BG waves in a composite material is considered (Fig. 1). The com-
posite material consists of a functionally graded piezoelectric material (FGPM) over
a dielectric substrate immersed in a viscous liquid. The width of the FGPM layer is
taken as hf and for liquid as hL. Along positive y-axis direction, the substrate is con-
sidered and the wave is transferring through x-axis and the interface is taken as y = 0.
The polarization direction is taken along z-axis. The FGPM material properties are
varying along y-axis.

2.1 For the FGPM Layer

In the absence of body force, the field equation for the layer is

σ
f
ij,j = ρf ü

f
i

Df
i,i = 0 (1)

where ρf is the density of the layer and i, j = 1, 2, 3.

Fig. 1 Schematic diagram
of the problem
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The FGPM constitutive equations are

σ
f
ij = cfijkl Fk l − efkij E

f
k

Df
j = efjkl Fk l + ε

f
jk E

f
k (2)

where σ
f
ij, e

f
jkl , ε

f
jk , E

f
k , D

f
j and Fkl are stress tensor, FGPM coefficients, dielectric

coefficients, electric field, electrical displacement and strain tensor, respectively.
The relation between strain, electric field, displacement component and electric

potential can be written as

Fk l = 1

2

(
ufk, l + ufl, k

)

Ef
i = −φ

f
,i (3)

The wave propagation direction is along x-axis for the proposed model, so we
have

uf = vf = 0, wf = wf (x, y, t), φf = φf (x, y, t) (4)

From Eqs. (2), (3) and (4), we gain

σf
xz = cf44w

f
, 1 + ef15φ

f
, 1

σf
yz = cf44w

f
, 2 + ef15φ

f
, 2

Df
1 = ef15w

f
, 1 − ε

f
11φ

f
,1

Df
2 = ef15w

f
, 2 − ε

f
11φ

f
,2 (5)

Using Eq. (5) into Eq. (1), we have

cf44 (y)

(
∂2wf

∂x2
+ ∂2wf

∂y2

)
+ ef15 (y)

(
∂2φf

∂x2
+ ∂2φf

∂y2

)

+ ∂cf44 (y)

∂y

∂wf

∂y
+ ∂ef15 (y)

∂y

∂φf

∂y
= ρf (y)

∂2wf

∂t2

ef15 (y)

(
∂2wf

∂x2
+ ∂2wf

∂y2

)
− ε

f
11 (y)

(
∂2φf

∂x2
+ ∂2φf

∂y2

)

+ ∂ef15 (y)

∂y

∂wf

∂y
− ∂ε

f
11 (y)

∂y

∂φf

∂y
= 0 (6)
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2.2 For the Substrate

The governing equations are

cDE44 ∇2wDE = ρDE
∂2wDE

∂t2
(7a)

∇2φDE = 0 (7b)

The electrical displacement and stress component are given by

σDE
yz = cDE44

∂wDE

∂y
(8a)

DDE
y = −εDE11 φDE,2 (8b)

2.3 For the Liquid Layer

The governing equations are

μL∇2wL = ρL
∂wL

∂t
(9a)

∇2φL = 0 (9b)

wherewL, μL and ρL denotes velocity of liquid particle, viscous coefficient and mass
density.

The only shear stress and electrical displacement are written as

(
τyz

)
L = μL

∂wL

∂y
(10a)

DL
y = −εL11φL,2 (10b)

3 Problem Solution

3.1 For the Layer by Liouville–Green (LG) Method

To solve Eq. (6), assume

wf (x, y, t) = Wf (y) exp [ik (x − ct)] (11a)

φf (x, y, t) = φf (y) exp [ik (x − ct)] (11b)
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Equations (6), (11a) and (11b) give

cf44 (y)W
′′
f +

(
cf44

)′
W ′

f +
[
ρf (y) c

2 − cf44 (y)
]
k2Wf

+ ef15 (y)φ
′′
f +

(
ef15

)′
φ′
f − k2ef15 (y)φf = 0

ef15 (y)W
′′
f +

(
ef15

)′
W ′

f − k2ef15 (y)Wf

− ε
f
11 (y)φ

′′
f −

(
ε
f
11

)′
φ′
f + k2εf11 (y)φf = 0 (12)

The FGPM material properties are varying quadratically, so we have

ef15 (y) = efp15
[
1 + ζf

(
hf + y

)]2

cf44 (y) = cfp44
[
1 + ζf

(
hf + y

)]2

ε
f
11 (y) = ε

fp
11

[
1 + ζf

(
hf + y

)]2

ρf (y) = ρfp
[
1 + ζf

(
hf + y

)]2
(13)

From Eqs. (12) and (13), we get

cf44 (y)W
′′
f + [

1 + ζf
(
hf + y

)]
cfp44ζf W

′
f +

[
ρf (y) c

2 − cf44 (y)
]
k2Wf

+ ef15 (y)φ
′′
f + [

1 + ζf
(
hf + y

)]
efp15ζf φ

′
f − k2ef15 (y)φf = 0

ef15 (y)W
′′
f + [

1 + ζf
(
hf + y

)]
efp15ζf W

′
f − k2ef15 (y)Wf

− ε
f
11 (y)φ

′′
f − [

1 + ζf
(
hf + y

)]
ε
fp
11ζf φ

′
f + k2εf11 (y)φf = 0 (14)

Consider, cf gp = cfp44 +
(
efp15

)2

ε
fp
11

and p (y) = 1 + ζfp
(
hf + y

)
, finally we have Eq. (14)

in rearranged form as

W ′′
f + 2ζf

p
W ′

f + k2
(

ρfpc2

cf gp
− 1

)
Wf = 0 (15a)

φ′′
f + 2ζf

p
φ′
f − k2φf = efp15

ε
fp
11

(
W ′′

f + 2ζf
p

W ′
f − k2Wf

)
(15b)

Adopt the transformation,

Wf = e
∫

γ(y)dy (16)



336 J. Baroi and S. A. Sahu

Substituting Eq. (16) into Eq. (15a), we get

γ2 + γ′ + 2ζf
p

γ +
(

ρfpc2

cf gp
− 1

)
k2 = 0 (17)

The asymptotic series expansion of γ as inverse power of k is given by

γ (y) = γ0 (y) k + γ1 (y) + γ2 (y)

k
+ · · · (18)

From Eqs. (17) and (18), we obtain

γ2
0 +

(
ρfpc2

cf gp
− 1

)
= 0

2γ0γ1 + γ0
′ + 2ζf

p
γ0 = 0

γ2
1 + 2γ0γ2 + γ1

′ + 2ζf
p

γ 1 = 0 (19)

Solving Eq. (19), we obtain

γ(1)
0 = i

√
ρfpc2

cf gp
− 1, γ(2)

0 = −i

√
ρfpc2

cf gp
− 1

γ(1)
1 = γ(2)

1 = −ζf

p

γ(1)
2 = − iζ2f

2p2

√
cf gp

ρfpc2 − cf gp
, γ(2)

2 = iζ2f
2p2

√
cf gp

ρfpc2 − cf gp
(20)

Using Eq. (20) into Eq. (18), we get

γ(1) = ik

√
ρfpc2

cf gp
− 1 − ζf

p
− iζ2f

2kp2

√
cf gp

ρfpc2 − cf gp
+ · · ·

γ(2) = −ik

√
ρfpc2

cf gp
− 1 − ζf

p
+ iζ2f

2kp2

√
cf gp

ρfpc2 − cf gp
+ · · · (21)

Again, Eqs. (16) and (21) give

wf (x, y, t) = [
1 + ζf

(
hf + y

)]−1 [
ei t1(y)C1 + e−it1(y)C2

]

exp [ik (x − ct)] (22)

where t1 (y) = ky
√

ρfpc2

cf gp
− 1 + ζf

2kp

√
cf gp

ρfpc2−cf gp
.
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Equations (15b), (22) give

φf (x, y, t) = [
1 + ζf

(
hf + y

)]−1 [
et2(y)C3 + e−t2(y)C4

]
exp [ik (x − ct)]

+ efp15
ε
fp
11

wf (x, y, t) (23)

where t2 (y) = ky − ζf
2kp .

3.2 For the Substrate

Suppose,

wDE (x, y, t) = WDE (y) exp [ik (x − ct)] (24a)

φDE (x, y, t) = φDE (y) exp [ik (x − ct)] (24b)

Equations (24a) and (24b) give the solution of Eqs. (7a) and (7b) as

wDE = C5 exp (−kλDEy) exp [ik (x − ct)] (25a)

φDE = C6 exp (−ky) exp [ik (x − ct)] (25b)

where λ2
DE =

(
1 − ρDE

cDE44
c2

)
.

3.3 For Liquid Layer

Adopt,

wL = WL (y) e
ik(x−ct) (26a)

φL = ψL (y) e
ik(x−ct) (26b)

Replacing the above into Eqs. (9a) and (9b), we gain

WL
′′ (y) − ε2LWL = 0 (27a)

ψ′′
L − k2ψL = 0 (27b)

Manipulation of Eqs. (26a), (26b), (27a) and (27b) gives

wL = (
AeεLy + Be−εLy

)
ei k1(x−ct) (28a)

φL = (
A1e

ky + B1e
−ky

)
ei k(x−ct) (28b)

where ε2L =
(
k2 − ikc ρL

μL

)
.
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4 Boundary Conditions

At y = −(hL + hf ),

(
τyz

)
L

= 0 (29a)

DL
y = 0 (Electrically open case) (29b)

φL = 0 (Electrically short case) (29c)

At y = −(hf ),

(
τyz

)
L = σf

yz (29d)

wL = ẇf (29e)

DL
y = Df

2 (29f)

φL = φf (29g)

At y = 0,

σf
yz = σDE

yz (29h)

Df
2 = DDE

2 (29i)

φf = φDE (29j)

wf = wDE (29k)

Using the solutions derived above (5), (8a), (8b), (10a), (10b), (22), (23), (25a),
(25b), (28a) and (28b) and the boundary conditions (29a)–(29k), we have

SL = 0 and RL = 0

whereL = [L1,L2,L3,L4,L5,L6,L7,L8,L9,L10]T andS andR are the non-zero 10 ×
10 matrix.

Where S11 = R11 = μLεLe−εL(hL+hf ), S12 = R12 = −μLεLeεL(hL+hf ), S23 = −kεL11
e−k(hL+hf ), S24 = kεL11e

k(hL+hf ), S31 = R31 = εLμLe−εLhf , S32 = R32 = −εLμLeεLhf ,
S35 = R35 = −cf gp(il1 − ζf )eid11 , S36 = R36 = cf gp(il1 + ζf )e−id11 , S37 = R37 =
−efp15(p1 − ζf )ed21 , S38 = R38 = efp15(p1 + ζf )e−d21 , S41 = R41 = e−εLhf , S42 = R42 =
eεLhf , S45 = R45 = ikceid11 , S46 = R46 = ikce−id11 , S53 = R53 = −kεL11e

−khf , S54 =
R54 = kεL11e

khf , S57 = R57 = −ε
fp
11(p1 − ζf )ed21 , S58 = R58 = ε

fp
11(p1 + ζf )e−d21 ,

S65 = R65 = efp15
ε
fp
11

eid11 , S66 = R66 = efp15
ε
fp
11

e−id11 , S67 = R67 = ed21 , S68 = R68 = e−d21 ,

S75 = R75 = [
1 + ζf h f

]−1
cf gp(il11 − ζf

1+ζf hf
)eid12 , S76 = R76 = −[

1 + ζf h f
]−1

cf gp

(il11 + ζf
1+ζf hf

)e−id12 , S77 = R77 = [
1 + ζf h f

]−1
efp15(p11 − ζf

1+ζf hf
)ed22 , S78 = R78 =

−[
1 + ζf h f

]−1
efp15(p11 + ζf

1+ζf hf
)e−d22 , S79 = R79 = cDE44 kλDE , S87 = R87 = −
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[
1 + ζf h f

]−1
ε
fp
11(p11 − ζf

1+ζf hf
)ed22 ,S88 =R88 = [

1 + ζf h f
]−1

ε
fp
11(p11 + ζf

1+ζf hf
)e−d22 ,

S89 =R89 = − εDE11 k,S95 =R95 = efp15
ε
fp
11

[
1 + ζf h f

]−1
eid12 ,S96 = R96 = efp15

ε
fp
11

[
1 + ζf h f

]−1

e−id12 , S97 = R97 = [
1 + ζf h f

]−1
ed22 , S98 = R98 = [

1 + ζf h f
]−1

e−d22 , S99 = R99 =
−1, S105 = T105 = [

1 + ζf h f
]−1

eid12 , S106 = R106 = [
1 + ζf h f

]−1
e−id12 , S1010 =

R1010 = − 1, d11 = − khf
√

ρfpc2

cf gp
− 1 + ζf

2k

√
cf gp

ρfpc2−cf gp
, d12 = ζf

2k(1+ζf hf )

√
cf gp

ρfpc2−cf gp
,

d21 = −khf − ζf
2k , d22 = − ζf

2k(1+ζf hf )
, l1 = k

√
ρfpc2

cf gp
− 1 − ζ2f

2k

√
cf gp

ρfpc2−cf gp
, l11 =

k
√

ρfpc2

cf gp
− 1 − ζ2f

2k(1+ζf hf )2

√
cf gp

ρfpc2−cf gp
, p1 = k + ζ2f

2k , p11 = k + ζ2f
2k(1+ζf hf )2

.

For non-trivial Li, the determinant of the coefficients matrix Li must vanish, i.e.,

det(S) = 0 and det(R) = 0 (30)

Equation (30) gives the dispersion equation for the considered problem for both
electrically open and short cases, respectively.

4.1 Particular Case

When hL = 0, ef15 = 0, εf11 = 0, cf44 = g, cDE44 = g1 and εDE11 = 0, i.e., when the struc-
ture reduces homogeneous isotropic layer lying over a homogeneous isotropic half-
space, then the dispersion relation becomes

tan

⎛
⎝khf

√
ρfpc2

g
− 1

⎞
⎠ =

g1
√
1 − ρDEc2

g1

g
√

ρfpc2

g − 1
(31)

Equation (31) is the classical Love wave equation.

5 Numerical Examples and Discussions

For graphical explanation, the following examples are taken into consideration

1. SiO2 is considered as dielectric medium and the respective material constants
are [7] cDE44 = 3.12 × 1010 (N/m2), εDE11 = 0.336 × 10−10 (NS2/C2), ρDE =
2200 (kg/m3)

2. FGPM layer material constants of BaTiO3 are [7] cfp44 = 4.40 × 1010 (N/m2),

efp15 = 11.4
(
c/m2

)
, εfp11 = 128 × 10−10

(
NS2/C

2
)
, ρfp = 7.28 × 103

(
kg/m3

)
3. We have considered glycerin as viscous liquid layer, the constants are [2] μL =

1.5
(
NS/m2

)
, ρL = 1.2613 × 103 (kg/m3). Figs. 2 and 3 shows the impact of

FGPM layer width on the phase velocity. For increasing values of FGPM width
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Fig. 2 Variation of
dimensionless phase velocity
(c/β) against dimensionless
wave number (kH ) for
different values of FGPM
layer width (hf ) in
electrically open case

Fig. 3 Variation of
dimensionless phase velocity
(c/β) against dimensionless
wave number (kH ) for
different values of FGPM
layer width (hf ) in
electrically short case

the phase velocity increases. Similarly, Figs. 4 and 5 describes the effect of liquid
layer width on the phase velocity. The phase velocity decreases for increasing
values of liquid layer width. Also, increment in gradient factor increases the
phase velocity in both Figs. 6 and 7.
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Fig. 4 Variation of
dimensionless phase velocity
(c/β) against dimensionless
wave number (kH ) for
different values of liquid
layer width (hL) in
electrically open case

Fig. 5 Variation of
dimensionless phase velocity
(c/β) against dimensionless
wave number (kH ) for
different values of liquid
layer width (hL) in
electrically short case

6 Conclusions

From the study, the following conclusions may be observed

– Increment in FGPM layer width increases the phase velocity of the wave.
– As the liquid layer width increases, the phase velocity decreases. The phase ve-
locity increases with increasing values of gradient factor.
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Fig. 6 Variation of
dimensionless phase velocity
(c/β) against dimensionless
wave number (kH ) for
different values of gradient
factor (ζf ) in electrically
open case

Fig. 7 Variation of
dimensionless phase velocity
(c/β) against dimensionless
wave number (kH ) for
different values of gradient
factor (ζf ) in electrically
short case

– The results of the present study may be utilized for designing and implementation
of SAW devices and sensors.
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The Inverse Sum Indeg Index for R-Sum
of Graphs

Amitav Doley and A. Bharali

Abstract The inverse sum indeg (ISI) index of a graph G = (V, E) is defined as

ISI(G) =
∑

pq∈E

dpdq
dp + dq

,

where dp and dq are the degrees of the vertices p and q inG, respectively. This index
is found to be useful in predicting total surface area (TSA) of octane isomers. In this
paper, we investigate ISI index of R-sum of graphs. We also discuss the extremal
cases.

Keywords Degree of vertex · Inverse sum indeg index · R-sum of graphs

AMS Classifications 05C76 · 05C07

1 Introduction

A topological index (TI) is a real-valued function whose domain is a collection of
graphs, and it is computed based on various graph parameters like degree, distance,
eccentricity, status, etc. In recent years, these indices draw considerable attention
from scientist and researchers because of its usefulness in predicting various physic-
ochemical properties of a molecule. Sometimes it is difficult to analyze these prop-
erties of a molecule by laboratory experiments due to financial constraints, time, or
involvement of risk. Hence, TIs can be very helpful in drawing inferences without
actual laboratory experiments. In last few decades, these indices are also studied as
graph invariants by mathematicians. Thousands of topological indices are proposed
and studied over the years. An account of some degree-based topological indices
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may be found in [1]. Some of them are also found to have very limited importance.
ISI index is found to be very efficient in many QSAR studies such as predicting
TSA of octane isomers. In fact, this index was in the list of most significant twenty
(20) indices out of the list of 148 adriatic indices studied in 2010 [2]. Few recent
contributions related to ISI index may be found in [3–9].

Throughout the paper, the graph G is considered to be simple, connected, and
finite. The sets V (G) and E(G) denote the vertex set and the edge set of the graph
G, respectively. By G ∈ �(n,m), we meanG is a graph with n vertices andm edges.
The degree of a vertex p ∈ V (G) is denoted by dG(p) or simply dp. If there is an
edge between the vertices p and q, then the edge is written as pq. The null graph of k
vertices is denoted by Nk (for k = 1, it can be considered as a connected graph with
no edge). The notations and terminologies used but not clearly stated will conform
to those in [10].

In this paper, we compute ISI index of vertex semi-total graph and R-sums. We
establish some bounds of ISI index for these graph operations.

2 Preliminaries

In this section,we formally present some topological indices and the graph operations
under consideration.

Zagreb indices Let G be a graph. Then, the Zagreb indices [11] are defined as

M1(G) =
∑

p∈V (G)

d2
p =

∑

pq∈E(G)

(
dp + dq

)

and

M2(G) =
∑

pq∈E(G)

dpdq .

Inverse degree index The inverse degree (ID) index [12] of a graph G with no
isolated vertex is defined as

I D(G) =
∑

p∈V (G)

1

dp
.

Definition 2.1 The subdivision graph [13] S(G) is obtained by replacing each edge
of G by a path of length 2.

The graph operations defined below are depicted in Fig. 1.
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Fig. 1 Graph operations

Definition 2.2 The vertex semi-total graph [13] R(G) is obtained by adding a path
of length 2 parallel to each of the edges of G. The set of additional vertices is denoted
by I (G).

Now we extend this operation and propose a generalized operation Rt (G) of the
graph G as follows.

Definition 2.3 The graph Rt (G) is obtained by adding a path of length t +1 parallel
to each edge pq in G, with p and q as the end vertices of the path.

In 2009, Eliasi and Taeri propose four new sums of graphs [14]. One of them is
based on vertex semi-total graph, popularly known as R-sum.

Definition 2.4 The R-sum [14] G1 +R G2 of the graphs G1 and
G2 is a graph with vertex set V (R(G1)) × V (G2) in which
(p1, q1)(p2, q2) is an edge iff [p1 = p2 ∈ V (G1) and q1q2 ∈ E(G2)] or
[q1 = q2 ∈ V (G2) and p1 p2 ∈ E(R(G1))].
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Analogously, we define Rt -sum of two graphs as follows.

Definition 2.5 The Rt -sum G1 +Rt G2 of the graphs G1 and G2 is
a graph with vertex set V (Rt (G1)) × V (G2) in which (p1, q1)(p2, q2)
is in E

(
G1 +Rt G2

)
iff [p1 = p2 ∈ V (G1) and q1q2 ∈ E(G2)] or

[q1 = q2 ∈ V (G2) and p1 p2 ∈ E(Rt (G1))].

3 Main Results

In this section, we establish two explicit expressions for ISI index of vertex semi-total
graph and Rt (G) of G.

Theorem 3.1 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(R(G)) = 2ISI(G) + 4m − 2n + 2
∑

p∈V (G)

1

dG(p) + 1
.

Proof

ISI(R(G)) =
∑

pq∈E(R(G))

dR(G)(p)dR(G)(q)

dR(G)(p) + dR(G)(q)

=
∑

pq∈E(G)

2dG(p)2dG(q)

2dG(p) + 2dG(q)
+

∑

pe∈E(R(G)),p∈V (G),e∈I (G)

2dG(p)2

2dG(p) + 2

= 2ISI(G) + 2
∑

pe∈E(R(G)),p∈V (G),e∈I (G)

dG(p)

dG(p) + 1

= 2ISI(G) + 2
∑

pq∈E(G)

[
dG(p)

dG(p) + 1
+ dG(q)

dG(q) + 1

]

= 2ISI(G) + 2
∑

p∈V (G)

d2
G(p)

dG(p) + 1

= 2ISI(G) + 4m − 2n + 2
∑

p∈V (G)

1

dG(p) + 1
,

which completes the proof. �

Theorem 3.2 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(Rt (G)) = 2ISI(G) + (t + 3)m − 2n + 2
∑

p∈V (G)

1

dG(p) + 1
.
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Proof Partition E(Rt (G)) into E1, E2, and E3 where E1 =
{pq ∈ E(Rt (G))|p, q ∈ V (G)}, E2 = {pe ∈ E(Rt (G))|p ∈ V (G), e ∈ I (G)},
and E3 = {e f ∈ E(Rt (G))|e, f ∈ I (G)}. Now,

ISI(Rt (G)) =
∑

pq∈E1

2dG(p)2dG(q)

2dG(p) + 2dG(q)
+

∑

pe∈E2

2dG(p)2

2dG(p) + 2
+

∑

e f ∈E3

1

= 2ISI(G) + 2
∑

pq∈E(G)

[
dG(p)

dG(p) + 1
+ dG(q)

dG(q) + 1

]
+ m(t − 1)

= 2ISI(G) + 2

⎡

⎣2m − n +
∑

p∈V (G)

1

dG(p) + 1

⎤

⎦ + m(t − 1)

= 2ISI(G) + 4m − 2n + m(t − 1) + 2
∑

p∈V (G)

1

dG(p) + 1

3.1 Some Lower Bounds on ISI Index of Vertex Semi-total
Graphs

Lemma 3.3 (Jensen’s inequality) [15] Let y1, . . . , yk be in the interval I and let ψ

be convex on I. Then

ψ

(
y1 + . . . + yk

k

)
≤ ψ(y1) + . . . + ψ(yk)

k

with equality iff y1 = . . . = yk .

Theorem 3.4 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(R(G)) ≥ 2ISI(G) + 3m − n

2
,

with equality iff G = K2.

Proof Note that,

∑

pq∈E(G)

[
dG(p)

dG(p) + 1
+ dG(q)

dG(q) + 1

]
=

∑

pq∈E(G)

[
1 − 1

dG(p) + 1
+ 1 − 1

dG(q) + 1

]

= 2m −
∑

p∈V (G)

dG(p)

dG(p) + 1

≥ 2m − 1

4

∑

p∈V (G)

[dG(p) + 1]
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by Jensen’s inequality. Now, by Theorem 3.1,

ISI(R(G)) ≥ 2ISI(G) + 2

[
2m − 1

4
(2m + n)

]
= 2ISI(G) + 3m − n

2
.

Equality holds iff G = K2. �

Corollary 3.5 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(Rt (G)) ≥ 2ISI(G) + m(t + 2) − n

2
,

with equality iff G = K2.
A better lower bound can be found by using the following well-known inequality

which is also satisfied by graphs more than that of the above lower bounds.

Lemma 3.6 (Cauchy–Schwarz inequality) [15] Let c j and d j , ( j = 1, 2, . . . , k),
are real numbers. Then

⎛

⎝
k∑

j=1

c jd j

⎞

⎠
2

≤
k∑

j=1

c2j

k∑

j=1

d2
j

with equality iff c j
d j

is constant for j = 1, 2, . . . , k.

Theorem 3.7 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(R(G)) ≥ 2ISI(G) + 8m2

2m + n
,

with equality iff G is regular.

Proof By Cauchy–Schwarz inequality,

∑

p∈V (G)

(√
dG(p) + 1

)2 ∑

p∈V (G)

(
1√

dG(p) + 1

)2

≥
⎡

⎣
∑

p∈V (G)

√
dG(p) + 1

1√
dG(p) + 1

⎤

⎦
2

whence
∑

p∈V (G)
1

dG (p)+1 ≥ n2

(2m+n)
. The desired inequality follows fromTheorem3.1

with equality iff dG(p) + 1 = a constant, i.e., iff G is regular. This completes the
proof. �
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Corollary 3.8 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(Rt (G)) ≥ 2ISI(G) + 8m2

2m + n
+ m(t − 1),

with equality iff G is regular.

3.2 Some Upper Bounds on ISI Index of Vertex Semi-total
Graphs

Theorem 3.9 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(R(G)) ≤ 2ISI(G) + 4m − 3

2
n + 1

2
I D(G),

with equality iff G = K2.

Proof By Jensen’s inequality,

∑

p∈V (G)

1

dG(p) + 1
≤ 1

4

∑

p∈V (G)

[
1

dG(p)
+ 1

]
= 1

4
[I D(G) + n].

Now, by Theorem 3.1,

ISI(R(G)) ≤ 2ISI(G) + 4m − 2n + 2

4

∑

p∈V (G)

[
1

dG(p)
+ 1

]

= 2ISI(G) + 4m − 3

2
n + 1

2
I D(G),

with equality iff dG(p) = 1, i.e., iff G = K2. �

Corollary 3.10 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(Rt (G)) ≤ 2ISI(G) − 3

2
n + 1

2
I D(G) + m(t + 3),

with equality iff G = K2.

Theorem 3.11 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(R(G)) ≤ 2ISI(G) + m + 1

2
M1(G),

with equality iff G = K2.
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Proof By Jensen’s inequality,

∑

p∈V (G)

d2
G(p)

dG(p) + 1
≤ 1

4

∑

p∈V (G)

[
dG(p) + d2

G(p)
]

Again ISI(G) = 2ISI(G) + 2
∑

p∈V (G)

d2
G (p)

dG (p)+1 by Theorem 3.1. Hence,

ISI(R(G)) ≤ 2ISI(G) + 2

4

∑

p∈V (G)

[
dG(p) + d2

G(p)
]

= 2ISI(G) + m + 1

2
M1(G),

with equality iff dG(p) = d2
G(p), i.e., iff G = K2. �

Corollary 3.12 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(Rt (G)) ≤ 2ISI(G) + 1

2
M1(G) + mt,

with equality iff G = K2.

Lemma 3.13 (Schweitzer’s inequality) [15] Let b ≤ b j ≤ B, b j s are positive real
numbers ( j = 1, . . . , k). Then

⎛

⎝
k∑

j=1

b j

⎞

⎠

⎛

⎝
k∑

j=1

1

b j

⎞

⎠ ≤ k2(b + B)2

4bB
,

with equality iff b1 = . . . = bk = b = B or k is even, b1 = . . . = b k
2

= b and
b k

2 +1 = . . . = bk = B, where b < B and b1 ≤ . . . ≤ bk .

Hereafter, we use the notations δ and � for min
{
dp|p ∈ V (G)

}
and

max
{
dp|p ∈ V (G)

}
, respectively.

Theorem 3.14 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(R(G)) ≤ 2ISI(G) + 4m − 2n + n2(δ + � + 2)2

2(2m + n)(δ + 1)(� + 1)
,

with equality iff G is regular or (δ,�)-biregular.

Proof As δ + 1 ≤ dG(p) + 1 ≤ � + 1 so by Schweitzer’s inequality,

∑

p∈V (G)

[dG(p) + 1]
∑

p∈V (G)

1

dG(p) + 1
≤ n2(δ + 1 + � + 1)2

4(δ + 1)(� + 1)
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⇒
∑

p∈V (G)

1

dG(p) + 1
≤ n2(δ + � + 2)2

4(2m + n)(δ + 1)(� + 1)
.

Using this inequality in Theorem 3.1, we get the desired result with equality iff
G is regular or half of the vertices of G are of degree δ and the remaining vertices
are of degree �, i.e., iff G is regular or (δ,�)-biregular. �

Corollary 3.15 Let G ∈ �(n,m) with n ≥ 2. Then

ISI(Rt (G)) ≤ 2ISI(G) − 2n + m(t + 3) + n2(δ + � + 2)2

2(2m + n)(δ + 1)(� + 1)
.

Equality holds iff G is regular or (δ,�)-biregular.

3.3 ISI Index for R-Sum and Rt-Sum of Graphs

Theorem 3.16 Let Gi ∈ �(ni ,mi ), i = 1, 2. Then

ISI(G1 +R G2) ≤ 4m1m2 + n2M1(G1) + m1n2 + n1
4
M1(G2).

Equality holds iff G1 = N1 and G2 = Cn2 or G1 = K2 and G2 = N1.

Proof Partitioning E(G1 +R G2) into E1 and E2 where E1 ={
(pi , qk)

(
p j , ql

)|pi , p j ∈ V (G1), qk, ql ∈ V (G2)
}
, and E2 =

{(pi , qk)(er , qk)|pi ∈ V (G1), qk ∈ V (G2), er ∈ I (G1)}, we obtain,

ISI(G1 +R G2) =
∑

(pi ,qk )(p j ,ql)∈E1

[
2dG1(pi ) + dG2(qk)

][
2dG1

(
p j

) + dG2(ql)
]

[
2dG1(pi ) + dG2(qk)]+[2dG1

(
p j

) + dG2(ql)
]

+
∑

(pi ,qk )(er ,qk )∈E2

[
2dG1(pi ) + dG2(qk)

]
.2

[
2dG1(pi ) + dG2(qk)

] + 2

= S1 + S2

Now, by Jensen’s inequality,

S1 ≤ 1

4

∑

(pi ,qk )(p j ,ql)∈E(G)

[
2
{
dG1(pi ) + dG1

(
p j

)} + {
dG2(qk) + dG2(ql)

}]

= 1

4

∑

pi∈V (G1)

∑

qkql∈E(G2)

[
4dG1(pi ) + {

dG2(qk) + dG2(ql)
}]
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+ 1

4

∑

qk∈V (G2)

∑

pi p j∈E(G1)

[
2dG2(qk) + 2

{
dG1(pi ) + dG1

(
p j

)}]

= 1

4
[8m1m2 + n1M1(G2) + 2n2M1(G1) + 4m1m2]

= 1

4
[12m1m2 + n1M1(G2) + 2n2M1(G2)],

with equality iff 2dG1(pi ) + dG2(qk) = 2dG1

(
p j

) + dG2(ql), i.e., iff both G1 and G2

are regular.
Similarly,

S2 ≤ 1

4

∑

(pi ,qk )(er ,qk )∈E(G)

[
2dG1(pi ) + dG2(qk) + 2

]

= 1

4

∑

qk∈V (G2)

∑

pi er∈E(S(G1))

[
2dG1(pi ) + dG2(qk) + 2

]

= 1

4

∑

qk∈V (G2)

⎡

⎣2
∑

pi∈V (G1)

d2
G1

(pi ) + 2m1
(
2 + dG2(qk)

)
⎤

⎦

= 1

2
n2M1(G1) + m1n2 + m1m2,

with equality iff 2dG1(pi ) + dG2(qk) = 2, i.e., iff dG2(qk) = 2 − 2dG1(pi ), i.e., iff
G1 = N1 and G2 = Cn2 or G1 = K2 and G2 = N1.

Therefore, ISI(G1 +R G2) ≤ 4m1m2 + n2M1(G1) + m1n2 + 1
4n1M1(G2) with

equality iff G1 = N1 and G2 = Cn2 or G1 = K2 and G2 = N1. �

Corollary 3.17 Let Gi ∈ �(ni ,mi ), i = 1, 2. Then

ISI
(
G1 +Rt G2

) ≤ 4m1m2 + n2M1(G1) + n1
4
M1(G2) + tm1n2,

with equality iff G1 = N1 and G2 = Cn2 or G1 = K2 and G2 = N1.

4 Conclusion

The study of ISI index for various operations of graphs is found to be limited in the
literature. In this paper, we compute the ISI index of vertex semi-total graph and
R-sum of graphs. We also extend the R-sum of graphs to Rt -sums of graphs and
obtain some bounds of ISI index for vertex semi-total graph, R-sum, and Rt -sum of
graphs. The extremal cases of the bounds are also studied for their sharpness. This
idea can also be applied to the rest of the four operations proposed by Eliasi and
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Taeri [14]. The computation of other TIs of these graph operations may be another
interesting topic for further study.
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Neural Network-Based Fuzzy
Multi-objective Optimisation
for Efficiency Evaluation

Debasish Roy

Abstract Multi-objective optimisation handles the optimisation of multiple objec-
tives on amulti-dimensional space (Lootsma in FuzzyMulti-ObjectiveOptimization.
Springer, Boston, 1997 [1]). There are various classical methods and a wide variety
of genetic algorithms for determining the Pareto-optimal front inMOOP.Most of the
MOOPalgorithms dealingwith fuzzy systems treat fuzzy parameters (Young-Jou and
Ching-Lai in Fuzzy multiple objective decision making: Methods and applications,
Springer, Berlin, 1994 [2]), fuzzy inequalities (Chuntian in Hydrological Sciences
Journal 44(4): 573–582, 1999 [3]) and fuzzy objective function (Young Jou and
Ching-Lai in Fuzzy Sets and Systems 54(2): 135–146, 1993 [4]). In this article, an
algorithm for multi-objective optimisation using neural network is presented where
the variables are fuzzy. The paper deals with the core of the issue that is the fuzzy
variables in multi-objective optimisation. Here, the variables are treated as triangu-
lar fuzzy variables. The arithmetic on these fuzzy variables is defined, according to
the existing available work. As a numerical illustration, the new algorithm has been
tested on two fractional functions. The results obtained after implementing the new
algorithm using MATLAB code is presented. The algorithm uses neural network to
approximate the Pareto front. This proposed algorithm is an illustration of possible
optimisation technique in the fuzzy domain using Neural Network.

Keywords Fuzzy · MOOP · MOGA · VEGA · LPP

1 Introduction

Multi-objective optimisations are primarily having a number of solutions, while
single-objective optimisation has one unique solution. The primary dilemma with
multi-objective optimisation is a selection from alternatives of optimal solutions.
However, in case a number of solutions are already worked out or derived, one can
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analyse every solution and make a considered selection. Thus, in multiple objectives
optimisation all the objectives are treated as important and a set of solutions is
derived. The solutions are to be compared on a qualitative benchmark to find the
best in the context. Here a short literature review on relevant topics like fractional
programming and optimisations on single andmultiple objectives is presented.A new
algorithm for MOOP with fuzzy variable using neural network after a brief review
of fuzzy arithmetic has been given, and finally, an experiment has been conducted
in MATLAB to authenticate the algorithm. The main contribution of the paper is
this novel algorithm based on neural network for solving MOOP where variables
are fuzzy. The algorithm proposed consists of two parts: the first part computes
fuzzy dominant front using fuzzy arithmetic on the fuzzy variable. The second part
demonstrates the use of neural network to evaluate this fuzzy Pareto front by first
training a network and subsequently simulating to match fuzzy Pareto front with
another set of fuzzy inputs with the help of the trained network.

2 Literature Review

2.1 Fractional Programming

Scholars have been working for many years on optimising ratio of linear functions.
Optimisation of multiple such fractions has many practical applications [5]. Till
1985, the problem with a single ratio has ruled the arena. Among many methods
which have advanced most important is LPP methods to deal fractional functions
[6]. A modified simplex method to solve a function of fractional objective has been
proposed by Bitran [7]. Schaible [8] used duality for finding the optimum for linear
fractional programming. Multi-criteria linear programming where the efficient front
is a finite number connected line segments of efficient points is dealt by Choo and
Atkins [9]. Fractional interval programming is a select type which has been studied
by many authors. Generalised inverses have also been used to solve such problems
[10].

2.2 Single-Objective Optimisation

Random search methods comprise different algorithms ranging from pure random
search to heuristic. A true random search [11] is a searchmethod on a selected random
population. These algorithms can be shown to be convergent in several way [12–14].
Box’s evolutionary method has different varieties for single-objective optimisation
like REVOP, EVOP, etc. These are a multi-dimensional systemic search [15]. This
method is convenient as it uses optimisationmethod,which is free of derivative (DFO)
[16–18]. Subsequently, an improvement was found by Wilson [19]. Box’s method is
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used in many practical applications [20]. Robert Hooke and T. A Jeeves in 1961 [21]
have shown that straight search method is useful for objective function which is not
differentiable. The method iteratively compares current best with previous best [22].
However, convex optimisationmethods define subdifferentials for non-differentiable
functions as in Eq. (1).

δ( ¯̄ξ) = {η ∈ Rn : f (θ) − f (ξ) ≥< η, y − ¯̄ξ >,∀θ ∈ Rn} (1)

The gradient methods [23] are efficient compared to direct search method for differ-
entiable objective functions.Newton’smethod [24] is the classicalmethod derivative-
based method, and it assured convergence [25]. Conjugate direction method [26] is
a variation of the Newton method. Spacer step theorem [27] is also an improved
method from Newton’s method.

2.3 Multi-Objective Optimisation

The difficulty in decision space is that the demands for computation increase con-
siderably with number of variables [28, 29].

• The topological deformations is one of the methods to solve MOOP [30].
• In bounded constraint optimises single-objective, while other objectives are treated
as a restrictions [31]. The boundary points found fixes the bounds of the objectives,
and this is iterated till there are no new solutions left.

• The two-phase method [32] finds solutions of the affine combination of objec-
tives in the first step, and then remaining solutions which are non-dominated are
determined in phase two.

2.4 Fuzzy Multi-Objective Optimisation

Policy-makers not only contemplate “but also develop new alternatives by consid-
ering all possible situations” [2]. Some of them require multiple objectives having
constraints in fuzzy domain. Many authors studied such models [4, 33, 34]. Most of
the current work related to fuzzy multi-objective optimisation primarily handles by
transforming fuzzy MOOP into crisp MOOP and then treating the problem in a clas-
sical way [35]. Some researcher has handled fuzzy MOOP where the constraints are
fuzzy [3]. In many cases where coefficients are fuzzy, the problem is treated as fuzzy
MOOP [36]. This paper handles the problem at the core by treating the variables
as fuzzy. The problem has not been converted to crisp case neither the coefficients
are fuzzy nor the constraints. The final non-dominant front has been proposed to be
traced using neural network after due training. The algorithm has been proposed in
a subsequent section. The algorithm has been implemented in MATLAB.
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3 Discourse

3.1 Multi-Objective Optimisation

The type of problem this paper addresses is given in Eq. (2):

Minimise: [ξ1, ξ2, . . . , ξm]
Subject to: ξi ∈ (0, 1]

ξi =
∑p

1 c jγ j
∑p

1 diχi
,

χi , γ j ∈ R+ (2)

Here, the variable space is Rp. The objective is to find the Pareto front for the function
defined above.

3.2 Fuzzy Arithmetic

The problemdealtwith in this paper is generalised fuzzymulti-objective optimisation
which is defined in Eq. (3) :

Minimise: [ξ̃1, ξ̃2, . . . , ξ̃m]
s.t:ξ̃i ≤ 1,

Where: ξ̃ j =
∑n

i=1 ci j γ̃i∑n
i=1 di j χ̃i

(3)

Here, χ̃ and γ̃ are n-dimensional fuzzy variable. Before delving into the solution
procedure, there is a need to define fuzzy arithmetic of fuzzy variables. Ranks of
fuzzy numbers must be established for ordering the fuzzy variables in order for
a decision maker to take a call. Fuzzy sets can have non-empty intersection, and
therefore, it is problematic to establish clearly as to which fuzzy number (FN) is
larger. Here, a ranking function, which establishes a bijection between FN and R+,
will be used. The idea of ordering the functions for comparing normal fuzzy numbers
is built in there. This paper presents a method to solve the fuzzyMOOP usingNeural
Network in which the variables are triangular fuzzy variables.
Fuzzy set is pair (Λ,m), where m: Λ → [0, 1] is a membership function. The set Λ
is the universe of discourse, and for every ξ ∈ Λ, m(ξ) is called membership level
of ξ in (Λ,m).
TFN Λ is depicted by three real numbers κ, λ, μ whose interpretations are given in
Fig. 1. TFN ≡ Triangular Fuzzy Number.
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Fig. 1 TFN

ξ

1.0

κ λ μ

μΛ(ξ)

Therefore, a TFN is represented as: Λ̃ = (κ, λ, μ).
Arithmetic on TFN
Let Λ̃1 = (κ1, λ1, μ1) and Λ̃2 = (κ2, λ2, μ2) be two triangular fuzzy numbers and
let Λ̃i = (κi , λi , μi ) be a generalised fuzzy number. The arithmetic operations are
defined in Eqs. (4)–(7).

ADDITION

∑
Λ̃i =

∑ (
κi , λi , μi

)
=

( ∑
κi ,

∑
λi ,

∑
μi

)
(4)

SUBTRACTION

Λ̃1 − Λ̃2 = (κ1 − κ2, λ1 − λ2, μ1 − μ2) (5)

DIVISION

Λ̃1

Λ̃2

=
(
min

(( κi

λ j

)
, i, j = 1, 2

)
,max

(( κi

λ j

)
, i, j = 1, 2

))
(6)

SCALAR MULTIPLICATION

c > 0, Λ̃c = (κ1c, λ1c, μ1c)

c < 0, Λ̃c = (μ1c, λ1c, κ1c) (7)

PARTIAL ORDER

1. ≤ is defined by Λ̃1 ≤ Λ̃2 iff MAX (Λ1,Λ2) = Λ2

2. For any two triangular fuzzy numbers Λ̃1 ≤ Λ̃2 iff κ1 − λ1 ≤ κ2 − λ2, κ1 + μ1 ≤
κ2 + μ2.
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RANKING INDICES
Centroid (x0, y0) of a fuzzy number is given by a formula in Eq. (8) [37].

x0 =
∫ b
a x L A(x)dx + ∫ c

b xdx + ∫ d
c x RA(x)dx

∫ b
a L A(x)dx + ∫ c

b xdx + ∫ d
c x RA(x)dx

y0 =
∫ w

0 yR−1
A (y)dy − ∫ w

0 yL−1
A (y)dy

∫ w

0 R−1
A (y)dy − ∫ w

0 yL−1
A (y)dy

(8)

For triangular fuzzy numbers, this yields as stated in Eq. (9).

x0 = 1

2
(a + b + c), y0 = w

3
(9)

By this method, triangular fuzzy numbers can be compared and imposed a rank
calculated from their centroid.
Another idea of ranking is as in Eq. (10).

R(A) =
√
x0(A)2 + y0(A)2 (10)

The fuzzy numbers can be ranked based on x0 values and then on y0 values. The
various methods of fuzzy multi-objective methodologies primarily deal with fuzzy
parameters, coefficients of constraints, objective function, etc. However in this paper,
the fuzzy variable in multi-objective optimisation has been dealt with using neural
network to handle real-world problems. The focal point is not only fuzzy MOOP but
the individual fractional functions. The fractional functions attract special attention
due the fact that they clearly define efficiency of a system. But a clear solution to
fractional functions in multi-dimension is not available. The specific case of multiple
fractional functions is of serious interest since there are always situations which may
require optimisation of the efficiency of multiple units. The problem formulation
may incorporate a number of constraints. But this paper has demonstrated a way of
handling the situation in a novelwaywith existingmethodologies like neural network.
Experiment section demonstrates numerical example. The fractional functions are
particularly interesting due to non-availability of analytic solution for optimisation
of the function.

4 A New Algorithm for MOOP with Fuzzy Variables

The proposed algorithm is presented below.
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Algorithm 1 Neural Network-Based Fuzzy Multi-objective Optimisation
Step1- Select n random fuzzy numbers. Here, n=100.
Step1.1- Ordered random triplet (a,b,c) defined over [0,1] represents fuzzy numbers.
Step 1.2 - Choose 100 such ordered random triplets. These are treated as 100 random fuzzy
triangular numbers.
Step 2: For each fuzzy number, compute zi using fuzzy arithmetic described in Section 3.2 on
Equation 3. Thereby, a vector of (z1, z2, . . . , zm) is formed depending on number of functions to
be evaluated.
Step3:Findnon-dominant set of solutions from the100 solutions basedon fuzzygenetic algorithm
and fuzzy ranking. Follow subsequent steps to generate elitist.
Step 3.1- For each fuzzy variable zi , compute the centroid. Thereby, 100 X 2 matrix is formed.
Step 3.2- Compute the ranking of Centroid for each point.
Step 3.3- Keep r proportion of dominant points.
Step 4-Repeat Step 3 to iterate subsequent steps by genetic algorithm till distance between Pareto
fronts of two successive steps is more than 10−4.
Step 5- Based on the non-dominant set generate Pareto front.
Step 6- Set up a feedforward network with random weights.
while Standard Deviation of Error > 10−4 do

Step 7-Train the networkwith the inputs defined in Step 1 after defuzzifying and non-dominant
front as output. The revised weights for the network are stored.

Step 8- Generate a set of fuzzy random values to find the non-dominated front.
Step 9- Simulate the network output with the input.
Step 10- Retrain the network or recompute the weight.

end while

In this algorithm, 100 ordered random triplets are chosen to initialise the popula-
tion. The two-objective functions are evaluated using fuzzy arithmetic to get hundred
two-dimensional FN. The ranking of the FN is done using propositions of Chu and
Tsao stated in Eq. (10). The top ten ranks are kept as elitist. This is the initialisation
of the algorithm. The Pareto front is generated using fuzzy genetic algorithm [38,
39]. This is the dominant front for this population. The dominant front is used as
the output of a neural network, while inputs are 100 random fuzzy numbers after
defuzzification [40]. The network is trained with this set. The trained neural network
can be used approximate the non-dominant front. Here, a feedforward multilayer
perceptron model is used to train with set of inputs generated by the precalculations
stated above. Theoretically, any function can be approximated by neural network
[41]. Neural networks are nonlinear function approximators. The proof is based on
extension of the Weierstrass theorem [42]. This actually follows from a stronger
version of Kolmogorov’s construction which states that ∀ f ∈ Cn can be represented
as:

f (x1, . . . , xn) =
2n+1∑

q=1

g

⎧
⎨

⎩

n∑

p=1

λpqψ(xp + qε)

⎫
⎬

⎭
(11)

where g(ξ) ∈ C, λ, and ε are constants, ψ(ξ) ∈ C is monotonic increasing and
Holder continuous, λ, ε, ψ being independent of f.
The presented algorithm demonstrates the use of neural network for approximation
of fuzzy dominant front, which can be further used for optimisation.
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5 Experiment

5.1 Set-Up

Minimise: b1 = 3ã1 + 4ã2 + 1

5ã1 + 7x̃2 + 5
, b2 = 4ã1 + 5ã2 + 2

7ã1 + 9ã2 + 3
5ã1 + 7ã2 + 5 �= 0, 7ã1 + 9ã2 + 3 �= 0
3ã1 + 4ã2 + 1

5ã1 + 7ã2 + 5
≤ 1,

4ã1 + 5ã2 + 2

7ã1 + 9ã2 + 3
≤ 1 (12)

Here, ã1 and ã2 are triangular fuzzy variables.

5.2 Operation

The arithmetic and order of fuzzy numbers are already defined. MATLAB code was
written to implement the algorithm.

5.3 Results

Coordinates of non-dominated fuzzy front is presented in Table1. The non-dominant
fuzzy front as computed by the proposed new algorithm due to simulation by neural
network (NN) in MATLAB is presented in Fig2. The FFNN with three layers and
the training of NN in the toolbox of MATLAB are given in Figs. 3 and 4.
FFNN ≡ Feedforward Neural Network.

6 Conclusion

The non-dominated front from random triangular fuzzy variables is computed using
a new proposed algorithm which has been implemented in MATLAB. A neural
network is trained to derive this output from fuzzy random inputs. This network is
found to generate the fuzzy dominant front from another set of fuzzy inputs at a
reasonable approximation. The algorithm demonstrates the use of neural network as
the first step to fuzzy multi-objective optimisation. The algorithm has been validated
with numerical experiment. The graphical and tabular results are presented in the
paper. The MATLAB code for the algorithm with 100 random initial fuzzy numbers
and two-objective test function given in Eq. (12) is given in Sect. 7.
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Table 1 Non-dominated fuzzy front simulated by neural network

X Y

0.1285 0.2786

0.1387 0.2903

0.1243 0.2964

0.1242 0.3034

0.1372 0.3193

0.1215 0.3222

0.1283 0.3429

0.1283 0.3429

0.1275 0.3457

0.1252 0.3490
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Fig. 2 Fuzzy Pareto front derived by neural network

Fig. 3 Feedforward neural network
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Fig. 4 Training of neural network

7 MATLAB Code

Listing 1.1 This is the MATLAB Code.
1 func t ion []=NeuNetfuzzyMOOPLatest ( )
2 ptn =200;mnx=.001; mxx=1.001;mny=.001;mxy=1.001;dim=200;
3 fuzzout=ones (2 , dim) ;
4 [ nd_s o i i ]=fuzzyMOOP(dim) ;
5 [m n]= s i ze ( nd_s ) ;
6 fuzzout ( : , 1 : n )=nd_s ( : , 1 : n ) ;
7 %disp ( out ') ;
8 nt=newff ( i i , o , [22 22 2] ,{' l ogs ig' ,' t r a n s i g '} ,' t r a in lm' ) ;
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9 disp ( net ) ;
10 view ( net ) ;
11 nt . t rainParam . show=60;
12 nt . t rainParam . l r =0.06;
13 nt . t rainParam . epochs=350;
14 nt . t rainParam . goal =1.1e−3;
15 nt1= t r a i n ( nt , i i , o ) ;
16 sim_out=sim ( nt1 , i i ) ;
17 [sim_dm sim_ndm]=evalDom( sim_out ) ;
18 [k l ]= s i ze ( sim_ndm) ;
19 [ k1 l1 ]= s i ze ( nd_s ) ;
20 l l =min ( l , l1 ) ;
21 e r r=nd_s ( : , 1 : l l )−sim_ndm(1 :2 , 1 : l l ) ;
22 disp (' e r r' ) ; d isp ( err ') ;
23 % F i r s t P lo t
24 f=f igu re ;
25 se t ( f , 'name' ,'1 s t P lo t Simulated and Actual Output fo r t e s t i n g ' ,'number t i t l e' ,'of f' ) ;
26 p lo t (o ( 1 , : ) , o ( 2 , : ) ,'g*' , sim_out ( 1 , : ) , sim_out ( 2 , : ) ,'bo' ) ;
27 t i t l e ('Plo t of s imulated output and ac tua l output' ) ;
28 %e r r=sim_out−o ;
29 disp (' e r r' ) ; d isp ( err ') ;
30 %disp (' non dominated ') ; disp ( ') ;
31 %disp (' sim_out ') ; disp ( sim_out ( : , 1 : n ) ') ;
32 % SECOND RUN FOR TESTING THE NETWORK
33 [ nd_s1 o1 i i 1 ]=fuzzyMOOP(dim) ;
34 sim_out1=sim ( nt1 , i i 1 ) ;
35 [sim_dm1 sim_ndm1]=evalDom( sim_out1 ) ;
36 [ k2 l2 ]= s i ze ( sim_ndm1) ;
37 [ k3 l3 ]= s i ze ( nd_s1 ) ;
38 l l 1=min ( l2 , l3 ) ;
39 er r1=nd_s1 ( : , 1 : l l 1 )−sim_ndm1 (1 :2 , 1 : l l 1 ) ;
40 disp ('nd_s1' ) ;
41 disp ( s i z e ( nd_s1 ( : , 1 : l l 1 ) ) ) ;
42 disp ( s i z e ( sim_ndm1 (1 :2 , 1 : l l 1 ) ) ) ;
43 f i gu r e ;
44 se t ( f , 'name' ,'2nd PlotActual and Simulated Non Dominated Set' ,'number t i t l e' ,'of f' ) ;
45 p lo t ( nd_s1 (1 ,1 : l l 1 ) , nd_s1 (2 ,1 : l l 1 ) ,'−r' , sim_ndm1 (1 ,1 : l l 1 ) , sim_ndm(2 ,1 : l l 1 ) ,'−b' ) ;
46 t i t l e ('Plo t of Actual values and Simulated values' ) ;
47 disp ('er r1' ) ; disp ( err1 ') ;
48 % REDUCING DISTANCE FROM THE IDEAL POINT
49 [ f1 x1 f2 x2]= idea lPo in t ( )
50 end
51
52 func t ion []= d i s t anceEs t ( )
53 end
54 func t ion [ f1 x1 f2 x2]= idea lPo in t ( )
55 c lc ; c l e a r data ;
56 param1=[3 4 1 5 7 5 ] ;
57 param2=[4 5 2 7 9 3 ] ;
58 [ f1 x1 i1 t1 ]=gradDescMod ( [1 1] , param1 ) ;
59 [ f2 x2 i2 t2 ]=gradDescMod ( [1 1] , param2 ) ;
60
61 end
62
63 func t ion [ nd_s o i i ]=fuzzyMOOP(dim)
64 o=ones (2 , dim) ;
65 i i =ones (2 , dim) ;
66 for i =1:dim
67 [o1 o2 i1 i2 ]=subFuzzyMOOP( ) ;
68 o ( : , i ) =[o1 o2 ] ;
69 i i ( : , i ) =[ i1 i2 ] ;
70 end
71 [dm ndm]=evalDom(o ) ;
72 [ nd_s ]=sortFND (ndm) ;
73 % disp ('dm') ; disp (dm') ;
74 % disp ('ndm') ; disp ( nd_s ') ;
75 f i gu r e ;
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76
77 p lo t (dm( 1 , : ) ,dm( 2 , : ) ,'bo' , nd_s ( 1 , : ) , nd_s ( 2 , : ) ,'−r' ) ;
78 end
79
80 func t ion [ nd_s ]=sortFND (ndm)
81 [m n]= s i ze (ndm) ;
82 [ ynd_s p]= so r t (ndm( 2 , : ) ) ;
83 xnd_s=ones (1 , n ) ;
84 nd_s=ones (2 , n ) ;
85 fo r i =1:n
86 xnd_s ( i )=ndm(1 , p ( i ) ) ;
87 nd_s ( : , i ) =[xnd_s ( i ) ynd_s ( i ) ] ;
88 end
89 end
90
91 func t ion [dm ndm]=evalDom(o )
92 % Here Domination of values i s checked
93 [m n]= s i ze (o ) ;
94 DN=zeros (3 , n ) ;
95 dmi=zeros (3 , n ) ;
96 ndmi=zeros (3 , n ) ;
97 k=1; l =1;
98 Mx=max(DN(3 , : ) ) ;
99 disp ('Max Val' ) ;

100 disp (Mx) ;
101 for i =1:n
102 i f DN(3 , i ) <Mx/10−1
103 ndmi ( : , k )=DN( : , i ) ;
104 k=k+1;
105 end
106 i f DN(3 , i ) > Mx/10
107 dmi ( : , l )=DN( : , i ) ;
108 l= l +1;
109 end
110 end
111 dm=dmi ( : , 1 : l−1) ;
112 ndm=ndmi ( : , 1 : k−1) ;
113
114 %end of func t ion
115 end
116
117 func t ion [ o1 i1 i2 ]=subFuzzyMOOP( )
118 [ xfuzzy , l1 ,m1, n1]= t r i a ng ( a1 , b1 , c1 , x ) ;
119 [ yfuzzy , l2 ,m2, n2]= t r i a ng ( a2 , b2 , c2 , y ) ;
120 [ ix1 iy1 ]=Centroid ( xfuzzy ) ;
121 i1=ix1* iy1 ;
122 [ ix2 iy2 ]=Centroid ( yfuzzy ) ;
123 i2=ix2* iy2 ;
124 [ z1]= fuzzyFn1 ( xfuzzy , yfuzzy ) ;
125 [ z2]= fuzzyFn2 ( xfuzzy , yfuzzy ) ;
126 [NFz1 NFz2]=NonZeroExtract ( z1 , z2 ) ;
127 [x1 y1]=Centroid (NFz1) ;
128 o1=x1*y1 ;
129 [x2 y2]=Centroid (NFz2) ;
130 o2=x2*y2 ;
131 f igu re ;
132 p lo t (NFz1 ( 1 , : ) ,NFz1 ( 2 , : ) ,'g*' ,NFz2 ( 1 , : ) ,NFz2 ( 2 , : ) ,'bo' , x1 , y1 , 'g+' , x2 , y2 , 'b+' ) ;
133 end
134
135 [m n]= s i ze ( z ) ;
136 maxVal=max( z ( 2 , : ) ) ;
137 a=z (1 ,1 ) ;
138 c=z (1 , n ) ;
139 for i =1:n
140 i f maxVal==z (2 , i )
141 b=z (1 , i ) ;
142 end
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143 end
144 x=(a+b+c ) / 3 ;
145 y=maxVal / 3 ;
146 end
147
148 func t ion [NFz1 NFz2]=NonZeroExtract ( z1 , z2 )
149 global point_n ;
150 k=0; l =0;Nz1=ones (3 , point_n ) ;Nz2=ones (3 , point_n ) ;
151 for i =1: point_n
152 i f z2 (2 , i ) ~=0
153 l= l +1;
154 Nz2(1 :2 , l )=z2 (1 :2 , i ) ;Nz2(3 , l )= i ;
155 end
156 end
157 kk=k ; l l = l ;
158 NFz1=Nz1 ( : , 1 : kk ) ;NFz2=Nz2 ( : , 1 : l l ) ;
159 end
160 func t ion [ z ]= fuzzyFn1 ( xfuzzy , yfuzzy )
161 [ z1 , l1 ,m1, n1]= fuzzScalarMult ( xfuzzy ) ;
162 [ z2 , l2 ,m2, n2]= fuzzScalarMult ( yfuzzy ) ;
163 [ z3 , l3 ,m3, n3]= fuzzScalarMult ( xfuzzy ) ;
164 [ z4 , l4 ,m4, n4]= fuzzScalarMult ( xfuzzy ) ;
165 [nm1, ln1 ,mn1, nn1]=fuzzAdd ( z1 ( 1 , : ) , l1 ,m1, n1 , z2 ( 1 , : ) , l2 ,m2, n2 ) ;
166 [dm1, ld1 ,md1, nd1]=fuzzAdd ( z3 ( 1 , : ) , l3 ,m3, n3 , z4 ( 1 , : ) , l4 ,m4, n4 ) ;
167 [dm, ld ,md, nd]= fuzzScalarAdd (dm1( 1 , : ) , ld1 ,md1, nd1 ,dm1( 1 , : ) ,3 ) ;
168 [nm, ln ,mn, nn]= fuzzScalarAdd (nm1( 1 , : ) , ln1 ,mn1, nn1 ,nm1( 1 , : ) ,2 ) ;
169 [ z , l f i n a l , mfinal , n f i n a l ]= fuzzDiv (nm, ln ,mn, nn ,dm, ld ,md, nd ) ;
170 end
171 func t ion [ z ]= fuzzyFn2 ( xfuzzy , yfuzzy )
172 [ z1 , l1 ,m1, n1]= fuzzScalarMult ( xfuzzy , l1 ,m1, n1 , 3 ) ;
173 [ z2 , l2 ,m2, n2]= fuzzScalarMult ( yfuzzy , l2 ,m2, n2 , 4 ) ;
174 [ z3 , l3 ,m3, n3]= fuzzScalarMult ( xfuzzy , l1 ,m1, n1 , 5 ) ;
175 [ z4 , l4 ,m4, n4]= fuzzScalarMult ( xfuzzy , l2 ,m2, n2 , 7 ) ;
176 [nm1, ln1 ,mn1, nn1]=fuzzAdd ( z1 ( 1 , : ) , l1 ,m1, n1 , z2 ( 1 , : ) , l2 ,m2, n2 ) ;
177 [dm1, ld1 ,md1, nd1]=fuzzAdd ( z3 ( 1 , : ) , l3 ,m3, n3 , z4 ( 1 , : ) , l4 ,m4, n4 ) ;
178 [dm, ld ,md, nd]= fuzzScalarAdd (dm1( 1 , : ) , ld1 ,md1, nd1 ,dm1( 1 , : ) ,1 ) ;
179 [nm, ln ,mn, nn]= fuzzScalarAdd (nm1( 1 , : ) , ln1 ,mn1, nn1 ,nm1( 1 , : ) ,5 ) ;
180 [ z , l f i n a l , mfinal , n f i n a l ]= fuzzDiv (nm, ln ,mn, nn ,dm, ld ,md, nd ) ;
181 end
182
183
184 func t ion [ fuzzyScalarAddxk , l3 ,m3, n3]= fuzzScalarAdd ( xfuzzy , l1 ,m1, n1 , x , k )
185 l3=l1+k ;m3=m1+k ; n3=n1+k ; xk=x+k ;
186 [ fuzzyScalarAddxk , l3 ,m3, n3]= t r i a ng ( l3 ,m3, n3 , xk ) ;
187 end
188
189 func t ion [ fuzzyScalarMultxy , l3 ,m3, n3]= fuzzScalarMult ( xfuzzy , l1 ,m1, n1 , k )
190 l3=k* l1 ;
191 m3=k*m1;
192 n3=k*n1 ;
193 xk=k*xfuzzy ( 1 , : ) ;
194 [ fuzzyScalarMultxy , l3 ,m3, n3]= t r i a ng ( l3 ,m3, n3 , xk ) ;
195 end
196
197 func t ion [ fuzzyDivxy , l3 ,m3, n3]= fuzzDiv ( xfuzzy , yfuzzy )
198 % Range of the fuzzy va r i ab l e i s to be worked out
199 n3=max( a ) ;
200 d e l t a l =( l3 −(( l1+l2 ) / 2 ) ) ;
201 de l t au =1−((n1+n2 ) / 2 ) ;
202 i f d e l t a l < 0
203 lb =0;
204 e l s e
205 lb=d e l t a l ;
206 end
207 ub=n3+abs ( d e l t a l ) ;
208 xy=l inspace ( lb , ub , point_n ) ;
209 [ fuzzyDivxy , l3 ,m3, n3]= t r i a ng ( l3 ,m3, n3 , xy ) ;
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210 end
211
212 func t ion [ fuzzyMultxy , l3 ,m3, n3]= fuzzMult ( xfuzzy , yfuzzy )
213 l3=min ( a ) ;
214 m3=m1*m2;
215 n3=max( a ) ;
216 avg=( l1+l2 ) / 2 ;
217 de l t a=l3−avg ;
218 lb=de l t a ;
219 ub=1+lb ;
220 Multxy=l inspace ( lb , ub , point_n ) ;
221 [ fuzzyMultxy , l3 ,m3, n3]= t r i a ng ( l3 ,m3, n3 , Multxy ) ;
222 end
223
224 func t ion [ fuzzySubxy , l3 ,m3, n3]= fuzzSub ( xfuzzy , yfuzzy )
225 n3=n1−n2 ;
226 [ fuzzySubxy , l3 ,m3, n3]= t r i a ng ( l3 ,m3, n3 , xfuzzy ( 1 , : ) ) ;
227 disp (' i n s ide fuzz sub' ) ;
228 end
229
230 func t ion [ fuzzyAddxy , l3 ,m3, n3]=fuzzAdd ( xfuzzy , l1 ,m1, n1 , yfuzzy , l2 ,m2, n2 )
231 global point_n ;
232 l3=l1+l2 ;
233 m3=m1+m2;
234 n3=n1+n2 ;
235 de l t a=l3 −(( l1+l2 ) / 2 ) ;
236 lb=de l t a ;
237 ub=n3+abs (1−((n1+n2 ) / 2 ) ) ;
238 % 100 i s to be parameter ised
239 addxy=l inspace ( lb , ub , point_n ) ;
240 [ fuzzyAddxy , l3 ,m3, n3]= t r i a ng ( l3 ,m3, n3 , addxy ( 1 , : ) ) ;
241 end
242
243 func t ion [ xfuzzy , l1 ,m1, n1]= t r i a ng ( a , b , c , x )
244 l1=a ;m1=b ; n1=c ;
245 [p q]= s i z e (x ) ;
246 xfuzzy=ones (2 , q ) ;
247 xfuzzy ( 1 , : ) =x ;
248 for i =1:q
249 i f x ( i )<a
250 l= i ;
251 end ;
252 i f x ( i )<b
253 m=i ;
254 end ;
255 i f x ( i )<c
256 n= i ;
257 end ;
258 end
259 uslope =1 .0 / ( b−a ) ;
260 l s lope =1 .0 / ( c−b ) ;
261 for i =1: l
262 xfuzzy (2 , i ) =0;
263 end
264 for i= l +1:m
265 xfuzzy (2 , i )=uslope *(x ( i )−x ( l ) ) ;
266 end
267 for i=m+1:n
268 xfuzzy (2 , i )= l s l ope *(x (n )−x ( i ) ) ;
269 end
270 for i=n+1:q
271 xfuzzy (2 , i ) =0;
272 end
273 end
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Multi-choice Chance-Constrained
Programming Problems Using Genetic
Algorithm

D. K. Mohanty, R. K. Jana and M. P. Biswal

Abstract Multi-choice programming (MCP) problem is a type of combinatorial
optimization problem where the decision maker has to choose a value for a parame-
ter frommany alternative values. Genetic algorithm (GA) is a very popular approach
used for solving combinatorial optimization problems. If some or all parameters
present in the MCP problem are random, then it is known as multi-choice stochastic
programming or multi-choice probabilistic programming (MCPP) problem. Chance-
constrained programming (CCP) and two-stage stochastic programming (TSSP) are
widely used to solve problems involving randomness. In this paper, we have consid-
ered an MCPP problem where some parameters are multi-choice types, and some
are random variables. First, we apply the CCP technique to convert it to a determin-
istic MCP problem. While solving MCP problems, generally, some transformation
techniques are used to transform the MCP problem into a mixed-integer program-
ming (MIP) problem. After that, a standard mathematical programming approach is
followed to solve the transformed MIP problem. These transformation techniques
generate some extra variables and extra constraints which complicates the problem.
But here we have proposed a GA to solve the MCP problem directly (without using
any transformation technique). At last, a numerical example is provided to demon-
strate the proposed algorithm and the solution approach.
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1 Introduction

While solving many real-life decision-making problems, the decision maker (DM)
has often to take decisions where some or all input parameters are uncertain.These
uncertainties of the parameters can be expressed by using fuzzy numbers or random
variables or intervals. Probabilistic programming or stochastic programming (SP)
is a class of uncertain programming where the parameters present in the objective
function and/or in the constraints are considered as random variables. Many method-
ologies and techniques have been developed in the area of SP; among them, two very
popular approaches are widely used to solve SP problems, these are,

(i) Chance-constrained programming (CCP) and
(ii) Two-stage stochastic programming (TSSP).

The CCP technique is used to solve the problems where constraints are allowed to
violate up to certain probability levels. This technique was initially introduced by
Charnes and Cooper [1]. Several models and methodologies used to solve SP have
been proposed by many researchers [2–4]. Stancu and Wets [5] presented a nice
literature review of CCP . In most of the SP models, the uncertain parameters are as-
sumed to follow normal distributions. In some cases, the decision makers used other
non-normal distributions for their models. Goicoechea et al. [6] have presented de-
terministic equivalents to multi-objective SP models where random variables follow
different continuous distributions. Later, Goicoechea and Duckstein [7] presented
an equivalent deterministic model for a SP model where the cost coefficients are
considered as random variables following uniform distributions. Miller and Wag-
ner [8, 9] have presented a procedure to find deterministic equivalent of chance-
constrained models with joint constraints where the right-hand side parameters are
independent random variables. Further, Jagannathan [9] presented an equivalent de-
terministic model of a joint CCP problem where the technological coefficients are
normally distributed where right-hand side constants are treated as dependent ran-
dom variables. Later, Sahoo and Biswal [10] have presented the solution procedure
of some SP problems with joint constraints where the parameters follow normal and
log-normal random distribution.

In some chance-constrained programming problems, the DM is allowed to set
multiple values for some or all parameters to handle uncertainties; these types of
problems are called multi-choice chance-constrained programming (MCCCP ) prob-
lems. Healey [11] first introduced multi-choice programming technique to solve
problems under uncertainty. A survey of multi-choice programming (MCP) and its
different solution procedures have been presented by [12]. Chang [13] proposed dif-
ferent methods to solve goal programming (GP) problemswhere the aspiration levels
are considered to be of multi-choice types. They have used a binary variable to tackle
multi-choiceness of each goal. Later, Liao [14] used the method provided by Chang
[13] to solvemulti-segment GP problemwhere aspirations levels aremulti-segments.
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Further, Chang et al. [15] have proposed a newmethod to solve multi-coefficient GP,
for multi-group pricing problem. Biswal and Acharya [16] have presented a new
technique to solve MCP problems; they have used interpolating polynomials to han-
dle multi-choice parameters. Later, Acharya and Biswal [17] presented a method
to solve multi-choice SP problems where parameters present in the right-hand side
of the constraints have multiple choices, and technological coefficients are random
variables.

Genetic algorithm (GA) is a population-based stochastic search technique that is
inspired by the laws of natural evolution and selection. It was introduced by John
Holland [18] as a computer-based model to solve the problems whose deterministic
models are very costly. GA is very useful to solve optimization problems, particularly
nonlinear programming problems. Unlike classical optimization methods, GA does
not require derivatives and does not stuck at local optima during solving nonlinear
programming problems. Several researchers have applied GAs to solve many opti-
mization problems [19–21]. Homaifar et al. [22] developed a special GA to solve
nonlinear constrained optimization problems; he used a penalty function to handle
the constraints. Later, a new constraint handling technique had been developed by
Deb [23] where no penalty parameters are required. Further, Jana and Biswal [24]
proposed a GA based on stochastic simulation to solve CCP problems where some
parameters are random. Nazario and Ruggiero [25] presented a heuristic algorithm
for solving a mixed-integer programming problem, and they successfully applied
this algorithm in designing a production planning. Yokota et al. [26] presented a GA
to solve a nonlinear mixed-integer problem; they used penalty function to evaluate
chromosomes and applied this algorithm to solve several problems involving system
reliability. Later, Wasanapradit et al. [27] proposed an improved genetic algorithm to
solve nonlinear mixed-integer programming problem by improving on the work of
Yokota et al. [26].They have used secant method with bisection method for convert-
ing chromosomes from infeasible to feasible chromosomes. Recently, Mohanty et
al. [28] proposed a GA to solve multi-choice integer linear programming problems.

In this study, we have considered aCCP problem inwhich right-hand side parame-
ters of the constraints are multi-choice type and left-hand side parameters are normal
random variables. First, we apply CCP technique to convert the problem to a MCP
problem which is also nonlinear and then we use our proposed genetic algorithm to
solve the MCP directly and without using any transformation techniques.

2 Multi-choice Chance-Constrained Programming Model

The mathematical formulation of a MCCCP problem is given by:

min : z =
n∑

j=1

c j x j (1)



378 D. K. Mohanty et al.

subject to

Prob
( n∑

j=1

ai j x j ≥ bi
)

≥ (1 − βi ), bi ∈ {b(1)
i , b(2)

i , . . . , b(ti )
i }, i = 1, 2, . . . ,m (2)

0 < βi < 1, i = 1, 2 . . . ,m (3)

x j ≥ 0, j = 1, 2, 3, . . . , n. (4)

where x1, x2, . . . , xn are n decision variables, right-hand side parameter bi (i =
1, 2, . . . ,m) of the i-th constraint is considered to be multi-choice types. Each bi
(i = 1, 2, . . . ,m) has ti number of different choices. Only the left-hand side pa-
rameters ai j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) of the constraints are considered as
random variables following some continuous distributions. Here, Prob stands for
the probability, βi is the probability level up to which i-th constraint violation is
permitted. The inequalities presented by (2) are known as probabilistic constraints
or chance constraints. Charnes and Cooper [1] developed CCP technique to solve
the optimization problems involving chance constraints. Here, we assume all the
random variables ai j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) as normal independent ran-
dom variables. Using CCP technique, we will first convert MCCCP problem to an
equivalent deterministic MCP problem.

2.1 Conversion of MCCCP to Deterministic MCP

For establishing the equivalent deterministic model of the problem (1)–(4) by using
CCP technique, we consider ith constraint of the problem,

Prob
( n∑

j=1

ai j x j ≥ bi
)

≥ (1 − βi ), bi ∈ {b(1)
i , b(2)

i , . . . , b(ti )
i }

Here, the parameters ai j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) are considered to be in-
dependent random variables and are distributed normally with means μi j and vari-
ances σ 2

i j , i.e.,

ai j ∼ N (μi j , σ
2
i j ) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n)

Let hi =
n∑
j=1

ai j x j (i = 1, 2, . . . ,m) are linear combinations of random variables

ai j ( j = 1, 2, . . . , n). As ai j ( j = 1, 2, . . . , n) are independent normal random vari-
ables then their linear combinations hi , (i = 1, 2, . . . ,m) are also independent nor-
mal random variables.
So, we have
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E(hi ) = E
( n∑

j=1

ai j x j

)
=

n∑

j=1

μi j x j ,

and

Var(hi ) =
n∑

j=1

σ 2
i j x

2
j

Now from (2.1), we have

Prob
( n∑

j=1

ai j x j ≥ bi
)

≥ (1 − βi ), bi ∈ {b(1)
i , b(2)

i , . . . , b(ti )
i }, i = 1, 2, . . . ,m

i.e., Prob (hi ≥ bi ) ≥ (1 − βi )

i.e., Prob
(hi − E(hi )√

Var(hi )
≥ bi − E(hi )√

Var(hi )

)
≥ (1 − βi )

i.e.,Prob
(
Zi ≥ bi − E(hi )√

Var(hi )

)
≥ (1 − βi ) where Zi = hi − E(hi )√

Var(hi )

i.e., Prob
(
Zi ≤ bi − E(hi )√

Var(hi )

)
≤ βi

i.e.,�
(bi − E(hi )√

Var(hi )

)
≤ �(−Zβi )

i.e., E(hi ) − Zβi

√
Var(hi ) ≥ bi

i.e.,
n∑

j=1

μi j x j − Zβi

√√√√
n∑

j=1

σ 2
i j x

2
j ≥, bi bi ∈ {b(1)

i , b(2)
i , . . . , b(ti )

i }, i = 1, 2, . . . ,m

Hence, the equivalent deterministic model of the MCCCP problem (1)–(4) is a
MCP problem written as

min :z =
n∑

j=1

c j x j (5)

subject to

n∑

j=1

μi j x j − Zβi

√√√√
n∑

j=1

σ 2
i j x

2
j ≥ bi , (6)

bi ∈ {b(1)
i , b(2)

i , . . . , b(ti )
i }, i = 1, 2, . . . ,m (7)

x j ≥ 0, j = 1, 2, 3, . . . , n. (8)
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The above model is a nonlinear MCP programming model, and to solve above prob-
lem MCP directly,

∏m
i=1 ti number of nonlinear programming problems have to be

solved, and the whole procedure is generally very complex and time-consuming.
Several models and transformation techniques have been developed to tackle the
presence of multi-choice parameters in the above model. Some important transfor-
mation techniques have been briefly discussed below.

2.2 Transformation Techniques for MCP Problem

Here, we discuss different transformation techniques used generally for transforming
a MCP problem into a corresponding optimization problem.

(i) Auxiliary Variable Technique:
This approach has been developed byRavindran et al. [29]. In this approach, one
binary variable is used for each alternative choices of a multi-choice parameter,
and one extra constraint will be added for each multi-choice parameter. For
example, if the multi-choice parameter bi has ti number of multi-choice values,
b(1)
i , b(2)

i , . . . , b(ti )
i , then we will have ti number of binary variables. So,for the

ith constraint of the problem (5)–(7), the equivalent constraints will be,

n∑

j=1

μi j x j − Zβi

√√√√
n∑

j=1

σ 2
i j x

2
j ≥ s(1)

i b(1)
i + s(2)

i b(2)
i + · · · + s(ti )

i b(ti )
i , i = 1, 2, 3, . . . ,m

(9)

s(1)
i + s(2)

i + · · · + s(ti )
i = 1, i = 1, 2, 3, . . . ,m (10)

where s(1)
i , s(2)

i , . . . , s(ti )
i , (i = 1, 2, . . . ,m) are ti number of binary variables.

In this technique, m-number of extra constraints, and
∑m

i=1 ti number of extra
binary variables are required for transforming the MCP problem.

(ii) Binary Variable Technique:
Biswal and Acharya [30] proposed this approach to transformMCLP problem.
Here, total

∑m
i=1�( ln(ti )ln 2 )� number of binary variables are required for tackling

themulti-choice parameters of the problem (5)–(7). Like the previous approach,
here some additional constraints are also required related to transform the prob-
lem into an equivalent NLP model. The number of extra constraints depends
on the number of different choices of multi-choice parameters. The additional
constraints are used to restrict the repetition of the alternative choices of the
parameter. There is no additional constraint if ti = 2 or 4 or 8, if ti = 3 or 7,
then only one auxiliary constraint is required, we require 3 and 2 additional
constraints respectively for ti = 5 and 6 . Details of this technique can be found
in the paper by Biswal and Acharya [30]. Here, less number of binary variables
and less number of extra constraints are required in this approach than the
previous approach.
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Table 1 Data table for multi-choice coefficient bi
zi 0 1 2 · · · ti − 1

fbi (zi ) b(1)
i b(2)

i b(3)
i · · · b(ti )

i

(iii) Interpolating Polynomial Technique:
This approach has been also developed by Biswal and Acharya [16].Here,
for each of the multi-choice parameter, an integer variable is introduced. This
has been done to reduce number of extra constraints and additional variables.
For ith constraint of the problem (5)–(7), an integer variable zi is introduced
for the multi-choice parameter bi . As there are ti number of different choices
available for the multi-choice parameter bi , we have ti number of functional
values associated with corresponding t − i number of choices. The ti number
of nodes nodes and the corresponding functional values at these nodes are
given in Table1. An interpolating polynomial fbi (zi ) of degree ti − 1 has been
constructed which interpolates the nodes and their corresponding functional
values given in (Table1). Using the Lagranges interpolation formula [31], the
corresponding interpolating polynomial has been established as:

fbi (zi ) = (zi − 1)(zi − 2) · · · (zi − ti + 1)

(−1)(ti−1)(ti − 1)! b(1)
i

+ zi (zi − 2) · · · (zi − ti + 1)

(−1)(ti−2)(ti − 2)! b(2)
i

+ zi (zi − 1)(zi − 3) · · · (zi − ti + 1)

(−1)(ti−3)2!(ti − 3)! b(3)
i + · · · (11)

+ zi (zi − 1)(zi − 2) · · · (zi − ti + 2)

(ti − 1)! b(ti )
i , i = 1, 2, . . . ,m.

Therefore, the corresponding transformed model of the problem (1)–(3) is given by:

min z =
n∑

j=1

c j x j (12)

subject to

n∑

j=1

μi j x j − zγi

√√√√
n∑

j=1

σ 2
i j x

2
j ≥ fbi (zi ), i = 1, 2, 3, . . . ,m (13)

x j ≥ 0, j = 1, 2, 3, . . . , n; 0 ≤ zi ≤ ti − 1; zi ∈ N0 i = 1, 2, 3, . . . ,m. (14)
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where fbi (zi ) is given by (11). Here, the obtained model is a mixed-integer NLP
model. In this approach, Lagranges interpolating polynomial has been applied for
transformation of MCP problem; similarly, one can use other interpolating polyno-
mials to handle the multi-choiceness of the parameters. This approach requires no
additional constraints and less number of binary variables as compared to previous
techniques.

3 Genetic Algorithm

Genetic algorithm (GA) is a stochastic search-based algorithm inspired by the process
of natural evolution and selection.GAwas developed by JohnHolland and his team in
1975 at the University ofMichigan. In GA, there are possible sets of solutions known
as population. Like natural genetics, these solutions have to perform mutation and
crossover (recombination) operations to produce new offsprings. These processes
are continued for several generations or till the favorable result is obtained.

Advantages of GA
GA has several benefits which have made it very popular. These are:

• Most of the classical optimization methods are gradient-based; they often have
tendencies of getting stuck at the local optima.On contrary,GAbeing a population-
based technique does not involve any derivative to solve the problem and avoid
getting stuck during the process.

• GA is sufficient and more faster as compared to conventional optimization
methods.

• It has the ability to solve single, multi-objective , linear, nonlinear optimization
problems, and it can solve problems involving continuous, discrete, or mixed-
integer variables.

• It provides a set of good or efficient solutions and not merely a single solution.
• GA is very useful in solving difficult problems like NP-hard problems within short
time.

• It is also very efficient in solving optimization problems involving large search
space.

Basic Terminology
Before starting discussion on GA, we will discuss the basic terminologies used in
GA for better understanding of the algorithm.
Population—It is a set of all possible solutions involved in the search process. Size
of population varies from problem to problem. The population size must be as big
as possible for better result.
Chromosomes—Each solution is called a chromosome which is analogous to the
chromosome in natural genetics.
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Gene—A chromosome is made up of genes. Practically, when a chromosome is
represented as a binary string, then each bit is represented as a gene.
Genotype—Population in the computation space is known as genotype.
Phenotype—Population in the actual real-world solution space is known as pheno-
type.
Encoding and Decoding—Encoding is a process of transforming from the pheno-
type to genotype space so that computer can process, for example, when a chromo-
some is transformed from decimal to its binary equivalent. Similarly, decoding is a
process of converting a solution from the genotype to the phenotype space. Decoding
is required for fitness evaluation. There are different types of encoding techniques
available in GA; these are namely: binary encoding, octal encoding, hexadecimal
encoding, permutation encoding, value encoding, etc.
Crossover—Crossover in GA is analogous to biological crossover. Here, more than
one chromosomes are selected as parent to produce one or more offsprings. There
are different types of crossover operations available for GA, namely single-point
crossover, two-point and k-point crossover, and uniform crossover, etc.
Mutation —Mutation in genetic algorithm is used to introduce and maintain ge-
netic diversity of populations from one generation to next generation. It changes
one or more gene values of chromosomes by performing bit-by-bit basis. For differ-
ent genome types, different mutation techniques are available. These are uniform,
nonuniform, gaussian, shrink, boundary, etc.
Termination Condition—The execution of GA can be stopped either GA com-
pletes a fixed number of generations or the fitness values of the chromosomes are
not improved after completion of a certain number of generations.

3.1 GA for MCP Problem

In previous section, we witnessed that different model formed by using many trans-
formation techniques to MCP are generally mixed-integer nonlinear programming
models, and these also involve some extra variables and/or extra constraints. We
prefer genetic algorithm (GA) over traditional approaches to solve the above trans-
formed models because GA is more robust than other traditional methods, it never
get stuck at local optima, and it does not involve any derivative in it. GA also has
more success rate while solving nonlinear programming problems. It also solves both
continuous and discrete functions. Apart from these, our proposed GA solves MCP
problems directly which does not require any transformation techniques; hence, the
process does not involve or create additional variables or extra constraints.

Step-by-Step procedure for GA Here, our proposed genetic algorithm for MCP
problems has been described as follows:
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1. Representation and initialization of population
First, we define population size Psize and then we represent the chromosome. Let
Y1,Y2, . . . ,Yn be the n-number of decision variables and then each chromosome
is represented as:

YP = (Y1,Y2, . . . ,Yn)P

where P = 1, 2, . . . , Psize, and all chromosomes are initialized randomly. As
Y j ≥ 0, ( j = 1, 2, . . . , n), the values of decision variables Y j ( j = 1, 2, . . . , n)

are initialized uniformly between 0 and the upper limits of jth decision variable.
2. Constraints Checking

In this step, constraints checking is done for all the constraints and for the different
choices of multi-choice parameters present in MCP problem. For example, if the
ith constraint isGi (x, μ, σ ) ≥ bi , bi ∈ {b(1)

i , b(2)
i , . . . , b(ti )

i }, (i = 1, 2, . . . ,m)

where right-hand side parameter has ti number of alternative choices and then
we check the constraints by Gi (x, μ, σ ) ≥ b1i , or Gi (x, μ, σ ) ≥ b2i , or,…, ,or
Gi (x, μ, σ ) ≥ btii for i = 1, 2, . . . ,m.

3. Fitness
In this stage, fitness value of each chromosome is calculated. Here, we have taken
objective function values as the fitness values. After he chromosomes satisfying
constraint checking conditions, their corresponding fitness values are calculated.

4. Selection
In this step, fittest individual chromosomes are selected as parents from a popu-
lation to create offsprings for next generation. Here, we have used roulette-wheel
selection strategy [18] to solve our problem.

5. Crossover
Here, we have used single-point crossover in our algorithm. First crossover prob-
ability Pc is set, so that we have an expected number PcX Psize of chromosomes
to take part in crossover operation. Then the crossover point is selected randomly.
A a random number R is generated in the range (0, 1) for each pair of chromo-
somes in the current population, if R < Pc and then given pair of chromosomes
is selected to undergo crossover operation.

6. Mutation
Here, we have used uniform crossover in our algorithm. First, the probability of
mutation Pm is set, so that we have an expected number PmX Psize of chromosomes
which will take part in mutation operation. A random number R is generated
within (0, 1) for every bit in the population. If R < Pm, then the chromosome is
selected to undergo mutation operation.

7. Termination
This is final stage of GA where the termination condition decides when the GA
run will end. It may be determined as the number of generations or when the
solution of individual chromosomes meets a pre-specified fitness level. Here, we
have taken number of generations as stopping or termination criteria, i.e., we have
to first set the number of generations. When number of iteration becomes equal
to the generation number as defined, then the execution of the algorithm will be
stopped.
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3.2 Summary of the Proposed GA for MCP

Step 1: First define population size Psize, then randomly initialize psize number of
chromosomes as described above.
Step 2: Check all the constraints with respective multi-choice parameters.
Step 3: Set mutation probability Pm and crossover probability Pc. Apply crossover
and mutation operation as described above to update the chromosomes.
Step 4: Calculate the objective value with respect to individual chromosomes.
Step 5: Calculate the fitness value of each chromosome with respect to the calculated
objective values.
Step 6: According to the selection procedure described above, select the fittest chro-
mosomes for the next generation.
Step 7: If the termination criteria are satisfied, stop, and return the best chromosome
in current population as the optimal solution.
Step 8: Repeat Steps 2–7.

4 Numerical Example

In this section, we have considered an MCSP problem given by Biswal and Acharya
[32].

min :z = 24.83x1 + 28.5x2 + 43.5x3 + 45.21x4 (15)

subject to

2.3x1 + 5.6x2 + 11.1x3 + 1.3x4 ≥ b1, b1 ∈ {5, 5.4, 5.8, 6.0, 6.2} (16)

Pr(a21x1 + a22x2 + a23x3 + a24x4 ≥ b2) ≥ .95, b2 ∈ {21, 21.5, 22.0} (17)

x1 + x2 + x3 + x4 ≤ 1 (18)

x2 ≥ 0.01 (19)

x j = 0, 1, 2, 3, 4 (20)

where E(a21) = 12.0, E(a22) = 11.9, E(a23) = 41.8, E(a24) = 52.1
and Var(a21) = 0.53,Var(a22) = 0.44,Var(a23) = 4.58,Var(a21) = 0.79. Now us-
ing (5)–(7), the equivalent deterministic MCP model of (15)–(19) is presented as

min : z = 24.83x1 + 28.5x2 + 43.5x3 + 45.21x4 (21)
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subject to

2.3x1 + 5.6x2 + 11.1x3 + 1.3x4 ≥ b1, b1 ∈ {5, 5.4, 5.8, 6.0, 6.2} (22)

12x1 + 11.9x2 + 41.8x3 + 52.1x4 − 1.645 (23)√
0.2809x21 + 0.193x22 + 20.25x23 + 0.6241x24 ≥ b2, (24)

b2 ∈ {21, 21.5, 22.0} (25)

x1 + x2 + x3 + x4 ≤ 1 (26)

x2 ≥ 0.01 (27)

x j = 0, 1, 2, 3, 4 (28)

Using Interpolating polynomial approach as given in (11), the abovemodel (21)–(28)
can be transformed to a mixed-integer nonlinear programming model as

min :z = 24.83x1 + 28.5x2 + 43.5x3 + 45.21x4 (29)

subject to

2.3x1 + 5.6x2 + 11.1x3 + 1.3x4 ≥ (30)

5 − 0.2333z1 + 0.28333z21 − 0.1333z31 + 0.16667z41 (31)

12x1 + 11.9x2 + 41.8x3 + 52.1x4 − 1.645 (32)√
0.2809x21 + 0.193x22 + 20.25x23 + 0.6241x24 ≥ 21.0 + 0.5z2, (33)

x1 + x2 + x3 + x4 ≤ 1 (34)

x2 ≥ 0.01 (35)

z1 = 0, 1, 2, 3, 4; z2 = 0, 1, 2 (36)

x j = 0, 1, 2, 3, 4 (37)

The above problem is solved by using LINGO(11.0) [33] software and the opti-
mal solutions are found as follows: x1 = 0, x2 = 0.0100, x3 = 0.6070501, x4 = 0,
z1 = 3.000000, z2 = 0.007525087 and minimum value of z = 26.69168.

Again, the above model (21)–(28) is a nonlinear MCP problem which has been
solved by our proposed GA. The proposed GA is coded in C programming lan-
guage with population size is 100, total number of generations = 1001, crossover
probability = 0.2, mutation probability = 0.01.

The result obtained after the execution of 900 number of generations using GA is
shown in Table 2.

The result obtained in 900th generation is repeated in the next generations.
Hence, the optimal solution obtained is as follows: x1 = 0.002, x2 = 0.01, x3 =
0.4321284, x4 = 0.115492 and minimum value of z = 24.3 Here, we see that our
proposed model solved by genetic algorithm gives better result as compared to those
obtained by using transformation techniques.
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Table 2 Result using genetic algorithm
Generation No. x1 x2 x3 x4 f

0 7.611316e−002 4.234443e−002 4.260384e−001 1.387066e−001 2.79e+001

20 7.304505e−002 2.651449e−002 4.125988e−001 1.387825e−001 2.68e+001

40 3.129231e−002 2.560024e−002 4.181380e−001 1.149749e−001 2.49e+001

60 3.000078e−002 2.535633e−002 4.181380e−001 1.144302e−001 2.48e+001

80 3.000078e−002 2.535633e−002 4.181380e−001 1.144302e−001 2.48e+001

100 3.000078e−002 2.535633e−002 4.181380e−001 1.144302e−001 2.48e+001

120 2.502138e−002 2.025904e−002 4.233396e−001 1.132713e−001 2.47e+001

140 2.502138e−002 2.025904e−002 4.233396e−001 1.132713e−001 2.47e+001

160 2.502138e−002 2.012338e−002 4.232702e−001 1.133720e−001 2.47e+001

180 2.502138e−002 2.012338e−002 4.232702e−001 1.133720e−001 2.47e+001

200 2.502138e−002 2.019909e−002 4.232091e−001 1.133720e−001 2.47e+001

220 2.502138e−002 2.019909e−002 4.232091e−001 1.133720e−001 2.47e+001

240 2.595318e−002 1.927532e−002 4.219844e−001 1.142358e−001 2.47e+001

260 2.595318e−002 1.927532e−002 4.219844e−001 1.142358e−001 2.47e+001

280 2.595318e−002 1.927532e−002 4.219844e−001 1.142358e−001 2.47e+001

300 2.595318e−002 1.925614e−002 4.219844e−001 1.142358e−001 2.47e+001

320 2.558238e−002 1.948115e−002 4.221697e−001 1.140836e−001 2.47e+001

340 2.558238e−002 1.621906e−002 4.236711e−001 1.140836e−001 2.47e+001

360 2.560271e−002 1.621906e−002 4.237245e−001 1.138546e−001 2.47e+001

380 2.560271e−002 1.607948e−002 4.237245e−001 1.138546e−001 2.47e+001

400 2.526425e−002 1.627974e−002 4.237245e−001 1.138546e−001 2.47e+001

420 2.495948e−002 1.626961e−002 4.237245e−001 1.140010e−001 2.47e+001

440 2.495948e−002 1.626961e−002 4.237245e−001 1.140010e−001 2.47e+001

460 2.495948e−002 1.626961e−002 4.237245e−001 1.140010e−001 2.47e+001

480 2.495948e−002 1.626961e−002 4.237245e−001 1.140010e−001 2.47e+001

500 7.273431e−003 1.595163e−002 4.309391e−001 1.134047e−001 2.45e+001

520 5.954036e−003 1.572137e−002 4.310767e−001 1.136155e−001 2.45e+001

540 6.130728e−003 1.572137e−002 4.310268e−001 1.135640e−001 2.45e+001

560 6.130728e−003 1.572137e−002 4.310268e−001 1.135640e−001 2.45e+001

580 6.130728e−003 1.572137e−002 4.310268e−001 1.135640e−001 2.45e+001

600 4.076472e−003 1.246111e−002 4.334690e−001 1.132719e−001 2.44e+001

620 3.549610e−003 1.246111e−002 4.331080e−001 1.135817e−001 2.44e+001

640 3.549610e−003 1.246111e−002 4.331080e−001 1.135325e−001 2.44e+001

660 1.997880e−003 1.246111e−002 4.331080e−001 1.140257e−001 2.44e+001

680 1.398539e−003 1.246111e−002 4.331080e−001 1.140257e−001 2.44e+001

700 1.385619e−003 1.246111e−002 4.331080e−001 1.140257e−001 2.44e+001

720 1.092638e−003 1.120229e−002 4.336574e−001 1.140257e−001 2.44e+001

740 1.092638e−003 1.120229e−002 4.336574e−001 1.140257e−001 2.44e+001

760 1.092638e−003 1.120229e−002 4.336574e−001 1.140257e−001 2.44e+001

780 1.092638e−003 1.120229e−002 4.336574e−001 1.140257e−001 2.44e+001

800 2.830075e−004 1.090466e−002 4.331912e−001 1.146130e−001 2.43e+001

820 2.646072e−004 1.088532e−002 4.331763e−001 1.146130e−001 2.43e+001

840 2.858449e−004 1.023446e−002 4.320443e−001 1.154921e−001 2.43e+001

860 2.858449e−004 1.004285e−002 4.321284e−001 1.154921e−001 2.43e+001

880 2.858449e−004 1.004285e−002 4.321284e−001 1.154921e−001 2.43e+001

900 2.858449e−004 1.004285e−002 4.321284e−001 1.154921e−001 2.43e+001
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5 Conclusions

The stated MCCCP problem is first converted to a deterministic nonlinear MCP
programming problem using chance-constrained technique. The transformed model
obtained is a nonlinear MCP programming model. As GA is very useful method to
solve NLP problem, our proposed GA for MCP is used to solve the nonlinear MCP
programming problem without applying any transformation technique. Hence, our
proposed GA does not require any extra variables or additional constraints unlike
other available techniques, and also, we observed that our proposed model solved by
genetic algorithm gives better result as compared to those obtained by transforma-
tion techniques.The model we consider in this study has right-hand side parameters
are multi-choice type. Our proposed GA can be modified to solve MCCCP prob-
lem where cost coefficients or/and technological coefficients of the problems are
multi-choice parameters. This study can be extended tomulti-level ormulti-objective
framework with different probability distributions.
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The ISI Index of Edge-Semitotal
and Total Graphs

A. Mahanta , A. Bharali and J. Buragohain

Abstract We have many associated graphs when it comes to the domain of a con-
nected graph. Vertex-semitotal graph R(G), total graph T (G), edge-semitotal graph
Q(G) and line graph L(G) are some examples of such graphs. In this paper, we
study the ISI index of Q(G), T (G), Q-sums and T-sums and obtain explicit expres-
sions for the same. Also, the extremal cases of the index for these graphs have been
investigated.

Keywords Degree of vertex · Line graph · ISI index · Edge-semitotal graph ·
Total graph

1 Introduction

In our discussion, we have considered only finite, simple, undirected and connected
graphs. We have denoted the vertex set, edge set and the degree of a vertex u in a
graph G by V (G), E(G) and dG(u), respectively. We have used Pn to represent a
path of order n. Let δ = min

︸︷︷︸

u

dG(u).

To obtain the edge-semitotal graph Q(G) from a graph G, we can insert a new
vertex into each edge of G and then join these new pairs of vertices on adjacent
edges of G (see Fig. 1). The total graph T (G) has the edges and vertices of G as its
vertices with the adjacency of the elements ofG determining the adjacency in T (G).
For more detail on these operations, one may refer to [1] and Handbook of Product
Graphs by Hammack et al. [2].
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Fig. 1 Example of Q and T
operation of graph

Fig. 2 P3 +Q P2 and
P3 +T P2

Let us consider twographsG1 andG2 and F ∈ {Q, T }. Then, theF-sum,G1+FG2

generates |V (G2)| copies of the graph F(G1) which can be labelled by the vertices
of G2. Here, we have two categories of vertices: the vertices in V (G1) which are
denoted by black vertices and the vertices in E(G1) which are denoted by white
vertices. We only join black vertices with the same name in F(G1) in which their
corresponding labels are adjacent in G2 (Fig. 2). More details into these sums can
be looked up in [1].

The topological index of a molecular graph is in simple terms a number generated
out of it which quantifies the graph’s molecular structuring and branching pattern
with various physical, chemical and biological properties of the graph. Though a lot
many topological indices have been defined based on degree, distance, eccentricity
and so on, yet not all of them have been found to be significant. One may refer to
[3] for an account of some degree-based topological indices. On the other hand, the
ISI index is found to have special impetus as predictor of total surface area of octane
isomers. Out of the 148 discrete Adriatic indices studied in 2010, the ISI index finds
its place in the list of twenty indices selected as significant predictors.

We now state the formal definitions of some of the topological indices that we
have used in our study.

First Zagreb index: M1(G) = ∑

u∈V (G)

(dG(u))2 = M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)).

Inverse degree index: I D(G) = ∑

u∈V (G)

1
dG (u)

.

Harmonic index: H(G) = ∑

uv∈E(G)

2
dG (u)+dG (v)

.
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ISI index [4]: I S I (G) = ∑

uv∈E(G)

1
1

dG (u)
+ 1

dG (v)

= ∑

uv∈E(G)

dG (u)dG (v)

dG (u)+dG (v)
.

The twenty-first century has seen many notable works based on the ISI index
of graphs. Pattabiraman [4, 5] in his paper presents upper and lower bounds on the
ISI index in terms of some molecular structural parameters and relates this index to
various well-known molecular descriptors. Some recent contributions related to the
ISI index can be found in [5–7]. However, unlike other classical topological indices,
limited literature has been found for the ISI index of graph operations. There are
several papers found in the literature reporting works on Zagreb and harmonic index
on operations of graphs. Some recent contributions in this context are [8–11].

In this work, we compute the ISI index of edge-semitotal graphs, total graphs,
Q-sums and T-sums. The rest of the paper is organised as follows. In Sect. 2, we study
the ISI index of edge-semitotal graphs and total graphs and obtain upper bounds for
them. In Sect. 3, we propose upper bounds for Q-sums and T-sums, respectively.
Finally, in Sect. 4, conclusions are made.

2 Bounds for the ISI Index for Edge-Semitotal and Total
Graphs

It is to be noted that dQ(G)(u) = dG(u) for all u ∈ V (G) and dQ(G)(y) = dG(u) +
dG(v) = dL(G)(y)+ 2 for all y ∈ V (Q(G))\V (G), where y is inserted into the edge
uv in G.

Let be the set of all graphs of order ni and size m j .

Theorem 1.1 Let Then,

ISI(Q(G)) <
9

8
M1(G) − 3

4
m + 1

16
M2(L(G)) + 1

8
M1(L(G)) + 1

2
H(L(G))

+ 1

4
ISI(L(G)).

Proof

ISI(Q(G)) =
∑

uv∈E(G)

(

dQ(G)(u)dQ(G)(x)

dQ(G)(u) + dQ(G)(x)
+ dQ(G)(x)dQ(G)(v)

dQ(G)(x) + dQ(G)(v)

)

+
∑

yy′∈E(L(G)

(

dQ(G)(y)dQ(G)

(

y′)

dQ(G)(y) + dQ(G)(y′)

)

(where x is the vertex inserted into the edge uv ofG.)

=
∑

uv∈E(G)

(

dG(u)(dG(u) + dG(v))

dG(u) + (dG(u) + dG(v))
+ (dG(u) + dG(v))dG(v)

(dG(u) + dG(v)) + dG(v)

)
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+
∑

yy′∈E(L(G)

( (

2 + dL(G)(y)
)(

2 + dL(G)

(

y′))
(

2 + dL(G)(y)
) + (

2 + dL(G)(y′)
)

)

=
∑

uv∈E(G)

(

dG(u)(dG(u) + dG(v))

dG(u) + (dG(u) + dG(v))
+ (dG(u) + dG(v))dG(v)

(dG(u) + dG(v)) + dG(v)

)

+
∑

yy′∈E(L(G)

( (

2 + dL(G)(y)
)(

2 + dL(G)

(

y′))
(

2 + dL(G)(y)
) + (

2 + dL(G)(y′)
)

)

=
∑

1 +
∑

2.

Using Jensen’s inequality, for every uv ∈ E(G), we have

dG(u)(dG(u) + dG(v))

dG(u) + (dG(u) + dG(v))
≤ (dG(u) + dG(v)) + dG(u)

4
,

(dG(u) + dG(v))dG(v)

(dG(u) + dG(v)) + dG(v)
≤ dG(v) + (dG(u) + dG(v))

4
.

Therefore,

∑

1 <
3
∑

uv∈E(G)(dG(u) + dG(v))

4
= 3

4
M1(G).

Similarly, for every yy′ ∈ E(L(G)),

(

2 + dL(G)(y)
)(

2 + dL(G)

(

y′))

4 + (

dL(G)(y) + dL(G)

(

y′)) ≤ 3

4
+ dL(G)(y)dL(G)

(

y′)

16
+

(

dL(G)(y) + dL(G)

(

y′))

8

+ 1

2
× 2

(

dL(G)(y) + dL(G)

(

y′)) + dL(G)(y)dL(G)

(

y′)

4
(

dL(G)(y) + dL(G)

(

y′))

∑

2 ≤ 3

4
|E(L(G))| + M2(L(G))

16
+ M1(L(G))

8
+ H(L(G))

2
+ ISI(L(G))

4

= 3

4

(M1(G) − m)

2
+ M2(L(G))

16
+ M1(L(G))

8
+ H(L(G))

2
+ ISI(L(G))

4

= 3M1(G)

8
− 3m

4
+ M2(L(G))

16
+ M1(L(G))

8
+ H(L(G))

2
+ ISI(L(G))

4
.

Hence,

ISI(Q(G)) <
9M1(G)

8
− 3m

4
+ M2(L(G))

16
+ M1(L(G))

8
+ H(L(G))

2
+ ISI(L(G))

4

Example 1 For any n ≥ 4,

ISI(Q(Pn)) = 39

10
+ 2(n − 3)

4

3
+ 24

7
+ 4(n − 4) = 513

70
+ 2(n − 3)

3
+ 4(n − 4).
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We have dT (G)(u) = 2dG(u) for all u ∈ V (G) and dT (G)(y) = dG(u) + dG(v) =
dL(G)(y) + 2 for all y ∈ V (Q(G))\V (G), where vertex y is inserted in uv in G.

Theorem 1.2 Let Then,

ISI(T (G)) ≤ 2ISI(G) + 11

8
M1(G) − 3

4
m + 1

16
M2(L(G))

+ 1

8
M1(L(G)) + 1

2
H(L(G)) + 1

4
ISI(L(G))

with equality being obtained for a two-regular graph.

Proof By definition,

ISI(T (G)) =
∑

uv∈E(G)

(

dT (G)(u)dT (G)(x)

dT (G)(u) + dT (G)(x)
+ dT (G)(x)dT (G)(v)

dT (G)(x) + dT (G)(v)

)

+

+
∑

yy′∈E(L(G)

(

dT (G)(y)dT (G)

(

y′)

dT (G)(y) + dT (G)

(

y′)
)

+
∑

uv∈E(G)

(
dT (G)(u)dT (G)(v)

dT (G)(u) + dT (G)(v)

(where x is the vertex inserted into the edge uv if G.)

=
∑

uv∈E(G)

(

2
dG (u)

(

dG (u) + dG (v)
)

2dG (u) + (

dG (u) + dG (v)
)

)

+
(

dG (u) + dG (v)
)

2dG (v)
(

dG (u) + dG (v)
) + 2dG (v)

+
∑

yy′∈E(L(G)

( (

2 + dL(G)(y)
)(

2 + dL(G)

(

y′))
(

2 + dL(G)(y)
) + (

2 + dL(G)

(

y′))
)

∑

uv∈E(G)

(

2dG (u)2dG (v)

2dG (u) + 2dG (v)

)

=
∑

uv∈E(G)

(

2
dG (u)

(

dG (u) + dG (v)
)

2dG (u) + (

dG (u) + dG (v)
)

)

+
(

dG (u) + dG (v)
)

2dG (v)
(

dG (u) + dG (v)
) + 2dG (v)

+
∑

yy′∈E(L(G)

( (

2 + dL(G)(y)
)(

2 + dL(G)

(

y′))
(

2 + dL(G)(y)
) + (

2 + dL(G)

(

y′))
)

+ 2ISI(G)

= 2ISI(G) +
∑

1 +
∑

2.

From Jensen’s inequality, for every uv ∈ E(G), we have

2dG(u)(dG(u) + dG(v))

2dG(u) + (dG(u) + dG(v))
≤ (dG(u) + dG(v))

4
+ dG(u)

2
,

with equality obtained if and only if dG(u) = dG(v).

(dG(u) + dG(v))2dG(v)

(dG(u) + dG(v)) + 2dG(v)
≤ (dG(u) + dG(v))

4
+ dG(v)

2
,

with equality obtained if and only if dG(u) = dG(v)

Therefore,

∑

1 ≤
∑

uv∈E(G)

(dG(u) + dG(v))
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= M1(G).

Similarly, for every yy′ ∈ E(L(G)),

(

2 + dL(G)(y)
)(

2 + dL(G)

(

y′))

4 + (

dL(G)(y) + dL(G)(y′)
)

≤ 3

4
+ dL(G)(y)

16
+ dL(G)(y) + dL(G)

(

y′)

8

+ 1

2

2

dL(G)(y) + dL(G)(y′)
+ dL(G)(y)dL(G)

(

y′)

dL(G)(y) + dL(G)(y′)
,

with equality obtained if dG(u) = dG(v) = 2.
Therefore,

∑

2

≤ 3

4
|E(L(G))| + 1

16
M2(L(G)) + 1

8
M1(L(G)) + 1

2
H(L(G)) + 1

4
ISI(L(G))

= 3

4

(

1

2
M1(G) − m

)

+ 1

16
M2(L(G)) + 1

8
M1(L(G)) + 1

2
H(L(G)) + 1

4
ISI(L(G))

= 3

8
M1(G) − 3

4
m + 1

16
M2(L(G)) + 1

8
M1(L(G)) + 1

2
H(L(G)) + 1

4
ISI(L(G))

Hence,

ISI(T (G)) ≤ 2ISI(G) + 11

8
M1(G) − 3

4
m + 1

16
M2(L(G))

+ 1

8
M1(L(G) + 1

2
H(L(G)) + 1

4
ISI(L(G)).

Example 2 For any n ≥ 4,

ISI(T (Pn)) = 8

3
+ 2(n − 3) + 2

(

6

5
+ 12

7

)

+ 4(n − 3) + 24

7
+ 4(n − 4).

= 1252

105
+ 6(n − 3) + 4(n − 4)

3 The ISI Indices of Q-Sums and T-Sums

In this section, some upper bounds are proposed for the ISI index of G1 +Q G2,
G1 +T G2 in terms of M1(G1), M1(G2), I D(G1), H(G1) and M1(L(G1)).

Theorem 2.1 Let and Then,



The ISI Index of Edge-Semitotal and Total Graphs 397

ISI
(

G1 +Q G2
)

<
3n2M1(G1)

2
+ n1M1(G2)

4
+ n2M1(Q(G1))

4
+ 3n2M1(L(G1))

4
+ m1(2m2 − 3n2).

Proof

ISI
(

G1 +Q G2
) =

∑

u∈V (G1)

∑

v1v2∈E(G2)

(

d(u, v1)d(u, v2)

d(u, v1) + d(u, v2)

)

+
∑

v∈V (G2)

∑

u1u2∈E(Q(G1))

(

d(u1, v)d(u2, v)

d(u1, v) + d(u2, v)

)

=
∑

1 +
∑

2

Now,

∑

1 =
∑

u∈V (G1)

∑

v1v2∈E(G2)

(

dQ(G1)(u) + dG2(v1)dQ(G1)(u) + dG2(v2)

2dQ(G1)(u) + (

dG2(v1) + dG2(v2)
)

)

For each u ∈ V (G1) and each v1v2 ∈ E(G2), by Jensen’s inequality, we have

dQ(G1)(u) + dG2(v1)dQ(G1)(u) + dG2(v2)

dQ(G1)(u) + dG2(v1) + dQ(G1)(u) + dG2(v2)
≤ dG1(u)

2
+ dG2(v1) + dG2(v2)

4

with equality holding if and only if G2 being regular.
Therefore,

∑

1 ≤
∑

u∈V (G1)

∑

v1v2∈E(G2)

[

dG1(u)

2
+ dG2(v1) + dG2(v2)

4

]

= m2

2

∑

u∈V (G1)

dG1 + 1

4

∑

u∈V (G1)

∑

v1v2∈E(G2)

dG2(v1) + dG2(v2)

= 2m1m2

2
+ n1M1(G2)

4
= m1m2 + n1M1(G2)

4

Also,

∑

2 =
∑

v∈V (

G2
)

∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

⎛

⎜

⎝

(

dQ
(

G1
)(u1) + dG2 (v)

)(

dQ
(

G1
)(u2) + dG2 (v)

)

(

dQ
(

G1
)(u1) + dG2 (v)

)

+
(

dQ
(

G1
)(u2) + dG2 (v)

)

⎞

⎟

⎠

+
∑

v∈V (

G2
)

∑

u1u2 ∈ E(Q(G1))

u1, u2 ∈ V (Q(G1))\V (G1)

⎛

⎜

⎝

(

dQ
(

G1
)(u1) + dG2 (v)

)(

dQ
(

G1
)(u2) + dG2 (v)

)

(

dQ
(

G1
)(u1) + dG2 (v)

)

+
(

dQ
(

G1
)(u2) + dG2 (v)

)

⎞

⎟

⎠
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=
∑

v∈V (

G2
)

∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

⎛

⎜

⎝

(

dQ
(

G1
)(u1) + dG2 (v)

)

dQ
(

G1
)(u2)

(

dQ
(

G1
)(u1) + dG2 (v)

)

+ dQ
(

G1
)(u2)

⎞

⎟

⎠

+
∑

v∈V (

G2
)

∑

u1u2 ∈ E(Q(G1))

u1, u2 ∈ V (Q(G1))\V (G1)

(

dQ
(

G1
)(u1)dQ

(

G1
)(u2)

dQ
(

G1
)(u1) + dQ

(

G1
)(u2)

)

For each v ∈ V (G2) and each u1u2 ∈ E(Q(G1)) with u1 ∈ V (G1) and u2 ∈
V (Q(G1))\V (G1), by Jensen’s inequality, we have

(

dQ(G1)(u1) + dG2(v)
)

dQ(G1)(u2)
(

dQ(G1)(u1) + dG2(v)
) + dQ(G1)(u2)

≤
(

dQ(G1)(u1) + dQ(G1)(u2)
) + dG2(v)

4
,

with equality being valid if and only if Q(G1) is regular and degree of any vertex
fromG2 is zero which is not possible as we have studied only connected graphs here.

Again,

dQ(G1)(u1)dQ(G1)(u2)

dQ(G1)(u1) + dQ(G1)(u2)
≤

(

dQ(G1)(u1) + dQ(G1)(u2)
)

2
,

where equality holds if and only if Q(G1) is regular.
Therefore,

∑

2 ≤ 1

4

∑

v∈V (G2)

∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

(

dQ(G1)(u1) + dQ(G1)(u2)
)

+ 1

2

∑

v∈V (G2)

∑

u1u2 ∈ E(Q(G1))

u1, u2 ∈ V (Q(G1))\V (G1)

(

dQ(G1)(u1) + dQ(G1)(u2)
)

+ 1

4

∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

∑

v∈V (G2)

dG2(v)

We have,

∑

v∈V (G2)

∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

(dQ(G1)(u1) + dQ(G1)(u2)
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=
∑

v∈V (G2)

∑

u1u1′ ∈E(G2)

(dQ(G1)(u1) + dQ(G1)(u2) + dQ(G1)(u2) + dQ(G1)(u1′))

(where u2is the vertex inserted into the edge u1u1′ofG1.)

=
∑

v∈V (G2)

[M1(Q(G1) −
∑

yy′∈E(L(G1))

(dQ(G1)(y)

+ dQ(G1)

(

y′))]

And,

∑

v∈V (G2)

∑

u1u2 ∈ E(Q(G1))

u1, u2 ∈ V (Q(G1))\V (G1)

(

dQ(G1)(u1) + dQ(G1)(u2)
)

=
∑

v∈V (G2)

∑

u1u2∈E(L(G1))

(

4 + dL(G1)(u1) + dL(G1)(u2)
)

= 2n2M1(G1) − 4m1n2 + n2M1(L(G1))
∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

∑

v∈V (G2)

dG2(v)

=
∑

u1u2 ∈ E(Q(G1))

u1 ∈ V (G1), u2 ∈ V (Q(G1))\V (G1)

(2m2) = (2m1)(2m2) = 4m1m2

Therefore,

∑

2 ≤ 3n2M1(G1)

2
+ 3n2M1(L(G1))

4
+ n2M1(Q(G1))

4
− 3m1n2 + m1m2.

Hence,

ISI
(

G1 +Q G2
)

< m1m2 + n1M1(G2)

4
+ 3n2M1(G1)

2
+ 3n2M1(L(G1))

4

+ n2M1(Q(G1))

4
− 3m1n2 + m1m2

= 3n2M1(G1)

2
+ n1M1(G2)

4
+ n2M1(Q(G1))

4
+ 3n2M1(L(G1))

4
+ m1(2m2 − 3n2).

Theorem 2.2 Let and Then,

ISI(G1 +T G2) < n2M1(G1) + n1M1(G2)

4
+ n2M1(T (G1))

4
+ 2m1(2m2 − n2)
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Proof

ISI(G1 +T G2) =
∑

u∈V (G1)

∑

v1v2∈E(G2)

(

d(u, v1)d(u, v2)

d(u, v1) + d(u, v2)

)

+
∑

v∈V (G2)

∑

u1u2∈E(Q(G1))

(

d(u1, v)d(u2, v)

d(u1, v) + d(u2, v)

)

=
∑

1 +
∑

2

Now,

∑

1 =
∑

u∈V (G1)

∑

v1v2∈E(G2)

((

dT (G1)(u) + dG2(v1)
)(

dT (G1)(u) + dG2(v2)
)

2dT (G1)(u) + (

dG2(v1) + dG2(v2)
)

)

Therefore,

∑

1 ≤ 2m1m2 + n1M1(G2)

4
,

where equality holds if and only if G2 is regular.
Also,

∑

2 =
∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1, u2 ∈ V (G1)

∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1 ∈ V (G1), u2 ∈ V (T (G1))\V (G1)

⎛

⎜

⎝

(

dT
(

G1
)(u1) + dG2 (v)

)(

dT
(

G1
)(u2) + dG2 (v)

)

(

dT
(

G1
)(u1) + dG2 (v)

)

+
(

dT
(

G1
)(u2) + dG2 (v)

)

⎞

⎟

⎠

+
∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1, u2 ∈ V (T (G1))\V (G1)

⎛

⎜

⎝

(

dT
(

G1
)(u1) + dG2 (v)

)(

dT
(

G1
)(u2) + dG2 (v)

)

(

dT
(

G1
)(u1) + dG2 (v)

)

+
(

dT
(

G1
)(u2) + dG2 (v)

)

⎞

⎟

⎠

=
∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1, u2 ∈ V (G1)

⎛

⎜

⎝

(

dT
(

G1
)(u1) + dG2 (v)

)(

dT
(

G1
)(u2) + dG2 (v)

)

(

dT
(

G1
)(u1) + dG2 (v)

)

+ (dT
(

G1
)+dG2

(v))(u2)

⎞

⎟

⎠

+
∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1 ∈ V (G1), u2 ∈ V (T (G1))\V (G1)

⎛

⎜

⎝

(

dT
(

G1
)(u1) + dG2 (v)

)

dT
(

G1
)(u2)

(

dT
(

G1
)(u1) + dG2 (v)

)

+ dT
(

G1
)(u2)

⎞

⎟

⎠

+
∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1, u2 ∈ V (T (G1))\V (G1)

(

dT
(

G1
)(u1)dT

(

G1
)(u2)

dT
(

G1
)(u1) + dT

(

G1
)(u2)

)

.
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For each v ∈ V (G2) and each u1u2 ∈ E(T (G1)) with u1, u2 ∈ V (G1), Jensen’s
inequality gives

(

dT
(

G1
)(u1) + dG2 (v)

)(

dT
(

G1
)(u2) + dG2 (v)

)

(

dT
(

G1
)(u1) + dG2 (v)

)

+
(

dT
(

G1
)(u2) + dG2 (v)

) ≤
((

dT
(

G1
)(u1) + dT

(

G1
)(u2)

)

+ 2dG2 (v)
)

4
,

with equality being valid when T (G1) is regular.
Therefore,

∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1, u2 ∈ V (G1)

⎛

⎜

⎝

(

dT
(

G1
)(u1) + dG2 (v)

)(

dT
(

G1
)(u2) + dG2 (v)

)

(

dT
(

G1
)(u1) + dG2 (v)

)

+
(

dT
(

G1
)(u2) + dG2 (v)

)

⎞

⎟

⎠ ≤ n2M1(G1)

2
+ m1m2

Following the same procedure as in the previous theorem, we have

∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1 ∈ V (G1), u2 ∈ V (T (G1))\V (G1)

⎛

⎜

⎝

(

dT
(

G1
)(u1) + dG2 (v)

)

dT
(

G1
)(u2)

(

dT
(

G1
)(u1) + dG2 (v)

)

+ dT
(

G1
)(u2)

⎞

⎟

⎠

≤ n2M1(T (G1)

4
− n2M1(G1)

2
− n2M1(L(G1))

4
− m1n2 + m1m2,

where equality holdswhen the degree of any vertex inG2 is zerowhich is not possible
in our case as we have considered connected graphs only.

And,

∑

v∈V (

G2
)

∑

u1u2 ∈ E(T (G1))

u1, u2 ∈ V (T (G1))\V (G1)

(

dT
(

G1
)(u1)dT

(

G1
)(u2)

dT
(

G1
)(u1) + dT

(

G1
)(u2)

)

≤ n2M1(G1)

2
− m1n2 + n2M1(L(G1))

4

with equality holding if and only if T (G1) is regular.
Finally, we have,

ISI(G1 +T G2) < n2M1(G1) + n1M1(G2)

4
+ n2M1(T (G1))

4
+ 2m1(2m2 − n2)

4 Conclusion

There is relatively limited study of the ISI index for various operations of graphs in
the literature. In this paper, we compute the ISI index of edge-semitotal graphs and
total graphs and propose upper bounds for them. We also establish bounds for the
ISI index of Q-sums and T-sums. The extremal cases are also taken up and studied
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in each of the bounds. The study of the ISI index for other graph operations can be
an interesting prospect for future study.
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Four New Operations of Graphs Related
to Tensor Product and Zagreb Indices

J. Buragohain , A. Bharali and A. Mahanta

Abstract The intermolecular forces of a chemical compound exist not only in
between the atoms but also between the atoms and the molecular bonds. The F-
sums of graphs, namely subdivision graph, vertex-semi-total graph, edge-semi-total
graph, and total graph of a graph which are popularly denoted by S, Q, R, and T,
respectively, can capture this property of chemical compound. In this paper, we
present four operations of graphs based on tensor product of graphs and establish
explicit expressions of Zagreb indices of the newly defined graph operations.

Keywords Degree of vertex · Zagreb indices · Operations of graphs
AMS Classification 05C76 · 05C07

1 Introduction

In this work, we consider only finite graphs which are simple (i.e., without loops
or multiple edges) and undirected. Let G be any graph with V (G) and E(G) be its
vertex set and the edge set, respectively. The degree of a vertex a in G, which we
denote as δG(a) or simply as δ(a), is the cardinality of the set of first neighboring
vertices of a. If there is a direct connection between two vertices a and b of G, then
we write it as ab ∈ E(G).

In chemical graph theory, a topological index (TI) is a mathematical quantity
which can be computed for any molecular compound. Topological indices are calcu-
lated based on the graph theoretical representation of a molecule which is known as
the molecular graph. A molecular graph consists of vertices corresponding to atoms
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and edges are defined based on various chemical bonds between the atoms in the
molecule. These TIs are also known as molecular graph-based structure descriptors
and are generally graph invariants, i.e., topological indices are invariants under graph
isomorphism. Topological index (also known as connectivity index) can be helpful in
predicting various physicochemical properties of a chemical compound, and hence,
they find importance in QSPR and QSAR studies. This kind of prediction eliminates
the constraints in laboratory experiments which are not desirable to perform due to
high risk or high cost. For example, the first genuine topological index, i.e., Randić
index, is utilized in drug designing, and the atom–bond connectivity index (or ABC
index) is utilized in modeling information about heat of formation of alkanes are
to name a few. Numerous TIs are defined based on degree, distance, eccentricity,
eigenvalue, and other graph theoretic notions. Some of these degree-based TIs may
be found in [1].

Among all the degree-based structure descriptors that exist in literature, theZagreb
indices are historically oldest which are introduced by Gutman and Trinajstić in con-
nectionwith the totalπ -electron energy of amolecule [2]. But these are considered as
topological indices only after their inceptionwhich possibly because of their intended
purpose of utility. The first Zagreb index of a graph G is defined as

M1(G) =
∑

a∈V (G)

(δG(a))2,

which can also be written as M1(G) = ∑
ab∈E(G)

(δG(a) + δG(b)), and the second

Zagreb index is defined as

M2(G) =
∑

ab∈E(G)

δG(a)δG(b).

“Zagrebgroup indices” and “Zagrebgroupparameters” are also the names devoted
to Zagreb indices. Zagreb indices can provide information about the molecular
branching as they have the power to discriminate the isomers [1]. Using basic ideas
of adjacency matrix, A(G) = [

Ai j
]
, one can define the Zagreb indices of a graph G

as follows [3]:

M1(G) =
∑

vertices

(
A2)

i i

(
A2)

i i and M2(G) =
∑

edges

(
A2)

i i

(
A2)

j j .

The general first Zagreb index Mα of a graph G is defined as [4]:

Mα
1 (G) =

∑

a∈V (G)

(δG(a))α =
∑

ab∈E(G)

(
(δG(a))α−1 + (δG(b))α−1),

where α is a real number.
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The tensor product of two graphs G1 and G2, denoted by G1 ⊗ G2, gives a new
graph with vertex set V (G1 ⊗ G2) = V (G1) × V (G2) and edge set E(G1 ⊗ G2) =
{(a, b)(c, d)|ac ∈ E(G1) and bd ∈ E(G2)}. The details of this operation may be
found in [5, 6]. This operation is also studied in connection with various TIs. The
study of Zagreb indices of tensor product of graphs may be found in [7].

For a connected graph G, there are four related graphs
S(G), R(G), Q(G) and T (G). These graphs are called subdivision graph, vertex-
semi-total graph, edge-semi-total, and total graph, respectively. These operations
are defined as below:

• S(G) is the graph obtained by replacing each edge of G by a path of length 2.
• R(G) is obtained fromG by adding a path of length 2 parallel to each of the edges
of G.

• Q(G) is obtained from G by replacing each edge by path of length 2, then joining
with edge those pairs of new vertices on adjacent edges of G.

• T (G) has as its vertices the edges and vertices ofG. Adjacency in T (G) is defined
as adjacency or incidence for the corresponding elements of G.

For details of these four graph operations, see [8]. Different graph operations
based on these four graphs have been defined and studied in connection with Wiener
indices and Zagreb indices [9–13]. The reason behind the extensive studies of these
four graph operations lies in the fact that they can capture the intermolecular forces
that exist between the atoms and the bonds of a molecule along with the conventional
atom–atom interactions.

In this communication, we propose four new operations of graphs based on the
tensor product of graphs and establish explicit expressions for Zagreb indices of these
new operations. The rest of the paper is organized as follows. In Sect. 2, the new
sums are introduced. In Sect. 3, formulae for the Zagreb indices of the new graphs
are obtained, and in Sect. 4, conclusions are made.

2 New F-Sums of Graphs

Let G1 and G2 be simple connected graphs, and let F be any one of S, R, Q and T .
Then, we defineG1⊗F G2 as a binary operation of graphsG1 andG2 which produces
a graph by the tensor product of F(G1) andG2. The vertex set and the edge set of
this new operation are given as:

V (G1 ⊗F G2) = {(a, b)|a ∈ V (F(G1)) and b ∈ V (G2)} and
E(G1 ⊗F G2) = {(a, b)(c, d)|ac ∈ E(F(G1)) and bd ∈ E(G2)}.

There are (|V (G1)| + |E(G1)|)|V (G2)| number of vertices in G1 ⊗F G2, and
there is an edge between (a, b) and (c, d) in G1 ⊗F G2 if and only if ac is an edge
in F(G1) and bd is an edge in G2. As for example, P3 ⊗S P3, P3 ⊗R P3, P3 ⊗Q P3
and P3 ⊗T P3 are shown in Fig. 1.



406 J. Buragohain et al.

Fig. 1 Four new operations of graphs based on tensor product of graphs

It is not difficult to establish the following relations between the degree of vertices
of newly defined graphs and the participating graphs.

Lemma 2.1 Let G1 and G2 be two graphs. Then,

(a) δG1⊗SG2(a, b) =
{

δG1(a)δG2(b) if a ∈ V (G1)

2δG2(b) if a ∈ V (S(G1))\V (G1).
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(b) δG1⊗RG2(a, b) =
{
2δG1(a)δG2(b) if a ∈ V (G1)

2δG2(b) if a ∈ V (R(G1))\V (G1).

(c) δG1⊗QG2(a, b) =
{

δG1(a)δG2(b) if a ∈ V (G1)(
δG1(w) + δG2

(
w′))δG2(b) if a ∈ V (Q(G1))\V (G1),

where in the second case, a is inserted into the edge ww′ ∈ E(G1).

(d) δG1⊗T G2(a, b) =
{
2δG1(a)δG2(b) if a ∈ V (G1)(
δG1(w) + δG2

(
w′))δG2(b) if a ∈ V (T (G1))\V (G1),

where in the second case, a is inserted into the edge ww′ ∈ E(G1).

3 Main Results

In this section, we give explicit expression for Zagreb indices of the newly defined
graphs.

3.1 The First Zagreb Index of G1 ⊗F G2

Theorem 3.1 Let G1 and G2 be two finite graphs with |E(G1)| = m1. Then,

M1(G1 ⊗S G2) = M1(G1)M1(G2) + 4m1M1(G2).

Proof

M1
(
G1 ⊗S G2

) =
∑

(a,b)∈V (
G1⊗SG2

)
(δ(a, b))2

=
∑

a∈V (
G1

)

∑

b∈V (
G2

)

(
δG1 (a)δG2 (b)

)2 +
∑

a∈V (
S
(
G1

))\V (
G1

)

∑

v∈V (
G2

)

(
2δG2 (b)

)2

= M1(G1)M1(G2) + 4m1M1(G2).

Hence proved. �

Theorem 3.2 Let G1 and G2 be two finite graphs and E(G1) = m1. Then,

M1(G1 ⊗R G2) = 4M1(G1)M1(G2) + 4m1M1(G2).

Proof
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M1(G1 ⊗R G2) =
∑

(a,b)∈V (
G1⊗RG2

)
(δ(a, b))2

=
∑

a∈V (
G1

)

∑

b∈V (
G2

)

(
2δG1 (a)δG2 (b)

)2 +
∑

a∈V (
R
(
G1

))\V (
G1

)

∑

b∈V (
G2

)

(
2δG2 (b)

)2

= 4M1(G1)M1(G2) + 4m1M1(G2). �

Theorem 3.3 Let G1 and G2 be two finite graphs. Then,

M1
(
G1 ⊗Q G2

) = (
M1(G1) + 2M2(G1) + M3

1 (G1)M1(G2)
)
.

Proof We can divide the set of vertices into two categories.

M1
(
G1 ⊗Q G2

) =
∑

(a,b)∈V(G1⊗QG2)

(δ(a, b))2

=
(

∑

1

+
∑

2

)
(δ(a, b))2

∑

1

(δ(a, b))2 =
∑

a∈V (G1)

∑

b∈V (G2)

(
δG1(a)δG2(b)

)2

=
∑

a∈V (G1)

(
δG1(a)

)2 ∑

b∈V (G2)

(
δG2(b)

)2

= M1(G1)M1(G2).

and

∑

2

(δ(a, b))2 =
∑

a∈V (Q(G1))\V (G1)

∑

b∈V (G2)

((
δG1(w) + δG1

(
w′))δG2(b)

)2

=
∑

ww′∈E(G1)

(
δG1(w) + δG2

(
w′))2 ∑

b∈V (G2)

(
δG2(b)

)2

= (
M3

1 (G1) + 2M2(G1)
)
M1(G2).

In the second sum, a is assumed to be inserted in ww′ ∈ E(G1). Hence,
M1

(
G1 ⊗Q G2

) = (
M1(G1) + 2M2(G1) + M3

1 (G1)
)
M1(G2). �

Theorem 3.4 Let G1 and G2 be two finite graphs. Then,

M1(G1 ⊗T G2) = (
4M1(G1) + 2M2(G1) + M3

1 (G1)
)
M1(G2).

The proof of Theorem 3.4 is similar to the proof of Theorem 3.3.
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3.2 Second Zagreb Index of G1 ⊗F G2

Theorem 3.5 Let G1 and G2 be two simple finite graphs. Then,

M2(G1 ⊗S G2) = 4M1(G1)M2(G2).

Proof According to the definition of the second Zagreb index, we have

M2(G1 ⊗S G2) =
∑

(a,b)(c,d)∈E(G1⊗SG2)

δ(a, b)δ(c, d)

= 2
∑

ac∈E(G1)

∑

bd∈E(G2)

δG1(a)δG2(b)2δG2(d)

= 4
∑

ac∈E(G1)

δG1(a)
∑

bd∈E(G2)

δG2(b)δG2(d)

= 4M1(G1)M2(G2).�

Theorem 3.6 Let G1 and G2 be two simple finite graphs. Then,

M2(G1 ⊗R G2) = 8(M1(G1) + M2(G1))M2(G2).

Proof From the definition of the second Zagreb index,

M2(G1 ⊗R G2) =
∑

(a,b)(c,d)∈E(G1⊗RG2)

δ(a, b)δ(c, d).

The edges of G1 ⊗R G2 can be categorized into the following cases.

Case I: (a, b)(c, d) ∈ E(G1 ⊗R G2) such that a, c ∈ V (G1). Then,

∑

(a,b)(c,d)∈E(
G1⊗RG2

)
δ(a, b)δ(c, d) = 2

∑

ac∈E(
R
(
G1

))

∑

bd∈E(
G2

)
2δG1 (a)δG1 (b)2δG2 (c)δG2 (d)

= 8
∑

ac∈E(
G1

)
δG1 (a)δG1 (c)

∑

bd∈E(
G2

)
δG2 (b)δG2 (d)

= 8M2(G1)M2(G2).

Case II: (a, b)(c, d) ∈ E(G1 ⊗R G2) such that a ∈ V (G1) and c ∈
V (R(G1))\V (G1). Then,

∑

(a,b)(c,d)∈E(G1⊗RG2)

δ(a, b)δ(c, d) = 2
∑

ac∈E(R(G1))

∑

bd∈E(G2)

2δG1(a)δG2(b)2δG2(d)

= 8
∑

ac∈E(R(G1))

δG1(a)
∑

bd∈E(G2)

δG2(b)δG2(d)
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= 8M1(G1)M2(G2).

Therefore, M2(G1 ⊗R G2) = 8M2(G1)M2(G2) + 8M1(G1)M2(G2). Hence
proved. �

Theorem 3.7 Let G1 and G2 be two simple graphs. Then, we have the following
result:

M2
(
G1 ⊗Q G2

) =
⎡

⎢⎣2M2(G1) + M3
1 (G1) + M4

1 (G1) + 2
∑

w,w′′∈V (
G1

)
γww′′ δG1 (w)δG1

(
w

′′)

+2
∑

w′∈V (
G1

)

(
δG1

(
w′))2 ∑

w∈V (
G1

)
s.t.ww′∈E(

G1
)
δG1 (w)

⎤

⎥⎦M2(G2),

where γww′′ is the number of common vertices of w and w′′.

Proof We have

M2
(
G1 ⊗Q G2

) =
∑

(a,b)(c,d)∈E(G1⊗QG2)

δ(a, b)δ(c, d).

The above sum over the edges of G1 ⊗Q G2 can be classified in the following
ways:

Case I: (a, b)(c, d) ∈ E
(
G1 ⊗Q G2

)
such that a ∈ V (G1), c ∈ V (Q(G1))\V (G1)

and let c be inserted in aa′ ∈ E(G1). Then,

∑

(a,b)(c,d)∈E(G1⊗QG2)

δ(a, b)δ(c, d)

= 2
∑

ac∈E(Q(G1)),bd∈E(G2)

δG1(a)δG2(b)
(
δG1(a) + δG1

(
a′))δG2(d)

= 2
∑

aa′∈E(G1)

(
δG1(a) + δG1

(
a′))2 ∑

bd∈E(G2)

δG2(b)δG2(d)

= 2
(
M3

1 (G1) + 2M2(G1)
)
M2(G2).

Case II: (a, b)(c, d) ∈ E
(
G1 ⊗Q G2

)
such that a, c ∈ V (Q(G1))\V (G1). Let a

and c be inserted in ww′ and w′w′′ of E(G1), respectively. Then,

∑

(a,b)(c,d)∈E(G1⊗QG2)

δ(a, b)δ(c, d)
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= 2
∑

ac∈E(Q(G1)),bd∈E(G2)

(
δG1(w) + δG1

(
w′))δG2(b)

(
δG1

(
w′) + δG1

(
w′′))δG2(d)

= 2
∑

ww′,w′w′′∈E(G1)

(
δG1(w) + δG1

(
w′))(δG1

(
w′) + δG1

(
w′′)) ∑

bd∈E(G2)

δG2(b)δG2(d)

= 2

⎧
⎨

⎩
∑

w′∈V (G1)

δG1

(
w′)(δG1

(
w′) − 1

) ∑

w∈V (G1)s.t.ww′∈E(G1)

δG1(w)

+
∑

w′∈V (G1)

(
δG1

(
w′)

2

)(
δG1

(
w′))2 +

∑

w,w′′∈V (G1)

γww′′δG1(w)δG1

(
w′′)

⎫
⎬

⎭M2(G2)

= 2

⎧
⎨

⎩
∑

w′∈V (G1)

(
δG1

(
w′))2 ∑

w∈V (G1)s.t.ww′∈E(G1)

δG1(w) − M2(G1)

+1

2

(
M4

1 (G1) − M3
1 (G1)

) +
∑

w,w′′∈V (G1)

γww′′δG1(w)δG1

(
w′′)

⎫
⎬

⎭M2(G2).

Now by combining the above two cases, we get the result. �

Theorem 3.8 Let G1 andG2 be any two simple graphs. Then, the second Zagreb
index of G1 ⊗T G2 is given as follows:

M2(G1 ⊗T G2) =
⎧
⎨

⎩14M2(G1) + 3M3
1 (G1) + M4

1 (G1) + 2

⎛

⎝
∑

w,w′∈V (G1)

γww′δG1 (w)δG1

(
w′)

+
∑

w′∈V (G1)

(
δG1

(
w′))2 ∑

w∈V (G1) s.t. ww′∈E(G1)

δG1 (w)

⎞

⎠

⎫
⎬

⎭M2(G2),

where γww′ is the number of common neighbors of w and w′ in G1.

4 Conclusion

In this paper,wefirst propose four newoperations of graphs basedon tensor product of
graphs, and then,we study theZagreb indices of these operations of graphs.This study
is motivated by similar considerations based on other graph operations like Cartesian
product, join and lexicographic product [10, 12, 13]. As an immediate extension of
this study, we can compute other topological indices of these new graphs. It will be
also interesting to study the spectral property of these newly defined operations.
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8. Cvetkocić, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application. Academic

Press, New York (1980)
9. Khalifeh, M., Yousefi-Azari, H., Ashrafi, A.R.: The first and second Zagreb indices of some

graph operations. Discrete Appl. Math. 157(4), 804–811 (2009)
10. Deng, H., Sarala, D., Ayyaswamy, S., Balachandran, K.: The Zagreb indices of four operations

of graphs. Appl. Math. Comput. 275, 422–431 (2016)
11. Eliasi, M., Taeri, D.: Four new sums of graphs and their Wiener indices. Discrete Appl. Math.

157, 794–803 (2009)
12. Sarala, D., Deng, H., Ayyaswamy, S.K., Balachandran, S.: The Zagreb indices of graphs based

on four operations related to the lexicographic product. Appl. Math. Comput. 309, 156–169
(2017)

13. Sarkar, P., De, N., Pal, A.: The Zagreb indies of graphs based on new operations related to the
join of graphs. J. Int. Math. Virtual Inst. 7, 181–209 (2017)



Some Oscillatory Results for Nonlinear
Equation on Time Scales

Shekhar Singh Negi, Syed Abbas and Muslim Malik

Abstract This manuscript provides some oscillatory results of a dynamic
equation with variable coefficients, in which a Riccati transformation technique is
used. Besides, we obtain the Kamenev-type and Philos-type oscillation criteria for
our dynamic equation. Finally, we present an example in the last section.

Keywords Time scale · Oscillation · Delay dynamic equation · Riccati technique

1 Introduction

The thesis work “Unified approach to continuous and discrete calculus” by the
“Stephan Hilger” (see 1988 [14]) has recently been received much attention. The
advantage of this theory is to avoid the twice analysis, that is, to harmonize discrete
and continuous analyses. Basically, a non-empty closed subset of R will be called
a time scale (T ⊆ R), see, for instance, closed intervals, integers (Z), natural num-
bers (N ), qZ ∪ {0}, q > 1 and T = ⋃

n∈Z [2k, 2k + 1], etc. For this, we suggest the
researchers to see the excellent monograph [7] by Bohner and Peterson. This the-
ory has a vital role in various research areas. Several applications can be found in
various fields, and it can be seen in [6, 8] and references cited therein. For the lack
of confusion, we denote zσ (t) = z(σ (t)) and [a ∞)T = [a ∞)

⋂
T for a ∈ T . For

more notation, the notation k “t ∈ [t∗,∞)T ,” will be read as “t∗ ≤ t.”
In the present manuscript, we will look for a oscillatory solutions of the equation

below:
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(∅(t)B�(t))� +
m∑

i=1

θi(t)Wi
(
t,B(t),B�(t),B(K1(s,B(s))

) + sgn(B(t))λ(t)

+
∫ t

−∞
g(s)F(s,B(s))�s

=
n∑

j=1

	j(t)Gj
(
t,B(t),B�(σ(t)),Bσ (K2(t,B

σ (s)))
)

+ B(t,B(t), |B�(σ(t))|) (1)

where sup{T } = ∞;

K1(t,B(t)) = l1(t,B(l2(t, · · · ,B(lm(t,B(t))) · · · )));

and
K2(t,B

σ (t)) = L1(t,B
σ (L2(t, · · · ,Bσ (Ln(t,B

σ (t))) · · · ))).

Furthermore, θi,	j, g, r, λ : T → R, Wi,Gj : T × R3 → R; B : T × R2 → R and
F : T × R → R. It is straightforward to see that Eq. (1) contains a differential equa-
tion as well as a difference equations of different choice of time scale T .

Remark 1 Let us consider T = R, then Eq. (1) will be reduced in the form:

((t)B′(t))′ +
m∑

i=1

θi(t)Wi
(
t,B(t),B′(t),B(K1(s,B(s)))

) + sgn(B(t))λ(t)

+
∫ t

−∞
g(s)F(s,B(s))ds

=
n∑

j=1

	j(t)Gj
(
t,B(t),B′(t),B(K2(t,B(s)))

)

+ B(t,B(t), |B′(t)|) (2)

where σ(t) = t, μ(t) = 0, g�(t) = g′(t) and
∫ b

a
g(t)�t =

∫ b

a
g(t)dt.
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Remark 2 If we consider a time scale T = Z, then Eq. (1) has a form :

�(∅(t)�B′(t)) +
m∑

i=1

θi(t)Wi (t,B(t),�B(t),B(K1(s,B(s)))) + sgn(B(t))λ(t)

+
∫ t

−∞
g(s)F(s,B(s))�s

=
n∑

j=1

	j(t)Gj (t,B(t),�B(σ (t)),Bσ (K2(t,B
σ (s))))

+ B(t,B(t), |�B(σ (t))|)

where σ(t) = t + 1, μ(t) = 1, g�(t) = �g(t) and

∫ b

a
g(t)�t =

b−1∑

t=a

g(t)μ(t) =
b−1∑

t=a

g(t).

Remark 3 If T = ξ ′Z, ξ ′ > 0, then Eq. (1) as follows

�ξ ′(∅(t)�ξ ′B(t)) +
m∑

i=1

θi(t)Wi
(
t,B(t),�ξ ′B(t),B(K1(s,B(s)))

) + sgn(B(t))λ(t)

+
∫ t

−∞
g(s)F(s,B(s))�ξ ′s

=
n∑

j=1

	j(t)Gj
(
t,B(t),�ξ ′B(σ (t)),Bσ (K2(t,B

σ (s)))
)

+ B(t,B(t), |�ξ ′B(σ (t))|)

where we have σ(t) = t + ξ ′, μ(t) = ξ ′, f �(t) = �ξ ′ f (t) and

∫ b

a
f (t)�t =

b
ξ ′ −1
∑

l= a
ξ ′

f (lξ ′)ξ ′.

This paper concerns the oscillatory solutions of Eq. (1) and also discusses two
well-known Philos-type and Kamenev-type oscillation criteria. We recall that a non-
trivial solution x(t) ofEq. (1) such that x(t) ∈ C�2

rd ([tx, ∞)T ) for tx ≥ t0.That is, there
is a real sequence {hn} with hn → ∞ as n → ∞ and y(hn) = 0 ∀n ∈ N . Besides, we
are looking such solutions which are exist on the half-line [ty,∞)T with sup{|y(t)| :
t > t∗} �= 0 for any ty ≤ t∗ and supT = ∞.

In order to give the motivation of our study, we present a list of well-known
excellent results which affined with our analysis. We start with Kamenev’s result
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which can be seen in the paper [16] by Kamenev. He has studied some necessary
conditions of oscillation for the given dynamic equation :

(
W (t)B′(t)

)′ + W ∗(t)B(t) = 0. (3)

Thereafter, the technique used by the author Kamenev in the paper [16] for the
oscillatory solutions of Eq. (3) has been a rapidly growing attention. Several authors
have taken an interest on Kamenev-type oscillation criteria, and some of them ex-
tended it to the more general criteria. For instance, in 1989, Philos [23] has improved
the well-known Kamenev’s oscillation criteria by introducing the functions �(t, s)
provided that the following assumptions must hold:

� : D∗ = {(t, s) : t0 ≤ s ≤ t} → R

defined as continuous function such that

�(t, t) = 0 for t0 ≤ t, �(t, s) > 0 for t0 ≤ s < t and
∂�(t, s)

∂s
< 0 on D,

where ∂�(t,s)
∂s is continuous on D. In addition, a continuous function h : D → R is

defined by
∂�(t, s)

∂s
= −�(t, s)

√
�(t, s), for all (t, s) ∈ D.

After that, many results of these criteria have been studied for the dynamic
equations on time scales. Over the last few decades, some excellent results on
oscillation/non-oscillation for the different order ordinary dynamic equations on
time scales have been established. Furthermore, the Philos-type and Kamenev-type
oscillation criteria have also been studied.We requested the interested readers to take
a look on the papers related to periodic and oscillatory solutions [1–4, 9–11, 13, 17,
18, 20, 24, 25, 27–29] and references cited therein. In addition, there is a very recent
publication on oscillation [22] by Negi et al. and it contains some oscillatory studies
of a first-order neutral dynamic equation on time scale:

(B(σ (t)) − W (t)xξ (t − η))� + W ∗(t)
n∏

j=1

|G ′
j(B(t − τj))|αj(t)sign(B(t − τj)) = 0,

∀ t ∈ [t∗,∞)T . Furthermore, in [19], Negi, et. al. have discussed the oscillatory re-
sults of the following:

B�2
(t) + βB�(t) = W (t)B(t) + W�

∗

(

t,B(t),
∫ t

−∞
W∗∗(t − s)W∗∗∗(s,B(s))�s

)

Apart from that, the oscillatory results of the singular second-order nonlinear dynamic
equation on time scales can be seen in [21]. Motivated by the above literature, we
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impose a generalized Riccati technique to analyze various studies on time scale for
Eq. (1).

We provide some crucial assumptions for our results:

(G1) r, b,ℵi, C̄j, θi,Qi : [t0,∞)T → (0.∞)R andλ, g : [0,∞)T → [0,∞)R all are
rd-continuous functions for each i = 1, 2, · · · ,m, j = 1, 2, · · · , n, such that

m∑

i=1

θi(t)ℵi(t) >

n∑

j=1

	j(t)C̄j(t) + b(t)

for t0 ≤ t.
(G2) Gj,Wi : [t0,∞)T × R3 → R, B : [t0,∞)T × R2 → R and F : [t0,∞)T ×

R → R all are rd-continuous functions and satisfy the following:

|Wi(t, u, v,B)| ≥ ℵi(t)|u|, |B∗(t, u, |v∗|)| ≤ b(t)|u|

and
|Gj(t, u, v

∗,X )| ≤ C̄j(t)|u|

such that uF > 0, uGj > 0, uB > 0 and uWi > 0, for i = 1, 2, · · · ,m, j =
1, 2, · · · , n, n �= m, and v, v∗, w,X ,B, 0 �= u ∈ R.

(G3)

∫ ∞

t0

1

∅(s)
�s = ∞.

Weset our paper as follows: Somebasic definitions and important lemmas are given in
Sect. 2. Next section contains some sufficient conditions of oscillation of Eq. (1) that
are investigated in the next section. Apart from that, the Kamenev-type and Philos-
type oscillation criteria are also discussed. Finally in Sect. 4, results are illustrated
by providing an example.

2 Preliminaries

This section provides some predefined definitions, basic theorems, notion of time
scales, and important remarks. Besides, we derive some lemmas which will be used
in our sequel.

Definition 1 [7]. Define a operator σ : T → T by σ(x) := inf {s ∈ T : s > x},
which is known as forward jump operator for x ∈ T . Similarly, define a operator
ρ : T → T by ρ(x) := sup{s ∈ T : s < x}, which is known as backward jump oper-
ator for x ∈ T .

Moreover, we define a graininess operator μ : T → [0,∞) by μ(x) = σ(x) − x.

Remark 4 We take inf ∅ = supT and sup∅ = inf T , where ∅ is a null set.
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Furthermore,

Crd (T ,R) = {g : g : T → R is rd-continuous function on T }.

We define T κ = T − {ω}, if T has a left-scattered maximum ω, and T κ = T
otherwise.

Definition 2 [7]. A functionB : T → R and x ∈ T κ , thenB�(x) (if it exists) with for
any given ε∗ > 0, ∃ a neighborhoodW∗ = (x − δ∗, x + δ∗)

⋂
T where some δ∗ > 0

such that

∣
∣[B(σ (x)) − B(y)] − B�(x)[σ(x) − y]∣∣ ≤ ε∗|σ(x) − y| ∀ y ∈ W∗.

Thus, we will say B�(x) a � or Hilger derivative of B at the point x.

Theorem 1 [7]. For B,A : T → R and x be an arbitrary element of T κ . Then:

1. B is continuous at x provided that B must differentiable at x;
2. B is �- derivative at x and has form B�(x) = B(σ (x))−B(x)

μ(x) provided that B must
be continuous at x and x is right−scattered.

3. B is differentiable at x ⇔ B�(x) = lim
y→x

B(x)−B(y)
x−y exists and finite value provided

that x is right-dense;
4. Bσ = B(σ (x)) = B(x) + μ(x)B�(x) provided that B is differentiable at x.
5. A product BA : T → R is differentiable at x and

(BA)�(x) = B�(x)Q(x) + B(σ (x))A�(x) = B(x)A�(x) + B�(x)A(σ (x))

provided that B and A are�-differentiable at x. Then by this, for x ∈ T such that
x is lying between α and β for all values of α and β in T . We should have

∫ β

α

Bσ (y)A�(y)�y = B(β)A(β) − B(α)A(α) −
∫ β

α

B�(y)A(y)�y (4)

∫ β

α

B(y)A�(y)�y = B(β)A(β) − B(α)A(α) −
∫ β

α

P�(y)Aσ (y)�y; (5)

6. A function B
A is differentiable at x and

(
B

A

)�

(x) = B�(x)A(x) − B(x)A�(x)

A(x)A(σ (x))

provided that A(x)B(σ (x)) �= 0.
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We denote

R = {F : F : T → R such that 1 + F(x)μ(x) �= 0}

the collection of all regressive functions. In particular,

R+ = {F : F : T → R such that 1 + F(x)μ(x) > 0}.

For more details, see [7].

Definition 3 [7]. Define

ew(t, s) = exp

(∫ t

s
ημ(ξ) (w(ξ))�ξ

)

, ∀t ∈ T , s ∈ T κ ,

for each w ∈ R and ηh(v) is defined as follows

ηh(ξ) =
{ log (1+hv)

h , : h �= 0,
v, : h = 0.

Definition 4 [7]. If an anti-derivative J�(t) = J (t) ∀t ∈ T where J , J ∗ : T → R.

Then for α, β ∈ T such that α ≤ β, we have

∫ β

α

J (s)�(s) = J (β) − J (α) (6)

is Cauchy’s integral.

Definition 5 [15] Consider T = qZ , then J�(t) = DqJ (t), where

DqJ (t) =

⎧
⎪⎨

⎪⎩

J (qt)−J (t)
t(q−1) : t �= 0

lim
n→∞

J (qn)−J (0)
qn : t = 0,

(7)

is the q−difference operator.

Remark 5 It is easy to observe that Eq. (6) cannot be hold for any T because if we
talk about the q-calculus, then it will not give the correct form as Eq. (6). That is,
∫ β

α

DqJ (t)dqt = J (β) − J (α) (details are in page 12 of [5]).

Two necessary lemmas are derived which have the significant role in our results.

Lemma 1 If Eq. (1) is not oscillates and assumptions (G1) − (G3) hold. Further-
more, if the condition ∅�(t) ≥ 0 holds, then ∃ η ∈ T along with t0 ≤ η < t, we have

B(t) > 0, B�(t) > 0 and B��(t) < 0 (8)
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Proof If we consider a positive solution of Eq. (1) over a time scale interval [t0, ∞)T
for t0 ∈ T , then from Eq. (1) and (G1) − (G3), we obtain

(∅(t)B�(t))� ≤ −
⎛

⎝
m∑

i=1

θi(t)ℵi(t) −
n∑

j=1

Qi(t)|barCj(t) − b(t)

⎞

⎠ y(t). (9)

Easy to have
(∅(t)B�(t))� < 0

for t0 ≤ t, by this, ∅(t)B�(t) is decreasing function on [t0,∞)T . And thus, it is either

∅(t)B�(t) < 0

or
∅(t)B�(t) > 0

on [t0,∞)T . Our assertion that ∅(t)B�(t) < 0 on [t0,∞)T . Therefore, ∃η ∈ T along
with η ≤ t for each t ∈ T , and for any constant k such that

∅(t)B�(t) ≤ k < 0, for all η ≤ t, (10)

integrating from η to t, reach to

B(t) ≤ B(η) + C
∫ t

η

1

∅(s)
�s,

for large t, we arrive to contradiction as the condition (C3). Hence, we have the
following relation

B(t) > 0, B�(t) > 0 and B��(t) < 0, for η ≤ t (11)

Lemma 2 If Eq. (8) holds, then for t �= η, we have the following inequality

0 < �(t) ≤ B(t)

Bσ (t)
≤ 1, (12)

where �(t) := t−η

t−η+μ(t) .

Proof From Eq. (8), we obtain

B(t) > B(t) − B(η) =
∫ t

η

B�(s)�s > B�(t)(t − η). (13)
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From Eq. (13) and using the following Bσ (t) = B(t) + μ(t)B�(t), yields

0 <
t − η

t − η + μ(t)
:= �(t) ≤ B(t)

Bσ (t)
≤ 1.

All essential lemmas are proved, so we turn to our main section.

3 Oscillation Criteria

Here, we look for some sufficient conditions of oscillation of Eq. (1).

Theorem 2 If (G1) − (G3) and ∅�(t) ≥ 0 hold. Furthermore, ∃�-derivative func-
tion�(t) is positive and η ∈ Tsuch that η ≤ t, respectively. Also, with the following
relation,

lim sup
t→∞

∫ t

η

�σ (s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s = ∞,

then Eq. (1) contains oscillatory solutions on [t0 ∞)T .

Proof Using the contradictory approach,we startwith the assumption that Eq. (1) has
no oscillatory solutions, sayB(t). Then, there is no doubtB(t) is positive (eventually),
i.e., ∃ t0 ≤ η < t such that B(t) is positive for all t ∈ [η ∞)T . Similarly, we will do
for negative (eventually) case. Now, the Riccati transformation function

$(t) = �(t)
∅(t)B�(t)

B(t)
, η < t. (14)

Differentiate Eq. (14) with respect to the vriable t, we obtain

$�(t) = ��(t)
∅(t)B�(t)

B(t)
+ �σ(t)

(
(∅(t)B�(t))�B(t) − ∅(t)(B�(t))2

B(t)Bσ (t)

)

(15)

≤ ��(t)

�(t)
$(t) − �σ(t)B(t)

∅(t)�2(t)Bσ (t)
$2(t) + �σ(t)

Bσ (t)
(∅(t)B�(t))�. (16)

From lemma (2) and Eq. (16), we get

$�(t) ≤ ��(t)

�(t)
$(t) − �σ(t)�(t)

∅(t)�2(t)
$2(t) + �σ(t)

Bσ (t)
(∅(t)B�(t))�. (17)
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From Eq. (9) and using relation �σ (t)
Bσ (t) (∅(t)B�(t))� in the above equation, we must

have

�σ (t)

Bσ (t)
(∅(t)B�(t))� ≤ −

⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦ B(t)�σ (t)

Bσ (t)

≤ −
⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦�(t)�σ (t). (18)

From Eq. (17) and (18), we get

$�(t) ≤ ��(t)

�(t)
$(t) − �σ(t)�(t)

∅(t)�2(t)
$2(t)

−
⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦�(t)�σ (t). (19)

−
⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦�(t)�σ (t) (20)

−
(

1

�(t)

√
�σ(t)�(t)

∅(t)
w(t) − ��(t)

2

√
∅(t)

�σ (t)�(t)

)2

× (��(t))2∅(t)

4�σ (t)�(t)
, (21)

which implies that

$�(t) ≤ −
⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦�(t)�σ (t)

+ (��(t))2∅(t)

4�σ (t)�(t)
. (22)
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Integrating above equation from η to t, yields

∫ t

η

�σ (s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s ≤ $(η) < ∞, (23)

for large t, we conclude a contradiction to (14). Thus, we reach to the desire result.

From Theorem (3.1), some corollaries are carried out which can be found in
below.

Corollary 1 If the assumptions (G1) − (G3) and ∅�(t) ≥ 0 are hold. Furthermore,
if ∃ a �-derivative function �(t) > 0 and η ∈ T ; η ≤ t, respectively. In addition,
the relations must be hold

lim sup
t→∞

∫ t

η
�σ (s)�(s)

⎡

⎣

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

⎤

⎦�s = ∞, (24)

and

lim sup
t→∞

∫ t

η

(s)(��(s))2

4�σ(s)�(s)
�s < ∞, (25)

then, Eq. (1) has an oscillatory solution on [t0 ∞)T .

We immediately obtain the following results by using Theorem (3.1).

Corollary 2 If (G1) − (G3), ∅�(t) ≥ 0 are hold. Also, if ∃ a �-derivative function
�(t) > 0 and η ∈ T ; η ≤ t respectively. Along with

lim sup
t→∞

∫ t

η

�σ (s)�(s)

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠�s = ∞, (26)

and

lim sup
t→∞

∫ t

η

(∅(s)(��(s))2

4�σ(s)�(s)
+ b(s)

)

�s < ∞, (27)

are hold. Then, the solution of Eq. (1) must be oscillates on [t0 ∞)T .
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Corollary 3 If the conditions (G1) − (G3) and ∅�(t) ≥ 0 are hold. Furthermore, ∃
a�-derivative function�(t) > 0 and η ∈ T ; η ≤ t respectively. Also, the following
relations are satisfied

lim sup
t→∞

∫ t

η

�σ (s)�(s)
m∑

i=1

θi(s)ℵi(s)�s = ∞, (28)

and

lim sup
t→∞

∫ t

η

⎛

⎝∅(s)(��(s))2

4�σ(s)�(s)
+ b(s) +

n∑

j=1

	j(s)C̄j(s)

⎞

⎠ �s < ∞, (29)

then the solution will be oscillates of Eq. (1) on [t0 ∞)T .

Before going to establishKamenev-type oscillation criteria, we need the following
result [26]. For L > 1 and σ(s) ≤ t.

((t − s)L)�s ≤ −L(t − σ(s))L−1 ≤ 0. (30)

Theorem 3 If the conditions (G1) − (G3) and ∅�(t) ≥ 0 are hold and ∃ �-
derivative function�(t) > 0andL > 1.Also, for all sufficient large η ∈ T such thatη ≤
t, the following relation holds;

lim sup
t→∞

1

tL

∫ t

η

(t − s)L�σ(s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s = ∞, (31)

then, Eq. (1) oscillates on [t0 ∞)T .

Proof Using the contradictory approach,we startwith the assumption that Eq. (1) has
no oscillatory solutions, sayB(t). Then, there is no doubtB(t) is positive (eventually),
i.e., ∃ t0 ≤ η < t such that B(t) is positive for all t ∈ [η ∞)T . Similarly, we will do
for negative (eventually) case. Thus, from (22), we must have

⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦�(t)�σ (t)

− (��(t))2θ(t)

4�σ (t)�(t)
≤ −$�(t). (32)
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Multiplying Eq. (32) by (t − s)L and then integrating from η to t, we obtain

∫ t

η

(t − s)L�σ(s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s ≤ −
∫ t

η

(t − s)L$�(s)�s. (33)

From Eqs. (5) and (33), yields

∫ t

η

(t − s)L�σ(s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s ≤ (t − η)L$(η) +
∫ t

η

((t − s)L)�s$σ (s)�s.

From Eqs. (30) and above equation, we get

∫ t

η

(t − s)L�σ(s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−C̄(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s ≤ (t − η)L$(η). (34)

Thus, we have

1

tL

∫ t

η

(t − s)L�σ(s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s ≤ (t − η)L

tL
$(η) for η ≤ t. (35)
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Taking lim sup as t → ∞, we arrive at

lim sup
t→∞

1

tL

∫ t

η

(t − s)L�σ(s)�(s)

⎧
⎨

⎩

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

−∅(s)

(
��(s)

2�σ(s)�(s)

)2
}

�s < ∞, (36)

Thus, we derive a contradiction to (31). Thus, we proved.

By observing Theorem (3.5), we easily establish new results which are given
below.

Corollary 4 Assume that (G1) − (G3) and ∅�(t) ≥ 0 hold. Moreover, if ∃ a �-
derivative function �(t) > 0 and η ∈ T ; η ≤ t, respectively. Assume that

lim sup
t→∞

1

tL

∫ t

η

(t − s)L�σ (s)�(s)

⎡

⎣

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠ − b(s)

⎤

⎦�s

= ∞, (37)

and

lim sup
t→∞

1

tL

∫ t

η

(t − s)L
∅̄(s)(��(s))2

4�σ (s)�(s)
�s < ∞, (38)

then, the solutions of Eq. (1) will be oscillate on [t0 ∞)T .

Corollary 5 If the conditions (G1) − (G3) and ∅�(t) ≥ 0 are hold. Furthermore, ∃
a �-derivative function �(t) > 0 and η ∈ T ; t ≥ η, respectively. In addition, the
following conditions are satisfied

lim sup
t→∞

1

tL
∫ t

η
(t − s)L�σ (s)�(s)

⎛

⎝
m∑

i=1

θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s)

⎞

⎠�s = ∞, (39)

and

lim sup
t→∞

1

tL

∫ t

η

(t − s)L
(∅(s)(��(s))2

4�σ (s)�(s)
+ b(s)

)

�s < ∞, (40)

then, Eq. (1) has an oscillatory solutions on [t0 ∞)T .
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Corollary 6 If the conditions (G1) − (G3) and ∅�(t) ≥ 0 are hold, and ∃ a �-
derivative function �(t) > 0 and η ∈ T ; t ≥ η, respectively. Furthermore, we will
assume the following are hold:

lim sup
t→∞

1

tL

∫ t

η

(t − s)L�σ(s)�(s)
m∑

i=1

θi(s)ℵi(s)�s = ∞, (41)

and

lim sup
t→∞

1

tL

∫ t

η

(t − s)L

⎛

⎝∅(s)(��(s))2

4�σ(s)�(s)
+ b(s) +

n∑

j=1

	j(s)C̄j(s)

⎞

⎠ �s < ∞, (42)

then, Eq. (1) has an oscillatory solution on [t0 ∞)T .

Next we need to have the following assumptions (due to Philos-type oscillation
criteria):

For any number μ ∈ R, define its expression, μ+ and μ−, respectively, of μ

by μ+ := max{0, μ} and μ− := max{0, − μ}. In addition, we will assume the
functions �,D : D∗ → R to be rd-continuous along with D∗ = {(t, s); t0 ≤ η ≤ t}
such that

�(t, t) = 0, t0 ≤ t and �(t, s) > 0 and ��s(t, s) < 0. t0 ≤ s < t (43)

and ��s(t, s) is rd-continuous function.

Theorem 4 If (G1) − (G3), (43) and ∅�(t) ≥ 0 are hold and ∃ a �-derivative
function �(t) > 0 and η ∈ T ; η ≤ t, respectively. Furthermore, the following are
hold

��s(σ (t), s) + �σ (σ (t), s)��(t)

�(t)
= −D(t, s)

�(t)

√
�σ (σ (t), s) (44)

and

lim sup
t→∞

1

�(σ (t), η)

∫ σ(t)

η

{

�σ (σ (t), s)V(s)�(s)�σ (s) − ∅(s)(D−(t, s))2

4�σ (s)�(s)

}

�s = ∞, (45)

where

V(t) =
⎛

⎝
m∑

i=1

θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t), (46)

then, the solution of Eq. (1) satisfies the oscillatory property over [t0 ∞)T .
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Proof Using the contradictory approach,we startwith the assumption that Eq. (1) has
no oscillatory solutions, sayB(t). Then, there is no doubtB(t) is positive (eventually),
i.e., ∃ t0 ≤ η < t such that B(t) is positive for all t ∈ [η ∞)T . Similarly, we will do
for negative (eventually) case. Now, from (19), we should have

⎡

⎣

⎛

⎝
m∑

i=1

(θi(t)ℵi(t) −
n∑

j=1

	j(t)C̄j(t))

⎞

⎠ − b(t)

⎤

⎦�(t)�σ (t) ≤ −$�(t) + ��(t)

�(t)
$(t)

−�σ (t)�(t)

∅(t)�2(t)
$2(t).

Multiplying Eq. (47) by U (σ (t), σ (s)), and then integrating from η to σ(t), we
obtain the following relation

∫ σ(t)

η

�σ (σ (t), s)

⎡

⎣

⎛

⎝
m∑

i=1

(θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s))

⎞

⎠ − b(s)

⎤

⎦�(s)�σ (s)�s

≤ −
∫ σ(t)

η

�σ (σ (t), s)$�(s)�s

+
∫ σ(t)

η

�σ (σ (t), s)

(
��(s)

�(s)
$(s) − �σ(s)�(s)

∅(s)�2(s)
$2(s)

)

�s. (47)

From Eq. (4) along with Eq. (47), yields

∫ σ(t)

η

�σ (σ (t), s)

⎡

⎣

⎛

⎝
m∑

i=1

(θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s))

⎞

⎠ − b(s)

⎤

⎦

�(s)�σ (s)�s ≤ �(σ (t), η)$(η) +
∫ σ(t)

η

[

��s(σ (t), s) + �σ (σ (t), s)��(s)

�(s)

]

$(s)�s

−
∫ σ(t)

η

�σ (σ (t), s)
�σ (s)�(s)

∅(s)�2(s)
$2(s)�s. (48)
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Substituting (44) into (48), it follows that

∫ σ(t)

η

�σ (σ (t), s)

⎡

⎣

⎛

⎝
m∑

i=1

(θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s))

⎞

⎠ − b(s)

⎤

⎦�(s)�σ (s)�s

≤ �(σ (t), )$(η) +
∫ σ(t)

η

(
D−(t, s)

√
�σ (σ (t), s)

�(s)
$(s)

−�σ (σ (t), s)
�σ (s)

∅(s)�2(s)
�(s)$2(s)

)

�s. (49)

Implies that

∫ σ(t)

η

�σ (σ (t), s)

⎡

⎣

⎛

⎝
m∑

i=1

(θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s))

⎞

⎠ − b(s)

⎤

⎦ θ(s)�σ (s)�s

≤ �(σ (t), η)$(η) +
∫ σ(t)

η

∅(s)(D−(t, s))2

4�σ (s)θ(s)
�s.

which is equivalent to

1

�(σ (t), η)

∫ σ(t)

η

⎧
⎨

⎩
�σ (σ (t), s)

⎡

⎣

⎛

⎝
m∑

i=1

(θi(s)ℵi(s) −
n∑

j=1

	j(s)C̄j(s))

⎞

⎠ − b(s)

⎤

⎦

−θ(s)�σ (s) − ∅(s)(D−(t, s))2

4�σ(s)θ(s)

}

�s ≤ $(η) < ∞. (50)

Taking large t, we get a contradiction to fact that Eq. (45). Hence, proof is done.

Corollary 7 If the assumptions (G1) − (G3), (43) and ∅�(t) ≥ 0 are hold. In addi-
tion, ∃ a�-derivative function�(t) > 0 and η ∈ T ; t ≥ η, respectively, and assume
that
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��s(σ (t), s) + �σ (σ (t), s)��(t)

�(t)
= −D(t, s)

�(t)

√
�σ (σ (t), s), (51)

lim sup
t→∞

1

�(σ (t), η)

∫ σ(t)

η

�σ (σ (t), s)V(s)θ(s)�σ (s)�s = ∞ (52)

and (53)

lim sup
t→∞

1

�(σ (t), η)

∫ σ(t)

η

∅(s)(D−(t, s))2

4�σ(s)θ(t)
�s < ∞. (54)

where V(t) in (46), then the solution of Eq. (1) satisfies the oscillatory property over
[t0 ∞)T .

Corollary 8 If the assumption (G1) − (G3), (43) and ∅�(t) ≥ 0 are hold. Further-
more,∃ a�-derivative function�(t)which is positive and η ∈ T ; t ≥ η respectively,
and assume that

��s (σ (t), s) + �σ (σ (t), s)��(t)

�(t)
= −D(t, s)

�(t)

√
�σ (σ (t), s), (55)

lim sup
t→∞

1

�(σ (t), η)

∫ σ(t)

η
�σ (σ (t), s)θ(s)�σ (s)

m∑

i=1

θi(t)ℵi(t) �s = ∞, (56)

and (57)

lim sup
t→∞

1

�(σ (t), η)

∫ σ(t)

η

⎛

⎝
n∑

j=1

	j(t)C̄j(t)) + b(t) + ∅(s)(D−(t, s))2

4�σ (s)θ(t)

⎞

⎠�s < ∞. (58)

then, all the solutions of Eq. (1) oscillate, which is defined over [t0 ∞)T .

Next, we give an example which illustrates our result.

4 Example

Here, we take the following nonlinear equation on T :

(
7B�(t)

)� +
3∑

i=1

2i
√
t2 + 1√
t2 + 5

B(t) + sgn(B(t))5t
8+44 − B(t)

2t
−

2∑

j=1

1

j
x(t)

+
∫ t

1
(s − 1)2sgn(B(s))eB

�(s) + B(s)�s = 0, (59)
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here, ∅(t) = 7,�(t) = 4, b(t) = 1
2t , θi(t) = 2i

√
t2 + 1, ℵi(t) = 2i

√
t2 + 5, 	j(t)

= ej(t, 1), C̄j(t) = 1
jej(t,1)

, for i = 1, 2, 3 and j = 1, 2, λ(t) = 5t
8+44, g(t) = (t −

1)2, for t > 1 otherwise zero.
Also, we take Gj(·, ·, ·, ·, ·) = 1

jej(t,1)
x(t), Wi(·, ·, ·, ·) = 2i

√
t2 + 5, B(·, ·, ·) =

B(t)
2t , F(·, ·) = sgn(B(t))eB

�(t)+B(t). Thus, it is clear that for η = 4 the following
relations hold

lim inf
t→∞

∫ t

4
4.5t

8+44

{
25

2
− 1

2t

}

�s = ∞, (60)

and
∫ ∞

4

1

∅(t)
�t = ∞. (61)

Thus, all conditions (G1) − (G3) hold. Thus, by Theorem (3.1), we have a oscillatory
solution of Eq. (59) on [1,∞)T .
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Optimal Investment Decision Model
Based on Simplex Algorithm
with Variable Optimal Value Evaluation
Process

Sanyam Gupta and L. N. Das

Abstract An investment is the current commitment of money or other resources
with the expectation of reaping future benefits [1]. Also, investment is a long-term
planning at least one year, with low or moderate risks having low or moderate of
return. In case planning is short term (few days or months), risk is high with high
rates of return. Investment decisions are influenced by hearsay, market psychology
and resort to borrowed funds. Market psychology depends on investment analytic
descriptions or abstract terms such as purpose, time risks, tools, financial datamonitor
and adjustment. Each financial product or investment program has rules restrictions,
time commitment and cost associate with it. Establishing a time frame for each pur-
pose or goal allows us to make better choices about the tools we use to achieve the
purpose. In this paper, the introduction describes a brief literature defining invest-
ment decision support technical terms such as expected return or risks, portfolio and
steps in decision process of investment analysis. In the second section, we discuss
types of investment and investment calculation attributes. The third section contains
the formulation of a constrained linear programming modeled investment problem
and calculates the optimal decision variable values using simplex algorithm solver
MATLAB [2] and TORA [3] tools. In the fourth section, we discuss the application
of binary integer program to decide optimum profitable investment projects from a
set of listed investment project outcome values.

Keywords Simplex algorithm · Binary integer program · Linear programming

S. Gupta (B) · L. N. Das
Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India
e-mail: sanyam_phd2k18@dtu.ac.in

L. N. Das
e-mail: lndas@dce.ac.in

© Springer Nature Singapore Pte Ltd. 2020
S. Bhattacharyya et al. (eds.), Mathematical Modeling and Computational Tools,
Springer Proceedings in Mathematics & Statistics 320,
https://doi.org/10.1007/978-981-15-3615-1_31

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3615-1_31&domain=pdf
mailto:sanyam_phd2k18@dtu.ac.in
mailto:lndas@dce.ac.in
https://doi.org/10.1007/978-981-15-3615-1_31


434 S. Gupta and L. N. Das

1 Introduction

A proper investment decision process helps the service provider and service avail-
ing people happier. The banks and nation’s finance servicing units calculate effec-
tive investment policies before execution a financial or infrastructure development
projects [4, 5]. Government’s people welfare schemes are also needed proper finan-
cial studies prior to implement the scheme. Each financial product or investment
program has certain rules, restrictions, time commitments and cost associates with
it. Establishing a time frame for each purpose and goal fulfillment, it allows us to
make better choices about the tools.

The insurance company policies and participating people have a certain type of
investments, namely CD, bonds, stock, real estate and commodities. The invest-
ments are transacting through banks. The programmable investment calculator helps
in determining effective set of variables concerning investment with a fixed rate of
return. There are four crucial elements such as return rate, starting amount, invest-
ment length and additional contribution usually calculated through programmable
investment calculators.

2 Literature Defining Investment Decision Support
Technical Terms

Expected return and risks: Realized returns meaning actual return might be more or
less than the expected return. In case, the actual return is less than the expected return
is called the risk.

Steps in decision process: These are the security analysis and portfolio manage-
ment. The value of the security is a function of future earnings from the security
and the risk attached. After securities have been analyzed and valued, the portfolio
is selected and security is made.

Portfolio management: These are either passive investment strategy or active
investment strategy. In passive strategy, the investors make few changes in the portfo-
lio, so that transaction costs, time and search costs are minimum. In active strategies,
investors believe that they can earn better returns by actively making changes in the
portfolio.

In the next section, we formulate a bank’s annual investment strategy using past
years’ interest rate, NPA and corresponding constraints in the form of a linear
programming algebraic model problem [6]. We use the numerical values to write
constraint inequalities for solving the problem using simplex algorithm through
MATLAB and TORA [7, 8].
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3 A Constrained Linear Programming Modeled Investment
Problem and the Optimal Decision Variable Calculation

A bank is devising the loan with the maximum total fund 4652 crore the following
table provides the numerical data about the available types of loans. The numerical
data consist of interest rate, and NPAmeaning non-performing assets. The NPAs are
unrecoverable and produce no interest revenue.

S. no. Type of loans Interest rate NPA

1. Home 8.65 1.3462

2. Vehicle 11.55 0.212

3. Education 10.55 0.1749

4. LAP 11.45 0.2624

5. Personal 12.55 0.0712

6. Other 12.90 0.583

7. SMF 1.9 4.1745

8. Agriculture 2.65 2.7255

9. Industry 1.25 5.3450

10. Service 1.25 12.2950

The bank manager follows the following strategies and restrictions to provide
bank loan.

1. Total funds should not exceed 4652 crores.
2. NPA should not exceed 16%.
3. Home, Vehicle, Education, LAP, Personal and Other loans should not exceed

400 crores.
4. SMF and Agriculture loans should not exceed 600 crores.
5. Industry and Service loans should not exceed 3500 crores.
6. Home, Vehicle, Education, LAP, Personal and Other loans should equal to at

least 8% of all loans.
7. SMF and Agriculture loans should equal to at least 11% of all loans.
8. Industry and Service loans should equal to at least 60% of all loans.
9. Home, Vehicle, Education, LAP, Personal and Other loans should equal to at

least 73% of SMF and Agriculture loans.
10. SMF and Agriculture loans should equal to at least 14% of Industry and Service

loans.

The bank manager wants to determine the quantity of loans in each category so
that NPA should be minimum and revenue is maximum.

Mathematical models for variable and constraint determination:
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Let us assign the variable for loan quantities in crores

x1 Home loans
x2 Vehicle loan
x3 Education loan
x4 LAP loan
x5 Personal loan
x6 Other loans
x7 SMF loans
x8 Agriculture loans
x9 Industry loan
x10 Service loan.

The objective of the bankmanager is tomaximize the difference of interest revenue
andNPA. Since 1.3462%ofHome loan is non-performing asset, the bankwill receive
interest on only 98.6538% of the home loan. Thus, the revenue from Home loan will
be 0.0865 × 0.986538x1. In this way, the total interest is

f (x1, x2, . . . , x10) = 0.0865 × 0.986538x1 + 0.1155 × 0.99788x2
+ 0.1055 × 0.998251x3 + 0.1145 × 0.997376x4
+ 0.1255 × 0.99288x5 + 0.1290 × 0.99417x6
+ 0.019 × 0.958255x7 + 0.0265 × 0.972745x8
+ 0.0125 × 0.94655x9 + 0.0125 × 0.87705x10

f (x1, x2, . . . , x10) = 0.085335537x1 + 0.11525514x2 + 0.1053154805x3
+ 0.114199552x4 + 0.125410644x5 + 0.12824793x6
+ 0.018206845x7 + 0.0257777425x8 + 0.011831875x9
+ 0.010963125x10

Total NPA = 0.013462x1 + 0.00212x2 + 0.001749x3 + 0.002624x4 + 0.000712x5
+ 0.00583x6 + 0.041745x7 + 0.027255x8 + 0.05345x9 + 0.12295x10

Maximize Z = Total interest − Total NPA

Maximize Z = 0.071873537x1 + 0.11313514x2 + 0.1035664805x3
+ 0.111575552x4 + 0.124698644x5 + 0.12241793x6
− 0.023538155x7 − 0.0014772575x8 − 0.041618125x9
− 0.111986875x10

The constraints are determined from the investment strategies mentioned in the
problem description.
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1. Total funds should not exceed 4652 crores.

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 4652

2. NPA should not exceed 16%.

0.013462x1 + 0.00212x2 + 0.001749x3 + 0.002624x4 + 0.000712x5
+ 0.00583x6 + 0.041745x7 + 0.027255x8 + 0.05345x9 + 0.12295x10
≤ 0.16(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)

Or

−0.146538x1 − 0.15788x2 − 0.158251x3 − 0.157376x4 − 0.159288x5
−0.15417x6 − 0.118255x7 − 0.132745x8 − 0.10655x9 − 0.03705x10 ≤ 0

3. Home, Vehicle, Education, LAP, Personal and Other loans should not exceed
400 crores.

x1 + x2 + x3 + x4 + x5 + x6 ≤ 400

4. SMF and Other Agriculture loans should not exceed 600 crores.

x7 + x8 ≤ 600

5. Industry and Service loans should not exceed 3500 crores

x9 + x10 ≤ 3500

6. Home, Vehicle, Education, LAP, Personal and Other loans should equal to at
least 8% of all loans.

x1 + x2 + x3 + x4 + x5 + x6 ≥ 0.08(x1 + x2 + x3 + x4 + x5
+ x6 + x7 + x8 + x9 + x10)

Or

−0.92x1 − 0.92x2 − 0.92x3 − 0.92x4 − 0.92x5 − 0.92x6
+0.08x7 + 0.08x8 + 0.08x9 + 0.08x10 ≤ 0

7. SMF and Other Agriculture loans should equal to at least 11% of all loans.

x7 + x8 ≥ 0.11(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)
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Or

0.11x1 + 0.11x2 + 0.11x3 + 0.11x4 + 0.11x5 + 0.11x6 − 0.89x7
−0.89x8 + 0.11x9 + 0.11x10 ≤ 0

8. Industry and Service loans should equal to at least 60% of all loans.

x9 + x10 ≥ 0.60(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)

Or

0.60x1 + 0.60x2 + 0.60x3 + 0.60x4 + 0.60x5
+0.60x6 + 0.60x7 + 0.60x8 − 0.4x90.4x10 ≤ 0

9. Home, Vehicle, Education, LAP, Personal and Other loans should equal to at
least 73% of SMF and Other Agriculture loans.

x1 + x2 + x3 + x4 + x5 + x6 ≥ 0.73(x7 + x8)

Or

−x1 − x2 − x3 − x4 − x5 − x6 + 0.73x7 + 0.73x8 ≤ 0

10. SMF and Other Agriculture loans should equal to at least 14% of Industry and
Service loans.

x7 + x8 ≥ 0.14(x9 + x10)

Or

−x7 − x8 + 0.14x9 + 0.14x10 ≤ 0

11. Non-negativity.

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0,

x7 ≥ 0, x8 ≥ 0, x9 ≥ 0, x10 ≥ 0

Output using MATLAB Version R2017a:
LPP

f = 0.0719 0.1131 0.1036 0.1116 0.1247 0.1224

−0.0235 − 0.0015 − 0.0416 − 0.1120
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Aeq =
[]
Beq =
[]
lb =
0 0 0 0 0 0 0 0 0 0
b =
[]
Optimal solution found.
x =
1.0e ∗ 03∗
0.3577
0
0
0
0
0
0.4900
0
0
3.5000
Z =
−377.7786
ans =
377.7786

In order to get an authentication about the values of the solution, we use the same
LPP and solved using TORA [3]. The TORA output is mentioned in the following
table.

Output using TORA Version 2.00

* This is the last 6th iteration of TORA.
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4 Bank Loan Policy Decision by Using Binary Integer
Program

A bank is devising a loan policy by observing the NPA of five quarters of a financial
year. The aim of the bank manager is to decide which category of loan should be
preferred in the coming quarter to reduce the NPA. The numerical data are provided
in the following table. Based on this, we determine a LPP and solve it using binary
integer program to decide which category loans to be provided in the next quarter in
a preference.

Loan/months Mar-17 June-17 Dec-17 Mar-18 June-18 Return

Retail 3.12 2.65 2.33 2.11 2.65 48,638.26,415,094,340

Agriculture 5.10 7.98 6.06 6.05 6.09 42,097.39130434780

Micro and
small

8.92 9.56 11.02 11.99 12.03 42,398.17622610140

Medium and
large

15.21 17.36 18.15 23.34 23.25 134,456.09677419300

Non-performing assists (NPAs) are unrecoverable and produce no interest
revenue.

Strategies to distribution of loan by the bank:

1. Total NPA of month Mar-17 should not exceed 11.17.
2. Total NPA of month June-17 should not exceed 12.63.
3. Total NPA of month Dec-17 should not exceed 13.03.
4. Total NPA of month Mar-18 should not exceed 15.73.
5. Total NPA of month June-18 should not exceed 16.00.

Mathematical models for variable and constraint determination:
Let us assign the variable for loan quantities in crores,

x1 Retail,
x2 Agriculture,
x3 Micro and small,
x4 Medium and large.

The objective of the bank manager is to maximize return.

Maximize Z = 48638.26415094340x1 + 42097.39130434780x2
+ 42398.17622610140x3 + 134456.09677419300x4

The constraints are determined from the investment strategies mentioned in the
problem description.
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1. Total NPA of month Mar-17 should not exceed 11.17.

3.12x1 + 5.10x2 + 8.92x3 + 15.21x4 ≤ 11.17

2. Total NPA of month June-17 should not exceed 12.63.

2.65x1 + 7.98x2 + 9.56x3 + 17.36x4 ≤ 12.63

3. Total NPA of month Dec-17 should not exceed 13.03.

2.33x1 + 6.06x2 + 11.02x3 + 18.15x4 ≤ 13.03

4. Total NPA of month Mar-18 should not exceed 15.73.

2.11x1 + 6.05x2 + 11.99x3 + 23.34x4 ≤ 15.73

5. Total NPA of month June-18 should not exceed 16.00.

2.65x1 + 6.90x2 + 12.03x3 + 23.25x4 ≤ 16.00

5 Conclusion

The numerical data used in the formulation of LPP problems mentioned in Sects. 3
and 4 are taken from the Web site of the financial year 2017–2018, Union Bank of
India [9, 10]. In Sect. 3, the LPP solution is x1 = 357.7, x7 = 490.0, x10 = 3500.0 and
x2, x3, x4, x5, x6, x8, x9 = 0. The objective value is z = 377.7786 crores. In Sect. 4,
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binary integer LPP solution more emphasizes the bank investment category of the
Retail and Agriculture and lesser emphasizes Micro–small and Medium–large-scale
investment.
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Asymptotic Theory of Bayes Factor
in Stochastic Differential Equations with
Increasing Number of Individuals
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Abstract Research on asymptotic model selection in the context of stochastic dif-
ferential equations (SDEs) is almost nonexistent in the literature. In particular, when
a collection of SDEs is considered, the problem of asymptotic model selection has
not been hitherto investigated. Indeed, even though the diffusion coefficients may be
considered known, questions on appropriate choice of the drift functions constitute
a non-trivial model selection problem. In this article, we develop the asymptotic
theory for comparisons between collections of SDEs with respect to the choice of
drift functions using Bayes factors when the number of equations (individuals) in
the collection of SDEs tends to infinity while the time domains remain bounded for
each equation. Our asymptotic theory covers situations when the observed processes
associated with the SDEs are independently and identically distributed (iid ), as well
as when they are independently but not identically distributed (non-iid ). In particular,
we allow incorporation of available time-dependent covariate information into each
SDE through a multiplicative factor of the drift function; we also permit different
initial values and domains of observations for the SDEs. Our model selection prob-
lem thus encompasses selection of a set of appropriate time-dependent covariates
from a set of available time-dependent covariates, besides selection of the part of the
drift function free of covariates. For both iid and non-iid set-ups, we establish almost
sure exponential convergence of the Bayes factor. Furthermore, we demonstrate with
simulation studies that even in non-asymptotic scenarios Bayes factor successfully
captures the right set of covariates.
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Keywords Bayes factor consistency · Kullback–Leibler divergence · Martingale ·
Stochastic differential equations · Time-dependent covariates · Variable selection

1 Introduction

In statistical applications where “within” subject variability is caused by some
random component varying continuously in time, stochastic differential equations
(SDEs) have important roles to play for modeling the temporal component of each
individual. The inferential abilities of the SDEs can be enhanced by incorporating
covariate information available for the subjects. In these time-dependent situations,
it is only natural that the available covariates are also continuously varying with time.
Examples of statistical applications of SDE-based models with time-dependent co-
variates are Oravecz et al. [14], Overgaard et al. [15], Leander et al. [8], the first one
also considering the hierarchical Bayesian paradigm.

Unfortunately, asymptotic inference in systems of SDE-based models consisting
of time-varying covariates seems to be rare in the statistical literature, in spite of their
importance. So far, random effect SDE models have been considered for asymptotic
inference, without covariates. We refer to Delattre et al. [3] for a brief review, who
also undertake theoretical and classical asymptotic investigation of a class of random
effect models based on SDEs. Specifically, they model the ith individual by

dXi(t) = b(Xi(t), φi)dt + σ(Xi(t))d Wi(t), (1.1)

where, for i = 1, . . . , n, Xi(0) = xi is the initial value of the stochastic process Xi(t),
which is assumed to be continuously observed on the time interval [0, Ti]; Ti > 0 is
assumed to be known. The function b(x, ϕ), which is the drift function, is a known,
real-valued function on R × R

d (R is the real line, and d is the dimension), and the
function σ : R �→ R is the known diffusion coefficient. The SDEs given by (1.1) are
driven by independent standardWiener processes {Wi(·); i = 1, . . . , n} and {φi; i =
1, . . . , n}, which are to be interpreted as the random effect parameters associated
with the n individuals, which are assumed by Delattre et al. [3] to be independent
of the Brownian motions and independently and identically distributed (iid ) random
variables with some common distribution. For the sake of convenience, Delattre et
al. [3] (see also Maitra and Bhattacharya [10, 11]) assume b(x, φi) = φib(x). Thus,
the random effect is a multiplicative factor of the drift function. In this article, we
generalize the multiplicative factor to include time-dependent covariates.

In the case of SDE-based models, proper specification of the drift function and
the associated prior distributions demand serious attention, and this falls within the
purview of model selection. Moreover, when (time-varying) covariate information is
available, there arises the problem of variable selection; that is, the most appropriate
subset from the set of many available covariates needs to be chosen. As is well
known (see, e.g., Kass and Raftery [7]), the Bayes factor (Jeffreys [6]) is a strong
candidate for dealing with complex model selection problems. Hence, it is natural
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to consider this criterion for model selection in SDE set-ups. However, dealing with
Bayes factors directly in SDE set-ups is usually infeasible due to unavailability
of closed-form expressions, and hence various numerical approximations based on
Markov chain Monte Carlo, as well as related criteria such as Akaike information
criterion (Akaike [1]) and Bayes information criterion (Schwarz [18]), are generally
employed (see, e.g., Fuchs [4] and Iacus [5]). But quite importantly, although Bayes
factor and its variations find use in general SDE models, in our knowledge covariate
selection in SDE set-ups has not been addressed so far.

Moreover, asymptotic theory of Bayes factors in SDE contexts, with or without
covariates, is still lacking (but see Sivaganesan andLingham [19]who asymptotically
compare three specific diffusion models in single equation set-ups using intrinsic
and fractional Bayes factors). In this paper, our goal is to develop an asymptotic
theory of Bayes factors for comparing different sets of SDE models. Our asymptotic
theory simultaneously involves time-dependent covariate selection associated with
a multiplicative part of the drift function, in addition to selection of the part of the
drift function free of covariates. The asymptotic framework of this paper assumes
that the number of individuals tends to infinity, while their domains of observations
remain bounded.

It is important to clarify that the diffusion coefficient is not associated with the
question of model selection. Indeed, it is already known from Roberts and Stramer
[17] that when the associated continuous process is completely observed, the diffu-
sion coefficient of the relevant SDE can be calculated directly. Moreover, two dif-
fusion processes with different diffusion coefficients are orthogonal. Consequently,
we assume throughout that the diffusion coefficient of the SDEs is known.

We first develop the model selection theory using Bayes factor in general SDE-
based iid set-up; note that the iid set-up ensues when there is no covariate associated
with the model and when the initial values and the domains of observations are the
same for every individual. The model selection problem in iid cases is essentially
associated with the choice of the drift functions with no involvement of covariate
selection.We then extend our theory to the non-iid set-up, consisting of time-varying
covariates anddifferent initial values anddomains of observations.Here,model selec-
tion involves not only selection of the part of the drift functions free of the covariates,
but also the subset of important covariates from a set of available covariates.

Specifically, we prove almost sure exponential convergence of the relevant Bayes
factors in our set-ups. Assuming the iid set-up, we develop our asymptotic theory
based on a general result already existing in the literature. However, for the non-iid
situation we first develop a general theorem which may perhaps be of independent
interest, and prove almost sure exponential convergence of the Bayes factor in our
non-iid SDE set-up as a special case of our theorem.

It is important to note that (which we also clarify subsequently in Sect. 2.6), in
the asymptotic framework of this paper, where the domains of observations remain
bounded for the individuals, incorporation of random effects does not make sense
from the asymptotic perspective. For this reason, we include random effects in our
paper Maitra and Bhattacharya [12], where we assume that even the domains of
observations are allowed to increase indefinitely.
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The rest of our article is structured as follows. In Sect. 2, we formalize the problem
ofmodel selection in our aforementioned asymptotic framework.We then present the
necessary assumptions and results in Sect. 3. In Sect. 4, we investigate convergence
of the Bayes factor when the SDE models being compared form an iid system of
equations. In Sect. 5, we develop a general asymptotic theory of Bayes factors in
the non-iid situation, and then in Sect. 6 we investigate exponential convergence of
the Bayes factor when the system of SDEs is non-iid . In Sect. 7, we demonstrate
with simulation studies that Bayes factor yields the correct covariate combination
for our SDE models even in non-asymptotic cases. We provide a brief summary of
this article and make concluding remarks in Sect. 8.

The proofs of our lemmas and theorems are provided in the supplementary doc-
ument whose sections will be referred to in this article by the prefix “S-”.

2 Formalization of the Model Selection Problem
in the SDE Set-Up

Our assumptions (H2′) in Sect. 3 ensure that our considered systems are well de-
fined and we are able to compute the exact likelihood. We consider the filtra-
tion (FW

t , t ≥ 0), where FW
t = σ(Wi(s), s ≤ t). Each process Wi is a (FW

t , t ≥ 0)-
adapted Brownian motion.

In connectionwithmodel selection,wemust analyze the samedata setwith respect
to two different models. So, although the distribution of the underlying stochastic
process under the two models is different, to avoid notational complexity we denote
the process by Xi(t) under both the models, keeping in mind that the distinction
becomes clear from the context and also by the model-specific parameters.

2.1 The Structure of the SDE Models to Be Compared

Now, let us consider the following two systems of SDE models for i = 1, 2, . . . , n:

dXi(t) = φi,ξ 0(t)bβ0
(Xi(t))dt + σ(Xi(t))d Wi(t) (2.1)

and
dXi(t) = φi,ξ 1(t)bβ1

(Xi(t))dt + σ(Xi(t))d Wi(t) (2.2)

where Xi(0) = xi is the initial value of the stochastic process Xi(t), which is assumed
to be continuously observed on the time interval [0, Ti]; Ti > 0 for all i and assumed
to be known. We assume that (2.1) represents the true model and (2.2) is any other
model. In the above equations, for j = 0, 1, ξ j and β j denote the sets of parameters
associated with the true model and the other model.
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2.2 Incorporation of Time-Varying Covariates

We model φi,ξ j
(t) for j = 0, 1, as

φi,ξ j
(t) = φi,ξ j

(zi(t)) = ξ0j + ξ1jg1(zi1(t)) + ξ2jg2(zi2(t)) + · · · + ξpjgp(zip(t)),
(2.3)

where ξ j = (ξ0j, ξ1j, . . . , ξpj) is a set of real constants for j = 0, 1, and zi(t) =
(zi1(t), zi2(t), . . . , zip(t)) is the set of available covariate information corresponding
to the ith individual, dependingupon time t.Weassume zi(t) is continuous in t, zil(t) ∈
Zl where Zl is compact and gl : Zl → R is continuous, for l = 1, . . . , p. We letZZZ =
Z1 × · · · × Zp, and Z = {z(t) ∈ ZZZ : t ∈ [0,∞) such that z(t) is continuous in t}.
Hence, zi ∈ Z for all i. The functions bβ j

are multiplicative parts of the drift functions
free of the covariates.

2.3 Model Selection with Respect to the Drift Function and
the Covariates

We accommodate the possibility that the dimensions of β0,β1, associated with the
drift functions, may be different. In reality, bβ0

may be piecewise linear or convex
combinations of linear functions, where the number of linear functions involved (and
hence, the number of associated intercept and slope parameters) may be unknown.
That is, not only the values of the components of the parameter β0, but also the
number of the components of β0 may be unknown in reality. In general, bβ0

may
be any function, linear or nonlinear, satisfying some desirable conditions. Linearity
assumptions may be convenient, but need not necessarily be unquestionable. In other
words, modeling bβ0

in the SDE context is a challenging exercise, and hence the issue
of model selection in this context must play an important role in the SDE set-up.

We also accommodate the possibility that ξ 0 and ξ 1, associated with φi,ξ 0 and
φi,ξ 1 , may be coefficients associated with different subsets of the available set of p
covariates. This has an important implication from theviewpoint of variable selection.
Indeed, in a set of p time-dependent covariates, all the covariates are unlikely to be
significant, particularly if p is large. Thus, some (perhaps, many) of the coefficients
ξl0 associatedwith the truemodelmust be zero. Thismeans that only a specific subset
of the p covariates is associated with the true model. If a different set of covariates,
associated with ξ 1, is selected for actually modeling the data, then the Bayes factor
is expected to favor the true set of covariates associated with ξ 0.

If two different models are compared by the Bayes factor, none of which may be
the true model, then the Bayes factor is expected to favor that model which is closest
to the true model in terms of the Kullback–Leibler divergence.
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2.4 Form of the Bayes Factor

For j = 0, 1, letting θ j = (β j, ξ j), we first define the following quantities:

Ui,θ j =
∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s))

σ 2(Xi(s))
dXi(s), Vi,θ j =

∫ Ti

0

φ2
i,ξ j

(s)b2β j
(Xi(s))

σ 2(Xi(s))
ds (2.4)

for j = 0, 1 and i = 1, . . . , n.
Let CTi denote the space of real continuous functions (x(t), t ∈ [0, Ti]) defined

on [0, Ti], endowed with the σ -field CTi associated with the topology of uniform
convergence on [0, Ti].We consider the distributionPxi,Ti,zi

j on (CTi , CTi ) of (Xi(t), t ∈
[0, Ti]) given by (2.1) and (2.2) for j = 0, 1. We choose the dominating measure Pi

as the distribution of (2.1) and (2.2) with null drift. So, for j = 0, 1,

dPxi,Ti,zi
j

dPi
= fi,θ j (Xi) = exp

(
Ui,θ j − Vi,θ j

2

)
, (2.5)

where fi,θ0(Xi) denotes the true density and fi,θ1(Xi) stands for the other density
associated with the modeled SDE.

Let Θ = B × Γ be the parameter space on which a prior probability measure
of θ1, which we denote by π(θ1), is proposed. In the set-up where n → ∞ and Ti

are given, we are interested in asymptotic properties of the Bayes factor, given by,
I0 ≡ 1 and for n ≥ 1,

In =
∫

Θ

Rn(θ1)π(dθ1), (2.6)

as n → ∞, where

Rn(θ1) =
n∏

i=1

fi,θ1(Xi)

fi,θ0(Xi)
.

2.5 The iid and the Non-iid Set-Ups

Note that, for iid set-up θ j = (β j, ξ0j), along with xi = x and Ti = T for all i. Since,
for the iid set-up ξ j = ξ0j, so in this case Γ = R. Thus, here the problem of model
selection reduces to comparing ξ00bβ0

with ξ01bβ1
using Bayes factor.

In the non-iid set-up, we relax the assumptions ξ1j = ξ2j = · · · = ξpj = 0 and
xi = x, Ti = T for each i. Hence, in this case, the model selection problem involves
variable selection as well as comparison between different drift functions.
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2.6 No Random Effects When Ti Are Given

It is important to perceive that when the Ti are fixed constants, it is not possible to
allow random effects into the model and still achieve consistency of the Bayes factor.
This is because in that case the SDE set-up would simply reduce to n-independent
models, each with independent sets of parameters, leaving no scope for asymptotics
since Ti are held constants. In Maitra and Bhattacharya [12], we consider random
effects when Ti → ∞ along with n → ∞.

2.7 A Key Relation Between Ui,θ j and Vi,θ j in the Context
of Model Selection Using Bayes Factors

A useful relation between Ui,θ j and Vi,θ j which we will often make use of in this
paper is as follows.

Ui,θ j =
∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s))

σ 2 (Xi(s))
dXi(s)

=
∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s))

σ 2 (Xi(s))

[
φi,ξ 0(s)bβ0

(Xi(s)) ds + σ (Xi(s)) d Wi(s)
]

=
∫ Ti

0

φi,ξ j
(s)φi,ξ 0(s)bβ j

(Xi(s)) bβ0
(Xi(s))

σ 2 (Xi(s))
ds

+
∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s))

σ (Xi(s))
d Wi(s)

= Vi,θ0,θ j +
∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s))

σ (Xi(s))
d Wi(s), (2.7)

with

Vi,θ0,θ j =
∫ Ti

0

φi,ξ j
(s)φi,ξ 0(s)bβ j

(Xi(s)) bβ0
(Xi(s))

σ 2 (Xi(s))
ds. (2.8)

Note that Vi,θ0 = Vi,θ0,θ0 and Vi,θ1 = Vi,θ1,θ1 . Also note that, for j = 0, 1, for each i,

Eθ0

[∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s))

σ (Xi(s))
d Wi(s)

]
= 0, (2.9)

so that Eθ0

(
Ui,θ j

) = Eθ0

(
Vi,θ0,θ j

)
.
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3 Requisite Assumptions and Results for the Asymptotic
Theory of Bayes Factor When n → ∞ but Ti Are
Constants for Every i

We assume the following conditions:

(H1′) The parameter space Θ = B × Γ such that B and Γ are compact.

(H2′) For j = 0, 1, bβ j
(·) and σ(·) are C1 on R and satisfy b2β j

(x) ≤ K1(1 + x2 +
‖β j‖2) and σ 2(x) ≤ K2(1 + x2) for all x ∈ R, for some K1, K2 > 0. Now, due
to (H1′) the latter boils down to assuming b2β j

(x) ≤ K(1 + x2) and σ 2(x) ≤
K(1 + x2) for all x ∈ R, for some K > 0.

Because of (H2′), it follows from Theorem 4.4 of Mao [13], p. 61, that for all Ti > 0,
and any k ≥ 2,

E

(
sup

s∈[0,Ti]
|Xi(s)|k

)
≤ (

1 + 3k−1E|Xi(0)|k
)
exp

(
ϑ̃Ti

)
, (3.1)

where

ϑ̃ = 1

6
(18K)

k
2 T

k−2
2

i

[
T

k
2

i +
(

k3

2(k − 1)

) k
2
]

.

We further assume:

(H3′) For every x, bβ j
(x) is continuous in β j, for j = 0, 1.

(H4′) For j = 0, 1,
b2β j

(x)

σ 2(x)
≤ Kβ j

(
1 + x2 + ‖β j‖2

)
, (3.2)

where Kβ j
is continuous in β j.

(H5′) (i) Let ZZZ = Z1 × Z2 × · · · × Zp be the space of covariates where Zl is
compact for l = 1, . . . , p and zi(t) = (zi1(t), zi2(t), . . . , zip(t)) ∈ ZZZ for ev-
ery i = 1, . . . , n and t ∈ [0, Ti]. Moreover, zi(t) are continuous in t, so that
zi ∈ Z for every i.

(ii) For j = 0, 1, the vector of covariates zi(t) is related to the ith SDE of the
jth model via

φi,ξ j
(t) = φξ j

(zi(t)) = ξ0j +
p∑

l=1

ξljgl(zi(t)),

where, for l = 1, . . . , p, gl : Zl → R is continuous. Notationally, for a given
z(t), we denote φξ j

(t) = φξ j
(z(t)) = ξ0j + ∑p

l=1 ξljgl(z(t)).
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(iii) For l = 1, . . . , p, and for t ∈ [0, Ti],

1

n

n∑
i=1

gl(zil(t)) → cl(t); (3.3)

and for l, m = 1, . . . , p; t ∈ [0, Ti],

1

n

n∑
i=1

gl(zil(t))gm(zim(t)) → cl(t)cm(t), (3.4)

as n → ∞, where cl(t) are real constants.

Note that, given l and t, had zil(t) been random and iid with respect to i, then (3.3)
would hold almost surely by the strong law of large numbers. Additionally, if zil(t)
and zim(t) were independent, then (3.4) would hold almost surely as well. Hence, in
this paper, one may assume that for i = 1, . . . , n, and l = 1, . . . , p, the covariates
zil are observed realizations of stochastic processes that are iid for i = 1, . . . , n,
for all l = 1, . . . , p, and that for l �= m, the processes generating zil and zim are
independent. Thus, in essence,weassumehere that for l �= m, gl(zil(t)) and gm(zim(t))
are uncorrelated.

We then have the following lemma, which will be useful for proving our main
results.

Lemma 1 Assume (H1′)–(H4′). Then for all θ1 ∈ B × Γ , for k ≥ 1,

Eθ0

[
Ui,θ j

]k
< ∞; j = 0, 1, (3.5)

Eθ0

[
Vi,θ1

]k
< ∞, (3.6)

Eθ0

[
Vi,θ0,θ j

]k
< ∞; j = 0, 1. (3.7)

Moreover, for j = 1, the above expectations are continuous in θ1.

4 Convergence of Bayes Factor in the SDE-Based iid Set-Up

We first consider the iid set-up; in other words, we assume that xi = x, Ti = T for
i = 1, . . . , n, and j = 0, 1. In this case, θ j = (β j, ξ0j) for j = 0, 1. We shall relax
these assumptions subsequently when we take up the non-iid (that is, independent,
but nonidentical) case.
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4.1 A General Result on Consistency of Bayes Factor
in the iid Set-Up

To investigate consistency of the Bayes factor, we resort to a general result in the
iid set-up developed by Walker [20] (see also Walker et al. [21]). To state the re-
sult, we first define some relevant notation which applies to both parametric and
nonparametric problems. For any x in the appropriate domain, let

f̂n(x) =
∫

f (x)πn(df )

be the posterior predictive density, where πn stands for the posterior of f , given by

πn(A) =
∫

A

∏n
i=1 f (Xi)π(df )∫ ∏n
i=1 f (Xi)π(df )

and let

f̂nA(x) =
∫

f (x)πnA(df )

be the posterior predictive density restricted to the set A, that is, for the prior proba-
bility π(A) > 0,

πnA(df ) = IA(f )πn(df )∫
A πn(df )

,

where IA denotes the indicator function of the set A.
Clearly, the above set-up is in accordance with the iid situation. The following

theorem of Walker [20] is appropriate for our iid set-up.

Theorem 1 (Walker [20]) Let f0 be the density of the true data-generating dis-
tribution and f be the density of the modeled distribution. Also, let K(f0, f ) =∫

f0(x) log
(

f0(x)
f (x)

)
dP0 denote the Kullback–Leibler divergence between f0 and f ,

where P0 is the appropriate dominating measure associated with f0. Assume that

π (f : K(f0, f ) < c1) > 0, (4.1)

only for, and for all c1 > δ, for some δ ≥ 0, and that for all ε > 0,

lim inf
n

K
(

f0, f̂nA(ε)

)
≥ ε, (4.2)

when A(ε) = {f : K (f0, f ) > ε}. Property (4.1) is the Kullback–Leibler property,
and (4.2) has been referred to as the Q∗ property by Walker [20]. Assume further
that

sup
n

V ar

(
In+1

In

)
< ∞. (4.3)
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Then,

n−1 log (In) → −δ, (4.4)

almost surely.

The following corollary provides the result on asymptotic comparison between two
models using Bayes factors, in the iid case.

Corollary 1 (Walker [20]) Let Rn(f ) = ∏n
i=1

f (Xi)

f0(Xi)
. For j = 1, 2, let

Ijn =
∫

Rn(f )πj(df ),

where π1 and π2 are two different priors on f . Let Bn = I1n/I2n denote the Bayes
factor for comparing the two models associated with π1 and π2. If π1 and π2 have
the Kullback–Leibler property (4.1) with δ = δ1 and δ = δ2, respectively, and satisfy
the Q∗ property (4.2) and (4.3) with In = Ijn, for j = 1, 2, then

n−1 logBn → δ2 − δ1,

almost surely.

Remark 1 InWalker [20], the densities are assumed to be dominated by theLebesgue
measure. However, this is not necessary. The results remain true if the densities are
with respect to any valid measure; see, for example, Barron et al. [2] for related
concepts and results (Lemma 4 in particular) with respect to general measures. As
such, in our SDE-based situation, although the densities are not dominated by the
Lebesgue measure [see (2.5)], all our results still remain valid.

We exploit Theorem 1 to prove the following theorem in the SDE-based iid set-up.
The detailed verification of Theorem 1 is provided in Section S-2.

Theorem 2 Assume the iid case of the SDE-based set-up and conditions
(H1′)–(H4′). Then (4.4) holds.

The following corollary in the iid SDE context is motivated by Corollary 1.

Corollary 2 For j = 1, 2, let Rjn(θ j) = ∏n
i=1

fθ j (Xi)

fθ0 (Xi)
, where θ1 and θ2 are two differ-

ent finite sets of parameters, perhaps with different dimensionalities, associated with
the two models to be compared. For j = 1, 2, let

Ijn =
∫

Rjn(θ j)πj(dθ j),
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where πj is the prior on θ j . Let Bn = I1n/I2n as before. Assume the iid case of the
SDE-based set-up, and suppose that both the models satisfy conditions (H1′)–(H4′)
and have the Kullback–Leibler property with δ = δ1 and δ = δ2, respectively. Then,

n−1 logBn → δ2 − δ1,

almost surely.

5 General Asymptotic Theory of Bayes Factor
in the Non-iid Set-Up

In this section, we first develop a general asymptotic theory of Bayes factors in the
non-iid set-up and then obtain the result for the non-iid SDE set-up as a special case
of our general theory.

5.1 The Basic Set-Up

We assume that for i = 1, . . . , n, Xi ∼ f0i, that is, the true density function corre-
sponding to the ith individual is f0i. Considering another arbitrary density fi for
individual Xi, we investigate consistency of the Bayes factor in this general non-iid
set-up. For our purpose, we introduce the following two properties:

1. Kullback–Leibler (δ) property in the non-iid set-up:

We denote the Kullback–Leibler divergence measure between f0i and fi by K(f0i, fi)
and assume that the limit

K∞ (f0, f ) = lim
n→∞

1

n

n∑
i=1

E

[
log

f0i(Xi)

fi(Xi)

]
= lim

n→∞
1

n

n∑
i=1

K (f0i, fi) (5.1)

exists almost surely with respect to the prior π on f . Let the prior distribution π

satisfy

π

(
f : inf

i
K(f0i, fi) ≥ δ

)
= 1, (5.2)

for some δ ≥ 0. Then, we say that π has the Kullback–Leibler (δ) property if, for
any c > 0,

π
(
f : δ ≤ K∞ (f0, f ) ≤ δ + c

)
> 0. (5.3)
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2. Q∗ property in the non-iid set-up:

Let us denote the posterior distribution corresponding to n observations by πn. We
denote π(df1, df2, . . . , dfn) by π(d̃f ). For any set A,

πn(A) =
∫

A

∏n
i=1 fi(Xi)π(d̃f )∫ ∏n
i=1 fi(Xi)π(d̃f )

denotes the posterior probability of A. Let

Rn(f1, f2, . . . , fn) =
n∏

i=1

fi(Xi)

f0i(Xi)
.

Let us define the posterior predictive density by

f̂n(Xn) =
∫

fn(Xn)πn(df n),

and

f̂nA(Xn) =
∫

fn(Xn)πnA(df n)

to be the posterior predictive density with posterior restricted to the set A, that is, for
π(A) > 0,

πnA(df n) = IA(fn)πn(df n)∫
A πn(df n)

.

Then, we say that the prior has the property Q∗ in the non-iid set-up if the following
holds for any ε > 0:

lim inf
n

K(f0n, f̂n,An(ε)) ≥ ε, (5.4)

when

An(ε) = {fn : K(f0n, fn) ≥ ε}. (5.5)

Let I0 ≡ 1, and for n ≥ 1, let us define

In =
∫

Rn(f1, f2, . . . , fn)π(d̃f ), (5.6)

which is relevant to the study of the Bayes factors. Regarding convergence of In, we
formulate the following theorem.

Theorem 3 Assume the non-iid set-up and that the limit (5.1) exists almost surely
with respect to the prior π . Also, assume that the prior π satisfies (5.2) and has
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the Kullback–Leibler (δ) and Q∗ properties given by (5.3) and (5.4), respectively.
Assume further that

sup
i

E

[
log

f0i(Xi)

fi(Xi)

]2

< ∞ (5.7)

and

sup
n

E

[
log

In

In−1

]2

< ∞. (5.8)

Then,
n−1 log In → −δ, (5.9)

almost surely as n → ∞.

Corollary 3 For j = 1, 2, let

Ijn =
∫

Rn(f1, . . . , fn)πj(d̃ f ),

where π1 and π2 are two different priors on f . Let Bn = I1n/I2n denote the Bayes
factor for comparing the two models associated with π1 and π2. If both the models
satisfy the conditions of Theorem 3 and satisfy the Kullback–Leibler property with
δ = δ1 and δ = δ2, respectively, then

n−1 logBn → δ2 − δ1,

almost surely.

6 Specialization of Non-iid Asymptotic Theory of Bayes
Factors to Non-iid SDE Set-Up Where Ti Are Constants
for Every i but n → ∞

In this section, we relax the restrictions Ti = T and xi = x for i = 1, . . . , n. In other
words, here we deal with the set-up where the processes Xi(·); i = 1, . . . , n, are
independently, but not identically distributed. Following Maitra and Bhattacharya
[10, 11], we assume the following:

(H6′) The sequences {T1, T2, . . .} and {x1, x2, . . .} are sequences in compact sets T
and X, respectively, so that there exist convergent subsequences with limits
in T andX. For notational convenience, we continue to denote the convergent
subsequences as {T1, T2, . . .} and {x1, x2, . . .}. Let us denote the limits by T ∞
and x∞, where T ∞ ∈ T and x∞ ∈ X.
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Remark 2 Note that the choices of the convergent subsequences {T1, T2, . . .} and
{x1, x2, . . .} are not unique. However, this non-uniqueness does not affect asymptotic
selection of the correct model via Bayes factor. Indeed, as will be evident from our
proof, for any choice of convergent subsequence, the Bayes factor almost surely
converges exponentially to the correct quantity. The reason for this is that we actually
need to deal with the infimum of the Kullback–Leibler distance overX and T, which
is of course independent of the choices of subsequences; see Section S-6.1 for the
details.

Following Maitra and Bhattacharya [11], we denote the process associated with
the initial value x and time point t as X (t, x), so that X (t, xi) = Xi(t), and Xi =
{Xi(t); t ∈ [0, Ti]}.

Let θ j = (β j, ξ j) for j = 0, 1 denote the set of finite number of parameters,
where β j and ξ j have the same interpretation as in the iid set-up. As before,
zi(t) = (zi1(t), zi2(t), . . . , zip(t)) is the set of covariate information corresponding
to ith individual at time point t. For xi ∈ X, Ti ∈ T, zi(t) ∈ ZZZ and θ j ∈ Θ , let

Uxi,Ti,zi,θ j =
∫ Ti

0

φi,ξ j
(s)bβ j

(Xi(s, xi))

σ 2(Xi(s, xi))
dXi(s, xi); (6.1)

Vxi,Ti,zi,θ0,θ j =
∫ Ti

0

φi,ξ j
(s)φi,ξ 0(s)bβ j

(Xi(s, xi))bβ0
(Xi(s, xi))

σ 2(Xi(s, xi))
ds. (6.2)

As before, Vxi,Ti,zi,θ0 = Vxi,Ti,zi,θ0,θ0 and Vxi,Ti,zi,θ1 = Vxi,Ti,zi,θ1,θ1 .
In this non-iid set-up, f0i = fθ0,xi,Ti,zi and fi = fθ1,xi,Ti,zi . An extension of Lemma

1 incorporating x, T and z shows that moments of Ux,T ,z,θ j , Vx,T ,z,θ j , Vx,T ,z,θ0,θ j of
all orders exist and are continuous in x, T , z, θ1. Formally, we have the following
lemma.

Lemma 2 Assume (H1′)–(H6′). Then for all x ∈ X, T ∈ T, z ∈ ZZZ and θ1 ∈ Θ , for
k ≥ 1,

Eθ0

[
Ux,T ,z,θ j

]k
< ∞; j = 0, 1, (6.3)

Eθ0

[
Vx,T ,z,θ1

]k
< ∞, (6.4)

Eθ0

[
Vx,T ,z,θ0,θ j

]k
< ∞; j = 0, 1. (6.5)

Moreover, the above expectations are continuous in (x, T , z, θ1).

In particular, the Kullback–Leibler distance is continuous in x, T , z and θ1. The
following lemma asserts that the average of the Kullback–Leibler distance is also a
Kullback–Leibler distance in the limit.

Lemma 3 The limiting average lim
n→∞

1
n

∑n
k=1 K(fθ0,xk ,Tk ,zk

, fθ1,xk ,Tk ,zk
) is also a

Kullback–Leibler distance.

Even in this non-iid context, the Bayes factor is of the same form as (2.6);
however, for j = 0, 1, Uxi,Ti,zi,β j,ξ j

and Vxi,Ti,zi,β j,ξ j
are not identically distributed for
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i = 1, . . . , n. Next, we establish strong consistency of Bayes factor in the non-iid
SDE set-up by verifying the sufficient conditions of Theorem 3.

We verify the conditions of Theorem 3 to obtain the following theorem in our
non-iid SDE set-up.

Theorem 4 Assume the non-iid SDE set-up and conditions (H1′)–(H6′). Then (5.9)
holds.

As in the previous cases, the following corollary provides asymptotic comparison
between two models using Bayes factor in the non-iid SDE set-up.

Corollary 4 For j = 1, 2, let Rjn(θ j) = ∏n
i=1

fθ j ,x
i ,Ti ,zi

(Xi)

fθ0 ,xi ,Ti ,zi
(Xi)

, where θ1 and θ2 are two

different finite sets of parameters, perhaps with different dimensionalities, associated
with the two models to be compared. For j = 1, 2, let

Ijn =
∫

Rjn(θ j)πj(dθ j),

where πj is the prior on θ j . Let Bn = I1n/I2n as before. Assume the non-iid SDE set-up,
and suppose that both the models satisfy (H1′)–(H6′) and have the Kullback–Leibler
property with δ = δ1 and δ = δ2, respectively. Then,

n−1 logBn → δ2 − δ1,

almost surely.

7 Simulation Studies

7.1 Covariate Selection When n = 15, T = 1

We demonstrate with simulation study the finite sample analogue of Bayes factor
analysis as n → ∞ and T is fixed. In this regard, we consider n = 15 individuals,
where the ith one is modeled by

dXi(t) = (ξ1 + ξ2z1(t) + ξ3z2(t) + ξ4z3(t))(ξ5 + ξ6Xi(t))dt + σid Wi(t), (7.1)

for i = 1, . . . , 15.Wefixour diffusion coefficients asσi+1 = σi + 5 for i = 1, . . . , 14
where σ1 = 10. We consider the initial value X (0) = 0 and the time interval [0, T ]
with T = 1.

To achieve numerical stability of the marginal likelihood corresponding to each

data, we choose the true values of ξi; i = 1, . . . , 6 as follows: ξi
iid∼ N (μi, 0.0012),

where μi
iid∼ N (0, 1). This is not to be interpreted as the prior; this is just a means to

set the true values of the parameters of the data-generating model.
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We assume that the time-dependent covariates zi(t) satisfy the following SDEs

dz1(t) =(θ̃1 + θ̃2z1(t))dt + d W1(t)

dz2(t) =θ̃3dt + d W2(t)

dz3(t) =θ̃4z3(t))dt + d W3(t), (7.2)

where Wi(·), i = 1, 2, 3, are independent Wiener processes and θ̃i
iid∼ N (0, 0.012) for

i = 1, . . . , 4.

We obtain the covariates by first simulating θ̃i
iid∼ N (0, 0.012) for i = 1, . . . , 4,

fixing the values and then by simulating the covariates using the SDEs (7.2) by
discretizing the time interval [0, 1] into 500 equispaced time points. In all our appli-
cations, we have standardized the covariates over time so that they have zero means
and unit variances.

Once the covariates are thus obtained, we assume that the data are generated
from the (true) model where all the covariates are present. For the true values of
the parameters, we simulated (ξ1, . . . , ξ6) from the prior and treated the obtained
values as the true set of parameters θ0. We then generated the data using (7.1) by
discretizing the time interval [0, 1] into 500 equispaced time points.

As we have three covariates, we will have 23 = 8 different models. Denoting a
model by the presence and absence of the respective covariates, it then is the case
that (1, 1, 1) is the true, data-generating model, while (0, 0, 0), (0, 0, 1), (0, 1, 0),
(0, 1, 1), (1, 0, 0), (1, 0, 1) and (1, 1, 0) are the other 7 possible models.

Case 1: The true parameter set θ0 is fixed Prior on θ

For the prior π on θ , we first obtain the maximum likelihood estimator (MLE) of θ

using simulated annealing (see, e.g., Liu [9], Robert and Casella [16]) and consider
a normal prior where the mean is the MLE of ξi for i = 1, . . . , 6 and the variance is
0.82I6, I6 being the six-dimensional identity matrix. As will be seen, this results in
consistent model selection using Bayes factor.

Form of the Bayes Factor

In this case, the related Bayes factor has the form

In =
∫ n∏

i=1

fi,θ1(Xi)

fi,θ0(Xi)
π(dθ1),

where θ0 = (ξ0,1, ξ0,2, ξ0,3, ξ0,4, ξ0,5, ξ0,6) is the true parameter set and θ1 = (ξ1, ξ2,

ξ3, ξ4, ξ5, ξ6) is the unknown set of parameters corresponding to any other model.
Table1 describes the results of our Bayes factor analyses. It is clear from the 7 values
of the table that the correct model (1, 1, 1) is always preferred.
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Table 1 Bayes factor results Model 1
15 log I15

(0, 0, 0) −3.25214

(0, 0, 1) −1.39209

(0, 1, 0) −3.31954

(0, 1, 1) −1.11729

(1, 0, 0) −3.40378

(1, 0, 1) −1.22529

(1, 1, 0) −3.46790

Table 2 Values of 1
15×

marginal log-likelihoods
Model �i

(0, 0, 0) 2.42430

(0, 0, 1) 4.29608

(0, 1, 0) 1.75213

(0, 1, 1) 4.84717

(1, 0, 0) 1.56242

(1, 0, 1) 4.92628

(1, 1, 0) 0.47111

(1, 1, 1) 5.84665 (true model)

Case 2: The parameter set θ0 is random and has the prior distribution π

We consider the same form of the prior π as in Sect. 7.1, but with variance 0.12I6.
The smaller variance compared to that in Case 1 attempts to somewhat compensate,
in essence, for the lack of precise information about the true parameter values.

In this case, we calculate the marginal log-likelihood of the 8 possible models as

�i = 1

15
log

∫ n∏
i=1

fi,θ1(Xi)π(dθ1); i = 1, . . . , 8,

with �8 corresponding to the true model. Table2 shows that �8 is the highest. This
clearly implies that the Bayes factor consistently selects the correct set of covariates
even though the parameters of the true model are not fixed.

8 Summary and Conclusion

In this article, we have investigated the asymptotic theory of Bayes factors when the
models are associated with systems of SDEs consisting of sets of time-dependent
covariates. The model selection problem we consider encompasses appropriate se-
lection of a subset of covariates, as well as appropriate selection of the part of the
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drift function that does not involve covariates. Such an undertaking, according to our
knowledge, is a first-time effort which did not hitherto take place in the literature.

We have established almost sure exponential convergence of the Bayes factor
when the time domains remain bounded but the number of individuals tends to
infinity, in both iid and non-iid cases. In the non-iid context, we proposed and
proved general results on Bayes factor asymptotics, which should be of independent
interest.

Our simulation studies demonstrate that Bayes factor is a reliable criterion even
in non-asymptotic situations for capturing the correct set of covariates in our SDE
set-ups.

Note that our theory for non-iid situations readily extends to model comparison
problems when one of the models is associated with an iid system of SDEs and
another with a non-iid system of SDEs. For instance, if the true model is associated
with an iid system, then f0i ≡ f0 ≡ fθ0 , and the rest of the theory remains the same
as our non-iid theory of Bayes factors. The case when the other model is associated
with an iid system is analogous.
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Text Detection Based on Text Shape
Feature Analysis with Intelligent
Grouping in Natural Scene Images

D. Kavitha and V. Radha

Abstract Developing an assistive system for visually impaired people using
computer vision is an active area of research. The proposed assistive system is devel-
oped in an aim to be implemented in Braille e-book reader which facilitates visually
impaired persons to recognize the text through tactile or speech output. Examples
for such facilities include recognizing text in medicine pills, traffic sign detection,
automatic mobile robot navigation, etc. This paper presents an automated system
to recognize text in an image based on structural features like size, orientation, and
distance between the successive region of interest (ROI). The system is based on
two stages, the first performs text localization and the second performs the text de-
tection. In the first stage, the localizing of text area is done by intelligent grouping
algorithm. In the second stage, text detection is done based on text shape structural
features. Our proposed system achieved an average of 76.26% precision rate, 75.8%
of recall/sensitivity rate, and 76.03% of F-measure rate. The advantage of such a
simple and lightweight model is that it can be deployed rapidly in any single-board
microprocessors like Raspberry Pi and can be made to run effortlessly to produce
quality results in real time.

Keywords Text detection · Intelligent grouping · Text shape structure analysis

1 Introduction

An estimated 253 million people live with vision impairment: 36 million are
visually impaired and 217 million have moderate to severe vision impairment, 81%
of people who are visually impaired or have moderate or severe vision impairment
are aged 50years and above. Globally, chronic eye diseases are the main cause of
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vision loss. The vision impairment is caused by uncorrected refractive errors and
unoperated cataract. In the low and middle developed countries, the second case is
the main reason. The prevalence of infectious eye diseases, such as trachoma and on-
chocerciasis, has reduced significantly over the last 25years. Over 80% of all vision
impairment can be prevented or cured [1]. Hence, developing an assistive system is
very important for such a huge numbered population.

In the modern urban environment, the text was an inseparable feature. From
city streets to washrooms, the text is present everywhere, to name a few, to label
something, to convey an instruction, to alert about something, to provide live data,
and much more. Gathering this text to convert them into meaningful information is
vital in themodernworld for equippingvisually challenged to assist their urban living,
developing automated systems, navigation, etc. Even though the humans effortlessly
decipher the text to information, automated systems in computer vision face tough
challenges. There is a huge difference between detecting text in a constrained and
controlled environment like scans of a document and detecting text from natural
scene images. Text detection gains its applications in various fields like assisting
visually impaired peoples [2] in face recognition [3], traveling aid [4], traffic sign
detection [5], medical pill recognition [6], video text analysis [7], document analysis
[8], and detecting text in natural scene images [9].

Detecting text from scanned document images almost achieved 100% perfor-
mance. With natural scene images, there is a need to deal with challenges like noise
[10], blur, multi-scale edges [11], font size [12], angle view distortions [13], lighting
conditions [14], non-planar text surface [15], bounding layouts [16], colors [17],
styles, etc. Some of the natural scene images with textual information and with some
of the above said challenges are shown in Fig. 1. These complexities can be summed
up to diversity of text styles and complexity of the background which contains the
text region. In the recent past, text detection in natural scene images have triggered
a lot of interest among researchers in the field of computer vision, mainly because
of smartphone revolution. Text detecting algorithms starting from local operators-
based methods to complex DNN classifiers are furnished in the past. Even today, the
researchers are actively developing text detection methodologies, because there is
no unified method to tackle all the different scenarios.

The common architecture of text detection and extraction falls into following
steps: (1) text detection is the process of finding text area in the image, (2) text
localization is a way to generate bounding boxes around the text location, (3) text
segmentation means isolating text regions from the background, and (4) text extrac-
tion is the process of recognizing text contents. We explore the first two stages and
the flowchart of our proposed method as shown in Fig. 2.

Our proposed work of text detection is based on an intelligent grouping algorithm,
which localizes and groups individual text characters in a text region, is presented.
This algorithm group’s text is of similar size, equally spaced and in a common
orientation.

The grouped candidate ROIwhich havemore probability to have text are classified
by analyzing the straight lines and curves present in the text shape structure. This is
based on the concept that therewill be strong presence of lines and curves in the center
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Fig. 1 Natural scene text images of ICDAR 2015 dataset with variations like size, lighting, blur,
distortion, orientation, etc

Fig. 2 Flowchart of text detection

region of a candidate ROI than in the cluttered background. As both the operators
are local and do not require additional trained models for their computation, the
overall computational resource required, is heavily reduced. The advantage of such
a simple and lightweight model is that it can be deployed rapidly in any single-board
microprocessors like Raspberry Pi and can be made to run effortlessly to produce
quality results in real time.
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2 State-of-Art

Basicmethods of text detection in an imagemainly based on three categories, namely
edge-based, texture-based, and connected component-based methods.

Edge-basedmethod uses an edge detector operator to detect edges of images. They
analyze horizontal and vertical profiles of edgemap.But they produce numerous false
positives for image having complex background [20]. Epstein et al. [18] performed
bottom-up integration of information, merging pixels of similar stroke width into
connected components. They do not retain the complete shape of characters due to
color bleeding and low contrast of text lines.

Connected component-based method uses color quantization and region expan-
sion to group adjacent pixels of similar colors into connected components.Maximally
stable extremal regions (MSERs) are a type of CC where components are identified
using clustering. Hyung et al. [19] used amaximally stable extremal region algorithm
to extract connected components in images.

Zhang et al. [20] built a fully convolutions network (FCN) model that is trained
to predict the salient map of text regions in a holistic manner. Then, the text line
hypotheses are estimated by combining the salient map and character components.
The framework is general for handling text in multiple orientations, languages, and
fonts.

Texture-based defines textural properties and divides the text regions as contours
or texture. It distinguishes the text better and produces satisfactory results. In our
work, we use texture-based approach to find the region of interest. Kim et al. [21]
proposed a novel texture-based approach for detecting text in images where SVM is
used to analyze the textual properties of text but has limitationswith very small text or
lowcontrast.Using classifiers needmore training datawhich increases computational
complexity. Hanif et al. [22] proposed a texture-based approach to detect text in
gray-level natural scene images which is a part of project called intelligent glasses
to facilitate navigation for blind. Their algorithm well suits for a wide range of text
font sizes and fonts.

In our work, the intelligent grouping algorithm detects the possible text region in
an image followed by a text shape structure verification algorithm which localizes
individual characters in the previously detected image area and checks each character
for the presence of lines and curves and classifies the text from false positives.

3 Proposed System

3.1 Pre-processing

The original image Fig. 3a is loaded and then it is converted from RGB to grayscale
image Fig. 3b. Deblurring is done for noise removal by adaptive Gaussian threshold
method to segment objects from a cluttered background. If the pixel value is greater
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Fig. 3 a Original image, b grayscale image, c binarized image, d eroded image, and e dilated
image

than the threshold value which is set to be 0.20, then is assigned one value (white),
else it is assigned another value (black). The resulting binarized Fig. 3c image is less
sensitive to noise.

Laplacian method is used for edge detection by determining a threshold based on
local values. The Laplacian L(x, y) of an image with pixel intensity values I (x, y)
is calculated by:

L(x, y) = ∂2 I

∂xx
+ ∂2 I

∂y2

Two morphological operators, namely Erode and Dilate are used, one to remove
the unwanted background noise by discarding the pixels near the boundary depending
on the size of the kernel and the other to enhance the object of interest by increasing
its size. For this, we use the luminosity method which is more sophisticated version
of the average method. The algorithm gives more weight to green since humans are
more sensitive to green than the other two colors. The resulting eroded and dilated
image is as shown in Fig. 3d, e.

After smoothing the image, our proposed approach has two phases of processing.
In the first phase, the intelligent grouping algorithm detects the possible text region
in an image, and in the second phase, the text shape structure verification algorithm
localizes individual characters in the previously detected image area and checks
each character for the presence of lines and curves and classifies the text from false
positives.
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3.2 Intelligent Grouping Method

The intelligent grouping algorithm detects the possible text region in an image. The
localized text area is shown in Fig. 4 .

As a general rule, there will be always some unique features for text in any image.

1. Text will always appear as groups of characters,
2. A single group of characters will be of same size and area,
3. Each character in a group will be near equally spaced between each other, and
4. Most of the time, all characters fall in a single orientation.

In any imagewith text, the text areawill always behave and exhibit the above-listed
features. The ROI candidates having high chances of text are generated by exploiting
these features. Perimeter boundaries are drawn around all the foreground objects in
the fostered image, and the resulting list of contours are extracted to a NumPy array.
Minimum bonding rectangle (MBR) and its center points are calculated for all list
of contours and are finally grouped according to their area. A k-d tree is formed out
of grouped MBR and queried to find all pairs of points within a specified distance.

These paired points are further grouped based on their orientation. These grouped
pairs of points are finally converted into a chain of interlinked points which hypo-
thetically represents a chain of characters. These operations will result in ‘n’ number
of character chains along with false positives. Some odd-shaped clutters present near
the background of a text region might also be grouped as candidate text ROI. Some-
times, a single character in a group of characters will be bigger or smaller than the
rest and will have different distances from the adjacent character.

It is found that sometimes a few characters are left out while grouping, based on
the area of bounding rectangle because, for example, there is a huge variation in area
between the bounding box for character ‘I’ and character ‘w’. Also, it is found that
there is no uniform ratio for distance between adjacent characters and their MBR
area. Because of these limitations, a few characters in a given area group/chain are
left out are grouped randomly with other area groups/chains.

To regroup the missed out characters belonging to a particular family, a bounding
box across the image is drawn for every chain and the character candidate ROI inside
this bounding box are grouped to form the final chain.

3.3 Text Shape Structure Analysis

The resulting chain of characters has a good chance to have false positives among
their chains. To filter out these false positives, the text shape is analyzed inside every

Fig. 4 Localized text area
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candidate ROI. This is based on the fact that the probability of having lines and
smooth curves in the shape of text character is more than the ROI from cluttered
background. To extract these features from the candidate ROI, Fig. 5a, the eroded
and dilated ROI is blurred with Gaussian blur operator. This results in a smooth
foreground text shape. Medial axis Fig. 5b of this blurred image is generated and
converted it into a NumPy array.

Presence of straight lines in the resulted median axis is checked by houghlines (r)
operator Fig. 5c. It simply returns an array of (r, θ) values. r is measured in pixels
and θ is measured in radians. A line can be represented as

y = mx + c (1)

or in parametric form, as
r = x cos θ + y sin θ (2)

Fig. 5 a Localized
individual text, b
skeletonized image after a
series of image
enhancement, and c
generation of houghlines on
the skeletonized image
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Fig. 6 Text detection after
text shape analysis

where r is the perpendicular distance from origin to the line, and θ is the angle formed

by this perpendicular line and horizontal axismeasured in counter-clockwise (Fig. 6).
Text characters will have a shape in an organized way while background clutters

have random lines all over the ROI. Total number of straight lines present in the
central region of ROI and the total distance of prominent lines are measured. If the
total number of straight lines and their sum of distance is above a certain threshold,
it is classified as text (Figs. 6 and7).

4 Dataset and Experiments

The experiments were conducted over focused text dataset [23] of ICDAR 2015 with
464 images containing text. Some of the images with bounding boxes created over
the text region Fig. 6 in good resolution images are always 100% using our algorithm.
As practically, the character orientation may be of multi-scale, our algorithm was
designed based on this assumption. However, during the experiments, characters
found with orientation up to 30◦ were detected efficiently Fig. 9c.

As this algorithmwas designed to run in a single-board microprocessor like Rasp-
berryPi,wemade sure that it usesminimumcomputational power andmemory.While
running text detection in live video with Raspberry Pi 3 and LogiTech HD720p cam-
era, we found near real-time text detection Fig. 9a, b, if 2–3 lines of text area present
in the frame.We achieved around 2.5 FPS for practical scenario. In desktop computer,
we achieved around 4–5 FPS for normal text detection in live 720 p video.

In addition to the above results, the proposed algorithm was compared Fig. 8 to
EAST: an efficient and accurate scene text detector [24], which uses TensorFlow and
DNN for classification which can be implemented in low processing devices like
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Fig. 7 Text detection shown in bounding boxes

Fig. 8 Comparision a proposed algorithm, b text detection by EAST

Raspberry Pi. It is found that the proposed algorithm yielded 4–5 FPS while EAST
yielded 1.0–1.5 FPS for text detection. While the bounding boxes generated by the
proposed algorithm are more precise and extract individual text from the text region,
EAST generates an overall rectangle for the entire text region while our proposed
method draws rectangle over each character. EAST was more accurate to detect the
presence of text when proposed algorithm produces false positives in low resolution
images.
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Fig. 9 a Video text detection in Raspberry Pi, b Raspberry Pi experiment performance, and c
detection of angular aligned text

5 Performance Metrics

The performance metrics used are precision, recall, and F-measure. To evaluate our
performance, the following protocol has been chosen. Three classes are defined
for each detected block: (i) true positives (TP) (ii) false positives (FP), and (iii) false
negative (FN). Precision (P) is the ratio of correctly predicted positive observations to
the total predicted positive observations. Recall (R) is the ratio of correctly predicted
positive observations to the all observations in actual class. F-measure (F) score is
the weighted average of precision and recall. Therefore, this score takes both false
positives and false negatives into account.

To make a fair comparison with other existing approaches, we have followed the
standard evaluation scheme given in the ICDAR 2015 robust reading competition.
For comparison, we have used the four existing methods described in Table: 1 (i) Pan
et al. [25] used the hybrid approach to localize texts in natural scene images, (ii) Yan
et al. [26] used color clustering and connected componentmethod to obtain candidate
regions, (iii) Tian et al. [27] proposed a novel connectionist text proposal network
which localizes text in natural scene images. The same parameter values are used
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Table 1 Comparision between various methods over ICDAR 2015

Method Precision Recall F-measure

Pan et al. 67.4 69.7 68.5

Yan et al. 74.6 73.9 74.25

Tian et al. 74 52 61

Hyan et al. 51.88 47.52 49.60

TSFA (proposed) 76.26 75.8 76.03

Fig. 10 Comparision between various methods over ICDAR 2015

for all of the experiments. ICDAR 2015 dataset was used by the above works and
performs well for text localization but needs more accuracy in terms of measures like
precision, recall, and F-measure. When compared with all other discussed methods,
our proposed algorithm performed well in terms of the following measures Fig. 10.
Which is formulated as

Precision(P) = TP/TP + FP

Recall(R)/Sensitivity = TP/TP + FN

F − measure(F) = 2 ∗ Precision ∗ Recall/(Precision + Recall)

6 Conclusion

Text detection is a field of study that can be used for the development of assistive
devices for visually impaired. It can be useful for them to guide in text detection in
pills, traffic signs, natural scene images, etc. Our algorithmperformswell in detecting
text in natural scene images. Also, it is capable to produce the quality results even in
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low power devices likeRaspberry Pi. The proposed algorithm is capable of producing
better to near equivalent results when compared to the best present text detectors.
There are certain scenarios where our text detector could not pick up text, like more
vertically oriented text, low resolution texts, very small texts, and designer texts.
The algorithm slows down if more text is present in a single frame. Our future work
would optimize the code to run faster and to improve the algorithm so that it works
in all practical scenarios.
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Anthrophilia* Algorithm

Sujoy Seal

Abstract Optimization nowadays is not a choice. We need a system of check and
balance in any dynamic system. For this, we must have a general system of equa-
tions, some mathematical model, some much generalized yet fundamentally strong
algorithm having large domain of applications. We need to understand all the visible
constraints which presently cannot be ignored. Simultaneously, we must realize the
demand of the situation and the limitations of the present algorithms. By algorithms,
we mean those who definitely reach out to global optima in finite time. Such tech-
niques are lagging in situations where the goal is to achieve states which are, in
general, functions bounded by variable constraints (Krumke in Wireless networks
7(6):575–584, [1]). Hence, this is the time when we look for an algorithm which is
multidimensional, recursive and is expected to reason fastest to the solution when
several variable boundaries are on the line.

Keywords Artificial intelligence · Swarm · Genetic algorithm ·
Multidimensional · Optimization

1 Introduction

We, as scientists, look up for automation in space as well as marine research both
of which interest our thirst for knowledge. Imagine traveling along some curve for
space research. It may be necessary to send some satellite along some optimum conic
from one planet to some other planets. As no planet is stationary in space, the time
algorithm which governs their motion needs to be dynamic. We must recall here that
if such algorithms are incorporated in systems which can never learn nor be trained,
it then becomes the sole task of the algorithm to take decisions [2] as a function of
time. So we need an algorithm which is intelligent enough to modify itself with time
by itself. Hence at this point of time, we understand that we do need unsupervised
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machine learning which will be done by another machine having intelligent systems.
By intelligent systems, we do not necessarily mean hash tables or systems using
memorization to the utmost. What we mean is to have some dynamic responsive
system that will specify the range for each constraint. Obviously for entirely new
set of constrained equations, we need to some amount of prior knowledge because
starting with no information is not possible in a variable multidimensional space–
time graphical plot with as many possibilities as we think. Keeping difficulties and
challenges in mind our idea will be to approach and create this generalized system of
equations.We hence have throughout the paper focused on the numerical method, the
technique rather than on the coding. The algorithm is a “*” algorithm and to demand
so we have given a theoretical proof at the end of the paper. One key feature is to
cover all key domains under exploring graphs and bounding possibly all constraints
which may generate in any dimension recursively and reinforcibly in some sense.

2 Literature Review

We shall here glance at the problems of present algorithms [3] which are taught
under artificial intelligence. To start with, we take up blind (non-directional)
algorithms: Breadth-First Search (BFS), Depth-First Search (DFS), Depth-First-
Iterartive-Deepening (DFID) which have no sense of directionality of a possible
solution. These algorithms hence waste a lot of time and space and are totally irrel-
evant in dynamic situations. Next, we take up directional algorithms fundamentally
all of which are improvements over the hill climbing algorithm. There are several
versions like heuristic search and so on, all of whom share a common problem. They
all get stuck up in local optima. Scientists therefore have come up with Tabu search
[4], simulated annealing [5], genetic algorithms (GA) [6], A* [7], IDA*, RBFS [8],
DCBFS [9], some of which have major improvements over the earlier algorithms.
The purpose of making a new algorithm is to clarify that the earlier algorithms have
drawbacks and may not succeed in cases of dynamic environment and constraint
change and when situations are multidimensional in some sense.

The ant colony optimization algorithm [10] makes use of randomized methods.
With time, path to goal becomes very definite and hence the algorithm reaches the
goal node. Idea here is an analogy to motion of ants depositing pheromone on their
trail. This trail becomes strong once one of the random nodes coincides with the
actual optima. The trail hence becomes stronger with time, and at some point of
time, when pheromone from all other paths have disappeared, all trails vanish and a
single path in the search tree is identified we terminate and the path so developed is
termed as the optimum path. Here, ants represent functions and search algorithms.

However, the ant colony algorithm [11] (which is complete in some sense) suffers
some major drawbacks in real life. In an analogous sense, if we surround the goal
of ants by fire, the ants will never reach their goal which corresponds to a state of
no solution. However, the solution would have easily existed if we would have used
bees instead of ants once we feel the effect of fire. Now consider that in the motion of
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bees and ants, there is a system of poisonous atmosphere so that only possible way of
reaching the goal is to manage underground. The whole idea is to project the fact that
an army of different search algorithms (insects) is better than one single individual
search engine [12]. Consider a ground having rings of fire. So we can just have to
call ants and bees repeatedly and recursively. Also realize that choice of insect is
based on three factors, namely probability of succeeding, dynamic hindrance factor
and dimensionality [13] of space. We will visit details in the numerical section, but
now we want to draw attention in three aspects, namely creation of environment,
taking input and displaying output, space and time complexities of the algorithm.
Environment will be created as a system of multidimensional arrays which would
be made of several cells each of whom will be a structure (node). Their states will
be mentioned with respect to the start state. Output and input is still a part of our
research, andwork is still in progress. Space and time complexitieswill depend on the
nature of evaluation function which empirically is large. This is necessary because
this algorithm differs from all other algorithms by one major clause that no need to
reset the compiler for new situations because that is inbuilt.

3 Creation of Search Space

Search space here means an entire graph of nodes in r dimensions. We explain the
search space here. We say here that r is a variable which can take values as α < r < β

where α, β are non-negative integer constants that depend on which state solution
space algorithm is in. However, we need to first generate N-dimensional environment
for the algorithm to work on. This is achieved by creating a system of N-dimensional
arrays (actually tree of linked lists) which are made of cells. Such cells are structures
which have in them several parameters. Some of them are check( ) function, heuristic
value and system of pointers p[]. Now, we will consider the parameters individually.
So, looking at the diagrams below, we follow the explanation.

In Fig. 1, we have defined our search space. In this specific figure, we have defined
our space in three dimensions, and presently to understand N dimensions, we visu-
alize things in three dimensions. Realize that by dimension we mean constraint and
this terminology will be followed throughout the entire paper. Hence, N-dimensional
space represents N different constraints. The big cuboid represents the entire search
space, and the search cannot go beyond the boundaries of this cuboid. When we
encounter any of the terminal surfaces, we terminate and the algorithm calls for
recursive backtracking. The condition for termination is: (if surface( ) == leaf sur-
face) OR (present state == goal state). The smaller cuboids denote states each having
their own set of properties.What we do essentially is match those properties with that
of the goal state. If those set of properties match at some particular time, we say that
solution is available at that time. We have said that each cell has various parameters.
One of these parameters is called checkbox which is like a flag denoting whether or
not some search engine has visited this cell earlier or not. This is necessary since we
don’t appreciate loops and want the search to finish in finite time if possible. Cells
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Fig. 1 N-dimensional constrained solution space

not visited are by default have their checkbox set to −1 by the algorithm. Even if
some cells are having some different values, the algorithm by itself changes their
state of checkbox, something which we will discuss in detail in the dynamic manip-
ulation section. Cells which are visited are set to zero, and the goal is set to some
value ∞. This ∞ represents that in the worst case, we may not be able to find the
goal node. It seems that this algorithm assumes that there is no path to the solu-
tion node before actually beginning the search process. The arrows represent move-
gen( ) [14] function. The decision taking will be based on probabilistic approach.
After the movegen(current node) has generated neighboring nodes, we will apply
test( ) function to go to the next node. The green oval represents to the goal state.
The red plane represents hindrances, and there is system of pointers which we will
connect to all cells once we realize that visiting such cells is impossible from our
current state. For this, we give to them a value µ, where µ represents some tabu
parameter. Notice, the index for Fig. 2 is same as Fig. 1.

We shift our attention to Fig. 2: In Fig. 2, firstly we have shown that we visit
cells in a one-to-many bi-directional approach. To extend this idea, we have shown
that bi-directional means that the search algorithm has backtracking abilities, so that
search can proceed in both ways. Finally, we have shown that the entire search space
is dynamic and cells shift their positions in space and time. The hindrance planes
also shift their positions which mean that constraints change with time.

4 Methodology

At first, we have a system of network in a network web as shown below. Each of
the nodes in that web network has guide value ∂ attached to them. This ∂ represents
the maximum number of times a search engine can be applied to a node before it is
modified. They are in some sense heuristic values which guides the search. Three
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Fig. 2 Dynamicity and flagging concept in the algorithm

possible paths along the direction of search are shown in the diagram below. Such
paths as we have said are generated in r-dimensional space and in each step we move
closer to the goal. The goal in the diagram is the center, and the idea is to show that
we need to overcome all the local optima. While we do this, we do somewhat similar
to the variable neighborhood descent [15] algorithm. We use a system of equations
to reach somewhat closer to the solution. Then, we change the system and again
and use this new system to come further closer to the solution. We may need to use
the earlier system (old insect called by the new insect) as and when the algorithm
judges so. We need to recursion at several sub-stages of the journey. So we need to
maintain the system of pointers accurately so that we can reconstruct the path easily
once we reach the global optima. Now we have been talking of finding the optima
for some time. How does the Anthrophilia* algorithm fade out all local optima and
reach out to global optima? This is done by using some system of values whose
absolute magnitude change with time. If going along any sub-tree of a root node
(node with respect to which we are currently optimizing), we find stronger trails and
greater probability of succeeding (we will take this up in details), the earlier system
of values are updated having greater value systems. We do the inverse, while we find
lesser chances of succeeding. Randomized methods are used here, and each time the
search engine looks up for stronger value system marked cells (Fig. 3).

4.1 Stages and Dynamics

There are several principal sections but firstlywe focus using the probabilisticmethod
(In the subsequent sections we shall focus on statistical method):

If (pi > ki): makemove else don’tmakemove.Pi ≡ probability factor (0≤ p≤ 1)ki
≡ dynamic randomized factor k is a random number whose value is generated by
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Fig. 3 Recursive steps to eliminate local optima

the system dynamically with change in situation. k acts like a threshold parameter.
Notice that, 0 ≤ k ≤ 1 (Fig. 4).

Randomized methods used are based on the fact that insects (search engines) in
general when not having any trail (sense of direction) can choose any direction of
their choice. However, when they have a sense of direction, then they have a greater
chance of following the trail than ignoring the trail. This “k” is of course different for
different insects. In the analogical sense, this means that employing different search
engines accounts for having different extent of randomization. This is essential since
in different constrained situations, insects (engines) should have different tendency
of randomization. This is particularly useful since we need to have varying space
and time complexities at different stages of the particular partial solution.

P(AT ANY STEP) = MAXTERM IN SERIES

((
n∑

k=0

α[ti j ]α[ήi j ]β[ωi j ]γ
))

(1)

Fig. 4 Generating and using
randomized methods for
exploration
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α, β, γ constants generated by algorithm
tij amount of pheromone
ήij visibility
ωij recursive factor
P tendency of moving.

Tendency of making the move is given by P. α, β, γ are constants generated by
the algorithm. � has only to do with expanding (1) in a series. Practically, we have
nothing to do with the sum in (1). tij is the amount of pheromone on the ijth edge.
ήij is called the visibility factor, and it depends inversely on the cost of that edge. ωij

is called the recursive factor, and its value depends on a parameter called heuristic
factor. The update in the heuristic factor is again based on the probabilistic approach.
We can see that tendency of making the move is directly proportional to all the earlier
parameters.

∑
ti j (t + n) =

∑ r=n∏
r=1

(
1 − λi j , . . . , r

)
ti j (t) +

∑
δti j (t + n) (2)

λij evaporation rate between vertices i and j.

The above formula is called the randomization formula. This is used to make the
system dynamic and update the checkbox system.� here again is used to shorten the
series.We are not interested in figuring total time.We only want to figure evaporation
in pheromone. From Eq. (2), we compare corresponding terms on both sides of the
equation. Term at ith position in L.H.S is equated to ith position in R.H.S. We have
said about this parameter (flagging aspect) in the graph of cells shown earlier. The
pheromone along each dimension needs to be updated with time, and the evaporation
factor λ is used as a fraction which represents fraction of pheromone (heuristic value)
disappearing each cycle of search. Here, wewill actually realize that there is no single
heuristic value in a particular cell. Each cellmaintains a single dimension arraywhich
stores heuristic values over a range of dimensions. Hence, the algorithm says, if we
are in the kth dimension and the search engine prefers to send r insects (r search trees
in r dimensions; 1 in each), we have in the kth cell of that dimension a array of size
r, indices labeled 0, 1, 2, 3, …, (r−1). Each index of this array stores value (heuristic
parameter) to go from any one dimension to “r” possible dimensions. So we have
a system of λ1, λ2, λ3, λ4, λ5, …, λr . Here notice that, these heuristic values will
now help in creating evolutionary systems. Now, here comes the concept of recursive
genetics. What we mean here that till now we had h1(n), h2(n), h3(n), …, hr(n) for all
r dimensions. Where n is the current representation of node. These r heuristic values
will be genetically crossover and mutated after some constant steps say χ . After χ

steps, we will have fitter cells than that we had earlier. In this entirely evolved search,
we shall again look for the fittest insect (h(n) with highest probability) to start off
with. Then again insects (search functions) will bemodified andwewill again repeat.
The entire system is put under a loop with the condition of termination described
earlier. So principally, what we are doing is searching dynamically in r dimensions
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(recursively in r sub-trees with each having a root which is chosen by the algorithm
based on test( ) function), backtracking to find local optima, and repeating this for
χ steps as described earlier. Then, we modify the entire search space to fit in new
conditions, again repeat for χ steps and this goes on indefinitely, till we reach some
conclusion. Note that, here we are doing somewhat similar to VND algorithm but that
neither accounted for r-dimensional space nor backtracking. Hence essentially, we
have figured out all local optima. We will have a storage system for all such paths,
and from there, we shall find out the global path. Realize here that the algorithm
hence has the capacity to find global optima as a function of time as well because of
the system of χ steps described earlier. So we have described the complete algorithm
in the earlier lines. We will again come back here in the section of implementation
as data structure section. However presently, I will again go back to the point of how
decisions are made in N-dimensional space recursively. For that, however, I need
implementation systems, but we will look at the equations first, the principal one
given below.

P =
h=n∏
h=1

[
ti j

]∝[
ηi j

]β

[tih]∝[ηih]β
(3)

where h is the total no. of states. Other symbols carry their usualmeaning as discussed
earlier.

This equation is called probability equation. This equation is used as a decision-
making parameter of whether or not we shall move from one cell to a different cell. If
P is maximum for a pair of cells say cell i and cell j, we shall go from i to j and update
the system of checkboxes. Now, we need to calculate the probability of moving from
rth dimension to the kth dimension. For this, we take up each of rth dimension, and
we use this system of probability [16] as the heuristic function. Notice that it is not
necessary we go from ri dimension to rj dimension directly. If we need to halt at a
system rk where k is {i + 1, i + 2, …, j−2, j−1}, it is perfectly fine.

Recall here that we said k can take integer values only. So for each such ri, rk
pair we have a system of pi, pk . So we have a system of multiplications denoted as
p(1).p(2).p(3) … p(r). To satisfy completeness and theory of total probability, we
have the following equation to be valid.

−
h=1∮

h=n

P(h)n(h)dh = 1 (4)

Negative sign has a special significance in (4). We start initially optimizing N
boundaries and then reduce to 1 where we stop. Recall, however, that:

b∫
a

f (x)dx = −
a∫

b

f (x)dx (5)
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To calculate the probability, we have just divided the present tendency with the
total no. of allowed choices represented by the state h. By allowed choice what we
mean is that we don’t appreciate loops and the states already examined are banished
from h. So initially value of h is: limtime→0h → n and at subsequent stages of
the algorithm value of h decreases. Where N denotes total no. of states. Dynamic
equation of h is hence given as

r=n⋃
r=k

{h} =
r=n⋃
r=0

{h(Total)} −
r=k⋃
r=0

{h(flagged)} (6)

So by now we are already familiar with what we mean by flagged and unflagged.
What we mean by the earlier equation is that we need to update our search space
with time. So from the total search space we need to remove those cells which we
have already inspected before.

4.2 Implementation

Till now we have made it quite clear that the algorithm is recursive and multidimen-
sional. We will in short while visit the evolutionary nature of the algorithm. We will
now take up the implementations of the earlier equations bymeans of data structures.
But before that we will look at a diagram which not only will make the dynamic of
the algorithm clear but also give us an insight on the time and space complexities of
the algorithm.

Look carefully at the figure given below. What we have tried to explain is the
number of states considered at a time in a system of r dimensions. This approach is
called as k-ply approach, andwe consider those nodeswhich are inside this k-ply tree.
The value of this k is also judged by this algorithm. We have k which is a measure
of P.

All states are in different dimensions. And the edges in the graph represent the
movegen(n) function. The red state represents that all paths which are through red
state can never be included in solution set of local optima described earlier. Variable
μ is like a Tabu parameter and this is what keeps the search engine updated with the
recent changes coming as a function of time. Next, we move on to the space and time
complexities [17] of the algorithm. We use a system of k-ply to decrease the space
and time complexity of the algorithm.

The curved line connecting the red state with that of other states represents that
the red state forces other states connected to it to be red as well. By this, wemean that
heuristic values [18] can change very rapidly with time so as to force the algorithm
to work backward and find a new path (Fig. 5).
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Fig. 5 Reducing the complexities using variable heuristics by different engines

5 Evolutionary Nature (Threaded Data Structures)

Each small cell represents a different search engine (insect) in a different dimension
(forest). The entire cycle happens after every χ times search. The bars are linked lists
and not arrays. The system of pointers is used to reconstruct the path. The system
is someting like “linlist of linklist of linklist…”. We can think it as tree of link list
[19] since the system of pointers never forms a loop. Calling a node from a linklist
twice or more than twice is an obvious possibility and that represents the recursive
nature of the algorithm. Recall again that we are talking about N-dimensional space
so calling a node more than once represents calling the same insect (function) in
a different forest (new dynamic search space). This is why what we are doing is
recursion and not iteration. This is the reason the search proceeds in a tree [20] and
never has any cycle if we take properties of N dimensions into account (Fig. 6).
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Fig. 6 Use of threaded N-ary trees for evolution (genetic steps)

6 Completeness

In this final section, we shall prove (rather demand) that the algorithm is indeed
complete and for this we argue as follows. Consider that there are “a” number of
local optima. Because the algorithm is genetic, one of the new insect “genetically
evolved” [21] will indeed crossout all the local optima and reach out to global optima
because pheromone to all local optima will fade with the λ factor for all paths, where
λ is called as evaporation factor. Next, we had the trouble of unidimensionality. Since
for each dimension we have a probability factor P, best r out of k dimensions will
always be chosen one of which will coincide with the global optima at some point
of time. Next, we needed dynamicity for which we have this χ factor which updates
the search engine (genetically evolves the insect) according to the scenario every
χ cycles. This ensures the new insect has those genes of the parents which is still
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required as well as has some mutated genes (sub-algorithms) which overcomes the
present problem. So, the algorithm is demanded to encounter all possible constraints
and is hence complete [22]. It is even having K-ply in each of r dimensions which
ensure optimum space and time complexity. This also makes it complete for infinite
graphs. So, in a nutshell the algorithm deserves *.

7 Conclusion

We have come to the end of this research journey, and at this point, we would like
to refer to those milestones which we did not cover as of yet. We did the entire
technique assuming the probabilistic approach. It is highly hoped that training this
algorithm with machine learning and neural networks to a model will make the
algorithm function better. Next, coding of this algorithm will require expert coders
since formulae are difficult in codes. Coding is hence under progress. Another work
needed is to think of how input and output shall be fed to the system. Inputs and
outputs are N-dimensional and constraints are exponential in some sense. So how
shall our machinery handle this. It is also needed to think of systems which will help
to give dynamic outputs.
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Interevent Counts (Natural Times)
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Abstract In the driven nonlinear complex dynamical earthquake system in which
the event occurrences are distributed along a frequency-magnitude spectrum, “nat-
ural time” statistics can be utilized to evaluate the contemporary state of earthquake
hazards in a region. The natural times, in contrary to the clock/calendar times, are
nothing but the interspersed number of small magnitude counts between successive
large earthquake events in a fixed area. Natural times are positive and often random
in nature. In this paper, our aim is to investigate the best-fit probability distribution
in order to develop natural time statistics in the seismogenic northwest Himalayan
orogen including some part of north-central India, east-northeast Pakistan and its
contiguous regions. We consider eight continuous probability distributions to fit the
observed natural time data. We use maximum likelihood strategy for model parame-
ter estimation and several goodness-of-fit measures for model prioritization. Results
based on the natural times corresponding to M ≥ 3 events between M ≥ 6 events
reveal that the exponential, exponentiated exponential, Weibull and exponentiated
Weibull distributions provide the best fit to the observed natural times in the study
area. In addition, assuming that the seismicity statistics of larger northwest Himalaya
region is indifferent from the “local” regions (e.g., cities) embedded in the larger area,
we calculate “nowcast” values for a number of cities, namely Jammu, Ludhiana,
Chandigarh, Shimla, Dehradun and New Delhi, to assess the current state of earth-
quake hazards in these cities. It is found that their earthquake potential scores (%) are
99, 89, 86, 87, 83 and 58, respectively. From these results, we argue that the concept
of natural times and thereby nowcasting technique provide a rapid, alternative and
effective way to analyze earthquake hazards in a seismic region.
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1 Introduction

Statistical seismology has become an increasingly important tool for estimating
seismic hazards and associated earthquake risks in seismic-prone areas [1]. With
physical reasoning such as crustal velocity field distribution, geodetic slip rate esti-
mation, strain partitioning and geophysical imaging in a tectonically active region,
the stochastic models aim to reduce the misalignment between statistics-based and
physics-basedmodels [1–3]. Thus far, the common statistical approach in earthquake
hazard assessment has focused on estimating earthquake interoccurrence time and
conditional probability of large earthquakes based on some limited historical and
instrumental catalog [1–11]. These earthquake data (main shocks), after removal of
seismic swarms, foreshocks or aftershocks, are then fitted to some potential prob-
ability distributions for future seismicity projection [2]. An important assumption
in this empirical approach is that the data points of interevent times (between sub-
sequent earthquakes) in a selected region must constitute a random sample [1–11].
In other words, the seismic interoccurrence times are assumed to be independent
and identically distributed. When such assumption applies, we not only discard the
possible interaction among earthquakes, but also neglect the developing problem of
co-seismic physical changes of fault dynamics and fault patterns on complex fault
zones. In addition, the contribution from dependent events, such as destruction due
to large aftershocks or partial release of accumulated stress, is not accounted in these
studies. As a result, such a program of empirical interevent time analysis although
provides an estimation of future earthquake hazards, the current state of earthquake
hazard due to events of all magnitudes (small, moderate, to great earthquakes) in a
large tectonic area remains elusive [11–16]. To address this existing gap, in this paper,
we carry out stochastic modeling of earthquake interevent counts (natural times) in
the densely populated northwest Himalaya and its adjacent regions including some
part of north-central India, east-northeast Pakistan and adjoining regions. Our goal
is to formulate the entire problem statistically and investigate the potential proba-
bility model to develop natural time statistics for the present-day risk assessment of
the study area. At the end of experimental design, we also perform some sensitivity
analysis to the threshold values of small earthquake magnitude and city radius to
determine their effect on the best-fit models and associated nowcast values.

2 Formulation of Natural Time Statistics

Concept of natural time (“NT”) is based on the idea of using interevent counts of
“small” earthquakes (say, 3 ≤ M < 6) between “large” earthquakes (say, M ≥ 6)
[12–14]. Varotsos et al. [17] first introduced this term followed by many (e.g., [11–
18]) in their respective analyses of earthquakes. The concept of NT has numerous
benefits in seismology in comparison with the perception of traditional interevent
times that are based on clock/calendar time. First, the statistics of NT does not
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depend on the background seismicity level (a) in a selected region, as long as the
b-value in the classical Gutenberg–Richter frequency-magnitude relation turns out
to be a constant [14]. As a consequence, the natural time statistics is valid throughout
smaller and larger geographical areas of interest as long as there are sufficient (~20 or
more) number of large earthquake cycles in the region to develop a statistical model
[12–16]. Another key advantage of using NT statistics over usual interevent times is
that neither declustering of seismic catalog nor homogeneity in event magnitude is
mandatory [14].

The NT, by construction, is discrete in nature. It considers nonnegative random
values [17, 18]. However, if modeled properly, the NT statistics can provide signifi-
cant information of the present status of a fault system through the elapsed number
of small event counts at time t (calendar time) after the last significant earthquake in
the region. The modeling of NT is grounded on two important assumptions. First, it
formulates NT statistics from a wider geographical area and then utilizes the iden-
tical statistics to smaller spatial regions of interest, such as city or towns [11–18].
The physics-based ergodicity property in earthquakes lays the foundation of such
hypothesis [12–18]. Second, the random variable of NT, say X, is considered to be
a continuous random variate [11, 12]. This assumption is driven by the reality that
small seismic events in a wider active region seem to occur continuously [11–14].
To identify the underlying “theoretical” distribution, we fit eight probability models,
namely exponential, exponentiated exponential, gamma, lognormal,Weibull, inverse
Weibull (Frechet), exponentiated Weibull and inverse Gaussian (Brownian Passage
Time) distributions [11, 12].

3 Study Area and Earthquake Data

The study region, defined in 26° N to 36° N latitude and 72° E to 84° E longitude
(Fig. 1), marks one of the most active orogenic regions in the southeast Asia as an
effect of the ongoing tectonic collision between Indian plate and Eurasian plate at
an average rate of about 40 mm/year [8, 19]. The crustal deformation in these areas
is associated with several active thrust fault systems, such as Karakorum fault zone,
theMain Central Thrust (MCT) zone, Main Boundary Thrust (MBT) and Himalayan
Frontal Thrust (HFT), along with the structures of different geological ages [8]. The
region comprises Himalayan foothills and fertile alluvial plains including a number
of developing cities (e.g., Lahore, Amritsar, Jammu-Srinagar, Patiala, Ludhiana,
Chandigarh, Dehradun, NewDelhi, Agra, Lucknow and Jaipur). The present seismic
catalog of M ≥ 3 events is adopted from the Advanced National Seismic System
(ANSS) composite catalog (1963–2012) and the International Seismological Centre
(ISC) catalog (2013–2018). We rely only on the instrumental catalog and consider
focal depths up to 200 km [11–16]. Between March 6, 1963, and November 14,
2018, we found 3251 small events in the study region, amongwhich there are 27 large
earthquakes. As there are two large events on January 19, 1975, without experiencing
any small earthquakes between them, we obtain 25 natural times for modeling.
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Fig. 1 Seismicity in the study area of northwest Himalaya; selected circular city regions are
highlighted in yellow

4 Methodology, Results and Conclusions

Prior to the development of the NT statistics based on the observed data, we compute
some descriptive statistical measures. The observed NT data values lie between 2
and 695 having sample mean 120.2, standard deviation 144.3, mode 64, median 83
and skewness 2.84. The dataset is highly asymmetric with a long tail to the right of
the peak. We fit eight continuous probability distributions to these observations. The
MLE estimated model parameters and the goodness of fit measures from the AIC
and K-S tests are presented in Table 1.

Table 1 suggests that the exponential, Weibull and the exponentiated models pro-
vide the best representation. In particular, the exponential model offers the most eco-
nomical fit (lowest AIC value), whereas the exponentiated Weibull model provides
the best representation in terms of the least separation to the empirical distribution
function (EDF) of the observed data [20].
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Table 1 Estimated parameter values and model prioritization

Distribution Parameter estimation Model priority

AIC K-S

Exponential α̂ 120.20 291.46 0.116

Gamma α̂ 158.82 293.61 0.115

β̂ 0.76

Lognormal α̂ 4.13 295.90 0.153

β̂ 1.34

Weibull α̂ 114.96 293.09 0.102

β̂ 0.91

Inverse Gaussian α̂ 120.20 304.75 0.301

β̂ 24.37

Inverse Weibull α̂ 30.35 304.81 0.205

β̂ 0.66

Exponentiated exponential α̂ 129.99 293.25 0.111

β̂ 0.89

Exponentiated Weibull α̂ 75.02 293.94 0.093

β̂ 0.77

γ̂ 1.56

Developing the NT statistics, we now compute nowcast values (Table 2) to
appraise how far a particular city has progressed to its next large earthquake. The
nowcast value for a circular (say, a radius of 300 km) city region is expressed in
terms of its earthquake potential score (EPS) calculated from cumulative probabil-
ity P{X ≤ n(t)}; n(t) is the present number of small (3 ≤ M < 6) events in the
region [14–16]. From the nowcast scores (as on November 14, 2018) in Table 2, we
intuitively infer that New Delhi is somewhere in the middle of its earthquake cycle,
whereas Jammu has crossed about 99% of the way through its cycle. Large earth-
quake in Jammu region thus is overdue. The nowcast values for the other cities are

Table 2 Nowcast scores of selected cities

City City center EPS (%) Current count

Lat Long

Jammu 32.727 74.857 99 941

Ludhiana 30.901 75.857 89 271

Chandigarh 30.733 76.779 86 238

Shimla 31.105 77.173 87 248

Dehradun 30.317 78.032 83 217

New Delhi 28.704 77.103 58 99
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also significantly high. Now, in order to determine the effect of the small magnitude
threshold and the circular city radius on the nowcast scores, we vary the magnitude
threshold of small events from 3.0 to 4.0 and circular city radius from 300 to 350 km.
The sensitivity results (available on request), as on November 14, 2018, reveals a
consistent ranking of EPS scores.

The nowcast values as a proxy to the physicalmodeling serve a number of practical
purposes, such as the relative ranking of cities as to their current hazard level, revising
insurance premiums and safety consideration for engineering planning. It is believed
that the nowcasting approach that determines the current state of a regional fault
system may significantly contribute to improve the earthquake forecasting for future
seismicity analysis [11–16].

In summary, the present study has successfully formulated the problemof stochas-
tic earthquake interevent count (natural times) modeling in the northwest Himalaya.
The nowcast scores obtained through the best-fit probability model provide a fast,
alternative and effective way to assess earthquake hazards in a seismic region.
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Analysis of Three Major Airline
Networks of India: A Complex Network
Approach

Dimpee Baruah and A. Bharali

Abstract Air transportation network is one of themost important transport networks
in recent time. In the air transportation network, the study of robustness of airlines
network plays a key role. Robustness is the ability of a network to continue to
performproperlywhen it is subject to failures or attacks.We adopt a complex network
approach to analyze the robustness of three major airlines of India viz. Indigo, Air
India, Jet Airways by simulating random attack and targeted attack on the separate
airlines networks. Random attack is based on the removal of random airports from
the network and targeted attack is based on the removal of important airports based
on the node attributes like degree, betweenness.

Keywords Complex network · Network measures · Robustness · Airport network
of India (ANI) · Airline networks

1 Introduction

Air transportation network is one of the most important transport networks in recent
time. Nowadays, air transportation network is one of the essential elements of our
present societies for their high level of mobility. Various countries such as USA [1],
China [2], Italy [3], India [4], Australia [5], Brazil [6] air transportation network have
been studied to analyze the infrastructure, connectivity, flow of traffic, etc. Due to the
increasing dependency on this network, the study of the robustness of the network
also plays an important role. Robustness is the ability of a network to continue to
perform properly when it is subjected to failures or attacks [7]. Robustness is one
of the most anticipated properties of any transportation network. The study of the
robustness of a network subjected to different nodes or edge failures can evaluate the
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level of vulnerability to which the network can expose through random, most central
nodes, and link failures [8].

This paper adopts a complex network approach to analyse the robustness of three
major airlines networks of India viz. Indigo, Air India, Jet Airways by simulating
random attack and targeted attack on the separate airlines networks. Random attack
is based on the removal of random airports from the network and targeted attack is
based on the removal of important airports based on the node attributes like degree,
betweenness, etc. Many papers have been done to analyze airline networks for both
structure and robustness perspectives. In [9], Han et al. analyzed the daily network
in the busiest week for four different European airlines. They found that all airline
networks have scale-free and small-world properties [9]. Also, the works of Reggiani
et al. [10] andReggiani et al. [11] investigated the Lufthansa network (LH) as both the
worldwide and European networks; and they found the network is scale-free in both
the cases. Again, Lordan et al. [12] analyzed multiple airlines in different alliances
and parts of the world. Wijdeveld [13] conducted a study on robustness analysis of
17 European airline networks for both error or random failure and targeted attacks
[13].

The rest of the paper is organized as follows: next section includes some popular
measures used in complex network analysis. In Sect. 3, an introduction of airport
network of India and three airline networks are given and we calculate the values of
different metrics of these networks. In Sect. 4, the robustness analysis of three airline
networks is given. Conclusions are presented in Sect. 5.

2 Some Measures in Network Analysis

In this section, we formally present the definitions of some measures popularly used
in network analysis.

Shortest Path: The shortest path of a network is the path that has the lowest number
of hops between the source and destination pairs in the network.
Diameter: Diameter of a network is the longest shortest path between any pair of
nodes in the network. If Lij is the shortest path between nodes i and j, then

Diameter, d = max
i, j∈V Li j .

Average Shortest-Path Length [14]: The Average shortest-path length (L), also
known as the characteristic path length, is defined as

L = 1

N (N − 1)

N∑

i, j=1,i �= j

Li j ,
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where Li j is the shortest path between the vertex i and j and N is the total number
of vertices in the network. For a random network of size, N, and average degree, < k
> , it is log(N)

log(〈k〉) .

Network Clustering Coefficient [6]: In a network, if node A is connected to node
B and node B is connected to node P, then there is a intensify probability that node A
will also be connected to node P. The clustering coefficient of a network is defined
as:

C = 3 × number of triangles in the network

number of connected triples of vertices
,

where a “connected triple” means a node with edges running to an unordered pair
of others. Clustering coefficient is also known as network transitivity. For a random
network of size, N, and average degree, < k > , it is 〈k〉

N .

Betweenness [15]: The Betweenness of a node is the number of the shortest path
going through the node. The Betweenness ηu of a node u is given by,

ηu =
∑

s �=u∈V

∑

t �=u∈V

σst (u)

σst
,

where σst is the number of the shortest paths from vertex s to t and σst (u) is the
number of the shortest paths from s to t that pass through u.

Similarly, Betweenness of a link (i, j), ηi j is the number of shortest path going
through (i, j), which is defined as

ηi j =
∑

s∈V

∑

t∈V

σst (i, j)

σst
,

σst (i, j) is the number of shortest paths from s to t that pass through (i, j).

Graph Density [6]: The graph density or network density D is defined as a ratio of
the number of edges M to the number of possible edges considering the complete
graph or network:

D = 2M

N (N − 1)

Reachability [16]: Reachability of a network is the probability of the connectivity
between any pair of its nodes, (u, v), which is represented by R, and the reachability
of node Ri is as follows:
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Ri = number of nodes reachable from node i

N − 1

The Reachability(R) of overall network is defined as the average of all Ri , with
a fully reachable network achieving 1 and an isolated network with no physical
connection (links) between the nodes is always 0.

Network Criticality [17]: The network criticality is defined as

τ = 2N Trace
(
L+)

,

whereN is the number of nodes and L+ is theMoore–Penrose inverse [5] of Laplacian
matrixL of the network. Smaller the value of τ higher is the robustness of the network.

3 Airport Network of India and Three Airlines Networks

In the airport network of India (ANI), the domestic airports are taken as nodes and
two airports are connected by a link if there is at least one direct flight between them
per week. The number of such flight per week between the airports (nodes) is the
weight of the link in the network. The network measures of ANI are shows in Table 1
[18] where some dummy links were added to make ANI symmetric. In this paper,
three major airlines of India, viz. Indigo, Jet Airways and Air India are considered
for the robustness analysis of airline networks of India. All the air movement data
for the networks are considered for the year 2016, obtained from Airports Authority
of India (www.aai.aero).

Similarly, for the construction of airline networks, the domestic destinations (air-
ports) of the airlines are taken as nodes and there is a link between two airports if

Table 1 Network measures
of ANI

Network measures Value

Number of nodes (airports) 79

Directed links (edges) 496

Connected components 1

Diameter 4

Average degree 6.279

Average path length 2.262

Network clustering coefficient 0.605

Network density 0.08

Network criticality 1.1334 × 103

http://www.aai.aero
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Table 2 Network measures of three airline networks

Network measures Indigo airline Jet Airways airline Air India airline

Number of nodes (airports) 37 46 53

Directed links (edges) 264 158 178

Connected components 1 1 1

Network diameter 3 5 5

Average degree 7.135 3.435 3.358

Average path length 1.891 2.44 2.405

Network clustering coefficient 0.738 0.531 0.486

Density 0.198 0.076 0.065

Network criticality 778.4555 2.9715 × 103 3.6996 × 103

there is at least one direct flight of that airline between them per week. The Indigo
airline network consists of 37 domestic destinations (airports) and 257 directed links
with 6.946 average degree and network diameter 3. The Jet Airways airline network
consists of 46 domestic destinations (airports) and 158 directed links. The network
has average degree 3.435 and network diameter 5. Also, the Air India airline net-
work consists of 53 domestic destinations (airports) and 178 directed links with
average degree 3.358 and network diameter 5. None of these three airline networks
is symmetric. Table 2 gives the network measures of the three airline networks under
consideration and Table 3 gives top 10 ranks of the nodes (airports) of the networks
based on degree and betweenness.

4 Robustness of Airline Networks

Robustness analysis of the airline networks can evaluate the effect of targeted attack
(e.g., terrorist attack on an airport) and random attack or failures (e.g., weather
inclemency) of the networks. For the analysis, we remove five highest degree nodes
(airports) from each airline networks and observe the change in some network mea-
sures for targeted attack. Table 4 shows the change of network measures of the three
airline networks in percentage after the removal of a key node based on the degree
where the negative sign indicates decrement and positive sign indicates the increment
of the values.

We also calculate these measures after removal of the nodes sequentially, based
on relatively high degree or high betweenness, i.e., in order to assess the network
robustness of the airlines networks, in each time a node with high degree or between-
ness is isolated (removed) and the centrality measures are calculated again for all the
remaining connected nodes (airports). Then from the remaining nodes, the airport
with highest centrality is selected for removal in the next step and so on. The process
will continue until removal of five airports. Figure 1 shows the change of average
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Table 4 Changes of network measures after removal of a node based on degree

Airline
network

Airport
removed

Number
of nodes

Number
of edges

�L (%) �C (%) �τ (%) �R (%)

Indigo Delhi 36 204 9.52 −16.39 35.79 −0.08

Mumbai 35 214 0.63 −6.36 8.06 −2.86

Kolkata 35 219 3.49 −0.68 12.56 −5.71

Bangalore 36 227 1.27 0.54 17.53 −0.08

Hyderabad 36 234 0.95 −0.68 −0.35 −0.08

Jet
Airways

Mumbai 39 106 3.5 −37.85 2.1 −24.84

Delhi 42 110 0.16 −46.51 0.47 −28.26

Bangalore 45 134 1.68 −16.76 8.9 0.04

Chennai 43 140 −1.31 1.69 −5.61 −8.65

Kolkata 44 139 −8.64 −9.8 −11.54 −2.41

Air India Delhi 45 116 8.64 −38.48 −2.1 0

Mumbai 47 131 3.95 −26.95 −2.75 −3.85

Kolkata 50 148 3.2 −21.39 4.07 −14.78

Chennai 51 162 0.29 0.41 −2.79 0

Hyderabad 51 162 −0.04 −3.7 −3.28 0

path length and change of clustering coefficient after consecutive removal of five
nodes (airports) based on the degree and betweenness. Figure 2 shows the change
of the average path length and clustering coefficient after consecutive removal of
random nodes (airports).

In addition, to assess the robustness of the networks, the number of airports
removed is compared to the size of the giant component. The giant component is
the largest component of the network, which is still connected within the network
after removal of a percentage or a number of nodes (airports) from the network. The
size of the giant component is the number of nodes (airports) in the giant compo-
nent. Table 5 gives the size of the giant component after removal of key nodes based
on degree from the respective networks. Figure 3 gives the percentage of the giant
component after consecutive removal of nodes based on degree and betweenness,
respectively. From Fig. 3, it is clear that after consecutive removal of top five nodes
(airports) based on degree, the size of the giant component are decreased to almost
8 and 9% in the case of Jet Airways and Air India networks. Whereas the Indigo
network does not much affect by it and after the removal, size of the giant com-
ponent of Indigo network is above 60%. However, in case of betweenness, the size
of the giant component of Indigo network decreases to 43%. For random failures,
after consecutive removal of random nodes (airports) the size of the giant component
presented in Fig. 4.
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Fig. 1 Change of the average path length and clustering coefficient after consecutive removal of
nodes based on degree and betweenness

Fig. 2 Change of the average path length and clustering coefficient after consecutive removal of
random nodes
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Table 5 Size of giant component after isolating the airports based on degree

Rank Indigo airline Jet Airways airline Air India airline

Airport
removed

Size of
giant
component

Airport
removed

Size of
giant
component

Airport
removed

Size of
giant
component

1 Delhi 35 Mumbai 39 Delhi 42

2 Mumbai 35 Delhi 38 Mumbai 47

3 Kolkata 34 Bangalore 45 Kolkata 48

4 Bangalore 35 Kolkata 39 Chennai 51

5 Hyderabad 35 Chennai 43 Hyderabad 51

6 Chennai 35 Pune 45 Bangalore 52

7 Ahmedabad 35 Hyderabad 45 Varanasi 50

8 Pune 35 Guwahati 44 Srinagar 52

9 Guwahati 35 Coimbatore 45 Guwahati 52

10 Jaipur 35 Indore 45 Imphal 52

Fig. 3 Percentage of change of giant component after consecutive removal of nodes based on
degree and betweenness

5 Conclusion

In this study, we analyze the robustness of the three major airport networks that
give a reasonable idea about the robustness of whole ANI. Here, we observed that
only Indigo network shows the increment in the average path length after removal
of high-degree nodes. However, it is expected that average path lengths should be
increased and clustering coefficient should be decreased after the removal of high-
degree nodes from the networks. It suggests that Jet Airways and Air India are more
robust to targeted attacks than Indigo. In Air India network, there are some key nodes
(Khajuraho, Visakhapatnam, Agra) with high betweenness. These nodes can be very
important in the study of robustness of the network for targeted attack.
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Fig. 4 Percentage of change of giant component after consecutive removal of random nodes
(airports)

Some interesting analysis can be performed based on the results discussed in this
work. For instance, it is important to know the impact of closing an airport, for a
given amount of hours. In this paper, we ignore the dynamic behavior of the networks
or the flow pattern in these networks. The consideration of traffic volume can also
be an interesting topic for future study.
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