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Abstract Primary Sjögren’s syndrome (SjS) is a chronic and systemic autoimmune
epithelitis with predominant female incidence, which is characterized by exocrine
gland dysfunction. Incompletely understood, the etiology of SjS is multi-factorial
and evidence is growing to consider that epigenetic factors are playing a crucial
role in its development. Independent from DNA sequence mutations, epigenetics
is described as inheritable and reversible processes that modify gene expression.
Epigenetic modifications reported in minor salivary gland and lymphocytes from
SjS patients are related to (i) an abnormal DNAmethylation process inducing in turn
defective control of normally repressed genes involving suchmatters as autoantigens,
retrotransposons, and theX chromosome inwomen; (ii) altered nucleosome position-
ing associated with autoantibody production; and (iii) altered control of microRNA.
Results from epigenome-wide association studies have further revealed the impor-
tance of the interferon pathway in disease progression, the calcium signaling pathway
for controlling fluid secretions, and a cell-specific cross talk with risk factors asso-
ciated with SjS. Importantly, epigenetic modifications are reversible thus opening
opportunities for therapeutic procedures in this currently incurable disease.
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11.1 Introduction

Primary Sjögren’s syndrome (SjS) is an autoimmune systemic disease character-
ized by lymphocytic infiltration of the exocrine glands with tropism for the sali-
vary, lacrimal, upper respiratory, and vaginal glands of women (Brito-Zeron et al.
2016a). The clinical picture of SjS is based on evidence of xerostomia and xeroph-
thalmia, which define a syndrome of dryness, and association with intense fatigue
and widespread pain that leads to a profound alteration in the patients’ quality of
life (Ramos-Casals et al. 2012). In one-third of patients, there are systemic man-
ifestations, i.e., extra-glandular, which can affect the kidneys, liver, lungs, and
thyroid.

The severity of the disease is generally associated with visceral abnormalities
and the development of B lymphoma in 5% of patients (Brito-Zeron et al. 2016b;
Nocturne and Mariette 2018). The prevalence of SjS ranges from 0.01 to 0.72%
(Kabasakal et al. 2006; Maldini et al. 2014). In its primary form, SjS primarily
affects women (9:1), with an average age of onset of about 50 years (Ramos-Casals
et al. 2015). The secondary forms (50%), generally of lesser intensity, coexist with
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), thyroiditis, and even
primary biliary cirrhosis.

In addition to the fact that SjS is characterized by an autoimmune epithelitis, its
physiopathology raises numerous questions (Brito-Zeron et al. 2016a; Sandhya et al.
2017). Based on data acquired from the analysis of the exocrine glands, in particular
minor salivary glands (MSG), several steps were highlighted. First of all, activa-
tion of the epithelium, which leads to lymphocyte infiltration, consisting mainly of
T cells and more particularly CD4+ T cells (Christodoulou et al. 2010; Verstappen
et al. 2018). Then, and concomitantly with epithelial activation and disease progres-
sion, new cell populations appear in MSG such as follicular T cells, TH17 cells,
dendritic (interferon producing) cells, and B lymphocytes which gradually become
predominant and organize themselves into ectopic germinal centers. B lymphocyte
hyperactivation is accompanied by local production of autoantibodies (auto-Ab) and,
in particular, of sicca syndrome type A (SSA/Ro) or type B (SSB/La) auto-Ab.

At a peripheral level, the detection of anti-SSA/SSB auto-Ab is frequently
associated with the detection of rheumatoid factor, hypergammaglobulinemia, and
hypocomplementemia that reflects an active immunological profile (Capaldo et al.
2016). This hyperactivation is accompaniedby abnormalities of peripheralB lympho-
cyte subpopulations, reflecting the attraction of memory B cells into tissues (Alonso
et al. 2010; Cornec et al. 2014; Simonin et al. 2016; Renaudineau 2017). In theMSG,
there is also an increase in the size of the glands and significant ultra-sonographic
changes (Le Goff et al. 2017).

The etiology and pathogenesis of SjS are multi-factorial and consist of an
aggregate of genetic predispositions with environmental factors (Renaudineau and
Ballestar 2016). Recent data further support the important contribution of epigenetic
mechanisms in SjS no longer solely to manage epithelial system development, but
also as key regulators for controlling cell cycle, cell differentiation, immune system
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recruitment, and activation and, last but not least, to control the response to external
factors such as various treatment modalities. From the cellular point of view, the
definition of epigenetics has advanced and now includes adjustments in gene expres-
sion that do not entail modifications in the DNA sequence and are inheritable and
reversible. This chapter summarizes implications of epigenetic modifications in SjS
and their consequences.

11.2 Environmental, Genetic, and Epigenetic Factors

11.2.1 Environmental Factors

Due to the frequent presence of severe fatigue and arthralgia at diagnosis, a viral cause
is suspected, notably Herpes family members such as Epstein–Barr virus (EBV) and
human herpes virus 6 (HHV6) (Lucchesi et al. 2014). Several indirect arguments
favor this direction, such as the evidence of a higher prevalence of EBV- and HHV6-
specific IgG in this disease (Kivity et al. 2014). A cross-reactivity is described for
these two viruses with the SSB/La protein due to molecular mimicry (Haaheim et al.
1996; Hajjar et al. 1995), and a correlation between anti-SSB/La auto-Ab and IgG
levels against the early antigens of EBV was recently reported (Agmon-Levin et al.
2017). In this study, a correlation was also reported between anti-Ro/SSA auto-Ab
and IgG/M directed against EBV, cytomegalovirus (CMV), and toxoplasma.

However, no direct evidence has been reported on the direct role of these viruses
which are widely distributed in the general population, and several studies did not
find this association. As a result, other viruses have been implicated, again without
direct evidence, including HTLV1 (human T cell lymphotropic virus 1), hepatitis
B and C viruses, retrovirus, and coxsackievirus (Hajjar et al. 1995; Wattiaux et al.
1995; Brauner et al. 2017; Nakamura et al. 2018). Another explanation is related to
the capacity of SjS patients to have a higher immune response to infectious agents
as observed with the H1N1 influenza vaccine (Brauner et al. 2017). An alteration of
the microbiome is also reported in SjS with dysbiosis reported in the intestinal tract,
and in ocular and oral flora that are suspected of influencing the immune system
(De Luca and Shoenfeld 2018; Tsigalou et al. 2018).

Other factors associated with SjS include tobacco, vitamin D deficiency, ultra-
violet radiation, and chemical agents whose exposure appears to be correlated with
the appearance of SjS (Busche et al. 2015; Garcia-Carrasco et al. 2017). The demo-
graphic components of SjS reinforce the involvement of environmental factors with
a higher reported prevalence of SjS in Nordic countries (Shapira et al. 2010) Another
argument in support of this hypothesis is based on the study of homozygous twins for
whom the concordance rate with SjS, which defines the genetic share of a disease,
ranges between 15 and 25% (Brooks et al. 2010).
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11.2.2 Genetic Factors

With thedevelopment ofGWAS(genome-wide association study) projects,more than
40 risk factors have been associated with SjS but they have only a slight effect on the
risk of developing SjS (Lessard et al. 2012; Konsta et al. 2014). First, there are risk
factors involved in antigen presentation with certain regions of the HLA class I and
II system or upstream with factors involved in the regulation and expression of HLA
molecules. The presence of anti-SSA/SSB auto-Ab and labial salivary gland focus
score is associated with HLA-DQA1 and HLA-DQB1 in Europeans, an association
not confirmed in Asians, which contrasts with HLA-DPB1 that was observed in both
ethnic groups (Taylor et al. 2017).

For the other risk factors associated with SjS, there are risk factors involved
in innate and acquired immunity such as genes associated with interferon (IFN)
signatures (irf5 [interferon regulatory factor 5], il12a [interleukin 12A], ncr3 [natu-
ral cytotoxicity triggering receptor 3], and stat4 [signal transducer and activator of
transcription 4]), genes associated with T and B cell functions (tnfaip3 [TNF-alpha
induced protein 3], tnip1 [TNFAIP3-interacting protein 1], cxcr5 [C-X-C chemokine
receptor type 5], blk [B lymphocyte kinase], baff [B cell activating factor], ebf1 [early
B cell factor 1], gtf2i [general transcription factor IIi], tnsff4 [Tumor Necrosis Fac-
tor Superfamily Member 4], lta [Lymphotoxin-α], and ccl11 [C-C motif chemokine
11]), and genes with other functions (htt [solute carrier family 6member 4]) (Lessard
et al. 2013; Burbelo et al. 2014; Konsta et al. 2015; Teos and Alevizos 2017). The
mode of action of these SjS associated risk factors is complex because few of them
have been attributed to the normal functions of the proteins. However, recent studies
revealed that they are not randomly located but present in cell-specific and epige-
netic regulatory zones to control transcription (Konsta et al. 2015). Consequently,
a better understanding of the cross talk between risk factors and epigenetic factors
to control cell-specific gene expression can lead to a better understanding of the
pathophysiology of the disease.

11.2.3 Epigenetic Factors

Epigenetics plays an essential role in acting at key stages of differentiation and acti-
vation of the immune system. But there are actually several epigenetic mechanisms
involved, such as post-translational histone modifications (to alter DNA compaction
or decondensation), non-coding RNAs (which can modulate gene expression via
sense/anti-sense interactions with other transcripts), and DNA methylation (mod-
ulates actions of transcription factors and gene repressors) (Fig. 11.1). This latter
mechanism occurs by the transfer of a methyl group on the 5th carbon of the CpG
dinucleotide cytosine of DNA (5-mCyt) under the action of DNAmethyltransferases
(DNMTs) with S-adenosylmethionine (SAM) being the key source of the methyl
groups (Renaudineau and Youinou 2011; Brooks and Renaudineau 2015). Important
modifications of these processes, specific for a given cell type, have been observed in
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pathology and in particular in cancers and autoimmune diseases (Brooks et al. 2010;
Bagacean et al. 2017a, b). The first argument implicating epigenetic mechanisms
in SjS derives from the observation that oral administration of DNA demethylating
drugs such as hydralazine or isoniazid promotes sicca development in mice treated
over several weeks together with immunological elements of an SLE-like disease
(Bordron et al. 2018). From these initial experiments, it was also reported that the
animal strain, age, and sex were important for the pathological process, and that this
effect disappeared when the demethylating drug was withdrawn.

Next, both the Richardson and Zouali teams demonstrated that forcing DNA
hypomethylation in both CD4+ T cells and CD19+ B cells promotes autoreactivity
(Quddus et al. 1993; Mazari et al. 2007). Indeed, when CD4+ T cells or CD19+ B
cells pretreated with DNAmethyltransferase inhibitors are passively transferred into
mice, the engrafted mice produce auto-Ab including anti-dsDNA Ab. One further
step was to characterize in SLE patients the defective pathways that lead to decreased
DNMT1 expression in both CD4+ T cells and CD19+ B cells, which includes the
MAPk/Erk pathways (Gorelik et al. 2015). From the epigenetic point of view, the
most important difference between SLE and SjS is related to the fact that epithelial
cells, and to a lesser extent lymphocytes, have a defective DNA methylation process
(Dantec et al. 2015).

11.3 Epigenetic Defects

11.3.1 DNA Methylation

11.3.1.1 Global Methylation Analysis

1. Demethylation of DNA in SjS

Overall, DNA methylation acts on gene transcription either directly by preventing
transcription factors from binding or indirectly by recruiting enzymes responsible
for chromatin compaction such as histone deacetylases (HDAC) and histone methyl-
transferases (HMT). In mammals, chromatin is normally methylated and compacted
and it is the regulatory and transcriptionally active zones that are demethylated.
The DNA demethylation process is either passive during cell division or active
and is in this case initiated by TET (ten-eleven translocation) oxidation enzymes
(Bagacean et al. 2018). TETs oxidize 5-mCyt into 5-hydroxymethylcytosine (5-
hmCyt) and subsequently, in a less efficient manner, into 5-formylcytosine (5-fCyt)
and 5-carboxylcytosine (5-CaCyt) with the use of α-ketoglutarate (α-KG), molecular
oxygen and iron as cofactors. The overall rate of 5mCyt found in mammals varies
according to cell type from 70 to 80%, with low levels in immune system cells.

Analysis of histological sections from MSG and epithelial cells cultured and
isolated from patients’ MSGs, as well as analysis of peripheral B and T lymphocyte
populations (Table 11.1) and analysis of the overall DNA methylation state made it
possible to highlight in SjS: (i) a significant reduction in overall 5-mCyt status in the
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MSG and which predominates in epithelial cells; (ii) that this defect was preserved in
culture and that it was associated with suppression of expression of the methylation
enzyme DNMT1 as reported in long term purified salivary gland epithelial cells
(SGEC); and (iii) conversely, no difference in overall DNA methylation could be
observed in B and T cells of patients’ and controls’ peripheral blood, pointing out
that epigenetic changes preferentially affect the epithelial cells.

MSG 5-mCyt reduction in SjS and DNMT1/3b reductions in SjS patients with
lymphoma were recently confirmed (Lagos et al. 2018; Mavragani et al. 2018), and
Lagos et al. have further underlined an active DNA demethylation process based on
the observation that 5hmCyt and TET2 levels are increased in epithelial cells from
MSG sections.

2. Involvement of lymphocytes and pro-inflammatory cytokines in the
demethylation of DNA from epithelial cells of minor salivary glands

The presence of a significant lymphocyte infiltration appears to be associated with
5-mCyt reduction inMSG since the methylation level is inversely proportional to the
Tarpley and focus scores which reflects the inflammatory state of MSG (Konsta et al.
2016b; Lagos et al. 2018). An inverse association with anti-SSB/La auto-Ab positiv-
ity is also reported in these two studies. On one hand, the role of B cells is suspected
to interfere with the Erk/DNMT1 pathway leading to 5-mCyt reduction in the HSG
(human salivary gland) cell line when this cell line is co-cultivated with B cells (Tha-
bet et al. 2013). This process could be reversed as observed inMSG from patients that
have recovered a normal DNAmethylation level 4 months after receiving a treatment
with rituximab, an anti-B lymphocyte immunotherapy (Thabet et al. 2013). On the
other hand, HSG stimulation with the pro-inflammatory cytokines interferon (IFN)-
γ and the tumor necrosis factor (TNF)-α promote TET2 overexpression that in turn
increases 5-hmCyt and decreases 5-mCyt (Lagos et al. 2018).

11.3.1.2 Complete Methylome Analysis

1. Methylation analysis of CpG units of peripheral blood cell DNA

Several teams have used the HM450K technology from Illumina to study DNA
methylation across the genome in peripheral blood mononuclear cells (PBMCs)
which include a mixture of T, B cells, and monocytes, or better by using purified T
cells (total and naive) andB cells of patientswith SjS (Altorok et al. 2014; Imgenberg-
Kreuz et al. 2016; Miceli-Richard et al. 2016). Apart from the different methods of
analysis, we can highlight several points. First, hypermethylated regions of DNA
are found in HLA type I and II antigen presentation genes but also on certain genes
regulated by interferon type I (IFI44L, IFITMI). Second, specific signaling pathways
are found inT cells (solute-carrying proteins and the transcription factorRUN2X) and
in B cells (B cell receptors, developmental genes). Third, the effect predominates in
patients with anti-SSA/SSB auto-Ab and in B cells because the methylation changes
are 50 times greater than in T cells (Miceli-Richard et al. 2016).
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2. Methylation analysis of CpG units of minor salivary gland DNA

Two teams analyzed DNA methylation using HM450K chips in MSG of patients
with SjS (Cole et al. 2016; Imgenberg-Kreuz et al. 2016). However, the limitation of
this approach, as reported for PBMC, is related to the heterogeneity of the samples
since the glands studied include both acinar and tubular epithelial cells which are
found in patients and controls, but also immune cells present in patients. Despite this
limitation, the importance of the IFN pathway is reported, again with, in particular,
the detection of a gene inducible by the IFN such as oas2, which is demethylated.
The other differentially methylated regions concern psmd8 (26S proteasome non-
ATPase regulatory subunit 8), tap1 (antigen peptide transporter 1), and microRNAs
as well as a wide variety of genes involved in cell activation, antigen presentation
and autoantigen production (Cole et al. 2016; Renaudineau and Ballestar 2016).

3. Methylation analysis of CpG units of epithelial cells in minor salivary glands

As previously indicated, the study of CpG patterns on MSG was carried out on a
cellularmixture, and therefore does not fully reflect the impact of DNAmodifications
on MSG epithelial cells. This limitation was removed by using SGEC from MSG
cultured for 3–4 weeks to obtain a pure cell population to use as the biological source
(Charras et al. 2017). Significant differences were observed when comparing SjS
patients with a control population using HM450K chips. These differences concern
a large number of genes regulated by IFN (61% of genes). In addition, the calcium
pathway (involved in salivary flow control) was demethylatedwhile theWnt pathway
(involved in epithelial cell survival and differentiation) was methylated in this study
(Fig. 11.2). From such analysis, the phosphatidyl inositol (PI3)-kinase pathway was
also associated with hydroxychloroquine intake.

Basal 

↗Ca2+ 

IP3R ANOs 

TRPs 
ORAIs 

CaCNs 

KCNs 

Salivary flux 

SGEC 

Signal Pathways

(≥2 DMCs/gene)  (DAVID)

Hypermethylated Wnt pathway 

Hypomethylated Ca2+ pathway 

Genes under IFN 351/575 (61%) 

Fig. 11.2 Implication of DNA methylation in the pathogenesis of Sjogren’s syndrome (Charras
et al. 2017)
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11.3.2 Histones

Histones are small globular proteins (11–15 kD) with flexible N-terminal tails
that project from the nucleosome core. Histone N-terminal tails play an impor-
tant role in controlling gene transcription and expression and this is regulated by
post-translational modifications at lysine, arginine, and serine residues. Modifica-
tions at these residues can be acetylation, methylation, phosphorylation, ubiquitina-
tion/sumoylation, ADP ribosylation, deimination/citrullination, protein conjugation,
or β-N-acetylglucosamination.

Using a chromatin immunoprecipitation (ChIP) approach a decrease in H4 acety-
lation was observed at the AQP5 (aquaporin 5) promoter and there was overex-
pression from the gene in human salivary gland acinar cells after treatment with
TNF-α (Yamamura et al. 2012). Such an observation is in line with the report of
Imgenberg-Kreuz et al. in which they investigated the distribution of hypomethy-
lated, hypermethylated, and differentially methylated cytosines (DMC) in T and B
cells. In both cell types, hypomethylatedDMCs are locatedwithin areas ofH3K4me1
and H3J27Ac, while it is in association with H3K26 that is reported for hyperme-
thylated DMCs (Imgenberg-Kreuz et al. 2016). Interestingly, the main alteration in
the salivary proteome of SjS patients is related to the abnormal presence of histones
(Hall et al. 2017), probably through an accelerating apoptotic process, explaining
why anti-histone auto-Ab are reported in SjS (Hu et al. 2011).

In addition, treating the SjS non-obese diabetic (NOD)mousemodel with resvera-
trol, which enhances NAD(+)-dependent histone deacetylase activity through sirtuin
1, improves saliva secretion and expression of the anti-inflammatory cytokine IL-10
in salivary glands without affecting inflammatory cell infiltration (Inoue et al. 2016).
SAHA (suberoylanilide hydroxamic acid, a specific histone deacetylase inhibitor)
reduces inflammation in dry eye disease and this may have applications in SjS (Ratay
et al. 2018). Such discrepancies may be explained in part by the fact that the two
drugs are not acting on the same cell subset.

11.3.3 miRNA

Small non-coding and single-strand RNA of 19–22 nucleotides in length, microR-
NAs (miRNAs) adjust gene expression at the post-transcriptional level and are crucial
in a wide array of physiological and pathological processes. In the nucleus, funda-
mental miRNA transcripts are generated through RNA polymerase II, and cleaved
by an RNAse III enzyme, referred to as Drosha. After cleavage, miRNAs are trans-
ported to the cytoplasm via exportin 5 for processing using Dicer to generate mature
miRNA duplexes. Duplexes are then separated into single strands at the core of the
multiprotein RNA-induced silencing complex (RISC) which includes argonaute pro-
teins.MostmiRNAsbind to the 3′ untranslated vicinity (UTR) of the targetedmRNAs
which leads to mRNA translation or repression or degradation (Zare-Shahabadi et al.
2013). Auto-Ab to the miRNA-binding protein argonaute 2 (Su antigen) enriched
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in the cytoplasmic GW/P bodies are described in 10–20% of patients with SjS and
neurological diseases (Bhanji et al. 2007; Satoh et al. 2013).

miRNA expression profile analysis reveals distinct profiles when comparingMSG
from control subjects and SjS patients. Alevizios et al. have also reported that
miRNAupregulation ismore important in the groupwith decreased salivary functions
(Alevizos et al. 2011). In addition, let7b, miR16, miR181a, miR223, and miR483-
5p levels are positively correlated with Ro52/TRIM21-mRNA in MSG, while in
SGEC miR181a and miR200b-3p are negatively correlated with Ro52/TRIM21 and
Ro60/TROVE2 mRNAs, respectively, whereas let7b, miR200b-5p, and miR223 are
associated with La/SSB-mRNA (Gourzi et al. 2015).

With regards to PBMCs instead of PBMC’s subsets, a limited number ofmiRNAs,
including miR-146a and miR-155, are reported when comparing SjS patients with
sicca-complaining controls (Pauley et al. 2011; Peng et al. 2014; Shi et al. 2014;
Gourzi et al. 2015). In contrast, when considering purified T and B cells from SjS
patients, there are major differences corresponding to 21 miRNAs in T cells (9
upregulated and 12 downregulated) and 24miRNAs inB cells (11 upregulated and 12
downregulated) (Wang-Renault et al. 2018). In this study, regulation through DNA
methylation at promoters was excluded and differential expression patterns were
observed according to the anti-SSA auto-Ab status. The most interesting pathways
associated with differentially expressed miRNAs are related to the PI3K pathway (T
and B cells), the transforming growth factor (TGF)-β pathway (T cells), and the Wnt
pathway (B cells).

In monocytes from SjS patients, miRNAs are upregulated and they preferentially
target the TGF-β signaling pathway and, to a lesser extent, the Janus kinase/signal
transducer and activator of transcription (JAK-STAT) signaling cascades (Williams
et al. 2016). The EBV-specific xeno-miRNA, EBV-miR-BART13-3p, can be trans-
ferred from SjS B cells, through exosomes, to SGEC (Gallo et al. 2016). This
xeno-miRNA controls calcium signaling and salivary flux by targeting the stromal
interacting molecule 1 (STIM1) (Mukherjee et al. 2017).

11.4 Epigenetic Reprogramming and Consequences

11.4.1 Methylation Modifications

11.4.1.1 Retrotransposons

More than 50% of our genome is composed of retrotransposons that correspond to
DNA sequences that have the ability of multiplying to spread in the genome. Retro-
transposons can be divided into different families, includingAlu (10%), LINE (17%),
and endogenous human retroviruses (HERV, 8%). In order to protect themselves from
the action of these elements, they are regulated by DNA methylation.
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Alu transcripts are found to be increased in SjS, and interferon type I allows Alu
production as well as that of other pro-inflammatory cytokines (Mavragani and Crow
2010; Hung et al. 2015). Alu elements are also capable of binding to the SSA/Ro60
auto-Ag that can lead to the formation of an immune complex when associated with
anti-Ro60 auto-Ab that is widely found in SjS and SLE. As a consequence this pro-
vides an explanation for the SSA/Ro60-associated RNA complex to initiate Toll-like
receptors (TLR)-7/8 dependent pro-inflammatory cytokine release (Reed andGordon
2016). Similar observations were made with LINE-1 which is upregulated in MSG
from SjS patients, in relation to a defective DNA methylation process as recently
reported by Mavragani et al. (2018). As a consequence, inappropriate LINE-1
expression in SjS is believed to contribute to the pathophysiology of SjS through the
activation of the TLR-7/8-IFN-type I pathway as observed in plasmacytoid dendritic
cells transfected with LINE-1 sequences (Balada et al. 2010; Mavragani et al. 2016).

In MSG (Table 11.2), HERV have been found to be overexpressed, such as
HERV-K113, HERV-5, and the HERV-E family including clone 4-1 (Moyes et al.
2005; Le Dantec et al. 2012). For the most part, HERV genes have evolved to become
non-functional due to deletions, presence of frame shifts or stop codons. However, a
few copies have retained their functionality to generate viral proteins and to promote
the expression of fusion transcripts with neighboring genes (Renaudineau et al.
2005; Le Dantec et al. 2015). For this reason, HERV elements are repressed by
DNA methylation as demonstrated with HRES-1 (human T cell leukemia related
endogenous retrovirus), inserted at the long arm of chromosome 1 at position
1q42 (Fali et al. 2014). When this control is lost, the HRES-1 Gag p38 auto-Ag is
expressed and induces the production of anti-Gag p38 autoantibodies (Banki et al.
1992). Auto-Ab against HRES-1 Gag p38 is detected in 10% of patients with SjS
versus 1.5% in healthy controls. Another HERV-E element overexpressed in SjS is
HERV-E clone 4-1. HERV 4-1 p30 gag auto-Ab has been detected in 35% of SjS
sufferers and is absent in healthy donors (Hishikawa et al. 1997).

11.4.1.2 Autoantigens

Demethylation of the SSB/La promoter is observed in patients with SjS, which
generates overexpression of the transcript and protein (Konsta et al. 2016b). This
effect is even more true in those SjS patients that express anti-SSB/La auto-Ab and
can be reproduced by treating the HSG cell line with 5-azacytidine (5-Aza). Similar
observations have been made with ICA1, another autoantigen (Charras et al. 2017).

11.4.1.3 Other Genes

Treatment with 5-Aza increases the expression of cytokeratin 19 in the HSG line
(Konsta et al. 2016a) and also the aquaporin 5 gene (aqp5)with an increase in salivary
flow in a human ductal salivary gland line (Motegi et al. 2005). Analysis by bisulfite
sequencing of the aqp5 promoter shows hypermethylation of theCpG islets at the Sp1
transcription factor binding sites, sites that can be demethylatedwith 5-Aza, allowing
the Sp1 transcription factor to bind to DNA and initiate transcription of this gene.
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Other gene promoters have been analyzed, in particular the ire1α (inositol-
requiring enzyme 1α), the xbp-1 (X box-binding protein 1 (XBP-1), and the dst
(dystonin) genes (Gonzalez et al. 2011; Sepulveda et al. 2018). Decreased mRNA
levels for IRE1α and XBP-1 can be explained in part by an IFN-dependent hyperme-
thylation pathway controlling their promoters. When demethylated, the dst promoter
leads to the lowexpression of an epithelial alternative splicing variant, an auto-Ag, the
bp320 pemphigoid bullous antigen 1. In CD4+ T cells of patients with SjS, demethy-
lation at CD70 (TNFSF7) promoter contributes to CD70 overexpression (Yin et al.
2010), while hypermethylation in the FOXP3 promoter leads to its repression (Yu
et al. 2013).

11.4.1.4 X Chromosome in SjS

Inwomen, in order to balanceX-linkedgenedosage, one of the twoXchromosomes is
inactivated in each somatic cell. This epigenetic control is suspected to be defective in
SjS (Brooks andRenaudineau 2015). Several arguments support this assertion such as
the predominant female sex bias observed in SjS and reports showing that trisomy X
(47, XXX), a superb female phenotype (mosaic of XXXXX/XXXX/XXX/XX/XO),
or Klinefelter’s syndrome (47, XXY) increase the chance of developing SjS (Harris
et al. 2016; Liu et al. 2016; Sharma et al. 2017). Observing that the X-linked CD40
ligand (CD40L, Xq26.3) was overexpressed in CD4+ T cells from SjS females,
Belkhir et al. failed to link CD40L expression levels with the DNA methylation
status of its regulatory areas, in contrast to what is observed in SLE (Lu et al. 2007;
Belkhir et al. 2014).

X chromosome inactivation (XCI) occurs early in female mammalian develop-
ment to transcriptionally silence all but one of the X chromosomes in each cell
through increased DNAmethylation, thereby achieving dosage equivalency with the
one X chromosome in males (XY). As a consequence, differences in X-linked gene
expression between SjS and controls may underlie an abnormal control of genes
following X chromosome inactivation (XCI) in SjS women with normal 46, XX
genotype, as proposed first by Brooks et al. in response to disruption by a nearby
nucleolus during stress (Brooks 2010, 2017) and validated in silico byMougeot et al.
(2018).

TheX inactivation specific transcript (XIST), a lncRNA, alongwith LINE-1 genes
in the X chromosome are involved in establishing XCI. However, XIST and LINE-
1 sequences, two demethylation sensors, are overexpressed in SjS as well as the
polycomb repressive complexes (PRC)2 genes EED and EZH1 that can be recruited
by XIST to silence target genes. Altogether, these suggest an active but probably
ineffective XCI process and difficulties in maintaining XCI during SjS, a defect that
can be explained in part by the X chromosome nucleolus nexus hypothesis (Brooks
2017).
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11.4.2 Histone Modifications in SjS

Imgenberg-Kreuz et al. demonstrated that several differentially methylated CpG
(DMC) sites were hypomethylated and enriched in histone enhancers (H3K4me1
and H3K27ac) allowing access to the chromatin. On the other hand, hypermethy-
lated DMCs in patients were underrepresented in enhancer regions (H3K4me3) but
instead were enriched in the histone marker (H3K36) for actively transcribed genes
(Imgenberg-Kreuz et al. 2016).

11.4.3 miRNA in SjS

11.4.3.1 miRNA in Minor Salivary Glands from SS Patients

miRNAs have been investigated in MSG revealing that miRNA expression is differ-
entially expressed between SjS patients and controls, and that miRNA is involved
in the control of salivation through neurologic pathways. Downregulation of the
miRNA let-7b in MSG from SjS patients is also suspected of contributing to the lack
of transcriptional control of the auto-Ag SSA/Ro and SSB/La.

11.4.3.2 miRNA in PBMC and Exosomes from SjS Patients

The two main miRNAs associated with SjS, miR146a, and miR155, are upregulated
in response to the adaptive immune response when testing PBMC from SjS patients
and from SS-prone mouse models (Pauley et al. 2011). Authors have shown, in SjS
patients, that miR146a expands prior to disease onset in PBMCs, and at a more
advanced stage in MSG from SjS patients. In addition, detected in PBMC and MSG,
miRNAs are also present in exosomes which are microvesicles secreted by a large
variety of cells including lymphocytes.

Mir146a is important for control of the phagocytic process and to repress inflam-
matory cytokine production in human monocytic THP1 cells. Mir146a is activated
through the transcription factor NF-kappa B that controls the TLR/INF pathway
through TNF-associated component 6 (TRAF6), IL-1 receptor-associated kinase
(IRAK1), STAT1, and IRF5. Additionally, Zilahi et al. have measured the expres-
sion of miR146a and miR146b, and their target genes IRAK1, IRAK4, TRAF6 in
PBMCs of patients with SjS and from controls (Zilahi et al. 2012). By quantitative
RT-PCR they identified miR146a/b and the gene of TRAF6, as being overexpressed
in SjS patients, whereas the expression of IRAK1 was significantly decreased. They
proposed that the TRAF6 gene contributes to the increased activation of the NF-
κB pathway by the involvement of PKCξ present typically in the disease, and that
possibly the TRAF6 gene is a new biomarker of SjS.

Experiments for miR155 have shown an influence on the response of toll-like
receptors (TLRs) and interleukin-1 receptors (TIRs) that can have an additional
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effect on the immune response. FoxP3 transcription factor, which is detected in a
subset of T cells infiltrating SjSMSG, has been shown to result inmiR155 expression
(Wang-Renault et al. 2018).

The expression of B cell activating factor (BAFF) is increased in B cells from SjS
patients and such expression is inversely correlated with miR-30b expression The
utilization of an antagomir (miRNA inhibitor) formiR-30 increasesBAFF expression
after transfection as observed in the THP-1 cell line (Wang-Renault et al. 2018).

11.5 Genetic Risk Factors Associated with SjS and Related
to Epigenetic Factors

11.5.1 Methylation Modification

Recent data demonstrate highly significant correlations between DNA methylation
modifications and the most important risk factors associated with SjS (Table 11.3).
This was described for the HLA region and IRF5-TNPO3 locus with methylation
quantitative trait loci (metQTL) by Imgenberg-Kreuz et al. using PBMC (Imgenberg-
Kreuz et al. 2016, 2018). The same observation between DNA methylation and
genetic risk loci was reported by Miceli-Richard et al. using peripheral B cells from
SjS patients for HLA-DRA, HLA-DQB1, HLA-DQA1, HLA-DPB1, IRF5, CXCR5,
BLK, PRDM1, ITSN2, GTF2I, and COL11A2 (Miceli-Richard et al. 2016). LTA and
GSTM1 were reported by Altorok et al. in CD4+ T cells, and CXCR5, BLK, LTA,
and BAFF in MSGs (Altorok et al. 2014).

In SGEC,wehave reported that sevenSjSgenetic risk factors presented at least one
differentiallymethylated site: CXCR5,GTF2I, ICA1,NRLP3, SLC25A10, TNF, and
MBL2 (Charras et al. 2017). However, it should be kept in mind that the demonstra-
tion of correlations may be difficult to establish as reported by Gestermann et al. who
have tried to establish a link between the CpG polymorphism in the promoter of irf5
and DNA methylation by comparing CD4+ T cells, B lymphocytes, and monocytes
from 19 SjS patients and 24 healthy controls (Gestermann et al. 2012).

11.5.2 Histone Modifications

In general, single nucleotide polymorphisms (SNP) related to SjS risk factors are
enriched at 29.2% in promoters (RNA polymerase 2A site), at 56.9% in enhancers
(H3K27Ac, H3K36me3, and H3K27me3), and at 6.9% in insulators (CTCF binding)
(Konsta et al. 2015). In addition, we have also reported a cell-specific effect between
SjS risk factors and the histone markers in monocyte enhancers (H3K36me3) and in
B cell promoters (H3K4me2, H3K4me3, and H3K9Ac) and enhancer (H3K36me3)
cells.
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11.5.3 miRNA Modification

Targets ofmiRNAmay include SjS risk factors such asBAFF,which is overexpressed
in B cells and whose 3′ UTR is targeted by hsa-miR-30b-5p (Wang-Renault et al.
2018). Another example is TRIM21 as reported in Table 11.2 (Gourzi et al. 2015;
Yang et al. 2016).

11.6 Conclusions

Epigenetic research conducted on SjS in the last decade has contributed to better
understanding of this complex disease. More breakthroughs are expected in the near
future. Future research may be focused on selecting pure cell subsets for analysis,
understanding the mechanisms that control epigenetic defects, and coupling epige-
netic analysis with other OMIC approaches (RNA-Seq, GWAS, proteomic). Finally,
epigenetic research provides us the opportunity to develop new drugs in order to
prevent/cure not only SjS but also lymphoma associated with SjS.
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