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Abstract. Ensemble learning is an important element in machine learn-
ing. However, two essential tasks, including training base classifiers and
finding a suitable ensemble balance for the diversity and accuracy of these
base classifiers, are need to be achieved. In this paper, a novel ensemble
method, which utilizes a multimodal multiobjective differential evolu-
tion (MMODE) algorithm to select feature subsets and optimize base
classifiers parameters, is proposed. Moreover, three methods including
minimum error ensemble, all Pareto sets ensemble, and error reduction
ensemble are employed to construct ensemble classifiers for executing
classification tasks. Experimental results on several benchmark classifi-
cation databases evidence that the proposed algorithm is valid.

Keywords: Multimodal multiobjective optimization · Feature
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1 Introduction

The advent of the information age prompts us to mine valuable knowledge from
big data and complete diverse classification tasks, forming an extensive research
field, i.e., machine learning that includes a variety of methods. Thereinto, ensem-
ble learning receives widespread attention from researchers owing to its more
dependable accuracy and generalization performance than an individual clas-
sifier. Hence, numerous ensemble learning algorithms have been employed in a
variety of areas, such as texture image classification [1], medical information
analysis [2] and synthetic aperture radar image classification [3].

Ordinarily, ensemble learning consists of two steps, training a set of base
learners and integrating predictions of these learners. As for training base clas-
sifiers, the most prevailing strategies are Bagging [4], Adaboost [5], random for-
est [6], rotation forest [7]. Recently, many studies focus on employing feature
selection to train different classifiers. For example, in [8], an optimal feature
and instance subsets were obtained by embedding both parameters searching in
a multiobjective evolutionary algorithm with a wrapper approach. And in [9],
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the Pareto sets of image features obtained from a multiobjective evolutionary
trajectory transformation algorithm was utilized for generating base classifiers.
Meanwhile, an increasing number of researches have coped with feature selection
(FS), which can be generally classified into three sorts: filter [10,11], wrapper [12–
14] and embedded methods [15]. As for filter, feature selection is independent of
the generalization performance of the learning algorithms by scoring and ranking
features. Thus, the selected feature subsets may not enhance the performance of
the classification algorithms. In contrast, wrapper methods utilize search strate-
gies to quest the optimal feature subsets and evaluate these subsets by learning
algorithms. Obviously, wrapper methods have a larger amount of computation
than filter approaches but more credible. As for embedded approaches, feature
selection and learner are incorporated in a single model, such as decision tree
learner. In feature selection, studies always focus on two aspects: classification
accuracies of learners and the size of selected feature subsets. Actually, multiple
feature subsets of the same number of features can be able to achieve the same
accuracy. If unimodal multiobjective evolutionary methods are utilized to deal
with these problems, only one of them may be retained, which may cause some
excellent feature subsets to be lost. These studies do not consider the multimodal
[16] of Pareto sets in multiobjective optimization problems. Specifically, different
solutions could have the same objective results.

Motivated to solve this problem, we utilize the evolutionary algorithms
(EAs), which are highly popular on multimodal multiobjective issues. Usually,
they are called multimodal multiobjective EAs (MMOEAs). Recently, there are
numerous multi-objective evolutionary algorithms [17,18]. Meanwhile, several
MMOEAs [19–21] are proposed to solve multimodal multiobjective optimization
(MMO) issues that may exist multiple Pareto sets which corresponds to the same
Pareto front (PF) point. In [19], a multiobjective PSO by means of ring topology
was proposed, which could produce stable niches and employ a special crowding
distance. Here, we concentrate on utilizing an MMOEA for generating the base
classifiers ELMs by optimizing feature subsets and the number of ELMs hidden
nodes simultaneously then constructing an ensemble model in different ways.

In this paper, we present an ensemble method via multimodal multiobjective
differential evolution (EMMODE), a novel approach that performs MMOEA to
optimize the size of feature sets and the performance of ELM, by way of feature
selection and selecting the number of hidden nodes. Due to the characteristics of
MMODE, we are able to get a series of non-dominated solutions from it. As for
the strategies of combining the base classifiers, EMMODE fulfills an operation
on the Pareto sets for constructing them into an ensemble. This intent is accom-
plished by three strategies that are: (1) minimum error ensemble; (2) all Pareto
sets ensemble, and; (3) error reduction ensemble approach. The experiments
are conducted for classification problems. The experiments results of benchmark
datasets from the UCI Machine Repository [22] show the effectiveness of our
proposal, being capable to obtain multiple solutions with the same number of
features and similar classification accuracy. Meanwhile, the EMMODE is also
able to achieve solutions with an excellent tradeoff between the reduction rate
in the number of features and accuracy.
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The rest of this paper is organized as follows. Section 2 describes the related
works. Section 3 details the EMMODE methods. The experimental settings and
results are introduced in Sect. 4. Finally, Sect. 5 is the conclusion.

2 Related Works

This section describes related works on multimodal multiobjective optimization
and feature selection for ensemble learning.

2.1 Multimodal Multiobjective Optimization

MMO problems are those which have multiple Pareto sets corresponding to the
same PF [23]. Evidently, it is significant to find all Pareto solutions which are
equivalent to PF. Give an example, decision-makers can use more Pareto sets to
solve the real-world tasks. The MMO problem is vividly demonstrated in Fig. 1,
where three Pareto solutions with similar objective values.

Decision space Objective space

PF

2

3

2

1
2

1

Fig. 1. Illustration of the multimodal multiobjective optimization problem.

In the real world, many applications belong to MMO problems [24], which
conclude optimization of truss-structures, metabolic network modeling, femtosec-
ond laser pulse shaping problem, automatic determination of point, and so on.
To solve these problems, many MMOEAs have been proposed. In [25], a multi-
modal multiobjective differential evolution (MMODE) algorithm which formu-
lated a decision variable preselection strategy was proposed. The niching mech-
anism was employed in Niching-CMA [26] and MO-Ring-PSO-SCD [19]. In this
paper, we use the MMODE, due to its good performance on MMO problems [27].
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MMODE is an enhanced version of differential evolution (DE). The process
of MMODE is as follows. Firstly, users define a possible solution search space
Ωd ⊆ Ω. The boundary can be just defined as the endpoint of the actual range
of values for the decision variables. In particular, the bounds of each element
X(e) in the decision variables x =

(
X(1),X(2), . . . , X(m)

)T ∈ Rm are indicated
as X(e),L ≤ X(e) ≤ X(e),U, in which the X(e),L and X(e),U are applied to express
the lower and upper values of the solution space for the element in the decision
vectors respectively, and the variable m is defined as problem dimension [25].
Secondly, initialize the population P which consists of N individuals. There is a
common method for initialization.

X
(e)
i,1 = X

(e),L
i + rand(0, 1)

(
X

(e),U
i − X

(e),L
i

)
(1)

where the sub index 1 in X
(e)
i,1 is utilized to express the element of an initial

decision solution, i = 1, 2, . . . , N , and e = 1, 2, . . . ,m. Meanwhile, the rand(0, 1)
produces random real numbers between 0 and 1.

The next step is the preselection scheme, which applies both an objective
space crowding distance (SCD) and a decision SCD indicators, to select pop-
ulation Q of size N/2 for producing offspring. In addition, let the notation

xi,G =
(
X

(1)
i,G,X

(2)
i,G, . . . , X

(m)
i,G

)T

denotes the selected individual of the G-th gen-

eration whose elements X
(e)
i,G, e = 1, 2, . . . ,m are subjected to MMODE muta-

tion. Then generate a mutation vector vi,G =
(
V

(1)
i,G , V

(2)
i,G , . . . , V

(m)
i,G

)T

. One pos-
sible way for obtaining the elements of the mutation vector is the DE/rand/2
technique [25] that is as follows.

V
(e)
i,G = X

(e)

ri
1,G

+ F1

(
X

(e)

ri
2,G

− X
(e)

ri
3,G

)
+ F2

(
X

(e)

ri
4,G

− X
(e)

ri
5,G

)
(2)

where V
(e)
i,G is the e-th element of the mutation vector, X

(e)
ri
s,G is the e-th element

of xri
r,G, and the indices ri

k, k = 1, 2, . . . , 5, are randomly selected integers in the
[1, N/2]. The factors F1 ∈ (0, 1) and F2 ∈ (0, 1) are scaling factors of difference
terms, and set F1 = F2 = F in MMODE. If a left-hand side value of Eq. (2)
was outside the decision space boundary, the MMODE would implement an
alternative mutation bound scheme

V
(e)
i,G = X

(e)

ri
1,G

− F
(
X

(e)

ri
2,G

− X
(e)

ri
3,G

)
− F

(
X

(e)

ri
4,G

− X
(e)

ri
5,G

)
(3)

Then, use a common method to implement crossover process:

U
(e)
i =

{
V

(e)
i.G if rand(0, 1) < Cr

X
(e)
i,G otherwise

(4)



Ensemble Learning via MMODE and Feature Selection 443

where the cross probability Cr ∈ (0, 1) is set by users. And a vector ui =
(
U

(1)
i , U

(2)
i , . . . , U

(m)
i

)T

∈ Rm stores the crossover results. For the case of MMO
problems, MMODE applies the following selection offspring generation method:

ci,G =
{

ui if ui dominates xi,G

xi,G if xi,G dominates ui
(5)

In addition, when neither branch is true in i-th individual, vector ui would
be added to the ci,G.

Finally, splice ci,G and xi,G, and use a nondominated sorting scheme on the
spliced vector to generate the (G + 1) – st generation. A complete algorithm for
conducting MMODE is shown in [25].

2.2 Feature Selection for Ensemble Learning

In this subsection, we classify feature selection methods in two kinds: ordinary
feature selection algorithms and feature selection by evolutionary algorithms.

On the one hand, ordinary feature selection algorithms exist several defects,
such as difficult to set the value of important parameters, nesting effect, falling
into local optima. For instance, common feature selection methods, Sequential
Forward Selection (SFS) [28] and Sequential Backward Selection (SBS) [29],
affect by the nesting effect [30].

On the other hand, evolutionary algorithms [31,32] supply a valid strategy
for coping with feature selection owing to the three reasons: (1) We can acquire
quite acceptable feature subsets without searching the entire decision space. (2)
They are capable to search the decision space comprehensively. (3) They get
over falling into local optima and nesting effect for they set no restriction on
selecting features. Recently, an increasing number of studies apply evolutionary
approaches for feature selection. For example, classic EAs such as PSO [33], DE
[34], GA [35], and ACO [36] were used. The above-mentioned methods utilized
a single objective or multiobjective EAs to select feature subsets. In addition,
there also exist some studies optimizing both the learners parameters and feature
selection. For example, [35] encoded the parameters of support vector machine
(SVM) and the feature subsets into GA chromosomes.

Moreover, to evaluate feature subsets, we employ Extreme Learning Machine
(ELM) as base classifier of an ensemble. ELM [37] is an efficient method for
single-hidden layer feedforward neural networks (SLFNs). ELM randomly gener-
ates the parameters of hidden nodes and input weights, while the output weights
are determined analytically. In [38], the universal approximation and effective
generalization performance of ELM are proved. Compared with conventional
learning methods, such as the back-propagation algorithm (BP) and SVM, ELM
can learn extremely fast because it need not adjust network parameters itera-
tively. For ELM, it is vital that hidden layer parameters, especially the number of
hidden nodes for the generalization performance. Thus, Huang et al. proposed an
Incremental Extreme Learning Machine (I-ELM) method by adding the hidden
nodes one by one [38]. Another method called Error Minimized ELM (EM-ELM)
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is proposed in [39]. The difference from I-ELM is that EM-ELM adjusts all out-
put weights iteratively when it adds one or more new hidden nodes. In [40], an
improved method of EM-ELM called Incremental Regularized Extreme Learning
Machine (IR-ELM) is proposed by utilizing the RELM. However, the expected
termination accuracy may be difficult to set in the real world, which can cause
the overfitting or fail to achieve the desired testing accuracy.

Based on the above, the purposes of feature selection and the classifiers model
selection are obtaining the representation of datasets and appropriate model
parameters that are adequate for classification tasks. In addition, there exists
more than one such solution in the same objectives. Thus, MMODE is utilized
to overcome these drawbacks in this paper.

3 The EMMODE Method

In this section, we present the EMMODE approach formulating the feature and
model parameters selection as a multimodal multiobjective one. The flow chart
of the EMMODE method is depicted in Fig. 2. Like DE, this process begins
with the initial population generation whose each individual encodes a possible
solution. For each individual, calculate its error rate and feature selection rate
on the datasets. After that, new individuals are generated by means of differ-
ential evolution operations over the existing ones. Then, repeated this process
iteratively until a termination condition is satisfied. The detail of the EMMODE
approach is introduced as follows.

3.1 Encoding

MMODE works by chromosomes whose each chromosome encodes a potentially
feasible solution for the optimization task, i.e., the number of hidden nodes
for an ELM and the selected feature subsets. The first process is to encode a
potentially feasible solution for the task. In this paper, the feature is encoded in
a binary variable demonstrating if the corresponding feature is selected. As for
the parameter of ELM, the number of selected hidden nodes is encoded with an
integer variable. The encoding of the chromosome is shown in Fig. 3.

3.2 Evolutionary Operators and Fitness Functions

This subsection presents the evolutionary operators which are different from
MMODE, namely the mutation process and mutation-bound process. Mean-
while, the fitness functions for determining the quality of a solution are explained.
For the model and feature selection task, the range of decision variables is rel-
atively small, thus this paper uses fewer perturbation vectors and a mutation
vector is generated by the DE/rand/1 method, which is shown in the mutation
equation.

V
(e)
i,G = X

(e)

ri
1,G

+ F
(
X

(e)

ri
2,G

− X
(e)

ri
3,G

)
(6)
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Fig. 2. The process of EMMODE.

where V
(e)
i,G , X

(e)
ri
s,G, ri

�, � = 1, 2, 3, and F ∈ (0, 1) represent the same meaning as
mentioned in the Eq. (2) formula.

As for the mutation-bound process, if a left-hand side value of Eq. (6) was
outside the decision space boundary, the EMMODE would implement an alter-
native mutation bound scheme

V
(e)
i,G = X

(e)

ri
1,G

− F
(
X

(e)

ri
2,G

− X
(e)

ri
3,G

)
(7)

Our aim is to attain optimal feature subsets and a corresponding number of
the hidden nodes. We optimize the following functions: the feature selection rate
(f1) and the error rate (f2).

{
f1 = |S|

|F|
f2 = 1 − T (θ)

N

(8)
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Fig. 3. Encoding adopted for the MMO model parameter and FS problem.

where F and S represent the total number of features and number of selected
features, respectively. T (θ) is the number of correctly classified samples for each
corresponding selected feature subset, and N is the number of total samples.

The proposed approach aims to explore the space of parameter and FS tech-
niques for attaining the solutions that suffice the best trade-off. Moreover, the
result of a multimodal multiobjective optimization is not a single solution, but
a series of them. The next subsection presents the methods of integrating a final
classification model.

3.3 Ensembles Strategy

In this subsection, we focus on enhancing the prediction accuracy and generaliza-
tion. All these Pareto solutions obtained from MMODE are equally appropriate
for the task when no other preference information is used. Nevertheless, in the
task we face, the purpose is to construct an ensemble with both a selected feature
set and corresponding an ELM model, which is employed in the classification.
Thus, it is significant to perform an ensemble step over the trade-off solutions
so as to acquire a final classification model. In this case, we integrate the Pareto
solutions of MMODE to reduce the risk of choosing an unstable solution and
provide a better approximation to the optimal solutions.

Each solution in nondominated sets corresponds to an ELM-classifier trained
with different parameter and different subsets of the original feature set. An
ensemble of classifiers can combine the individual information acquired from
each model and provide more information on the predicted label than a single
classifier. In this regard, we study three different strategies of combining the
ELMs which are described in the following.

(1) All Pareto Sets Ensemble (APSE): The basic method here is to construct
an ensemble applying all Pareto solutions of MMODE.

(2) Minimum Error Ensemble (MEE): The opinion of this method does not
use all Pareto solutions, but a subset of them. The ensemble consists of n
solutions which have low error rate. As recommended in [41], it satisfies to
combine 5 to 35 ELMs for most practical applications. In view of this, we
set the n as 11. The ensemble E is defined by the equation

E = argmin
n

PS2 (9)

where the index n is the number of the selected ELMs, and PS2 indicates
the second target value of the Pareto solutions, namely error rate.
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(3) Error Reduction Ensemble (ERE): This approach is also not to employ all
solutions. First, the solutions in the Pareto sets are sequenced in ascend-
ing order according to the corresponding error rate, and the solutions with
the error greater than 0.5 are eliminated. Second, the misclassification sam-
ples numberings of each classifier constructed by the Pareto solutions in
the dataset classification are stored in the matrix Misnum. Third, set the
matrices Misnum1,Misnum2 of the first two solutions in the sorted Pareto
solution set as the reference matrices and decipher the two as part of the
integration. And then, operate on each of the remaining solutions. For exam-
ple, for the i-th (i > 2) solution, calculate the number of identical elements
of its matrix Misnum and two reference matrices.

⎧
⎪⎨

⎪⎩

ai1 = Misnumi ∩ Misnum1

ai2 = Misnumi ∩ Misnum2

qi = numel(ai1) + numel(ai2)
(10)

where the ai1 is the intersection matrix of matrix Misnum1 and matrix
Misnumi, ai2 denotes the intersection matrix of matrix Misnum2 and
matrix Misnumi. And qi represents the sum of the number of elements
of the matrix ai1 and the number of elements of the matrix ai2.

Next, sort the quantity values of identical elements in ascending order and
select the solutions corresponding to the first n− 2 values as part of the integra-
tion. At last, these n base classifiers form the final ensemble model. The main
framework is demonstrated in Algorithm 1.

Algorithm 1. Error Reduction Ensemble

1.Sort the solutions according to error rate in ascending order, and eliminate the
solutions with error > 0.5

2.For each solution in Pareto sets
Calculate its the misclassification samples numberings
Store them in Misnumi

End for
3.Set the matrices Misnum1,Misnum2 of the first two solutions in the sorted Pareto
solution set as the reference matrices and decipher the two as part of the integration

4.For each solution in PS except for the first two
Calculate the number of identical elements by Eq.(10)

⎧
⎪⎨

⎪⎩

ai1 = Misnumi ∩ Misnum1

ai2 = Misnumi ∩ Misnum2

qi = numel(ai1) + numel(ai2)

End for
5.Sort the quantity values of identical elements in ascending order and select the

solutions corresponding to the first n − 2 values
6.Form the final ensemble model with the n solutions
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These schemes introduce different approaches to select the ELM classifica-
tion model from Pareto sets. The next procedure is that integrating the results
obtained by base learners to acquire a final prediction. We deal with this prob-
lem in the following. When we combine the models into an ensemble model, we
take a majority voting to acquire the final prediction of the model.

4 Experiments and Results

In this section, we present the experiments implemented and the results acquired
by the proposed approach by means of different classification datasets.

4.1 Experimental Settings

For our study, we used 6 datasets available in the UCI repository. Table 1 shows
the characteristics of these datasets, such as the number of samples, the num-
ber of classes and the number of features. In our experiments, the results are
the mean values by ten executes of ten-fold cross-validation. The process of
EMMODE is a nested loop: as for inner loop, one-third of the training dataset
is set as a validation set randomly to estimate each solution, while the rest is
applied to train learners. In outer loop, these datasets are divided into ten subsets
previously using the k-fold cross-validation method. In ten-fold cross-validation,
a dataset is partitioned into ten subsets [42], and other processes are similar to
the above.

Table 1. The attributes of 6 datasets.

Datasets Features Classes Samples

Vehicle 18 4 752

Wine 13 3 178

Ionosphere 34 2 351

Image segmentation 18 7 2310

Sonar 60 2 208

SPECT 22 2 267

We apply two standards to evaluate the performance of the EMMODE. One
is the testing accuracy, and the other is the selection rate attained in the FS.
In our experiments, the population size and maximum fitness evaluation are set
to 100 and 5000. While the mutation rate and crossover rate are set to 0.9 and
0.6. For different datasets, the upper and lower bounds of the number of hidden
layer nodes of the ELM are as shown in Table 2.
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4.2 Experimental Results

This subsection introduces the experimental assessment of the EMMODE. First,
we compare the performance of the three ensembles strategies, which aims at
comparing among the different ensemble strategies to find one of them that per-
forms best. Second, we compare the performance of EMMODE with traditional
feature selection method and standard learning algorithms.

Table 2. The settings of EMMODE for 6 datasets.

Datasets Upper bound of nodes Lower bound of nodes

Vehicle 20 100

Wine 5 40

Ionosphere 10 60

Image segmentation 10 200

Sonar 5 40

SPECT 5 30

Tables 3 and 4 illustrate the obtained results by each of the ensembles. The
displayed results are the average testing accuracy and the selection rate in feature
set. These results are the mean and standard deviation values obtained by the
algorithm running 10 times in the dataset. For each case, the best result is
highlighted in boldface.

Table 3. Average accuracy by the different ensemble strategies.

Datasets EMMODE-APSE EMMODE-MEE EMMODE-ERE

Vehicle 76.86 ± 3.36 77.25 ± 4.20 78.59±3.74

Wine 99.44 ± 1.76 98.89 ± 2.68 99.44±1.76

Ionosphere 92.87 ± 2.79 93.44 ± 3.32 93.72±2.64

Image segmentation 97.32 ± 1.24 97.40 ± 1.34 97.93±1.24

Sonar 81.76 ± 9.52 81.29 ± 8.58 83.69±9.84

SPECT 86.41 ± 7.75 85.41 ± 7.76 87.26±7.75

From the results in Tables 3 and 4, we can see that ERE is the excellent
ensemble strategy among the three methods. It achieves the best performance
when classifying test sets while reducing the feature set size. Hence, the ERE is
used to compare with other methods, namely single ELM [37], wrapper feature
selection method: PSO-SVM [43], whose SVM is the implementation of LibSVM
[44]. and standard ensemble learning algorithms: random forest (RF) [6] and
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Table 4. The feature selection rate by the different ensemble strategies.

Datasets EMMODE-APSE EMMODE-MEE EMMODE-ERE

Vehicle 77.78 ± 0 77.78 ± 0 77.78±0

Wine 38.46 ± 0 38.46 ± 0 38.46±0

Ionosphere 35.29 ± 0 35.29 ± 0 35.29±0

Image segmentation 52.63 ± 0 52.63 ± 0 52.63±0

Sonar 68.33±0 73.33 ± 0 73.33 ± 1.31

SPECT 59.09 ± 0 59.09 ± 0 59.09±0

Adaboost [5]. For the random forest and Adaboost, their base classifiers are
decision trees and the number of trees is set to 100.

In Table 5, we compare EMMODE-ERE with ELM, PSO-SVM, random forest
(RF), Adaboost. The ELM is utilized as a baseline for comparing the performance
of other methods. From the results indicated in the table, we can see the following.
(1) EMMODE-ERE are capable of enhancing the performance of classification. (2)
Traditional FS and ensemble approaches outperform the standard ELM.

Therefore, EMMODE is a competitive method for performing feature reduc-
tion and parameter selection for an ELM and can be adopted to far-going super-
vised learning problems. Meanwhile, EMMODE is an intensely efficient classifi-
cation algorithm when compare it with traditional learning algorithms.

Table 5. Comparisons the performance of EMMODE-ERE against traditional learning
algorithms.

Datasets ELM PSO-SVM RF Adaboost EMMODE-ERE

Vehicle 74.88± 6.27 76.44± 3.44 70.74± 2.54 49.48± 5.72 78.59±3.74

Wine 97.22± 3.93 98.87± 1.54 98.31± 3.75 97.15± 4.08 99.44±1.76

Ionosphere 87.74± 4.08 91.22± 2.77 93.16± 2.59 92.61± 3.78 93.72±2.64

Image segmentation 89.74± 2.23 96.32± 1.53 97.86± 1.35 81.43± 1.86 97.93±1.24

Sonar 77.43± 8.03 81.28± 7.25 79.37± 6.58 82.19± 7.31 83.69±9.84

SPECT 82.75± 9.35 85.18± 6.41 82.92± 1.93 82.41± 6.98 87.26±7.75

5 Conclusion

In this paper, we have presented EMMODE. The significance and importance
of solving MMO problems of selecting features and the parameter are analyzed.
EMMODE deals with the MMO problem by selecting features and the parame-
ter of an ELM simultaneously. Moreover, it also presents three different strate-
gies, including the APSE, MEE, and ERE, for combining the Pareto solutions
into an ensemble. Experimental results prove the effectiveness of the proposed
EMMODE approach.
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The datasets used in this paper relatively small-scale. When the dimension of
the dataset is higher, the result of ELM may be unstable. In the future, utilizing
our method on unbalanced classification datasets and improving the performance
of our method on large-scale datasets will be studied.
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