
Recent Bio-inspired Algorithms
for Solving Flexible Job Shop Scheduling

Problem: A Comparative Study

Dongsheng Yang1, Xianyu Zhou1, Zhile Yang2(B), and Yanhui Zhang2(B)

1 Intelligent Electrical Science and Technology Research Institute,
Northeastern University, Shenyang 110819, China

2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518000, Guangdong, China

{zl.yang,yh.zhang}@siat.ac.cn

Abstract. Flexible job shop scheduling problem (FJSP) is an extended
formulation of the classical job shop scheduling problem, endowing great
significance in the modern manufacturing system. The FJSP defines an
operation that can be processed by any machine from a given set, which
is a strong constrained NP-hard problem and intractable to be solved.
In this paper, three recent proposed meta-heuristic optimization algo-
rithms have been employed in solving the FJSP aiming to minimize the
makespan, including moth-flame optimization (MFO), teaching-learning-
based optimization (TLBO) and Rao-2 algorithm. Two featured FJSP
cases are carried out and compared to evaluate the effectiveness and
efficiency of the three algorithms, also associated with other classical
algorithm counterparts. Numerical studies results demonstrate that the
three algorithms can achieve significant improvement for solving FJSP,
and MFO method appears to be the most competitive solver for the
given cases.

Keywords: Flexible job shop scheduling · Makespan · MFO · TLBO ·
Rao-2 algorithm

1 Introduction

The key component of production management for modern enterprises is effec-
tive production planning and scheduling. It is of great significance for reducing
production costs, shortening production cycle and improving production effi-
ciency. The job shop scheduling problem has the major characteristics including
modeling complexity, computer complexity, dynamic randomness, multiple con-
straints, and multi-objectiveness.

The production planning and scheduling problem is to arrange the production
tasks delivered on the equipment according to the sequence. It discusses how
to arrange the processing resources and sequence of the operations under the
premise of satisfying the processing constraints, aiming to minimize the product
c© Springer Nature Singapore Pte Ltd. 2020
L. Pan et al. (Eds.): BIC-TA 2019, CCIS 1159, pp. 398–407, 2020.
https://doi.org/10.1007/978-981-15-3425-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3425-6_31&domain=pdf
https://doi.org/10.1007/978-981-15-3425-6_31

Bio-inspired Algorithms for Job Shop Scheduling 399

manufacturing time and the consumption cost. Due to the complexity of the
production operation management system and various real-world constraints,
the production scheduling problem becomes a NP-hard problem [6]. The classical
job shop scheduling problem (JSP) assumes that there is no flexibility of the
resources (including machines and tools) for each operation of the corresponding
job. In another word, the problem requires that one machine only processes one
type of the operation. However, in the real world application, many flexible
manufacturing systems are used to improve the production efficiency in modern
manufacturing enterprises [14].

In the light of this, the FJSP attracts increasing attentions from both research
and industrial areas [2]. The FJSP can be divided into two sub-problems: the
machine selection (MS) and the operations sequencing (OS), adding a more com-
plicated scenario MS to the conventional JSP problem. Many methods have been
proposed to solve this problem so far, including exact algorithm [3], dispatching
rules [1], evolutionary algorithm (EA) [18], local search algorithms [7] and so on.
For exact algorithm, Torabi et al. proposed a mixed integer nonlinear program
for deterministic FJSP [16]. Roshanaei et al. presented two MILP models [13].
However, exact algorithm cannot obtain good results for large scale FJSP. So
Tay and Ho used dispatching rules for multi-objective FJSP [15]. Ziaee proposed
a construction procedure based heuristic for FJSP [19]. As for EA, the most used
method is genetic algorithm, Pezzella et al. integrated GA with different strate-
gies to solve FJSP [10]. Driss et al. proposed a new chromosome representation
method and some novel crossover and mutation strategies for FJSP [4]. However,
EA is lack of local search ability. So local search method is used in FJSP and
tabu search (TS) is the most effective method for FJSP. Vilcot and Billaut used
TS for the objective of minimum makespan and maximum lateness [17]. Jia and
Hu proposed a TS based pathrelinking algorithm for multi-objective FJSP [7].

The remainder of this paper is structured as follows: the problem formulation
of FJSP is discussed in Sect. 2, followed by the three compared algorithms that
are briefly introduced in Sect. 3, where the encoding and decoding method are
also given. Experimental studies and the corresponding discussion are reported
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Formulation

The formulation of FJSP is described as follows: Assuming that there are M
machines in the workshop, which need to process N jobs within the overall time
period. Each job consists of a series of operations that allows them to be pro-
cessed in a set of available machines. In this paper, the objective function is to
minimize the maximal completion time, i.e. makespan (Cmax), which is denoted
as follows:
Notations for the formulation:

i number of jobs
j operations of the jobs
k number of machines

400 D. Yang et al.

Bijk starting time of operation j of job i on machine k
Pijk processing time of operation j of job i on machine k
Fijk completion time of operation j of job i on machine k
Fi completion time of job i

Objective function: Minimize Cmax

Constraints:

• Jobs are independent and preemption or cancellation of jobs is not permitted.

Bijk + Pijk = Fijk (1)
∑

k

Bijk ≥
∑

k

Fi(j−1)k (2)

• Every machine can only process one job at a time.

Bik + Pik ≤ B(i+1)k ∀j (3)

• One operation of each job can be processed by only one machine at a time.

Bij + Pij ≤ Bi(j+1) ∀k (4)

• All jobs and machines are available at time zero and the transmission time
between machines is ignored.

Bijk ≥ 0 (5)

Fijk ≥ 0 (6)

• Processing time is deterministic and includes other elements of set-up, trans-
portation and inspection. the makespan is the maximal completion time of
all jobs.

Fi ≥ Fij ∀j (7)

Cmax ≥ Fi ∀i (8)

3 Three Algorithms for FJSP

3.1 Algorithm Introduction

Moth-Flame Optimization Algorithm. Moth-flame optimization algorithm
is a modern intelligent bio-inspired optimization algorithm proposed in 2015 [8].
It mimics the navigation mechanism of the moth in the space during the flight.
Several advantages could be found in the algorithm design. First of all, due to
that several flames is formulated and moths are considered flying around the
individual flame and do not interfere with each other, the parallel optimization
ability of the algorithm is strong. In addition, due to the spiral wrap path of
the moth is assumed in the algorithm, as the number of iterations increases,
it gradually approaches the contemporary flame center with a certain random

Bio-inspired Algorithms for Job Shop Scheduling 401

amount. Such scheme avoids the whole population to be easily falling into the
local optimal solution, and therefore guarantees the global optimal solution of
the algorithm with excellent search performance and robustness.

The position update mechanism of each moth relative to the flame can be
expressed by an equation:

Mi = S(Mi, Fj) (9)

where Mi represents the ith moth, Fj represents the jth flame, and S represents
the spiral function. The spiral function of the moth flight path is defined as
follows:

S(Mi, Fj) = Die
bt cos(2πt) + Fj (10)

where Di represents the linear distance between the ith moth and the jth flame,
b is the defined logarithmic spiral shape constant, and the path coefficient t is a
random number in [−1, 1]. The expression of Di is as follows:

Di = |Fj − Mi| (11)

In order to reduce the number of flames in the iterative process and balance
the global search ability and local development ability of the algorithm in the
search space, an adaptive mechanism for the number of flames is proposed. The
formula is as follows:

flame.number = round(N − G ∗ N − 1
Gm

) (12)

where G is the current number of iterations, N is the initial maximum number
of flames, and Gm is the maximum number of iterations. Due to the reduction
in flames, the moths corresponding to the reduced flames in each generation
update their position based on the flame with the worst fitness value.

Teaching-Learning-Based Optimization Algorithm. The optimization
algorithm based on ‘teaching and learning’ simulates the interaction of student-
teacher in a class, which is a group intelligent optimization algorithm proposed
in 2011 [12]. The improvement of the grades of students in the class requires
the teacher’s ‘teaching’. In addition, the students need to ‘learn’ to promote the
absorption of knowledge. Among them, teachers and students are both individu-
als in the evolutionary algorithms, and the teacher is the best individual in each
iteration. The following formula shows the process of ‘teaching’:

Xnew
i = Xold

i + difference (13)

difference = ri ∗ (Xbest − Fi ∗ Popmean) (14)

where Xold
i and Xnew

i represent the values of the ith student before and
after learning; Xbest is the student who gets the best grades, e.g. the teacher;

Popmean = 1
N

N∑
i=1

(Xi) is the average value of all students; N is the number of

students; the teaching factor Fi = round[1 + rand(0, 1)] and the learning step

402 D. Yang et al.

ri = rand(0, 1). After the ‘teaching’ phase is completed, the students are updated
according to their grades e.g. fitness value. In the process of ‘learning’, for each
student Xi, a learning object Xj(j �= i) in the class is randomly selected, and
Xi adjusts himself by analyzing the difference between himself and the student
Xj , with the formula is as follows:

Xnew
i =

{
Xold

i + ri ∗ (Xi − Xj) f(Xj) < f(Xi)
Xold

i + ri ∗ (Xj − Xi) f(Xi) < f(Xj)
(15)

Also the students are updated according to their fitness values.

Rao-2 Algorithm. Rao-2 algorithm is a simple metaphor-less optimization
algorithm proposed in 2019 for solving the unconstrained and constrained opti-
mization problems [11]. The algorithm is based on the best and worst solutions
obtained during the optimization process and the random interactions between
the candidate solutions. The algorithm requires only common control param-
eters like population size and number of iterations and does not require any
algorithm-specific control parameters. The individuals are updated according to
the following formula:

Xnew
j,k,i = Xj,k,i + r1,j,i ∗ (Xj,best,i − Xj,worst,i)

+ r2,j,i ∗ (|Xj,k,iorXj,h,i| − |Xj,h,iorXj,k,i|)
(16)

where Xj,best,i and Xj,worst,i are the value of the variable j for the best and
worst candidate during the ith iteration. Xnew

j,k,i is the updated value of Xj,k,i.
r1,j,i and r2,j,i are the two random numbers for the jth variable in the range
[0, 1]. Xj,k,i and Xj,h,i are the candidate solution k and any randomly picked
candidate solution h. If the fitness value of the kth solution is better than that of
the hth solution, the term ‘Xj,k,iorXj,h,i’ becomes Xj,k,i. And if the fitness value
of the hth solution is better than that of the kth solution, the term ‘Xj,h,iorXj,k,i’
becomes Xj,k,i.

Then update the individuals according to their fitness values.

3.2 Encoding and Decoding

The method of encoding is shown as follows:

• The individuals are corresponding to the solutions of the FJSP, where each
individual is a matrix of m rows and n columns, m is the number of the jobs,
n is the number of operations for each job.

• Each element in the individual represents the machine used in the correspond-
ing process.

• Initialize the individuals by selecting from the alternative machines randomly.
• During the iterations of the algorithm, each row of the individual is treated

as a variable.

Bio-inspired Algorithms for Job Shop Scheduling 403

Table 1. The parameters settings of optimization algorithms and benchmark

Parameters Value

Size of the population 400

Total number of generations 200

b of MFO 1

t of MFO (−1 − G
Gm

− 1) ∗ rand + 1

Scale factor of DE 0.7

Crossover constant of DE 0.9

Inerita weight of PSO 0.9 − 0.4 ∗ G
Gm

The procedure of decoding is as follows:

Step 1: Obtain the best individual which has the information on which
machine to use for each operation of each job.
Step 2: Determine the allowable starting time for each operation which satis-
fies all the constrains mentioned above. Specifically, the starting time is the
completion time of previous job processed on the same machine, but if the
completion time of the last operation for the same job is longer than the
completion time of previous job processed on the same machine, the starting
time should be the completion time of the last operation.
Step 3: Determine the completion time for each operation, which should be
the sum of starting time and processing time.
Step 4: Use the set of starting and completion time to paint the Gantt chart.
The ith occurrences of the job number in the square represents the ith oper-
ation of the job.

4 Experimental Results and Discussions

The objective of this paper is to minimize the maximal completion time. The
comparisons among the three algorithms and other algorithms are provided to
compare the optimization performance. These algorithms are compared on one
medium and one large size FJSP (MFJS01 and MFJS10). MFSJ01 represents
that this problem has 5 jobs with 3 operations and 6 machines, MFSJ10 rep-
resents that this problem has 12 jobs with 4 operations and 8 machines. The
algorithm terminates when the number of iteration reaches to the maximum
generation value. The parameters for the two experiments are shown in Table 1.

The data of the experiment is adopted from literature [5]. Table 2 shows the
experimental results and comparisons of these algorithms. To eliminate the ran-
domness, 10 independent run is implemented for each problem. ‘Best’ represents
the minimum value of makespan, and ‘Mean’ represents the average value of
makespan. The results of HSA/SA, HSA/TS, HTS/TS, HTS/SA, ISA and ITS
are adopted from literature [5] and [9]. The results with * are the best result for
the given problem among these algorithms.

404 D. Yang et al.

Table 2. The statistical results obtained by algorithms

Algorithm MFSJ01 best MFSJ01 mean MFSJ10 best MFSJ10 mean

MFO 469* 469* 1294* 1340.8*

TLBO 469* 469* 1368 1384.9

Rao-2 469* 469* 1445 1491.1

GWO 469* 469.8 1507 1553.6

DE 469* 469* 1430 1466.8

PSO 469* 469.8 1500 1549.7

HSA/SA [5] 479 503.2 1538 1621.8

HSA/TS [5] 491 504 1615 1693.4

HTS/TS [5] 469* 502.8 1404 1511.8

HTS/SA [5] 469* 499 1384 1428.2

ISA [9] 488 517.8 1546 1733.3

ITS [9] 548 584.2 1737 1737

Fig. 1. Convergence results of the makespan for all the compared algorithms

It could be found in the Table 2 that MFO obtains all the best results for
the two problems. Although other 7 algorithms can obtain the same results for
problem MFSJ01 by 469, the average value may not as good as MFO. MFO also

Bio-inspired Algorithms for Job Shop Scheduling 405

Fig. 2. Gantt chart of problem MFSJ01 of MFO

Fig. 3. Gantt chart of problem MFSJ10 of MFO

406 D. Yang et al.

obtains the best result for problem MFSJ10. The results of TLBO for MFSJ10
is outperformed by MFO, but its result is better than other algorithms. In terms
of the performance of Rao-2, it obtains the same best result for MFSJ01 as
several other algorithms, it does not perform well in solving MFSJ10. This means
that MFO has both good effectiveness and high efficiency for solving FJSP.
Figure 1 shows the convergence results of the makespan of each algorithm in a
featured run. It again shows that MFO converges fast and obtains the best result.
Figures 2 and 3 illustrate the Gantt charts of the optimal solution obtained by
MFO for problem MFSJ01 and MFSJ10 respectively.

5 Conclusion

In this paper, three algorithms including MFO, TLBO and Rao-2 are used for
solving flexible job shop scheduling problem in comparing the optimization per-
formance. FJSP is more complicated than the classical JSP with more constraints
considered whereas more flexibility is endowed. The corresponding encoding and
decoding methods is illustrated and two featured scales FJSP is introduced as
the benchmarks to make the comparison. Through comprehensive results com-
parison of the three selected algorithms and some other popular method, MFO
gets the best results for both problem MFSJ01 and MFSJ10, followed by TLBO.
Rao-2 get the best result for problem MFSJ01 while performs pool in the larger
scale problem MFSJ10. Future research will be addressing the further improve-
ment for the algorithms variants and constraint handling methods, and more
realistic objectives would be comprehensively considered.

Acknowledgment. This research work is supported by the National Key Research
and Development Project under Grant 2018YFB1700500, and Science and Technology
Project of Shenzhen (JSGG20170823140127645).

References

1. Baykasoğlu, A., Özbakır, L.: Analyzing the effect of dispatching rules on the
scheduling performance through grammar based flexible scheduling system. Int.
J. Prod. Econ 124(2), 369–381 (2010)

2. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop schedul-
ing techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2015)

3. Demir, Y., İşleyen, S.K.: Evaluation of mathematical models for flexible job-shop
scheduling problems. Appl. Math. Model. 37(3), 977–988 (2013)

4. Driss, I., Mouss, K.N., Laggoun, A.: A new genetic algorithm for flexible job-shop
scheduling problems. J. Mech. Sci. Technol. 29(3), 1273–1281 (2015). https://doi.
org/10.1007/s12206-015-0242-7

5. Fattahi, P., Mehrabad, M.S., Jolai, F.: Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems. J. Intell. Manuf. 18(3), 331–
342 (2007). https://doi.org/10.1007/s10845-007-0026-8

6. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

https://doi.org/10.1007/s12206-015-0242-7
https://doi.org/10.1007/s12206-015-0242-7
https://doi.org/10.1007/s10845-007-0026-8

Bio-inspired Algorithms for Job Shop Scheduling 407

7. Jia, S., Hu, Z.H.: Path-relinking tabu search for the multi-objective flexible job
shop scheduling problem. Comput. Oper. Res. 47, 11–26 (2014)

8. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

9. Özgüven, C., Özbakır, L., Yavuz, Y.: Mathematical models for job-shop scheduling
problems with routing and process plan flexibility. Appl. Math. Model. 34(6), 1539–
1548 (2010)

10. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)

11. Rao, R.: Rao algorithms: three metaphor-less simple algorithms for solving opti-
mization problems. Int. J. Ind. Eng. Comput. 11(1), 107–130 (2020)

12. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a
novel method for constrained mechanical design optimization problems. Comput.-
Aided Des. 43(3), 303–315 (2011)

13. Roshanaei, V., Azab, A., Elmaraghy, H.: Mathematical modelling and a meta-
heuristic for flexible job shop scheduling. Int. J. Prod. Res. 51(20), 6247–6274
(2013)

14. Seebacher, G., Winkler, H.: Evaluating flexibility in discrete manufacturing based
on performance and efficiency. Int. J. Prod. Econ. 153(4), 340–351 (2014)

15. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–
473 (2008)

16. Torabi, S.A., Karimi, B., Ghomi, S.M.T.F.: The common cycle economic lot
scheduling in flexible job shops: The finite horizon case. Int. J. Prod. Econ. 97(1),
52–65 (2005)

17. Vilcot, G., Billaut, J.C.: A tabu search algorithm for solving a multicriteria flexible
job shop scheduling problem. Int. J. Prod. Res. 49(23), 6963–6980 (2011)

18. Yuan, Y., Xu, H.: Multiobjective flexible job shop scheduling using memetic algo-
rithms. IEEE Trans. Autom. Sci. Eng. 12(1), 336–353 (2013)

19. Ziaee, M.: A heuristic algorithm for solving flexible job shop scheduling problem.
The International Journal of Advanced Manufacturing Technology 71(1–4), 519–
528 (2013). https://doi.org/10.1007/s00170-013-5510-z

https://doi.org/10.1007/s00170-013-5510-z

	Recent Bio-inspired Algorithms for Solving Flexible Job Shop Scheduling Problem: A Comparative Study
	1 Introduction
	2 Problem Formulation
	3 Three Algorithms for FJSP
	3.1 Algorithm Introduction
	3.2 Encoding and Decoding

	4 Experimental Results and Discussions
	5 Conclusion
	References

