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Abstract. Different algorithms and strategies behave disparately for
different types of problems. In practical problems, we cannot grasp the
nature of the problem in advance, so it is difficult for the engineers to
choose a proper method to solve the problem effectively. In this case,
the strategy selection task based on fitness landscape analysis comes
into being. This paper gives a preliminary study on mutation strategy
selection on the basis of fitness landscape analysis for continuous real-
parameter optimization based on differential evolution. Some fundamen-
tal features of the fitness landscape and the components of standard dif-
ferential evolution algorithm are described in detail. A mutation strategy
selection framework based on fitness landscape analysis is designed. Some
different types of classifiers which are applied to the proposed framework
are tested and compared.

Keywords: Mutation strategy selection · Fitness landscape analysis ·
Classifier · Differential evolution algorithm

1 Introduction

In the context of Evolutionary Algorithms (EA), the option of previous search
strategies often relies on the experience of the algorithm designer, the prior
knowledge or parameters of the problem to be optimized. However, based on the
No Free Lunch theory, different algorithms may have advantages over different
problems and researches cannot ask an algorithm to perform well for all types.
It is difficult for the engineers to find a proper optimization algorithm to solve
a certain problem. Therefore, we consider the fitness landscape analysis (FLA)
and search for the suitable strategy based on the nature and characteristics of
optimization problems. According to the definition of fitness landscape [1], it is
a triple L = (S, V, F ), where S is a collection of all solutions, V : S → 2s is a
specified neighborhood function, for each s ∈ S, the set of its neighbors V (s), and
f : S → R is the fitness function. The role of the fitness landscape is to contrast
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with the real landscape, so that we can understand the working principle of the
algorithm and solve the practical problems better [2]. FLA refers to a collection
of data technologies used to extract descriptive or numerical metrics related to
fitness landscape attributes [3].

Several descriptive features have been proposed in the earlier researches of
FLA. For instance, the concept closely related to multimodality is smoothness,
which refers to the magnitude of change in fitness within the neighborhood.
Besides, the rugged landscape has great fluctuations between the neighborhoods,
showing steep ascents and descents. Furthermore, the neutral landscape has large
flat areas or stepped surfaces whose input changes do not produce significant out-
put changes. Of course, there are some other accessorial measures. For example,
information landscape hardness (ILH) by Borenstein and Poli [4,5] with exten-
sions [6] was focused on deception in terms of difference from a landscape with
perfect information for search. The result of the evaluation is a value in the range
of [0,1], where 0 indicates no misleading information and 1 indicates maximum
misleading information. In addition, fitness cloud (FC) by Verel et al. [7] with
extensions [8] was concentrated on evolvability. It uses a scatter plot to repre-
sent the relationship between parents and the child. What is more, the negative
slope coefficient (NSC) has been defined to capture some of the characteristics
of FC with a single number. It is known from the classification hypothesis [8]: If
NSC = 0, the problem is easy to solve; if NSC < 0, its value quantifies this
difficulty: the smaller the value, the harder the problem. Vanneschi et al. [8,9]
discussed the pros and cons of this measure.

These measures can help us find characteristics of the fitness landscape. It
is worth noting that the ultimate goal of FLA in this work is to find the cor-
relation between the properties of the fitness landscape and the performance of
algorithms. Some studies have made constructive progress in this regard.

(1) Discrete fitness landscape analysis and its application on practical industrial
problems

Information on perfect landscapes through the means of discrete time fourier
transform (DTFT) and dynamic time warping (DTW) distances was obtained
by Lu et al. [10]. In order to analyze the fitness landscape deeply, the authors
proposed five methods, including the stability of amplitude variation, keenness,
periodicity, similarity and the degree of change in average fitness. In addition,
the author applied these criteria to task scheduling issues to illustrate fairness
and adaptability.

(2) Improvement and statistical study on the characteristics of fitness landscape

In the evolutionary computation community, the properties of dispersion
metric were studied by Morgan et al. [11]. In order to improve the defects of
dispersion metric, the author proposed three independent modifications to the
basic methodology, namely, the standardization with the dispersive boundary,
the LP norm of fraction p, and the random walk with fixed steps. Finally, the
results demonstrated that these improvements can promote convergence and
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increase the separability of problems. A theorem was proved in this paper by
deriving the formula: Given t = 1 and S = [0, 1]D, the dispersion of solutions
sampled uniform randomly from S will converge to 1/

√
6 as D → ∞. In the

meantime, t is the number of subsamples, S is the value in the interval [0,1] and
D is the dimension of space.

(3) Improving adaptive algorithms by using the characteristics of fitness land-
scape

Li et al. [12] proposed a new self-feedback DE algorithm (SFDE), which
selected the optimal mutation strategy by extracting the features of local fitness
landscape. The probability distributions of single mode and multimodality are
calculated in each local fitness landscape. The advantage of the self-feedback
control mechanism is that when the group falls into the local optimal solution,
the inferior solution is more conducive to the population which can help to jump
out of the local optima.

(4) Analysis and research on dynamic fitness landscape

Static FLA focuses on extracting the attributes of a problem without consid-
ering any information about the optimization algorithm. In contrast, dynamic
FLA combines the behavior of the algorithm with the attributes of optimization
problems to determine the effectiveness of a given algorithm to solve the problem.
Wang et al. [3] used the concept of population evolvability as an important basis
for dynamic FLA. The authors utilized the evolutionary of the population (evp)
to represent the evolution of the entire population. Finally, the effectiveness of
the proposed algorithm selection framework was proved by experiments.

The main difference between this work and the above researches is that we
find that the spatial topography of the optimization problem can directly reflect
characteristics of the problem. Since Differential Evolution (DE) algorithm is a
very popular EA, we take it as an example and design mutation strategy selec-
tion based on DE to solve optimization problems. Therefore, the purpose of this
work is to find the proper strategy of DE algorithm for each problem. Then, we
establish a strategy selection model by learning the relationship between excel-
lent strategies and features of the landscape to improve the intelligent solving
ability of optimization problems.

The rest of this paper is organized as follows. Section 2 is devoted to explain-
ing the measures of FLA and DE algorithm summarized in this paper. Section 3
discusses the mutation strategy selection task based on the black box optimiza-
tion problem in detail. Further experimental analyses are presented in Sect. 4.
Finally, Sect. 5 provides the conclusion.

2 Measures of Fitness Landscape Analysis

2.1 Global Sampling and Local Sampling

Sampling refers to the process of converting continuous variables in the spatial
domain into discrete variables. Global sampling is to taking values over the entire
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spatial region while local sampling is to collecting data in a partial region [13].
We reduced the problem space to 2 dimensions and used function F = x2 to
better demonstrate both sampling methods. The schematic diagram is shown
in Fig. 1. It should be mentioned that the two sampling methods are applied
to the characteristics of different fitness landscapes according to the dissimilar
situation.

Fig. 1. The schematic diagram of global sampling and local sampling

2.2 Fitness Landscape Characteristics

The extraction of landform information helps to analyze characteristics of the
problem to be optimized. As a preliminary study, this paper selects four charac-
teristics to measure continuous problems with unknown optima based on sam-
pling points of fitness landscape.

(1) The number of optimal values (NUM)

We have improved a simple method to measure NUM in FLA which is based
on the achievements of Sheng et al. [14]. Its implementation is described as
follows:

For a random sample x1, . . . , xu.

1) Finding the best point of the sample and set it to x∗. Then, calculating the
distance (di) between each xi(i = 1, . . . , u) and x∗ as Eq. (1):

di =
n∑

j=1

∣∣xi,j − x∗
j

∣∣ . (1)
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The difference between the above distance and the Euclidean distance is that
the former performs fast calculation by removing the square root.

2) Sorting the individuals based on the distance value from low to high, and
denoting the order by k1, k2, . . . , ku.

3) Setting c = 0 initially. Then, the value of c will be increased by 1, if
x (km) (m = 1, . . . , u) is better than x (km−1) (m = 1, . . . , u) (if exists) and
x (km+1) (m = 1, . . . , u) (if exists). Finally, the c is taken as the number of
optimal value in the fitness landscape observation. It should be emphasized
that x(km) is only the optimal value estimated from the sample to reflect
attributes of the fitness landscape, which is not the true optimum.

Intuitively, the ruggedness can be estimated by the distribution of the optimal
values in the current sample.

(2) Basin size ratio (BSR)

BSR is caculated by Eq. (2) and it pictures the existence of a dominant basin
[15].

BSR =
maxx |B(x)|
minx |B(x)| . (2)

where maxx |B(x)| is the maximum fitness value in the local sampling points,
minx |B(x)| is the minimum value. Due to the wide range in fitness values of
various problems, normalized BSR is employed in our work.

(3) Keenness (KEE)

Lu et al. [16] proposed a method to describe keenness of the topography. It
is computed by Eq. (3):

KEE = asum × (−1) + bsum × (−0.6) + csum (3)
× (−0.2) + dsum × (−0.2) + esum × (+1).

where the coefficients for asum, bsum, csum, dsum and esum are allocated according
to the contribution to the keenness degree. The larger the value of KEE, the
sharper the solution space.

(4) Fitness distance correlation (FDC)

FDC was proposed by Jones et al. [17] to measure the relationship between
the parameter space and the fitness values. It is designed to evaluate whether
the landscape is unimodal or multimodal and whether it has a strong global
structure. It is shown by Eq. (4):

FDC =
1

n − 1

n∑

i=1

(
yi − y

ε̂y

)(
di − d

ε̂d

)
. (4)
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where y and d are the mean fitness and the mean distance between x0 and
xi, ε̂y and ε̂d are the sample standard deviation of the fitness and the distance,
respectively. It is worth mentioning that FDC is invariant to shifts and rotations
on the parameter space and the fitness values, because they are global isometries
of the Euclidean space.

2.3 Differential Evolution Algorithm

In EA, there always are many different offspring generating operators, such as
different crossover operators, different mutation operators and so on. Usually, dif-
ferent operators have the different performance on different types of optimization
problems. Since DE has a variety of mutation strategies [18,19], we take it as an
example in this paper. Let D is the dimension of problems, xU

j and xL
j are the

upper and lower bounds of the constraint range of individual xj , respectively.
Then the minimization problem can be described as: fmin (x1, x2, . . . , xD), where
xL
j ≤ xj ≤ xU

j , j = 1, 2, . . . ,D. DE is committed to continuously improving the
ability of populations to adapt to the external environment through personal
communication, competition and iteration to achieve the goal of getting the
best solution [20]. The flow chart of the standard DE is shown in Fig. 2.

Fig. 2. The flow chart of the standard DE
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(1) Initialization

We use Eq. (5) to generate initial individuals which is satisfying constraints
in the D-dimensional space as the 0th generation population.

xi,j,0 = xL
i,j + rand · (

xU
i,j − xL

i,j

)
. (5)

where i = 1, . . . , NP ; j = 1, . . . , D; rand is a uniformly generated random num-
ber in [0,1]; NP is the size of the population.

(2) Mutation

The six most common used mutation strategies are listed from Eqs. (6) to (11).

DE/rand/1/bin:

vi,G = xr1,G + F · (xr2,G − xr3,G) . (6)

DE/best/1/bin:

vi,G = xbest,G + F · (xr1,G − xr2,G) . (7)

DE/rand/2/bin:

vi,G = xr1,G + F · [(xr2,G − xr3,G) + (xr4,G − xr5,G)] . (8)

DE/best/2/bin:

vi,G = xbest,G + F · [(xr1,G − xr2,G) + (xr3,G − xr4,G)] . (9)

DE/current-to-rand/1/bin:

vi,G = xi,G + F · [(xr1,G − xi,G) + (xr2,G − xr3,G)] . (10)

DE/current-to-best/1/bin:

vi,G = xi,G + F · [(xbest,G − xi,G) + (xr1,G − xr2,G)] . (11)

where r1, r2, r3, r4, r5 represent the random numbers between 1 and NP , which
are different from each other and not equal to the number of target individual.
xbest,G symbolizes the optimal individual in the Gth generation population. vi,G
stands for the individual after the mutation operation. F is the scaling factor
that controls the amplification of the bias variable. The value of F is generally
set to 0.5.
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(3) Crossover

There are two common crossover means in the DE algorithm. The bino-
mial crossover is usually preferred than exponential crossover [21,22], which is
expressed as Eq. (12):

ui,G =
{

vi,G if rand[0, 1] ≤ CR or j = jrand
xi,G otherwise . (12)

where jrand is a random number in [1, 2, ...,D] to ensure that at least one dimen-
sion component of the intersecting individual will be different from the target
individual. CR is called crossover probability which is generally recommended
to 0.9.

(4) Selection

The selection is to determine if there are individuals in the parents who can
become members of the next generation. The rules for selecting operation are as
Eq. (13), where f(·) is the value of the objective function.

xi,G+1 =
{

ui,G if f (ui,G) ≤ f (xi,G)
xi,G otherwise . (13)

(5) Repeat steps (2)–(4), until the stopping criterion is satisfied.

3 Mutation Strategy Selection for Black-Box
Optimization Problems Based on FLA

3.1 Overall Framework

Figure 3 depicts an overall framework of the mutation strategy selection task
based on FLA, where the features of candidate function A are used as input
portion, and the best strategy B is recommended as its output. This framework
is composed of three related components.

Sampling: For the sake of generality, uniform sampling is used in this work
to generate samples that can represent various states (ie, P1, . . . , Pn, which are
presented in Fig. 3). For some features, global sampling (ie, BSR, KEE, etc.) is
not applicable. Therefore, this paper performs local sampling and normalization
to make these features more effective and persuasive.

Calculating the Features: It should be reminded that this paper is a prelim-
inary study, so the benchmark functions are used for convenience. Since their
structures are known, it is easy to get various characteristics of the problem
to improve the performance of algorithms. What is more, the study of single
objective optimization algorithms is the basis of more complex optimization
algorithms [23–27].
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Fig. 3. Overall framework of the mutation strategy selection

In the CEC2005, the focus is on low and medium dimensional problems
[23]. The benchmark set consists of 25 test functions which is divided in four
groups: unimodal, basic multimodal, expanded multimodal, and hybrid composi-
tion. In the CEC2013 test set [24], the previously proposed composition functions
are improved and additional test functions are included. In the CEC2014 [25],
CEC2015 [26] and CEC2017 [27], Liang and Suganthan et al. developped bench-
mark problems with some novel features such as novel basic problems, compos-
ing test problems by extracting features dimension-wise from several problems,
graded level of linkages, rotated trap problems, and so on.

It is worth noting that CEC2017, CEC2015 and CEC2014 with a total of
75 functions are treated as the black box optimization problems in this paper.
The individual features computed for each function are used as the input of our
model.

Training the Excellent Strategy: The benchmark functions are tentatived
under the standard operating conditions in combination with six strategies of the
standard DE algorithm, respectively. Furthermore, K-Nearest Neighbor (KNN)
and Random Forest (RF) are used as learners for the training model of all func-
tions with 4 features, respectively. The core idea of KNN [28] is that if most of
the k nearest neighbors in the characteristical space belong to a certain category,
the sample also belongs to this category and has the characteristics of the neigh-
boring samples on this type. RF is a classifier with multiple decision trees whose
output categories are determined by the mode of the multi-tree output class [29].
For each test function, we recommend the best mutation strategy based on the
proposed strategy selection framework.
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4 Experimental Analysis

4.1 Feature Values and Benchmark Functions

The population size of all benchmark functions is set to 100 while the sampling
points of the feature is tune into 3000. Moreover, the search range is [−100, 100]D

and the FEs budget is preset to 104 × D, where D is the problem dimension.
The mean and variance for each feature of 75 functions were obtained by

running 20 times. The values are shown in Fig. 4. From the figure, we can see that
each feature presents diversity among different functions, especially in complex
functions. In the meanwhile, the value of variance for BSR and FDC are far less
than others in the range of 0 to 0.4, so they are more stable than NUM and
KEE.
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Fig. 4. Feature values for each function

In addition, in order to compare the significance of difference between various
strategies, the assessment is performed using the Friedman non-parametric test
method [30]. In that case, the parameters of standard DE are: F = 0.5, CR = 0.9.
The standard DE with six strategies are run independently 51 times to find
the standard deviation, respectively. When the average ranks obtained by each
strategy in the Friedman test are the same small, we hold them to be equally
good strategies. The judgments are concluded in Table 1, where the number in
the even columns refers to the used mutation strategy corresponding to Sect. 2
and the number in parentheses refers to the location of the function in this
benchmark problem.

As we can see from the table, for a given optimization problem, each function
is not limited to an excellent strategy, such as f1, f2 in CEC2017. We put the
same excellent strategies for the function as the different data in this situation
(ie. F1–2, F3–4, etc.). We can also find that DE/rand/1/bin which is recorded
as the first strategy has been proven to perform well on most functions.
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4.2 Results and Discussion

The results of Table 1 which are obtained by performance evaluation can be con-
sidered as the gold standard for mutation strategy selection. We can evaluate the
outcomes gained from the proposed framework at the same time. The evaluation
criteria are as follows: For the test functions, if the excellent strategy selected
based on the performance evaluation contains the strategy recommended by the

Table 1. The excellent strategy for benchmark functions

CEC2017 Excellent CEC2014 Excellent CEC2015 Excellent

F1–2 (f1) 1,4 F35–36 (f1) 1,4 F69–70(f1) 1,4

F3–4 (f2) 1,2 F37 (f2) 1 F71 (f2) 1

F5 (f3) 1 F38–39 (f3) 1,2 F72 (f3) 3

F6 (f4) 1 F40 (f4) 2 F73 (f4) 6

F7 (f5) 6 F41 (f5) 3 F74 (f5) 4

F8–9 (f6) 1,4 F42–43 (f6) 1,5 F75 (f6) 1

F10 (f7) 6 F44 (f7) 5 F76 (f7) 6

F11 (f8) 6 F45 (f8) 6 F77 (f8) 1

F12–13 (f9) 1,2 F46 (f9) 6 F78 (f9) 6

F14 (f10) 6 F47 (f10) 4 F79 (f10) 4

F15 (f11) 1 F48 (f11) 6 F80 (f11) 6

F16 (f12) 1 F49 (f12) 6 F81 (f12) 6

F17 (f13) 4 F50 (f13) 6 F82 (f13) 2

F18 (f14) 1 F51 (f14) 6 F83 (f14) 1

F19 (f15) 1 F52 (f15) 5 F84 (f15) 1

F20 (f16) 1 F53 (f16) 4

F21 (f17) 1 F54 (f17) 1

F22 (f18) 1 F55 (f18) 1

F23 (f19) 1 F56 (f19) 6

F24 (f20) 1 F57 (f20) 1

F25 (f21) 6 F58 (f21) 1

F26 (f22) 5 F59 (f22) 1

F27 (f23) 5 F60–61 (f23) 1,2

F28 (f24) 4 F62 (f24) 4

F29 (f25) 1 F63 (f25) 5

F30 (f26) 6 F64 (f26) 6

F31 (f27) 2 F65 (f27) 6

F32 (f28) 1 F66 (f28) 2

F33 (f29) 1 F67 (f29) 1

F34 (f30) 1 F68 (f30) 1
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proposed framework, the recommended strategy can be deemed as a correct
answer; otherwise, it is a mistake.

On the basis of this evaluation method, the output accuracy is a statistical
indicator in the proposed framework. It refers to the number of correct classi-
fications divided by the total number of test functions. It is employed to KNN
and RF to manifest which learner is more suitable for the suggested framework.

The Selection of the Number of Classifier Nodes: The proposed strategy
selection framework is based on the appropriate number of classifier nodes and
data set folds. Under the circumstance of CEC2015 as a testing set, we put up
the nodes number from 1 to 10 for each classifier and then run the suggested
framework in this research. The results are demonstrated in Fig. 5.

We show the impact of nodes number on the output accuracy of the classifier
as a line graph. Experimental results prove that the value of RF is higher than
KNN for each node from the figure. Moreover, K = 4 behaves better in the case
of less consumption.

The Selection of the Number of Data Set Folds: After that, we set up M
from 1 to 10 to verify the effect of folds number on the output accuracy on the
basis of K = 4. The specific details are shown in Fig. 6.

It can be seen that, for RF, the classification accuracy is as high as 0.525 if
M = 3. In the same time, the best value is up to 0.571 in KNN, which manifests
that the KNN algorithm successfully satisfies the intrinsic mapping relationship
of the proposed framework. However, it can also be seen that the values of KNN
are more volatile than RF. Because the output accuracy of KNN is as low as 0
when M = 1, which is closely related to the working principle of KNN. At the
same time, although the lowest value of RF at M = 9 is close to 0.1, it is still
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Fig. 5. The impact of nodes number on the output accuracy of each classifier
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Table 2. The effect of the classifier on the output accuracy

Classifier Output accuracy

KNN 0.571

RF 0.525

stable overall. The final results are shown in Table 2. And the best value is bold.
It must be admitted that the results are not as good as we expected, but this
framework has proven to be effective.

5 Conclusion

As the complexity of optimization problems increases, there is an urgent need to
develop learning-based methods to adaptively guide population evolution based
on the multifaceted requirements and nature of practical problems. This paper
proposes a mutation strategy selection based on fitness landscape analysis to
meet the demand. The sample model are designed, where four features of the
fitness landscape are used as inputs and the recommended strategy after training
are applied as the output. Then, we use some classifiers to study the mapping
relationship. Finally, experimental analyses show that the proposed framework
can efficiently match excellent strategies to improve the intelligent solving ability
of optimization problems.

In the future, we will conduct extended research based on the proposed frame-
work. From the prospect of frame designers, further work can be focused on
expanding the sampling size and adding verified sets to demonstrate effective-
ness of the proposed work. From the perspective of these measures, the next step
is to increase features of the fitness landscape to improve the classified accuracy.
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