
ReJection: A AST-Based Reentrancy
Vulnerability Detection Method

Rui Ma1, Zefeng Jian1, Guangyuan Chen1, Ke Ma2(B), and Yujia Chen1

1 School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

2 Internet Center, Institute of Technology and Standards Research, China Academy
of Information and Communication Technology, Beijing 100191, China

make@caict.ac.cn

Abstract. Blockchain is deeply integrated into the vertical industry,
and gradually forms an application ecosphere of blockchain in various
industries. However, the security incidents of blockchain occur frequently,
and especially smart contracts have become the badly-disastered area.
So avoiding security incidents caused by smart contracts has become
an essential topic for blockchain developing. Up to now, there is not
generic method for the security auditing of smart contracts and most
researchers have to use existing vulnerability detection technology. To
reduce the high false rate of smart contract vulnerability detection, we
use ReJection, a detection method based on abstract syntax tree (AST),
to focus on the reentrancy vulnerability with obvious harm and features
in smart contracts. ReJection consists of four steps. Firstly, ReJection
obtains the AST corresponding to the contract by the smart contract
compiler solc. Then, AST is preprocessed to eliminate redundant infor-
mation. Thirdly, ReJection traverses the nodes of the AST and records
the notations related to reentrancy vulnerabilities during the traversal,
such as Danger-Transfer function, Checks-Effects-Interactions pattern
and mutex mechanism. Finally, ReJection uses record information and
predefined rules to determine whether the reentrancy vulnerability is
occurred. ReJection is implemented based on Slither, which is an open-
source smart contract vulnerability detection tool. Furthermore, we also
use the open-source smart contract code as the test program to compare
experimental results to verify the effects with the ReJection and Slither.
The result highlights that the ReJection has higher detection accuracy
for reentrancy vulnerability.

Keywords: Vulnerability detection · Smart contract · Abstract syntax
tree · Reentrancy vulnerability

1 Introduction

Blockchain as an independent technology originates from Bitcoin designed by
Satoshi Nakamoto [1]. In his paper 〈Bitcoin: a peer-to-peer electronic cash
c© Springer Nature Singapore Pte Ltd. 2020
W. Han et al. (Eds.): CTCIS 2019, CCIS 1149, pp. 58–71, 2020.
https://doi.org/10.1007/978-981-15-3418-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3418-8_5&domain=pdf
https://doi.org/10.1007/978-981-15-3418-8_5


ReJection: A AST-Based Reentrancy Vulnerability Detection Method 59

system〉 [2], Nakamoto describes an electronic digital currency system that does
not rely on trusted third parties. The underlying technology that supports the
system is called blockchain.

Blockchain 1.0 is a virtual digital currency represented by Bitcoin and Lite-
coin. Blockchain 2.0 refers to smart contracts represented by Ethereum [3]. Smart
contracts have brought a qualitative leap to the blockchain, but security issues
caused by smart contracts have also drawn increasing attention.

Smart contract represents a trusted blockchain platform where developers
can’t stop any smart contract or modify the content of smart contract after
deploying a smart contract. While bringing a credible advantage to smart con-
tracts, it also brings a considerable degree greatly of security risks. Essentially,
each smart contract is a program that has the possibility for error. If there are
vulnerabilities in the smart contract, the user’s digital currency funds may be
taken away by the attacker. And that even leads to serious consequences. Due
to the inability to stop and modify the smart contracts, however, it will be dif-
ficult to repair it by upgrading when there is a potential vulnerability in the
smart contracts. Therefore, the security audit of smart contracts is particularly
necessary.

To address the issue, we propose the ReJection. It is a vulnerability detec-
tion method based on abstract syntax tree for smart contract reentrancy vul-
nerability. That vulnerability has obvious features and larger hazard. ReJection
analyzes smart contracts source code by static analysis techniques. Generally,
ReJection is able to detect the reentrancy vulnerability generated by the dan-
gerous transfer function by analyzing the compile results of the smart contracts
source code. At the same time, ReJection has better detection and analysis
effects for the Checks-Effects-Interactions pattern and mutex mechanism, which
is the key to reentrancy vulnerability prevention.

We make the following contributions:

– We study the causes of the smart contract reentrancy vulnerability, and ana-
lyze the existing security audit method of smart contract.

– A detection method, ReJection, is proposed for the smart contract reen-
trancy vulnerability. By compiling and parsing the source code of smart con-
tracts, ReJection could determine whether there is reentrancy vulnerability.
At the same time, ReJection also provides better detecting for Checks-Effects-
Interactions pattern and mutex mechanism, which are the key of reentrancy
vulnerability.

– We implemented ReJection based on the existing open source vulnerability
detection tool Slither, and experimented with ReJection through open source
smart contract source code as experimental dataset. By comparing ReJec-
tion with Slither, the results show that ReJection improves the accuracy of
reentrancy vulnerability detection.



60 R. Ma et al.

2 Related Works

2.1 Blockchain and Smart Contracts

In a narrow sense, the blockchain is a chained data structure that combines data
blocks in a chronological order in a sequential manner, and it cryptographically
guarantees non-tamperable and unforgeable distributed ledgers. At the same
time, the blockchain is also an innovation application of traditional computer
technologies such as distributed data storage, consensus algorithms, P2P trans-
mission, and various encryption algorithms in the new Internet era. At present,
blockchain technology has been budded off from Bitcoin and has developed
in many fields including financial trade, logistics, smart contracts, and sharing
economy.

Blockchain 1.0 is a virtual digital currency represented by Bitcoin and Lite-
coin including its functions of payment, circulation and other similar currencies.
It represents a digital currency-based application for decentralized digital cur-
rency transactions.

Blockchain 2.0 refers to the smart contracts represented by Ethereum [4]. The
combination of smart contracts and digital currency provides extensive applica-
tion scenario for the financial field and forms “Programmable Finance”. Smart
contract is the core of Blockchain 2.0 and has Turing Completeness. It is an
event-driven computer program that runs on a replicable shared blockchain dis-
tributed ledgers. It enables autonomous invoking data processing, accepting,
storing and forwarding the value that corresponding to digital currency, as well
as controlling and managing various types of intelligent digital assets on the
blockchain. Smart contract is identified by a 160-bit identifier address whose
code is compiled and deployed on the blockchain. All users can send a transac-
tion to the address of the contract account through an external private account
to sign a smart contract in the cryptocurrency. Therefore, smart contract makes
the blockchain programmable and customizable, which gives the blockchain intel-
ligence and indicates a development direction of the blockchain technology in the
future.

2.2 Smart Contract Security Audit

Research on the smart contract security audits has just beginning.
Atzei analyzed the security vulnerabilities of Ethereum smart contracts [5],

demonstrated a series of attacks that exploited these vulnerabilities, and pro-
vided a summary of the common programming pitfalls that could lead to vul-
nerabilities in Ethereum smart contracts.

Delmolino summarized the common mistakes made in coding smart con-
tracts and the common pitfalls that are exposed when designing secure and
reliable smart contracts, and proposed some suggestions for coding safety smart
contracts [6].

Based on techniques such as symbolic execution, SMT solving and taint
analysis, Bernhard Mueller proposed Mythril [7], a security analysis tool for



ReJection: A AST-Based Reentrancy Vulnerability Detection Method 61

Ethereum smart contracts, to detect a variety of security vulnerabilities. He also
analyzed the application of symbolic execution and constraint solving in smart
contract security analysis.

Loi Luu analyzed several security vulnerabilities in smart contracts and found
that about 44% of smart contracts have security risks. At the same time, a
symbolic execution-based vulnerability detection tool Oyente [8] was proposed. It
uses the decompiled code of the smart contract to construct a control flow graph
based on basic blocks and further obtain the constraint path of the vulnerability
by Z3 solver.

Bhargavan proposed a formal verification method for verifying smart con-
tracts written by Solidity [9], and outlined a framework. The framework analyzes
and verifies the safety of operational and accuracy of functional of Ethereum
smart contracts by converting smart contracts to F*, which is a functional pro-
gramming language for program verification.

To address the security problem of smart contracts, Petar Tsankov intro-
duced Securify [10], a security analysis tool for Ethereum smart contracts. Secu-
rify extracts precise semantic information from the code by analyzing the func-
tion dependency graph of the contract, and then checks compliance and violation
modes to capture sufficient conditions for verifying the vulnerability.

Grigory Repka developed the online smart contract static analysis tool
SmartCheck to detect various security vulnerabilities in smart contracts [11],
but he did not specify which detection techniques were used.

Hukai proposed a formal verification method for smart contracts [12], which
can be used in the process of modeling, model checking and model validation.

Xin Wei analyzed the threat of smart contracts and the principle of the
exiting vulnerabilities, summarized some common problems faced by smart con-
tract vulnerability detection, and proposed an automatic vulnerability detection
theory of smart contract [13].

Chengdu LianAn Technology [14] proposes an automatic formal verification
platform VaaS for smart contract security issues.

2.3 Reentrancy Vulnerability

The occurrence of a smart contract reentrancy vulnerability means that the
contract executes a callback operation. For smart contracts, function invocations
can be made between the contract account and the external account to achieve
more functionality of the smart contracts. Specifically, invoking to the fallback
function is a kind of callback operation.

For each smart contract, there is at most one function without a function
name. It does not need to be declared, and has no parameters and no return
value. In addition, it needs to be visible to the outside. Such functions are called
fallback functions. Once someone makes a transfer transaction to a contract
account, the fallback function corresponding to the contract account is invoked.

Literally, reentrancy vulnerabilities are caused by repeated entry. In the
Ethereum smart contracts, the attacker constructs malicious code in the fall-
back function of the contract address. Once the transfer function is executed



62 R. Ma et al.

to the vulnerable contract account, the contract account is forced to execute
the fallback function of the attack contract due to its own vulnerability defect.
That will trigger execution of the malicious code built by the attacker within
the fallback function. The malicious code includes recalling the contract transfer
function, which can result in the operation of reentering the contract to execute
some operations like transfer Ether. Ultimately, it will lead to the theft of assets.

3 ReJection

3.1 Overview

After carefully analyzing the existing smart contract vulnerability detection
methods and the reentrancy vulnerability characteristics, we propose the ReJec-
tion. ReJection is a detection method for smart contract reentrancy vulnera-
bility based on abstract syntax tree (AST), which could improve the detection
efficiency of the smart contract reentrancy vulnerability and the detection accu-
racy of the reentrancy vulnerability prevention condition.

ReJection detects vulnerability by traversing and parsing the source code
of smart contract. It uses the open source smart contract compiler solc as the
tool of syntax analysis to obtain the AST of the source code. By excluding the
redundant information of the AST, ReJection could extract the key information
about the vulnerability detection of the source code. That key information will
be saved in the reserved nodes of AST. Then, the step-by-step nested traversal
analysis is performed on the reserved nodes to detect the occurrence conditions
of the reentrancy vulnerability. Specifically, that condition refers to whether the
original contract account balance changes after executing the Danger-Transfer
function. At the same time, the prevention conditions for reentrancy vulnera-
bility are detected and analyzed. Generally, ReJection detects whether there is
a change in the contract account balance and whether there exists the mutex
mechanism after the execution of the Danger-Transfer function, respectively.
Finally, the results of the analysis of the occurrence conditions and the preven-
tion conditions are analyzed comprehensively to determine whether the contract
is in danger of reentrancy vulnerability.

Figure 1 shows the detection scheme of ReJection, which can be divided into
four parts.

(1) Obtaining AST. ReJection compiles the source code of smart contract by
the solc compiler to generate an intuitive AST in json format and further
outputs that to a local text file.

(2) Preprocessing the Redundant Node of AST. ReJection analyzes and pre-
processes the AST to exclude redundant nodes and obtain the reserved
nodes that reentrancy vulnerability may exist.

(3) Traversing the Reserved Nodes of AST. ReJection performs a step-by-step
traversal analysis of the reserved nodes based on the attributes of the various
nodes in the reserved nodes. For each contract, it detects whether there is



ReJection: A AST-Based Reentrancy Vulnerability Detection Method 63

Fig. 1. Detection scheme of ReJection

a change in the contract account balance after the execution of the Danger-
Transfer function, and whether there is a mutex mechanism in the con-
tract. At the same time of traversing, ReJection also determines and assigns
the parameters related to the reentrancy vulnerability so as to obtain the
detection result of the Danger-Transfer function and the record list of the
prevention conditions.

(4) Determining the Reentrancy Vulnerability. According to the analysis result
of Step (3) and the reentrancy vulnerability determination rule summarized
by the author, ReJection detects whether there is a reentrancy vulnerability
generation condition. Finally, it could obtain the detection result of the
reentrancy vulnerability.

3.2 Obtaining AST

AST is an abstract representation of the grammar structure of the source code.
It intuitively expresses the structure in the programming language by the form
of the tree. A node of AST represents one or more structures in the source code,
while the AST contains a complete representation of the entire compilation unit.
The AST in the Ethereum smart contract is obtained by the solc which is an open
source compiler of the smart contract. In order to obtain intuitive representation
of the AST, ReJection uses the json format to record the details of the AST.

Figure 2 shows a part of information of the AST of identifier node, where
the name attribute represents the name of variable and the typeDescriptions
attribute represents the details of return type. AST is represented with the form
of the nested structure and each type of node has some special properties.

3.3 Preprocessing the Redundant Node of AST

In the AST obtained in the previous step, there is a considerable part of infor-
mation that is not related to the reentrancy vulnerability detection, such as



64 R. Ma et al.

Fig. 2. An Example of the AST of the identifier node

version information, compilation information. In order to improve the efficiency
of the detection, it is necessary to preprocess the AST to exclude redundant
information. The preprocessing divides all nodes into the reserved nodes and
the redundant nodes. The information contained in the redundant nodes is inde-
pendent of ReJection, while the information contained in the reserved nodes is
closely related to the ReJection.

The preprocessing is described as follows:

(1) The root node, which is taken as a reserved node, represents all the infor-
mation of the smart contract. ReJection further traverses the child nodes of
the root node for analysis.

(2) ReJection traverses the child nodes of the root node to detect the node
type nodetype of each child node. The values of the nodetype include Prag-
maDirective, ContractDefinition, and ImportDirective. The PragmaDirective
represents the compiled version of the contract, the ContractDefinition indi-
cates that the node is a library or contract, and the ImportDirective rep-
resents the other source files imported by the contract. The node of AST
whose nodetype is ContractDefinition is identified as the reserved node and
the other nodes are identified as the redundant nodes.

(3) ReJection further traverses the child nodes of the reserved node to detect its
attribute contractKind. The node whose value of contractKind is contract is
identified as the reserved node, and other child nodes are identified as the
redundant nodes.

After the traversal, the remaining nodes in the AST are reserved nodes. The
information of the nodes corresponds to the contract information.

3.4 Traversing the Reserved Nodes of AST

Traversing the reserved node is the most critical step in ReJection. The reserved
nodes, which are obtained by the preprocessing of the redundant node, include all
state variables and functions of the contract. The different types of the reserved



ReJection: A AST-Based Reentrancy Vulnerability Detection Method 65

nodes can be distinguished by the node type and return type. Aiming at different
type of the reserved nodes, ReJection specifically analyzes it and assigns the value
for the key parameters related to detecting reentrancy vulnerabilities. After the
traversal of the reserved nodes has been fully completed, ReJection uses the
above parameters to determine whether there is the reentrancy vulnerability in
the contract according to the reentrancy vulnerability detection rule.

The key parameters associated with detecting reentrancy vulnerability are
described in Table 1.

The method of traversing the reserved nodes is shown in Fig. 3. To conve-
niently explain the process of parsing AST, we give the following definition and
abbreviations:

tCN : Current Node
tULN : Upper Level Node of Current Node
tNLN : Next Level Node of Current Node

Table 1. The definition of parameters

Variable name Type Initial value The meaning of initial value

reentrancyCode string NULL Save the Danger-Transfer function

isReentrancy int 0 No Danger-Transfer function

variableMutex array NULL Record a set of Mutex Mechanism variable

isMutex int 0 No Mutex Mechanism

isChange int 0 Exist the Checks-Effects-Interactions pattern

ifList array NULL Used for Determination of Mutex Mechanism

Step 1. Traverse the reserved nodes and detect the node type based on the
attribute nodeType of the tCN. If the nodeType is VariableDeclaration, the tCN
represents a state variable and the return type typeString of tCN should be
detected; while the information of the node whose typeString is bool or integer
is recorded as state variable for further detection. If the nodeType is Function-
Definition, the tCN represents a function and the tNLN, which is the next level
node of the tCN, should be traversed by Step 2.

Step 2. Detect the nodeType of the node. If the nodetype is ExpressionStatement,
the tCN represents an expression statement and the expression node of tNLN
should be analyzed by Step 3. If the nodetype is IfStatement, WhileStatement,
DoWhileStatement, or ForStatement, the tCN represents a statement of loop or
judgment. Then, the condition node of tNLN should be processed as expression
node and body node of tNLN should be continued analyzing by Step 2. If the
nodetype is Break, Continue, or Throw, the tCN represents jumping out of the
loop or judgement statement. So, it is necessary to return the node corresponding
to the previous loop or judgement statement and continue performing Step 2.

Step 3. Detect expression node. This step is mainly for analyzing different
nodeType.



66 R. Ma et al.

FunctionCall: If the nodeType of the tCN is FunctionCall, the name attribute
of the expression node of the tNLN is detected. If there is no such name attribute
or the value of the name attribute is NULL, that expression node should be con-
tinued processing according to Step 3. If the value of the name attribute is require
or assert, the arguments node of the tNLN should be continued processing by
Step 3. It is noted that if that arguments node has return value, that value
should be recorded into the ifList to determine the mutex.

MemberAccess: If the nodeType of the tCN is MemberAccess, the return type
typeString of the tCN is detected. If the typeString contains the “payable” field,
the value of memberName attribute of the tCN should be recorded, and that
value should be appended to the original value of parameter reentrancyCode
to concatenate with the reentrancyCode. After that, the expression node of the
tNLN is continued detecting by Step 3.

Identifier: If the nodeType of the tCN is Identifier, and if the value of the
name attribute of the tCN belongs to the state variable recorded in Step 1, and
the value of isReentrancy is 0 at this time, the value of name attribute of the
tCN is returned. Otherwise, if the value of the name attribute of the tCN does
not belong to the recorded state variable, or the value of typeString attribute
of the tCN is address, the value of name attribute of the tCN is appended to
the value of parameter reentrancyCode. While if the reentrancyCode is begins
with “valuecall”, the value of parameter isReentrancy is assigned 1 and the
value of reentrancyCode is assigned NULL. Otherwise, the isReentrancy and the
reentrancyCode are unchanged.

Assignment: If the nodeType of the tCN is Assignment, it means that the node
contains the assignment operator. If the value of isReentrancy is 1, the leftHand-
Side node of the tNLN should be continued detecting by Step 3; it is noted that
if the leftHandSide node returns true, the value of parameter isChange should
be assigned 0 at this time. If the value of isReentrancy is 0, the leftHandSide
node of the tNLN should be continued detecting by Step 3. Meanwhile, if the
return value of the leftHandSide node belongs to the state variable recorded in
Step 1, the state variable should be assigned with the value of value attribute of
the rightHandSide node of the tNLN.

Literal: If the nodeType of the tCN is Literal, it returns the value corresponding
to the value attribute of the tCN.

BinaryOperation: If the nodeType of the tCN is BinaryOperation, the node
represents a binary operation. If the value of isReentrancy is 0, both the leftEx-
pression node and the rightExpression node of the tNLN should be continued
detecting by Step 3. Meanwhile, if the return values of those two nodes belong to
the state variable recorded in Step 1, the return values and the operator of the
tCN are recorded in the ifList to further determine the mutex. And the result
of current binary operation should also be returned.

Step 4. For each state variable recorded in Step 1, all the conditions recorded
by the parameter ifList in Step 3 are used to judge one by one. If there is a



ReJection: A AST-Based Reentrancy Vulnerability Detection Method 67

state variable makes one of the conditions of ifList is unsatisfiable, the value of
parameter isMutex is assigned 1.

3.5 Determining the Reentrancy Vulnerability

By analyzing, the execution of the Danger-Transfer function 〈address〉call.
value()() may lead to the reentrancy vulnerability. Therefore, we summarize
prevention ways including the following three types:

Fig. 3. Traversing the reserved nodes

(1) Use the secure transfer function, such as transfer(), instead of existing
Danger-Transfer function;

(2) Use the Checks-Effects-Interactions pattern. Specifically, it completes all
operations of the contract account before the transfer function is executed;

(3) Introduce mutex mechanism. Specifically, it avoids the occurrence of reen-
trancy vulnerability by using a flag of global variable.

According to the points (2) and (3) of that prevention ways, and combining
with the analysis results obtained in Step 3 of Sect. 3.4, ReJection regulates 4
rules to determine reentrancy vulnerability.



68 R. Ma et al.

Rule 1. If isReentrancy = 0, which indicates that the Danger-Transfer function
does not appear, there is no reentrancy vulnerability.

Rule 2. If isReentrancy = 1 and isMutex = 1, which indicates that there appears
the Danger-Transfer function, but mutex mechanism exists, there is no reen-
trancy vulnerability.

Rule 3. If isReentrancy = 1, isMutex = 0, and isChange = 0, there is no
reentrancy vulnerability. This situation indicates that there appears the Danger-
Transfer function and has not mutex mechanism, but it has the Checks-Effects-
Interactions pattern which means it is no change in the contract account balance
after the transfer function.

Rule 4. If and only if isReentrancy = 1, isMutex = 0, and isChange = 1, there
must be a reentrancy vulnerability. This situation indicates that there appears
the Danger-Transfer function and has not mutex mechanism, but it also has not
the Checks-Effects-Interactions pattern.

4 Evaluation

We implement ReJection based on the open source smart contract vulnerability
detection tool Slither. In order to verify detection accuracy of ReJection for reen-
trancy vulnerability, a comparative experiment between Slither and ReJection
has been further completed. Specifically, it selects open source smart contract
data set as the experimental source code; uses the smart contract compiler solc
to generate AST as the input of ReJection and uses the smart contract source
code as the input of the Slither; and records the vulnerability detection results
of the Slither and ReJection to compare and analyze.

Table 2 shows the experimental results. The experiment compares 8 differ-
ent contracts, in which the contract details are represented by the Danger-
Transfer function (D-T), the mutex mechanism (Mutex) and the Checks-Effects-
Interactions pattern (C-E-I). Here the Danger-Transfer function indicates that
transfer function 〈address〉.call.value()(), and the mutex mechanism and the
Checks-Effects-Interactions pattern is introduced in Sect. 3.5. For the value of
corresponding cell, “Y” indicates that there exists Danger-Transfer function,
the mutex mechanism or Danger-Transfer function in the contract, whereas “N”
indicates that none of them exists. For the expected result, the detection result
of the Slither and ReJection, “Y” indicates that the reentrancy vulnerability
exists, and “N” indicates that there is no reentrancy vulnerability.

In Table 2, contracts SimpleDAO, Reentrancy and BrokenToken have the
same contract details. They have Danger-Transfer functions and have no mutex
mechanism and the Checks-Effects-Interactions pattern. According to the Rule
4 in Sect. 3.5, there must be existed a reentrancy vulnerability in the above
contracts. The results of Slither and ReJection are consistent with the expected
results, which shows the reentrancy vulnerability can be correctly detected by
them.



ReJection: A AST-Based Reentrancy Vulnerability Detection Method 69

Table 2. Comparison of experimental results

Contract Contract details Expected result Detection result

D-T Mutex C-E-I Slither ReJection

SimpleDAO Y N N Y Y Y

Reentrancy Y N N Y Y Y

BrokenToken Y N N Y Y Y

ModifierEntrancy N N N N N N

SimpleDAOFixed Y N Y N N N

noCheck Y N Y N Y N

EtherStore Y Y N N Y N

EtherBankStore Y Y Y N Y N

Different from above contracts, contract ModifierEntrancy has no Danger-
Transfer function. According to the Rule 1 in Sect. 3.5, there definitely has no
reentrancy vulnerability in the contract. The results of Slither and ReJection are
consistent with the expected results.

For contract SimpleDAOFixed, it has the Danger-Transfer function and the
Checks-Effects-Interactions pattern, but there is no mutex mechanism. Accord-
ing to the Rule 3 in Sect. 3.5, there definitely has no reentrancy vulnerability
in the contract. The results of Slither and ReJection are consistent with the
expected results.

The contract details of contract noCheck is exactly the same as the contract
SimpleDAOFixed, it should be no reentrancy vulnerability. However, in the real
detection, ReJection got the correct result, whereas Slither had a false posi-
tive. Slither mistakenly believed that there was a reentrancy vulnerability in the
contract.

Moreover, for contract noCheck and contract EtherStore, although they have
different contract details, both of them have the Danger-Transfer function and
have either a mutex mechanism or a Checks-Effects-Interactions pattern. Accord-
ing to the Rule 2 and Rule 3 in Sect. 3.5, there definitely has no reentrancy
vulnerability in these two contracts. Unfortunately, in the real detection, Slither
made a false result because it can not distinguish the difference between the two
prevention ways. Instead, ReJection can detect these two kinds of prevention
ways and report the correct detection result.

Similarity, for contract EtherStore and contract EtherBankStore, even
although the contract details of them are not the same, both of them contain
the Danger-Transfer function and a mutux mechanism. According to the Rule
2 of Sect. 3.5, there is no reentrancy vulnerability in them. While in the real
detection, ReJection still got the correct result, and Slither had a false positive
yet.

Although the examples of smart contracts involved in Table 2 are few, it
is noted that they still cover all four types of determination rules proposed in



70 R. Ma et al.

Sect. 3.5. For the above contracts, detection accuracy of Slither is 62.5%, while
ReJection ones achieves 100%. ReJection is better than Slither in the detection
effect. The main reason may be that ReJection fortifies with prevention condi-
tions when detecting reentrancy vulnerability. Later, it is necessary to expand
the number of testing contracts to further verify the detection capability of
ReJection.

5 Conclusion

In this paper, we propose the ReJection, a method of smart contract reentrancy
vulnerability detection based on abstract syntax tree (AST). By resolving the
AST, ReJection uses the proposed redundancy rules to eliminate the nodes
that are useless for vulnerability detection. That indirectly improves the effi-
ciency of vulnerability detection. By traversing the reserved nodes in the AST,
ReJection analyzes and records key information related to occurrence conditions
and prevention conditions of the reentrancy vulnerability. Then, ReJection fur-
ther detects whether there exists a reentrancy vulnerability generation condition
depending on the reentrancy vulnerability determination rules summarized by
the author. That improves the accuracy of the reentrancy vulnerability detection.
Moreover, ReJection is implemented based on the Slither, which is an existing
open source vulnerability detection tool of smart contract. The effectiveness of
ReJection has been verified by comparing experimental results between ReJec-
tion and Slither.

References

1. Bitcoin Sourcecode. https://github.com/bitcoin/bitcoin/. Accessed 18 Jan 2016
2. Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.

Accessed 2018
3. Buterin, V.: Ethereum: A Next-Generation Smart Contract and Decentralized

Application Platform. White paper, pp. 1–36 (2014)
4. Parizi, R.M., Dehghantanha, A.: Smart contract programming languages on

blockchains: an empirical evaluation of usability and security. In: Chen, S.P., Wang,
H., Zhang, L.J. (eds.) ICBC 2018. LNCS, vol. 10974, pp. 75–91. Springer, Cham
(2018). https://doi.org/10.10007/978-3-319-94478-4 6

5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

6. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

7. Mueller, B.: Smashing Ethereum smart contracts for fun and real profit. In: The
9th Annual HITB Security Conference (2018)

https://github.com/bitcoin/bitcoin/
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.10007/978-3-319-94478-4_6
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6


ReJection: A AST-Based Reentrancy Vulnerability Detection Method 71

8. Luu, L., Chu, D.H., Olickel, H., et al.: Making smart contracts smarter. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security 2016, pp. 254–269. ACM, New York (2016). https://doi.org/10.1145/
2976749.2978309

9. Bhargavan, K., Swamy, N., Zanella-Bguelin, S., et al.: Formal verification of smart
contracts: short paper. In: Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security 2016, pp. 91–96. ACM, New York (2016).
https://doi.org/10.1145/2993600.2993611

10. Tsankov, P., Dan, A., Drachsler-Cohen, D., et al.: Securify: practical security anal-
ysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security 2018, pp. 67–82. ACM (2018). https://
doi.org/10.1145/3243734.3243780

11. SmartCheck. https://tool.smartdec.net. Accessed 22 Oct 2017
12. Hu, K., Ai, X.M., Gao, L.C., et al.: Formal verification method of smart contract.

J. Inf. Secur. Res. 2(12), 1080–1089 (2016)
13. Xin, W., Zhang, T., Zou, Q.C.: Research on vulnerability of blockchain based smart

contract. In: The 10th Conference on Vulnerability Analysis and Risk Assessment
2017, pp. 421–437 (2017)

14. Chengdu LianAn Technology. http://www.lianantech.com. Accessed 10 June 2019

https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://tool.smartdec.net
http://www.lianantech.com

	ReJection: A AST-Based Reentrancy Vulnerability Detection Method
	1 Introduction
	2 Related Works
	2.1 Blockchain and Smart Contracts
	2.2 Smart Contract Security Audit
	2.3 Reentrancy Vulnerability

	3 ReJection
	3.1 Overview
	3.2 Obtaining AST
	3.3 Preprocessing the Redundant Node of AST
	3.4 Traversing the Reserved Nodes of AST
	3.5 Determining the Reentrancy Vulnerability

	4 Evaluation
	5 Conclusion
	References




