
Research and Development of TPM
Virtualization

Liang Tan1,2(&), Huan Xiao1, and Juan Wang3

1 College of Computer Science, Sichuan Normal University, Sichuan, China
tanliang2008cn@126.com

2 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China

3 School of National Cyberspace Security, WHU, Wuhan 430072, China

Abstract. Combination of Cloud Computing and Trusted Computing is an
important method to build a trusted cloud environment, and the most critical
problem is the virtualization of TPM (Trusted Platform Module, TPM). But in
view of the current research, TPM virtualization still not only does not meet the
whole TCG specification, but also has a lot of security issues, and it is becoming
the bottleneck of building a trusted cloud environment by combination of Cloud
Computing and Trusted Computing. This paper introduces the basic concepts,
types and basic requirements of TPM virtualization. The classification model of
TPM virtualization is put forward by the I/O device virtualization technology.
The main research work of the key technologies of TPM virtualization, such as
architecture, key management, certification trust extension, migration and so on,
are described in detail, moreover taking time as the clue, we can display a
panoramic view of the evolution of related key technologies. Combined with the
existing research results, the research direction and challenges of TPM virtu-
alization under TCG architecture are discussed.

Keywords: Trusted computing � Cloud computing � Virtual platform module
(TPM) � TPM virtualization � vTPM

1 Introduce

The Trusted PlatformModule (TPM) is the core of trusted computing [1–9]. It is the root
of trust in trusted computer systems and the key technology for trusted computing. TCG
(Trusted Computer Group, TCG) [1] defines the core functions of the trusted computing
platform: measurement, storage and reporting are all dependent on TPM; trusted roots of
trusted computing platform: Root of Trust for Measurement (RTM), Root of Trust for
Storage (RTS), and Root of Trust for Report (RTR) are all directly related to TPM.
The RTM consists of a set of PCR memories in the CRTM (Core Root of Trust for
Measurement, CRTM) and the TPM. The RTS consists of a TPM and a storage root key
SRK. The RTR consists of a TPM and an EK. TCG is not only the initiator of trusted
computing ideas, but also the organizer and promoter of trusted computing technology. In
order to promote the widespread application and further extension of trusted computing,
TCG has established a series of working groups, initially including Embedded System,
Infrastructure, IoT,Mobile, PCClient, Server, Software Stack, Storage, Trusted Network

© Springer Nature Singapore Pte Ltd. 2020
W. Han et al. (Eds.): CTCIS 2019, CCIS 1149, pp. 206–250, 2020.
https://doi.org/10.1007/978-981-15-3418-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3418-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3418-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3418-8_15&domain=pdf
https://doi.org/10.1007/978-981-15-3418-8_15

Communications and TPM, etc. [1], where the TPMWorking Group is the basic and core
working group are responsible for the drafting, revising and publishing the TPM speci-
fication, which has evolved from TPM1.0 and TPM1.2 to the current TPM2.0 [2–5].

In recent years, cloud computing [10–20], which is an emerging computing service,
has rapidly emerged in various industries with its unique advantages of broadband
interconnection, resource sharing, flexible configuration, on-demand services, and
charging by volume. Users greatly reduce the burden of computing and storage by
entrusting computing tasks and data to cloud service providers. It is worth noting that
the operating environment provided by the cloud computing to the user (Tenant) is
based on the virtual machine [10, 11]. The user’s operating environment and data are
stored in the cloud, thus users lose direct control of the physical environment. How to
provide users with secure cloud computing services is an urgent problem [21]. Scholars
in trusted computing at home and abroad are agilely aware of the credibility of that
trusted computing can enhance the credibility of cloud computing environments. One
of the effective ways to solve this problem is to build a virtual machine trusted running
environment through TPM virtualization, such as vTPM (virtual TPM, vTPM) [22].
Trusted Computing Group TCG also quickly followed up on related work. First, in
2008, two new working groups, Cloud and Virtualized Platform, were added [1]. Cloud
is mainly responsible for the drafting, revising and publishing the multi-tenant
infrastructure, TMI specification, while the Virtualized Platform is mainly responsible
for the drafting, revising and publishing the trusted virtual platform specification. One
of its core tasks is TPM virtualization; secondly, the TPM 2.0 specification, announced
in 2013, explicitly supports TPM virtualization [2–5].

The research on TPM virtualization has a great significance. In a cloud environment,
TPM virtualization provides a trusted guarantee for the guest virtual machine running
environment. TPM virtualization allows each guest virtual machine to logically have a
single “unique” TPM, referred to as vTPM, which just like having a real physical TPM.
The guest virtual machine environment can use features such as measure, storage, and
reporting provided by vTPM. In particular, the trust chain transfer of the guest virtual
machine environment can be implemented through the integrity check function of vTPM,
the data protection function of the vTPM is used to implement the sealed storage of the
guest virtual machine environment data, and the remote virtual certificate function of the
vTPM is used to implement proof of identity of the guest virtual machine environment. In
academia, since S Berger proposed the vTPM architecture in 2006 [22], research on TPM
virtualization has gradually obtained widespread attention from many scholars and
research institutions at home and abroad. In some international conferences, such as:
TRUST2008 [23], ESI 2008 [24] (Proceedings of the 2008s International Conference on
Emerging Security Information), UCC2015 [25] (IEEE/ACM 8th International Confer-
ence on Utility and Cloud Computing), CSS 2015 [27] (2015 IEEE 7th International
Symposium on Cyberspace Safety and Security), TrustCom2012 [27] (2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing and Communi-
cations), MINES 2012 [28] (2012 IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications), CIS 2012 [29] (2012 Eighth Interna-
tional Conference on Computing Platform, Computational Intelligence and Security),
Proceedings of the 2013 ACM workshop on Cloud computing security workshop [45],
etc. There are a number of high-quality articles on vTPM issues, including vTPM system
architecture, key management, certificate trust extension, and migration. TPM

Research and Development of TPM Virtualization 207

virtualization issues (or related issues) at academic conferences on “National Trusted
Computing and Information Security”, “National Computer Network and Information
Security”, and “China Information and Communication Security” held in recent years in
China is also a hot topic. In the industry, major IT giants also pay attention to TPM
virtualization. A typical representative is Microsoft. Although Microsoft previously had
the Next-Generation Secure Computing Base (NGSCB), in order to further improve the
security of the cloud environment, vTPM is supported inHyper-V [30] inWindows Server
2016 andWindows 10. Orchard’s virtualization platform Vbox [31] has supported vTPM
in 2009.Most notable is that VMware, one of the virtualization industry giants, announced
in 2015 that it supports vTPM in vSphere 6.0 [32]. In addition, well-known open source
virtualization platforms such as XEN [33], KVM [34], etc., both support vTPM.

Despite this, the degree of convergence between trusted computing and cloud
computing lags far behind market expectations. vTPM has not become the main security
solution for major cloud platforms. TPM virtualization is one of the main bottlenecks
affecting the application, promotion and popularization of trusted virtualization platform
products, which seriously hinders the extension and expansion of trusted computing in
the cloud environment. In particular, although China has developed a TCM (Trust
Cryptographic Module) (TCM) related standard with independent intellectual property
rights [9], similar to the TPM standard, compared with TPM2.0, the TCM standard has
not considered the related issues of TCM virtualization. At present, there is no detailed
and comprehensive review paper on TPM virtualization. In order to have a general
understanding of the progress of this research and to promote domestic research in this
direction, it is very meaningful to review the research progress of TPM virtualization.

This paper introduces the basic concepts, types and basic requirements of TPM
virtualization, proposes a technical classification model of TPM virtualization, elabo-
rates on the main research progress of key technologies such as system architecture,
key management, certificate trust extension and migration of TPM virtualization, and
summarize these work. Combined with the existing research results, the research
direction and challenges of TPM virtualization under TCG architecture are discussed.

2 Basic Concepts of TPM Virtualization

In order to meet different functional requirements, there have been many different
virtualization solutions for the x86 architecture. Combined with the computer system
structure and the abstraction level adopted by virtual machines, virtual machine sys-
tems can be divided into instruction level virtualization, hardware level virtualization,
operating program library virtualization [22–25]. For hardware-level virtualization,
there are three main technologies, including full virtualization, para-virtualization, and
hardware-assisted virtualization, all of which include CPUs, Memory and I/O virtu-
alization. This article discusses TPM virtualization under the x86 architecture, which is
a virtualized I/O device virtualization category.

2.1 Definition of TPM Virtualization

Definition 1: TPM virtualization, which is the application of I/O device virtualization
technology to the TPM in the virtual computing platform, so that each virtual machine

208 L. Tan et al.

in the platform can use trusted computing functions to improve securely, independently
and autonomously the credibility and security of the operating environment to meet the
trusted needs of virtual machine users.

As can be seen from Definition 1, the concept of TPM virtualization has three
implications. First, in terms of virtualization technology, TPM virtualization is
essentially I/O device virtualization. Second, in terms of functionality, each virtual
machine can use the trusted computing capabilities provided by the TPM; Thirdly, in
terms of security objectives, each virtual machine can improve the credibility and
security of its own operating environment and meet the trusted requirements of virtual
machine users through TPM virtualization.

2.2 Basic Types of TPM Virtualization

For hardware-level virtualization, depending on the virtualization implementation of
VMM (Virtual Machine Monitor, VMM), the implementation of I/O device virtual-
ization will be different. The core is the storage location of the I/O device’s native
driver and how the VMM handles the I/O devices. TPM is a slow I/O device attached
to the motherboard through the LPC bus. What kind of I/O device virtualization
implementation technology is adopted depends on the method implementation of the
VMM virtualization. Therefore, according to the different virtualization methods of
VMM, we divide the TPM virtualization methods into three categories.

1. TPM virtualization under full virtualization

In full virtualization, the VMM can virtualize the virtual machine to the same physical
environment as the physical TPM. All Guest OSs see a unified set of virtual TPM
devices, and each I/O operation privileged instruction of the guest OS to the virtual
TPM device will be trapped in the VMM, and then directly controlled by the TPM,
so there is no need to modify the Guest OS. For x86 architectures, certain privileged
instructions do not trap in the VMM, and at this time, binary code translation tech-
niques will be used.

Fig. 1. TPM stand-alone Hypervisor model

Research and Development of TPM Virtualization 209

According to the difference of the TPM native drive location, we can also classify
this type of virtualization into a TPM independent model and a TPM host mode. The
virtualization method of putting the TPM native driver directly into the VMM is called
the TPM independent model, as shown in Fig. 1. The virtualization method of placing
the TPM native driver in the host is called the TPM host model, as shown in Fig. 2.

2. TPM virtualization under para-virtualization

In the para-virtualization mode, all the privileged instructions accessing the TPM in the
Guest OS need to be code-replaced, so the front-end virtual device drivers of different
environments need to be developed. When the application makes an access request, the
front and back drivers work together to complete the access. As shown in Fig. 3.

Fig. 2. TPM hosted-based model

Fig. 3. TPM Para-virtualization

210 L. Tan et al.

3. TPM virtualization under hardware-assisted virtualization

Under hardware-assisted virtualization, the VMM needs assistance of hardware to
complete the virtualization of the TPM. At this time, the kernel of the Guest OS doesn’t
need to be modified. With the TPM virtual device model in the virtual machine
management domain, the impact of the TPM privileged instructions on the host is
eliminated by Intel’s VT-x technology or AMD’s AMD-V technology, which will run
at different privilege levels. The VMM is implemented with different privilege levels to
implement TPM virtualization, as shown in Fig. 4.

2.3 Basic Requirements of TPM Virtualization

The purpose of TPM virtualization is to provide trusted computing services for virtual
machines, to help virtual machines establish a trusted computing environment, and to
make users who use virtual machines think that there is no significant difference
between using a trusted computer system with a physical TPM. Therefore, when vir-
tualizing TPM, there are four basic requirements [22–25].

1. Equivalence
The so-called equivalence means that, except for the time factor, when the appli-
cation or user in the virtual machine uses the TPM function, the rest must be the
same as the computer system that owns the physical TPM alone, including the
measurement, storage, and reporting of trusted computing.

2. Relevance
The so-called relevance includes two aspects. One is that it should be related to the
vTPM throughout the life cycle of the virtual machine, including the migration of
the virtual machine. The second is that the vTPM maintains a correlation with the
hardware TPM.

3. Safety
The so-called security includes two aspects. One is that the physical TPM should be
fully managed by the VMM, the guest virtual machine operating system,

Fig. 4. Hardware-based TPM virtualization

Research and Development of TPM Virtualization 211

applications or users cannot directly access the TPM; the second is that the security
of the TPM virtualization software system and architecture. Virtual platforms must
meet these two security requirements for TPM virtualization.

4. Convenience
The so-called convenience refers to that after the TPM virtualization was com-
pleted, it is convenient to maintain, upgrade and migrate.

3 Technical Classification Model of TPM Virtualization

TPM virtualization is essentially I/O device virtualization. We divide TPM virtual-
ization into three categories according to I/O device virtualization technology. One is
software instantiation simulation, the other one is hardware sharing, and the third one is
aggregation method. Below we introduce these three categories one by one.

3.1 Software Simulation Method

The so-called software instantiation simulation method means that the VMM creates a
software simulation virtual TPM instance for each virtual machine that needs to pro-
vide a trusted execution environment for the user. When the user needs the trusted
computing functions, most of them are provided by their corresponding software
simulation virtual TPM instance. The physical TPM only provides a small number of
functions, such as key management, certificate extension, and so on. The basic
architecture is shown in Fig. 5.

Fig. 5. Software simulation mode of TPM virtualization

212 L. Tan et al.

This method can be done in either full virtualization, para-virtualization, or hardware-
assisted virtualization. The essence of this method is to assign each virtual machine an
instance of TPM software that has the same functions as the hardware TPM—vTPM. The
vTPM usually runs in the VMM, virtual machine management domain, or isolated device
domain, and can implement most functions of the TPM. The advantages of this method
are simple implementation, flexibility, high performance and easy migration. The dis-
advantage is that the security isn’t high, but because the vTPM runs in the VMM, virtual
machine management domain or isolated device domain, therefore, in addition to priv-
ileged security threats and shared security, it can prevent general security threats1, that is,
basic security can be guaranteed. Therefore, this method is currently the mainstream way
to implement TPM virtualization on each virtual platform.

3.2 Hardware Sharing Method

The so-called hardware sharing method means that each virtual machine accesses the
physical TPM in a time-sharing manner. Generally, the service requests and responses
of the TPM are implemented in an asynchronous manner. When multiple client virtual
machines issue TPM I/O requests to form a request queue, the VMM performs
scheduling through certain policies and processes them in the TPM. After the TPM
processed a request, the processing result is placed in the response queue, and the
response result is returned to the corresponding virtual machine by the TPM virtual
device model. The basic architecture is shown in Fig. 6.

Fig. 6. Hardware share model of TPM virtualization

1 The relevant connotations of general security threats, privileged security threats and shared security
threats are described in the literature [61]

Research and Development of TPM Virtualization 213

This method can be done in either full virtualization, para-virtualization, or
hardware-assisted virtualization. The essence of this method is that the hardware TPM
provides trusted computing functions for virtual machines. The advantage is high
security, and it can prevent general security threats, privileged security threats, and
some shared security threats, but the disadvantages are also obvious, it’s complicated,
the mobility is poor, and since the TPM is a slow peripheral that is attached via the LPC
bus, as the number of virtual machines increases, the sharing performance drops dra-
matically and it cannot be used at all.

3.3 Aggregation Method

The so-called aggregation method is to aggregate multiple TPM virtual functions in one
TPM – VF-vTPM, and then directly allocate or schedule the vTPM to the virtual
machine for use. The basic architecture is shown in Fig. 7.

Fig. 7. Aggregation model of TPM virtualization

The aggregation method essentially allocates a VF-vTPM with the same functions
as the hardware TPM for each virtual machine, and the vTPM runs inside the TPM.
The advantages of this method are high security, good performance, and good scala-
bility. However, the implementation and configuration are complex and the mobility is
poor. In fact, the existing TPM 1.2 and TPM2.0 chips cannot achieve this method at all,
because the LPC bus doesn’t support Single Root I/O Virtualization (SR-IOV) at all.

4 Key Technology Research and Development of TPM
Virtualization

TPM virtualization involves key technologies in system architecture, key management,
certificate trust extension, and migration, which are detailed in this section. Since the
trust chain model and remote proof of trusted virtual machines belong to the category
of “trusted computing platform”, this section will not discuss and analyze.

214 L. Tan et al.

4.1 System Architecture of TPM Virtualization

The so-called system architecture refers to the complete composition of the system and
its reasonable logical function modules. According to the technical classification model
of TPM virtualization in Sect. 3, we summarize the existing research results of TPM
virtualization system architecture into three categories, one is the software simulation
TPM virtualization system architecture; the other one is the hardware sharing TPM
virtualization system architecture; the third one is the aggregated TPM virtualization
system architecture. The so-called “software emulation type TPM virtualization system
architecture” refers to the complete component architecture and reasonable functional
modules for providing a complete composition architecture and reasonable functional
modules for the virtual machine to access the software simulation TPM instances. The
so-called “hardware sharing TPM virtualization system architecture” refers to the
complete component architecture and reasonable functional modules that provide
access to the hardware TPM for the virtual machine. The so-called “aggregated TPM
virtualization system architecture” refers to the complete component architecture and
reasonable functional modules that provide virtual machines with access to the TPM
virtual function (VF).

Software Simulation TPM Virtualization System Architecture. For the “software
simulation TPM virtualization system architecture”, whether domestic or foreign,
whether academic or industrial, there are many research results.

In academia, the research results in this area were first proposed by S Berger2 et al.
of IBM TJ Watson Research Center in 2006 [22], as shown in Fig. 8. The system
architecture includes vTPM, vTPM manager, and Client-Side TPM, Driver, Server-
Side TPM driver, TPM and other entities, where vTPM, vTPM manager and Server-
Side TPM driver are in the privileged domain, Client-Side TPM driver is in the virtual
machine domain, and TPM is in the underlying hardware layer of the entire virtual
system. vTPM is a software-simulated TPM that provides most of the trusted com-
puting functions for the virtual machine. The vTPM manager is responsible for the
lifecycle management of all vTPMs, including creating, suspending, restoring, and
deleting vTPM instances, and forwarding the vTPM instance request to which the
virtual machine is bound and returning the corresponding response. Each vTPM can be
associated with the hardware TPM through the vTPM manager, and the associated
content mainly includes PCR mapping and certificate chain extension. The Server-Side
TPM driver is a privileged domain-side TPM driver. The Client-Side TPM driver is a
virtual machine-side TPM driver. The Server-Side TPM driver communicates with the
Client-Side TPM driver through the VMM. This literature is the foundation of TPM
para-virtualization, and most of the research in this area is based on this idea.

2 Although S Berger is a researcher at the IBM T. J. Watson Research Center, the published results are
academic papers, so he is still attributed to academia.

Research and Development of TPM Virtualization 215

In 2007, the literature [36] also proposed a general system architecture GVTPM for
TPM virtualization, as shown in Fig. 9. The system architecture includes entities such
as GVTPM, GVTPM manager, GVTPM Factory, GVTPM Protected Storage Service,
etc. GVTPM is a software entity that provides trusted computing functions. GVTPM
Manager includes Key & Session Manager and TPM Driver, is responsible for
GVTPM lifecycle management, GVTPM binding to virtual machines and key and
session management. The GVTPM Factory is responsible for providing the GVTPM
manager with the ability to create and delete GVTPM services. The GVTPM Protected
Storage Service is responsible for providing non-volatile storage for the GVTPM
manager. It can be seen from the above analysis that the basic ideas of the literature
[22] and literature [36] are consistent, the difference is that the implementation of the
vTPM manager function has changed. In the literature [22], the vTPM manager is
responsible for the vTPM life cycle management and the protection storage of sensitive
information, which is implemented by two other important entities, GVTPM Factory
and GVTPM Protected Storage Service in the literature [36]. And the literature [36]
doesn’t specify that GVTPM manager, GVTPM Factory and GVTPM Protected
Storage Service are located in a certain specific area. The advantage of the system
architecture proposed in literature [22] and literature [36] is that the vTPM instance is
separated from the virtual machine, which is easy to implement, flexible to deploy, has
little impact on the VMM, and is light burden for TPM. For example, the vTPM, vTPM
manger, GVTPM, and GVTPM Manager instances are placed in the administrative
domain, although which is vulnerable to privileged security threats, shared security
threats, and heavy privileged domains, it can protect against general security threats.

Hypervisor

VM
Cliend side
TPM Driver

vTPM Manager

VM
Cliend side
TPM Driver

Application

Application

VM
Cliend side
TPM Driver

Application

Application

HadwareTPM

vTPM
 Instance

vTPM
 Instance

Fig. 8. vTPM architecture

216 L. Tan et al.

In order to improve the vTPM anti-privilege security threat capability, in the lit-
erature [22], proposing a vTPM architecture variant, as shown in Fig. 10, where the
vTPM function is provided by an external security coprocessor plug-in, IBM’s
PCIXCC, which can provide maximum security for sensitive data such as private keys
in a vulnerable environment. The first virtual machine is the owner of the hardware. It
obtains a vTPM instance for itself. Other vTPM instances are reserved for other virtual
machines. A Proxy process is responsible for passing TPM I/O instruction information
between the server driver and the external security coprocessor plug-in. It is worth
noting that the vTPM running in PCIXCC is still a software type vTPM, and it’s is
relatively small. Many security functions, such as cryptographic operations, are pro-
vided by hardware in PCIXCC. The advantage of this system architecture is that the
vTPM instance and the vTPM manager are located in the security processor and aren’t
vulnerable to privilege security. But it needs to add additional hardware and cost.

Operation System
VM/Partition

Operation System
VM/Partition

Operation System
VM/Partition

GVTPM GVTPM GVTPM

Trusted Platform Module

Virtual Machine Monitor

GVTPM Manager
Key&Session

Manager

TPM Driver
GTPM factory

GTPM Protected
Storage Service

Fig. 9. vTPM general architecture

Hypervisor

VM
Secure Go-

Processor Driver

Proxy

VM
Cliend side
TPM Driver

Application

Application

VM
Cliend side
TPM Driver

Application

Application

vTPM manager

vTPM
 Instance

vTPM
 Instance

Secure
Processor

Fig. 10. Security coprocessor-based VTPM architecture

Research and Development of TPM Virtualization 217

In 2007, the literature [37] based on Xen for the first time to separate the vTPM
instance from the privileged domain, as shown in Fig. 11, the vTPM manager and the
vTPMD daemon still run in Domain0, and the vTPM instances run in the LibOS-based
Trusted VM domain. The applications in the DomU pass the TPM command to the
vTPM instances through vTPMmanager and vTPMD. The vTPM instances can also
return the running result to the applications in the DomU through vTPMD and vTPM
manager. The privileged domain and the isolated domain exchange information
through the inter-domain communication mechanism IDC. The biggest advantage of
the system architecture is to improve the vTPM’s ability to resist shared security
threats, reduce the burden on Domain0, and facilitate vTPM migration. However,
vTPM has no connection with TPM, and the trust of the underlying virtual platform
cannot be extended to virtual machines.

In 2008, the literature [38] further separated the vTPM manager, vTPM instances
and privilege domain, as shown in Fig. 12. Firstly, an important function in the
privileged domain, the domain management function, was separated. The Domain
Builder domain is built based on MiniOS, which is called DomB, and the vTPM
manager and vTPM instances are separated from the privileged domain to DomB. In
addition, DomB also includes the TPM’s native driver and virtual platform configu-
ration storage. The native driver is to facilitate the interaction between the vTPM
manager and the hardware TPM. The main function of the virtual platform configu-
ration storage is to save the status information of the vTPM for recovery. The DomU
can directly interact with the vTPM manager in the DomB. The vTPM front-end in
DomU is unchanged. Compared with the literature [37], although only one isolated
domain has been added, the work of literature [38] goes further. The isolated domain of
the literature [37] only runs one vTPM instance, the vTPM instance lifecycle man-
agement, binding to the VM, and integrity measurement for the virtual machine are still
done in the privileged domain. The DomB in literature [38] not only separates vTPM
instances from the privileged domain, but also separates vTPM instance lifecycle
management, VM binding, and virtual machine integrity measurement from the priv-
ileged domain. This system architecture reduces the performance burden and shared
security threats of privileged domain.

Xen VMM

Domain0

vTPM BE

vTPMD

DomainU

vTPM FE

Trusted VM
vTPM

manager
TPM

emulator

IDC IDC

Fig. 11. Single isolated domain vTPM architecture for Xen

218 L. Tan et al.

In 2009, OpenTC, a trusted computing project sponsored by the European Com-
mission, presented a research report on the TPM virtualization architecture [39]. This
report not only introduced the background and motivation of TPM virtualization,
defined the vTPM status data structure, analyzed the existing vTPM architecture,
restrictions, vTPM life cycle, vTPM and VM binding, etc., but also added vTPM
attribute-based proof and migration functions [40] to the vTPM architecture, and a dual
isolation domain is proposed on the Xen platform. The system architecture further
separated the functions of DomB in literature [38]. As shown in Fig. 13. Two domains
are included in the system architecture, one of which is DomB, which is similar to
DomB in literature [38], but its functions is reduced. There are no vTPM manager and
vTPM instances in the DomB. DomB, including VP-Bulider, HIM, CMS, and BMSI, is
responsible for securely creating trusted virtual domains. VP-Bulider is responsible for
creating virtual domain, HIM is trusted virtual domain integrity measurement man-
agement, CMS is virtual domain configuration, and BMSI is the basic management and
security interface; second is the other one of which is DomU-vTPM. DomU-vTPM
domain, including VTPM-DM, TIS and H-BMSI, runs vTPM instances, where VTPM-
DM is the vTPM device model, TIS is trusted Computing interface specifications, H-
BMSI is TPM-related basic management and security interfaces. When a vTPM
instance is generated, the vTPM generates the EK through the H-BMSI. The private
key is protected by the BMSI of the DomB and can only be accessed by the vTPM
through the H-BMSI. The hash cipher of the public key, as an external nonce of the
vTPM performing reference operations through the H-BMSI interface, implicitly
associates with the integrity measurement of Xen, DomB, and vTPM; when starting a
new virtual machine, first attached the vTPM domain ID associated with the virtual
machine to the configuration table of the virtual machine, the VP-Builder then mea-
sures the vCRTM of the virtual machine, and the result of the measurement is stored in
the HIM database as the vPCR0 value, and then the VP-Builder verifies the device
model of the vTPM to ensure that the virtual machine can correctly access the TIS
interface provided by the vTPM device model. Finally, VP-Builder VP-Builder updates
the HIM database and establishes the interdependence between vTPM and VM. This

HW TPM
Driver

VTPM
Manager

/dev/tpm

DomB DomU

HW TPM

vTPM

Fig. 12. Single isolated domain vTPM architecture

Research and Development of TPM Virtualization 219

system architecture further reduces the performance burden and shared security threats
of privileged domain.

In China, the similar literatures appeared in 2010. The literature [41] believes that
considering the entire privileged domain as TCB will threaten the security of vTPM,
because TCB is too large, it is easy to generate loopholes. In order to solve this
problem, a new vTPM architecture is proposed in the literature [41], as shown in
Fig. 14. The vTPM, vTPM manager, and TPM native drivers originally in the privi-
leged domain are separated into the management domain DomA by creating a new
administrative domain, DomA. There are two purposes for creating an administrative
domain. One is to protect the vTPM and its related components from unauthorized
access and invocation. The other one is to modify the access process of the TPM and
protect the DomA through the TPM to improve the security of the vTPM and its related
components. The idea of the system architecture is basically the same as that of the
literature [37–39].

Dom0 DomU

TCG
Compliant

OS

Xen

DomB
XenD

libxc
VP-Builder
HIM+CMS

BMSI

VTPM-DM
(TIS)

H-BMSI

DomU-VTPM

Fig. 13. Double isolated domain vTPM architecture

TPMPHYSICAl DEVICE

...

Dom U

APP

TSS

TPMFE

Dom U

APP

TSS

TPMFE

TPM BE TDD

Dom 0

APP

TSS

TPM FE

VMM

KELNER
SPACE

VTPM
INSTANCE

Dom A VTPM
INSTANCE...

VTPM
LISTENER

BE
LISTENER

HG
LISTENER

VTPM
MANAGER

fifo

fifo fifo

XEN BUS

Fig. 14. Dom A -based vTPM architecture

220 L. Tan et al.

In 2015, in order to prevent attackers in the cloud environment from using the
virtual machine’s rollback mechanism (an important and common used function) to
launch attacks, the domestic literature [42] proposed a trusted virtual platform module
(rollback- resilient TPM, rvTPM) system architecture to resist rollback attacks based on
Xen, and implemented the rvTPM prototype system in Xen, as shown in Fig. 15. There
are four modules: (1) Information Collection Module, which is responsible for col-
lecting information about rollback events. (2) An information registration module that
records and shares status information collected by the information collection module.
(3) Rollback module, which performs snapshot and rollback operations. (4) Rollback
log module, which records the rollback events. As can be seen from Fig. 12, the
information collection module, the rollback module, and the rollback log module are in
Dom0, and the information registration module is in Xen VMM. The vTPM back-end
driver interacts with information collection module, rollback module, and rollback log
module, and the rvTPM manager interacts with the information registration module.
Compared with the previous literatures, the system architecture follows the earlier TPM
para-virtualization method, but it can prevent virtual machine rollback attacks, reduce
general security threats, and further improve the security of the management domain
and vTPM.

In the open source community, virtual platform systems Xen and KVM support
TPM virtualization. Xen [34] is the earliest open source virtual platform system that
supports TPM virtualization. Many academic researches on TPM virtualization use
Xen as an experimental platform. In the beginning, Xen’s TPM virtualization system
architecture is shown in Fig. 16. The system architecture includes vTPM instances,
vTPM manager, vTPM back-end driver and front-end driver, TPM and other entities.
The TPM instances, vTPM manager, vTPM back-end driver are in Dom0, vTPM front-
end driver is in the virtual machine domain, and TPM is in the underlying hardware
layer of the whole virtual system.

Hardware including TPM

Xen

vTPM
front-end

drivers

Kernel

Dom 1

vTPM
front-end

drivers

Kernel

Dom 1

rvTPM back-end
drivers

rvTPM Information
registration module

Kernel

vTPM manager

vTPM
 Instance1

vTPM
 Instance n

rvTPM Rollback
log module

rvTPM Rollback
module

rvTPM Rollback
information

collection module

Dom 0 rvTPM Domain

Fig. 15. rvTPM architecture for Xen

Research and Development of TPM Virtualization 221

In July, 2013, Xen published the version 3.2, and the TPM virtualization system
architecture changed further. As shown in Fig. 17. Xen separates vTPM manager,
vTPM and VM bindings, and other functions from Dom0, reducing performance
burden of Dom0 and reducing shared security threats.

KVM [35] supports TPM virtualization later than Xen, and KVM’s TPM virtual-
ization relies heavily on QEMU. In 2007, QEMU supported access to the TPM
emulator through patches, enabling virtual machines to use the trusted computing
functions provided by the TPM emulator. In April, 2013, QEMU added new patches to
enable virtual machines to directly use physical TPM through Pass Through technol-
ogy, but in this way, only one virtual machine can use the TPM device on one physical
machine, and the physical computer and the virtual machine cannot use the TPM chip
at the same time, which limits the application of the trusted computing functions on the

Fig. 16. Early vTPM architecture for Xen

Fig. 17. Current vTPM architecture for Xen

222 L. Tan et al.

virtual machines. In December, 2013, QEMU added new patches again, enabling
multiple virtual machines to simultaneously use TPM functions simulated by software.
The functions and interfaces of virtual TPM are consistent with physical TPM
chip. The system architecture is shown in Fig. 18. The system architecture includes
libtpms, QEMU with TPM, SeaBIOS, Kernel IMA, and other entities. The libtpms
library is used to provide TPM functions to QEMU, including symmetric/asymmetric
encryption, secure storage, integrity measurement, and security signatures. QEMU with
TPM actually adds a TPM device type and a back-end driver for the TPM device in
QEMU. The back-end driver of the TPM device receives the TPM device operation
sent by the virtual machine, parses the operation type and calls the corresponding
interface of libtpms. The TPM device operates and returns the results of the operation
to the virtual machine. SeaBIOS is an open source implementation of a BIOS under the
x86 architecture that completes the initialization of the hardware. The system archi-
tecture is complex, involving many components and entities, and libtpms has few links
with the underlying physical TPM, and there are also privileged security threats and
shared security threats.

For the industry, VMware [33] also announced that supporting for vTPM in
vSphere 6.0 [33] in 2015; Microsoft [34] supports vTPM in its Windows sever 2016
Hyper-V, Orical [32] VBox supports vTPM through IBM PCIXCC. But neither
VMware, Microsoft nor Orical has disclosed its system architecture.

In summary, because software simulation TPM virtualization has the characteristics
of simple implementation, good flexibility, high performance and convenient

Virtual machine manager

KVM module

CPU Memory I/O

Guest virtual hardware
and SeaBIOS with TPM

Underlying
hardware

Host OS
kernel

Host
application

Host other
applications

QEMU with TPM

Guest OS kernel

Guest application

Guest virtual hardware
and SeaBIOS with TPM

QEMU with TPM

Guest OS kernel

Guest application

Trusted BIOS

Kernel-IMA

Libtpms

Kernel-IMA

TPM driver

Kernel-IMA

TPM driver

Fig. 18. vTPM architecture for KVM

Research and Development of TPM Virtualization 223

migration, whether it is academic, industrial or open source community, there are many
researches on software simulation type TPM virtualization system architecture, and
more research results have been obtained. To sum up, the software simulation TPM
virtualization system architecture mainly focuses on two aspects. First, how to prevent
various security threats, especially privileged security threats and shared security
threats, to improve the security of the system architecture; secondly, how to improve
the performance of TPM virtualization and reduce the security and performance impact
on the virtual platform.

Hardware Sharing TPM Virtualization System Architecture. For the “hardware
sharing TPM virtualization system architecture”, there are many studies in foreign
academic circles, and there are relatively few studies in domestic academic circles.
There is no similar design and implementation across the industry and the open source
community.

In the academic world, the earliest research results appeared in 2008. The literature
[23] first proposed the physical TPM sharing system architecture, which belongs to
“hardware sharing TPM virtualization”. As shown in Fig. 19, the system architecture
includes the HyperTPMDriver in the guest VM, the HyperCallDispatcher in the VMM,
the TPM service, the Filter Policy, the Guest Measurement, the Guest Memory Man-
agement, and the TPM Driver. The HyperCallDispatcher accepts requests from various
guest virtual machines and distributes them. The TPM service, is the core of the entire
system architecture, provides TPM function services for each guest virtual machine,
including Command Blocking, Virtual PCRs, ContextManage, Resource Virtualiza-
tion, and Scheduler. Because the physical TPM is an exclusive device with limited

Application

TPM API

Filter Policy
(optional)

Application

TPM API

Hyper TPM
Driver

Application

TPM API

Hyper TPM
Driver

Guest Guest Guest

Hypercall Dispatcher

Hyper TPM
Driver

Command
Blocking

Scheduler Context Manager
Resource

Virtualization

Virtual PCRs Guest
Measurement

Guest Memory
Measurement

TPM service

TPM Driver

HardwareTPM

Fig. 19. Hardware TPM sharing architecture

224 L. Tan et al.

resources, when sharing a physical TPM, each guest VM not only needs Resource
Virtualization to share limited key resources, such as key pool, authorization session
pool, etc., but also needs to manage the context of its runtime and schedule it. Filter
Policy is a filtering policy. Guest Measurement and Guest Memory Management are
mainly responsible for the integrity measurement and memory management of the
guest virtual machine. However, this literature is not specifically implemented. The
advantage of this system architecture is that it has high security and can prevent general
privileged security threats and shared security threats. However, the management and
scheduling of TPM are both in VMM and the VMM becomes larger, which increases
the general security threats and the performance is not high.

In the same year, the literature [24] redesigned a new TPM to support virtualization,
and its structure is shown in Fig. 20. Compared with the existing TPMs, it can support
multi-client virtual machine sharing, that is, it is like owning a TPM for each virtual
machine. As can be seen from the structure diagram, compared with TCG’s TPM, a
non-volatile storage is added, which contains two key data structures, one is Active
TPM-Control, and the other is Root-Data. The Active TPM-Control data structure
includes: SRK, PCRs, AIK, EK, monotonic counters, other non-volatile storage values,
delegate authorization tables, TPM context data, DAA parameters f, and associated
authorization data. The Root-Data data structure contains specific sensitive data, such
as seal keys. When a virtual machine issues a TPM I/O request, the VMM is scheduled
to load the virtual machine’s TPM-Control data structure into the TPM and decrypt it.
The TPM performs the virtual machine’s I/O request according to the TPM-Control
data structure and The result is returned to the guest virtual machine. Once another
client virtual machine issues a TPM I/O request, the VMM will use the key in the Root-
Data data structure to encrypt the TPM-Control data structure inside the TPM and load
the TPM-Control data structure of the next virtual machine. The CPU hardware

0:Guest Operation System

1:

3: Application
2:

0:VMM
1:

3:
2:

TPM Context Switch
0
1

Random Number
Generation

Key
GenerationSHA-1 RSA-Engine

Non-volatile Storage

Root-Data Structure Active TPM-Control
Structure

TPM

Fig. 20. Supporting shared hardware TPM architecture and CPU protection mechanism

Research and Development of TPM Virtualization 225

protection mechanism is also proposed in this literature. The VM runs on the CPU ring
1, the VMM runs on the CPU ring 0, the VM running on the ring 1 can only operate its
own TPM-Control data structure, and the VMM can manage the TPM-Control data
structure of all VMs. In addition, an extended command set for managing TPM-Control
data structures and sensitive instructions is provided, and algorithms and processes
such as sensitive instruction processing, TPM-Control context switching, and TPM
scheduling are described in detail. The biggest difference between this literature and the
literature [36] is that TPM sharing is implemented by adding new functions and
hardware protection mechanisms of the CPU in the TPM, so that the TPM changes
from an exclusive device to a shareable device. The advantage of this system archi-
tecture is that it is more secure, can prevent general security threats and shared security
threats, but it needs to prevent privileged security threats; on the other hand, it has
higher performance. Since the system architecture manages and schedules the TPM by
means of the CPU hardware protection mechanism, the VMM increases less software
code.

Literature [43] is a patent granted by the US Patent Office in May, 2008, and it
proposes a physical TPM sharing scheme for data processing systems. As shown in
Fig. 21, the system architecture includes TPM TSS and TPM DEVICE DRIVER in the
logical partition system LPAR, IPUT QUEUES, OUTPUT QUEUES and
HTPM ITERFACE UNIT in VMM, multiple LTPMs (Logical TPMs) in HTPM, and a
physical TPM. The two entities in the LPAR TPM TSS and TPM DEVICE DRIVER
are mainly used to provide interfaces and drivers for applications in the LPAR access to
the TPM. In the VMM, IPUT QUEUES indicates all request queues that access the
TPM, and OUTPUT QUEUES indicates the response queues. HTPM ITERFACE
UNIT indicates the interface to access HTPM in VMM. LTPM is responsible for
providing vast majority trusted computing functions for LPAR, and TPM is mainly

TPM DEVICE DRIVER(TPMDD)

TPM SOFTWRAR STACK(TSS)

LOGICAL PARTITION-LPAR(0)

PMDD

TSS

LPAR(0)

HYPERVISOR

LOGICAL
TRUSTED PLATFORM MODULE(TPM)

LTPM(0)

LOGICAL TPM
LTPM(N)

HYPERVISOR TPM(HTPM)

INPUT QUEUES OUTPUT QUEUES

HTPM INTERFACE UNIT

PHYSICAL TPM(PTPM)

Fig. 21. Sharing hardware TPM architecture for data process system

226 L. Tan et al.

responsible for sensitive data protection. When the VMM creates a LPAR, it imme-
diately creates an LTPM to bind to it. During data processing, the application in the
LPAR sends a TPM request to the VMM to form a request queue IPUT QUEUES.
The VMM schedules the request in the request queue to the HTPM, and the LTPM and
the TPM jointly process the request and return a response OUTPUT QUEUES. The
biggest feature of the system architecture is that the TPM generates multiple LTPMs
and binds the LTPMs to the LPARs scheduling through the VMM. Since LTPM is
located in HTPM, it is safer.

In 2011, the literature [44] believed that with the development of technology and
application updates, such as mobile computing and cloud computing, TPM has not
adapted to the needs of new technologies and the diversification of user needs. To this
end, the paper proposed a new TPM system architecture Dynamic-Context TPM
(dcTPM), as shown in Fig. 22. The system architecture includes a FPGA system-on-
chip, various peripheral control interfaces, and multiple physical TPMs. The FPGA on-
chip system environment is uCLinux, which has a dctmp daemon, which is not only
responsible for linking with host PC, memory, I/O, etc., but also responsible for
controlling multiple software emulation vTPMs, and controlling multiple hardware
TPMs through the LPC bus. Whether it is a software vTPM or a physical TPM, its
context is managed by dcTmp, and dcTmp is scheduled according to the specific
requirements of the user. The system architecture is characterized by integrated soft-
ware TPM and hardware TPM, which is more flexible, can better meet the requirements
of users, and has high security.

Literature [45] is a patent granted by the US Patent Office in September 2012, and
proposes a system architecture that supports both software-simulated TPM virtualiza-
tion and hardware-sharing TPM virtualization. As shown in Fig. 23, the system
architecture mainly includes the UOS domain, the SOS domain, the vTPM-VM
domain, the TPM Conduit, and hardware. UOS is the user virtual machine domain.
The SOS domain is the service virtual machine domain. The vTPM-VM domain is a
vTPM management domain, which includes vTPM0 to vTPMn Context, vTPM
Context Manager and TPM ConduitBE. The vTPM0 to vTPMn Context mainly con-
tains n + 1 vTPMs and their contexts. The vTPM Context Manager is responsible for
managing n + 1 vTPMs and their contexts. The TPM Conduit BE is the back-end

Host PC

Host Side

D Device Side

S Socket
N Device Node

H

H

Periph.
Interf.

Ctlr
D

Bus

Periph
Interf.

Deriver
N dctpmd n-TPM

Driver
N

N

FPGA uClinux
TPM-Emu TPM-Emu

...

...

S S

Host
Ctlr

Switch
Ctlr

H

.

.

.

.

.

TPM1

TPMn

D

D

...

Bus switch

Lpc-
Bus

dcTPM

Memory Ctlr I/O Ctlr

Memory Periph

Fig. 22. dcTPM architecture

Research and Development of TPM Virtualization 227

driver for TPM Conduit and is responsible for interacting with TPM Conduit. The TPM
Conduit is located in the VMM and is responsible for distributing TPM requests from
UOS or SOS and returning responses from the vTPM-VM domain or Multi-Context
iTPM. In the hardware layer, in addition to the traditional CPU, Memory and I/O, it
also includes Muti-Context iTPM, ME, VE and ICH, where Muti-Context iTPM is a
physical TPM, ME is its management engine, and VE is its virtualization engine, ICH
is its input and output controller. The Muti-Context iTPM has two working modes, one
is the independent device working mode, which is consistent with the traditional TPM.
The second is the sharing mode, which supports TPM Context management. When a
UOS or SOS sends a TPM access request, according to the specific requirements of this
request, such as TPM version, performance requirements, etc., TPM Conduit forwarded
the request to the vTPM-VM domain, which is processed and responded by the soft-
ware type vTPM, or forwarded to the Muti-Context iTPM, handled and responded by
the Muti-Context iTPM. Liking the literature [44], the system architecture also inte-
grates the software TPM and hardware TPM, which is more flexible and can better
meet the requirements of users, but the security is not as good as the literature [44]. In
the literature [44], management of software and hardware TPM are implemented in
FPGA, and this architecture is implemented by the VMM, which obviously makes the
VMM larger, increases the general security threats.

In 2013, in order to create and manage a concurrent security execution environment
for multi-core systems, the literature [46] proposed the HV-TPM system architecture,
as shown in Fig. 24. The system architecture includes an I/O INTERFACE, SCHE-
DULING, and RUN-TIME. STATE, STORAGE Per-VM Persistent State and
STANDARD TPM COMPONENTS, where I/O INTERFACE includes two entities,

Apps

UOS0

TSS

TPM Driver

UOS1

Apps

SOS0

TSS

TPM Driver

vTPM-0
Contex

vTPM-VM

vTPM Context Manager

TPM Conduit

Pass
Through
So ware

Shared Memory Dom0 Services

DOM0

FT-
VM vTPM-0

Contex

Verified Boot/Launch

BIOS

TPM Conduit BE

CPU

Memory I/O

Mul -Context iTPM

ME VE

ICH

Hardware

SOS1

Hypervisor

Fig. 23. Architecture for supporting both software simulation vTPM and Hardware sharing
vTPM

228 L. Tan et al.

one is DRTM Support, which supports dynamic integrity measurement; the other is
Virtualization Support, which supports I/O virtualization. SCHEDULING is respon-
sible for the management and scheduling of the request queue. The RUN-TIME
STATE contains the VM status table and the current context of the TPM.
The STORAGE Per-VM Persistent State is responsible for storing the status data that
each virtual machine needs to maintain continuously. The system architecture is
characterized by the creation and management of concurrent security execution envi-
ronments for multi-core systems based on HV-TPM.

In 2013, the literature [47] proposed the para-virtualization architecture of TPM
2.0, as shown in Fig. 25. It is believed that the core functions of TPM2.0 are easy to
support para-virtualized design. Therefore, it is not necessary to use software vTPM to
simulate the functions of TPM 2.0 in VMM layer. Each virtual machine uses TPM
Service to share TPM. The entire host computing platform includes VMM, privileged
virtual machines, para-virtualized TPM service, and hardware. The TPM manager in
the privileged virtual machines is responsible for the management of the hardware
TPM. Para-virtualized TPM service includes Command Filter, Resource Manager, Log
Manager, Sheduler, and Migration Manager. Command Filter is the TPM command
parsing and filter, Resource Manager is responsible for TPM service resource man-
agement, Log Manager is responsible for TPM service log management, Sheduler is
responsible for TPM scheduling, and Migration Manager is responsible for TPM vir-
tualization migration. The advantage of the system architecture is that the security is
high, but the management and scheduling of the TPM are both in the VMM and the
VMM becomes larger, which affects the performance of the VMM and increases the
general security threats of the VMM.

In the industry, VMWare’s VMWare, Citrix’s XenServer, Microsoft’s Hyper-V,
IBM’s PowerVM, etc., have not seen the release and display of relevant results. In the

HV-TPM

I/O
INTERFACE DRTM Support Virtualization Support

SCHEDULING Request Queueing and Processing

RUN-TIME
STATE

VM-ID Interface
ID

Persistent
State Address

Current
Context

Active Context

STANDARD TPM COMPONENTSSTORAGE
Per-VM Persistent State

Fig. 24. HV-TPM architecture

Research and Development of TPM Virtualization 229

open source community, including Xen, KVM, QEMU, Bochs, etc., this implemen-
tation has not been seen.

In summary, due to the advantages and disadvantages of hardware-sharing TPM
virtualization are both obvious, the advantages are high security, the disadvantages are
complex implementation, poor performance and inconvenient migration, so there are
many academic studies, but in industry and the open source community, there are few
related engineering achievements. To sum up, the hardware-sharing TPM virtualization
system architecture is mainly developed in three directions. The first is how to share the
TPM, which includes two aspects. On the one hand, the TPM is shared by the virtu-
alization management layer by adding TPM context management, scheduling, and
improving the system architecture. On the other hand, the purpose of sharing the TPM
is implemented by designing a new TPM. The second is how to improve performance,
mainly to reduce complexity, such as TPM context management mode, TPM
scheduling policy, and so on. Third, in order to better meet user requirements and adapt
to new technologies, software simulation TPM virtualization and hardware sharing
TPM virtualization architectures have obvious convergence trends.

Aggregated TPM Virtualization System Architecture. For the “aggregate TPM
virtualization system architecture”, no matter whether it is academia, industry or open
source community at home and abroad, there is very little research work at present, and
no results have been published or displayed.

Certification AuthorityBackup Manager Migration Authority

Enterprise Infrastructure

Virtual TPM Driver

TPM Manager

Privileged VM

Virtual TPM Driver

 VM1

Appliction

Appliction
Virtual TPM Driver

Appliction

Appliction

Para-Virtualized TPM Service

Command Filter

Scheduler

Resource Manager

Migration Manager

Log Manager

TPM Driver

Hardware
TPM

Extended function
and memory

Host Hardware

Virtual Machines

Host Computing Platform

Fig. 25. Virtualization architecture for hardware TPM 2.0

230 L. Tan et al.

The key technology for “aggregated TPM virtualization” is based on I/O hardware
virtualization technology, SR-IOV [48], a hardware-based virtualization standard
protocol proposed by the PCI-SIG team, and it’s a subset of the PCI-Express protocol.
The SR-IOV standard allows for efficient sharing of PCI-Express devices between
virtual machines, and embeds a module in the PCI-Express hard core (this module is
implemented in hardware). It theoretically can achieve the I/O performance and uti-
lization which is comparable to the performance of the machine. SR-IOV technology is
mainly applied to network card devices, which improves the speed and efficiency of
virtual machines access to the network. Since the TPM is not a PCI device but a LPC
device, the existing PCI device virtualization specification cannot be applied to the
virtualization of the TPM device.

At present, part of the work of the TCG VPWG (Virtualized Platform Work Group)
also involves how to build multiple vTPMs within the TPM to support virtualization,
but it has not disclosed related solutions [1]. The domestic literature [49] studied the
I/O hardware virtualization technology – SR-IOV, and proposed a virtual environment
security isolation model based on SR-IOV technology for the security isolation of
virtual computing environment. The model uses encryption card and Pass Through
technology to implement network data isolation and data encryption isolation, where
the function implemented by the encryption card is one of the main functions of the
TPM.

We believe that although the TCG TPM specification only specifies the functions
and architecture of the TPM, there is no limit to the implementation technology.
However, it does indicate the interfaces between the TPM and the computing system:
LPC. This limitation actually hinders the improvement of communication performance
between the TPM and the computing system, and cannot meet the performance
requirements of multiple virtual machines, dynamics, and concurrent aspects of the
cloud environment. Therefore, it is an urgent task to study the TPM and its system
architecture that meet the hardware virtualization technology SR-IOV.

4.2 Key Management of vTPM

The key management of the vTPM, is the same as the key management of the TPM,
also includes setting the key type, attributes, storage hierarchy, and key lifecycle
management. In order to meet the consistency of user usage and the consistency of the
program interfaces, the key management of vTPM and TPM should be nearly the same.

The earliest paper on the vTPM architecture [22] pointed out that the key orga-
nization structure of each vTPM is similar to the independent key hierarchy of the
TPM, and the key type is the same as the key type of the TPM, that is, in addition to the
endorsement key, the other six types of keys, including storage key, identity certificate,
signature key, binding key, legacy secret, and symmetric key, form a key tree, and the
vSRK is the root of the key tree. The private key of the child node key is protected by
the private key of the parent node key. The management of various key lifecycles,
including key generation, loading, registration, and destruction, is in the privileged
domain and doesn’t depend on the physical TPM. The benefits are that it facilitates the
rapid generation of keys and facilitates vTPM migration. The key in the key hierarchy
is encrypted by the symmetric storage key in the TPM and stored on the peripheral.

Research and Development of TPM Virtualization 231

However, this literature doesn’t discuss vTPM key attributes. In fact, due to the
implementation mechanism and software features of vTPM, the key attributes of vTPM
present new features.

Literature [36] pointed out that the key attributes should change due to the different
vTPM operating environment, which may violate the TCG specification’s definition of
the TPM key attributes. For example, the vEK key of vTPM, according to the TCG
specification, should be a non-migratable key that can only be used to apply for an AIK
certificate, but in vTPM, vEK is a migratable key in order to facilitate the migration of
vTPM. It is used not only to apply for vAIK certificates, but also to encrypt or sign
status data during vTPM migration. Therefore, vEK keys can only be legacy keys.
Another example is the vAIK key of vTPM. According to the TCG specification, it
should not be migrateable. It can only be used to sign the PCR value inside the TPM,
but the vPCR of the guest virtual machine resides in the external memory, therefore, it
happens outside the physical TPM that using the vAIK to sign the vPCR, which
obviously doesn’t conform to the TCG specification of the identity key. So the vAIK
key can only be the signature key in the TCG specification. For another example,
vTPM’s storage root key vSRK. According to the TCG specification, it should be non-
migtable. The key tree can only be protected inside the TPM, but in vTPM, the vSRK
resides in external memory, and in order to facilitate vTPM migration, vSRK is also a
migratable key. So vSRK should also be a legacy key (or encryption key). Therefore,
although each vTPM has a separate key hierarchy similar to TPM, and its key attributes
are shown in Table 1, this key tree hierarchy should be flatter. However, this literature
doesn’t discuss the storage structure of vTPM keys and key lifecycle management.

Literature [50] proposed a key storage structure, which is suitable for VM-vTPM
migration. As shown in Fig. 26. The vSRK is the root of the vTPM key tree, vAIK is
the identity certificate key of the vTPM, SRK is the root of the TPM key tree, and AIK
is the identity verification key of the TPM. gSRK and SK belong to the middle layer
key. The vSRK is protected by the intermediate layer key, gSRK, which is protected by
SRK and is a non-transportable asymmetric key. The purpose of introducing gSRK is
to enable vSRK to migrate. SK is protected by AIK and is also a non-migratory key.

Table 1. Relationship between the key type of vTPM and the key type of hardware TPM

Virtual key type Hardware TPM_Key_Type

Virtual endorsement key TPM_LEGACY
Virtual storage key TPM_LEGACY
Virtual attestation identity key TPM_SIGNING
Virtual signing key TPM_SIGNING
Virtual binding key TPM_BINDING

232 L. Tan et al.

The purpose of SK is to associate vAIK with AIK to sign the migrated data. In addition,
the vTPM key is divided into two categories, one is the internal keys, including vSRK,
partial encryption, signature, binding and legacy key. Internal keys are not migrated
when a virtual machine is migrated. The other type is an external keys, including partial
signatures, encryption, and legacy keys, which are keys that sign and encrypt the
migrated data when a virtual machine is migrated. In order to prevent link attacks of
vTPM migration transactions when a virtual machine is migrated, a vAIK can only be
used for one data migration of a VM. Therefore, vAIK is also non-migratorizable.
However, this literature doesn’t discuss the lifecycle management of vTPM keys.

In October, 2013, TCG published TPM 2.0. The main change in key management
is the generation method of master key. The TPM master key, including EK, SRK, etc.,
is generated by the key seed using the key derivation algorithm KDF. This not only
saves TPM storage space, but also establishes a unified key management mechanism
and migration mechanism for vTPM. After the TPM 2.0, vTPM has not changed in key
type, storage hierarchy, etc. The main changes are reflected in the master key gener-
ation and master key attributes. Literature [47] is the first to propose that distributing
the key for the vTPM of the virtual machine based on the key seed and generating an
endorsement key and key tree, as shown in Fig. 26. As shown in Fig. 27, the vEK of
the virtual machine vTPM is directly generated by the EPS, and the vEK cannot be
migrated. The vSRK of the virtual machine vTPM is replaced by a general storage key,
namely: a duplicateable storage key, and it can be migrated. SPS directly generates
SRK instead of vSRK. Each virtual machine vTPM forms a key subtree with vSRK as
the root, and the key subtree of all virtual machines is further composed of SRK as a
larger key tree. However, this literature doesn’t discuss vAIK.

Internal
signing, binding
and legacy keys

External signing, encryption
and legacy keys

vSRKj

Binding
Keys

vAIKj vSRKj,1 vSRKj,2 vSRKj,n...

SK SK1 SK2 SKn...
SRK AIK AIK1 AIK2 AIKn

gSRK

...EK

TPM

TPM keys

vTPMj

Fig. 26. Key structure suitable for VM-vTPM migration

Research and Development of TPM Virtualization 233

In 2015, the domestic literature [57] proposed a new generation of TPM virtual-
ization framework design: Ng-vTPM, in which the vTPM key organization structure is
designed, as shown in Fig. 28. In the Ng-vTPM, not only the virtual endorsement key
vEK, the virtual storage root key vSRK, the virtual identity key vAIK (virtual attes
tation identity key), but also the signature key, encryption key, binding key and legacy
key are designed. The vEK is generated by the physical TPM EPS and represents the
real platform identity. It is used to identify the virtual machine Ng-vTPM and can
defend against the fake platform identity. vSRK is the root key of the key hierarchy in
Ng-vTPM, which is a migratable asymmetric storage key. The keys located in the
vSRK storage hierarchy are identified as migratable keys. vAIK is the identity cer-
tificate key of the virtual machine, which is requested by the vEK to be verified by the
certificate authority.. When each key is created and the parent key is used to encrypt the
secret part of the subkey, different authorization sessions are used to ensure that the
keys are not accessible without authorization. Moreover, according to the life cycle of
the key, these keys are divided into three groups: vEK, internal migratable group and
external non-migratory group. However, storing the SRK in the vTPM management
domain violates the TCG specification, and a vTPM has multiple vSRKs, which is also
inconsistent with the TCG specification.

From the above analysis, we can see that vTPM key management research mainly
focuses on how to set key types and attributes, storage hierarchy and key lifecycle
management. Since vTPM must meet the migration requirements, there is always a
dilemma between setting the key type and meeting the migration requirements. Either it
needs to change the key attributes that originally meets the TCG specification, or it
needs to introduce key redundancy, which both can not meet the consistency
requirements of vTPM and TPM key management, reducing the convenience of users
using vTPM. In addition, the software emulation vTPM provides trusted computing
services for virtual machines, especially cryptographic computing services are com-
pleted in the virtual platform’s memory (not within the TPM), and it are vulnerable to
general security threats, privileged security threats, and shared security threats. It will
seriously affect the security of virtual machines and vTPM.

Endorsement Primary Seed Storage Primary Seed

Storage Root Key

Virtual Machine A

Endorsement Key Duplicable Storage Key

Duplicable
Cer fying Key

Duplicable
Data Object

Duplicable
Signing Key

Duplicable
Binding Key

Duplicable
Legacy Key

Virtual Machine b

Endorsement Key Duplicable Storage Key

Duplicable
Cer fying Key

Duplicable
Data Object

Duplicable
Signing Key

Duplicable
Binding Key

Duplicable
Legacy Key

Fig. 27. vTPM key structure based on key seed

234 L. Tan et al.

4.3 vTPM Certificate Trust Extension

The credential trust extension of the vTPM refers to how to extend the certificate trust
relationship of the physical TPM to the vTPM certificate and construct the certificate
trust chain relationship from the TPM to the vTPM.

At present, a lot of research has been done on vTPM certificate trust extension at
home and abroad. Literature [22] proposed four design ideas for constructing vTPM
certificate chain in the research, but the last one is related to special hardware, so as not
to lose generality, this paper does not discuss. We only discuss the first three:

(1) vTPM vEK to hTPM AIK Binding, as shown in Fig. 29. In this method, both vEK
and vAIK are generated by vTPM, vEK is bound by TPM’s AIK signature, and
vAIK is used by Privacy CA. The private key is signed and the authenticator
authenticates with the public key of the Privacy CA. This method not only extends
the underlying certificate trust to the virtual machine, but also the vTPM certificate
structure is consistent with the TPM, which is easy to understand and porting the
existing results, but the disadvantages include two aspects. One is to use the
TPM AIK to sign the vEK, which violates the TCG specification. In the TCG
specification, AIK can only sign the information generated inside the TPM, but
vEK is the external information of the TPM. Second, the validity period of the AIK
is usually very short. The failure of the AIK causes the signature of the vEK to be
invalid, which causes the vAIK to invalid, which requires frequently re-apply
vAIK from Privacy CA, so the performance burden of the Privacy CA is heavy.

(2) hTPM AIK signs vTPM vAIK, as shown in Fig. 30, signing the vAI of the vTPM
directly with the AIK of the TPM does not require a Privacy CA. This approach
not only extends the underlying certificate trust to virtual machines, but also
reduces the burden on the Privacy CA. However, the scheme relies on the APM of
the TPM to sign the vAIK, which violates the TCG specification, and the failure
of AIK will also invalidate its signature on vAIK. Therefore, needing to frequently

Signature
 key

Binding
 key

vAIK Legacy
key

vEK vSRK

Signature
 key

Binding
 key

Legacy
key

vSRK

vSRK vTPM admin domain

vTPM domain

EPS SPS

TPM

Fig. 28. Key structure of Ng-vTPM

Research and Development of TPM Virtualization 235

update the signature of the AIK on the vAIK, which increases the performance
burden.

(3) Local CA issue vEK Certificate, that is, the vEK for vTPM is issued by the local
certificate authority (Note: not the Privacy CA), as shown in Fig. 31. The
advantage of this solution is that the vEK is relatively stable and does not change

prviacyCA
Signing Key

vTPM-n ´

AIK

Signing/Identity Key

Encryption Keys

Virtualized environment

create

SRK

show

sign

TPM
Encryption Keys

create

SRK

show

signprviacyCA
Signing Key

Certification for EK MSK Manufacturer´ s Signing Key
Sign

Signing/Identity Key

Fig. 29. vTPM vEK to hTPM AIK binding

vTPM-n

Signing/Identity Key

Encryption Keys

Virtualized environment

create

SRK

TPM
Encryption Keys

create

SRK

show

signprviacyCA
Signing Key

Certification for EK MSK Manufacturer´ s Signing Key
Sign

Signing/Identity Key

´

AIK

Fig. 30. hTPM AIK signs vTPM vAIK

236 L. Tan et al.

with the changes of the underlying virtual platform and the TPM. The disad-
vantage is that not only the additional certificate authority needs to be added, but
also the TPM is not bound, that is, the trusted certificate extension of the TPM is
not passed to vTPM.

The literature [52] proposed the “vTPM vEK to hTPM EK Binding” scheme, that
is, the vEK is bound by the TPM EK signature, as shown in Fig. 32. The advantage of
this scheme is to avoid invalidation of the vEK signature due to the failure of AIK, the
binding relationship with the TPM is clear and simple, and the underlying TPM cer-
tificate trust is extended to the virtual machine. But the disadvantage is that it violates
the TCG specification, that is, the EK certificate cannot be used for signature.

Fig. 31. Local CA issue vEK certificate

Fig. 32. vTPM vEK to hTPM EK binding

Research and Development of TPM Virtualization 237

In addition, in order to improve the first four schemes, the literature [53] proposed
the “vTPM vAIKto hTPM SK Binding” scheme, which introduces the signature key
SK as an intermediary to implement the indirect signature of the AIK on vAIK, so that
the AIK no longer sign TPM external data, which can better meet the TCG specifi-
cation. And generating vAIK doesn’t depend on PrivacyCA, which reduces the burden
of PrivacyCA, as shown in Fig. 33. However, this solution not only increases the
complexity of generating vAIK certificates, but also doesn’t solve the problem that
AIK failure will cause vAIK to failure. And refactoring vAIK needs to regenerate SK,
which brings the new performance burden. In addition, each vAIK certificate corre-
sponds to one SK, which generates a large amount of key redundancy.

Literature [57] combined with the new features of TPM 2.0, proposed the “hTPM
EPS Product vEK” scheme, as shown in Fig. 34. In this scheme, the vTPM’s identity
certificate vAIK is generated by the EPS derived vEK to the Privacy CA verification.
The literature believes that based on the mapping relationship between vEK and EPS, it
can directly identify the real physical identity in the virtual machine and establish a
trust chain from the physical platform to the virtual platform. But it is actually not
working. EPS is only the basic key seed of Endorsement Key. Using KDF algorithm to
generate Endorsement Key, which is simple and easy, but it only generates the key pair
of vEK, and there is no problem of trust extension and delivery. The outside world
cannot derive from the public key of the key pair that the public key is generated by the
EPS of the underlying TPM. It is still necessary to pass the public key of the vEK
generated by the EPS, the signature information of the underlying virtualization plat-
form, and the vTPM information to the Privacy CA to generate the vEK certificate, and
then generate the vAIK by using the vEK certificate from the Privacy CA to implement
the extension of the vTPM certificate trust chain.

It can be seen from the above analysis that no matter what method is adopted to
extend the certificate trust relationship of the underlying physical TPM to the vTPM

Virtual TPM
Management

Domain

Physical TPM

Virtual
platform

identification
key vAIK

Quote

AIK
certificate

vAIK certificate

Identification
key AIK

Signature
key

virtual
TPM instance

 Generating Request vAIK certificate

loading

Generating
Generating

signature

 Signature

Fig. 33. vTPM vAIKto hTPM SK binding

238 L. Tan et al.

certificate is not perfect, there is a violation of the TCG specification, or increasing the
key redundancy, or increasing the performance burden of the Privacy CA. Some
schemes can’t even extend the certificate trust. These will reduce the convenience and
trust of the user.

4.4 vTPM Migration

vTPM migration refers to migrating vTPM from the source virtual platform to the
destination virtual platform. The vTPM migration can be classified according to dif-
ferent classification methods. According to whether the source virtual platform and the
destination virtual platform are in the same cloud, it can be divided into vTPM intra-
cloud migration and vTPM inter-cloud migration; according to whether the source
virtual platform and the destination virtual platform are the same, it can be divided into
vTPM homogeneous migration and vTPM heterogeneous migration; according to the
migration mode, it can be divided into static migration and dynamic migration; at
present, the most distinguishing methods used in the study are static migration and
dynamic migration. Therefore, this section will be explained in terms of vTPM static
migration and dynamic migration.

Static Migration of vTPM. The so-called vTPM static migration is to lock the vTPM,
stop the vTPM service, and then migrate the vTPM related status data. The vast
majority of current research is mainly to design vTPM static migration protocol,
including vTPM single migration protocol, and VM and vTPM bundle migration
protocol in the existing research results. Regardless of the vTPM single migration
protocol or the VM and vTPM bundle migration protocol, the basic steps of the
protocol are nearly the same. The only difference is that the vTPM is locked while the
VM is locked, and the vTPM related state data is migrated while the VM related state
data is migrated. Therefore, in this section, we all regard as the same type of research
for vTPM individual migration and VM-vTPM bundle migration.

prviacyCA
Signing Key

vTPM-n

Signing/Identity Key

Encryption Keys

Virtualized environment

create

SRK

show

sign

TPM

Fig. 34. hTPM EPS product vEK

Research and Development of TPM Virtualization 239

In 2006, the literature [22] first designed the static migration protocol of vTPM. In
the migration protocol, transmitting the source vTPM instance state data to the desti-
nation platform securely by using session key encryption. The destination platform
restores the vTPM instance and deletes the source vTPM instance. As shown in
Fig. 35. First, the platform migration control process engine creates a vTPM instance
with an empty state on the destination platform, generates a unique identifier Nonce
associated with the instance, and passes the encrypted Nonce to the source platform.
Nonce’s goal is to prevent replay attacks and the uncertainty of migration destinations,
and Nonce is effective throughout the migration process. The source platform then
locks the vTPM that needs to be migrated and associates it with the Nonce passed from
the destination platform. Third, the source platform collects state data of the source
vTPM, including: NVRAM, key session authorization and transmission callback status,
authorization data, counters, and other related permanent flag bits and data. In order to
ensure the integrity and confidentiality of the state data during the migration process,
the source platform serializes the state data and signs it with an asymmetric key, and
then generates a symmetric key pair to encrypt the serialized state data and the sig-
nature value to generate the migration data. The symmetric key is encrypted and
protected by a storage key of the parent vTPM of the source vTPM. Fourth, the source
platform deletes the source vTPM instance and delivers the migrated data to the des-
tination platform. Finally, the destination platform migrates and decrypts the state data
of the source vTPM, performs integrity verification and Nonce verification, and finally
restores the target vTPM instance. It is worth noting that in order to the destination
platform to be able to decrypt the migration data of the source vTPM, the parent vTPM
storage key of the source platform must be migrated to the destination platform.

Source
 Virtual TPM

Migration Process
on Source Platform

Migration Process on
Destination Platform

Destination
 Virtual TPM

LockInstance(Instance,
Nonce)

GetInstanceKey(Instance)

DeleteInstanceKey(Instance)

Transfer encryped

Unique Identifier

CreateInstance for
Destination of migration

Recv: State Data,
Migration Digest

Package virtual TPM
 instance state

Transfer
TPM state

Return Migration Unique
Identifier(Nonce)

Recv: Key

SetInstanceKey(Instance,
Key)

Package virtual TPM
 instance state

UnclockInstance(Instance,
Migrate Digest)

Fig. 35. Static migration protocol of vTPM

240 L. Tan et al.

In 2007, the literature [52] analyzed the vTPM migration protocol in literature [22],
and pointed out three shortcomings in the design of the vTPM migration protocol. First,
the literature [22] uses the symmetric key encryption source vTPM state data, and uses
the storage key of the source platform parent vTPM to protect the symmetric key.
However, the protocol doesn’t describe the migration of the storage key; secondly, the
protocol is not well designed. For example, what key is used to encrypt the unique
identifier Nonce of the destination platform vTPM, which is not stated in the protocol;
finally, whether it is vTPM migration or key migration, it belongs to the TCG-IWG
(Infrastructure Working Group: IWG) working group. The scope of work of the DMTF
(Data Migration Task Force: DMTF) task group, but the design of the protocol is nearly
not related to the work of the task group.

In 2008, the literature [40] improved the vTPM migration protocol in literature
[22]. The biggest difference from the literature [22] is that the protection of the session
key no longer by using the storage key of the parent vTPM. After the source migration
control process engine initiated the migration and the destination migration control
process engine created a new vTPM instance, the source vTPM requires to establish a
trusted channel between the source platform and the destination platform. The session
key is negotiated through the trusted channel. The subsequent process is basically the
same as the literature [22], as shown in Fig. 36.

In 2011, the literature [54] again improved the static migration protocol proposed in
literature [22], as shown in Fig. 37. This literature proposed a 4-stage VM-vTPM
migration process. In the first stage, establishing a TLS session; in the second stage,
proving the source platform and the destination platform; in the third stage, migrating
VM-vTPM state data, and starting the VM and vTPM of destination platform, deleting
the VM and vTPM of source platform; in the fourth stage, ending the TLS session.

Source Platform Destination Platform

v-TPM Migration controlling process Migration controlling process

InitiateMigration()

Migrate() V-TPMCreate()

RequestTrustedChannel()

PkBind, certBind

Verify(PkBind, certbBind)

sk:=createKey()

esk:=bind[pkBind](sk)

es:=encrypt[sk](s)

s:=getstate()

deleteKey(sk),delete
State()

destory()

×

transfer(es,esk)

sk:=bind[pkBind](esk)
s:=encrypt[sk](es)

setState(s)

Fig. 36. Static migration protocol of vTPM based on trusted channel

Research and Development of TPM Virtualization 241

Compared with the literature [40], the source and destination credibility certificates
have been added.

In 2012, the domestic literature [55] improved the literature [22], [40] and [54].
This literature proposed a two-stage vTPM migration. In the first stage, establishing
trusted channel, and in the second stage, migrating the data. In the establishing trusted
channel satge, requiring mutual authentication, attribute-based identity verification,
parameter negotiation, and session key exchange. In the data migration satge, it is
nearly the same as the literature [22] and [40]. As shown in Fig. 38.

When designing the protocol, the literature also considers the requirement that the
source vTPM has non-repudiation and needing to guarantee the transaction atomicity of
the entire migration process, which is more perfect than the previous research results. In
the same year, the domestic literature [56] also proposed the design and implementation
of a secure VM-v TPM migration protocol, including 4 stages. In the first satge,
establishing secure session; in the second satge, remoting proofing of the destination
platform; in the third satge, transporting vTPM and VM state data; in the fourth satge,
deleting the VM and its vTPM on the source platform and restore it on the destination
platform. It is nearly consistent with the previous research results.

S(Source Platform) D(Destination Platform)

Derive Session key: K
Derive Session key: K

Mantual authentication Key
exchange

Suspend and lock
the VM and its vTPM

m1=SignAIK(PCR||NS)

{Ns}K

m2=VM||vTPM||Nd1 Verify Nd

Delete VM & vTPM

{Nd}K

Verify VM Integrity

Import vm-vTPM
Resume VM and its vTPM

Start of TLS Session

Attestation of S and D

Pick Ns {0,1}n

Verify Ns
{m1}K

S verifies D platform integrity. A similar attestation of S is also
performed by D. If these verification fail, the protocol is aborted

VM-vTPM Transfer

Pick Nd {0,1}n

{m2}K

{DELETE}K

{RESUME}K

Delete K Delete K

END of TLS Session

Fig. 37. Static migration protocol of vTPM based on TLS

242 L. Tan et al.

In 2015, the domestic literature [57] redesigned the vTPM migration protocol based
on TPM 2.0. In this literature, dividing vTPM into two parts, one is the key migration
of vTPM; the other is the state data migration of vTPM. In order to solve the migration
timing problem of VM-vTPM, proposing a VM-vTPM instance pair migration pro-
tocol, which is divided into four stages: two-party identity authentication stage, two-
party remote certification stage, data transmission stage and subsequent processing
stage. The protocol process is shown in Fig. 39. And theoretical proof was carried out
in this literature. However, this literature is too crude for the description of vTPM key
migration.

In addition, the migration of TPM is also studied in literature [24] and [47]. But
these two literatures are mainly aimed at the migration of physical TPM, not the
migration of vTPM. Therefore, it is not analyzed here.

Mutual authentication
Property-based attestation

Negotiating parameter
Phase1:Trusted

tunnel established

Source Platform Destination Platform

Keys exchange

Message(request migration)

Message(response migration)

Package(vTPM state)

Message(Transfer success)

Phase 2:Data
transfer

Create vTPM
instances

Suspend, lock
VM&vTPM

Package
(vTPM state)

Delete vTPM

Decryption &
Verification:

If success,
resume vTPM

Fig. 38. vTPM static migration protocol for high security requirements

Source Platform Destination Platform

Session key: K Session key: K{Ns1},selectPCR

Suspend VM & lock vTPM m1=SignAIKd(PCR||NS){Ns1,m1,Nd1}K

m2=(vTPM||Nd1)sym
{Ns1,m2,H(m2),Nd1}

Verify Ns1 and the
Integrity of vTPM

m3=(vTPM||Nd2)sym

Delete VM & vTPM

{Nd2}K

{Ns1,m3,H(m3),Nd2}

{Delete, Ns1}K

Verify Ns2 and the
Integrity of vTPM

{Resume, Nd2}K
Resume VM & vTPM

Fig. 39. VM-vTPM static migration protocol

Research and Development of TPM Virtualization 243

In summary, the vTPM static migration protocol has achieved more research results
and is maturing. However, most of the results transfer the vTPM key structure as one of
the vTPM status data, which is unreasonable, and vTPM key migration must comply
with the TCG specification. In addition, for the vTPM static migration, there are many
research results in the academic, but the engineering achievements related to the
industry and the open source community are still few.

Dynamic Migration of vTPM. The so-called vTPM dynamic migration, that is, the
migration without stopping the vTPM service. At present, there are many dynamic
migration results for VMs, including pre-copy, post-copy, checkpoint recovery, and log
playback technologies. The vTPM dynamic migration is also a memory copy tech-
nology, which can learn from the existing research results of VM.

In 2015, the literature [58] designed the VM-vTPM dynamic migration protocol.
As shown in Fig. 40. The VM-vTPM dynamic migration protocol is divided into two
satges. The first stage is the integrity verification stage, and the second satge is the data

Mutual authentication

Secure channel construction

Platform integrity measurement

Phase1:Integrity verification

Source Destination

Virtual machine integrity measurement

Pre-copy of VM memory contents

VM suspension and key data transmission

Migration success notification

Phase2:Data Transfer

Source Platform Destination Platform

Migrate the ks under the protection of kG utilizing the migratable key transfer mechanism

TPM generates a specific symmetric k, which is associated with
the PCRs values of the destination platform

Load ks into TPM
Pre-copy process

Transfer memory contents ineratively Load accepted data into
vTPM-VM container

Meet pre-copy terminating conditions,
spend the vTPM-VM

Save the encrypted data with ks

Transfer the encrypted data
Decrypted the ciphertext, load

key data into vTPM-VM container

Resume vTPM-VM

Notify the migration result(success or failure)

If success, shutdown and delete the suspended
vTPM-VM; if failure, resume vTPM-VM and

terminate this migration connection

If success, continue to provide users
good service; if failure, delete all vTPM-

VM related data

The end of phase 2

Fig. 40. VM-vTPM live migration protocol

244 L. Tan et al.

migration satge. In the first satge, the mutual authentication of the source platform and
the destination platform, the construction of the secure channel, the integrity mea-
surement of the platform, and the integrity measurement of the virtual machine are
included. In the second satge, the migration of the VM-vTPM and the VM-vTPM lock
using the pre-copy method, key data migration and migration success notification are
included.

In addition, the literature [59] has done similar work on the KVM platform, and the
device state of the vTPM is further considered in the migration process. In addition,
other research results of vTPM dynamic migration have not been seen yet.

In summary, the existing results in the VM and vTPM memory copy, the discussion
is not detailed enough, whether it is to copy the VM first, then copy the vTPM, or copy
the vTPM first, then copy the VM, or copy the VM and vTPM at the same time, which
is no explanation in the results.

vTPM Migration System. The so-called vTPM migration system refers to the soft-
ware and hardware systems that manage, control and implement vTPM migration. It
usually includes the roles, entities, architectures, and interoperability protocols that
implement the migration.

In the academic, there has not been a publicly available, practical vTPM migration
system. In the industry, whether it is VMware’s vSphere 6, Microsoft’s Hyper-V, or
Orical’s VBox, there is no public display of the commercial vTPM migration system.
In the open source community, only Xen gives a good vTPM migration. Since Xen 3.2,

Migration
Administrator

Migration
policy

Migration
Controller

Remote Challenger

Step7:Migration
Event occurs

Step5:Obtain VPMA
 Integrity Evidence.

Certificates
and Migration Policy

Step10: Migration
Notification

Step6: Verify VPMA
and Migration Policy

VMM Service

Step1-4: Compliant Attestation

Integrity
Validator

Step8: Request Migration

Step9:
Migration

Virtual Platform #1

Virtual Platform #2

Virtual Platform #3

Deep
Attestation

Service

Migration
Engine
Service

Guest OS VM

Attestation
Agent

VMM
Attestation

Migration
Engine

pRTM

vTPM

vPlatform
Manager

pTPM

vRTM

VMM

Physical Platform

Deep
Attestation

Service

Migration
Engine
Service

Guest OS
VM

Attestation
Agent

VMM
Attestation

Migration
Engine

pRTM

vTPM

vPlatform
Manager

pTPM

vRTM

VMM

Physical Platform

Deep
Attestation

Service

Migration
Engine
Service

Guest OS
VM

Attestation
Agent

VMM
Attestation

Migration
Engine

pRTM

vTPM

vPlatform
Manager

pTPM

vRTM

VMM

Physical Platform

Group of
Virtualized

Systems

Fig. 41. vTPM migration architecture of VPWG

Research and Development of TPM Virtualization 245

vTPM can run in a separate domain of Unikernel, the separate domain is essentially a
lightweight virtual machine that can be migrated using Xen’s virtual machine migration
system, but Xen can only migrate vTPM between similar platforms.

In 2011, TCG’s VPWG (Virtual Platform Working Group: VPWG) proposed the
vTPM migration system architecture and migration protocol under the trusted virtual
platform in the Virtualized Trusted Platform Architecture Specification [58]. As shown
in Fig. 41. The migration architecture has a total of 12 entities, including Migrate
Controller, Integrity Validator, Deep Attestation Service, VMM Attestation, Attestation
Service, Migration Engine Service, Migration Engine, Virtual Platform Manager
(vPlatform Manager), Virtual Trusted Root (vRTM), Virtual TPM (vTPM), and
Physical Trusted Root (PRTM) and Physical TPM (pTPM). The roles involved include
remote challengers, migration managers, and more. In the first 4 steps of the migration
protocol, the migration challenger proves compatibility between the source platform
and the destination platform; in the steps 5 and 6, the Integrity Validator in the
migration challenger obtains VPAM integrity evidence, certificates, and migration
policies from the Migration Control (Migrate Controller) and verifies them; in the step
7, once the migration manager receives the migration event, a migration command is
issued to the migration engine in step 8; in step 9, the migration engine migrates the
VM-vTPM that needs to be migrated. After the migration was completed, the
Migration Manager notifies remote challenger that migration was successfully. Com-
pared with the existing research results, the specification details the entities involved in
the migration, which is closer to the practical system, but the migration protocol itself is
less discussed.

To sum up, in the aspect of vTPM migration, the researches on vTPM static
migration protocol are nearly mature, however, there are few researches on vTPM
dynamic migration, especially the timing problem of memory copy during vTPM and
VM bundle migration has not been solved. The practical and mature vTPM migration
system has not yet appeared, and further research and development are urgently
needed.

5 Problems and Challenges Needed to Be Solved in TPM
Virtualization

At present, various TPM virtualization solutions have different advantages and dis-
advantages, and there are still many problems that need to be solved in terms of
security, performance and compliance with TCG specification. Mainly including the
following 4 aspects:

(1) On the TPM virtualization system architecture, there is a lack of a smart adaptive
TPM virtualization architecture with high security, high performance and dynamic
adjustment according to user security requirements. In addition, the research on
the aggregated TPM virtualization architecture is also lagging behind. Our

246 L. Tan et al.

thinking cannot be limited to the details of the TCG specification. We should learn
from the basic ideas of trusted computing and boldly innovate in technology.

(2) In the key management of vTPM, the problems and challenges include two
aspects. On the one hand, since vTPM must meet the migration requirements,
there is always a dilemma between setting the key type and meeting the migration
requirements. It is necessary to change the key attributes that originally satisfies
the TCG specification, or introduce key redundancy, which cannot meet the
consistency requirement of the key management of the vTPM and the TPM, and
reduces the convenience of the user to use the vTPM. On the other hand, the
trusted computing services provided by the software emulation vTPM for virtual
machines, especially the cryptographic computing services, are all completed in
the virtual platform’s memory (not within the TPM), which is vulnerable to
general security threats, privileged security threats and sharing security threats,
which will seriously affect the security of user virtual machines and vTPM.

(3) In terms of certificate trust extension, in order to extend the certificate trust
relationship of the physical TPM to the vTPM certificate. No matter what way is
used, there is a case where the certificate usage violates the TCG specification, or
a key redundancy is introduced, and no Satisfactory solution has not been found.

(4) In the vTPM migration solution, the current researches focus on the vTPM static
migration protocol between the same virtual platforms in the cloud. However, the
vTPM static migration protocol, the vTPM dynamic migration protocol, and the
vTPM migration system between heterogeneous virtual platforms in the cloud
require further research and development.

6 Conclusion

The combination of trusted computing and cloud computing technology can guarantee
the credibility of the cloud computing environment in a certain extent, and promote the
expansion and extension of cloud computing in a wider range of application. One of the
effective ways to solve this problem is to to build a virtual machine trusted environment
through TPM virtualization. How to securely and efficiently virtualize TPM and
improve users’ trust in cloud environment is the key to the integrated development of
trusted computing and cloud computing. At the same time, TPM virtualization is not
only a technical issue, it also involves many aspects such as standardization, super-
vision mode, application mode, etc. Therefore, it is not enough to explore TPM vir-
tualization from a technical perspective, and it requires the joint efforts of the
information security academic community, industry and relevant government depart-
ments to achieve this.

Acknowledgements. This work was supported by the National Natural Science Foundation of
China (Grant No. 61373162), and the Sichuan Provincial Key Laboratory Project (Grant
No. KJ201402).

Research and Development of TPM Virtualization 247

References

1. Trusted Computing Group. https://www.trustedcomputing-group.org. Accessed 08 Sept
2019

2. TPM Specification, Version 2.0/Part 1, Architecture. https://www.Trustedcomputinggroup.
org/wp-con-tent/uploads/TPM-Rev-2.0-Part1-Architecture-01.36_public-review.pdf. Acces-
sed 08 Sept 2019

3. TPM Specification, Version 2.0/ Part 2, Structures. https://www.Trustedcomputinggroup.
org/wp-con-tent/uploads/TPM-Rev-2.0-Part2-Structures-01.36_public-review.pdf. Accessed
08 Sept 2019

4. Specification, Version 2.0/ Part 3, Commands. https://www.trustedcomputinggroup.org/wp-
content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-review.pdf. Accessed
08 Sept 2019

5. TPM Specification, Version 2.0/Part 4, Supporting Routines. https://www.trustedcomputi
nggroup.org/wp-content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-revie
w.pdf. Accessed 08 Sept 2019

6. Changxiang, S., Huanguo, Z., Dengguo, F., et al.: Information security review. Scientia
Sinica Ser. E: Inf. Sci. 37(2), 129–150 (2007)

7. Changxiang, S., Huanguo, Z., Huaiming, W., et al.: Research and development of trusted
computing. Scientia Sinica Ser. E: Inf. Sci. 40(2), 139–166 (2010)

8. Dengguo, F., Yu, Q., Dan, W., et al.: Research on trusted computing technology. J. Comput.
Res. Dev. 48(8), 1332–1349 (2011)

9. State Cryptography Administration: Trusted Computing Cryptographic Support Platform
Function and Interface Specification (2007)

10. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In:
Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, pp. 44–
51. IEEE, Seoul (2009)

11. Yao, S., et al.: An efficient multi-objective scheduling method for data flow in cloud
environment. J. Softw. 28(3), 1–19 (2017)

12. Siyao, X., Weiwei, L., Zijun, W.: Virtual machine placement algorithm based on peak load
characteristics. J. Softw. 27(7), 1876–1887 (2016)

13. Wei, W., Zeyu, G., Wenbo, Z., et al.: A cloud computing system fault detection method
based on adaptive monitoring. Chin. J. Comput. 39(163), 1–15 (2016)

14. Guofeng, W., Chuanyi, L., Hezhong, P., et al.: Overview of internal threats in cloud
computing models. Chin. J. Comput. 39(145), 1–21 (2016)

15. Lifang, R., Wenjian, W., Xing, X.: Adaptive cloud computing service portfolio with
uncertain perception. J. Comput. Res. Dev. 53(12), 2867–2881 (2016)

16. Junjie, L., Fenghua, L., Qiongni, L., et al.: Optimized high-dimensional index and KNN
query under MapReduce framework. Acta Electronica Sinica 44(8), 1873–1880 (2016)

17. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/. Accessed 08 Sept 2019
18. Google App Engine (GAE). https://appengine.google.com/. Accessed 08 Sept 2019
19. Microsoft Azure Services Platform. http://www.microsoft.com/azure/. Accessed 08 Sept

2019
20. Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems

(Eucalyptus). http://www.eucalyptus.com/. Accessed 08 Sept 2019
21. Chuang, L., Wenbo, S., Kun, M., et al.: Cloud computing security: architecture, mechanism

and model evaluation. Chin. J. Comput. 36(9), 1765–1784 (2013)

248 L. Tan et al.

https://www.trustedcomputing-group.org
https://www.Trustedcomputinggroup.org/wp-con-tent/uploads/TPM-Rev-2.0-Part1-Architecture-01.36_public-review.pdf
https://www.Trustedcomputinggroup.org/wp-con-tent/uploads/TPM-Rev-2.0-Part1-Architecture-01.36_public-review.pdf
https://www.Trustedcomputinggroup.org/wp-con-tent/uploads/TPM-Rev-2.0-Part2-Structures-01.36_public-review.pdf
https://www.Trustedcomputinggroup.org/wp-con-tent/uploads/TPM-Rev-2.0-Part2-Structures-01.36_public-review.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-review.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-review.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-review.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-review.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part3-Commands-01.36-code_public-review.pdf
http://aws.amazon.com/ec2/
https://appengine.google.com/
http://www.microsoft.com/azure/
http://www.eucalyptus.com/

22. Berger, S., Cáceres, R., Goldman, K.A., et al.: vTPM: virtualizaing the trusted platform
modual. In: Proceedings of the 15th USENIX security Symposium, pp. 305–320. ACM,
Vancouver (2006)

23. England, P., Loeser, J.: Para-Virtualized TPM sharing. In: Lipp, P., Sadeghi, A.-R., Koch,
K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 119–132. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68979-9_9

24. Stumpf, F., Eckert, C.: Enhancing trusted platform modules with hardware-based
virtualization techniques. In: Proceedings of the 2008 Second International Conference on
Emerging Security Information, pp. 1–9. IEEE, Cap Esterel (2008)

25. Lei, S., Deqing, Z., Hai, J.: Xen Virtualization Technology. Huazhong University of Science
and Technology Press, Hangzhou (2009)

26. AlBelooshi, B., Salah, K., Martin, T., et al: Securing cryptographic keys in the IaaS cloud
model. In: 8th International Conference on Utility and Cloud Computing (UCC), pp. 397–
401. IEEE, Limassol (2015)

27. Zhilou, Y., Qiao, W., Weipin, Z., et al.: A cloud certificate authority architecture for virtual
machines with trusted platform module. In: IEEE 7th International Symposium on
Cyberspace Safety and Security (CSS), pp. 1377–1380. IEEE, New York (2015)

28. Dexian, C., Xiaobo, C., Yu, Q., et al.: TSD: a flexible root of trust for the cloud. In: IEEE
11th International Conference on Trust, Security and Privacy in Computing and
Communications, pp. 119–126. IEEE, Liverpool (2012)

29. Xin, W., Zhiting, X., Yi, R.: Building trust into cloud computing using virtualization of
TPM. In: Fourth International Conference on Multimedia Information Networking and
Security, pp. 59–63. IEEE, Nanjing (2012)

30. Dongliang, X., Xiaolong, W., Yunwei, G., et al.: TrustVP: construction and evolution of
trusted chain on virtualization computing platform. In: Eighth International Conference on
Computational Intelligence and Security (CIS), pp. 623–630. IEEE, Guangzhou (2012)

31. Microsoft MVP. http://anilerduran.com/vtpm-in-windows-server-2016-hyper-v/. Accessed
08 Sept 2019

32. Oricale. https://www.virtualbox.org/. Accessed 08 Sept 2019
33. VMware. http://www.vmware.com/. Accessed 08 Sept 2019
34. Xen project. http://www.xenproject.org/. Accessed 08 Sept 2019
35. KVM project. http://www.linux-kvm.org/. Accessed 08 Sept 2019
36. Scarlata, V., Rozas, C., Wiseman, M., et al.: TPM virtualization: building a general

framework. In: Pohlmann, N., Reimer, H. (eds.) Trusted Computing, pp. 43–56. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-8348-9452-6_4

37. Anderson, M.J., Moffie, M., Dalton, C.I.: Towards trustworthy virtualization environments:
Xen library OS security service infrastructure. Hewlett-Packard Lab. 2007(1), 43–51 (2007)

38. Murray, G., Milos, G., Hand, S.: Improving Xen security through disaggregation. In: VEE
08: Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 151–160. ACM, Seattle (2008)

39. David, P., Serdar, C., Chris, D., et al.: TPM virtualisation architecture document. Open
Trusted Computing (2009)

40. Sadeghi, A.-R., Stüble, C., Winandy, M.: Property-based TPM virtualization. In: Wu, T.-C.,
Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 1–16. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_1

41. Xin, J., Lina, W., Rongwei, Y., et al.: Administrative domain: security enhancement for
virtual TPM. In: International Conference on Multimedia Information Networking and
Security, pp. 767–771. IEEE, Nanjing (2010)

42. Weiqi, D.: Research on key issues of trusted construction of cloud computing execution
environment. Huazhong University of Science and Technology (2015)

Research and Development of TPM Virtualization 249

https://doi.org/10.1007/978-3-540-68979-9_9
http://anilerduran.com/vtpm-in-windows-server-2016-hyper-v/
https://www.virtualbox.org/
http://www.vmware.com/
http://www.xenproject.org/
http://www.linux-kvm.org/
https://doi.org/10.1007/978-3-8348-9452-6_4
https://doi.org/10.1007/978-3-540-85886-7_1

43. Bade, S.A., Betz, L.N., Kegel, A.G., et al.: Method and system for virtualization of trusted
platform modules. US Patent 7 380 119, May, 2008

44. Feller, T., Malipatlolla, S., Kasper, M., et al.: dcTPM: a generic architecture for dynamic
context management. In: International Conference on Reconfigurable Computing and
FPGAs, pp. 211–216. IEEE, Cancun (2011)

45. Smith, N.M.: Method and apparatus for virtualization of a multi-contexthardware trusted
platform module (TPM). US Patent 2009/0 055 641 A1, February 2009

46. Jayaram Masti, R., Marforio, C., Capkun, S.: An architecture for concurrent execution of
secure environments in clouds. In: Proceedings of the 2013 ACM workshop on Cloud
computing security workshop, pp. 11–22. ACM, Berlin (2013)

47. Yap, J.Y., Tomlinson, A.: Para-virtualizing the trusted platform module: an enterprise
framework based on version 2.0 specification. In: Bloem, R., Lipp, P. (eds.) INTRUST 2013.
LNCS, vol. 8292, pp. 1–16. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03491-1_1

48. Pci-sig-single root iov. http://www.pcisig.com/specifica-tions/iov/Single_root/. Accessed 08
Sept 2019

49. Mingda, L., Longyu, M.: A virtual environment security isolation model based on SR-IOV
technology. In: Proceedings of the 31st National Computer Security Academic Exchange
Conference, pp. 84–89. CNKI, Xiamen (2016)

50. Xinlong, L., Rui, J., Huafeng, K.: Secure and reliable VM-vTPM migration in private cloud.
In: 2nd International Symposium on Instrumentation and Measurement, Sensor Network and
Automation (IMSNA), pp. 510–514. IEEE, Toronto (2013)

51. Yongjiao, Y., Fei, Y., Junpeng, M., et al.: Ng-vTPM: a new generation of TPM
virtualization framework design. J. Wuhan Univ. (Nat. Sci. Ed.) 61(2), 103–111 (2015)

52. Goyette, R.: A review of vTPM: virtualizing the trusted platform module. In: Network
Security and Cryptography Symposium, pp. 1–17 (2007)

53. Lina, W., Hanjun, G., Rongwei, Y., et al.: Research on the construction method of trusted
virtual execution environment based on trust extension. J. Commun. 32(9), 1–8 (2011)

54. Danev, B.: Enabling secure VM-vTPM migration in private clouds. In: ACSAC 2011
Proceedings of the 27th Annual Computer Security Applications Conference, pp. 187–196.
ACM, Orlando (2011)

55. Xin, W., XinFang, Z., Liang, C., et al.: An improved vTPM migration protocol based trusted
channel. In: International Conference on Systems and Informatics (ICSAI), pp. 870–875.
IEEE, Yantai (2012)

56. Yinchao, Y., Zai, L., Zuoning, C.: Design and implementation of a secure VM-v TPM
migration protocol. Appl. Electron. Tech. 38(4), 130–133 (2012)

57. Armbrust, M., Fox, A., Grith, R., et al.: A view of cloud computing. Commun. ACM 53(4),
50–58 (2010)

58. Peiru, F., Bo, Z., Yuan, S., et al.: An improved vTPM-VM live migration protocol. Wuhan
University J. Nat. Sci. 20(6), 512–520 (2015)

59. Yuqing, H., Bo, Z., Jue, X., et al.: A KVM-based v TPM virtual machine dynamic migration
scheme. J. Shandong Univ. (Nat. Sci. Ed.) 52(6), 69–75 (2017)

60. Virtual platform working group (VPWG) on virtualized trusted platform architecture
specification. https://www.trusted-computinggroup.org/wp-content/uploa-ds/TCG_VPWG_
Architecture_V1-0_R0-26_FINAL.pdf. Accessed 08 Sept 2019

61. Yan, D., Huaiming, W., Peichang, S., et al.: Trusted cloud service. Chin. J. Comput. 38(5),
133–149 (2015)

250 L. Tan et al.

https://doi.org/10.1007/978-3-319-03491-1_1
https://doi.org/10.1007/978-3-319-03491-1_1
http://www.pcisig.com/specifica-tions/iov/Single_root/
https://www.trusted-computinggroup.org/wp-content/uploa-ds/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://www.trusted-computinggroup.org/wp-content/uploa-ds/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf

	Research and Development of TPM Virtualization
	Abstract
	1 Introduce
	2 Basic Concepts of TPM Virtualization
	2.1 Definition of TPM Virtualization
	2.2 Basic Types of TPM Virtualization
	2.3 Basic Requirements of TPM Virtualization

	3 Technical Classification Model of TPM Virtualization
	3.1 Software Simulation Method
	3.2 Hardware Sharing Method
	3.3 Aggregation Method

	4 Key Technology Research and Development of TPM Virtualization
	4.1 System Architecture of TPM Virtualization
	4.2 Key Management of vTPM
	4.3 vTPM Certificate Trust Extension
	4.4 vTPM Migration

	5 Problems and Challenges Needed to Be Solved in TPM Virtualization
	6 Conclusion
	Acknowledgements
	References

