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Abstract. The explosive growth of the Android malware poses a great
threat to users’ privacy and sensitive personal information. It is urgent
to develop an effective and efficient Android malware detection system.
Existing studies usually require the manual feature engineering for the
feature extraction. In fact, the detection performance is heavily relied on
the quality of the feature extraction. Additionally, the feature extraction
becomes extremely difficult in the malware detection due to the fact
that malware developers often deploy the obfuscation techniques. To
address this issue, we focus on the Android malware detection using
the deep neural networks without the human factors. In this paper, we
propose ByteDroid, an Android malware detection scheme that processes
the raw Dalvik bytecode using the deep learning. ByteDroid resizes the
raw bytecode and constructs a learnable vector representation as the
input to the neural network. Then, ByteDroid adopts a Convolutional
Neural Networks (CNNs) to automatically extract the malware features
and perform the classification. Our experiment results demonstrate that
ByteDroid not only can effectively detect Android malware, but also has
a great generalization performance given untrained malware. Moreover,
ByteDroid maintains resilience to obfuscation techniques.

Keywords: Android malware detection · Dalvik bytecode ·
Convolutional Neural Networks

1 Introduction

The growth of Android malware has become a crucial security problem for users’
privacy and sensitive information. It is impractical to analyze every single appli-
cation manually given millions of Android applications in the application stores.
Many Android malware detection systems heavily rely on human factors, using
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handcrafted rules to detect the malware from unknown applications and deter-
mine the malware type. These rules, however, may not work when the malware
equipped with obfuscation techniques. Meanwhile, it is still difficult for mal-
ware detector to keep up with the process of malware evolution. To address this
issue, we develop a deep learning based malware detection scheme that does
not require the domain knowledge and the human factors. In particular, the
proposed detection system works in the rapidly variant malware ecosystem.

In recent years, the deep neural networks have achieved great success in
the fields of computer vision and natural language processing. The deep neural
networks can learn feature representation and classification simultaneously to
achieve the best results. Motivated by this, we seek to use the raw bytecode
sequences of the Android application as the input to train the deep neural net-
works. There are three reasons for choosing the Android bytecode sequences
instead of the source code. First, studies [1–3] show that malicious applications
often contain the similar bytecode sequence due to the fact that malware devel-
opment usually shares the same libraries or modules. Second, the deep neural
networks can learn directly from raw data such as pixels, words and signals. The
bytecode sequence is a great form of raw data. Third, malware often use some
obfuscation techniques to evade detection by renaming identifiers and inserting
junk code. Yet, the bytecode is resilient to these obfuscation techniques and the
model we proposed does not rely on the semantics like strings.

Recent work [4–7] strives to extract semantics as the features for the malware
detection. Based on the features used to classify the malware, these approaches
can be categorized into static analysis and dynamic analysis. The approaches
based on static analysis usually obtain the Android application source code
through the reverse engineering tools like ApkTool. The features are extracted
from the API calls, the permissions, the control flows and the data flows, and
then are used for classification tasks. This type of approaches is resource and time
efficient because the application does not need execution. The dynamic analy-
sis based detection approaches extract the behavioral characteristics while the
application is running and therefore are more effective in detecting the malicious
activities even if the evasion techniques, such as native code and dynamic code
loading, are used. Nevertheless, these approaches require complicated feature
extraction and are not resilient to typical obfuscation techniques.

In this paper, we propose ByteDroid, a deep learning based Android malware
detection approach that does not require domain knowledge and manual feature
extraction. Different from the studies that extract semantic features, ByteDroid
directly processes the raw bytecode for malware detection. The raw bytecode is
extracted from the Android application packages (APKs), which is subsequently
represented by a series of vectors. The generated vectors are then fed to a Con-
volutional Neural network (CNN) to learn the bytecode sequential features for
the classification.

To evaluate the performance of our model, we implement the Android mal-
ware detection model based on the opcode sequences [8]. The results show
that bytecode-based method outperforms opcode-based method. In addition, we
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evaluate the robustness of ByteDroid. Experimental results indicate that Byte-
Droid can effectively detect unknown malware. Meanwhile, ByteDroid is resilient
to obfuscated Android malware. Our contributions can be summarized as follow:

– We propose ByteDroid that directly processes the raw Dalvik bytecode and
automates the Android application bytecode feature extraction through the
deep neural networks to detect the Android malware. ByteDroid does not
require any domain knowledge and manual feature extraction.

– We implement ByteDroid and the malware detector [8] relying on the Android
opcode. The experimental results demonstrate that ByteDroid outperforms
the opcode based detector.

– We conduct the extensive experiments on several datasets to evaluate Byt-
eDroid’s capability in detecting the malware from the untrained application
pool. The results show that ByteDroid has the ability to detect the unknown
malware. Moreover, for 10479 malware that applied seven typical obfuscation
techniques, ByteDroid successfully detects 92.17% of them.

2 Related Work

Methods Based on Traditional Machine Learning. Machine learning and
data mining based methods have been proposed for Android malware detection
[9–15]. In particular, most of studies mainly focus on handcrafted features such
as the sensitive APIs, the permissions, the data flow and the control flow. After
encoding these features as vectors, the machine learning algorithm is applied for
classification.

DroidMat [9] extracts the sensitive API calls, the permission and the intent
message through static analysis. Then it uses k-means algorithm for clustering
and applies k-NN for classification. DroidMiner [10] also performs static analy-
sis to extract activities, services, broadcast receivers and sensitive API calls to
construct a behavioral graph. The malicious patterns can be mined from the
behavioral graph and then encoded as vectors to train a classifier. DREBIN
[11] is another static-analysis based method that extracts features including the
hardware, the permissions, the system API calls and the URLs from the mani-
fest files and the source code. These features is then applied for building a linear
SVM. Since DREBIN applies the linear SVM for classification, it can determine
the contribution of every features and provide explanation. Crowdroid [12] uses
dynamic analysis to extract the system calls. The system calls are clustered
by using k-means algorithm to distinguish malware from benign applications.
DroidDolphin [13] also utilizes dynamic analysis to extract 13 features of run-
time activities, including API calls, network access, file I/O and services. Then
a SVM is trained on these features to detect malware. Marvin [14] performs
the combination of the static analysis and dynamic analysis to fully capture
the behaviors of malware, which uses a linear SVM for binary classification
and assesses the risk of unknown apps with a malice score. HinDroid [15] rep-
resents the Android applications and the corresponding APIs as a structured
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heterogeneous information network, and it uses a meta-path based approach to
characterize the semantic information of the application and its corresponding
APIs. Ultimately, HinDroid applies the multi-kernel learning to build a malware
prediction model.

Methods Based on Deep Learning. Since the deep neural networks perform
much better than the traditional machine learning in many application tasks,
many studies begin to use the deep neural networks instead of the traditional
machine learning algorithms.

Droiddetector [16] associates static analysis and dynamic analysis to extract
192 features and applies Deep Belief Networks (DBNs) whose performance out-
perform machine learning algorithms such as Random Forest and SVM. Li et al.
[17] also build a DBN based model that uses the combinations of sensitive API
calls and permissions as the input features. S. Hou et al. [18] propose an approach
to categorize the API calls inside a single method and represent the Android
application by blocks of API calls. The classification is then performed on API
call blocks using Stacked AutoEncoders. Nix et al. [19] design a pseudo-dynamic
program analyzer to track a possible execution path and generate a series of
the API calls along the path. They build a CNN taking the API call sequences
as input to either detect malware or classify the benign applications. Xu et al.
[20] propose a malware detection system DeepRefiner consisting of two layers. In
the first layer, DeepRefiner classifies the applications into benign, malware and
uncertain type based on the features extracted from the manifest files. For the
applications that labeled as uncertain, DeepRefiner builds a Long Short Time
Memory (LSTM) model to perform refined inspection on the simplified Smali
code in the second layer. Mclaughlin et al. [8] take the opcode as the input of
a CNN model, which is similar to us. The opcode is extracted from the Smali
code dissembled by reverse engineering tools. The author discards the operands
in the execution statement, which has a certain impact on the performance of
the model. In our experiments, we take this approach as a comparison.

As far as we know, there are little published studies directly process the raw
Dalvik bytecode for Android malware detection. Of all the studies described
above, though they use the deep neural networks, the manual feature extraction
is still required. Consequently, the effectiveness of deep neural networks is lim-
ited. Instead, we leverage the potential of the deep neural networks, which use
as little human labors as possible to detect Android malware.

3 ByteDroid

In this section, we describe the details of how to process the bytecode and the
overall architecture of ByteDroid.

3.1 System Architecture

The system architecture of ByteDroid is shown in Fig. 1. ByteDroid consists of
two stages: training and testing. In the training stage, ByteDroid first extracts
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Fig. 1. System architecture of ByteDroid.

the bytecode from the training set containing both malicious and benign appli-
cations. Then, the extracted bytecode is resized to a fixed length and encoded
to the corresponding vectors to fit the input of CNN. Finally, we train the CNN
model using the bytecode vectors. In the testing stage, ByteDroid performs the
same operation as in the training stage to deal with the unknown applications.
After the bytecode sequence is encoded, ByteDroid splits the bytecode sequence
into several chunks to accelerate the malware detection process because the byte-
code with larger size will generate larger intermediate results and introduce the
extra time consumption. Finally, the chunks are fed to the trained model to
complete the classification. Both in training stage and testing stage, there are
three components: Bytecode Extraction, Bytecode Representation and the Deep
Learning Model. In the rest of this section, we discuss each component in detail.

3.2 Bytecode Extraction

The Android application bytecode is contained in file “classes.dex” and is inter-
preted by the Dalvik Virtual Machine (DVM) during the execution. Since each
APK file is a zipped file, we can easily get the classes.dex file by extraction.
After extraction, we use HexDump to obtain hexadecimal bytecode.

The dex file is mainly composed of three parts: the header section, the index
section, and the data section. The header contains the basic information such
as magic, check sum and file size. The index section stores the offset attribute
of string, type, proto, field and method. The data section contains the actual
executable code and data where we are most concerned about. The bytes of the
header section and the index section are constants that vary in different applica-
tions. These bytes normally cannot contribute to malware detection. Therefore,
ByteDroid removes the header section and the index section, only preserving the
data section of an application.

3.3 Bytecode Representation

Size Padding and Cropping. The Android application bytecode has a highly
variable size. Since CNN requires a fixed-size input, we need to pad the bytecode
of a smaller APK to a pre-determined size and crop the bytecode of a larger APK



164 K. Zou et al.

to the same size so that all bytecode sequences have the same size for training
the neural networks. We do not select the pre-determined size to be the bytecode
size of the largest APK because that would significantly incur the computational
complexity. Note that padding the bytecode will not cause additional false pos-
itives because adding zeros at the end of the bytecode is equivalent to adding
a bunch of NOPs. Unfortunately, bytecode cropping does impact the false neg-
atives because the bytecode containing the malicious operations may be cut off
and therefore cannot be “learned” during the training stage.

In this work, we carefully select the pre-determined size in the training stage
to keep the false negative low. Let α be the maximum size of the sequence. The
value of α in our system is determined to 1,500 KB by our experiments (as will be
discussed in Sect. 4.5). In the testing stage, considering the unknown application
may have large size of bytecode, we split the input sequence into multiple chunks
and then feed to our CNN model respectively. At last, we take the summation
of all chunks’ output as the results. The size of each chunk can be arbitrary and
is limited by the physical memory size.

Bytecode Encoding. Since the operation instruction of Android bytecode is
strictly limited to one byte, the bytecode can be considered as a sequence of
single bytes. Assuming that the pre-determined bytecode size is α, then a given
bytecode sequence B can be represented as B = {b1, b2, b3, ..., bα}, bi ∈ [0, 255],
where bi refers to a single of the bytecode.

We encode each byte using a one-hot vector. A one-hot vector for byte is
a vector of length 256 with a single element equals one and other elements
being zero. Therefore, the respective dimension of each bytecode value is set to
one and others are zeros. Using the one-hot vector representation, an Android
application’s bytecode sequence is constructed as the input, a sparse matrix B

′

of size α × 256 to our CNN.

3.4 Deep Learning Model

ByteDroid builds a CNN model consisting of embedding layer followed by a
convolutional layer, a global max pooling layer, a fully connected layer and an
output layer. The proposed CNN architecture is shown in Fig. 2.

Bytecode Vectors. Given a bytecode sequence B
′

= {b
′
1, ..., b

′
i, ..., b

′
α} repre-

senting an APK file and b
′
i refers to a one-hot form bytecode, our task is to

construct a classifier to label the APK to be either benign or malicious.

Embedding Layer. The bytecode in the one-hot form would result in very
large vector space. For reducing the dimensions of the vector space, ByteDroid
chooses embedding layer to transform the vectors of one-hot form into the dense
vectors with P dimensions. The dense vectors not only reduce the dimensions and
therefore lower the computational cost, but also capture the bytecode sequence
information surrounding each vector. In particular, if a sub-sequence consisting
of two or more vectors appears frequently in the bytecode sequence, the similarity
score between these vectors is higher than any other vector pairs. For example,
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Fig. 2. The architecture of CNN.

if the vector of “invoke-virtual” frequently follows the vector of “iget-object”,
the similarity score between “iget-object” vector and “invoke-virtual” vector is
higher than the similarity score between “iget-object” and any other vectors.
Note that the size (P) of dense vector is a hyperparameter that requires to be
tuned. A larger P can capture longer sub-sequence patterns, but does introduce
much higher computational cost. Actually, our experiment results (as will be dis-
cussed in Sect. 4.5) show that the system only achieves a marginal performance
improvement when P is set to 64 and 128. Therefore, we set the value of P to 32
for the practical reason. We project each of bytecode in B

′
into a P-dimensional

space by multiplying a weight matrix WE ∈ R256×P :

bE
i = b

′
iWE , i ∈ [1, α]. (1)

Thus, a bytecode sequence is mapped into a matrix BE ∈ RP×α. The initial
value of WE is pre-trained by using Word2Vec [21] and can be fine-tuned during
training.

Convolutional Layer. ByteDroid then applies one-dimensional convolutional
layer whose input is matrix BE . As each row in BE represents a bytecode,
the width of convolutional kernels should be same as the embedding size P.
In the convolutional layer, we select the multiple-sizes of kernels, ranging from
2 to 8, and apply them in parallel to improve the receptive field of the CNN
model. Formally, let Wcov be the convolutional kernels which are size of K × P .
K is the height of convolutional kernel, which is the number of bytecode bytes
participating in each convolution operation. For different size of the convolutional
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kernels, we arrange to use 64 different filters. Each convolutional kernel produces
a feature map of size α×1 as we use the same-padding in convolution operation.
Since there are 64 filters for each kernel, the feature maps can be stacked to a
matrix of size α × 64. Let outjcov be the feature maps produced by a kernels of
size j:

outjcov = CC64
i=1(ReLU(Cov(W i

cov, BE) + bi
cov)), j ∈ [2, 8], (2)

where ReLU = max{0, x} is the rectified linear unit function. W j
cov ∈ RP×j is

the weight parameter and bj
cov is the bias parameter. CC is the stack operation.

Global Max Pooling. Global max pooling is applied to make our CNN work
regardless of the location of detected features, and fix the size of feature maps
given any arbitrary size of bytecode. Then, we have:

outjmp = max(outjcov). (3)

After global max pooling, we aggregate all the features in a matrix of size
7 × 64 as the following:

outaggr = {out2mp, out3mp, ..., out8mp}, (4)

where outaggr refers to the results of the aggregation operation.

Fully Connected Layer and Output Layer. Finally, outaggr is flattened and
fed to the fully connected layer and the Output layer to obtain the label of the
bytecode sequence. In the fully connected layer, 512 neurons are used. We also
use dropout between the fully connected layer and the output layer to reduce
over-fitting. Therefore, we have the fully connected layer as following:

outfc = ReLU(Wfcoutaggr + bfc), (5)

where Wfc and bfc respectively represent the weight and bias of the fully con-
nected layer.

The output layer uses the output of the fully connected layer to calculate the
probabilities of a bytecode sequence being benign and being malicious. Thus,
there are two neurons in this layer. The Softmax function is then applied for
normalizing the probabilities. The description of output layer is as following:

P (outfc) = Softmax(Woutoutfc + bout), (6)

where Wout and bout respectively represent the weight and the bias of the output
layer. The classification result of the bytecode sequence is expressed in Eq. 7 and
the result with the probability greater than 0.5 is used as the prediction.

Predict(BE) = argmax(P (outfc)), (7)

We denote the label of the bytecode sequence by Li which is a two-
dimensional vector (i.e., [0, 1] representing a malware, [1, 0] representing a benign



ByteDroid 167

application). Given M training samples, we use the categorical cross entropy as
the loss function:

Loss = − 1
M

M∑

i=1

Li log Predict(Bi) +
λ

2M

∑

W

W 2, (8)

where λ
2M

∑
W W 2 is the L2 regularization and λ is the attenuation coefficient.

The loss function is minimized by using Adam [22] optimizer. In our system, we
set the value of λ to 0.01. The learning rate is set to 0.01 and the dropout rate
is 0.5.

4 Experiments

In this section, we show the experimental result of our proposed method. In the
first set of experiments, we evaluate the detection performance of ByteDroid.
In the second set of experiments, we evaluate the Generalization performance of
ByteDroid using real-world datasets. In the third set of experiments, we evaluate
the robustness of ByteDroid against typical obfuscation techniques. In the last
set of experiments, we evaluate the hyper-parameters of our CNN.

4.1 Datasets

We use four datasets in our experiments, as depicted in Table 1.

Table 1. Description of the datasets.

Datasets # Benign # Malware Source from

Dataset A 6420 4554 Kang et al. [23]

Dataset B 6982 6575 FalDroid [24]

Dataset C - 9389 VirusShare [25]

Dataset D - 979 VirusShare [25]

Dataset E - 10479 Android PRAGuard [28]

Dataset A. This dataset is obtained from Kang et al. [23], with 10,874 samples
in total. Among them, there are 6,420 benign samples and 4,554 malware sam-
ples. All of the benign samples are scanned by VirusTotal [26]. We only keep the
applications that are not reported as malware by any anti-virus scanners.

Dataset B. This dataset is provided by FalDroid [24]. It contains 6,982 benign
samples and 6,575 malware samples. Benign samples are obtained from Google
Play Stores and are scanned by VirusTotal. All malware samples are labeled into
30 malware families as described in FalDroid.
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Dataset C and D. There two datasets are obtained from VirusShare [25]. There
are 9,389 samples from 2014 and 979 samples from 2017 to 2018.

Dataset E. is obtained from Android PRAGuard [28] that contains 10479 mal-
ware obfuscated by seven different obfuscation techniques. Particularly, each
obfuscation category contains 1497 samples, which are from the Mal-Genome [2]
and the Contagio Minidump [27] datasets.

We use Dataset A and Dataset B as the training sets, and Dataset C and
Dataset D are used to evaluate the Generalization performance of ByteDroid.
Then, we evaluate the performance of ByteDroid against obfuscation techniques
using the Dataset E. The proposed CNN model is implemented by using the
Python package of Tensorflow [30]. We train the CNN model with 4 Nvidia
Titan X. As depicted in Table 2, we evaluate the performance of ByteDroid
using accuracy, precision, recall and f1 score.

Table 2. Evaluation metrics

Metrics Abbr. Description

True Positive TP # of malware correctly detected

True Negative TN # of benign samples correctly classified

False Positive FP # of benign samples predicted as malware

False Negative FN # of malware predicted as benign sample

Accuracy Acc. (TP+TN)/(TP+TN+FP+FN)

Precision Pre. TP/(TP+TN)

Recall Rec. TP/(TP+FN)

F1-score F1 2*Precision*Recall/(Precision + Recall)

4.2 Detection Performance

In this experiment, we measure the detection performance of ByteDorid using
ten-fold cross validation based on the Dataset A and the Dataset B. To prevent
over-fitting, cross validation is performed in ten rounds. In each round, we split
the dataset into the training sets, validation sets and testing sets. The split ratio
is 8:1:1.

Single Dataset Cross Validation. We firstly evaluate the performance of
ByteDroid in single dataset. At the same time, we implement the method of N.
Mclaughlin et al. [8] as a comparison and we refer this method as DAMD in
the following experiments. Table 3 shows the detection results of ByteDroid and
DAMD based on Dataset A and Dataset B. In addition, the result threshold is
set to 0.5.

We can see that ByteDroid outperforms DAMD with the accuracy improve-
ment as much as 6%. The reason can be explained as the following. First, Byt-
eDroid utilizes both the opcode and the operands of the applications, while
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Table 3. Single dataset cross validation of ByteDroid and DAMD.

Method Data type Datasets Acc. Pre. Rec. F1

Ours Bytecode A 0.984 0.972 0.991 0.981

DAMD Opcode A 0.968 0.996 0.927 0.960

Ours Bytecode B 0.995 0.992 0.998 0.995

DAMD Opcode B 0.936 0.957 0.887 0.920

DAMD only relies on the opcode. We believe the operands do carry the partial
malware features and that is the reason why DAMD is less accurate than Byt-
eDroid. Second, ByteDroid uses the multiple sizes of the convolutional kernels
to improve the performance of the model architecture, while DAMD only has a
single sized convolutional kernel.

Cross-Dataset Testing. It is commonly believed that the deep learning based
malware detection cross the datasets is more challenging because the malware
from different datasets may not share the features as the malware from the
same dataset does. In this experiment, we test ByteDroid’s detection accuracy
on different datasets. In particular, we conduct the cross-dataset testing. We first
train ByteDroid with Dataset A, and then use Dataset B as the testing set to
evaluate ByteDroid’s performance. We repeat the same experiment by swapping
the training set and the testing set. Similarly, we also perform the same test for
DAMD for the comparison purpose.

Table 4. Cross-dataset testing of ByteDroid and DAMD.

Method TrainSet TestSet Acc. Pre. Rec. F1

Ours A B 0.854 0.857 0.837 0.847

DAMD A B 0.682 0.997 0.551 0.710

Ours B A 0.969 0.974 0.952 0.963

DAMD B A 0.885 0.971 0.828 0.894

Table 4 shows the results of cross-dataset tests. Obviously, ByteDroid
achieves the significant improvement in all metrics. It indicates that ByteDroid
has much better cross-dataset testing performance than DAMD. In addition, it
is interesting to find that both methods have much better detection accuracy
when dataset B is used as the training set and the dataset A is used as the testing
set. By examining the both datasets, we find the dataset B contains approxi-
mately 500 more benign applications and 2,000 more malicious applications than
dataset A. It demonstrates that the size of the training set does affect the mal-
ware detection performance of both methods. When the training set is larger,
the deep learning model has better chances to capture more malware features
and therefore achieves higher accuracy in the detection stage. Nevertheless, the
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testing results show ByteDroid is much more effective in the malware detection
than DAMD.

Manual Analysis. When we use dataset B as the training set, ByteDroid cor-
rectly classifiers 96.9% of 10,874 applications (Dataset A), with 69 benign sam-
ples being misclassified as malware and 236 malware samples being misclassified
as benign applications. To investigate the actual reasons that cause the above
false positive and false negative, we perform the following manual analysis.

We use VirusTotal to rescan 69 benign samples that are reported incorrectly
as malware. The results show that all of them are clean. After manual analysis,
we find that 52 benign samples have the behaviors that are commonly per-
formed in the malware, such as reading contact, reading SMS, collecting device
ID, obtaining geographical location and device IMEI. We believe the behaviors’
corresponding bytecode sequences are detected during the test and thus cause
the false positive.

There are also 236 malware samples misclassified as benign applications. We
find 194 malware out of 236 have their APK sizes less than 500 KB. These
APKs have the short bytecode sequences, and thus lack the sufficient sequence
patterns that match the malicious ones. The rest of the misclassified malware
either hide the malicious code in its resources or disguise itself as an image such
as install.png. The detection of these behaviors is out of the scope of our malware
detection.

4.3 Generalization Performance

In this experiment, we evaluate the generalization performance of our proposed
method in realistic scenarios. Based on the model trained using Dataset B, we use
the Dataset C and the Dataset D to measure the Generalization performance of
ByteDroid. Again, we take DAMD as a comparison. Table 5 shows the detection
rates of ByteDroid and DAMD using the Dataset C and the Dataset D.

Table 5. Detection rates of ByteDroid and DAMD using Dataset C and D.

Method Datasets Years # of malware # of detected Detected rate

Ours C 2014 9389 7923 84.38%

DAMD C 2014 9389 7253 77.24%

Ours D 2017–2018 979 822 83.96%

DAMD D 2017–2018 979 611 62.41%

We can clearly see that the malware detection rate of ByteDroid is at least 7%
higher than DAMD. One may notice that the overall detection rate of ByteDroid
is less than 85%. The reason is that the dataset (B) used for training is relatively
old, and the datasets (C&D) under the test are relatively newer. We believe many
newer malicious patterns of the malware in dataset C and D are not learned in
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the training stage. To further investigate the reason of the false negative, we
perform the following manual analysis.

Manual Analysis. In Dataset C, ByteDroid fails to detect 1,466 malware sam-
ples. We discover that 191 samples only detected by 1 out of 62 anti-scanners in
VirusTotal. There are 146 samples used native code or dynamic code loading to
evade the detection. The malicious behaviors of these malware samples are not
obviously under the static analysis.

In Dataset D, ByteDroid misses 157 malware samples. One-half of the 157
samples contain the dynamically load code from a library. It is obvious that the
obfuscation techniques become more popular in the newer malware. In addition,
10 malware samples use MultiDex technique to generate multiple DEX files in
their APKs.

Nevertheless, experiment results demonstrate that ByteDroid is capable of
catching the various malicious patterns once the malicious behaviors are present
during the training.

4.4 Against the Obfuscation

In this experiment, we evaluate the robustness of ByteDroid in catching the
Android malware with the obfuscation techniques. Currently, obfuscation tech-
niques on Android platform have been very mature, and there are many auto-
mated obfuscation frameworks [28,29] available, which allow attackers to reduce
the labor cost or even achieve the obfuscation capability without understanding
the detailed obfuscation techniques.

We use the datasets (E) from the Android PRAGuard [28] for the evaluation.
The Dataset E contains seven obfuscation techniques including trivial obfusca-
tion, class encryption, string encryption, reflection and their combinations. We
also train the CNN model using the Dataset B. Table 6 shows the detection
results.

Table 6. Detection rate of ByteDroid against obfuscated malware.

ID Obfuscation method Detected rate Miss rate

1 Trivial obfuscation 94.07% 5.93%

2 String encrption 88.02% 11.98%

3 Class encryption 89.90% 10.10%

4 Reflection 93.52% 6.48%

5 Combined 1, 2 90.48% 9.52%

6 Combined 1, 2, 4 90.40% 9.60%

7 Combined 1, 2, 3, 4 98.81% 1.19%

Average - 92.17% 7.83%

The results shown in Table 6 indicate that ByteDroid effectively detect
Android malware despite the use of different types of obfuscation techniques.
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ByteDroid is more effective for detecting the malware applied with trivial obfus-
cation. As described in Android PRAGuard [28], the trivial obfuscation only
affects the string and does not change the instructions in the bytecode. Yet,
ByteDroid learns the malicious behaviors by the bytecode sequences rather than
by the semantics of the strings.

ByteDroid has a poorer performance in defending other obfuscation tech-
niques such as string encryption, class encryption and reflection because these
techniques affect both the strings and the bytecode sequence. They introduce
some noises may break the key bytecode sequence of a malware, which makes
ByteDroid difficult to classify them correctly.

4.5 Hyperparameter

In this experiment, we evaluate the effectiveness of hyperparameters in Byt-
eDroid, including embedding vector size, the maximum size of the bytecode
sequence, the convolutional kernel sizes and the number of epochs. In the vali-
dation process, we explore these hyperparameters with ten-fold validation using
the Dataset B.

Embedding Size P. In Fig. 3(a), the embedding size of the outermost ROC
curve is 128. The ROC curves corresponding to the embedding size exceeding
32 are close to each other. Since the larger embedding vector size requires the
longer training time and the higher computational cost, we choose to set the
embedding size to 32 to make a balance between performance and efficiency.

Convolutional Kernel Sizes. In our CNN, the convolutional kernel with sizes
are ranging from 2 to 8, and the stride is set to 1. Compared with the kernel sizes
of 3, 5 and 7, which are commonly used in other CNN-based schemes, we find
that the sizes with the powers of 2 (i.e., 2, 4, and 8) achieve better performance.
Figure 3(b) shows the ROC curves with different convolution kernel sizes.

Maximum Length of the Bytecode Sequence α. Figure 3(c) shows the
distribution of the bytecode size of the dataset. Nearly 90% of the bytecode
samples are less than 2,500 KB. Consider that 2,500 KB is still a large number
that incurs much computational cost, we search for a shorter size that fits the
best for our system. To do that, we test the malware detection true positive
rate with the bytecode sizes starting from 500 KB and gradually increasing at
an interval of 500 KB. It can be seen from Fig. 3(d) that the receiver operating
characteristic (ROC) curve does not improve much when the bytecode size is
1,500 KB or more. Based on the above result, we set 1,500 KB as the size of the
bytecode sequence in the training stage.

Number of Epochs. We train the model for 20 Epochs and record the accuracy,
the precision, the recall and the f1 score of every single epoch. The results are
plotted in Fig. 4. It can be observed that all of the metrics keep a small range
fluctuation after 9 epochs. Consequently, the CNN model can be trained to
achieve good performance quickly after several epochs.
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Fig. 3. Effectiveness of different hyperparameters. Figure 3(a) shows the ROC curves
with different embedding vector sizes. Figure 3(b) shows the ROC curves for differ-
ent convolutional kernel sizes. Figure 3(c) shows the size distribution of the bytecode.
Figure 3(d) shows the ROC curves for different α.

Fig. 4. The metrics versus the number of epochs.
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5 Limitations

Since ByteDroid is a static analysis based malware detection scheme, it inher-
ently fails to detect the malware that dynamically launches the malicious Dalvik
bytecode or the native code from a library. We will consider adopting a dynamic
analysis module in our future work.

One may notice that ByteDroid limits that bytecode sequence to 1,500 KB
during the training stage. Attackers may take the advantage of this knowledge
by inserting the malicious code beyond the 1,500 KB of the bytecode to evade
the feature extraction. In fact, this bytecode size limitation can be easily relaxed
given the actual dataset. In practice, we can group the APKs into different sets
by their bytecode sizes and perform the training separately with the different
bytecode size limitations. Note that the different datasets can be trained in a
serialized fashion so that the training result is naturally aggregated.

Obviously, the performance of ByteDroid depends on the completeness of the
Android application datasets. While our experiments demonstrate ByteDroid
has a good generalization performance, the false positive or the false negative
rate does increase when the application datasets are very different from the
training datasets. We believe a dynamic malware detection module in our future
work will significantly improve the ByteDroid’s detection rate in this scenario.

6 Conclusion

In this paper, we propose ByteDroid, an automatic Android malware detection
system using Convolutional Neural Network. ByteDroid eliminates the need of
manual feature extraction. It applies multiple convolutional kernels to learn the
sequential patterns of the bytecode. The effectiveness and generalization perfor-
mance of ByteDorid are evaluated in our experiments. In addition, ByteDroid is
robust against several typical obfuscation techniques.

In future work, we plan to explore more complex network architecture and
consider dynamic analysis to detect dynamically loaded code. Moreover, to better
understand malware behaviors, the interpretability of the neural networks is also
what we concerned about.
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