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Abstract. DNA computing is a parallel computing model based on
DNA molecules. High-quality DNA sequences can prevent unwanted
hybridization errors in the computation process. The design of DNA
molecules can be regarded as a multi-objective optimization problem,
which needs to satisfy a variety of conflicting DNA encoding constraints
and objectives. In this paper, a novel reference point based multi-
objective optimization algorithm is proposed for designing reliable DNA
sequences. In order to obtain balance Similarity and H-measure objec-
tive values, the reference point strategy is adapted to searching for idea
solutions. Firstly, every individual should be assigned a rank value by
the non-dominated sort algorithm. Secondly, the crowding distance is
replaced by the distance to the reference point for each individual. Lastly,
the proposed algorithm is compared with some state-of-the-art DNA
sequence design algorithms. The experimental results show our algo-
rithm can provide more reliability DNA sequences than existing sequence
design techniques.

Keywords: DNA encoding · Multi-objective optimization · Reference
point

1 Introduction

DNA computing is a new computational paradigm, which has shown great
potential to solve NP-complete problems, such as Hamiltonian path problem
(HPP) [1], satisfaction problem (SAT) [2], traveling salesman problem (TSP) [3]
and graph coloring problem (GCP) [4]. High-quality DNA sequences can improve
the efficiency and reliability. Therefore, the design of DNA molecules should be
carefully designed to prevent unwanted hybridization errors. The design of DNA
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molecules can be regarded as a multi-objective optimization [22–25] problem,
which need satisfy a variety of conflicting DNA encoding constraints and objec-
tives [5].

In the past few decades, a lot of efficient algorithms have been proposed to
solve DNA sequences design problem. Frutos et al. [6] proposed the Template-
Map method, but it is difficult to derive templates and mappings that satisfy
the combined constraints when there are many constraints. Hartemink et al. [7]
implemented an exhaustive search algorithm to design DNA sequences, which
satisfy the constraints, but the algorithm has a high time complexity. Feld-
kamp [8] uses directed trees to design DNA encoding that the fixed length sub-
sequences are only allowed to appear once, but the length of the sub-sequences
requires a lot of testing to determine in the actual design. Recent years, evolu-
tionary algorithms are widely adapted for DNA encoding design, such as genetic
algorithm [9,11,14,20], particle swarm optimization [11,15,17,18], ant colony
algorithm [12], simulated annealing [16], and multi-objective evolutionary algo-
rithms [10,13,19]. However, existing algorithms often obtain the DNA sequences
set with bias Similarity or H-measure values, which is easy to introduce errors
during the DNA computing process.

In this paper, a reference point based multi-objective optimization evolu-
tionary algorithm is proposed for designing DNA sequences. Firstly, the non-
dominated sort algorithm is adapted to select convergent solutions rank by rank.
Secondly, the crowding distance sort algorithm is adapted to choose the solutions
that are closer to the reference point. The algorithm can provide a set of DNA
sequences near idea point which are more reliable and efficient for DNA comput-
ing. Finally, to validate the proposed algorithm, we compare our algorithm with
some state-of-art techniques. The experimental results confirm the performance
of our algorithm in designing high-quality DNA sequences set efficiently.

In the following chapters, Sect. 2 introduces the relevant basis of DNA
sequence design problem. The proposed reference-based evolution algorithm for
designing DNA sequences is then detailed in Sect. 3. In Sect. 4, we present the
experiment results of the proposed algorithm and compare them with the other
literatures. Finally, conclusions are drawn in Sect. 5 along with pertinent obser-
vations identified.

2 Problem Formulation

During the process of DNA computing, single-strand DNA molecules dismissed
randomly in the vitro, therefore four kinds of molecules exist simultaneity, includ-
ing DNA molecular X, corresponding complementary sequence X C, reverse
sequence X R and reverse complementary sequence X RC. Most existing DNA
computing models are based on the specific hybridization between a given molec-
ular X and it’s unique Watson-Crick complement X C. In fact, the non-specific
hybridization often occurs because unwanted mismatches maybe take place
between random molecules, as shown in Fig. 1.

However, the non-specific hybridization could introduce errors, such as false
positives and negatives, and degrade efficiency. Obviously, it is important to
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Fig. 1. Specific and non-specific hybridizations.

design reliable DNA sequences for DNA computing, and the key is to avoid
the non-specific hybridization. The design of reliable DNA sequences involves
several conflicting design constraints which have to be considered simultaneously.
In mathematical terms, DNA sequence design problem can be formulated as a
multi-objective optimization problem as Eq. (1).

min f(X) = min [f1(X), f2(X), · · · , fM (X)]T , f(X) ∈ RM (1)

where DNA sequence X = [x1, x2, · · · , xN ]T ∈ Ω consists of N bases xi ∈
{A,C,G,T}, and the search space Ω is 4N . f(X) consists of M objective func-
tions fm(x), m = 1, . . . ,M . RM denotes the objective space. Several typical
biochemical design criteria are chosen that other relevant authors use to evalu-
ate and generate reliable DNA libraries. The formal definition for each design
criteria is provided in the following subsections.

2.1 Similarity Criterion

Let Xi and Xj be two different DNA sequences, the similarity criterion refers to
the degree of similarity in base composition between Xi and Xj . By controlling
the similarity, non-specific hybridization between Xi and the complementary of
Xj , (i.e. XC

j ). The calculation of Similarity is shown in Eq. (2).

fSimilariy (X) =
n∑

i=1

n∑

j=1

Similarity (Xi,Xj)

=
n∑

i=1

n∑

j=1

Maxg,i (Sidis (Xi,Xj , s) + Sicon (Xi,Xj , s))

(2)

where the function Maxg,i represents traversing all possible values of g and i
and taking the maximum value as a result. The function Sidis (Xi,Xj , s) rep-
resents the number of identical bases in which the DNA sequence Xi is shifted
to the right by the s position compared with the sequence Xj . The function
Sicon (Xi,Xj , s) represents that the DNA sequence Xi shifts to the right by the
s bit and the base compared with Xj is continuously the same penalty value.
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2.2 H-Measure Criterion

For DNA sequences X and Y, the H-measure constraint is to limit non-specific
hybridization between X and reverse Y. The calculation of H-measure is as shown
in Eq. (3).

fH-measioe(X) =
n∑

i=1

n∑

j=1

H-measure (Xi,Xj)

=
n∑

i=1

n∑

j=1

Maxg,i

(
hdis

(
Xi,X

R
j , s

)
+ hcon

(
Xi,X

R
j , s

))
(3)

where the function Maxg,i represents traversing all possible values of g and i and
taking the maximum value as a result. The function hds

(
Xi,X

R
j , s

)
represents

the number of base complements in which the DNA sequence Xi shifts to the
right by the s-bit compared with the sequence Xj . The function hcon

(
Xi,X

R
j , s

)

represents a base continuous pairing penalty value in which the DNA sequence
Xi is shifted to the right by the s-bit compared with Xj .

Similarity Criterion describes the degree of similarity between DNA
sequences, and H-measure Criterion describes the degree of complementary
hybridization between DNA sequences. Similarity Criterion and H-measure Cri-
terion are two conflicting objectives, and they are difficult to optimize at the
same time. Shin et al. [10] had proved that Similarity Criterion and H-measure
Criterion are conflicting, and they are both discontinuous functions and have
many locally optimal solutions.

2.3 Continuity Criterion

Continuity constraint means that in the single strand of DNA, the same base
appears continuously, and an undesired secondary structure occurs under the
hydrogen bonding force of the base molecule. The calculation of Continuity is
as shown in Eq. (4).

fContinuity(X) =
n∑

i=1

Continuity (Xi)

=
n∑

i=1

l−t+1∑

i=1

T
(
ca(x, i), t2

)
(4)

2.4 Hairpin Structure Criterion

The hairpin structure constraint refers to a single-stranded DNA molecule
formed by reverse folding of itself, resulting in a secondary structure of a hairpin
shape. The calculation of Hairpin is as shown in Eq. (5).
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fHairpin(X) =
n∑

i=1

Hairpin (Xi)

=
n∑

i=1

(l/Rmn)/2∑

s=smn

l−2s∑

r=Rmn

l−2s−r∑

i=1

T

⎛

⎝
s∑

j=1

bp (xs+i−j , xs+i+r+j) ,
s

2

⎞

⎠
(5)

2.5 GC Content Criterion

DNA computing prefer the DNA molecules with uniform GC content. The GC
content refers to the number or percentage of bases G and bases C in the DNA
sequence. The calculation of GC% is as shown in Eq. (6).

fGC(X) = maxi {GC (Xi)} − minj {GC (Xj)}
GC =

∑n
i=1

∑l
i=1 gc (xi) , gc (xi) =

{
1, xi = G or xi = C
0, xi = A or xi = T

(6)

2.6 Melting Temperature Criterion

The melting temperature is the temperature at which 50% of the DNA molecules
open the double strand into a single strand during the warming denaturation of
the double-stranded DNA molecule. The melting temperature is an important
parameter for evaluating the thermodynamic stability of DNA molecules. The
calculation of Tm is as shown in Eq. (7).

fTm(X) = maxi {Tm (Xi)} − minj {Tm (Xj)}
Tm (Xi) =

∑n
i=1

ΔH◦
ΔS◦+R ln(|CT |/4)

(7)

ΔH◦ is the total enthalpy of the adjacent base, ΔS◦ is the total entropy of
the adjacent base, R is the gas constant (1.987 cal/Kmol), and CT is the DNA
molecule concentration.

3 Problem Formulation

Because Similarity and H-measure are two conflict objectives, we would obtain
a set of non-dominated solutions using MOEA. However, the DNA sequences
which have high Similarity values will lead to non-specific hybridization between
X and the complementary strand Y C . Moreover, the DNA sequences which have
high H-measure values will lead to non-specific hybridization between X and the
reverse strand Y R. Among the whole PF, only the nonbiased point is the idea
solutions for DNA sequences design problem, as shown in Fig. 2.

In response to the above problems, we adopt R-NSGA-II [21] to search for
DNA sequences, in which the crowding distance is replaced by the distance to the
reference point. In our algorithm, the reference distance (RD) can be calculated
as shown in Eq. (8).
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RD =

√√√√
m∑

i=1

(
fi(x) − Ri

fmax
i − fmin

i

)2

(8)

where fmax
i and fmin

i are the global maximum and minimum function values
of the i-th objective function, and Ri is the reference value of the i-th objec-
tive. In our algorithm, the reference point is set to R = (f1, f2, f3, f4, f5, f6) =(
0, 0, 0, 0, N

2 , 50
)
.

Most of the algorithms calculate the objective functions on the entire pop-
ulation Pt. However, two objective functions Similarity an H-measure are the
full correlation with all the individuals. If k DNA sequences with best fitness
values are selected for DNA computing, they may not remain optimal. In our
algorithm, we re-evaluate the individuals with the population Pt+1, and update
the fitness values in Pt one by one. Three main procedures are iteratively run in
our algorithm, specifically the non-dominated sort, the reference crowding dis-
tance sort, and full correlation fitness update. The algorithm procedure is also
shown in Fig. 3.

Firstly, tournament selection is adapted on Pt, and the winner of two ran-
domly selected individuals should be added into mating pool Qt. Then, crossover
and mutation operators are adapted to generate new offspring, and replace the
individuals in mating pool Qt. Secondly, the non-dominated sorting is applied
to the union set PtQt, and the non-dominated fronts are copied to parent pop-
ulation rank by rank. Thirdly, the reference distance should be calculated for
every individual, and the individual with minimum reference distance could be
added into the new population Pt + 1 until the population size N. Moreover, in
order to select the individuals with optimal full correlation objective values, we
re-evaluate the population Pt when individual is selected and added into Pt + 1.
The pseudocode is shown as Algorithm 1.

Algorithm 1. Proposed Algorithm

1: Initialization P0

2: while (stopping criterion is not satisfied) do
3: Qt = Tournament Selection (Pt)
4: Qt = Crossover and Mutation (Pt)
5: Rt = Pt ∪ Qt

6: EvaluatePopulation on Rt

7: Non-dominated Sort (Rt)
8: for i = 0 to Pt do
9: Reference Distance calculate (Rt)

10: Pt+1 = Pt+1 + Nearest Individual with min(Rt)
11: Re-EvaluatePopulation on Pt+1

12: end for
13: end while
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Fig. 2. Idea solution within the non-
dominated solutions.

Fig. 3. The procedure of our algorithm.

4 Result and Discussion

In order to verify the effectiveness of the proposed algorithm, we compare the
obtained results with various known algorithms. In our comparison, the popula-
tion size is set to 200, the DNA length is set to 20, and the maximum number of
iterations is set to 1000. The algorithm is implemented in Eclipse Java and tested
on a PC (running environment intel� CoreTM i5-8400 CPU @ 2.802 GHz, 8G
RAM, Windows 10).

Table 1 shows the obtained sequences generated by MGA [20], NACST/
Seq [10], and our algorithm. As can be seen from Table 1, all the algorithms
obtain same Hairpin and GC content values. The sequences of MGA and our
algorithm have same Continuity values, which are better than the sequences of
NACST/Seq. The MGA has most uniform melting temperature values fluctuated
within one degree Celsius. The temperature fluctuation range of our sequences
is ±1.2526 ◦C, which is better than NACST/Seq.

The Similarity value of our algorithm is 290, which is much smaller than
MGA(444) and NACST/Seq(374). In addition, the H-measure value of our algo-
rithm is 284, which is also much smaller than MGA(438) and NACST/Seq(338).
Moreover, the balanced Similarity and H-measure values imply that our
sequences are more reliable and have a lower probability of unwanted non-
hybridization.

Table 2 shows obtained larger group of DNA sequences by three compared
algorithms. As can be seen from Table 2, all the algorithms obtain same Con-
tinuity and GC content values. Our algorithm obtains best Hairpin objec-
tive value, however, ten sequences in MGA set have poor Hairpin objective
values. The sequences of our algorithm have most uniform melting tempera-
ture values fluctuated within ±0.9002 ◦C. The melting temperature of MGA
and NACST/Seq fluctuate in range ±1.7500 and ±2.9574 respectively. The H-
measure and Similarity values of the sequences designed by our algorithm are
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balance and much lower than compared algorithms, which means the mismatch
and non-hybridization between the coding sequences can be greatly reduced.

Table 1. Comparison results of the obtained seven sequences with 20 bases.

Sequence ContinuityHairpinH-measureSimilarityTm GC%

MGA [20]

TAGACCACTGTTGCACATGG 0 0 58 52 56.0900 50

ATTCGGTCAGACTTGCTGTG 0 0 64 52 56.2400 50

ATAGTGCGGACAGTAGTTCC 0 0 66 59 54.9200 50

AATACGCGGAACGTAACCTC 0 0 61 85 55.8300 50

AATACGCGGAACGTAACCTC 0 0 61 85 55.4000 50

ACAGCCTTAAGCCTAACTCC 0 0 65 54 56.0641 50

ATGCTTCCGACATGGAATGG 0 0 63 57 55.8500 50

Objective values 0 0 438 444 55.5800
(±0.6600)

50
(±0)

NACST/Seq [10]

CTCTTCATCCACCTCTTCTC 0 0 43 58 46.6803 50

CTCTCATCTCTCCGTTCTTC 0 0 37 58 46.9393 50

TATCCTGTGGTGTCCTTCCT 0 0 45 57 49.1066 50

ATTCTGTTCCGTTGCGTGTC 0 0 52 56 51.1380 50

TCTCTTACGTTGGTTGGCTG 0 0 51 53 49.9252 50

GTATTCCAAGCGTCCGTGTT 0 0 55 49 50.7224 50

AAACCTCCACCAACACACCA 9 0 55 43 51.4735 50

Objective values 9 0 338 374 49.0769
(±2.3966)

50
(±0)

Our algorithm

ACAACAACCACCACCACCAA 0 0 37 45 50.2236 50

CCAAGGAAGGAAGGAAGGAA0 0 54 33 49.0486 50

CCTCTCCTCTTCTTATCTCC 0 0 34 49 49.6556 50

GTGTGTGTGTGTGTGTGTGT0 0 48 25 50.9244 50

CCAACCAACCAACCAACCAA 0 0 34 45 51.3054 50

CTTCTTCCTCCTTCTTCTCC 0 0 36 45 48.8003 50

CTCTCGCTCTATATCTCTCC 0 0 41 48 49.4115 50

Objective values 0 0 284 290 50.0529
(±1.2526)

50
(±0)
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Table 2. Comparison results of the obtained fourteen sequences with 20 bases.

Sequence ContinuityHairpinH-measureSimilarityTm GC%

MGA [20]

CTCATCTAATCAGCCTCGCA 0 0 135 114 55.2900 50

CTAATAGTGACAGCTGCGTG 0 3 131 119 53.9200 50

GCATCGTTAGAGACACCTAC 0 3 134 124 53.1000 50

GCATCAATATGCGCGACTAC 0 0 131 125 54.8700 50

CATTAAGTAGACGCTGTCGG 0 3 132 114 53.6100 50

TATGGATGAGGAGGACCTAG 0 3 133 117 53.2300 50

CAGAGATGTTCTGTACCACC 0 3 128 117 53.2000 50

CGTCGAGAATTCGTAGCTCA 0 0 137 119 55.1300 50

TCTGTTACCGTATCGGATCG 0 3 129 115 54.4900 50

AGAAGAGTTCGACTTGCTGG 0 3 134 121 55.6300 50

GCAAGGAATTCACCGTCTGT 0 3 133 129 56.6000 50

CGTGTGAAGAGAGTGGTTCA 0 0 127 123 55.5000 50

CGACTGAATCATGGACCTGT 0 3 134 126 55.5300 50

TACCGAGAAGTAGGACTGCA 0 3 134 124 56.0100 50

Objective values 0 30 1852 1687 54.8500

(±1.7500)

50

(±0)

NACST/Seq [10]

GTGACTTGAGGTAGGTAGGA 0 3 129 115 47.2490 50

ATCATACTCCGGAGACTACC 0 3 132 121 47.2304 50

CACGTCCTACTACCTTCAAC 0 0 128 121 47.4589 50

ACACGCGTGCATATAGGCAA 0 3 141 117 52.5401 50

AAGTCTGCACGGATTCCTGA 0 3 132 115 50.5497 50

AGGCCGAAGTTGACGTAAGA 0 0 132 116 51.0482 50

CGACACTTGTAGCACACCTT 0 0 132 123 50.2683 50

TGGCGCTCTACCGTTGAATT 0 0 135 116 52.0565 50

CTAGAAGGATAGGCGATACG 0 0 134 117 46.6253 50

CTTGGTGCGTTCTGTGTACA 0 0 140 116 50.5774 50

TGCCAACGGTCTCAACATGA 0 0 132 121 51.8587 50

TTATCTCCATAGCTCCAGGC 0 0 136 117 48.1017 50

TGAACGAGCATCACCAACTC 0 0 121 121 50.3351 50

CTAGATTAGCGGCCATAACC 0 0 127 119 47.6383 50

Objective values 0 12 1851 1655 49.2420

(±2.9574)

50

(±0)

Our algorithm

GAGAATAGAGAAGGAGGAGG 0 0 84 115 49.6556 50

TGTTGTGGTGTGGTGTGGTT0 0 124 80 50.1562 50

GAAGGAAGGAAGGAAGGAAG0 0 77 106 49.4336 50

GAGAGTGAGAGGATAAGAGG 0 0 91 112 49.5929 50

TTGTTCTGGTGGTGGTGGTT 0 0 116 82 49.6702 50

GTTGGTTGGTTGGCTTGGTT 0 0 113 84 50.1442 50

CACACGCACAGACATACACA 0 0 99 98 50.2702 50

GGAAGAGCAATAGCAGAAGG 0 0 88 116 49.0941 50

CAACGACCAAGAACGACCAA 0 0 95 109 49.6784 50

AACACATCACACAGCACACC 0 0 103 102 49.9036 50

ACACACCTCACACTCAACAC 0 0 105 97 49.9141 50

CCACACGACACACTACACAA 0 0 102 104 50.8945 50

AACCAGCAACTACCAGCAAC 0 0 103 104 49.2441 50

AATGGAATGGAATGGCGAGG 0 0 100 111 49.8795 50

Objective values 0 0 1400 1420 49.9943

(±0.9002)

50

(±0)



Reference Point Based Multi-objective Evolutionary Algorithm 187

5 Conclusion

In this study, a multi-objective DNA sequence design algorithm had been suc-
cessfully implemented for reliable DNA computation. The algorithm was based
on ideal reference point, which could guide the population to search for balance
Similarity and H-measure objective values efficiently. The algorithm was com-
pared with some state-of-the-art approaches. The experimental results showed
our algorithm can generate high quality DNA sequences set which satisfied var-
ious conflict DNA encoding criterions.
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