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Abstract
B cells play a multidimensional role in host immunity. Regulatory B (Breg) cells 
are a class of B lymphocytes with immunomodulatory properties that play an 
important role in maintaining immunological tolerance along with dampening 
harmful immune responses. Bregs suppress various immune pathologies through 
the production of interleukin (IL)-10, IL-35, and transforming growth factor-β 
(TGF-β). They act by inhibition of T helper 1 (Th1) and Th17 cells proliferation, 
suppression of dendritic cell (DC), differentiation and simultaneous enhance-
ment of the expression and differentiation of fork head transcription factor 
P3-positive regulatory T cells (FoxP3+ Tregs). In this chapter, we discuss the 
induction, function, and phenotypes of the various Breg cell subsets defined in 
both mice and humans along with their proposed mechanism of action in various 
immune responses.
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Abbreviations

Bregs	 B regulatory cells
BCR	 B cell receptor
TLR	 Toll-like receptor
PAMPs	 pathogen-associated molecular patterns
EAE	 experimental autoimmune encephalomyelitis
IL	 interleukin
LPS	 lipopolysaccharide
TGF-β	 transforming growth factor Beta
Tregs	 T regulatory cells
MHC	 major histocompatibility complex
AIA	 antigen-induced arthritis
Th	 T helper cells
STAT	 Signal Transducer and Activator of Transcription
IFN-γ	 interferon gamma
TNF-α	 tumor necrosis factor alpha
mAbs	 monoclonal antibodies
T2-MZP	 transitional 2 marginal-zone precursor
TIM-1	 T-cell Ig mucin domain-1
CTLA-4	 cytotoxic T lymphocyte-associated protein 4
iBreg	 induced B regulatory cells
IDO	 indoleamine 2,3-dioxygenase
MS	 multiple sclerosis
SLE	 systemic lupus erythematosus
RA	 rheumatoid arthritis
NOD	 non-obese diabetic
RANKL	 receptor activator of nuclear factor-κB ligand
OPG	 osteoprotegerin
T1D	 Type 1 diabetes
Tr1	 T regulatory type 1

5.1	 �Discovery of Breg Cells

The concept of B cells regulating immune responses dates back to 1974, when the 
suppressive nature of B cells in modulating delayed type hypersensitivity in guinea 
pigs was described [1]. Wolf et al. suggested a regulatory subset of B cells (Bregs) 
exhibiting immunomodulatory properties in an experimental autoimmune encepha-
lomyelitis (EAE) model of mice in 1996 [2]. From 2002 to 2003, Fillatreau et al., 
Mizoguchi et al., and Mauri et al. through independent studies demonstrated that B 
cells produce IL-10 and suppress inflammatory conditions such as EAE, inflamma-
tory bowel disease and collagen-induced arthritis respectively [3–5]. Further, Parekh 
et  al. were the first to show a IL-10-independent mechanism of action in 2003, 
demonstrating TGF-β-dependent B cell–mediated regulation of CD8+ T cell 
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responses, though they did not name these as Bregs at the time [6]. It was only after 
3 years that Mizoguchi and Bhan proposed the concept of Bregs while studying 
their role in colitis, demonstrating that B cell–deficient mice experienced higher 
severity of colitis than normal [7]. Moreover, Mizoguchi et al. also established that 
a specific B cell subset induced in gut-associated lymphoid tissue was secreting 
higher levels of IL-10 and had increased CD1d expression during intestinal inflam-
matory condition [4]. Till date, numerous studies have been carried out to illustrate 
the role of various Breg subsets via IL-10-dependent or IL-10-independent manner 
in modulating host immunity. In 2008, Yanaba et  al. also showed the role of 
CD1dhiCD5+ cells in negatively regulating T-cell responses through IL-10 in contact 
hypersensitivity model [8]. Dittel et al. observed that mice with B cell deficiency 
have reduced numbers of both Foxp3+ regulatory T cells (Tregs) and IL-10 levels in 
EAE and demonstrated a novel IL-10, B7, and MHC class II-independent regula-
tory role for B cells in suppressing autoimmunity by the maintenance of Tregs via 
glucocorticoid-induced TNFR family–related gene ligands [9, 10]. In 2010, Amu 
et al. reported that helminths-induced Bregs were responsible for Treg induction 
that could suppress allergic airway inflammation (AAI) in the murine model [11]. 
Carter et al. demonstrated the unique ability of Bregs in inhibiting Th1/Th17 cells 
during arthritic conditions in mice [12]. Strikingly, the regulatory function of B cells 
is mediated by the production of various regulatory cytokines such as IL-10, IL-35, 
and TGF-β1, which are responsible for suppressing autoreactive B cells and patho-
genic T cells in a cytokine or cell-cell contact-dependent manner [7, 13]. Another 
mechanism of immune regulation by B cells involve expression of FAS ligand on 
CD5+ B cells, known as killer B cells that regulate effector immune responses by 
inducing cell death [14]. Kaku et al. showed a population of B cells that express 
both CD73 and CD39, ectoenzymes responsible for the production of adenosine, 
which inhibited the severity of colitis [15]. Khan et al. described additional pheno-
type of Bregs, PD-L1hi B cells, which regulate humoral immunity through their 
interaction with CD4+CXCR5+PD-1+ follicular helper T cells and ameliorate EAE 
[16]. Recently, Oleinika et al. reported a novel role of CD1d+ T2-MZP Bregs in the 
induction of immunosuppressive iNKT cells that downregulate excessive Th1/Th17 
responses partially via secreting IFN-γ and limit inflammation in experimental 
arthritis [17]. Together, these studies indicate that Bregs suppress inflammation by 
inhibiting the differentiation of pro-inflammatory cells and inducing a population of 
immunosuppressive cells. In addition, studies on exacerbation of colitis and devel-
opment of psoriasis in patients treated with anti-CD20 mAb (rituximab) suggest the 
regulatory function of B cells in human subjects [18, 19]. Bregs constitute fewer 
than 10% of immature B cells in healthy individuals and play an important role in 
functioning of the immune system by maintaining tolerance and immune homeosta-
sis [20]. Over the last decade, numerous studies in both mice and human have exten-
sively shown the importance of Bregs in regulating various diseases, including 
inflammatory disorders, autoimmunity, and cancer [21, 22] Bregs with their wide 
range of immunomodulatory functions can thus be exploited for therapy in various 
B cell–mediated diseases. Thus, it is important to exhaustively consider the known 
Breg cell phenotypes, their induction, and function in a chronological manner 
(Fig. 5.1 and Table 5.1).
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5.2	 �Identification and Phenotypes of Breg Cells

B cell subsets with strong immunomodulatory functions have been reported both in 
vitro and in vivo (Figs. 5.2 and 5.3) (Table 5.1). Phenotypic identification of Breg 
cells using the immunomodulatory cytokine IL-10 continues to be a matter of debate 
due to difficulties in assessing the functionality of Bregs, because IL-10 detection 
requires intracellular staining. Therefore, other surrogate markers have been 
employed to identify various Breg subsets. Different overlapping markers are pres-
ently being used to describe these cells. Here we discuss both murine and human 
Breg subsets under separate heads for clarity and distinction among these subsets.

5.2.1	 �Mouse Breg Subsets

In mice, Plasma B cells, B-1 cells, CD5+CD1dhi B10 B cells, CD21hiCD23hiCD24hi 
transitional type 2 marginal zone precursors (T2-MZP) Breg cells, and TIM-1+ B 
cells have been proposed with regulatory functions in a variety of infections, in 
autoimmune and transplantation settings [21, 23]. IL-10+ Bregs have also been 
observed to inhibit IFN-γ production in hepatitis B virus (HBV) infection by modu-
lating CD8+ T cell responses [24, 25]. Furthermore, IL-10+ Bregs inhibit TNF-α 
production by activated monocytes following stimulation with LPS and bacterial 

Plasma 
Bregs

BR2 Bregs
(mTGFβ+)

B10 BregsB-1 Bregs

T2-MZP Bregs

TIM-1+Bregs

Mice Bregs journey
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B10 Bregs

Memory B10 
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Fig. 5.1  Chronological journey of Bregs. This timeline represents the important events in the 
journey of Bregs discovery, establishing them as a functionally and developmentally distinct cell 
lineage
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CpG DNA [9, 22]. Bacterial components such as LPS and CpG are known to induce 
the expansion, differentiation, and activation of murine Bregs through TLR signal-
ing in vitro [26, 27]. Furthermore, mice harboring TLR2- or TLR4-deficient B cells 
fail to recover from EAE. Alltogether these studies clearly indicate that inflamma-
tion acts as stimuli for the activation and differentiation of Bregs.

5.2.1.1	 �Plasma Bregs
Plasma B cells are representative antibody-secreting cells (ASCs) [28] present in all 
lymphoid organs. Plasma cells have also been found to occur in significant numbers 
in the bone marrow compared to their lower numbers in the spleen. Indeed, the bone 
marrow is primarily responsible for the long-term maintenance of plasma cells aris-
ing from immunization [29]. Recently, Lino et  al. described a subset of resident 
Plasma B cells specialized for producing IL-10 upon TLR stimulation and are found 
to occur naturally, i.e., prior to antigenic challenge [30]. Genome-wide approaches 
have shown that this Breg lineage is triple-positive for the following markers: 
IL-10+LAG-3+CD138hi. The lymphocyte activation gene 3 (LAG-3+) helps in 
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Fig. 5.2  Breg subsets in mice and humans. Mice have a total of five defined Breg subsets: 
Plasma B cells (CD138+MHC-11lo B220+), B1 Bregs (CD5+), BR2 Bregs (CD40+TGFβ1), B10 
Bregs (CD19hiCD1dhiCD5+), and T2-MZP Bregs (CD19+CD21hiCD23hiCD24hi). Humans, on the 
contrary, have seven defined human Breg subsets: Br1 Bregs (CD19+CD25+CD71+ CD73−), 
CD19+CD24hiCD38hi Bregs, CD19+CD24hiCD27hi Bregs, Plasmablasts (CD19+ CD27intCD38+), 
iBregs (IDO, TGFβ), GrB+Bregs (CD19 +CD38+CD1d+IgM+CD147+), and IGA+Bregs (IgA+)
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regulating humoral immunity and in maintaining immunological tolerance toward 
endogenous T-independent type 2 antigens, which are  normally not detected by 
CD4+Foxp3+ T regulatory cells. Unlike conventional plasma cell differentiation, 
which requires several days for proliferation, the detection of IL-10+LAG-3+CD138hi 
plasma cells at day one post-infection with Salmonella typhimurium in the spleen 
of mice, confirmed that this subset is derived from already existing cells LAG-
3+CD138hi cells. These LAG-3+CD138hi cells are likely induced by self-antigen 
and remain in a quiescent state. Further, genome-wide methylome, transcriptome, 
and gene-set enrichment analysis of LAG-3+CD138hi cells in naïve mice and at day 
one post-Salmonella infection showed that after antigenic challenge, LAG-3+CD138hi 
cells express IL-10 and become IL-10+LAG-3+CD138hi plasma Bregs [30]. 

Bregs

Th1
IFN-γ

IL-17

CD8+ T cellsIFN-γ

MonocytesTNF-α

DCs

Th17

IL-12

IL-35 mTGF-β

IL-10

IL-10

IL-10
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IL-10

Foxp3+Tregs

Tr1

IL-10

iNKTIL-10

CD4+CD25-

T cells

IL-10

PD-L1

IDO

GZB

Fig. 5.3  Regulatory mechanisms of Bregs in various immune responses. Bregs lead to the 
suppression and inhibition of pro-inflammatory lymphocytes such as Th1, Th17, cytotoxic CD8+ T 
cells, monocytes, and IL-12-producing dendritic cells through the production of various factors 
like IL-10, IL-35, TGF-β, IDO, GZB, and so on. IL-10 production by Bregs is primarily respon-
sible for restoring the Th1/Th2 balance, where it is shifted toward Th2. One more mechanism of 
inhibiting inflammatory cascades is via tweaking the Treg/Th17 balance, leading to suppression of 
Th17 cells. The Breg population is reportedly responsible for enhancing the differentiation of 
Foxp3+Treg cells and helps in the maintenance of iNKT cells
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Thus, these results indicate that plasma Bregs provide a first layer of immune regu-
lation in response to stimuli. In contrast, Matsumoto et al. showed that mice lacking 
genes such as Prdm1 and IRF4, which are required for plasma cell differentiation, 
develop a severe form of EAE compared to control mice. This study suggested that 
Bregs are inducible in nature. Thus, these studies clearly establish both the innate 
and inducible nature of Bregs. During EAE, plasma B cells are known to be the 
main source of IL-35 and facilitate recovery from EAE. IL-35 secreted by plasma 
Bregs exhibits anti-inflammatory properties by expanding the immunosuppressive 
CD4+CD25+ Tregs population which inhibits CD4+CD25− T effector cell prolifera-
tion when cultured in vitro [31]. IL-35 also inhibits the differentiation of inflamma-
tory Th17 cells. Recent studies have indicated the role of BATF/IRF-4/IRF-8 axis in 
regulating IL-35 and IL-10 expression in activated B cells [32]. IL-35 cytokine can 
act as a potential target in the treatment of both autoimmune and inflammatory con-
ditions. Interestingly, declined populations of LAG-3+CD138hi cells have been 
reported in mice deficient in CD19 or Bruton’s tyrosine kinase [33], further estab-
lishing that differentiation of LAG-3+CD138hi cells to plasma cells is under the con-
trol of BCR. Taken together, these studies establish that B cell differentiation into 
LAG-3+CD138hi cells is a steady-state process driven primarily by BCR signaling 
rather than TLR-mediated signaling or T cells.

5.2.1.2	 �B1 Bregs
B-1 cells represent a class of innate immune cells that are responsible for higher 
antibody production, especially IgMs for mounting rapid immune responses against 
pathogens [34]. This subset of CD5+ B cells was initially identified in the early 90s 
in mice, as a set of distinctive fetal B cells to differentiate them from B-2 cells that 
usually develop in the adult bone marrow [35, 36]. B-1 cells represent a population 
of B cells found predominantly in the pleural and peritoneal cavities (35–70%). A 
smaller number of B-1 cells are also found in the spleen [37], bone marrow, mucosal 
sites, lymph nodes, and blood [38]. Despite their very low frequency in lymphoid 
tissues, B-1 cells are important regulators of immune defense and tissue homeosta-
sis. B-1 B cells are chiefly produced in the absence of any antigen exposure [39, 40] 
and are a major source (>80%) of naturally occurring antibodies [41]. Higher levels 
of natural IgMs are produced by B-1 cells residing in the spleen and bone marrow 
[38]. These polyreactive [42, 43] antibodies help in recognizing self as well as for-
eign antigens [44, 45], act as the first line of defense, and are analogously linked to 
innate immune responses. B-1 cells are categorized into different functioning sub-
subsets based on the relative CD5 expression. B-1a represents a class of CD5+(Ly-1) 
B-1 cells that chiefly express IL-10 upon innate activation [46] whereas B-1b repre-
sents a class of CD5− B-1 cells [34, 45]. B-1a cells are major producers of B-cell-
derived IL-10 [46], and their activation and expansion are regulated by 
cross-regulatory cytokines such as IL-12 and IFN-γ [47]. Using Schistosomal infec-
tion model, Vellupillai P et al. demonstrated that the outgrowth of IL-10 producing 
B-1 after infection is genetically restricted and regulated by polylactosamine sug-
ars. Interestingly, it has also been shown that B-cell defect in BALB.Xid mice 
impart susceptibility to develop filariosis and is associated with lack of antibody 
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production and IL-10 production in response to dominant surface molecule of 
invading pathogen [48]. B-1a cells were shown to inhibit TLR-mediated excessive 
inflammation in neonatal mice in an IL-10-dependent manner [49]. Another subset 
of B-1a, FAS ligand expressing B-1a cells also known as killer B cells, has been 
shown to mediate T cell apoptosis during schistosomal infection and prevent granu-
lomatous inflammation [14]. Interestingly, the regulatory role of IgM-producing 
B-1a cells has also been associated with the suppression of colitis in mice that were 
kept in conventional facility as compared to mice kept under specific pathogen free 
facility [50]. Thus, B-1a cells play an important role in immune regulation and tis-
sue homeostasis.

5.2.1.3	 �BR2 (mTGFβ+) Bregs
Here, we propose a novel subset of Bregs called “BR2” Bregs. These Bregs were 
first reported and studied by Parekh et al. in 2003. They found that B cells activated 
via T-independent mechanisms such as LPS showed membrane expression of 
TGFβ1, leading to CD8+ T cell anergy. These Bregs thus have the unique phenotype 
of mTGFβ+ Bregs. This manner of B cell activation is a major factor influencing 
CD8+ T cell responses as T-dependent activated B cells provide higher stimulatory 
properties to CD8+ T cells [6]. Membrane expression of TGFβ1 was found to be 
solely responsible for conferring these B cells with regulatory properties, thus influ-
encing CD8+ T cell responses. Thus, we now name these Bregs as BR2 
(mTGFβ+Bregs), with regulatory properties governed by membrane TGFβ expres-
sion. These findings provide insights into the immune evasion strategies adopted by 
retroviruses and gram-negative bacteria that target toll-like receptor-4 (TLR-4) sig-
naling in B cells. Recent reports have also shown that Bregs producing TGF-β 
induce Tregs for promoting transplantation tolerance [51]. These results illuminate 
the importance of novel modes of B-cell activation in the development of therapeu-
tic strategies to modulate the balance between active immunity and tolerance [6].

5.2.1.4	 �B10 Bregs
B10 cells are defined by their ability to express IL-10 following ex vivo stimulation 
with PMA and ionomycin and are enriched within CD1dhiCD5+ B cell subset [8]. 
Mouse B10 cells represent around 1–3% of cells in the spleen. Other tissues like the 
lymph nodes, central nervous system, Peyer’s patches, and intestinal tissues com-
prise a very small number of B10 cells. Their presence in peritoneal cavity is also 
prominent [29, 52, 53]. Mouse B10 cells have a typical phenotype as IgDloIgMhi 
cells, although a very small number of B10 cells are also reported to co-express IgA 
or IgG [54]. B10 cells secrete polyreactive or Ag-specific IgMs and IgGs upon dif-
ferentiation [53, 54]. T-cell Ig mucin domain-1 (TIM-1) is a type of transmembrane 
glycoprotein responsible for immunomodulatory responses [55], and its expression 
was found to be important for the induction and maintenance of IL-10-producing B 
cells, whereas a defect in TIM-1 expression leads to increased production of proin-
flammatory cytokines such as IL-1 and IL-6 [56]. During allotransplantation, TIM-1 
is particularly responsible for Breg stimulation to prolong allograft survival. TIM-1+ 
B cells usually express IL-4 and IL-10 and promote Th2 responses with subsequent 
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allograft tolerance [57]. Numerous studies have shown the potential of B10 cells in 
inhibiting disease initiation and subsequent pathology after their adoptive transfer 
in models of contact hypersensitivity [8], EAE [3, 52, 58], lupus [59], IBD [53, 60], 
and graft-versus-host disease [61]. Mauri et al. were the first to elucidate the thera-
peutic potential of B cells using agonistic CD40 mAbs for treating mice with 
collagen-induced arthritis [5, 62]. Depletion of B10 cells can have either therapeutic 
or detrimental effects in the course of various human pathological mouse models. 
Depletion of IL-10-producing B cells is known to enhance the innate, humoral, and 
cellular immune responses in mice [62, 63]. This intensifies the severity of disease-
related symptoms in various autoimmune diseases in mice such as EAE, skin trans-
plant rejection, and contact hypersensitivity [27, 58, 64].

5.2.1.5	 �T2-MZP Bregs
The T2-MZP Breg cell subset was discovered by Evans et al. in 2007 [65]. T2-MZP 
Bregs are immature transitional B cells found in the spleen with a CD19+CD21hiC
D23hiCD24hiIgMhiIgDhiCD1dhi phenotype. Among the different B-cell subsets 
residing in the spleen of mice with arthritis, this specific Breg cell type is respon-
sible for IL-10 production after collagen stimulation. T2-MZP Bregs were discov-
ered to have decisive suppressing properties both in vitro and in vivo, and the 
mechanism of suppression includes inhibition of pathogenic Th1 responses via 
producing IL-10 [65]. IL-10-producing T2-MZP B cells are shown to exert immu-
nomodulatory properties in various immune-mediated pathologies, including auto-
immune diseases, cancer, and allergy [21, 65, 66]. Recently, Oleinika et al. reported 
a novel role of CD1d+ T2-MZP Bregs in the induction of immunosuppressive in-
variant Natural Killer T (iNKT)-cells that downregulate excessive Th1/Th17 
responses partially via secreting IFN-γ and limit inflammation in experimental 
arthritis [17]. Recently, T2-MZP Breg cells have been linked as the precursors of 
B10 Bregs, but the interrelation between these two Breg subsets needs to be further 
established [21].

5.2.2	 �Human Breg Subsets

Similar to mouse Bregs, human Breg cells also play an important role in the mainte-
nance of tissue homeostasis. Mauri et al. in an extensive study demonstrated that 
CD19+CD24hiCD38hi B cells with a phenotype very similar to immature B cells pro-
duce the highest fraction of IL-10 in healthy human peripheral blood upon CD40 
stimulation [20]. Separately, Tedder et  al. also categorized human Breg cells as 
CD24hiCD27+, a phenotype related to memory B cells [22]. Furthermore, Bosma 
et al. reported that due to altered CD1d recycling in B cells, defect in B-cell-mediated 
iNKT expansion was observed in SLE patients [67]. Human Bregs exert immuno-
modulatory properties through their actions on various immune cell types such as 
inhibiting cytokine production in monocytes [22]; inducing immunosuppressive 
NKT cells [67], restraining IFN-α production from pDCs [68]; and regulating CD4+ 
T cell proliferation [69], inhibition of Th1 and Th17 differentiation, and conversion 

H. Y. Dar et al.



135

of CD4+ T-cells into CD4+CD25+ cells along with enhancing FOXP3 and PD-1 
expression on Tregs [20, 70, 71]. In humans, research on Bregs is mainly restricted 
due to lack of access to the human spleen, the primary site of the Bregs population. 
Thus, the majority of identified human Bregs are from peripheral blood where Bregs 
ranging from immature B cells to differentiated plasmablasts are found. Other phe-
notypes of human Bregs comprise CD19+CD25+CD71+CD73− B regulatory 1 (Br1) 
cells [72], CD19+CD27intCD38+ plasmablasts [73]. Furthermore, human Bregs (i.e., 
equivalent to B10 of mice) with the CD19+CD24hiCD27+ phenotype along with 
Tim1+ Bregs are preferentially found in the transitional B cells [22, 74]. Thus, it is 
important to describe different defined subsets of human Bregs.

5.2.2.1	 �CD19+CD24hiCD38hi Bregs
Human B cells with regulatory function have been described in CD19+CD24hiCD38hi 
immature subset of peripheral blood B cells. After CD40 stimulation, this subpopula-
tion isolated from peripheral blood of healthy individuals is known to inhibit the dif-
ferentiation of Th1 cells via IL-10 production and CD80 and CD86 engagement [20]. 
However, CD24hiCD38hi cells isolated from SLE patients lacked regulatory capacity 
[20]. Recently, in patients with SLE, an expanded population of CD19+CD24hiCD38hi 
Bregs was observed with deficient IL-10R expression, which is correlated with com-
promised Breg function despite showing enhanced IL-10 expression [75]. Thus, tar-
geting the ‘Bregs/IL-10/IL-10R’ axis may prove to be a novel therapeutic approach in 
the treatment of SLE. In addition to inhibiting Th1 and Th17 differentiation, these 
cells also convert CD4+CD25− into Tregs [70]. Both numerical and functional impair-
ment has been observed in a number of autoimmune diseases such as SLE [20, 75] 
and RA [70]. Recent studies showing reduced capacity of CD19+CD24hiCD38hi Bregs 
to secrete IL-10  in GVHD patients as compared to transplant tolerant and healthy 
controls indicated their important role in preventing graft rejection by promoting tol-
erance. Moreover, Cherukuri et  al. in 2014 found low IL-10/TNF-α ratio by 
CD19+CD24hiCD38hi transitional B cells in renal patients with graft rejection when 
compared with healthy controls, further highlighting their role in establishing trans-
plant tolerance [76] TIM-1 is also a marker for IL-10+ Bregs and around 50% of 
IL-10+ B cells were TIM-1+. On evaluating TIM-1 expression on human B cell sub-
sets, this transitional subset was enriched in TIM-1+ subset [74]. In the same study, 
authors found a decreased number as well as impaired function of TIM-1+ in patients 
with systemic sclerosis [74]. In 2015, Kristensen et al. stated that in humans, 40% of 
IL-10+ B10 cells expressed TIM-1 [77]. Supporting this study, Liu et al. found that 
compared to HIV-infected patients, healthy controls have more than 75% of periph-
eral B10 cells expressing TIM-1. These studies highlight the role of TIM-1 as a marker 
of Bregs and will open new avenues for the isolation of Bregs that could be utilized 
for achieving immune homeostasis.

5.2.2.2	 �CD19+CD24hiCD27hi Bregs
The IL-10-producing B cells, named B10  in humans, are predominantly 
CD19+CD24hiCD27+ memory subset of B cells, known to be a major source of IL-10 
after stimulation with LPS or CpG along with CD40 ligation B cells. B10 cells 
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also express CD48, and CD148 [22]. IL-21 has the potential to further induce IL-10 
production from CpG- or LPS-treated CD19+CD27+ memory B10 cells [78]. Among 
other subsets, B10 cells are also present in the tonsils, spleen, and newborn cord 
blood [76]. Interestingly, an increase in the number of B10 cells was observed in a 
number of autoimmune diseases [22, 79, 80]. In patients with RA, B10 cells are 
highly capable of expressing receptor activator of nuclear factor-κB ligand (RANKL) 
compared to those in the healthy controls, suggesting a possible mechanism by 
which B10 cells are involved in RA pathogenesis [81]. At the molecular level, 
Zheng et al. in 2017 reported that microRNA-155 (miR-155) positively regulates 
IL-10 expression in B10 cells, which is impaired in patients with Crohn’s disease 
(CD), leading to miR-155-induced expression of TNF-α by monocytes. These find-
ings further suggest a novel miRNA-mediated approach in developing Breg-based 
strategies to control the progression of autoimmune diseases.

5.2.2.3	 �Br1 Bregs
This subset of human Bregs with the CD19+CD25+CD71+CD73− phenotype was 
identified by Van de Veen et al. in 2013. These IL-10-producing Br1 Bregs share 
homology with the Tr1 subtype of T cells. Due to the low CD73 expression on their 
surface, the immunosuppressive function of Br1 cells was considered to be indepen-
dent of adenosine and could thus be IL-10 dependent. In support of this, further 
studies substantiated the role of IL-10 in imparting immunosuppressive functions to 
Br1 cells. This IL-10+ subset of Bregs is reported to induce tolerance toward aller-
gens by repressing the proliferation of allergen-specific CD4+ T cells as well as by 
producing allergen-specific anti-inflammatory IgG4 antibodies [72], thus contribut-
ing to peripheral tolerance. This subset of Bregs can induce tolerance against bee 
venom allergen and PLA2 (phospholipase A2) in an IL-10-dependent manner and 
also showed tolerance toward various food allergens like casein (cow milk protein). 
Van de Veen et al. used flow cytometry and whole-genome sequencing to further 
show that human Br1 cells express the inhibitory ligand PD-L1 (programmed death 
ligand-1), which binds PD-1 on T cells to inhibit T cell activation and promote the 
maintenance of Tregs cells.

5.2.2.4	 �Plasmablasts
This subset of Bregs is known to be derived from both naïve and immature B cells 
in humans with the CD19+CD27intCD38+phenotype, which secretes IL-10 [73]. In 
the presence of IL-2, IL-6, CpG, and IFN-α, immature B cells undergo differentia-
tion, leading to expansion of plasmablasts with increased expression of IRF4, 
Blimp1, and XBP1 [73]. In normal tissues, CD30 expression is limited to a few T 
and B cells, whereas in B cell lymphoma, CD30 expression is upregulated on B 
cells. Recently, in a mouse model of B cell lymphoma, higher CD30 expression on 
B cells was found to promote the differentiation of plasma B cells to plasmablasts 
via NF-κB activation and enhanced phosphorylation of STAT3, STAT6, and nuclear 
factor IRF4 [82]. Interestingly, exacerbation of inflammatory symptoms in MS 
patients upon treatment with Atacicept, which deplete antibody-secreting cells, 
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further suggests the regulatory function of plasmablasts [83]. Patients with immu-
noglobulin G4 (IgG4)–related disorder (IgG4-RD), primary Sjögren’s syndrome 
[84, 85], and SLE [86] have increased plasmablast number, indicating their expan-
sion could be the result of inflammatory conditions. In 2019, Arbore et al. further 
reported that microRNA-155 (miR-155) plays an important role in the survival and 
proliferation of plasmablast B cells [87].

5.2.2.5	 �Granzyme B (GrB+) Bregs
Granzyme B–expressing Bregs are known to display the characteristic phenotype of 
CD19+CD38+CD1d+IgM+CD147+ [88]. Expression of Granzyme B on Bregs (GrB+ 
Bregs) mediates their inhibitory effect on T cells by suppressing their proliferation 
and inducing apoptosis. In various inflammatory conditions such as SLE [89] and in 
acute viral infections [90], the percentage of GrB+ Bregs is relatively high. Peripheral 
B cells stimulated in the presence of IL-21 are reported to produce and secrete 
GrB. These cells mediate their suppressive function by repressing T cell prolifera-
tion, partly via downregulation of the TCR zeta chain, thereby promoting T cell 
apoptosis [88]. In the case of RA, the proportion of GrB+ Bregs is significantly 
reduced due to the lowered expression of IL-21R, which in turn impairs the negative 
regulation of Th1/Th17 by GrB+ Bregs [91], suggesting that impaired GrB+ Bregs 
are associated with RA pathogenesis.

5.2.2.6	 �iBregs (Induced Bregs)
B cells like other immunosuppressive cells differentiate into induced Breg 
(iBreg) cells when subjected to certain stimuli and express indoleamine 2,3-diox-
ygenase (IDO) and TGFβ. T cells expressing cytotoxic T lymphocyte–associated 
protein 4 (CTLA-4) enhance the induction of iBregs, which then convert T cells 
into TGF-β- and IL-10-producing Tregs, thereby modulating various immune 
responses [92].

5.2.2.7	 �IgA+ Bregs
This subset of Bregs has been identified recently by Fehres et  al. in 2019. They 
described that overexpression of APRIL (A Proliferation-Inducing Ligand) instead 
of BAFF induces activation of IL-10+ human Bregs that further repress inflammatory 
immune reactions. These APRIL-induced IgA+ Bregs suppress the effector function 
of T cells and macrophages and induce Tregs via IL-10 and PD-L1 expression [93]. 
These findings collectively suggest the importance of the novel APRIL-induced Breg 
subset with IgA+ phenotype, both in the immunopathology and homeostasis of 
immunological reactions. In colorectal cancer patients, a higher proportion of IgA+ 
Bregs was observed at the tumor site due to lowered expression of microRNA15A 
(miRNA15A) and microRNA16–1 (miRNA16–1). These microRNAs exhibit the 
ability to regulate proliferation, drug resistance, and apoptosis. These studies thus 
concluded that microRNAs and IgA+ Bregs are negatively correlated and that a lower 
level of microRNAs along with higher proportion of IgA+ Bregs reduces the survival 
rates in cancer patients [94].
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5.3	 �Bregs in Health and Diseases

The discovery of various defined subsets of Bregs has now compelled researchers to 
revisit the understanding of B cell biology in the context of various immune-
mediated diseases. Vaccines have been ideally responsible for eradicating several 
diseases via the specific activation of B cells. Similarly, cancer immunotherapies 
demonstrate their course of action via production of different B cells. Moreover, B 
cell deficiencies lead to various devastating impacts on health and immunity. It is 
now well established that B lymphocytes produce antibodies and are associated 
with various immunomodulatory properties. Bregs are now extensively studied for 
their novel immune-regulatory roles, as mice deprived of B cells are reported to 
demonstrate higher incidences of immune-related disorders. Bregs are known to 
produce various cytokines and immunomodulatory factors responsible for proper 
functioning of the host immune system [95]. A cohort study indicated that targeted 
depletion of B cell populations serves as a treatment in autoantibody-mediated auto-
immune disorders such as SLE [96]. Thus, Bregs undoubtedly play an important 
role in host pathology, thereby opening Pandora’s Box in harnessing the potential of 
Bregs in mediating health. In the following sections, we focus on the role of Bregs 
in selected diseases/pathologies.

5.3.1	 �Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disorder occurring due to T and B cell 
hyperactivation, leading to demyelination and axonal damage in the central nervous 
system (CNS). Apart from the role of B cells as pathogenic cells, they also modulate 
immune responses in MS. IL-10-producing Bregs were first observed in MS patients 
infected with helminthes; these Bregs were found to suppress the proliferation 
and IFN-γ production in T cells in vitro [97]. The role of Bregs in MS was further 
substantiated by diminished levels of IL-10 production in MS patients. In relapsing-
remitting MS patients, a significantly reduced number of IL-10-producing naïve 
Bregs were observed compared to that in the controls [98]. Further, treatment of MS 
patients with IFN-β, fingolimod, or alemtuzumab is reported to increase the number 
and function of Bregs [99, 100]. In EAE, one of the most widely studied animal 
model of MS, the importance of Bregs in alleviating EAE progression was recently 
illustrated [52, 58, 101, 102]. The suppressive functioning of Bregs involves binding 
to the BCR co-receptor CD19, which plays an inhibitory role in the development of 
EAE by modulating the Th1/Th2 cytokine balance [103]. Fillatreau et al. found that 
B-cell-depleted mice have a persistent type I immune response in EAE and that 
their recovery was dependent on myelin oligodendrocyte glycoprotein (MOG)-
specific IL-10-producing B cells [3]. Further studies indicate that Bregs with the 
CD1dhiCD5+ phenotype are effective in inhibiting EAE progression. CD1dhiCD5+ 
Bregs possess highly decisive immunomodulatory properties in controlling the 
pathogenesis of the initial and late phase of EAE [52, 58]. Further, depletion of 
CD20+ B cell enhances the pathogenesis of EAE.  This was evident from a 
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simultaneous increase in the expression of various inflammatory cytokines in the 
CNS and an increased number of autoreactive CD4+ T cells due to absence of the 
IL-10-producing CD1hiCD5+ Bregs subset [52, 58].

5.3.2	 �Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is a highly deteriorating inflammatory condition 
of the intestine, usually represented by Crohn’s disease (CD) and ulcerative colitis 
(UC) [104, 105]. Recently, an alarming rise in the prevalence and incidence of IBD 
has been observed globally [105]. Numerous studies have reported the functions of 
Bregs in regulating intestinal inflammation. Mizoguchi et al. [106] credited B cells 
and autoantibody production as important factors in protecting T cell receptor 
(TCR) α chain-deficient (TCRα−/−) mice, which are highly susceptible to develop 
chronic colitis. They showed that CD1+ B cells producing higher levels of IL-10 
upon induction in the gut-associated lymphoid tissues in TCRα−/− mice reduced the 
intestinal inflammation and disease incidence [4]. IL-10-producing Bregs have now 
been linked with downregulating the inflammatory cascade associated with IL-1 
and signal transducer and activator of transcription 3 (STAT3) without tweaking 
T cell responses. Wei et al. demonstrated that adoptive transfer of B cells from 
mesenteric lymph nodes could repress IBD by enhancing the Tregs population 
[107, 108]. A numerical (number/percentage of Bregs) defect in IL-10-producing 
Bregs has also been described in patients with both CD and UC [109].

5.3.3	 �Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is designated as a systemic multigene autoim-
mune disorder characterized by higher production of autoantibodies with simulta-
neous deposition of immune complexes, resulting in tissue inflammation and 
damage to the skin, kidneys, and joints. This phenomenon results in proteinuria and 
large-scale renal tubule inflammation (glomerulonephritis), which eventually affects 
the immune system [110, 111]. Both B- and T-cell abnormalities have been found to 
be responsible for the occurrence of SLE in mammals [112]. SLE-affected individu-
als usually show a reduced number as well as decreased functional activity of circu-
lating Bregs. This defect usually arises as immature B cells (CD19+CD24hiCD38hi) 
fail to differentiate into Bregs [20, 68, 113]. Various mouse models have been iden-
tified to study the role of regulatory B cells in spontaneous lupus. Recently two 
well-defined models, New Zealand Black (NZB) × New Zealand White (NZW) F1 
hybrid (NZB/W) mice and MRL/lpr mice, have been used to investigate the inhibi-
tory role of Bregs in regulating the severity of SLE [59, 112]. Depletion of Bregs in 
infant mice resulted in higher severity of SLE, whereas deletion of Bregs from adult 
mice did not affect SLE progression. Thus, Bregs have been found as predominantly 
effective during the initiation phase of SLE rather than during disease progression 
[59, 112]. Additionally, the higher therapeutic interventions of Bregs have come 
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into play due to their role in enhancing the number of Tregs after the transfer of 
splenic CD1dhi CD5+ B cells from wild-type NZB/W F1 mice to CD19 −/− NZB/W F1 
[95]. Blair et al. further observed that anti-CD40-induced T2 Breg cells significantly 
improved the survival rate in MPL/lpr mice via higher expression of IL-10. 
Collectively, these findings indicate that T2-MZP B cells as well as B10 cells effec-
tively help in protecting mice from severe SLE [21].

5.3.4	 �Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune disease with a worldwide 
prevalence of 0.3–1%. It is responsible for increased societal dependency with 
simultaneous reduction of mobility and working ability [114]. RA is characterized 
by autoimmune inflammatory responses at synovial membranes and joint capsules, 
resulting in significant morbidity and mortality due to synovial proliferation, carti-
laginous injury, and bone erosion [115]. B cells produce various factors including 
autoantibodies like anti-citrullinated protein antibodies (ACPAs) and rheumatoid 
factor (RF) that are responsible for severe disease activity in RA [116]. Moreover, 
reduced numbers of Bregs such as IL-10-producing Bregs, CD19+TIM-1+IL-10+ 
Bregs, CD19+CD5+CD1dhi B cells, and CD19+CD5+CD1d+IL-10+ Bregs were 
observed in RA patients compared to those in healthy controls upon stimulation 
with CpG or LPS along with phorbol myristate acetate and ionomycin [117, 118]. 
Further, the function of Bregs was found to be impaired in RA. One study demon-
strated that CD24hiCD38hi Breg cells from healthy individuals inhibited Th1 and 
Th17 differentiation and favored the conversion of CD4+CD25− T cells to Tregs via 
IL-10 expression. In contrast, CD19+CD24hiCD38hi cells from RA patients were 
unable to reduce Th17 development and induce Tregs differentiation [70]. In 2017, 
Banko et al. showed that CD19+CD27+IL-10+ Bregs are significantly reduced in RA 
patients compared to those in the controls and that the existing Bregs showed a 
reduced ability to suppress IFN-γ production by T helper cells. Breg-deficient mice 
demonstrate higher incidences of autoimmune arthritic conditions due to enhanced 
induction of Th1 and Th17 cells along with simultaneous suppression of Treg cells 
[113]. Bregs have thus been found instrumental in suppressing inflammation via 
restoring or modulating the Th1/Th2 balance in various T-cell-mediated autoim-
mune diseases such as EAE and RA [113].

5.3.5	 �Type 1 Diabetes

Type 1 diabetes (T1D) is an autoimmune disease caused by the obliteration of 
insulin-producing pancreatic β cells mediated by CD4+ and CD8+ T cells [119]. 
Onset of T1D usually occurs around 13–15  weeks of age in non-obese diabetic 
(NOD) mice, a model of human T1D.  The prevalence of T1D in NOD mice is 
higher in females with about 80% females and 20% males affected by this disease 
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by 30 weeks [120]. B cells are particularly found to be responsible for the develop-
ment of pathogenesis of T1D. B cell penetration into the pancreatic islets of NOD 
mice results in selective propagation of T cells within lymphoid structures, leading 
to an increased number of autoreactive B cells [121]. Treatment of 5-week-old NOD 
female mice with anti-CD20 mAbs was found to deplete 95% of B cells, thereby 
arresting insulitis; however, at 15 weeks, the same treatment was inefficient to hinder 
the progression of T1D [8, 122]. Grey et al. found that the increased population of 
CD4+CD25+Foxp3+ Treg cells due to B cell depletion reduced the occurrence of dia-
betes [123]. Smith and Tedder further postulated that B-cell-depleted NOD mice 
remained free from diabetes even after reconstitution with B cells [124]. Among vari-
ous types of B cells, IL-10-expressing B cells have been primarily found to be respon-
sible for decreasing the pathogenicity of insulitis and reducing T1D incidence. 
Simultaneously, various Th1 immune-related responses were curbed, leading to the 
diversion of CD4+ T cells toward the Th2 phenotype upon introduction of activated B 
cells in pre-diabetic NOD mice [125]. Tian and colleagues further established that 
LPS-activated B cells mediate apoptosis of diabetogenic Th1 cells in NOD mice via 
expression of FasL and secretion of TGF-β [24]. These findings provide new insights 
into treating human T1DM via targeting the T cell-B cell interaction. Reduced num-
bers of IL-10-producing Bregs have been reported in patients with T1D [126]. There 
is substantial evidence that Bregs are either insufficient in number and/or functionally 
compromised in autoimmune diseases. Thus, further studies are needed to understand 
their mechanisms of action in these diseases.

5.3.6	 �Infectious Diseases

The role of B cells in infectious diseases has been studied extensively. In contrast, the 
role of Bregs in intracellular infections is unclear. Studies on Bregs in infections will 
uncover the valuable targets/potent markers in developing therapeutic interventions 
to treat various infectious diseases. Recent studies have shown that successful treat-
ment of Mycobacterium tuberculosis infection induces Bregs with the ability to 
express FasL and IL-5RA in TB patients. Thus, these molecules could be potentially 
utilized as indicators of monitoring treatment responses during infections [127, 128]. 
Various studies have demonstrated the suppressive role of Bregs in chronic hepatitis 
B virus infection. Das et al. [129] first demonstrated that Bregs are responsible for 
regulating antigen-specific CD8+ T cells in hepatitis B virus infection. They also 
found that inhibition of IL-10 may reestablish HBV-specific CD8+ T cells in vitro. 
Various studies have reported that in HIV infection, Bregs impaired T cells via 
expression of IL-10 and programmed death (PD)-L1, contributing to immune dys-
function [130]. In 2014, Jiao et al. found that the frequency of Bregs in HIV patients 
was negatively correlated with the CD4+ T cell count but was positively correlated 
with the viral load. Supporting this, it is also observed that following anti-retroviral 
treatment, the frequency of Bregs was decreased along with a concomitant step-wise 
increase in the CD4+ T cell count.
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5.3.7	 �Allergy and Asthma

Bregs also exert protection against allergic airway inflammation [131]. Through 
antigen- specific/non-specific immunomodulatory mechanisms, it is apparent that 
Bregs demonstrate allergen tolerance and contribute to suppress allergic diseases. 
Allergic inflammation is reported to be suppressed by IL-10-producing Bregs and 
involves a delicate balance between IL-10 induced parasite responses and detri-
mental IL-4-mediated allergic responses [132]. Br1 and Br3 cells increase in 
response to casein in milk-tolerant individuals [133] but not in milk-allergic indi-
viduals. Thus, both Br1 and Br3 cell types are critical for immune tolerance in 
non-IgE-mediated food allergies related to atopic dermatitis. Patients with aller-
gic asthma and allergic rhinitis have a decreased number of IL-10-producing 
CD24hiCD27+ Bregs [134]. In a similar manner, beekeepers also develop tolerance 
against bee venom allergen, i.e., Phospholipase Az (PLAz)–specific to BR1 cells 
producing IgG4 antibodies by suppressing T cell responses in an IL-10-dependent 
manner [71, 135]. In allergic asthma, treatment with oral corticosteroids (OCS) 
significantly affects the frequency of Bregs as well as their ability to express 
IL-10 in a Breg subset–specific manner [136].

5.3.8	 �Osteoporosis

Osteoporosis represents one of the most common bone loss conditions, leading to 
higher fragility and bone fractures often related to advanced age and post-menopausal 
conditions [137, 138]. Osteoporosis is often a neglected disease with more than 
200 million affected individuals worldwide, thus also referred as a “silent killer” [139, 
140]. In the bone marrow, B cells are a major source of the osteoclastogenesis inhibi-
tor osteoprotegerin (OPG), in the presence of activated T cells signaled by 
CD40L-CD40 interaction on B cells. Moreover, a CD40L-CD40-deficient mice 
showed reduced bone mass compared to the control mice. B cells also express 
RANKL along with OPG, which in the long run affects bone physiology. Furthermore, 
mice with B cell deficiency show suppressed OPG production and high prevalence of 
osteoporosis [141]. Bregs suppress various proinflammatory cytokines such as IL-1 
and TNF-α, which are osteoclastogenic in nature, therefore leading to enhanced bone 
loss. The ratio of Th1/Th2 is an important parameter defining bone strength [142], 
including the rate of bone resorption and the resulting bone loss. Moreover, several 
subtypes of Bregs have now been reported with the suppression of Th1-, Th2-, or 
Th17-mediated autoimmune responses with a subsequent increase in Foxp3+ Treg 
cells along with conversion of effector T cells into Tr1 cells (CD4+ Foxp3+IL-10+ Treg 
1 cells). Bregs have also been observed to suppress the expression of Th17 cells [59, 
109], which are responsible for enhanced osteoclastogenesis and bone loss [142]. 
Recent observations (unpublished) from our lab clearly demonstrate the role of 
CD19hiCD1dhiCD5hiIL-10hi Bregs in modulating bone health. Thus, further research is 
needed to establish the precise role of Bregs in regulating bone health.
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5.4	 �Therapeutic Potential of Bregs: From Bench to Bedside

The present global scenario arising from various studies using experimental mod-
els and human disorders validate the vital role of Bregs in several diseases. 
Together, these studies indicate that Bregs have the potential to modulate a number 
of immune pathologies. Tedder et al. demonstrated that Bregs are involved in auto-
immune responses and also provide protection to host tissues during the immuno-
pathogenesis of infectious diseases [143]. More importantly, understanding the 
basic principle underlying the induction of Bregs will help in tweaking cellular 
tolerance and amend the influence of disease. As a small number of Bregs are inef-
ficient in inhibiting inflammation, mechanisms that can enhance both the number 
and effector functions of Bregs can result in enhanced immune-suppressive func-
tions. In the context of immunological conditions such as autoimmunity and trans-
plantation, long-term usage of immunosuppressive drugs increases the likelihood 
of life-threatening infections. In certain conditions such as during graft transplan-
tation, autoimmune diseases, and so on, expansion of the immunosuppressive 
Bregs population is needed. Thus, strategies that can be exploited by therapeuti-
cally targeting Bregs can open new avenues in treating various immune-mediated 
diseases such as the following: (a) ex vivo expansion of Bregs: stimulation of B 
cells in patient-derived PBMCs, leading to expansion of Bregs, followed by adop-
tive transfer of Bregs sorted by FACS may suppress the inflammation and re-induce 
tolerance. (b) in vivo modulation of Bregs for expansion: stimuli that can shift the 
differentiation of B cells toward immunosuppressive regulatory B cells. Some evi-
dence suggest that pro-inflammatory cytokines such as B cell–activating factor 
(BAFF), IL-1β, IL-6, IL-21, IFN-α, and IFN- γ [23, 68] are the key cytokines that 
expand the Bregs population upon exposure. Interestingly, in arthritic mice, the gut 
microbiota has the potential to induce the expression of IL-1β and IL-6, which 
further promote Bregs differentiation and production of IL-10 cytokine [23]. (c) 
Depletion of Bregs: B cell depletion therapies (viz. rituximab), usage of targeted B 
cell therapies, that can target a specific subtype of B cells is more advantageous 
than total B cell depletion. Thus, further in-depth studies are required to develop 
Breg-dependent immunotherapies and to enhance their applications in treating 
various immune disorders and pathologies.
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