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Abstract
Leishmaniasis is a neglected tropical disease subverting the immune system of 
the infected individual. Most of available treatment regimens are associated 
with various drawbacks such as drug resistance, toxicity, and cost. Development 
and implementation of vaccines seem to be the only rationale to eradicate the 
disease. However, various traditional approaches for vaccine development 
have been implicated against leishmaniasis, but till date, no vaccine is avail-
able for humans in the market. It has been observed that vaccination strategy 
including live or attenuated vaccines is mainly due to their ability to deliver the 
antigens to the appropriate immune cells for generating an immune response. 
This indicates that pan-Leishmania vaccine packaged into a suitable delivery 
system could not only increase the stability of the vaccine candidate but also 
lead to its targeted delivery which will mimic the natural infection and recogni-
tion of the antigen by the desired antigen-presenting cells. Various natural and 
synthetic polymers have been used as delivery vehicles encapsulating the vac-
cine components against leishmaniasis. Herein, we have tried to summarize 
such attempts, along with our insight on using synthetic circuits as delivery 
system, not only for targeted but also controlling the expression dynamics of 
antigen as needed.
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1.1  Introduction

In the modern era, infectious diseases have become a major cause of health threat 
across the globe [1]. Many new infectious diseases have been identified, and old 
ones have reemerged, becoming a major concern for human health. Leishmaniasis 
and tuberculosis are two of the most important infectious diseases. Among 16 cat-
egories of neglected tropical diseases, during the period of 2005–2013, leishmani-
asis ranks second in age-standardized DALYs (disability-adjusted life years), next 
to malaria [2], and in 2017, 20,792 out of 22,145 (94%) new cases reported to WHO 
occurred in seven countries: Brazil, Ethiopia, India, Kenya, Somalia, South Sudan, 
and Sudan. Tuberculosis accounts for death of nearly five thousand people every 
day. For both these diseases, there is need of global, multi-sectorial approach. Since 
drug resistance is a common problem associated with both the abovesaid diseases, 
vaccines appear as a safe and better treatment strategy.

Area of vaccine development holds much importance in today’s arena of drug 
resistance and toxicity associated with drugs. Significant work has been done toward 
development of new vaccines and improves the efficacy of existing ones, and the 
global efforts toward vaccine development have improved the health status univer-
sally. It has been inferred that by improving the vaccination program, nearly 1.5 mil-
lion lives could be saved annually [1]. On the contrary, various deadly infectious 
diseases do not have an approved vaccine, although theoretical strategies confer that 
vaccine could be an effective therapeutic strategy [2, 3]. Hindrances on various 
levels are responsible for this, which include legal and ethical reasons.

The major reasons are associated with the link between nature of pathogen and 
vaccination technologies evolved for it [4]. When it comes to vaccination strategies 
for diseases like tuberculosis and leishmaniasis, the most important point to be con-
sidered is that both these pathogens are intracellular and vaccines based on humoral 
immune response will be of no use [5, 6] along with the fact that these pathogens 
have high antigenic diversity and various immune-evasion strategies to combat the 
host immune response [2, 7].

In spite of enormous efforts and strategies followed to develop the vaccine, effec-
tive vaccines against both the abovesaid infectious diseases are still a distant vari-
able. Herein this review, we would focus on various vaccination strategies of major 
infectious disease, namely, leishmaniasis, along with the loopholes in vaccine 
development program. The important discussion in the present study would be on 
use of biomaterials in improving the vaccination and other immunotherapies. 
Biomaterials hold importance in vaccine development because they allow con-
trolled responses to antigens, adjuvants, or immunomodulators and have also been 
explored for targeted delivery of vaccine candidates to specific cell/tissue.

1.2 Leishmania and Vaccines Overview

Leishmaniasis is a neglected tropical vector-borne disease which is transmitted by bite 
of infected sand fly, afflicting nearly 900,000  ±  1.3  million people annually with 
30,000 deaths per year [8]. The disease is spreading by natural phenomenon and the 
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man-made condition for which efforts are being taken using technology, knowledge, 
and communication to effectively control it.

1.3  Challenges Associated with Control Program 
for Leishmaniasis

Leishmaniasis being a zoonotic and vector-borne disease encounters various chal-
lenges for its control. Since it is a neglected tropical disease afflicting mainly poor 
population [9, 10], the magnitude and stability of research funds for it are limited as 
compared to diseases such as cancer, HIV, or diabetes. Animal reservoir, of which 
few are wild and inaccessible, is another big challenge to be addressed for leish-
maniasis elimination program. Another major challenge is that since it is a vector- 
borne disease, aspects of sand fly as well as human behavior need to be thoroughly 
understood to dissect the transmission dynamics of disease and vector control as 
well [11].

Many other challenges involve availability of drugs, cost of treatment (drugs and 
hospitalization), efficacy, adverse effects, and growing parasite resistance. Therefore, 
there is need for new therapeutic interventions which can become truly accessible to 
the population in endemic regions.

1.4  A Brief Overview Why and How Vaccines Could Work 
Against Leishmaniasis

A complex relationship exists between the host, vector, and reservoir for Leishmania 
parasite, and this makes treatment strategies for leishmaniasis a bit complicated. Of 
all the available treatment regimens, most of the drugs have shown cases of drug 
resistance, and they all require long-term hospitalization which is quite challenging. 
Assessing the present status of antileishmanial treatments along with the fact that 
once infected, the individual develops long-lasting immunity against the infection, 
vaccine fits for the best way forward to cure leishmaniasis [12–15].

The causative parasite for different form of leishmaniasis is different, but the 
sequence homology is more than 90%. The next question that rises is that vaccine 
against which form is the need of the day. It would be an ideal condition that vaccine 
against leishmaniasis should have broad spectrum of protection, showing protective 
response against all the leishmanial species. Selection of antigens for such vaccine 
should be based on the fact that highly conserved antigens should be selected for 
designing cross-protective vaccine. Another point to be taken in consideration is 
that parasite resides in two hosts, and the relationship between host-vector reser-
voirs is not well studied, which might be a problem in assessing the efficacy of a 
vaccine candidate. For example, the antigenic candidates which could enhance the 
susceptibility of host to the infection need to be avoided [16].

Not only for leishmaniasis but for many infectious diseases, there is a big debate 
on how the vaccine should work, either prophylactically or therapeutically alone or 
in combination with some type of adjuvant. Therapeutic vaccines development has 
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gained less importance; however, it would be of more use to patients with active 
infection by modulating their immune response [17].

Another important aspect which needs to be considered is the potential strategy 
for designing a vaccine, which has been initiated from leishmanization, which is 
still practiced in few regions of the Middle East to first-generation vaccines to sec-
ond and third generation vaccines [14]. In the next section, we would discuss about 
various vaccination strategies against leishmaniasis, with detailed discussion on 
biomaterial- based vaccines.

1.5  Vaccination Strategies Adapted Against Leishmaniasis

Till date, no vaccine is available against human leishmaniasis, but it has been widely 
accepted by researchers across the globe that vaccine against this disease is feasible, 
and the most important point in consideration is that vaccination is the only viable 
option to achieve disease elimination [18].

1.6  Leishmanization: A Traditional Practice

In leishmanization, live Leishmania parasite was introduced in infected individuals 
in covered part of the body to protect against lesion development. In simple terms, 
leishmanization was controlled induction of disease to prevent the consequences of 
natural infection [19, 20].

Later on, the virulent parasites which were harvested from cell-free cultures 
were used for this. This practice using Leishmania major parasites was used in for-
mer USSR, Israel, and Iran [21] but discontinued due to loss in infectivity by 
repeated subculturing or freezing, complications at the inoculation site, or major 
complications due to immunosuppression [22]. Many cases of nonhealing lesions in 
Iran further complicated the possibility of widespread use of leishmanization for 
treating the disease [23–26]. However, leishmanization is still performed in 
Uzbekistan [14].

Although the practice of leishmanization trials is there, the information it gave at 
the end of century is very important, proving the feasibility of vaccines against 
leishmaniasis and for defining strategies to develop vaccine against leishmaniasis. 
Both C57BL/6 and BALB/c experimental mouse models have shown that a key fac-
tor in the efficacy of leishmanization is the persistence of the parasite following 
inoculation indicating that persistent antigen presentation drives T-cell immunity 
[27, 28].

Various studies are ongoing to develop killed, naturally attenuated, or genetically 
modified live parasites or subunit vaccines which are based on replicating the 
immune protection as in case of leishmanization. Vaccine based on various strate-
gies can be categorized as live vaccines (“leishmanization like”); first-, second-, and 
third-generation vaccines; and vector-derived vaccines.
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1.7  Live Vaccine Candidates

Vaccination principles postulate that the vaccine which is more similar to the natural 
infection will evoke a better immune response. Thus, live attenuated vaccine can be 
good strategy for treating leishmaniasis. Moreover, against various intracellular 
organisms, live attenuated vaccines have served as a gold standard for treatment of 
diseases such as smallpox, measles, mumps, and rubella. Success of leishmaniza-
tion also supports the research going on to develop vaccines based on live parasites, 
and it has also been termed as leishmanization revisitation [29], because these have 
advantage of partially mimicking the natural course of infection [30].

Various efforts have been taken since years to develop attenuated strains in 
in vitro cultures [31] by selecting for temperature sensitivity, chemical mutagenesis 
[32], and γ-attenuation [33] or by keeping parasite culture under drug pressure [34]. 
Specially in the era when genetic engineering was not so flourished, these chemi-
cally and physically attenuated parasites showed effectiveness in preclinical trials 
against  cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and 
visceral leishmaniasis (VL) [15, 35–37]. All these methods have further shown that 
these attenuated strains have shown remarkable protection in murine models against 
challenge by virulent Leishmania parasite; however, as a drawback, a clear genetic 
profile and probability of reversal to virulent parasite could not be predicted restrict-
ing their human use. There is one more possibility that the continuous presence of 
such asymptomatic Leishmania infection can increase the risk of subsequent reacti-
vation, particularly in case of HIV/Leishmania coinfection. There is another draw-
back that such undefined attenuation can also cause loss of effectiveness for 
protective immunity which can be due to failure of such strains to establish a sub-
clinical infection or due to the loss in expression of antigenic epitopes. One such 
study carried out using L. chagasi has shown that inoculating high dose of L. cha-
gasi subcutaneously caused subclinical infection, and this induced protective 
immune response in mice. On the contrary, when attenuated L. chagasi parasite 
obtained either by long-term passage or knockout was inoculated in mice, no pro-
tective response was elicited because these parasites failed to establish a subclinical 
infection or no expression of immunogenic antigen epitopes [38].

In the post-genomic era, these strategies for attenuation were replaced by the 
genetically modified parasites. For preclinical studies, genetically modified 
Leishmania parasites were generated using two approaches: loss-of-function 
mutants (knockout) and gain-of-function mutants (knock-in). For knockout studies, 
defined genetic alterations of the Leishmania genome are usually generated using a 
gene-targeted disruption strategy through homologous recombination which allows 
selection and long-term survival and virulence of parasite lacking gene of interest in 
selection medium.

Targeted deletion of an essential metabolic gene, DHFR-TS (dihydrofolate reduc-
tase thymidylate synthase), was the first attempt for developing knockout parasites 
for vaccination studies. Homozygous null mutant auxotrophic for thymidine was 
created by a two-step process as Leishmania is a diploid parasite. These DHFR-TS 
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were able to survive in vivo but did not induce infection or cause disease even in most 
susceptible mice. When used for immunization against L. major challenge, these 
induced a potential protection against the virulent parasite [39]. Another group stud-
ied the efficacy of these genetically mutated parasites in comparison to inactivated 
autoclaved promastigotes (ALM) with bacillus Calmette-Guérin (BCG) for protec-
tion in Rhesus macaques (Macaca mulatta) against L. major infection. Protective 
immunity was not observed in monkeys post vaccination as all the monkeys exhib-
ited skin lesions in all the study groups. Moreover, another striking observation was 
these attenuated parasites were not pathogenic in monkey model. Therefore, further 
studies on these knockout parasites were stopped with a conclusion that although the 
vaccine protocol is safe in primates, for clinical use, it needs more modifications 
[40]. Many other studies have been conducted using various target genes for develop-
ing knockout vaccine candidates. These included L. mexicana cysteine 
proteases+(CPA/CPB−/−), L. major lipophosphoglycan 2 (LPG2−/−), L. major 
phosphomannomutase (PPM−/−), L. donovani Centrin (Cen−/−), L. infantum heat 
shock protein 70 type II (HSP70-II−/−), L. donovani arabino-1,4-lactone oxidase 
(ALO−/−), and L. donovani biopterin transporter 1 (BT1−/−)] and a single knock-
out [L. infantum silent information regulatory protein 2 (SIR2+/−)] which showed 
protective responses in primate models of CL, MCL, and VL [37, 41–46]. One amas-
tigote-specific protein p27 (Ldp27) was knocked out using L. donovani, and it was 
found that the parasite had reduced virulence in vivo. Further studies carried out by 
the same group had shown that these knockout parasites did not survive for long in 
BALB/c mice and hence could serve as an immunogen. When mice with Ldp27−/− 
were challenged with virulent parasites, immunized mice showed significantly lower 
parasite burden in liver and spleen along with anti- inflammatory cytokine and NO 
production. Long-term memory response was proven by adoptive transfer of T cells 
from immunized mice to naive mice against L. donovani challenge. These knockout 
parasites also demonstrated cross- protection against the Leishmania major and 
Leishmania braziliensis infection [47, 48]. Recently, a Leishmania major p27 gene 
knockout (Lmp27−/−) strain was developed that was safe and immunogenic in 
BALB/c mice [49]. In this study, protective immunity and efficacy of Lmp27−/− were 
evaluated against homologous (L. major) and heterologous (L. infantum) Leishmania 
species. Results showed a significant Th1 response along with smaller skin lesions 
and lower parasite burdens following a L. major challenge. These mutant also showed 
cross-protection against L. infantum infection [50].

Another strategy of gain-of-function mutants also showed efficacy as potential 
vaccines against cutaneous and visceral leishmaniasis. These were termed as “sui-
cidal mutants” as they would be completely eliminated from the immunized host 
either by the action of chemotherapeutics [L. major thymidine kinase (herpes sim-
plex virus), cytosine deaminase (Saccharomyces cerevisiae) knock-in: tk-cd+/+] or 
by photodynamic therapy (L. amazonensis δ-aminolevulinate dehydratase, porpho-
bilinogen deaminase knock-in: alad-pbgd+/+) [36, 51, 52].

Most of the studies show exciting data, but live attenuated vaccine is a long road 
to be covered. These attenuated parasites are associated with many safety con-
straints such as possibility for reversal of virulence, reactivation in 
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immunosuppressed individuals, and manufacturing considerations which majorly 
include stability/viability. Most of these attenuated parasites are made by inserting 
an antibiotic resistance gene to be used as a selection marker during the steps of 
gene deletion which again strongly restrain their clinical studies.

To overcome such hindrances, a new approach has come into picture using 
Leishmania tarentolae parasite, which infects reptiles but did not cause sustained 
infection in mice, and most importantly, it shares more than 90% gene homology to 
other Leishmania species [53]. Based on this strategy, a live recombinant Leishmania 
tarentolae which expressed lipophosphoglycan 3 (LPG3) antigen was tested against 
L. infantum infection in Balb/c mice. It caused enhanced expression of IFN-γ along 
with decreased expression of IL-10 when compared to control group with virulent 
parasites, indicating its Th1 stimulatory role [54]. Further studies are needed to 
explore this approach of live vaccination.

1.8  First-Generation Vaccines

First-generation vaccines comprised of whole-killed pathogen or their fractions 
along with live attenuated vaccines, and many of these are approved for human use. 
In Latin America, since early part of twentieth century, these first-generation vac-
cines have been under experimentation. After the era of leishmanization, killed/
fractionated vaccines were developed to assure the safety issues associated with 
leishmanization as well as attenuated counterparts. These vaccines elicit a specific 
memory response without any expected pathology even in immunocompromised 
individuals [55]. However, this has a disadvantage as well, since the antigen would 
be needed to be administered more than once to boost the primary response or coad-
ministered along with some agent which can act as an immune enhancer, not 
required for generation of immune response by live vaccines [56, 57]. Many first- 
generation vaccines have gone to the clinical trial, and this outnumbers the other 
vaccines. The concept of designing these vaccines is quite simple, and production 
cost is also low which makes these vaccines as an attractive candidate to be devel-
oped for human use. Killed Leishmania vaccine because of abovesaid merits along 
with stable biochemical composition and antigenicity gained a lot of attention, but 
these could not confer significant protection against human leishmaniasis [14]. 
Leishvaccine, which was prepared from whole-killed promastigotes of Leishmania 
amazonensis and bacillus Calmette-Guérin (BCG), showed protective efficacy 
against canine leishmaniasis by inducing a mixed cytokine response. This was taken 
successfully to phase I and II clinical trials, wherein it showed good safety and 
immunogenicity, but it failed to give similar immunoprotective results in random-
ized phase III clinical trial [58].

Most of the first-generation vaccines are focused on CL, and no clinical trials 
have been done for visceral leishmaniasis. Alum-precipitated autoclaved L. major 
was given along with BCG which showed promising efficacy as vaccines for VL 
and PKDL [22]. Psoralen compound amotosalen-treated L. infantum and L. chagasi 
along with treatment with UV radiation were used as whole cell vaccine. Such 
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treatment caused the generation of permanent covalent DNA cross-links within 
parasites which resulted in parasite termed as killed but it was metabolically active 
(KBMA). Initial data with this approach was quite promising [59].

Efficacy of L. mexicana along with BCG was also tested both prophylactically 
and as an immunotherapy. Application of this vaccine showed low levels of leish-
manin skin test (LST), and the participants which showed LST conversion had low 
incidences of leishmaniasis [60]. The strategy of immunotherapy has shown success 
in the patients afflicted by mucocutaneous and diffuse forms of CL treated with 
pasteurized Leishmania braziliensis (L. braziliensis) promastigotes along with 
BCG. This treatment cured patients of nonhealing CL which did not respond to 
three courses (2 months) of antimonial treatment [60].

L. major has also been well explored for its immunogenicity in various clinical 
trials for Leishmania treatment [60]. Autoclaved L. major (ALM) was used along 
with BCG in phase I and II clinical trials within healthy individuals in non-endemic 
areas of CL, and it was observed that LST conversion was observed only in 36% of 
healthy individuals with low levels of IFN-γ production on stimulation with soluble 
Leishmania antigen. This vaccine was also assessed in healthy individuals of 
endemic area, and similar results were obtained [15, 61].

Alum was optimized by adsorption of antigenic fraction to alum and, along with 
BCG, was used in combination with sodium stibogluconate for treating post-kala- 
azar dermal leishmaniasis (PKDL), and data suggested that this combination was 
more effective than sodium stibogluconate (Stb) alone [36, 60].

In case of L. donovani, this type of parasite-killing approach was tested as a vac-
cine in preclinical trial against visceral leishmaniasis (VL), and significant potential 
was observed in protecting against the disease [62].

Total or soluble antigens of L. donovani obtained after sonication of the parasite 
have also been used along with MPL-A, BCG, or liposomes as vaccine candidates 
for VL in preclinical trials with promising results in all models tested (mice, ham-
sters, and monkeys) [43, 63–65].

As a vaccination strategy, fractionation of soluble proteins of L. donovani was 
carried out based on molecular weight, and different fractions were tested for their 
prophylactic efficacy in hamster model. It was observed that fraction within the 
range of 97–68 KDa showed nearly 90% protection, which was further character-
ized by proteomics studies [66, 67].

Two of the approved Leishmania vaccines Leishmune® in Brazil and CaniLeish® 
in Europe licensed for veterinary use to protect dogs belong to fractionated vaccines 
only. Leishmune is a vaccine of a purified fraction named as fucose mannose ligand 
(FML), which is a glycoproteic complex isolated from Leishmania donovani plus a 
saponin adjuvant which include QS21 and two deacylated saponins. It showed more 
than 90% efficacy in Brazil] [12, 22 clinical trial paper].

CaniLeish® comprises of purified excreted-secreted proteins (ESP) of Leishmania 
infantum (LiESP) produced by means of a patented cell-free, serum-free culture 
system [68] and adjuvanted with QA-21, a highly purified fraction of the Quillaja 
saponaria saponin. Dogs vaccinated with this vaccine showed Th1-type immune 
response within three weeks. However, both of these vaccines were never tested for 
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human use which might be due to more stringent and lengthy process for human 
approval as well since this vaccine consists of heterologous antigens which again is 
harder to standardize.

1.9  Second-Generation Vaccines

This category of vaccines comprises of further refined products, such as recombi-
nant proteins, which are produced by genetically engineered cells along with adju-
vant or expression in heterologous microbial vector. Since these proteins can be 
produced in a large scale, are reproducible, and have low cost, these represent a 
more feasible vaccination strategy. The response elicited by them can be further 
enhanced by formulation with adjuvant [69, 70].

In animal models, defined antigens which are delivered as plasmid DNA/vector 
DNA or as recombinant protein with adjuvant have shown promising efficacy, but 
for human use, only recombinant proteins are licensed.

Various attempts have been made to develop second-generation vaccine against 
leishmaniasis. In a study of recombinant stage-specific hydrophilic surface protein 
of Leishmania donovani, recombinant hydrophilic acylated surface protein B1 
(HASPB1) was evaluated for its prophylactic efficacy and it was able to control 
parasitic burden in spleen along with production of IL-12 and IFN-γ [71].

To investigate the immune response generated against amastigote antigens, three 
stage-specific antigens, namely, A2, P4, and P8, purified from in  vitro-cultured 
amastigotes of L. pifanoi were evaluated. It was found that along with 
Corynebacterium parvum as an adjuvant, P4 and P8 showed partial to complete 
protection of BALB/c mice challenged with L. pifanoi promastigotes. P8 showed 
complete protection against L. amazonensis infection of CBA/J mice and partial 
protection of BALB/c mice [72]. A hypothetical Leishmania amastigote-specific 
protein (LiHyp1) also showed protective response in mice [73].

KMP-11 is a highly conserved surface membrane protein present in all members 
of the family Kinetoplastidae. This protein is differentially expressed in amastigote 
and promastigote stage of Leishmania parasite. A construct containing KMP-11 
was tested in susceptible golden hamsters against challenge by both pentavalent 
antimony-responsive (AG83) and antimony-resistant (GE1F8R) virulent L. don-
ovani. It showed substantial magnitude of protection as evident by decreased para-
sitic load and increased IFN-γ, TNF-α, and IL-12 levels [74].

LCR1 antigen of L. chagasi was found to stimulate the production of IFN-γ from 
T cells isolated from infected BALB/c mice and, when used for immunization, 
showed partial protection. To enhance its immunogenicity, BCG expressing LCR1 
(BCG-LCR1) was engineered which showed better protection than LCR1 alone 
promoting Th1 immune response which strengthened its potential as a component 
for Leishmania vaccine [75].

Similar strategy was adapted for another Leishmania surface protein gp63. Gp63 
of L. major was cloned and expressed in BCG using two different expression sys-
tems. It was found that BALB/c mice immunized with recombinant BCG producing 

1 Vaccine Design, Nanoparticle Vaccines, and Biomaterial Applications



10

Gp63 as a hybrid protein with the N-terminal region of the beta-lactamase stimu-
lated significant protection against L. major challenge [76].

Along with membrane proteins, various antigens identified in soluble fraction 
of Leishmania proteins were also evaluated for their antigenicity and feasibility as 
vaccine candidates [77–83].

Most of the proteins in such studies have been identified by immune-proteomics 
approach. Amastigote stage considering that this is the form which resides as intra-
cellular parasite in humans has been explored for identifying vaccine candidates 
[73, 84–86]. Data shows that many categories of proteins, including ribosomal 
proteins, metabolic enzymes stress-related proteins, antioxidant-machinery com-
ponents, and even hypothetical proteins, have been evaluated for their efficacy as 
vaccine candidates. One such vaccine, L. donovani A2, has been licensed as veteri-
nary vaccine against leishmaniasis in Brazil—LeishTec® [87]. Peptide vaccines 
and many combinations of immunogenic peptides/multi-epitopes and/or multi-
specific vaccines have been tested against leishmaniasis [88–94].

In spite of so many efforts, only very few antigens have gone to clinical or 
veterinary trials. One of the important drawbacks associated with recombinant 
vaccines is that these generally induce weak T-cell response, which could be over-
come by addition of adjuvant or a delivery vehicle, which we will study in detail 
in next section.

Few of the recombinant vaccines along with suitable adjuvants have reached to 
clinical trials. One such vaccine is LEISH-F1 produced by the Infectious Disease 
Research Institute (IDRI, Seattle, WA, USA), which was previously known as 
Leish-111f. It is comprised of a recombinant artificial protein encoded by three 
genes: L. major homologue of eukaryotic thiol-specific antioxidant (TSA), L. major 
stress-inducible protein-1 (LmSTI1), and L. braziliensis elongation initiation factor 
(LeIF). This vaccine was emulsified with an adjuvant called “monophosphoryl lipid 
A which stimulates Toll-like receptor (TLR)” (MPL-SE) and reached up to phase II 
of clinical trials. This vaccine not only protected individuals affected with cutane-
ous leishmaniasis (CL) or mucocutaneous leishmaniasis (ML) but also induced the 
production of protective immunity in healthy volunteers [95–97].

IDRI launched another vaccine called LEISH-F2. This has all the constituents 
similar to LEISH-F1; the only modification was removal of N-terminal histidine 
tag, which made protein resemble more to the natural protein. This vaccine also 
reached up to phase II clinical trial associated with MPL-SE adjuvant (25 μg) [95].

Another multicomponent vaccine is LEISH-F3, which includes two proteins, 
namely, nucleoside hydrolase (NH) and sterol 24-c-methyltransferase (SMT), 
derived from L. donovani and L. infantum, respectively [98]. This was formulated 
with an adjuvant, which is a ligand for TLR-4, glucopyranosyl lipid A-stable oil-in-
water nanoemulsion (GLA-SE) [98]. This vaccine was tested in healthy and adult 
individuals, living in Washington (US), and showed promising results, which was 
evident by robust immune response against VL [98, 99].

One such multivalent vaccine is Protein Q which has been tested for canine VL 
and has showed more than 90% in combination with various adjuvants [100].
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1.10  Third-Generation Vaccines

Concept of generating an antigen-specific immune response by intramuscular injec-
tion of plasmid in animal model brought up the idea of new arm of vaccine research, 
DNA vaccines. These vaccines were not well accepted due to the ethical implication 
that this foreign DNA might integrate in the human genome along with the possibil-
ity of generation of autoimmune pathology which could be generated by anti-DNA 
immune response [101]. These shortcomings were later on ruled out by various 
preclinical and clinical trials for DNA vaccines suggesting that these vaccines are 
safe and immunogenic. However, till date, no third-generation vaccine has been 
approved for human use. Membranous and soluble, both antigens were studied for 
DNA vaccination strategy in animal models. Immunological response induced by 
DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA 
(thiol-specific antioxidant) genes alone, or LACK-TSA fusion was studied against 
cutaneous leishmaniasis by assessing cellular and humoral immune responses after 
challenge with L. major. Partial immunity was shown by all the groups with IFN-γ/
interleukin (IL)-4 and IgG2a/IgG1 ratios showing that fusion of LACK-TSA pro-
duced highest IFN-γ and IgG2a. Overall data suggested that a bivalent vaccine can 
induce stronger immune responses [102].

Efficacy of a synthetic DNA vaccine encoding Leishmania glycosomal phospho-
enolpyruvate carboxykinase (PEPCK) delivered by electroporation by intradermal 
route was found to be superior to the intramuscular route for generating skin- 
resident PEPCK-specific T cells. It was observed that mice immunized intrader-
mally, when challenged with Leishmania major parasites, exhibited significant 
protection, while mice immunized intramuscularly did not [103]. Hemoglobin 
receptor (HbR) of Leishmania was found to be conserved across many strains of 
Leishmania, and anti-HbR antibody was detected in kala-azar patients’ sera. Based 
on this, immunization with HbR-DNA was carried out, and data suggested that it 
induced complete protection against virulent Leishmania donovani infection in both 
BALB/c mice and hamsters with production of Th1 type of immune response [104].

Recently, a first-in-human dose-escalation phase I trial was conducted in 20 
healthy volunteers to assess the safety, tolerability, and immunogenicity of a prime- 
only adenoviral vaccine for human VL and PKDL. ChAd63-KH is a replication- 
defective simian adenovirus which expresses a novel synthetic gene (KH) encoding 
two Leishmania proteins, KMP-11 and HASPB. Synthetic haspb gene was designed 
to reflect repeat diversity and repeat domain structure of the gene product as known 
from clinical isolates of L. donovani from India and East Africa which represented 
a novel approach. Innate immune response was seen by whole blood RNA-Seq and 
antigen-specific CD8+ T-cell responses by IFN-γ ELISpot and intracellular flow 
cytometry. It was found that ChAd63-KH was safe at intramuscular doses of 1 × 1010 
and 7.5 × 1010 vp. Transcriptomic profiling of whole blood showed that ChAd63-KH 
induced innate immune responses characterized by IFN-γ and the presence of acti-
vated dendritic cells. Robust CD8+ T-cell response was induced in all the subjects 
in the study [105].
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1.11  Role and Use of Biomaterials for Leishmania Vaccines

1.11.1  Introduction to Biomaterials and Their Use 
in Vaccine Delivery

Various advances have been made in the area of vaccine development against infec-
tious diseases. Numerous first-generation, subunit second-generation, and RNA or 
DNA (third-generation) vaccines have been developed to elicit immune response 
against the disease.

Some of the important points to be taken care of while developing a new vaccine 
include (i) safety, (ii) stability, and, (iii) the most important one, generation of 
disease- specific immune response to combat the disease with a minimum dose 
[106, 107].

Although RNA/DNA vaccines are associated with various advantages with mini-
mum risk, the delivery of these vaccine molecules to the target site is a big challenge 
along with requirement of booster dose. There is a strong probability of premature 
degradation of these molecules, and another challenge is, in some cases, their inabil-
ity to translate into a functional immunogen [108–110]. Proteins-based vaccines 
although in use for various infectious diseases are associated with few drawbacks 
such as need for an adjuvant to potentiate their immunogenicity, and they are more 
prone to early degradation when exposed to hostile milieu [111, 112]. These short-
comings associated with various vaccines indicate the need for some efficient vac-
cine delivery system which, along with doing targeted delivery, help in evoking a 
stronger immune response with minimum dose and side effects. Biomaterials which 
include natural or synthetic polymers, lipids, nanostructures, and engineered artifi-
cial cells cannot only control the required immune response for combating the dis-
ease but also help in targeted delivery. Some of the biomaterials used include 
nanoparticles and microparticles prepared from polymers or lipids. Many scaffolds 
are also prepared which are either stable or degradable for implantation and devices 
like microarray needles for targeted delivery to skin [113–117]. Along with these, 
an array of protein and peptide biomaterials has been used to improve the efficacy 
and delivery of subunit vaccines for various diseases including infectious diseases, 
cancer, and autoimmune disorders. Merit associated with these delivery vehicles is 
that they are biodegradable and have control over both material structure and 
immune function. These are sometimes made from engineering self-assembling 
proteins which occur naturally for loading vaccine components [118].

1.11.2  Physical and Chemical Properties of Biomaterials 
Affecting Their Efficacy

Various properties such as physical and chemical associated with biomaterials affect 
the final outcome, such as it has been observed that ellipsoidal particles improve the 
pharmacokinetics better than the spherical molecules which enhances the circula-
tion time and thus promotes immunity [119]. Studies related to immune responses 
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have been facilitated by reductionist system of which acellular artificial antigen- 
presenting cell (aAPC) is one approach [120]. These aAPCs are being generated by 
coupling proteins that deliver first signal of TCR signaling, that is, binding of MHC 
complex or anti-CD3 to TCR, and proteins that deliver second signal which includes 
binding of co-stimulatory receptors on the APC to the surface of particles prepared 
from variety of materials such as PLGA microparticles, polystyrene particles, etc. 
This approach has shown efficacy against tumor. One such study with aAPCs has 
shown that ellipsoidal PLGA particles functionalized with peptide-MHC complex 
and anti-CD28 on the surface-mimicked antigen presentation and stimulation of T 
cells in a better way, thereby increasing the efficacy [121].

In order to elucidate how immune system differentiates various shapes and sizes of 
antigen, role of morphological features of particles of various sizes and shapes was 
assessed in antigen presentation and processing by immune cells. It was found that 
among particles of different types, small spherical particles generated a stronger 
Th1 and Th2 response when compared with other particle types. Particles of spheri-
cal and rod shape were internalized by dendritic cells. This data suggested that 
modulation of immune response is dependent on size of particle along with shape 
[122]. In another study in the same row to evaluate the effect of size of particles, 
lung macrophages and dendritic cells were studied. Inert nontoxic polystyrene 
nanoparticles 50 nm in diameter (PS50G) and 500 nm in diameter (PS500G) were 
studied for immunological responses. It was observed that 50 nm particles were 
taken up preferentially by alveolar and nonalveolar macrophages, B cells, and 
CD11b(+) and CD103(+) DC in the lung. In case of dendritic cells in draining lymph 
nodes, PS50G were exclusively uptaken. Frequency of antigen-laden DCs was also 
decreased with PS50G being more efficient. Differential modulation of induction of 
acute allergic airway inflammation was done by both these particles with PS50G but 
not PS500G significantly inhibiting adaptive allergen-specific immunity.

Overall data suggested that particles with distinctive sizes differentially modulate 
the immune response [123].

The immunogenicity of the biomaterial used in the vaccine delivery system is 
highly impacted and controlled by the chemistry of the material used. The effect of 
porous silicon nanoparticles with different surface chemistries was evaluated on 
human monocyte-derived macrophages and lymphocytes. It was observed that ther-
mally oxidized and thermally hydrocarbonized nanoparticles induced very high rate 
of immunoactivation by increasing the expression of surface co-stimulatory mark-
ers. Undecylenic acid-functionalized nanoparticles as well as poly(methyl vinyl 
ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane-functionalized 
thermally carbonized porous silicon nanoparticles and polyethyleneimine- 
conjugated undecylenic acid-functionalized porous silicon nanoparticles showed 
moderate immunoactivation. On the contrary, thermally carbonized porous silicon 
nanoparticles and (3-aminopropyl)triethoxysilane-functionalized porous silicon 
nanoparticles did not induce any immunological responses [124].

This data concluded that nanoparticles which have more nitrogen or oxygen on 
the outermost backbone layer are less immunogenic than nanoparticles with higher 
C-H structures on the surface, suggesting that chemistry plays an important role in 
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immunogenicity of nanoparticles. In another study, hydrophobicity of gold nanopar-
ticles having specific functional groups altered the expression profile of cytokines in 
splenocytes. In vivo studies also established a direct, quantitative correlation 
between hydrophobicity and immune system activation, an important determinant 
for nanomedical and nanoimmunological applications [125].

1.12  Biomaterial-Based Vaccine Delivery Systems Used 
Against Leishmaniasis

Figure 1.1 illustrates how biomaterial-based vaccine delivery systems can be used 
against leishmaniasis. In this section, we briefly discuss those.

1.13  Liposomes-Based Vaccine Delivery

1.13.1  Liposomes and How They Work

Liposomes are vesicles of spherical shape and are composed of natural amphiphilic 
phospholipids which are nontoxic and non-immunogenic. Based on number of 
lipids in bilayer, liposomes are classified as multilamellar vesicles (MLVs), small 

Fig. 1.1 Leishmania vaccine development through biomaterials
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unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). Liposomal 
delivery systems are associated with various advantages for vaccine development 
such as safety, and these are biodegradable because they are often composed of 
lipids which are found naturally in cell membranes such as phosphatidylcholine 
(PC) and cholesterol [126]. These liposomes protect the antigens from being cleared 
from the body and their targeted delivery to the respective antigen-presenting cells. 
Depending on the nature of antigen, whether it is lipophilic or hydrophilic, it would 
be incorporated either in lipid layer or inside the aqueous core [127]. This organiza-
tion enables all types of antigens such as peptides, proteins, carbohydrates, nucleic 
acids, and small molecules to be encapsulated in liposomes, whenever needed adju-
vants such as lipid A, muramyl dipeptide and its derivatives, and various interleu-
kins can also be inserted along with these antigens in liposomes. Liposomes have 
the ability to channel the proteins and peptide antigens to MHC class II pathway of 
antigen presentation. This increases the induction of antigen-specific humoral and 
adaptive T-cell response. These also serve as delivery vehicles for exogenous pro-
teins and peptide antigens to the MHC class II pathway for efficient presentation 
and induction of cytotoxic T-cell response [128]. The antigenic proteins which are 
delivered by conventional liposomes are processed via MHC class II pathway and 
those by pH-sensitive liposome carriers via MHC I presentation. Liposomes have 
the property of increasing the expression of various chemokine genes such as CCL2 
(chemokine (C-C motif) ligand 2), CCL3, and CCL4 by dendritic cells. They 
increase the longevity of antigens inside the APCs, and since the exposure to anti-
gen is increased, it prolongs the primary activation of T cells.

Not only this, the parameters of liposomal formulations also affect the immune 
response generated. These parameters include the composition of phospholipids, 
fluidity of bilayer, charge present on the surface, size of the particle, lamellarity, 
liposome preparation, antigen attachment, and lamellar-hexagonal bilayer phase 
transition ability.

Composition of lipids affects in the way that few lipids have main-phase transi-
tion temperature (Tm) below 37 °C and will be in the liquid crystalline state in the 
body, and those with a Tm higher than this will be in gel state. A correlation has 
been established between the Tm of the phospholipids and the immune response 
generated with membrane antigens [129]. The state in which bilayer is present 
physically can also affect many things which influence the immunogenicity, such as 
endocytosis, intracellular trafficking, and processing of the vaccine components 
[130]. Phospholipid composition might induce better immune response for a par-
ticular antigen and not for the other. Fluidity of bilayer may affect in a way that it 
affects the rate of release of antigen from vesicles and the interaction of liposome 
with APCs [126].

The other major thing which comes into play is the size of the vesicle which not 
only affects the uptake and trafficking of antigens but also influences the draining 
kinetics of liposomes from the site of the injection [131–133].

Contents of liposomes are delivered by passive or active targeting mechanisms in 
the cells. The physiochemical properties discussed above such as size and surface 
charge also affect this targeting [134].
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1.14  Various Liposomal Vaccine Formulations 
Against Leishmaniasis

In this section, we would focus on various liposomal formulations studied against 
leishmaniasis along with vaccine candidates and the parameters associated with 
them in consideration.

Soluble antigen of L. donovani promastigotes was encapsulated in non- 
phosphatidylcholine (non-PC) liposomes (escheriosomes) and tested for their pro-
tective prophylactic efficacy. Stronger and protective immune response was 
generated by escheriosomes when compared with soluble antigens alone [135]. A 
63-kDa leishmanial glycoprotein gp63 has been used and shown partial protection 
against visceral leishmaniasis in Balb/c mice without adjuvant. However, when this 
antigen vaccine was entrapped in cationic DSPC liposomes, it showed significant 
efficacy as evident by decreased parasitic burden with enhancement of antigen- 
specific IFN-γ response and downregulation of IL-4, demonstrating a Th1 bias. 
Results showed that cationic liposomes loaded with gp63 showed long-term protec-
tion against L. donovani infection [136].

Another study formulated recombinant gp63 either within monophosphoryl lipid 
A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes 
or both. It was observed that combined formulation showed better protection both 
in vitro by restricting the replication of amastigotes and reducing parasitic burden in 
spleen and liver [137].

In another study, effect of bilayer composition with different phase transition 
temperature of liposomes on T-cell response was evaluated. Three different lipo-
somes with different bilayer composition were taken, namely, egg phosphatidylcho-
line (EPC, Tc  <  0  °C), dipalmitoylphosphatidylcholine (DPPC, Tc 41  °C), and 
distearoylphosphatidylcholine (DSPC, Tc 54  °C), and were prepared, all loaded 
with recombinant gp63. Mice immunized with these liposomes in the same dose 
schedule showed different immunological responses which indicated that these 
were influenced with the bilayer composition of the liposomes. Liposomes with egg 
phosphatidylcholine induced Th2-type immune response in mice, and DPPC or 
DSPC induced Th1 type of immune response signifying that liposomes with higher 
value of Tm are suitable and induce Th1 type of immune response and protection 
when used with antigenic Leishmania proteins [138].

Another study using rgp63 emphasized the importance of size of liposomes on 
their efficacy. Liposomes of different sizes including 100, 400, and 1000 nm were 
loaded with rgp63 and evaluated for their efficacy against L. major challenge in 
Balb/c mice. It was found that larger size of liposomes induced better production of 
IFN-γ, highest IgG2a/IgG1 ratio, thereby inducing Th1 type of immune response, 
whereas small size one of 100 nm induced Th2 response. The data inferred that size 
of liposomes also plays a significant role in generation of immune response [139].

Role of the charge present on the liposomal surface such as positively charged, 
negatively charged, or neutral liposome formulations has also been explored in con-
text of efficacy. It has been shown that liposomes with positive charge target 
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antigens for endocytosis more efficiently because of electrostatic interactions 
between positively charged particles (such as cationic liposomes or cSLN) and neg-
atively charged cell surface of APC and can therefore improve the induction of 
immune responses even at lower doses. On the contrary, anionic liposomes have low 
percentage interactions with APCs.

Various negatively and positively charged lipids have been used in liposomal 
formulations, and net surface charge on the surface of liposomes can be changed by 
combination of positive- or negative-charged lipids.

Leishmanial antigens isolated from the membrane of Leishmania donovani pro-
mastigotes were encapsulated in positively charged liposomes (consisting of egg 
lecithin/stearylamine/cholesterol) when used for immunization, significantly 
enhancing the protective efficacy of these antigens in comparison to when used 
alone in BALB/c mice and hamsters model of infection [140]. Similar studies car-
ried out with negatively charged liposomes (consisting of egg lecithin/phosphatidic 
acid/cholesterol) showed that the level of protection by Leishmania membrane 
Ag-liposome was not significantly different from that induced by free LAg. It was 
found that stimulation of insufficient cellular response, as reflected by DTH and 
potentiation of IgG1 over IgG2a, IgG2b, and IgG3, suggested a dominance of Th2 
response with this liposome-antigen formulation, resulting in weak protection 
against visceral leishmaniasis [141]. Neutral liposomes also showed average protec-
tion. Overall data suggests that protection induced by liposomes varied depending 
on the charge of the vesicles, with maximum induction by positively charged lipo-
somes, followed by neutral liposomes and last negatively charged liposomes. 
Further studies were done on characterization of Leishmania antigens and antigens 
entrapped in liposomes of different charges which showed that gp63 was immuno-
dominant in all the vaccine preparations. In addition to gp63, 72-, 52-, 48-, 45-, 39-, 
and 20-kDa components showed strong reactivity in neutral and positively charged 
liposomes in contrast to reactivity of a greater number of leishmanial antigenic 
components in negatively charged liposomes. Data indicated that resistance to VL 
depended on the immune response induced by gp63 and few other selective antigens 
with appropriate liposomes [142].

Another study carried out to show role of charge in liposomal formulation pre-
pared liposomes containing rgp63 by dehydration-rehydration vesicle (DRV) 
method. Composition of liposomes was neutral liposomes with dipalmitoylphos-
phatidylcholine and cholesterol, and positively charged ones and negatively charged 
were prepared by adding dimethyldioctadecylammonium bromide (DDAB) or dice-
tyl phosphate (DCP), respectively, to the neutral liposome formulation. Contrary to 
above study, it was observed that mice immunized with neutral liposomes showed 
smaller footpad swelling, significantly lowest splenic parasite burden, the highest 
IgG2a/IgG1 ratio and IFN-gamma production, and the lowest IL-4 post challenge as 
compared to other immunized groups. It was evident from the data that Th1 response 
was induced more efficiently by neutral liposomes than positively charged lipo-
somes, whereas negatively charged liposomes induced a Th2 type of immune 
response [143].
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It was observed that susceptible BALB/c mice when immunized with recombi-
nant stress-inducible protein 1 (rLmSTI1) encapsulated in cationic liposomes 
induced a significant protection against challenge with L. major with significant 
reduction in parasite burden in spleen and significantly smaller footpad thickness 
after challenge, again indicating that cationic liposomes increase the efficacy of 
Leishmania antigens as a vaccine [144].

Liposomal formulation of Leishmania major stress-inducible protein 1 
(LmSTI1) antigen was evaluated for its efficacy against L. major challenge by co- 
encapsulating CpG ODN in a liposome (Lip-rLmSTI1-CpG ODN) along with 
other control groups. It was observed that mice immunized with Lip-rLmSTI1-
CpG ODN showed a significant decrease in infection as compared to mice immu-
nized with recombinant protein with CpG ODN without liposomal form [145]. 
Similarly, cationic liposomes containing soluble protein of L. major along with 
CpG ODNs showed a significantly smaller footpad swelling, lower spleen para-
site burden, higher IgG2a antibody, and lower IL-4 level compared to the control 
groups post challenge [146].

Leishmanial elongation factor-1α (EF1-α) has been identified as an immuno-
dominant component of soluble leishmanial membrane antigens showing cytokine 
response in PBMCs of cured VL subjects. 36 kDa truncated and cloned recombinant 
EF1-α of the L. donovani were formulated in cationic liposomes and induce strong 
resistance to parasitic burden in liver and spleen of BALB/c mice through induction 
of DTH and a IL-10- and TGF-β-suppressed mixed Th1/Th2 cytokine responses. 
Multiparametric analysis of splenocytes for generation of antigen-specific IFN-γ, 
IL2, and TNF-α producing lymphocytes indicates that cationic liposome facilitates 
expansion of both CD4+ as well as CD8+ memory and effector T cells. Liposomal 
EF1-α is a novel and potent vaccine formulation against VL that imparts long-term 
protective responses. Moreover, the flexibility of this formulation opens up the 
scope to combine additional adjuvants and epitope-selected antigens for use in other 
disease forms also [147].

Majumdar et al. also showed the effect of composition of phospholipid on the 
adjuvanticity and efficacy of liposomes carrying Leishmania donovani antigens. 
They used liposomes prepared with distearoyl derivative of L-a-phosphatidylcholine 
(DSPC) having liquid crystalline transition temperature (Tc) of 54 °C and liposomes 
prepared from dipalmitoyl (DPPC) (Tc 41 °C) and dimyristoyl (DMPC) (Tc 23 °C) 
derivative. All these liposomes entrapped Leishmania donovani membrane antigen 
with equal efficiency. However, strong DTH response was shown by Leishmania 
antigen in DSPC liposomes, whereas other two showed the inconsistent response. 
Moreover, in terms of protection, also DSPC liposomes showed significantly high 
protection, with other two formulations showing no protectivity [148]. The authors 
defended the results by the fact that liposomal structural versatility helps in design-
ing the vesicles for the optimum efficacy, and herein this study, they took the fluidity 
of bilayer into consideration to improve the stability of the formulation and thereby 
enhance the efficacy of vaccine. High-melting phospholipid DSPC in the vesicles 
reduce the bilayer destabilization promoted by plasma, and therefore, the liposomes 
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prepared from it are more rigid and resistant to particle adsorption. Therefore, the 
significant potential DSPC liposomes observed against experimental VL might be 
due to their prolonged stay in circulation which enabled more effective delivery of 
antigens to the antigen-presenting cells [149, 150].

A liposomal formulation coated with neoglycolipids containing oligomannose 
residues (OMLs) has been explored for better potency as an adjuvant to induce Th1 
immune responses and CTLs specific for the encased antigen. These OMLs are 
uptaken by the phagocytic cells in the periphery, and it has been observed that cells 
uptaking OMLs secrete IL-12 selectively, enhance the expression of co-stimula-
tory molecules, and migrate into lymphoid tissues from peripheral tissues [151]. A 
study conducted using intraperitoneal administration of soluble leishmanial anti-
gen (SLA) entrapped in liposomes coated with neoglycolipids containing oligo-
mannose residues (mannopentaose or mannotriose) showed a strong antigen-specific 
immune response against L. major challenge with high production of IFN-γ and 
IL-2 and lower IL-4 and IL-5. This immune response generated is thought to be 
triggered by peritoneal CD11b-positive cells (macrophages) which take up SLA-
OML [152].

Above studies indicate that liposomal formulation used for vaccine delivery 
should be prepared by keeping various parameters in mind for an effective formu-
lation which also depends on the type of antigen being loaded/encapsulated, and 
such liposomes would not only increase the efficacy but also stability of Leishmania 
vaccine.

1.15  Virosomes

Spike glycoproteins present on the viral membrane mediate the binding and fusion 
of membrane-enveloped viruses with the cell surfaces. Lipids vesicles were gener-
ated consisting of viral spike proteins derived from influenza virus firstly. Preformed 
liposomes were used along with hemagglutinin (HA) and neuraminidase (NA), 
purified from influenza virus to generate membrane vesicles with spike proteins 
protruding from the vesicle surface and named as virosomes. After that, many other 
protocols were developed for generating virosomes [153–157].

In short, virosomes are reconstituted viral envelope which resembles intact virus 
in antigenicity without genetic material and can be used for delivery of vaccines. 
Viral membrane is reconstituted with help of a detergent used to solubilize the viral 
envelope, followed by removing the viral nucleocapsid by ultracentrifugation and 
removal of detergent from the supernatant [158]. These spherical, unilamellar vesi-
cles in contrast to liposomes contain functional viral envelope glycoproteins: influ-
enza virus hemagglutinin (HA) and neuraminidase (NA) intercalated in their 
phospholipid bilayer membrane. Presence of HA and NA contributes to the unique 
properties of the virosomes. The viral proteins not only confer structural stability 
and homogeneity to virosomal formulations but significantly contribute to the 
immunological properties of virosomes, which are clearly distinct from other 
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liposomal and proteoliposomal carrier systems. The unique properties of virosomes 
partially relate to the presence of biologically active HA from influenza virus in the 
virosome membrane.

These virus like particles were loaded with three different recombinant proteins, 
namely vector-derived (VD) component LJL143 obtained from Lutzomyia longi-
palpis’s saliva, parasite-derived components KMP11 and LeishF3+, and a TLR4 
agonist, GLA-SE, taken as an adjuvant, were assessed for in vivo safety and immu-
nogenicity. This vaccine was found to be safe during the treatment time frame. 
Antigen-specific cellular and humoral responses confirmed the immunogenicity of 
the vaccine formulation. There was an interesting and noticeable finding that VD 
proteins induced a more robust immune response, and these were not due to 
immunodominance of the VD antigen. Moreover, priming with VD antigen alone 
and then using complete vaccine candidate as booster improved the immune 
response remarkably [159].

In another study, novel virosomal formulations of a synthetic oligosaccharide 
were prepared and evaluated as vaccine candidates against leishmaniasis. A syn-
thetic tetrasaccharide antigen related to lipophosphoglycan was conjugated to a 
phospholipid and to the influenza virus coat protein hemagglutinin. Lipid mem-
brane of reconstituted influenza virus virosomes was used to embed these glycan 
conjugates. It was observed that this virosomal formulation showed both IgM and 
IgG anti-glycan antibodies in mice, indicating an antibody isotype class switch to 
IgG. Along with this, the antisera cross-reacted with the corresponding natural car-
bohydrate antigens in vitro expressed by leishmanial cells. Overall, experimental 
observations suggest that virosomes can be used as a universal antigen delivery 
platform for synthetic carbohydrate vaccines [160].

1.16  Niosomes

These are weakly immunogenic nonionic surfactant vesicles which consist of one or 
more bilayers of lipid encapsulating an aqueous core which can encapsulate both 
lipophilic and hydrophilic content and protect them from acidic environment in 
gastrointestinal tract and their enzymatic degradation [161].

A study was conducted using different positively charged niosomal formulations 
with the composition of sorbitan esters, cholesterol, and cetyl trimethyl ammonium 
bromide. These delivery vehicles were prepared by film hydration method for the 
entrapment of autoclaved Leishmania major (ALM). Stability and size distribution 
of these niosomes were evaluated by laser light scattering method. Percentage of 
encapsulated ALM was quantified by bicinchoninic acid method. Based on above 
observations, the selected niosomes were assessed for their efficacy to induce an 
immune response against Balb/c mice model of cutaneous leishmaniasis. Data 
showed that niosomes with ALM delayed the lesion development and reduced their 
size as compared to ALM alone, but this formulation did not show complete protec-
tion. It was inferred that the delay in lesion development might be due to the slow 
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release of antigens from niosomes, thereby evoking a strong immune response. 
Using a more refined strategy for antigen selection along with improving the nio-
somal formulation could be a prevention strategy for CL [162].

Another group encapsulated gp63 protein in niosomal formulation. These nio-
somes were prepared following the procedure of Baillie. Vaccination data in 
C57BL/10 mice indicated that group vaccinated with purified gp63 entrapped into 
niosomes induced considerable resistance to disease, whereas other group vacci-
nated with liposomal formulation did not. In the niosomal group, at the time of ter-
mination of experiment, mice presented only ulcerated lesions that started to 
heal [163].

Both the studies indicated that niosomes have a potential to enhance the immune 
response when used with appropriate antigens. But the drawback summarized from 
these studies emphasizes the need for better standardization of niosomal formula-
tion along with the antigenic combination to be selected.

1.17  Cationic Solid Lipid Nanoparticles

These nanoparticles are an efficient alternative to the available traditional colloidal 
carriers such as emulsions and liposomes. Solid lipid nanoparticles have an advan-
tage over the colloidal carrier with the use of biocompatible lipids such as triglycer-
ides, fatty acids, free fatty acids, steroids, fatty alcohols, or waxes [164]. Another 
distinct advantage of these nanoparticles over polymeric nanoparticles is their pro-
duction without any organic solvent, by the use of high-pressure homogenization 
(HPH) method which is well implemented in pharma industry [165].

Cationic solid lipid nanoparticles (cSLNs) have at least one cationic lipid and 
have been implicated as nonviral vectors of gene delivery, and these have been 
found to bind effectively with nucleic acids protecting them from degradation by 
DNAse I and their delivery to live cells [166–169].

They act as delivery systems via two mechanisms, either by encapsulating the 
antigen inside the lipid matrix or by absorbing antigen on their surface by electrical 
interaction.

Based on these properties, cationic liposomes were tested in vitro for delivery of 
cysteine proteinases cpa, cpb, and cpbCTE. For this, melt emulsification method 
was used followed by HSH method to prepare cSLNs. Plasmids having type I and 
II cysteine proteinases were anchored on the cationic surface of these nanoparticles. 
This strategy was found to be efficient enough to deliver the immunogenic CP genes 
which were evident by expression of CPs in vitro for 72 h after their COS-7 cells 
treatment. It also had an advantage to overcome the drawback of degradation of 
naked DNA delivery in the circulation [170]. In another study, three pDNAs encod-
ing cysteine proteinase type I (cpa), II (cpb), and III (cpc) of L. major were formu-
lated using cSLNs and used for immunizing BALB/c. It was observed that group 
vaccinated with SLN-pcDNA-cpa/b/c showed significantly high production with 
Th1 type of immune response [171].
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This delivery system was also compared with electroporation in administering 
DNA vaccine containing A2 gene of L. donovani along with cysteine proteinases 
[CPA and CPB without its unusual C-terminal extension (CPB_CTE)] of L. infan-
tum. It was observed that cSLNs were equally efficient as electroporation delivery 
system in protecting Balb/c mice against L. donovani challenge by evoking an 
immune response with high levels of IFN-γ [172]. The protective efficacy of these 
two vaccine delivery systems containing abovesaid DNA vaccine was further evalu-
ated against L. infantum challenge in outbred dogs. The results indicated the effi-
cacy of cSLNs as carrier systems to increase the efficacy of DNA vaccines against 
canine visceral leishmaniasis [173].

1.18  Poly Lactic-Co-Glycolic Acid (PLGA) Delivery Systems

These biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) 
have gained a lot of attention as carrier systems due to their property of biocompat-
ibility and are being US Food and Drug Administration (FDA) and European 
Medicines Agency (EMA) drug carriers [174]. Hydrolysis of PLGA leads to metab-
olite monomers, lactic acid, and glycolic acid, and since these two monomers are 
endogenous and easily metabolized by the body, the toxicity associated with PLGA 
is minimal.

PLGA nanoparticles with surface modified with a TNF-α-mimicking eight- 
amino acid peptide (p8) and encapsulating L. infantum-soluble antigen along with 
monophosphoryl lipid A (MPLA), a TLR4 ligand was assessed against L. infan-
tum challenge in BALB/c mice. Results conferred significant protection with 
nearly complete elimination of parasite along with antigen-specific immune 
response [175].

Two strategies were used to infer the efficacy of PLGA in terms of protection 
against CL. In one, immunization was carried out using plasmid DNA encoding 
L. infantum chagasi KMP-11, and in other one, mice were primed with PLGA 
loaded with recombinant plasmid DNA followed by booster dose of PLGA 
nanoparticles loaded with recombinant KMP-11. Both the strategies showed sig-
nificant cellular immune response. However, the decrease in parasitic load at 
infection site was more prominent in mice immunized with PLGA than with plas-
mid DNA alone encouraging the use of nanobased delivery systems for Leishmania 
vaccines.

Soluble Leishmania antigen or autoclaved leishmanial antigen was also loaded in 
PLGA nanoparticles to evaluate the performance of this system both in vitro and 
in vivo. Contrary to free antigens, both these formulations showed significant poten-
tial as evident by higher level of NO production by macrophages. In vivo data sug-
gested increased production of IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 
secretions showing more than 50% protective efficacy in mouse model [176].

These nanoparticles as antigen delivery system were used along with Quillaja 
saponins (QS) as immunoadjuvant to enhance the immune response of autoclaved 
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Leishmania major (ALM) against L. major challenge. Surprisingly, it was observed 
that group vaccinated with ALM encapsulated in PLGA showed protection, but in 
the group wherein QS was also incorporated, no protection was observed, thereby 
inferring that PLGA have the ability to enhance immune response against Leishmania 
infection, but it was reversed with QS as an adjuvant [177].

With an aim of improving the immunogenicity of peptide, rationally designed 
multi-epitope peptide of Leishmania cysteine protease A (CPA160–189) was co- 
encapsulated along with MPLA adjuvant in PLGA nanoparticles, and their pro-
phylactic efficacy was evaluated against VL. The phenotypic function of DCs and 
their functional features on exposure to peptide alone and various combinations 
along with encapsulated peptide and adjuvant were examined using BALB/c bone 
marrow- derived DCs. It was observed that DCs exposed to PLGA-
CPA160–189 + MPLA NPs showed signatures of DC maturation. Mice immunized 
with this combination showed high amounts of IL-2, IFN-γ, and TNF-α and, when 
challenged with L. infantum promastigotes, showed remarkable reduction in para-
sitic burden; however, post four months of challenge, the reduced parasitic load in 
liver and spleen was preserved indicating that vaccine induced partial protec-
tion [178].

Similar peptide-based study using PLGA nanoparticles was carried out by 
designing a chimeric peptide containing HLA-restricted epitopes from three immu-
nogenic L. infantum proteins (cysteine peptidase A, histone H1, and KMP 11) and 
their encapsulation in PLGA nanoparticles with or without monophosphoryl lipid A 
(MPLA) adjuvant or surface modification with an octapeptide targeting the tumor 
necrosis factor receptor II.

These were tested for their capability to stimulate immunomodulatory functions 
of DCs. Peptide-based nanovaccine candidates with MPLA incorporation or surface 
modification stimulated DCs efficiently as evident by prominent IL-12 production, 
promoting allogeneic T-cell proliferation and intracellular production of IFN-γ by 
CD4+ and CD8+ T-cell subsets. When HLA A2.1 transgenic mice was immunized 
with this peptide nanovaccine, it conferred significant protection against L. infan-
tum infection indicating the protective efficacy of this approach [179].

1.19  ISCOMS and ISCOMATRIX 
(Immune-Stimulating Complexes)

ISCOMs have a history of 35  years as adjuvant delivery system for various 
experimental vaccines. These are spherical open cage-like nanoparticles which 
are prepared spontaneously by mixing of cholesterol, phospholipids and the 
immune-stimulating saponins under a specific stoichiometry along with vaccine 
candidate. They have shown strong immunostimulatory property and have been 
found to enhance the protective potential of various vaccines [180].

ISCOMATRIX have same structure as ISCOM, but these are without antigen and 
also known as ISCOMATRIX™, a trademark of ISCOTEC AB. Both of these have 
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strong negative charge and exist as spherical, hollow rigid cage of about 40 nm 
diameter. ISCOMATRIX have an advantage with presence of an in-built adjuvant 
(Quil A) which is a purified fraction of Quillaja saponaria along with cholesterol 
and phospholipids which form a cage-like structure [181].

Surface glycoprotein of Leishmania major was incorporated in immunostimulat-
ing complexes (ISCOMs) and evaluated for its efficacy in Balb/c mice. It was found 
that two intraperitoneal low doses of this complex showed protective immunity by 
modulating the immune response toward Th1 type, and lesion size was suppressed 
after challenge [182].

Different formulations of ISCOMATRIX mixed with soluble Leishmania anti-
gens were tested against L. major challenge in BALB/C mice. It was observed that 
group of mice immunized with ISCOMATRIX DMPC or ISCOMATRIX DSPC 
showed reduced swelling in footpad and least parasitic burden as compared to other 
ISCOMATRIX formulations, but it was not significantly different from other vac-
cinated groups. These groups showed highest level of IFN-γ and IL-4 in the mice 
splenocytes, thereby indicating the generation of mixed Th1/Th2 response. It was 
also concluded that efficacy of ISCOMATRIX was not influenced with different 
phospholipids in their mice model [183].

1.20  Delivery System Using Alginate

Alginate is obtained from cell walls of marine brown algae, and it is an anionic 
polysaccharide consisting of a chain of (1–4)-linked β-D-mannuronic acid and α-L- 
guluronic acid. It is a natural, biodegradable polymer with no toxicity. Nanoparticles 
prepared using alginates are hydrophilic carriers which prolong the release of anti-
gen and also improve the antigenicity of traditional vaccines. Agglomeration of 
these alginate nanoparticles has not been observed in any major organs which fur-
ther proves their safety [184, 185].

Alginate microspheres have been used as antigen delivery system and adjuvant 
for immunization against leishmaniasis. Encapsulation of autoclaved L. major along 
with Quillaja saponin (QS) was carried out. The goal of this study was to prepare 
and characterize alginate microspheres as an antigen delivery system and adjuvant 
for immunization against leishmaniasis. Alginate microspheres (ALG) encapsulat-
ing autoclaved L. major (ALM) and Quillaja saponins (QS) were prepared and 
tested in BALB/c mice against L. major challenge. It was observed that mice immu-
nized with (ALM) ALG + QS showed strongest protection as evident by smaller 
footpad in immunized mice. Mice immunized individually with (ALM + QS)ALG, 
ALM, and PBS did not show noticeable protection, whereas (ALM)ALG- and 
ALM + QS-immunized mice showed an intermediate protection [186].

Another study used alginate microspheres prepared by an emulsification tech-
nique as an antigen delivery system along with CpG-ODN as adjuvant to enhance 
immunoprotective response of autoclaved Leishmania major (ALM) vaccine. 
Immunization groups taken were ALM-encapsulated alginate microspheres [(ALM) 
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ALG], (ALM) ALG + CpG, ALM + CpG, ALM alone, and PBS. It was observed that 
mice immunized with (ALM + CpG) ALG showed maximum protection as evident by 
smallest footpad swelling compared to other groups. Other combinations, namely, 
(ALM + CpG) ALG or ALM + CpG, also showed protective response. Data con-
cluded that alginate microspheres and CpG-ODN adjuvant when used together 
remarkably enhanced the protective response of ALM [187].

1.21  Immunocircuits-Based Therapeutic Vaccines

Therapeutic vaccines have gained a lot of attention since last decade, especially in 
case of chronic infections, cancer, and other diseases [188–192]. In case of leish-
maniasis, most of population in the endemic disease-affected areas are usually 
healthy endemic individuals or individuals with asymptomatic infection, which 
serve as reservoir of parasite and can transform into symptomatic infected individu-
als over a period of time. Based on this, therapeutic vaccines could be an effective 
alternative for stimulating the immune system of the patient in these endemic popu-
lations for protecting from progression of disease. These therapeutic vaccines have 
been evaluated in case of leishmaniasis in combination with drugs or adjuvants for 
their efficacy [193–202].

As discussed above, various strategies and carrier biomaterials have been used to 
enhance the quality and magnitude of cellular and humoral immune response post 
immunization for developing new prophylactic and therapeutic vaccines against 
leishmaniasis, but very few have been successful, with none in clinics against 
humans. It has been well proven that the kinetic pattern of exposure of antigen used 
for the vaccine development along with adjuvant to the naive T cells and B cells 
affects the final immunological response outcome post vaccination. Most of the 
above-discussed vaccination approaches lack the active control over the progressive 
pattern of antigen exposure and delivery to lymph nodes. Based on above shortcom-
ings of known strategies, herein we propose the application of synthetic biology for 
development of nucleic acid-based vaccines where expression dynamics of antigen 
used in the vaccine along with adjuvant can be externally controlled by the help of 
a programmed genetic synthetic circuit with mRNA for the first time in leishmani-
asis as per our information. Various therapeutic circuits have been developed against 
cancer, metabolic disorders, allergies, etc. [203–208]. Recently, mRNA-based 
approaches for vaccine designing have become more popular due to problems asso-
ciated with DNA vaccines.

These RNA-based synthetic circuit vaccines are usually cost-effective along with 
a major benefit of external control than protein-based vaccines. Moreover, it is 
assumed that these programmed vaccine approach might not require a booster dose, 
which is another hurdle for mass immunization. These synthetic circuits-based 
nucleic acid vaccines could be optimized for regulated expression of antigens and 
adjuvants from RNA replicons using some small molecules and with a prepro-
grammed temporal pattern (Tables 1.1, 1.2 and 1.3).
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Abstract
Epidemiological studies on allergy/asthma and cancer suggest that there exists 
association between these two types of immunological diseases. Atopic allergy 
can promote protection from certain types of cancer such as colorectal and 
esophageal cancers, whereas it may also serve as a risk factor for cancers like 
lung cancer. There are key immune cells like Tregs and macrophages that play a 
crucial role in immunoregulation of both the diseases. Besides, PD-1, PD-L1/L2, 
CTLA4, IgE, Type 2 cytokines regulate allergic manifestations and malignant 
conditions in the human system. In this chapter, the association of atopic allergy 
with different types of cancer, and the key immune cells and important molecules 
associated with both the diseases have been highlighted. In the end, the future 
perspectives of the field of allergo-oncology and possible therapeutic approaches 
to modulate the immune systems have been described.
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2.1  Introduction

Atopy or allergy refers to allergic hypersensitivity, characterized by heightened 
immune responses [1]. A plethora of immune cells, namely, mast cells, dendritic 
cells, macrophages, B cells, CD4+ T cells and a variety of mast cell mediators, 
immunoglobulin E (IgE) and Th2 cytokines, lie central to the onset and progression 
of allergic diseases. Cancer, on the other hand, is characterized by abnormal 
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uncontrolled cell growth and proliferation. Evasion of the immune system is crucial 
for cancer progression and metastasis. Several cells in the tumor microenvironment 
(TME), namely, cancer-associated fibroblasts (CAFs), stromal cells, cancer stem 
cells (CSCs), M2 macrophages, regulatory T cells (Tregs), myeloid-derived sup-
pressor cells (MDSCs) cross-talk amongst themselves through cytokines, signaling 
molecules, and ECM-modifying agents to generate a heterogeneous network that 
mediates and maintains immunosuppressive milieu in TME [2–4]. This contributes 
to tumor progression and resistance to cancer therapy. Both allergy and cancer are 
associated with dysregulated immune response [5].

Several epidemiological studies since 1985 have shown allergy to influence the 
occurrence of cancer by acting either in protective manner or as a risk factor [6, 7]. 
The relationship between allergies and malignancies varies from organ to organ. An 
inverse association was observed between allergy and malignancies of colon, rec-
tum, pancreas, and esophagus, while a positive association was noted for lung can-
cer, bladder cancer, and prostate cancer. Four immunological hypotheses have been 
architected to explain the impact of allergy on cancer, namely, antigenic stimula-
tion, inappropriate Th2 immune skewing, immunosurveillance, and prophylaxis [8]. 
Several immune cells and molecules have been implicated to express differentially 
and play pivotal roles in regulating the immune system in allergic condition and 
malignancies [5]. Present-day allergo-oncology research primarily focuses on 
revealing the roles of these molecules in asthma and cancer pathogenesis for the 
development of novel therapeutics. Mechanistic insight into key immune cells and 
molecules operating to mediate such complex association (Fig. 2.1) is crucial for 
regulating allergy and cancer via reprogramming of altered cellular function and 
rewiring of key networks.

Here, first the concept of allergy and immunological mechanisms driving allergic 
reactions has been discussed. Thereafter, cancer and mechanisms of immune eva-
sion during disease progression have been explained. Next, the complex relation-
ship between allergies and cancer susceptibility have been addressed with special 
reference to: i) immunological hypotheses explaining such associations, ii) case 
studies showing the influence of allergic manifestations on cancers at different sites, 
and iii) the key molecules and cells underlying immune tolerance in allergy and 
cancer. Finally, the chapter deals with the developments, challenges, and future per-
spectives of allergo-oncology with special emphasis on mechanistic understanding 
of such association and rewiring of pathways/networks in immune cells for efficient 
control of the diseases.

2.2  Allergy and Allergenicity

Allergy arises due to hyperactivity of the immune system [9]. The hypersensitive 
immune system elicits inappropriate and exaggerated immune response to typically 
harmless substances coming in contact with or entering the body, thereby leading to 
the occurrence of allergic reaction. Any substance, protein or non-protein, that can 
trigger allergic reaction is referred to as an allergen. The most commonly 
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recognized allergens include pollens, animal dander, house dust mites, molds, insect 
stings, food allergens (like milk, peanuts, eggs, crustaceans, mustard, sesame, 
lupins, glutens, nuts, fish, soybeans, celery, molluscs), and drug allergens. The prop-
erty or potential of an allergen to induce sensitization and allergic reactions is 
known as its allergenic potential or allergenicity [10]. Allergic manifestations can 
be localized or systemic. The common allergic conditions include hives or urticaria, 
atopic dermatitis, atopic eczema, hay fever or allergic rhinitis, allergic conjunctivi-
tis, asthma, and anaphylactic shock. The incidences of the different types of allergic 
diseases have increased over decades. These allergic diseases are often associated 
with co-morbidity and also contribute to high economic burden and substantial mor-
bidity [11].

2.2.1  Immunological Reactions Leading to Allergy

Exposure to allergen triggers a series of immune reactions leading to allergic mani-
festation. At first, these allergens encounter the antigen-presenting cells (APCs) at/
near the site of exposure. Upon recognition of the allergen, the APCs (namely, 

Fig. 2.1 Complex, heterogeneous interactive network mediating association between allergy 
and cancer. Mechanistic insight of these pathways is vital for rewiring of key networks for devel-
oping novel therapeutics. The solid black lines denote the pattern of association between allergy 
and different types of cancer. The solid blue lines denote the cellular and molecular components 
involved in allergy and cancer. The dotted orange lines denote indirect interaction
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dendritic cells, B cells, and macrophages) undergo activation and promote the dif-
ferentiation of naive T cells into Th2 cells (CD4+ T cells). Activated allergen- 
specific CD4+ T cells release Th2 cytokines, namely, IL-4, IL-5, IL-6, IL-9, IL-10, 
IL-13, and mediate B-cell differentiation and the formation of Immunoglobulin E 
(IgE) by B cells [9]. These IgE molecules bind to their specific Fc receptors present 
on innate immune cells, namely, mast cells and granulocytes-like basophils and 
eosinophils and mediate cross-linking of the Fc receptors upon allergen binding. 
Cross-linkage of Fc receptors leads to cascade of signaling events within the mast 
cells and/or granulocytes, leading to degranulation and release of vaso-active medi-
ators (like histamines, proteases, heparin, leukotrienes, prostaglandins), chemo-
kines, and cytokines, which in turn acts on a plethora of cells like smooth muscle 
cells, mucous glands, epithelial cells, stromal and muscle cells, small blood vessels, 
nerve endings, and eosinophils. This causes inflammation, tissue damage and 
remodeling, and acute changes in functionality and thus results in allergic 
manifestations.

2.3  Cancer and Onco-immunology

Cancer is a chronic disease marked by uncontrollable division of abnormal cells and 
is one of the major causes of death all over the world [12]. Cancer can be primary, 
staying localized at the site of origin, or may be metastatic, spreading to other sites 
within the body [13]. Mutations like activation of oncogenes, silencing of tumor 
suppressor genes and DNA repair genes, chromosomal aberration like transloca-
tion, posttranslational modification like glycosylation, and epigenetic changes like 
alteration in methylation status trigger the process of oncogenesis [4, 13]. The 
pathogenesis of cancer is complicated and largely varies with the site of origin [13].

2.3.1  Tumor Microenvironment

The tumor microenvironment (TME) consists of the following: (i) a diverse variety 
of cells like cancer-associated fibroblasts (CAFs), stromal cells, cancer cells, cancer 
stem cells (CSCs), myeloid-derived suppressor cells (MDSCs), blood vessels, 
immune cells like Tregs, M2 macrophages, tumor-infiltrating lymphocytes (TILs), 
tumor-associated macrophages (TAMs), and neutrophils (TANs); (ii) different sig-
naling molecules; (iii) cytokines; and (iv) several extracellular matrix (ECM) 
remodeling agents [3, 14–17]. Apart from diversity in cell type, there exists consid-
erable degree of heterogeneity among each cell type which adds to the complexity 
of cancer pathogenesis [18]. The cross-talk between different cancerous cells with 
immune cells in TME lies central to the process of cancer development and progres-
sion. The tumor microenvironment mediates immune tolerance and largely dictates 
the responsiveness to cancer therapy [19, 20].
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2.3.2  Onco-immunology: Role of Immune System in Cancer 
Pathogenesis and Progression

The immune system plays a crucial role in cancer progression via the process of 
tumor immunoediting [21]. This process comprises three phases, namely, elimina-
tion, equilibrium, and escape. In the elimination phase, members of the innate and 
adaptive immune system, namely, natural killer cells (NK cells), cytotoxic T cells 
(CD8+ T cells), natural killer T cells (NKT cells), and γδT cells, recognize and 
eliminate the cancer cells by perforin secretion, complement-dependent cytotoxic-
ity (CDC), or antibody-dependent cellular cytotoxicity (ADCC) [13, 22, 23]. During 
the second phase, an equilibrium exists between immunity-mediated elimination of 
cancer cells and cancer progression [24]. In the last phase, that is, the escape phase, 
tumor cells efficiently escape anti-cancer immune responses mainly by decreased 
immune recognition and by establishing an immunosuppressive tumor microenvi-
ronment. Decreased MHC-I expression and reduction of co-stimulatory molecule 
primarily contributes to reduced immune recognition [24]. Cancer stem cells (CSCs) 
and immune cells like MDSCs, M2 macrophages, and Tregs play a vital role in 
inducing and maintaining immune-suppressive environment. CSCs are a small sub-
population of cancer cells endowed with the property of self-renewal, differentia-
tion, tumor initiation, and propagation. These cells can escape immune surveillance 
and therapeutic effectiveness and mediate relapse [4, 15]. CSCs are regulated by 
fibroblasts via release of CCL2 [25]. These cells secrete cytokines like TGF-β, 
IL-10, VEGF which drives T cell population from effector T cells to Tregs. CSCs 
also release factors like MIF, STAT3, and VEGF that polarize TAM toward M2 
phenotype in the TME. Immunosuppressive factors like COX-2 and IDO-1 released 
by cancer cells further deteriorates the situation. IL-10 and TGF-β released by 
TAMs blocks effector T cell activity and dendritic cell maturation. M2 macrophages 
also secrete EGF and MMP9, which, in turn, promotes cancer proliferation and 
angiogenesis [2]. Another immune cell population that play crucial role in mediat-
ing and restoring immunosuppression in TME are the regulatory T cells (Tregs). 
The immunosuppressive action of Tregs is dependent primarily on the expression of 
transcription factor, Forkhead Box P3 (FOXP3) [26]. Tregs (CD4+ CD25+ FOXP3+ 
T cells) induce immunosuppression in TME by i) contact-dependent method involv-
ing immune checkpoint molecules like PD1, PD-L1, LAG-3, CTLA4, CD39/73, 
FOXP3 and ii) contact-independent mechanism via mediators like TGF-β, IL-35, 
IL-10, STAT3, VEGF, PGE2, adenosine, galectin-1 [2, 3, 26]. Other immune cells 
like Bregs, MDSCs, and TANs also aid in mediating immune suppression [2, 3]. 
The cross-talk of the different cancer cells and immune cells mediated by cytokines, 
signaling molecules, creates an interactive network between immune and cancer 
cells that further enhances the immunosuppressive milieu in the tumor 
microenvironment.
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2.3.3  Pathways Leading to Escape from Host Immune System

Several signaling pathways have been implicated for mediating immune suppres-
sion in the tumor microenvironment. The Wnt/β catenin pathway is an intrinsic 
oncogene pathway that prevents anti-tumor T cell activity within the tumor micro-
environment (TME) [27]. The STAT3 pathway activated by regulatory T cells 
(Tregs) mediates immune suppression through activation of M2 macrophages. This 
pathway also promotes cancer survival and angiogenesis [3]. TGF-β signaling in 
TME promotes Tregs and TANs and mediates FOXP3 expression in Tregs, thereby 
restoring immune tolerance in the cancerous cell milieu [3, 28, 29]. Another crucial 
pathway is the PI3K/PTEN/AKT pathway. This pathway is associated with the 
recruitment of TAMs via production of mediators like VEGF, IL-6, IL-8. It also 
activates hypoxia-inducible factor 1α (HIF-1α) via Mammalian target of rapamycin 
complex 1 (MTORC1) and induces epithelial mesenchymal transition (EMT) and 
metastasis. Release of CXCL12 by cancer-associated fibroblasts and subsequent 
CXCL12 signaling polarizes macrophages toward M2 phenotype. Other ancillary 
pathways, namely, STAT5 pathway, NF-κβ pathway, COX2/PGE2 pathway, and 
aberrant p53 signaling pathway, also aid in establishing immune-suppressive ambi-
ence in tumor microenvironment [3, 30]. These pathways are also associated with 
poor response to various cancer therapies. Remodeling of these pathways and 
restoring aberrant networks might help in restoring anti-tumor immune response, 
leading to control of tumor progression and enhancement of therapeutic efficacy.

2.4  Role of Allergy in Cancer Susceptibility

Epidemiological studies conducted before and after 1985 denoted potential associa-
tion between allergic diseases and cancer susceptibility [6, 31]. The association 
between allergic diseases and cancer is complex and may be organ specific [32, 33]. 
Many studies have reported positive association between allergic condition and can-
cer [34]. On the contrary, several other studies have reported an inverse association 
between allergic manifestations and cancer malignancies [34]. Several hypotheses 
have been proposed to explain such associations between allergies and cancer in the 
light of immunology (Fig. 2.2).

The antigenic stimulation and inappropriate Th2 immune skewing hypotheses 
account for the positive association between allergy and cancer. In 1988, McWhorter 
proposed the “Antigenic Stimulation” hypothesis, also called the “Chronic 
Inflammation” hypothesis [8, 35]. Allergic diseases cause chronic inflammation, 
and allergenic stimulation leads to activation of neutrophils and phagocytes, which 
generates reactive oxygen species and free radicals [36]. This reduces antioxidant 
levels and increases the likelihood of inducing mutation in tumor suppressor genes, 
causing genetic damage of actively dividing stem cells and inducing modifications 
in proteins involved in DNA repair and apoptosis, thereby promoting malignant 
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transformation of cells and cancer development [8, 37, 38]. The “Inappropriate Th2 
immune skewing” hypothesis further substantiates the positive association between 
allergy and cancer. According to this hypothesis, during allergic reaction, there is a 
shift from Th1 response to Th2 response, leading to decrease in Th1 cytokines 
(namely, IFN-γ, IL-2, IL-3, GM-CSF, and TNF-α) and reduced recruitment of effec-
tor cells with tumor-eradicating features (like M1 macrophages and cytotoxic T 
lymphocytes), allowing the tumor cells to grow and spread [8].

Immunosurveillance and prophylaxis explain the inverse association between 
allergy and cancer. In 1957, the “Immunosurveillance” hypothesis, stated by Burnet, 
proposed that allergy arises due to exaggerated immune response. Overstimulation 
of immune cells upon exposure to allergen leads to further production of IgE and 
activation of effector cells that might exert cytotoxicity on tumor cells and prevent 
oncogenesis [8, 39]. On the other hand, the “Prophylaxis” hypothesis, introduced by 
Profet in 1991, is based on Darwin’s principle of evolution by natural selection [40]. 
The immune mediators and physical manifestations of allergic reactions might be 
naturally selected for efficient elimination or destruction of mutagenic toxins and 
environmental carcinogens, thereby conferring protection against cancer [8].

Fig. 2.2 Hypotheses driving positive and inverse association between allergy and malig-
nancy. Four major hypotheses have been proposed. Antigenic stimulation and inappropriate 
Th2 immune skewing provide the immunological explanation for positive association between 
occurrence of allergy and cancer. Immunosurveillance and prophylaxis explain the immune mech-
anism that reduces incidences of cancer in allergic condition
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2.4.1  Association Between Allergies and Different Types 
of Cancer

Several epidemiological studies were conducted to assess the pattern of influence of 
allergic history on different types of cancers (Table 2.1). The protective effects of 
atopy were observed for some malignancies like colorectal cancer, esophageal 

Table 2.1 Overview of association between allergic conditions and different types of cancer

System/organ 
affected Cancer

Association with allergic condition/history 
of atopy

Blood Leukemia Inverse association [8, 42, 43]
Lymphoma Inverse association [41]
Myeloma Inverse association [44]

Positive association [34]
Non-Hodgkin lymphoma Inverse association [31, 34, 45]

Brain Head and neck cancer Inverse association [31]
Glioma Inverse association [46]

Positive association [47]
Meningioma Inverse association [48, 49]

Breast Breast cancer Inverse association [55]
Positive association [54, 56]

Gastrointestinal 
tract

Colorectal cancer Inverse association [57–61]
Positive association [62, 63]

Pancreatic cancer Inverse association [59, 64–66]
Positive association [68]
No association [67, 69]

Esophageal cancer Inverse association [58, 70]
Stomach cancer Inverse association [44, 62]
Liver cancer Inverse association [85]
Gastric cancer Inverse association [62, 71]
Small bowel cancer Inverse association [56]

Gynecological 
organs

Gynecological 
malignancies

Inverse association [56, 62, 72]

Uterine body cancer Inverse association [44]
Larynx Cancer of larynx Inverse association [34, 62]
Lung Lung cancer Positive association [8, 31, 73–75]
Oral cavity Oral cancer Inverse association [34]
Prostate gland Prostate cancer Positive association [76]
Skin Skin cancer Positive association [31, 44, 76, 77]

Inverse association [56, 78, 79]
No association [76]

Thyroid gland Thyroid cancer Inverse association [34, 82, 84]
Urinary tract Bladder and urothelial 

cancer
Positive association [62, 80, 81]

Others Kaposi sarcoma Positive association [83]

This table enlists positive or inverse association existing between malignancies and allergies
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cancer, and glioma, whereas atopy was a risk factor for cancer like lung cancer, 
prostate cancer, and bladder cancer. The susceptibility of different cancers in aller-
gic condition as observed in epidemiological studies is stated underneath.

Leukemia, Lymphoma, and Myeloma Atopic conditions were found to confer pro-
tection against hematological malignancies in most cases. History of allergic condi-
tion and increased IgE levels were found to be associated with reduced risks of 
B-cell lymphoma [41]. Inverse association was also observed between history of 
allergic condition and both adult and childhood acute lymphoid leukemia (ALL) 
[8]. Cohort studies conducted on general population of UK revealed inverse asso-
ciation between atopy and chronic lymphoid leukemia (CLL) [42]. Decreased risk 
of acute myeloid leukemia (AML) was reported with the history of any form of 
allergy [43]. Inconsistent results have been obtained in case of myeloma. Case con-
trol study highlighted the fact that allergic condition was associated with an 
increased risk for multiple myeloma [34]. However, other studies were suggestive 
of an inverse association between allergy and myeloma [44].

Non-Hodgkin Lymphoma (NHL) An inverse association was observed between 
allergic condition and NHL in statistically significant studies [31]. Allergy and 
asthma were associated with significant reduction in childhood NHL [45]. HIV- 
positive homosexual males allergic to pollen, grass, hay, and leaves were protective 
to NHL. Non-medication allergies in HIV-negative homosexual men reduced the 
risk of development of NHL [34].

Brain Tumors Allergic conditions were mostly inversely associated with head and 
neck cancer (HNC) [31]. Reduced risk of glioma was noted in patients with a his-
tory of allergy (including asthma, eczema, and hay fever) [46]. There was a greater 
reduction in the risk of glioma with the increasing number of allergies [47]. 
Decreased risk of meningioma was observed in patients having eczema and aller-
gies [48, 49]. Serum IgE level was found to be reduced in patients with glioma and 
meningioma [50, 51]. Such reductions could be attributed to immune-modulating 
properties of chemotherapy [52]. An increase in serum IgE was found to be associ-
ated with better survivality in glioma [53].

Breast Cancer Inconsistent results were obtained for association between allergy 
and breast cancer. History of atopy served as a risk factor for premenstrual breast 
cancer [54]. Again, another study revealed reduced risk of breast cancer in women 
older than 35 years, with allergic predisposition [55]. In a nationwide cohort study 
conducted in Taiwan, allergic rhinitis was found to be significantly positively asso-
ciated with incidences of breast cancer [56].
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Colorectal Cancer An inverse association was observed among allergies and 
colorectal cancer in both case-control and cohort-based studies. In the meta- analysis 
of prospective studies, allergic individuals were found to have reduced colorectal 
cancer risk and mortality [57]. An allergic history also resulted in decreased risk for 
colon cancer or rectal cancer [58]. The relative risk of developing colorectal cancer 
was 20% lower in patients with asthma and hay fever [59]. Similar trends were also 
noted in a prospective study conducted for female candidates where asthma, hay 
fever, eczema, and other allergic conditions conferred protection against oncogen-
esis [60]. Even individuals with drug allergy were less prone to developing colorec-
tal cancer [61]. However, a single study showed asthmatics to be at a greater risk for 
colorectal cancer and few studies yielded no concrete conclusion [62, 63].

Pancreatic Cancer History of allergy (namely, hay fever, mold allergy, allergy to 
animal dander and stings, and other allergies) was associated with reduced inci-
dence of pancreatic cancer and greater survivality in pancreatic cancer patients 
[64–66]. Reduced pancreatic mortality was associated with incidences of hay fever 
[59]. No association was noted between drug allergy and pancreatic cancer [67]. 
Only a retrospective cohort study revealed positive association of asthma and pan-
creatic cancer [68]. A multiethnic prospective study, however, revealed no associa-
tion between atopic allergic conditions, antihistamine usage, and incidence of 
pancreatic cancer [69].

Other Gastrointestinal Cancers Allergic history had inverse association with 
esophageal cancer and vice-versa [58, 70]. Asthmatics were found to be at a reduced 
risk for developing gastric cancer while individuals with allergic rhinitis had reduced 
instances of small bowel cancer [56, 62, 71]. Both the cases are indicative of protec-
tive role of allergy.

Gynecological Malignancies Asthmatic and allergic females were at a reduced 
risk for developing endometrial, cervical, and ovarian cancer, suggesting a protec-
tive role of allergy in these malignancies [56, 62, 72].

Lung Cancer Atopic diseases elevate the risk for the development of lung cancer 
[31]. Both retrospective and prospective studies denote a greater risk of lung cancer 
in asthmatics. Chronic asthmatic inflammation and tissue remodeling might possi-
bly contribute to such oncogenic predisposition [8]. Such positive association 
between asthma and lung cancer was observed even among non-smokers [73]. 
Prospective studies have also highlighted higher death from lung cancer in patients 
with bronchial asthma [74]. Recent studies have reported chronic asthmatic inflam-
mation to be associated with polymorphisms in pro-inflammatory genes (like IL-1β, 
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IL-6 and IL1RN). Such genetic polymorphisms might serve to elevate the risk of 
bronchial carcinoma [75].

Prostate Cancer History of asthma and allergic sensitization to pollen and house 
dust mites was associated with a greater risk of developing prostate cancer [76].

Skin Cancer Asthma was found to confer protection against melanoma, but hay 
fever and eczema, on the other hand, separately served as risk factors for malignant 
melanoma [44, 76, 77]. However, no association between atopy and melanoma was 
observed in prospective study [76]. Reduced risk of non-melanoma skin cancer was 
noted in case of allergic rhinitis and eczema [56, 78]. Asthma exhibited inverse 
association with basal cell carcinoma [79]. Allergy and atopic condition were found 
to have positive association with squamous cell carcinoma [31].

Bladder Cancer Asthmatics, especially males, were found to be at a greater risk 
for developing bladder cancer and urothelial cancer [62, 80, 81].

Other Types of Cancer Asthma was found to render protection against stomach 
cancer, uterine body cancer, cancer of larynx, oral cancer, and thyroid cancer but 
was a risk factor for Kaposi sarcoma [44, 62, 82, 83]. History of allergy was linked 
with lower risk of thyroid cancer, oral cancer, and cancer of larynx [34, 84]. Drug 
allergies rendered protection against liver cancer [85].

2.4.2  Immune Players Involved in Allergy and Cancer

Immunological balance lies central to maintaining homeostasis and healthy condi-
tion. In case of allergy, the immune system overreacts, while in case of malignancies, 
active suppression of immune system is observed. An immune phenomenon called 
immune tolerance lies central to the development of allergy and cancer [86]. Immune 
tolerance is the mechanism by which the immune system is rendered unresponsive to 
self-antigens and potentially harmless antigens [87]. Suppression of immune toler-
ance is associated with allergic manifestation, and enhanced immune tolerance is 
related to oncogenesis. The cellular and molecular players involved in maintaining 
immune tolerance are inhibited in allergies and upregulated in malignancies [86].

2.4.2.1  Key Cellular Players Mediating Immune Tolerance in Allergy 
and Cancer

Immune cells exhibit differential behavioral, interaction, and secretion pattern to 
ensure immune hyperactivity under allergic condition and enhanced immune 
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tolerance under malignant condition [5]. The key immune cells with pivotal roles in 
allergo-oncology are enlisted in Table 2.2.

The differential activity pattern under allergic and malignant condition is not just 
restricted to immune cells. Such diversification of immune roles in allergies and 
cancer is also visible at the molecular level.

2.4.2.2  Immunoregulatory Molecules in Allergy and Malignancy
Vital immune proteins and molecules are differentially expressed in allergy and 
tumor. These molecules often execute contrasting roles under allergic and malig-
nant condition. Two molecules that have drawn primary attention are programmed 
cell death-1 (PD-1) and its ligand 1/2 (PD-L1/L2) and cytotoxic T lymphocyte–
associated protein 4 (CTLA4). These are often referred to as checkpoint molecules 
[5]. Other key molecules involved include IgE, IgG4, mast cell mediators, cyto-
kines, and lipocalins.

PD-1, PD-L1, and PD-L2: These proteins have been long implicated for their role 
in cancer. PD-1 induces immunotolerance and restores immunosuppressive 
microenvironment in cancer by inhibiting the activation of T cells, restricting 
cytotoxic T cell proliferation and preventing cancer cell lysis [94]. Expression of 
PD-L1/L2 and CTLA4 on tumor cells further exaggerates this effect and ensures 
cancer progression [95]. Up regulation of PD-L2 has been found in malignancies 
like Hodgkin Lymphoma [96]. Recently, the roles of PD-L1/L2 have been exten-
sively studied in allergic diseases and atopic asthma. These proteins play a vital 
but opposing role in guiding the polarization of T cells [97]. In allergic diseases, 
blocking of PD-L2 resulted in enhanced eosinophil infiltration. Deficiency of 

Table 2.2 List of cells with roles in immune tolerance in allergy and cancer

Immune cells Role in allergy Role in cancer
Dendritic cells Induce cascade of immune 

signaling, leading to allergy [5]
Induce the conversion of T cells into 
Tregs and promote tumor progression 
[88]

Eosinophils Play a major role in allergic and 
atopic reaction

Exert anti-tumorigenic effect on solid 
tumors [89]; support metastasis [90]

Epithelial cells Epithelial barrier disruption allows 
allergen entry; secrete TSLP and 
IL-33 and promote Th2 branch of 
immune responses [5, 91]

Lead to innate immune suppression 
and contribute to cancer progression 
[92]

Macrophages M2a macrophages support allergic 
manifestation [5]; M1 macrophages 
promote airway remodeling in 
atopic asthma [93].

M1 macrophages promote increased 
survivality of cancer patients; M2b 
and M2c play a vital role in tumor 
progression and poor prognosis [5]

Mast cells Mediate allergic reaction [9] Promote tumor growth [5, 87]
T regulatory 
cells (Tregs)

Suppress allergic reaction [5] Associated with tumor progression [5]

This table enlists the different immune cells and their probable roles in allergic response and 
tumorigenesis
Partially adapted from [5]
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PD-L2 has been linked to increased severity in atopic asthma. On the other hand, 
PD-L1 deficiency is associated with elevated Th1 cytokine response and reduced 
inflammation in allergic condition [97]. This is indicative of PD-L2 as a protec-
tive factor and PD-L1 as a risk factor in allergy.

CTLA4: This protein plays a vital role in dictating T cell activation and differentia-
tion [98]. It has been targeted clinically for cancer. CTLA4 molecules expressed 
on T cells present in tumor microenvironment inhibit further T cell activation and 
proliferation, thereby restoring immune tolerance [99]. This ensures tumor 
growth and progression without much hindrance from host immune system. Role 
of CTLA4 has also been highlighted in allergy. Blockade of CTLA4 triggers Th2 
cytokine response, elevates eosinophil-mediated inflammation, and increases 
allergic sensitization [100].

IgE and IgG repertoires: IgE is the major antibody-mediating allergic reaction. IgE 
and IgG have also been implicated in cancer as well. Monoclonality of IgE and 
IgG is observed in myeloma. Reemergence of small sub-clones is noted along 
with the dominant clone in case of B-cell leukemia [5].

IgG4 antibodies: IgG4 are anti-inflammatory antibodies with protective role in 
allergy [5]. IgG4 elevate in cancer and correlate with tumor progression [5, 101, 
102].

Mast cell mediators: Mast cells secrete vasoactive mediators (histamines, leukotri-
enes, prostaglandins) and cytokines that act on smooth muscle cells, sensory 
nerve endings, blood vessels, and mucous cells to mediate inflammation and 
allergic reaction [9]. Mast cell mediators have a controversial role in oncogene-
sis. They promote tumorigenesis by secreting histamine, NGF, IL-8, and restrict-
ing T-cell responses. Mediators like heparin, TGFβ, VEGF promote 
neovascularization [103]. On the other hand, TNFα, IFNγ, PAR-1/2 induce cel-
lular disruption and apoptosis in tumor cells. IL-8, TNFα inhibit carcinogenesis 
by attracting inflammatory leukocytes. These mediators inhibit metastasis via 
chondroitin sulfate. Mast cells release amphiregulin and contribute to immuno-
supression in tumor [5].

Cytokines: TGFβ and IL-10 play a vital role in the establishment and perpetuation 
of immune tolerance. TGFβ and IL-10 modulate immunosuppressive microenvi-
ronment in cancer and connect with different stages of oncogenesis [5, 104]. 
IL-17A shows upregulation in allergic disease like asthma. The role of IL-17A is 
controversial in cancer, acting both as a tumor suppressor and a promoter [86].

Lipocalins (LCNs): Lipocalins play an important role in iron sequestration. Their 
expression and subsequently the serum iron level are decreased in case of aller-
gic reaction [5]. However, this protein exhibits an opposite expression profile in 
case of malignancies. LCN2 is overexpressed in various types of cancer [105]. 
Elevated iron level also increases the risk for cancer development [106]. LCN2 
also forms complex with matrix metallopeptidase-9 (MMP-9), a prognostic fac-
tor in different cancers [107].

These molecules can be targeted differentially for controlling allergy and cancer. 
Present-day scientific research focuses largely on unraveling the mechanisms 
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driving such differential molecular expression and cellular behavior. A better and 
detailed understanding of the role of these molecules and immune cells shall pro-
vide efficient means of targeting these molecules, thus opening up new gateways for 
the development of novel therapeutic approaches for allergy and cancer.

2.5  Developments, Challenges, and Future Perspectives 
in Allergo-oncology

Recent research in allergo-oncology has enabled better understanding of Th2 
immune response, contrasting roles of immune cells in tumor microenvironment 
and allergic condition, and pivotal roles of immune molecules in regulating immu-
nity in allergies and malignancies. However, there still lies a considerable gap in 
translating the current knowledge and research into clinical practice for developing 
novel therapeutic strategies [108]. One of the major challenges lies in the availabil-
ity of suitable animal models for further studies in immune tolerance and assessing 
efficacy of targeting key cellular and molecular players [5]. Present knowledge on 
immune response in allergic and malignant milieu may be combined efficiently to 
generate optimal in vivo animal models for allergo and onco-immunological studies 
[5]. Humanized mice and canines are emerging as desirable animal models for 
allergo-oncology-related studies for spontaneous development of allergies and 
malignancies [109, 110]. Another issue arises due to inconsistency in the associa-
tion pattern among allergy and cancer in epidemiological studies. Methodological 
limitations (associated with case-control and cohort study, retrospective and pro-
spective study); screening biasness and lack of proper consideration of confounding 
factors (like smoking, alcohol consumption, obesity, socioeconomic status) during 
data analysis often affect the significance of such epidemiological studies. 
Prospective cohort studies and meta-analyses, properly adjusted for confounding 
variables, might serve to set off study-related issues and allow better understanding 
of the association between allergy and cancer [31]. Mechanistic study of such asso-
ciations using co-culture systems, multi-omics, and systems immunology–based 
approaches shall enable identification of key pathways and networks involved in 
these associations. Reprogramming and rewiring of key interactions in these regula-
tory networks and pathways of specific immune cells can be employed for design-
ing novel therapeutics. Besides, impact of allergen, allergenic peptide harboring 
IgE-binding epitopes, IgE, or Th2 cytokines on cancer stem cell population can be 
investigated further for exploring allergy-mediated control of cancer. Such novel 
therapeutic strategies can be applied along with regular cancer therapy for better 
efficacy [111]. Reprogramming of immune cells and remodeling of pathways may 
also aid in controlling allergic manifestations. Thus, the association between allergy 
and cancer might be exploited in a constructive manner to control the occurrence 
and progression of both the disease conditions.
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Abstract
Immunotherapy is a breakthrough in the potential treatment of cancer as well as 
preventing future relapses by stimulating the immune system in the recognition 
and killing of cancer cells. Numerous strategies are ongoing in the clinical labo-
ratories for the advancements in the immunotherapy approaches which include 
therapeutic engineered T lymphocytes, vector-based (noncellular) cancer vac-
cines, dendritic cell vaccines, and immune checkpoint blockade. Regardless of 
their capacity, continuous research is required to recognize the failures of cancer 
response toward strong immunotherapy treatment as well as to envisage the ther-
apeutic combinatorial strategies appropriate for patient-specific ways. 
Fundamental to these challenges underlie the technological methods for rapid 
and thorough characterization of tumors-immune microenvironments, immune 
response monitoring of patients, predictive tools to screen potential and sensitive 
therapies, tumor regression, and tumor dissemination throughout and after the 
therapy. The emerging field of immune engineering addresses these challenges 
and contributed the tools and approaches to facilitate the clinical transformation 
of immunotherapy. Customized and programmable site-specific nucleases have 
already revolutionized our ability to interrogate genomic functions and introduce 
genetic manipulations in diseases which are intractable with traditional therapies 
for potential clinical applications. In this chapter, we highlight the developments, 
recent technological advances, and applications of these tools in the diagnosis, 
treatment, and cancer monitoring, as well as the ongoing challenges in their uses 
as a platform technology in the context of immunotherapy.
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3.1  Introduction

For the past decades, the development of whole-genome sequencing methods for 
the implementation of large genomic annotation projects has challenged the scien-
tific community to deliver the genomic revolution from basic science into personal-
ized medicine in translational research. The conversion of enormous data from 
a plethora of genome sequence information into clinically relevant knowledge is of 
utmost requirement. There is a need of efficient and reliable methods to determine 
the influence of genotype on phenotype changes. To this end, the inactivation of 
targeted genes via homologous recombination is a very powerful approach capable 
of providing conclusive information for the evaluation of gene functions [1]. 
However, this approach is hampered by numerous limiting factors which include the 
low efficiency of insertions of engineered constructs at correct chromosomal loca-
tions, the enormous time needed for selection/screening procedures, and the poten-
tial mutagenic effects caused by the adverse expression [2].

Manipulation in the eukaryotic genomes is extremely difficult and error-prone 
due to the presence of billions of DNA bases. The discovery of genetic targeting by 
homologous recombination (HR) is considered as the breakthrough in genome 
modifications, which led to the integration of exogenous repair DNA templates con-
taining sequence homology to the donor site [3]. HR-directed genome targeting has 
enabled the construction of knock-in and knockout animal models via germline 
manipulation of competent stem cells leading to dramatic advancement of biologi-
cal research areas. Although gene targeting mediated by HR generates highly accu-
rate alterations, the anticipated recombination events arise extremely infrequently 
with an average of 1 in 106–109 cells, offering a massive challenge for its large-scale 
applications in gene-editing experiments [4].

The discovery that targeted induced DNA double-strand breaks (DSBs) could 
stimulate the cellular repair machinery is foundational and exceptionally significant to 
the field of gene editing [5]. DNA breaks are classically repaired by two major path-
ways: homology-directed repair (HDR) and nonhomologous end joining (NHEJ) [6]. 
HDR repair mechanism employs a donor DNA sequence homologous to the genomic 
site flanking the DSB, which can introduce novel genetic information at the DSB 
sites. In NHEJ repair pathway, the DNA ends at the DSB sites are ligated back 
together, incorporating small insertions or deletions; therefore, NHEJ is error-prone 
and lead to gene disruption. HDR repair pathways are highly precise and potentially 
used for large gene replacements, integration of selective markers, deletions, and base 
mutations. RNAi approach for the knockdown of targeted genes has provided a very 
rapid, high-throughput, and inexpensive alternative to homologous recombination [7]. 
However, gene knockdown offered by RNAi is partial and results in temporary 
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inhibition of gene functions. Moreover, RNAi has unpredictable off-target effects, and 
the results obtained from RNAi inhibitions vary between laboratories and experi-
ments. These drawbacks of RNAi approach have restricted the identification of direct 
link between phenotype and genotype and resulted in its limited applications.

Several approaches have emerged which enabled investigators to manipulate 
genomic regions in various cell types and diverse range of organisms. One such 
approach is commonly termed as “genome editing” mainly based on the manipula-
tive functions of engineered nucleases. For high-throughput and precise genome 
editing, a series of programmable nuclease-based genetic tools have been developed 
enabling specific targeting and effective modification of numerous eukaryotic and 
mammalian species. Along with these nucleases are fused the sequence-specific 
DNA-binding domains which together function as a potential DNA cleavage mod-
ule [8, 9]. The fused products of DNA binding modules with nucleases generate 
chimeric nucleases which enable precise, high-throughput, and efficient genomic 
modifications by the inductions of DSBs and lead to the activation of DNA repair 
pathways including HDR and NHEJ [10–12]. The flexibility of these newer 
approach is generated by the versatility of the DNA-binding modules derived from 
various protein structural motifs like zinc finger, transcription activator-like effector 
(TALE), and Cas9 (Fig. 3.1). Out of the existing generation of editing tools, 
CRISPR-Cas (clustered regulatory interspaced short palindromic repeats/CRISPR 
associated) represents the most rapidly developing class driven by RNA-guided 
endonucleases originating from the microbial adaptive immune system. CRISPR 
technology can be effortlessly targeted by a short RNA guide to practically any 
organism of choice achieving targeted perturbation of endogenous genomic regions.

The combination of this high flexibility and simple experimentations has cata-
pulted these genome editing techniques toward the forefront of genetic engineering. 
The recent advances in genome editing technologies have markedly improved our 
capability to make accurate genomic changes in the eukaryotic genomes. Here, we 
discuss the current advances in site-specific nucleases and review their potential 
applications for precise genome editing and functional analysis within cells and 
model organisms. We will also discuss the therapeutic potential of these advanced 
technologies and examine their projections with the major focus on the develop-
ment and applications of CRISPR/Cas endonucleases along with future challenges 
and avenues for innovation.

Our current understanding of genome editing procedures to engineer cells and 
redirecting them to precise targets, bestowing the immune system with tremendous 
functions along with safety features, and uniting them with additional targeted 
immune therapies is discussed in this chapter. We exemplify how monitoring of 
the immune system and potential biomarkers can govern the effects and destiny of 
cell therapies in clinical settings. We finally conclude with a brief discussion of the 
genetic and molecular elements essential for the establishment of new pillars of 
clinical treatments constructed around personalized cell therapies. This chapter pro-
vides an overview of existing progress in the development of targeted genome edit-
ing and will also discuss the current state of ACT for the treatment of human cancer, 
as well as approaches and the underlying principles of effective treatments pointing 
toward further advances in these methodologies.
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3.2  Programmable Nucleases as Tools for Efficient 
and Precise Genome Editing

3.2.1  Genome Editing with Site-Specific Nucleases

Homologous recombination has proven highly successful in the inactivation of gene 
by additions or deletions of specific genomic regions; however, two limitations dra-
matically constrain the utilization of recent genome engineering technologies: the 
low frequency of homologous recombination in mammalian cells as well as the 
model organisms and the high percentage of non-targeted genomic integration of 
the vector DNA. Subsequent discovery elucidating that DSB induction substantially 

Fig. 3.1 The approaches of genome editing exploit endogenous DNA repair pathways. (a) The 
DNA double-strand breaks (DSBs) are classically repaired by either the error-prone nonhomolo-
gous end joining (NHEJ) or homology-directed repair (HDR). In NHEJ, Ku heterodimers function 
as a molecular scaffold for other repair proteins after binding to DSB ends. End resection within 
the complementary strands and microhomology-mediated misaligned repair eventually generate 
indels and lead to frameshift mutations and gene knockout. Alternatively, in HDR, Rad51 proteins 
bind DSB ends and recruit accessory factors directing homologous recombination with an exoge-
nous repair template. (b) Modular domains like zinc finger (ZFs) and transcription activator-like 
effectors (TALEs) are naturally occurring DNA-binding proteins recognizing 3 and 1 bp of DNA, 
respectively. These domains can be assembled and fused to the FokI endonuclease to construct 
programmable site-specific nucleases targeting specific sequences. (c) CRISPR adaptive immune 
system consists of Cas9 nuclease that can be targeted to specific DNA sequences guided by its 
cognate guide RNA (black) through direct base pairing with target DNA. Protospacer adjacent 
motif (PAM, green) directs the Cas9-mediated DSBs
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increases the HDR frequency by previously unbelievable extent has provided the 
emergence of targeted nucleases of choice for the improved efficiency of HDR- 
mediated genetic modifications. Integration of multiple transgenes can be efficiently 
triggered at the location of choice with the help of a donor plasmid DNA consisting 
of homology sequence for the desired genomic site along with the site-specific engi-
neered nuclease [13]. Homologous sequences less than 50  bp as linear donor 
sequences [14] as well as the ssDNA oligonucleotides [15] could functionally 
induce the targeted mutations, insertions, or deletions in virtually any DNA 
sequence. Moreover, in addition to facilitating DSB-mediated HDR, engineered 
site-specific nuclease also permits the quick development of cell lines as well as 
whole organisms having null phenotypes which are mediated by the nonhomolo-
gous end joining (NHEJ) repair of DSB that potentially introduce small deletions or 
insertions at the target genomic sites resulting in functional knockout of gene gener-
ated by frameshift mutations [16]. Additionally, engineered nuclease also facilitates 
site-specific deletions within large chromosomal regions [17]. Moreover, these 
approaches also function to induce large chromosomal translocations at specified 
genomic loci [18] as well as chromosomal duplications and inversions [19] as 
reported within the human genome. Finally, NHEJ-mediated ligation (ObLiGaRe, 
Obligate Ligation-Gated Recombination) facilitated by the synchronization of 
nuclease-driven site-specific cleavage of donor DNA along with the specified chro-
mosomal region enabled the introduction of large transgenes (14 kb) into several 
endogenous loci [20]. Site-specific integration of genetic sequence significantly 
controls the positional effects which enabled the structural-functional relationships 
of numerous genetic analyses in a native chromosomal environment. Zinc finger 
nucleases (ZFNs) and transcription activator-like effector (TALENs) have been 
extended to target specific gene in human embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs) [21, 22]. Both zinc finger nucleases and TALENs 
have proven unprecedented in the gene functions study, disease modelling by altera-
tion of gene mimicking known and uncharacterized genotypes (Fig. 3.2). These 
approaches encouraged their employment in the modelling of a  wide range of 
genetic disorders. Moreover, these approaches have also been reported in the func-
tional elucidation of noncoding DNA and RNA regulating the bulk genome includ-
ing the use of multiplexed approaches for the identification of unknown regulatory 
sites within the choice of genes [23, 24].

3.2.2  Cys2-His2 Zinc Finger Nucleases

For successful genetic engineering, an endonuclease must possess an astonishing 
combination of abilities which includes the precise recognition of lengthy target 
sequences uniquely occurring in a eukaryotic genome along with satisfactory flex-
ibility which allows their retargeting to user-defined genomic regions. The architec-
ture of ZFN meets the above qualities by linking the DNA-binding domain of zinc 
finger proteins (ZFPs) with the nuclease domain of the FokI restriction enzyme. 
ZFNs combine the favorable assets of both apparatuses: the flexibility and 
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specificity of DNA-binding ZFPs which retain functional modularity and a robust 
cleavage activity which only occurs in the presence of a specific DNA-binding inci-
dent. Consequently, both the DNA-binding and catalytic domains can be easily 
manipulated in isolated platforms further simplifying the improved retargeting 
efforts. The Cys2-His2 zinc finger domain characterizes as the frequently encoded 
motif in the human genome and represented as the most common and versatile class 
of DNA-binding eukaryotic transcription factors. The ZFP region within a ZFN 
facilitates its binding to a distinct base sequence. A specific zinc finger motif com-
prises of ~30 amino acid residues in a well-conserved ββα arrangement [25]. This 
region consists of a tandem array of Cys2-His2 fingers [26, 27]. The specific amino 
acids present on the α-helical surface made of Cys2-His2 fingers are known to typi-
cally contact 3 bp of DNA in its major groove, with variable selectivity. The modu-
lar architecture of ZFPs has recognized them as a striking framework to devise 
custom DNA-binding proteins.

The key to the successful application of ZFPs in highly specific and precise DNA 
recognition is the development of arrays which consists of more than three zinc 
finger domains. In previous studies, modified ZFNs employed three zinc fingers to 
bind DNA target made up of 9 base pairs, which could enable the highly active ZFN 
dimers to bind 18 bp of DNA at potential cleavage sites. Recent studies have facili-
tated the addition of more fingers (up to 6 per ZFNs) for the specifications of long 
and rare cleavage targets. The discovery of the conserved linker sequence eased by 
the structure-based studies has enabled the construction of synthetic ZFPs which 
can recognize a DNA sequence of 9–18 bp in length [25, 28]. Interestingly, a DNA 
sequence formed with 18 bp confers specificity within 68 billion bp of DNA; hence, 
the advanced ZFNs allow the targeting of specific sequences within the human 

Fig. 3.2 Engineering platforms for editing genome sequence. Individual ZFs (a) and TALEs (b) 
uniquely recognizing triplets or single base pairs, respectively, can be engineered in arrays to target 
specific sequences. (c) ZFs and TALEs fused to targeted nucleases or Cas9-gRNA complex can 
potentially cleave genomic sequences to generate double-strand breaks (DSBs). The eventual reso-
lution of DSBs through NHEJ or HDR can lead to various genomic alterations
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genome [29, 30]. The recent design has optimized for ZFPs constructions which 
could potentially recognize highly specific contiguous DNA regions within com-
plex genomes. Later, numerous methods for the construction of ZFPs with exclusive 
user-chosen DNA-binding specificity were established. The initial strategy was first 
emerged from the observations of ZFP-DNA co-crystal structure. The interactions 
of zinc fingers with DNA region suggested a functional autonomy [31, 32]. The 
initial approach was termed as “modular assembly” in which candidate ZFPs for a 
user-chosen target DNA sequences were generated by the identification of fingers 
for each constituent triplet and then linking them into a complex multi-finger pep-
tide which facilitates its binding to the corresponding DNA sequence. This approach 
also comprises the use of a library of finger modules which are generated by rational 
designs or the preselection of combinatorial libraries [25, 33]. By this method, ZF 
domains have been designed for the recognition of all the potential 64 nucleotide 
triplets, which then can be linked together in a tandem fashion against any sequence 
which contains any combination of DNA triplets. An alternative approach relies on 
the selection-based method, termed as oligomerized pool engineering (OPEN), that 
can be used for the selection of new arrays of zinc fingers from randomized libraries 
which include a context-dependent interaction among adjoining fingers [34].

The key success of ZFNs underlies in the crucial function of the FokI domain 
which possesses numerous characteristics which facilitate the targeted cleavage 
within highly complex genomes. Interestingly, FokI dimerization is essential for the 
DNA cleavage at target loci [35]. However, the interaction between FokI dimers is 
very weak, and cleavage requires the independent binding of two ZFNs in an adja-
cent fashion. Moreover, the binding events of ZFNs must occur in the precise orien-
tations along with appropriate space to allow the FokI dimer formation [35]. Two 
independent and adjacent ZFNs-binding events permit the precise targeting of longer 
and unique recognition sequences (from 18 to 36 bp). The requirement of dimerized 
nuclease has encouraged the development of ZFN variants with improved specificity 
which can cleave only as a heterodimer pair and eliminates the undesirable homodi-
mers [36, 37]. ZFP-FokI linkers have been further modified to develop ZFN dimers 
with novel spacing between two-monomer binding events. The catalytic domain 
variants of FokI were also reported to show boosted cleavage activities [38].

3.2.3  Gene Disruption by ZFNs in Model Organisms

In Drosophila melanogaster, ZFNs can be delivered to the early fly embryos via 
mRNA injection, and it has been shown that ~10% of the progeny adult flies were 
mutated for the gene of interest [39]. Different alleles of the same gene can be tar-
geted by the ZFNs, and homozygotes of each mutated allele would completely lack 
the protein expression. Engineered ZFNs encoded by specific mRNA when injected 
into zebrafish embryos were also used to generate desired genetic lesions in ~50% 
of progeny [40, 41].

For gene disruption in rats, engineered zinc finger nucleases (ZFNs) were 
designed against two independent endogenous rat genes, IgM and Rab38, along 
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with an integrated reporter and demonstrated that microinjection of mRNA- 
encoding ZFNs to rat embryo leads 25–100% disruption of target locus in progeny 
[42]. Moreover, a faithful and proficient transmission of mutated alleles was 
observed through the progeny [42]. In an independent study, severe combined 
immune deficiency (SCID) rat was also generated using the similar strategy [43]. In 
Arabidopsis thaliana, the transgenesis of a stable and inducible expression cassette 
of engineered ZFN allows gene disruption [44].

3.2.4  Gene Disruption in Mammalian Cells

Customized and programmable nucleases have been immensely used for the disrup-
tion of genes in mammalian cells. Conventional targeting of genomic sites coupled 
with the strategies of positive and negative selection is a powerful approach for gene 
knockouts. Moreover, the use of engineered adeno-associated viruses (AAVs) has 
permitted its application in transformed and primary human cells [21, 22]. Gene 
knockouts with ZFNs preclude the necessity for selection based on drugs which 
further extend its application toward any potential cell type and organisms given the 
availability of transient delivery of either DNA or mRNA. Interestingly, knockouts 
by ZFNs resulted in 1–50% of all cells. The first report of gene knockout in mam-
malian Chinese hamster ovary (CHO) cells by ZFNs has demonstrated in the dis-
ruption of dihydrofolate reductase (Dhfr) gene [16]. Transient transfection of ZFNs 
targeting Dhfr gene encoded by a plasmid DNA resulted in ~15% (2 clones out of 
60) frequencies of biallelic disruption in the cell populations as observed with geno-
typing and measurably lacked DHFR protein expression. Later, in CHO and K562 
cells, ZFNs were reported to target locus-specific DNA regions and to construct 
double [45] and triple [46] gene knockouts. Moreover, the engineered ZFNs-driven 
knockout approach has proven highly successful in a range of cell types which also 
includes the human ES cells and CD4+ T cells.

Numerous approaches have been developed which combine several methods to 
utilize ZFNs in a context-dependent selection using longer assembled arrays. For 
many years, ZFPs represented the only technology and approach available to con-
struct conventional sequence-specific DNA-binding modules. Broadly, the ZFN 
approach facilitates the targeting of virtually any genomic sequence. Moreover, to 
bypass the constructions of ZFNs and to evade their validation altogether, thousands 
of engineered zinc fingers modular proteins are commercially available by a joint 
venture of Sangamo Biosciences (Richmond, CA, USA) and Sigma-Aldrich (St. 
Louis, MO, USA), and a propriety platform (CompoZr) has been developed in part-
nership which allows investigators to understand the genotype to phenotype 
changes.
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3.2.5  TALEs

TALEs are natural proteins secreted by the plant pathogenic bacteria Xanthomonas. 
TALE proteins consist of a sequence of 33–35 amino acid repeat domains which 
functions as DNA-binding modules recognizing a single DNA base pair. The dis-
covery of modular TALE proteins recognizing a DNA recognition code has led to 
the development of an alternative approach for the construction of engineered and 
programmable DNA-binding modules [20, 21]. The position of two hyper-variable 
residues within TALE proteins determines their specificity toward the  target 
sequence. These hyper-variable residues are known as repeat-variable di-residues 
(RVDs) [22, 23]. As discussed above for the ZFPs, TALE repeats are also linked 
together for the recognition of any contiguous DNA sequences. However, unlike 
ZFPs, the linkage between repeats cannot be reengineered for the construction of 
longer TALE arrays capable of targeting single genome sites. After approximately 
two decades of groundbreaking research on ZFPs, several effector domains includ-
ing nucleases [24–26], site-specific recombinases [28], and transcriptional activa-
tors [26, 27] were developed to fuse to TALEs for targeted genome engineering. 
Investigators face an advanced technical challenge in the cloning of TALE repeat 
arrays due to the presence of extensive indistinguishable repeat sequences; however, 
the recognition of a single base by TALE repeats-DNA binding enables extensive 
flexibility in their designing as compared to triplet-confined ZFPs. The other limita-
tion is that TALE recognition of DNA sequence should start with a T base. Numerous 
methods were developed to overcome this challenge which enabled the quick 
assembly of customized arrays of TALE repeats.

A high-throughput method for the construction of TALENs has been reported in 
several studies. These strategies include rapid PCR-based molecular cloning 
approach termed as “Golden Gate” to assemble multiple DNA fragments [47]; 
solid-surface-based rapid, high-throughput, and cost-effective method for large- 
scale TALENs assemblies such as fast ligation-based automatable solid-phase high- 
throughput (FLASH) system; and iterative capped assembly (ICA) for the synthesis 
of TALENs of variable length of target DNA site and demonstrated their abilities to 
trigger gene editing by a donor oligonucleotide in human cells [48, 49] and ligation- 
independent cloning techniques [50]. Several large systematic studies utilizing vari-
ous assembly methods have indicated that TALE repeats can be combined to 
recognize virtually any user-defined sequence. Indeed, the TALE repeats can be 
assembled easily as evident in the previous report suggesting the construction of a 
TALENs library to target 18,740 protein-coding genes from human [51]. These 
technological accomplishments will encourage future ambitious endeavors and 
facilitate new studies. Moreover, custom-designed TALE arrays are also available 
commercially through Transposagen Biopharmaceuticals (Lexington, KY, USA), 
Cellectis Bioresearch (Paris, France), and Life Technologies (Grand Island, 
NY, USA).
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3.2.6  Improving the Performance of Site-Specific Nucleases

Complex and large genomes consist of multiple copies of highly homologous or 
identical sequences potentially leading to several off-target activity and toxicity 
toward target cells. Therefore, customizable nucleases must demonstrate stringent 
target specificity toward proposed DNA targets to carry out relevant genetic analysis 
and further clinical application. To overcome this challenge, both structural [52, 53] 
and selection-driven [54, 55] methods have been employed for the generation of 
highly specific and improved heterodimers of ZFN and TALEN. The cleavage spec-
ificity of ZFNs and TALENs has been optimized for enhanced specificity along with 
reduced toxicity. Moreover, a directed evolutionary approach has been utilized for 
the generation of a hyper-activated variant of FokI termed as Sharkey (cleavage 
domain of FokI). Sharkey displays highly significant compatibility with several 
ZFN architectures [54] and represents >15-fold enhanced cleavage activity as com-
pared to traditional ZFNs [55]. Furthermore, various evidence suggested that 4–6 
ZF domains for individual ZFN could significantly boost its activity and target spec-
ificity [13, 55–57]. Further procedures to improve the ZFN activities include brief 
hypothermic culture environments to enhance the levels of nuclease expression 
[58], co-transformation of DNA end-processing enzymes along with targeted nucle-
ases [59], and co-delivery of vectors expressing fluorescent surrogate reporter 
allowing the propagation of ZFN- and TALEN-transformed cells [60]. The target 
specificity of ZFNs has been further enhanced with the advancement of ZF nick-
ases, which facilitates the induction of DNA nicks stimulating HDR for DNA repair 
without the activation of error-promoting NHEJ pathway [64]. The nickase approach 
led to minimal off-target mutational effects as compared to conventional DSB- 
mediated genome edition; however, unlike traditional ZNFs, the frequency of HDR 
through ZFNickase is comparatively low. Lastly, the traditional delivery methods of 
ZFNs using DNA or RNA are restricted to certain cell types and are also linked to 
unwanted side effects which include minimal efficiency, mutagenic insertions, and 
high toxicity. To overcome these limitations, purified ZFNs proteins have been 
delivered directly into the cells as an alternative process. This approach leads to 
minimal off-target effects and does not result in insertional mutagenesis [52]. This 
type of platform for targeted delivery might represent optimal strategy but suffer 
with other challenges due to extensive design strategy and high cost of production.

3.3  Brief History of CRISPR-Cas

The story of CRISPR started in the year 1987 when Nakata and colleagues reported a 
set of 29 nucleotide repeats present downstream of iap gene involved in isozyme con-
version of alkaline phosphatase in E. coli [53]. These 29 nt repeats were curiously 
interspaced by five intervening 32  nt nonrepetitive sequences. With the advent of 
genome sequencing by the next decade, additional interspaced repeat elements were 
reported from bacterial and archaeal genomes which were eventually classified as a 
unique family of clustered repeat elements present in 90% of archaea and > 40% of 
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sequenced bacterial genomes [54]. These initial findings stimulated much interest in 
microbial repeats. In 2002, the acronym CRISPR was coined to describe microbial 
genomic loci consisting of an interspaced repeat array [55–57]. Interestingly, CRISPR 
loci were found to be transcribed [58]. Later, several well- conserved clustered ele-
ments were identified typically adjacent to CRISPR and were named as CRISPR-
associated genes (cas) [55]. Cas genes serve as a basis for the classification of CRISPR 
systems (types I–III) [59, 60]. For the recognition and destruction of the target site, 
types I and III CRISPR loci consist of multiple Cas proteins and forms independent 
complexes with crRNA (type I forms CASCADE and type III forms Cmr or Csm 
RAMP complex) [61, 62]. Type II system consists of a smaller number of Cas pro-
teins. In 2005, sequence analysis of the spacers separating the CRISPR suggested that 
they are originated extra chromosomally and are associated with phage genomes [63–
65]. Moreover, viruses are unable to infect archaeal cells carrying spacers represent-
ing their own genomes [63]. Together, CRISPR arrays were speculated to serve as 
defense mechanisms against bacteriophage infection [63, 64]. Later, the RNAi-like 
mechanism underlying the spacers functioning as small-guide RNAs and directing 
Cas enzymes for degradation of viral DNA was uncovered [65, 66].

3.4  Genome Editing Using CRISPR-Cas9 in Eukaryotic Cells

A dual-RNA hybrid composed of crRNA and tracrRNA together with Cas9 are the 
three essential components of type II CRISPR nuclease system along with endoge-
nous RNase III, required for processing the CRISPR array transcript into mature 
crRNAs [67, 68]. Biochemical characterizations of Cas9 purified from Streptococcus 
thermophilus or Streptococcus pyogenes showed that it can be guided by crRNAs 
for degradation of target DNA in vitro [69, 70]. Cas9-mediated degradation requires 
the presence of a protospacer adjacent motif (PAM) immediately downstream of the 
target site. A single-guide RNA (sgRNA) could be generated by the fusion of crRNA 
and tracrRNA, which then potentially facilitates DNA cleavage by Cas9 [69]. 
crRNA or sgRNA contains a 20 nt guide sequence which directly matches the target 
sequence. Till date, Cas9 from Streptococcus pyogenes (SpCas9) is broadly used for 
genome editing in a variety of cell types and species that include human cells, 
mouse, monkey, drosophila, yeast, bacteria, zebrafish, and so on [71]. Targeting 
through SpCas9 can be achieved with either a pair of crRNA and tracrRNA [72] or 
a chimeric sgRNA [72–74]. Human genome editing using the engineered dual- 
guide RNA system along with SpCas9 showed higher levels of NHEJ-induced 
indels compared to the engineered sgRNA scaffold. Moreover, an extension of the 
30 tracrRNA sequence generates additional stem loops hairpin structures which 
enhance the stability of the sgRNA critical for effective in vivo sgRNA-mediated 
genome editing through Cas9-sgRNA-DNA ternary complex formation [72, 75, 
76]. CRISPR-Cas9 system has an inherent ability of efficiently cleaving multiple 
target sites in parallel by conversion of pre-crRNA transcript containing many dif-
ferent spacers into specific guide RNAs duplexes (crRNA-tracrRNA) [67, 68]. This 
unique aspect of the  CRISPR system is harnessed to enable scalable multiplex 
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genome perturbations. Indeed, co-expression of SpCas9 together with CRISPR 
array consisting of  spacers targeting multiple distinct genes [72], or numerous 
sgRNAs [73, 77], resulted in efficient multiplex genome editing in mammalian cells.

3.5  Functional Screening of Genomes

The ability of CRISPR-Cas9 to edit many genomic targets in parallel with high 
efficiency and precision enabled the identification of genes of interest using unbi-
ased genome-wide functional screens. Lentiviral delivery of sgRNAs together with 
Cas9 directed against genes could potentially perturb thousands of genomic regions 
in parallel. Many reports have demonstrated the ability of CRISPR-Cas in robust 
positive and negative selection screens in human cells by the introduction of loss-
of- function mutations of a distinct gene in each cell [78, 79]. Previously, RNAi was 
employed for genome-wide loss-of-function screens; however, this approach is lim-
ited to transcribed genes, has many extensive off-target effects, and leads to only 
partial knockdown. Contrastingly, Cas9-sgRNA screens can be designed for target-
ing nearly any DNA sequence and are reported to provide increased screening sen-
sitivity with no off-target effects [78].

Approximately 76% of the human genome is transcribed into RNAs while less 
than 2% encodes for proteins. The human genome generates a plethora of long non-
coding RNAs (lncRNAs), many of which are shown to be functional. lncRNAs 
consist of at least 200 nucleotides in length and represent a major subset of 
the human transcriptome [80]. Functional lncRNAs were first identified through a 
specially designed high-throughput CRISPR approach which employed paired 
gRNAs (pgRNAs) for generating genomic deletions. Multiplexed gRNA libraries 
facilitate the dissection of large genomic regions through perturbation of noncoding 
genetic elements. CRISPR approach also led to the dissection of large, uncharacter-
ized genomic regions which were previously implicated in GWAS studies as func-
tional zones.

Previously, high-throughput screening strategy for the deletion of genomic seg-
ments for the identification of functional long noncoding RNAs (lncRNAs) has 
identified 51 lncRNAs that can potentially regulate the growth of human cancer 
cells either positively or negatively [81]. This approach is based on a pgRNA library 
specific for 671 human lncRNAs having a total of 12,472 gRNA pairs constructed 
with lentiviral paired guide RNA. CRISPR-Cas9-mediated validation of these 9 out 
of 51 lncRNA hits using deletion, functional rescue, and gene expression profiling 
confirmed their cellular functions. Moreover, the systematic activation or disruption 
of additional regulatory elements like general promoters, distant enhancers, and 
various other regions of genes facilitated their functional elucidation. Researchers 
all over the world have admired over the remarkable ease and versatility of CRISPR 
as a gene-editing tool; however, “killing” the catalytic activity of its nuclease Cas9 
came out as equally significant in the functional characterization of genomes. 
Mutation D10A in the RuvC domain and H840A in the HNH domain of the nucle-
ase domains of Cas9 generated a nuclease-deficient dCas9 (termed as dCas9 null 
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mutant) [82]. Interestingly, when guided by sgRNA, this dead or inactive version of 
Cas9 can still precisely bind DNA; however, it is unable to cleave its target site. The 
specific binding of dCas9 potentially interferes with the transcriptional status of 
the target site despite altering its sequence.

Moreover, dCas9 binding also resulted in the reversible transcriptional activation 
or silencing of the target gene. Therefore, the functional tethering of dCas9 to 
diverse effector domains facilitated the genomic screens outside the loss-of- function 
phenotypes. Transcriptional activation through dCas9 allowed the screening of 
gain-of-function phenotypes. To attain high expression levels with a single sgRNA, 
multiple transcriptional activators are recruited to TSS by CRISPRa methods. dCas9 
fused with transcriptional activator domains of multiple proteins, e.g., VP64, HSF1, 
p65, and GCN4, which were then recruited to multiple arrays in synergistic system 
[83–85]. Moreover, fusion of dCas9 with epigenetic modifiers was used to study the 
posttranslational modification effects on the cellular differentiation as well as vari-
ous disease pathologies.

3.6  Personalized Immunotherapy: Adoptive Cell Therapy 
(ACT) in Human Cancer

Adoptive Immunotherapy
Adoptive immunotherapy or adoptive cell therapy (ACT) is a highly personalized 
therapy that involves administration of immune cells with direct anticancer and anti-
viral activities. ACT involves the infusion of lymphocytes considered as a promis-
ing approach for the treatment of cancer and certain chronic viral infections. 
Adoptive T-cell therapy employs the power of T cells which can recognize and kill 
target cells. Hence, it is not surprising that most ACT investigations have targeted 
various cancer as well as chronic viruses. The application of the principles of syn-
thetic biology to enhance T-cell function has resulted in substantial increases in 
clinical efficacy. The primary challenge to the field is to identify tumor-specific 
targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in 
numerous pilot trials, the next steps in clinical development will require multicenter 
trials to establish adoptive immunotherapy as a mainstream technology. Compared 
to other cancer immunotherapy approaches, ACT has numerous advantages which 
rely on the vigorous in vivo development of tumor reacting T cells coupled with 
their functions required to facilitate cancer regression. Enormous amounts of tumor- 
reacting lymphocytes (up to 1011) can be easily propagated in vitro for their effector 
properties and can be selected for recognition of tumor with high avidity to mediate 
cancer regression in ACT (Fig. 3.3). In vitro growth and activation render antitumor 
T cells for their release from the inhibitory factors present in vivo. Most notably, 
ACT delivers a favorable environment for T-cell propagation supporting improved 
immunity against tumor as well as enables the manipulation of the tumor-reacting 
cell before their transfer. ACT is considered as a living treatment since the T cells 
are proliferated in vivo for the maintenance of their antitumor effector properties 
before administration in the host and are revived within the host organism.
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A major off-putting issue for the successful ACT treatment in humans is the strin-
gent identification of immune cells that could potentially recognize and target anti-
gens selectively represented on the cancer cells and are absent on essential normal 
tissues. Two downstream mechanism can be used in successful ACT: one is the use 
of natural host cells which exhibit reactivity on tumor-specific cells, and the other is 
the use of genetically engineered host cells possessing T-cell receptors (TCRs) or 
chimeric antigen receptors (CARs) against tumor. With these approaches, ACT has 
facilitated regressions and cure in a diverse cancer histolopathologies, primarily 
including melanoma, lymphoma, cervical cancer, leukemia, neuroblastoma, and 
bile duct cancer.

Fig. 3.3 The adoptive cell transfer (ACT) scheme for naturally occurring autologous tumor- 
infiltrated lymphocytes (TILs). The melanoma specimen is resected from the patient and either 
digested into a single-cell suspension or divided into multiple fragments and independently grown 
in the presence of IL-2. TILs grow extensively and destroy tumor cells within 2–3 weeks. Pure 
cultures of lymphocytes are generated which can be tested for reactivity in coculture experiments. 
Independent cultures then expanded in the presence of IL-2, irradiated feeder lymphocytes, and 
OKT3. Up to 1011 TILs can be obtained by 5–6 weeks after the tumor resection and then infused 
into cancer patients
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3.7  ACT: A Brief History

Until the 1960s, scarce information about T-lymphocytes functions was available. 
Later that time, it was reported that lymphocytes mediate the rejection of allografts 
in animal models. Initial attempts to treat the murine models transplanted with 
tumors were restricted due to the continuous failures of expansion and manipulation 
of T cells in culture conditions. Previously, ACT used the transfer of tumor- 
immunized T lymphocytes from syngeneic mice which resulted in minimal growth 
inhibition of established tumors [86]. The identification of interleukin-2 in 1976 as 
a potent T-cell growth factor has facilitated the use of ACT by providing a platform 
to grow T cells in culture conditions which is majorly affecting their effector prop-
erties [87]. Indeed, intravenously injected T cells proliferated in IL-2 presence 
effectively inhibited subcutaneously grown FBL3 lymphomas [88]. Moreover, it 
was demonstrated that IL-2 administration in high doses potentially inhibited tumor 
progression in mice [89]. In fact, IL-2 administration following the T-lymphocytes 
transfer potentially augmented their therapeutic functions [90]. Moreover, early 
preclinical studies also suggested the importance of lymphodepletion by radiation 
or chemotherapy before the ACT and showed a substantial increase in the T-cells 
reactivity against cancer [91]. In metastatic melanoma patients, it has been demon-
strated that IL-2 administration leads to complete tumor regressions [92]. These 
studies provided an impetus for the identification of specific T lymphocytes and 
their related antigens intricate in cancer immunotherapy.

Adoptive T-cell therapy represents a highly promising and earliest form of 
immunotherapy which employs patient’s tumor-infiltrating lymphocytes (TILs: T 
cells isolated from tumor). T cells have the inherent capability to localize and traffic 
to the cancerous site; however, the identification of TILs at tumor site and their 
isolation in sufficient amounts from patient are challenging underscoring their 
potential [93, 94]. These extracted TILs are allowed to expand ex vivo and transfuse 
back into the patient as an anticancer therapy. Indeed, stromal region of transplant-
able and growing tumors represents a concentrated source of tumor-infiltrating T 
lymphocytes (TILs), which can efficiently recognize tumors in  vitro. CD8+ and 
CD4+ T-cells mixtures constitute the general TILs populations isolated from tumors 
with few contaminating cells in mature cultures. However, the ability of pure cul-
tures of T lymphocytes facilitating human cancer regression has provided the direct 
evidences that T cells played a vital role in cancer immunotherapy. Previous reports 
from tumor models generated in mice have demonstrated that these TILs prolifer-
ated in the presence of IL-2 facilitated the liver and lung tumors regression [95]. 
Later, propagated TILs isolated from resected melanomas recognized specific autol-
ogous tumors, and these autologous TILs could also lead to complete regression of 
metastatic melanoma [96, 97]. A research on the exomic mutation rates on >3000 
tumor-normal pairs discovered that the non-synonymous mutations frequency var-
ied more than 1000-fold across different tumor types [98]. However, T cells cannot 
recognize all expressed mutations. Therefore, small peptides (~9 residues) 
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presented on the cell surface of MHC class 1 and MHC class 2. Methods have devel-
oped to eliminate the need for predicted peptide binding to MHC and facilitate the 
screening of all candidate peptides on all MHC loci in a single test (Fig. 3.4).

Although T-lymphocyte cultures can be propagated from distinct tumor types, 
melanoma represents the only type of cancer from which TILs with specific antitu-
mor recognition can be isolated. The responses mediated with the administered 
TILs are short-lived, and T cells are rarely identified in circulation days after admin-
istration. In 2002, it was reported that TIL transfer followed by the administration 
of lymphodepletion usually with nonmyeloablative chemotherapy could enhance 
cancer regression, along with the continuous repopulation of cancer-directed lym-
phocytes within the host [99]. ACT application has been critically improved with 
the demonstration that up to 80% of antitumor CD8+ T cells are majorly represented 
in the circulation after months of infusion. Studies with melanoma provide the stim-
ulus for wide application of ACT against multiple cancer treatments which include 

Fig. 3.4 A treatment outline for the tumor-specific mutations recognized by patient T cells. A 
comparison of the exomic sequences of the patient’s tumor and normal cells to identify tumor- 
specific mutations is performed, which is further used for the synthesis of minigenes encoding 
mutated residues or peptides flanked by 10 to 12 non-mutated residues. These can be expressed 
by the patient’s autologous APCs, for the processing and presentations by patient’s MHC. Coculture 
of the patient’s T cells with these APCs can identify all mutations by MHC class I and class II 
molecules. Activation markers are expressed by T cells, such as 41BB (CD8+ T cells) and OX40 
(CD4+ T cells) after the recognition of their cognate target mutagenic antigens. Activation markers 
expressing T cells are then purified by flow cytometry eventually leading to their expansion and 
reinfusion into patients
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the genetic manipulation of T lymphocytes with potential to express diverse antitu-
mor receptors. The first demonstration of cancer immunotherapy through genetic 
modifications came from the mice model [100] followed by humans which showed 
that the transfusion of T lymphocytes genetically modified with a retroviral system-
encoding T-cell receptor (TCR) which could recognize melanoma- melanocyte anti-
gen (MART-1) potentially mediates melanoma regression in patients [101].

Almost a decade back, it was reported that administration of genetically engi-
neered T lymphocytes expressing a chimeric antigen receptor (CAR) targeting 
CD19 (B-cell antigen) mediates significant regression in the patients of B-cell lym-
phoma [102]. With the first use of two unspecific immunomodulating agents, inter-
feron and interleukin-2 (IL-2), there was an intensive emphasis on other 
immunological approaches. Antibody against CTLA-4 protein of cytotoxic T lym-
phocytes has been approved by FDA for the treatment of advanced metastatic stage 
disease by the generic name of ipilimumab [103]. All the above findings toward the 
administration of either unmodified autologous or syngeneic lymphocytes or genet-
ically engineered antitumor T cells provide the impetus for the developmental 
advancements of ACT against human cancer.

3.8  Genetic Engineering and Cellular Immunotherapy: 
A Potent Combination Against Tumors

To expand the scope of ACT to distinct cancer types, several approaches were devel-
oped for the introduction of engineered antitumor receptors into unmodified T cells 
which could further be used for therapy (Fig. 3.5). The limitations of TILs have 
accelerated the energy of scientific communities for redirecting the specificity of T 
lymphocytes for cancer cells despite relying on the T-cells isolation with intrinsic 
tumor-aiming abilities. Toward this end, T lymphocytes from a cancer patient can be 
genetically edited with genes-encoding receptors that could target the tumor- specific 
antigens and subsequently will “teach” the T cells to bind and ultimately kill cancer 
cells [104]. Typically, CD8T cells are isolated from the cancer patient and propa-
gated ex vivo with genetic modification, rendering them to express the receptor, and 
then transfused back into the patient. Two distinct versions of receptors have been 
used for this purpose. The target specificity of T cells can be readdressed through 
the genomic integration of receptor genes encoding for either conventional T-cell 
receptors (TCRs) or genetically manipulated chimeric antigen receptors (CARs). 
TCR can be genetically engineered to detect and bind cancer-specific epitopes [105, 
106], while CAR consisted of a tumor-specific antigen having single-chain variable 
fragment (scFv) which is fused to the signaling domains of T-cell receptor that 
could trigger the activation and proliferation of T lymphocytes [107, 108]. The strat-
egy of CARs has undergone various genetic engineering approaches through 
the  addition of diverse T-cell signaling domains which could potentially drive 
T-lymphocytes proliferation and activation and could lead to the therapeutic varia-
tions between these diverse designs.
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TCRs and CARs are differentiated from each other by the type and method of 
their recognition of cancer antigens. Engineered TCRs expressed on CD8+ T lym-
phocytes could recognize the protein antigens expressed and derived from the 
antigen- presenting cells (APCs) and presented on the APC surface by the major 
histocompatibility complex-1 (MHC-1). However, CARs directly bind to antigens 
or markers expressed at the surface of the cancer cell. Both TCR- and CAR-based 
therapeutic interventions have been established in clinical trials and showed promis-
ing results. Clinical trial associated with the treatment of 20 metastatic melanoma 
patients using TCRs specifically targeting MART-1 (melanoma antigen recognized 
by T cells 1) demonstrated that 33% (Clinical Trials: NCT00509288, NCT00509496) 
of the patients had objective responses (OR) [106]. CARs therapy was introduced 
by Gross et  al. in 1989 [109] by linking the variable regions of heavy and light 
chains of the antibody with the intracellular proteins such as CD3-zeta, often includ-
ing co-stimulatory signaling domains such as TCRzeta/CD28 [110] or CD137 for 
complete activation of T lymphocytes [111, 112]. One of the advantages of CARs is 

Fig. 3.5 Genetic manipulation of peripheral lymphocytes by the introduction of antitumor recep-
tors into normal T lymphocytes for therapeutic intervention. Techniques are being developed to 
expand the ACT reach toward other cancers. Top panel depicts the expansion and infusion of 
autologous T lymphocytes into the patient following the integration of a conserved T-cell receptor 
(TCR). The bottom panel represents the insertion of a chimeric antigen receptor (CAR) into a 
patient’s T cell, followed by the expansion and their reinfusion into the patient’s body. TCRs and 
CARs have different structures and recognition. TCRs consist of one alpha and one beta chain and 
recognize antigens processed and presented by MHC molecules. CARs are artificially constructed 
receptors by linking the variable segments of heavy and light chains of the antibody with intracel-
lular signaling chains (e.g., CD3-zeta, CD28, 41BB). CARs are non-MHC-restricted; however, 
they recognize the antigens presented on tumor cell surface

R. Dahiya et al.



91

that they can be easily introduced with high efficiency into T cells using viral vec-
tors and potentially offer the recognition of non-MHC-restricted cell surface com-
ponents. In adults, relapsed or refractory B-cell acute lymphoblastic leukemia 
(B-ALL) has a median survival of <6 months and shows a poor prognosis. CD19- 
specific CAR therapy has emerged as a treatment of B-ALL and demonstrated up to 
90% complete response rates [113–116].

TCRs and CARs are extremely encouraging and already considered as break-
throughs in the war against cancer; however, toxicities have been reported with both 
forms of genetically engineered T-cell therapy associated with clinical trials. 
Therefore, the précised selectivity between cancer and normal vital organs is a par-
ticularly significant safety question that has arose with both TCRs and CARs [117]. 
Another significant question confronting the usage of genetically engineered T cells 
in the adoptive cancer immunotherapy involves the choice of the idyllic human 
T-cell subpopulation which can be used for genetic integration, as well as the selec-
tion of suitable antigenic targets for the modified TCRs or CARs. Identifying target 
epitopes and antigens for TCR and CAR therapies is severely limited by the possi-
ble expression of these epitopes on noncancerous and normal cells which could lead 
to autoimmune responses against healthy cells. Autoimmune toxicity has been dem-
onstrated in TCR therapy in the case of MART-1 with “on-target, off-tumor” effects 
[106]. Furthermore, one colon cancer patient in a  clinical trial (NCT00924287) 
treated with an ERBB2 (human epidermal growth factor receptor 2)-specific CAR- 
bearing T lymphocytes died after responsiveness toward low levels of ERBB2 in the 
vital organs [118]. An excessively robust, life-threatening T-cell response posits 
another key safety alarm for the potential use of engineered T lymphocytes. Clinical 
trials using CARs therapy for the treatment of leukemia outburst with the massive 
release of enormous amounts of cytokines [113], which led to cytokine release syn-
drome (CRS), including severe symptoms of, for instance, high fever, hypoxia, and 
hypotension [113]. With this line, immunosuppressive steroids and antibodies have 
been used to treat CRS which can temper the immune system responses [116].

To determine the extreme burden of CAR-bearing T cells which can be provided 
to cancer patient with minimal severity of CRS, a clinical trial was conducted [116]. 
Altogether, despite the severe adverse side effects observed with the engineered T 
cells, the highly promising outcomes of ACT in clinical trials have generated hope 
for cancer patients. Preclinical studies conducted in mice have demonstrated that 
responses against tumors are best observed when T lymphocytes in their early 
phases of differentiation, for instance, naive or in CNS, are employed for transduc-
tion [119]. This observation was further supported by the studies performed in mon-
keys which showed an enhanced persistence of T lymphocytes from CNS as 
compared to effector memory cells [103]. Based on the differentiation states, CD8+ 
T cells are majorly categorized into discrete memory subsets and follow a pathway 
of progressive differentiation from naive T cells into effector memory T-cell popula-
tions [120]. Paradoxically, CD8+ T cells, in the course of their development, lose 
antitumor functionality along with their ability to lyse the target cells and the pro-
duction of interferon-γ cytokine which are considered important in antitumor effi-
cacy [121]. These findings are clinically relevant, since, interestingly, there is an 
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inverse correlation of the differentiation states of CD8+ T cells and their capacity for 
proliferation and persistence [121–124]. Conversely, a statistically significant posi-
tive correlation is observed with young or naive T cells with high efficacy in ACT 
clinical trials [125].

Moreover, CD8+ T cells are capable of clonal repopulation with a stem cell-like 
state with T-memory stem cells expressing a gene expression program which 
enabled them to widely differentiate and proliferate into distinct T-cell populations 
[126]. A considerable amount of the existing research for adoptive cancer immuno-
therapy has focused on CD8+ T cells. CD4+ T cells could also promote tumor rejec-
tion competently. The notion that CD4+ T cells play more straightforward functions 
in tumor eradication has been validated in humans [127]. The antitumor immune 
response played by CD4+ T cells is crucially reliant on their polarization, which is 
determined by the key transcription factors expression. Evidence suggested that 
CD4+ cells can efficiently destroy tumor cells and that adoptively transferred 
T-helper 17 cells can promote long-lived antitumor immunity [122].

3.9  Adoptive Immunotherapy for Viruses

Genetically modified T-lymphocytes CARs were first clinically used to treat HIV 
infection. CARs comprised of the fusion protein (CD4z CAR) generated from 
extracellular HIV envelope receptor protein (CD4 transmembrane regions) and 
T-cell receptor (TCR)-ζ signaling molecule. The transduction of these genetically 
modified T cells potentially lyses the cells expressing HIV envelope proteins. 
Clinical studies conducted during 1998 and 2005 on active viremic patients have 
demonstrated the generation of CD4z CAR fusion expression in autologous CD4+ 
and CD8+ T lymphocytes using retroviral vector [128] as well as in chronic HIV-1 
patients [129]. These studies established the feasible and safe transfusion of virus- 
directed T cells and showed significant effects on viremia by the trafficking of T 
cells to mucosal reservoirs of infection. Data collected from these trials led to a 
long-term follow-up analytical studies a decade later and demonstrated the efficacy 
and safety of retroviral-mediated genetically modified human CAR T cells in their 
long-term persistence, with an estimated half-life >16  years [130]. These initial 
research approaches have also revealed that as compared to hematopoietic stem 
cells (HSCs), T cells are less vulnerable for insertional mutagenesis caused by 
retroviral- mediated genetic editing.

Almost a decade back, the notable story of Berlin patient came out as the first 
demonstration of a complete cure of an HIV-infected patient after the transplanta-
tion of allogeneic HSCs for AML (acute myelogenous leukemia) [131]. It was later 
identified that the allogeneic donor for HSCs was genetically homozygous for 
CCR5 Δ32 mutation, conferring resistance against HIV infection. The significant 
discovery from this study has challenged the scientific community for the develop-
ment of cell therapy approaches functions in the absence of allogeneic donors or 
advanced myeloablative chemotherapy. Later, gene therapy strategies were devel-
oped to genetically downregulate the expression of CCR5, either through lentiviral 
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vectors encoding shRNA against CCR5 [132] or gene-editing strategies for the dis-
ruption of CCR5 using ZFNs [133]. Genetically engineered autologous T lympho-
cytes were then reinfused for their reconstitution in patients infected with 
HIV. Moreover, thorough monitoring and control of HIV infection with possible 
interpretation of T-cell therapeutic effects on viremia with highly active antiretrovi-
ral therapy (HAART), along with cautiously designed and scheduled trials, have 
changed the entire therapeutic pathways for viral infections.

Allogeneic bone marrow transplantation in patients suffering with hematologic 
malignancy is highly susceptible for severe chronic viral illnesses mainly from the 
recurrence of human herpesvirus, Epstein-Barr virus (EBV), cytomegalovirus 
(CMV), and primary adenoviral infection. These transplants-associated viremia 
also causes severe and acute illnesses in immunocompromised patients. 
Pharmacologic interventions against these viremic infections are available with lim-
ited efficacy and show substantial side effects when administered recursively. To 
overcome these issues, transplantation centers have developed the strategies for 
donor lymphocyte infusion (DLI) against virus infections [134, 135]. However, 
with the limitations of healthy allogeneic donors for virus-directed T cells, “third- 
party” T-cell banks have been developed which selectively span the most common 
HLA alleles isolated from a panel of donors [136, 137]. Scientific group has pio-
neered the administration of either donor-derived or third-party-derived specific T 
lymphocytes simultaneously directed against many viruses as lymphocyte infu-
sions. Most importantly, the occurrence of graft-versus-host disease (GvHD) was 
found to be either partial or bearable in DLI studies. These versions of adoptive 
immunotherapy are in clinically advanced stages, with many publications of phase 
II and III, multicenter trials.

3.10  Concluding Remarks

Recent advancements in genome engineering approaches based on programmable 
and site-specific endonucleases have enabled the systematic examination of func-
tions of mammalian genomes as well as their targeted modifications. Using these 
approaches, DNA sequences and their functional outputs within the endogenous 
genome can be easily modulated or edited in virtually any organism type. Engineered 
nucleases-mediated perturbation of genome is simple and highly scalable which 
empowered the researchers to establish the causal linkages between genotypes and 
phenotypes and to elucidate the functional organization of the genome at the sys-
tems level. It can be referred as analogous to the search function in word processors, 
by which nuclease can be guided within complex genomic locations. Here, we have 
described the applications and development of engineered nuclease for numerous 
research purposes and their translational applications while highlighting the chal-
lenges as well as their future directions.

The various fundamental barriers have now been overcome for the application of 
engineered nuclease as a platform for designing DNA editing modules with novel 
specificities. Moreover, several commercial methods are available to produce 
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large-scale novel engineered nucleases against investigator-specified and chosen 
genetic loci. Programmable nucleases have shown to permit bona fide reverse genet-
ics not only in diverse model organisms but also enabled editing of human cell 
genetics. Furthermore, the current generation of these approaches exploits two evo-
lutionarily conserved pathways: DNA-protein interactions and pathways of DNA 
repair offering successful visions to a wide-ranging experimental and applied set-
ting. Nucleases-driven genome editing like ZFNs, TALENs, and CRISPR/Cas 
offers sophisticated capabilities to understand gene function studies directly and 
modulate the unhealthy and disease-driving genes.

Adoptive cell therapy (ACT) represents a highly promising strategy against mul-
tiple cancers. The clinical consequences of such therapy are closely linked to the 
capability of effector cells (T lymphocytes) to infuse, engraft, expand, proliferate, 
and specifically recognize and kill cancer cells within patients. Specific identifica-
tion, targeting, and killing of cancer cells and not the essential normal tissues pose 
a tremendous challenge and considered as the major factor limiting the successful 
use of ACT in humans. Development of cells that can target antigens selectively 
expressed on cancer and not on essential normal tissues is therefore the prime 
requirement. ACT is currently undergoing a dramatic period of extensive growth 
and enthusiasm following encouraging data regarding the clinical efficacy of its 
administration. ACT uses either natural host cells exhibiting antitumor activity or 
genetically engineered host cells which express antitumor T-cell receptors (TCRs) 
or chimeric antigen receptors (CARs). Using these approaches, ACT has led to dra-
matic regressions in a variety of cancer pathologies, including melanoma, lym-
phoma, leukemia, cervical cancer, bile duct cancer, and neuroblastoma. Significant 
results obtained from ACT administration have expanded their reach to the treat-
ment of common epithelial cancers. For instance, ACT using naturally occurring 
tumor-reactive lymphocytes has mediated durable and complete regressions in mel-
anoma patients, probably by targeting somatic mutations exclusive to each cancer.

Moreover, genetically engineered lymphocytes expressing conventional T-cell 
receptors or chimeric antigen receptors (CARs) have further extended the success-
ful application of ACT for other cancers treatment. ACT directed against viruses are 
under critical investigation for the treatment of chronic viral infections as well as for 
viruses that cause morbidity and mortality in immunocompromised settings such as 
transplantation of bone marrow as seen with HIV infections. Additionally, cell ther-
apies are taking a prominent role in both hematologic malignancies and solid 
tumors. Here, we reviewed and discussed the history, current state of ACT, and 
rationale of immunotherapy for the treatment of diseases and advances in under-
standing the principles of effective T-cell transfer that point toward impactful clini-
cal results. We also shed light on the strategies and methods in developing effective, 
appropriate, reliable, and scalable culture systems of ACT driven by programmable 
nucleases. We hope that more significant and driving innovative applications will 
expand from basic biology to applied biotechnology and medicine.
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Abstract
Immunological protection is conferred by immune cells, i.e., B and T cells, which 
can efficiently develop pathogen-specific memory and thus involved in adaptive 
immunity. More specifically, these immune cells can recognize a specific portion 
of their respective antigens termed as epitopes which possess their own significant 
values. There is a noble reason to identify the antigenic region of an antigen as it 
is having a great empirical cause, which includes exploration of disease etiology, 
the advancement of diagnosis assays, immune monitoring, and to design epitope-
based vaccines. It requires detection and prediction of epitopes which is a consid-
erable concern in the preparation of a peptide-based vaccine that is the centralized 
issue of immunoinformatics. Experimental screening is involved for large arrays 
of probable epitope candidates; thereby it is pricey and tedious. There is a require-
ment of more-advanced immunoinformatics tools as a prodigious amount of 
information has accumulated because of the onset of next- generation sequencing 
approaches for collection, analysis, and interpretation of data. Further, develop-
ment of in silico epitope prediction methods has substantially reduced the difficul-
ties related to epitope mapping by shortening potential epitope candidates list for 
experimental testing. These software tools have diverse applications in diagnosis 
of infectious diseases and allergies, understanding immune system function, vac-
cine designing, and prognosis of cancer. This chapter presents an outlook on how 
these tools are capable to predict epitopes of various antigens.
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B-cell and T-cell epitopes · Immunoinformatics · Immunological protection · 
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4.1  Introduction

The adaptive immune system is also termed as acquired immune system as it is 
acquired during the lifetime rather than the inherited one and is considered as a 
subsystem of the global immune system whose constituents are highly specialized 
systemic cells and processes that help out in elimination of pathogens as well as in 
their growth prevention. Due to the existence of acquired immunity, immunological 
memory creates an initial response for each specific pathogen which results in a 
strong anamnestic response at the time of subsequent exposure to that particular 
pathogen. Vaccination is based on this particular feature of acquired immunity. B 
and T cells are involved in adaptive immunity which is responsive for humoral- and 
cell-mediated immunity, respectively. They recognize a specific portion of protein 
residing on the surface of pathogen rather than pathogens as a whole and that pro-
tein is termed as an antigen. Distinct receptors residing on the surface of B and T 
cells designated as B-cell and T-cell receptors (BCR & TCR) consist of membrane- 
bound immunoglobulins helping in the recognition of the solvent-exposed antigens. 
There is a remarkable difference between perceptions by B and T cells [30]. 
Different functions are triggered from antibodies released by B cells upon binding 
with their respective antigens. As a result, toxins and pathogens get neutralized and 
labeled as for destruction [20].

Besides this, cell surface-residing T-cell receptor (TCR) presented by T cells 
assist recognition of antigen-presenting cells (APCs) displayed antigens bounded 
with major histocompatibility complex (MHC) molecules. MHC I and II molecules 
are involved in T-cell epitopes presentation. Co-receptor CD4 expressed by helper 
T cells assists in the perception of antigen in the context of MHC class II, while 
antigen displayed by MHC class I molecules is acknowledged by cytotoxic CD8+ T 
cells as per the immunological dogma. Subsequently, CD8 and CD4 T-cell epitopes 
exist. Meanwhile, CD4 T cells can act as a helper or regulatory T cells [20]. The 
immune response is amplified by helper T cells which are divided into three major 
subclasses that include Th1 involved in cell-mediated immunity against intracellu-
lar pathogens, Th2 involved in antibody-mediated immunity, and Th17 showing 
inflammatory response as well as defense across extracellular bacteria [37].

Along with the advancement in recombinant DNA technology, bioinformatics 
tools development and information of host immune response that acts as the genetic 
background of pathogen  has led to the advancement of new vaccines which are 
more efficient, secure, and inexpensive in contrast to conventional vaccines. 
Conservation of chosen epitopes in a vaccine is a prerequisite event across distinct 
stages of pathogen and its variants. Intracellular antigen processing is required for 
cytotoxic T-cell-intervened response for which linear epitopes act as a prevailing 
target. In this respect, the binding affinity of selected epitopes should be with more 
than one major histocompatibility complex allele for a particular vaccine.

To identify B-cell and T-cell epitopes for vaccine designing is a decisive step as 
it requires to construct overlapping peptides based on experimental scanning result 
of epitope-active regions that span complete sequence of a protein antigen, and it is 
again a pricey and tedious job. Therefore, to elicit an immune response, in silico 
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techniques are a perfect substitute to identify protein domains out of thousands of 
plausible candidates [29]. This chapter gives an insight regarding some of the com-
monly used bioinformatics tools developed for B-cell and T-cell epitope 
prediction.

4.2  Tools for B-Cell Epitopes Prediction

B-cell epitope anticipation tools aim to contribute to the detection of the specific 
antigenic peptide (epitope), and thus it has a significant purpose as it acts as a sub-
stitute of antigen for antibody production.

However, linear and conformational epitopes are the two groups based on B-cell 
epitopes classification. Sequential residues in primary sequence constitute a seg-
ment of linear epitope, whereas a cluster of antigen residues placed at a distance 
from each other in their primary sequence is regarded as conformational epitope 
that is brought to spatial vicinity because of polypeptide folding [1]. Thereby, linear 
and conformational B-cell epitopes are equally termed as continuous and discon-
tinuous B-cell epitopes, respectively. This means that denatured antigens can be 
identified by antibodies which are used to identify linear B-cell epitopes, while in 
case of conformational B-cell epitopes, denaturation leads to recognizance failure. 
Unlike linear epitopes, conformational epitopes prediction depends on the three- 
dimensional structure of the protein. Linear B-cell epitopes are possessed by only a 
few of the native antigens; otherwise, approximately 90% of them are conforma-
tional [26].

4.2.1  Linear B-Cell Epitopes Anticipation

In spite of being a trivial one, linear B-cell epitopes can act as a substitute for immu-
nization and antibody production. Thus, their anticipation received major attention. 
It has been predicted via methods based on a sequence from the primary sequence 
of antigens. Earlier computational methods were rooted on propensity scales of 
simplified amino acids featuring physicochemical characteristics for B-cell epit-
opes. For example, residue hydrophilicity calculations were implemented by Hopp 
and Wood to predict B-cell epitopes [11, 12] on the basis of the hypothesis that 
hydrophilic regions preferentially reside on the protein surface and are probably 
antigenic. For developing diverse prediction tools datasets, algorithms and training 
features used to differ.

Currently, accessible linear B-cell epitopes envision tools involve BcePred 
indulged in anticipation of linear B-cell epitopes as per their physicochemical attri-
butes. Another one is Lbtope based on Immune Epitope Database (IEDB)-derived 
data of experimentally approved non-B-cell epitopes [39]. Analogous positive data 
of B-cell epitopes is required for training of artificial neural networks (ANNs) algo-
rithm that has been implemented in Lbtope yet vary on negative data of non-B-cell 
epitopes.

4 Bioinformatics Tools for Epitope Prediction



106

Another one is BepiPred, which involves random forests algorithm-based train-
ing of B-cell epitopes derived from the three-dimensional architecture of antigen- 
antibody complexes. It is involved in the prediction of both varieties of B-cell 
epitopes [14]. On the whole, B-cell epitope prediction methods implementing 
machine learning algorithm outperformed other methods rooted on the basis of 
amino acid propencities.

4.2.2  Conformational B-Cell Epitopes Anticipation

It has been already mentioned that preferentially B-cell epitopes are conformational, 
even though linear B-cell epitopes anticipation is ahead of them, for that two major 
empirical approaches exist. Firstly, the requirement of conformational B-cell epitopes 
prediction is whole information of protein 3D structure which is available only for a 
few proteins [31]. The second one is the complicated task of discontinuous B-cell 
epitopes isolation from their corresponding protein frame to formulate a particular 
antibody. Its necessity is suitable scaffolds for epitope grafting. In spite of these 
difficulties, various mechanisms exist to envisage conformational B-cell epitopes.

One of them is CBTOPE which relies on  Support Vector Machine (SVM) 
algorithm. Physicochemical characteristics and sequence-derived attributes are uti-
lized for training of conformational B-cell epitopes, and a benchmark dataset of 
conformational epitopes derived from 3D structures of antibody-protein complexes 
is used for their assessment along with 86.59%  accuracy from cross-validation 
experiments [1]. This tool is involved in predicting discontinuous B-cell epitope of 
an antigen based on its primary sequence by overcoming the first difficulty.

Another one is ElliPro that depends on the geometrical properties of protein 
structure. In addition to CBTOPE, ElliPro also assessed on the same benchmark 
dataset derivative of 3D structures of antibody-protein complexes [24].

There is a significant role of bioinformatics tools for each of the B-cell epitopes 
envision in peptide-based vaccine designing and disease identification [9, 22].

Although there are various tools for each of the B-cell epitope prediction, the five 
most commonly highly utilized tools are described in Table 4.1.

Table 4.1 Some freely accessible B-cell epitope anticipation tools

B-cell types Tools Method Server (URL) References
Continuous BcePred Physicochemical 

properties
http://www.imtech.res.in/
raghava/bcepred/

[28]

Lbtope ML (ANN) http://www.imtech.res.in/
raghava/lbtope/

[35]

Discontinuous ElliPro Structure-based 
method (geometrical 
properties)

http://tools.iedb.org/
ellipro/

[24]

CBTOPE Sequence based 
(SVM)

http://www.imtech.res.in/
raghava/cbtope/submit.php

[1]

Both BepiPred-2.0 ML (DT) http://www.cbs.dtu.dk/
services/BepiPred/

[14]
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4.2.3  Description of Various Tools and Their Overall 
Performance Enlisted in Table 4.1

4.2.3.1  BcePred Server
BcePred server assists in envision of linear B-cell epitope rooted on physicochemi-
cal characteristics of amino acids. These properties comprised of mobility, turns, 
flexibility, exposed surface, accessibility, hydrophilicity, polarity, and antigenicity 
of any particular antigen. To quantify these properties, attributes value is allocated 
to all of the 20 natural amino acids. The user can opt for any combination of physi-
cochemical attributes for epitopes prediction.

PERL version 5.03 is used for writing a common gateway interface (CGI) script. 
Sun Server (420E) with a UNIX (Solaris 7) environment is used for their 
installation.

Submission Form Using the Following Steps for BcePred Server

• Input data is in the form of sequence that should be written in submission 
form by using one-letter amino acid code: “acdefghiklm-npqrstvwy” or 
“ACDEFGHIKLMNPQRSTVWY.” Other letters get transformed into “X” 
which were reviewed as obscure amino acids.

• Threshold values lie in the range of −3 to +3. As per the outstanding sensitivity 
and specificity value gained, default thresholds for various parameters have been 
opted.

• After pressing “Submit sequence” button, a WWW page will return as a result 
that delivers summarized information about entered query sequence in graphical 
(Fig. 4.1a) as well as in tabular and in overlap display format (Fig. 4.1b). The 
tabular format provides a normalized score of opted attributes with the respective 
amino acid residue of a protein as well as minimum, maximum, and average 
values of integrated methods opted.

• Quick picturing of B-cell epitope on protein is achieved when residue properties 
are plotted along protein backbone. A particular amino acid residue will be 
reviewed as expected B-cell epitope when their peak is having value above 
threshold (default value is 2.38 in the combined approach).

Pros and Cons

• By using BcePred server, prediction of B-cell epitopes can be made based on 
two or more physicochemical properties at a time. So it would be more 
accurate.

• However, there is no autonomous assessment or benchmarking of prevailing pro-
cedures in this server; thereby, the decision of much better residue property or 
method is a difficult task.
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4.2.3.2  Lbtope
Lbtope is a tool designed to predict linear B-cell epitope. PHP 5.2.9, HTML, and 
JavaScript have been used to develop its front end. Further, Red Hat Enterprise 
Linux 6 server environment has been utilized for its installation. Along with experi-
mentally certified B-cell epitopes, non-B-cell epitopes can be also retrieved from 
Immune Epitope Database (IEDB) which include five datasets termed as Lbtope_
Fixed, Lbtope_Fixed_non_redundant, Lbtope_Variable, Lbtope_Variable_non_
redundant, and Lbtope_Confirm dataset. Various models have been developed based 
on these datasets to discriminate B-cell epitopes from non-epitopes.

In Lbtope, SVMlight package is used for implementing SVM technique in associa-
tion with Weka implemented Ibk.

Working Steps

 I. Input data is the primary amino acid sequences in fasta format (Fig. 4.2a).
 II. Overlapping peptides containing 20 amino acids and 5–30 amino acids are 

developed for Lbtope fixed dataset model and for variable datasets, respec-
tively, for prediction of linear epitopes. Due to the very high specificity, nonre-
dundant model is introduced as well.

 III. Antigen sequences profiled with B-cell epitopes having probability scale of 
20–80% comes as an output data (Fig. 4.2a).

 IV. A higher score is meant for a higher possibility of a peptide to behave as B-cell 
epitope.

Fig. 4.1 BcePred server showing B-cell epitope regions in insulin precursor sequence (length is 
156 aa) of Aplysia californica. (a) Graphical result. (b) Overlap display in which selected pro-
grams are hydrophilicity, flexibility, accessibility, and turns having threshold value as 1.9, 2.0, 1.9, 
and 2.4, respectively. Predicted B-cell epitopes are shown in blue color and are underlined
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Pros and Cons

• In addition to B-cell epitope prediction, this server exhibits a peptide mutation 
tool. It helps to create all plausible single-point mutations of a given peptide 
(Fig. 4.2b) and to predict its other properties. The further probability score is 
calculated based on a particular algorithm. Thereby, mutation tool is useful in the 
creation of peptide mutants and examination of its epitopic and other desired 
probability as well.

• Model based on Lbtope_Confirm dataset executed in an improved way as a com-
parison to mock-up established on Lbtope_Variable dataset. However, these 
model’s activity decreased on nonredundant datasets.

4.2.3.3  ElliPro
ElliPro is a Web server obtained from Ellipsoid and Protrusion, that executes a mod-
ified version of Thornton’s method according to which identification of continuous 
epitopes from protruding regions of protein globular surface becomes possible [38]. 
In addition to a residue clustering algorithm, the MODELLER program [8] and a 
Jmol viewer (Fig.  4.3b) are implemented in ElliPro as well. Due to this 

Fig. 4.2 (a) Sequence of OspA from Borrelia burgdorferi taken as input showing 
highlighted text as the predicted B-cell epitope along with probability scale. (b) 
Output data from peptide submission and mutant generation

4 Bioinformatics Tools for Epitope Prediction



110

implementation, envision of antibody epitopes as well as its visualization becomes 
possible in protein sequences as well as in structures. From 3D structures of 
antibody- protein complexes, a benchmark dataset of epitopes has been derived 
which is used to train ElliPro having the Area Under the ROC Curve (AUC) value 
as 0.732 [23].

Three algorithms are introduced in ElliPro to perform some major objectives 
that include an understanding of protein shape as an ellipsoid, estimation of resi-
due protrusion index (PI), and grouping of neighboring residues as per their PI 
values.

Working Steps

 I. Input data is either a protein structure or its primary amino acid sequence.
 II. The sequence in fasta format or single-letter codes or their SwissProt/UniProt 

ID can be entered as a query in case the only sequence is available. To design a 
3D structure of the submitted sequence, the selection of both a threshold for 
BLAST e-value and structural templates from PDB are required.

 III. In case of structure, either a four-character PDB ID is entered in required space 
or a PDB file in PDB format can be uploaded (Fig. 4.3a). If submitted frame-
work possesses more than one protein chain, then a specific chain has to be 
selected by the user on which calculation would be based.

 IV. Threshold values are changeable based on parameters utilized by server to pre-
dict epitope, like minimum residue score (protrusion index), referred as S, that 
ranges in between 0.5 and 1.0 and maximum distance, termed as R, that ranges 
from 4 to 8 Å.

Fig. 4.3 (a) ElliPro prediction result for myohemerythin as an input sequence having sequence ID 
as 2MHR. (b) Epitope 3D structures for 2MHR via Jmol viewer program
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Pros and Cons

• ElliPro proves to be a helpful server for recognition of antibody epitopes from 
protein antigens and is helpful in identifying protein-protein interactions.

• A procedure that relies on geometrical attributes of protein structure has been 
introduced in this server which doesn’t require training as well, so it is unable to 
properly differentiate between epitopes and non-epitopes.

4.2.3.4  CBTOPE
CBTOPE is a user-friendly Web server. It is established to anticipate conforma-
tional B-cell epitopes from antigen’s amino acid sequence rather than based on their 
tertiary structure. A CGI script is written in Perl and HTML. Sun Server (420E) is 
used for installation under UNIX (Solaris 7) environment [1]. Development of this 
server is evident for envisioning of antigen’s conformational B-cell epitope in which 
their primary amino acid sequences play a possible role.

Methodology

 (a) For prediction via CBTOPE, main dataset is created by obtaining 526 antigenic 
sequences in combination with IEDB database as well as benchmark dataset 
[23] which is comprised of 161 protein chains derived from 144 antigen- 
antibody complex structures.

 (b) Sequence redundancy is excluded by using program CD-HIT [16] at 40% 
cutoff.

 (c) Finally, a nonredundant set of 187 antigens is gained. This set  is devoid  of 
sequences with the sequence identity of more than 40%.

 (d) A different pattern is created. Standard procedure for assigning patterns is that 
if there would be any interaction between central residues and antibody, a posi-
tive value is assigned otherwise defined as negative (Fig. 4.4).

 (e) By using patterns like the binary profile of pattern (BPP) and physiochemical 
profile of patterns (PPP), several models have been developed by using SVM as 
a classifier. It gained a maximal value of MCC as 0.22 and 0.17, respectively.

 (f) Conventional characteristics of binary and physicochemical profiles are used 
and further assessed via fivefold cross-validation.

Fig. 4.4 CBTOPE prediction result for insulin sequence of Octodon degus as an input. Predicted 
B-cell epitope is shown in red color
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 (g) The number of non-redundant protein chains is 187 comprising of 2261 
antibody- interacting B-cell epitope residues that are used for training and 
assessment of all SVM models.

Working Steps

 I. Input data is amino acid sequences in fasta format.
 II. Total of 19 window patterns for each of the submitted sequences is created via 

server. The further amino acid composition is calculated to predict residues 
interacting with the antibody.

 III. Amino acid sequence mapped with probability scale that ranges in between 
zero and nine comes as an output data for all amino acids where zero signifies 
the unusual possibility of residue to be a part of B-cell epitope and nine is the 
most plausible one (Fig. 4.4).

 IV. For extraordinary precision (high-confidence) prediction, higher threshold 
value should be selected as per suggestion along with compromising the sensi-
tivity of prediction. Nonetheless, lower threshold value should opt for maxi-
mum prediction of antibody-interacting residues.

 V. The default threshold value is fixed at −0.3 as sensitivity and specificity are 
found to be equivalent at this value during CBTOPE development.

Pros and Cons

• Structure determination of a protein via techniques like X-ray crystallography 
proves to be costly, prolix, and time-consuming. Due to development of 
CBTOPE, one can predict conformational B-cell epitopes of antigens with ease 
which is lacking their tertiary structures with better sensitivity and AUC than 
other structure-based methods on same benchmark dataset as CPP composition- 
based SVM model is used in this server which outperformed others.

• Limitation of CBTOPE is its ineptitude for determination of number and distance 
required to obtain an epitope segment from antigen sequence.

4.2.3.5  BepiPred-2.0
BepiPred-2.0 is a Web server based on random forest algorithm for estimation of 
B-cell epitope, and annotated epitopes extracted from a dataset are used for its train-
ing which is composed of 649 antigen-antibody crystal structures and is derived from 
Protein Data Bank (PDB). Antibody molecules of each complex are recognized via 
HMM models.

Methodology

 (a) Random Forest Regression (RF) algorithm is assessed on a dataset to determine 
the plausibility of a given antigen residue so that it can be a part of an epitope 
with the usage of the fivefold cross-validation strategy.
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 (b) All of the residues is encrypted with the help of its polarity, hydrophobicity, 
computed volume along with secondary structure (SS), and relative surface 
accessibility (RSA) as anticipated by NetSurfP [21].

 (c) The overall volume of antigen is gained via the addition of respective volumes 
of entire antigen’s residues for almost 46 variables.

 (d) Rolling average of window 9 is implemented on RF output to acquire conclud-
ing BepiPred-2.0 predictions.

Working Steps

 I. Input data is protein sequences of interest having size more than 10 amino acids 
and lesser than 6000 in fasta format that can be entered into textbox either by 
pasting them or via uploading as a single file.

 II. When predictions get completed, the user is automatically redirected to output 
page (Fig. 4.5) that has a navigation bar containing distinct tabs like “Summary” 
showing the result of each of the individual sequence in horizontal as well as in 
the form of a vertical table. Optionally, an email address can be given by the 
user so that after the job gets finished, result page link will be emailed.

 III. “E” in “Epitopes” line is indicated as predictions higher than the user-defined 
threshold which is by default 0.5 above itself the protein sequence and is used 
to select the background color for protein sequences. Epitope classifications are 
alterable as per desire with the usage of “Epitope Threshold” slider.

Fig. 4.5 Sequence markup table of epitope predictions for three antigenic sequences to visualize 
the predictions on sequences in advanced output mode
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 IV. Predictions result are downloadable as JSON or CSV format via dropdown tab 
“Downloads.” Besides this, by clicking the “All Downloads” tab, a short 
descriptive file can be found as well.

Pros and Cons

• BepiPred-2.0 attains a considerably better positive predictive value (PPV) and a 
moderately better true positive rate (TPR) in comparison to other methods. Also, 
it outperforms other available tools like BepiPred-1.0 and Lbtope for sequence- 
based epitope prediction relies on dataset retrieved from solved 3D structures or 
of a large collection of linear epitopes downloadable from IEDB database.

• The result format is informative as well as convenient.
• Limitation of BepiPred-2.0 is that it doesn’t respond to nucleic acid sequences.

4.3  Tools for T-Cell Epitopes Prediction

Recognition of shortest peptides within an antigen is the main objective of T-cell 
epitope prediction which possesses immunogenicity, meaning capable to incite 
either CD4 or CD8 T cells. Immunogenicity is mainly based on three essential 
events which include processing of antigen and its binding with MHC molecules 
and acceptance from its respective TCR.

Amid all steps, MHC-peptide binding is the most discerning to delineate T-cell 
epitopes [13, 15]. Subsequently, the peptide-MHC binding prediction is the sub-
stantive baseline for prediction of T-cell epitopes.

4.3.1  Peptide-MHC Binding Anticipation

For peptide-MHC binding prediction, there should be an overview of already known 
peptide sequences that adhere with MHC molecules such as the existence of speci-
fied epitope databases, for instance, antigen [32], EPIMHC [18], and IEDB [39].

At the level of 3D structures of groove-resided bound peptides, resemblance 
exists between MHC I and II molecules, even though there is a major distinction 
between their binding grooves. For MHC I molecules, its peptide binding cleft con-
sists of a single α chain; thereby, it is closed due to which their binding peptide 
length is reduced to 9 to 11 amino acid residues whose N- and C-terminal ends 
continue to stick by means of a linkage of hydrogen bonds with preserved residues 
of MHC I molecules [17, 36]. Tight physicochemical preferences also exist in addi-
tion to deep binding pockets in their peptide-binding groove that assist binding pre-
dictions. Alternative binding pockets exist for the same MHC I molecule which is 
often used by peptides of distinct sizes. Hence, there is a requirement of a fixed 
peptide length for the prophecy of MHC I-binding peptides. As mostly ligands have 
9–11 residues, it can be the desired length.
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On the contrary, open peptide-binding cleft is found in MHC II molecules, that 
allows expansion of peptide’s N- and C-terminal ends beyond its binding groove [17, 
36] which results in diversification of their peptide-binding length (9–22 residues). 
However, peptide-binding cleft allows to reside merely a core of nine residues, termed 
as peptide-binding core, into them. Consequently, the target of peptide-MHC II bind-
ing anticipation tools is to recognize peptide-binding cores mainly. The reason behind 
this imprecise forecasting of peptides that bind with MHC II molecule is their shal-
lower and less demanding binding pockets than that of MHC I molecules [30].

Apart from this, peptide antigens derived from endogenous and exogenous path-
way are offered by MHC I and MHC II molecules, respectively. Endosomal com-
partments are used for degradation and loading endocytosed antigens onto MHC II 
molecule [7], while antigens degraded via cytosolic pathway are transported via 
TAP to the endoplasmic reticulum and further loaded onto MHC I molecules. 
Before loading, peptides mostly go for trimming with the aid of ERAAP N-terminal 
aminopeptidases [10].

Along with MHC I and II-peptide binding anticipation tools, various tools are 
there to envisage even TAP binding that has been designed by training distinct algo-
rithms on peptides having a significant affinity with TAP [3].

Consistently occurring amino acids are present in peptides at particular positions 
that bind with MHC molecules, termed as anchor residues thought to be liable for 
its binding with MHC molecule. However, later, it has been shown that along with 
anchor residues, peptide binding to a given MHC molecule is facilitated by non- 
anchor residues as well [27]. Accordingly, development of motif matrices (MM) 
helps in the assessment of input for each and all peptide positions of MHC molecule 
binding [19, 25].

Several ML algorithm has been used to solve mainly two distinct problems 
which are trained on datasets having peptides of known kinship to MHC molecules. 
First and foremost is the discernment of MHC binders from non-binders, and the 
second one is to envisage peptides binding affinity with MHC molecules.

MHC polymorphism is the major challenge in T-cell epitopes prediction. Human 
leukocyte antigen (HLA) is a term for MHC molecules in case of humans, and hun-
dreds of their allelic variants exist which bind to peptide variants that need distinc-
tive models to predict peptide-MHC binding. These variants are expressed at 
immensely diverse frequencies due to which HLA polymorphism creates hindrance 
in the advancement of T-cell epitope-based vaccines for distinct ethnic groups. In 
spite of all obstruction, there are various tools accessible for prediction of peptide- 
MHC binding. Some of them are described in Table 4.2.

Table 4.2 Some freely accessible T-cell epitope anticipation tools

MHC class Tools Method Server (URL) References
MHC I nHLAPred ANN http://www.imtech.res.in/raghava/nhlapred/ [4]

ProPred1 QAM http://www.imtech.res.in/raghava/propred1/ [34]
TAPPred SVM http://www.imtech.res.in/raghava/tappred [6]

MHC II ProPred QAM http://www.imtech.res.in/raghava/propred/ [33]
EpiDOCK SB http://epidock.ddg-pharmfac.net [2]
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4.3.2  Description of Various Tools for T-Cell Epitope Prediction 
Enlisted in Table 4.2

4.3.2.1  nHLAPred
nHLAPred is a hybrid approach-based Web server which includes, firstly, a quanti-
tative matrix (QM)-rooted technique in which involvement of each residue has been 
taken into consideration rather than just anchor residues and is formulated for 47 
MHC class I alleles for which minimal 15 binders are accessible from MHCBN 
version 1.1 [5]. Secondly, an artificial neural network (ANN)-based method is 
implemented for 30 alleles out of 47 MHC alleles featuring at least 40 binders 
approachable from the database. Mutual approach (ANN and QM) has been used 
for the anticipation of 30 MHC alleles (Fig. 4.6), while the prediction of the remain-
ing 37 alleles relies on QM [4]. The average accuracy of prediction is 92.8% that has 
ameliorated by 6% compared to each individual means with the development of this 
amalgam approach.

Sun Server 420R is used for installation under the Solaris environment. There is 
a partitioning of server in two substantial parts, ComPred and ANNPred, amid 
which ComPred enables for estimation of binders for 67 MHC class I alleles. Along 
with that, proteasomal matrices have been utilized by both parts to anticipate protea-
somal cleavage site possessing MHC binders at C-terminal.

Fig. 4.6 Diagrammatic representation of combining ANNs and QM
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Working Steps

 I. ReadSeq developed by Dr. Don Gilbert has been implemented in the server, so 
input data can be the protein sequence query of any standard format.

 II. For 47 MHC class I alleles, quantitative matrices are developed that are further 
assessed via jackknife validation test.

 III. For each amino acid from point one to nine, coefficient value has been calcu-
lated via allocating the possibility of an amino acid at an exact point in binders 
as well as in non-binders.

 IV. For prophecy of proteasomal cleavage sites which befall at the midpoint of 
12mer peptides mainly six amino acids away from N-terminal, proteasomal and 
immunoproteasomal matrices are acquired from ProPred I server [34].

Pros and Cons

• The server is user-friendly, and its outcome demonstration format (HTML-II) is 
helpful in tracing promiscuous MHC-binding regions as of antigenic sequence 
with fair accuracy.

• However, certain limitations are also there like the incapability to handle non- 
linearity in data because of significant confinement of quantitative matrix-based 
method. Also, the ANN-based method requires a large dataset for training.

• Proteasome cleavage site prediction procedures are less authentic due to exten-
sive specificity of the proteasome in comparison of MHC-peptide binding speci-
ficity. Proteasome digested data are present in limited amount as well. Moreover, 
cleavage specificity depends on cleavage site-residing residues as well as on 
neighboring residues equally.

4.3.2.2  ProPred1
ProPred1 is an online matrix-based Web server in order to predict peptide binding 
to 47 MHC class I alleles. Matrices implemented have been acquired from BIMAS 
server as well as from literature. Results are in a user-friendly format that helps out 
users to identify promiscuous MHC binders in an antigen sequence.

The server enables users to predict MHC binders in an antigenic sequence along 
with their usual proteasome and immunoproteasome cleavage sites at C terminus 
simultaneously which results in identifying T-cell epitope with high potency.

PERL is used for writing a common gateway interface (CGI) script and is 
launched via Apache Web server. Further, Sun Server (420E) with a UNIX (Solaris 
7) environment is used for installation.

Working Steps

 I. Input data is the primary amino acid sequence of protein query in any fre-
quently used sequence formats as the server uses ReadSeq to analyze input 
sequence (Fig. 4.7a).
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 II. There is an independency to select a threshold value for prediction.
 III. Representation of output data in graphical (Fig.  4.7b) or text form provides 

assistance to the user in appropriate recognition of promiscuous MHC- binding 
domains in their query sequence.

 IV. Firstly, for a given antigen sequence, all probable overlying 9mer peptides 
are produced followed by a quantitative matrix-based score calculation of 
selected MHC alleles. A peptide is designated as predicted binder if their 
score would be superior to a particular threshold value (e.g., at 4%) for 
selected MHC allele.

 V. In an effort to forecast proteasome cleavage sites in an antigenic sequence, 
overlying 12mer peptides were developed for sequence followed by their 
score calculation with the usage of weight matrix of the proteasome.

 VI. Further peptides having score superior to a certain threshold value (e.g., at 
5%) are deemed as peptides featuring proteasome cleavage site at their midpoint 
positions (6-position left and 6-position right) as per prediction.

 VII. Prediction of the immunoproteasome cleavage site of peptides shares analogy 
with proteasome cleavage site prediction.

 VIII. Concurrent anticipation of MHC binders and proteasome cleavage sites 
results in removal of MHC binders not retaining cleavage site at C terminus.

Fig. 4.7 (a) Sequence submission form of ProPred1 server showing protein sequence of O-antigen 
polymerase of Shigella dysenteriae as an input. (b) Prediction result in graphical format
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Pros and Cons

• Purpose of ProPred1 development is to efficaciously attenuate wet lab experi-
ments number indulged in to identify effective T-cell epitopes and thereby 
develop relevant vaccines.

• However, due to lack of sufficient data for MHC non-binders, calculation of 
threshold value is little bit crucial.

4.3.2.3  TAPPred
TAPPred is a user-friendly, support vector machine (SVM)-based Web server 
designed to predict TAP-binding affinity as well as translocation efficiency of the 
peptide. The server is initiated via public domain software package Apache on Sun 
server 420R in Solaris background. HTML is used for writing all the Web pages, 
while PERL and JavaScript are used for inscription of CGI scripts. By utilizing 
freely downloadable software, SVMlight, SVM has been implemented.

Working Steps

 I. Input data is protein sequence as a single-letter amino acid code whose mini-
mum length should be nine that is uploaded as a local sequence file or is 
pasted in required space, in any of the standard formats because of integration 
of ReadSeq.

 II. Before running prediction sequence, uploaded format must be chosen by the 
user that it is in either plain or formatted form as server acknowledges both 
formatted and unformatted raw antigenic sequences which results in errone-
ous prediction if the selected format is false.

 III. Prediction of binding affinity of the peptide has given permission by the 
server on the basis of two variants of SVM. Simple SVM involves prediction 
relied on sequential knowledge of peptides and is quicker than cascade SVM 
which includes characteristics of amino acids along with its sequential 
knowledge.

 IV. Two tiers exist for prediction. Initially via joining characteristics of amino 
acids with sequential information, preliminary results are gained. Later on, 
the results of the first tier are further filtered. Despite having a slower rate of 
prediction, cascade SVM is more trustworthy as compared to simple 
SVM. Only a single approach can be selected for prediction at a time.

 V. Results are depicted in two user-friendly formats. In the first format, the result 
is presented by coloring the residues. N-terminal is demarcated by the green 
color background of residues. Rest of the residues are represented with the 
violet-blue background (Fig. 4.8a).

 VI. Type of peptides can be chosen to be displayed in the result.
 VII. Tabular format display (Fig. 4.8b) has four alternatives. Only one output dis-

play can be selected at a time.
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 VIII. Only one output display can be selected by the user at a time that includes 
primarily a header and has data about the length of the peptide sequence, 
about nonamers obtained, as well as the date of prediction.

Pros and Cons

• The user can select parameters of their choice in this server.
• However, due to insufficient data for TAP-binding peptides, limited algorithms 

are there. Also, the minimum length of the query sequence should be nine; oth-
erwise, it won’t be accepted for prediction.

4.3.2.4  ProPred
ProPred is a graphics-based Web server in which matrix-based prediction algorithm 
has been deployed along with the implementation of amino acid or position coeffi-
cient table inferred from literature in order to foretell binding domain for MHC 
class II in antigenic sequences. Either as peaks in graphical interface or as colored 
residues in HTML interface, predicted binders can be envisioned. It has been devel-
oped mainly for 51 HLA-DR alleles whose matrices have been extracted from a 
pocket profile database defined by Sturniolo et al. in 1999 [33].

Working Steps

 I. Input data is protein sequences in fasta or PIR format which are generally used 
as standard sequence formats and can be uploaded as a file.

 II. In order to attain desirable results, selection of alleles, threshold, and other 
parameters are customizable.

Fig. 4.8 Prediction results from TAPPred server for CTL as an input sequence. (a) Displaying 
result in the form of colors. (b) Tabular display format
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 III. An output as text or graphics is generated from the analysis of sequence data in 
which two choices have been provided by text display: the first choice in which 
binding regions of antigenic sequences are displayed by different colors thus 
providing easier detection. An option of representing binding score in a com-
monly used tabular format is also there that has been calculated from the matrix.

 IV. The second choice involves the representation of coinciding regions indepen-
dently on discrete lines; thus, delineation of specific regions from display 
becomes easier.

 V. GDPlot library established by Lincoln D. Stein is used for graphics formulation 
in GIF format. HLA-DR-binding tendency laterally with the primary structure 
of a protein is represented as an output along with their binding strength. 
Consequently, it has an advantage over text presentation.

 VI. Besides this, an alternative method is there for plotting threshold versus bind-
ing peptides, i.e., threshold profile, which renders assistance in the selection of 
a reasonable threshold value for finding promiscuous binders.

Pros and Cons

• All HLA-DR alleles are evaluated by server independently, and output is posted 
on a single screen that helps out the user in rapid visualization of promiscuous 
binders. Henceforth, it can be considered as a useful tool.

• Binding strength for all peptide frames in an opted subsequence can be computed 
by this server.

However, it is less expressive in representing overlapping binding regions.

4.3.2.5  EpiDOCK
EpiDOCK is the first structure-based server for prediction of peptide binding to 23 
utmost common human MHC class II proteins which include 5 HLA-DP, 6 
HLA-DQ, and 12 HLA-DR proteins. These alleles are the composition of more than 
95% of the human population. The server is implicated to identify 90% of true bind-
ers as well as 76% of true non-binders, with a global precision of 83%.

Working Steps

 I. Input data is protein sequence in fasta format. Multi-fasta protein format is 
likely reinforced.

 II. Selection of HLA class II protein of concern is the next step that can be a 
single protein or all proteins.

 III. Peptide-binding core is composed of nine adjacent residues due to which a 
collection of overlapping nonamers is formed as a result of input sequence 
conversion. A docking score-based quantitative matrix (DS-QM) is used for 
assessment of all nonamers retrieved for certain HLA class II protein and allotted 
a specific score.
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 IV. For any DS-QM, thresholds are defined with utmost certainty. Peptides having 
higher scores than the threshold or equal to them are expected to be binders, 
else considered as non-binders.

 V. After that, if prophesied nonamer binder is a portion of recognized binder 
sequence, only then it will be categorized as an accurately foretold binder, else 
referred to as a false binder. Data is reported either in xls or csv formats.

 VI. To validate anticipations, a test set of 7050 identified binders to HLA-DR, 
HLA-DQ, and HLA-DP proteins is implicated that originates from 1195 pro-
teins, which is collected from Immune Epitope Database.

 VII. Assigned values for specificity, sensitivity, accuracy, and AUC are 0.759, 
0.903, 0.831, and 0.892, respectively.

Pros and Cons

• Structure-based approaches require information about peptide-MHC protein 
complex centered on their X-ray structure only rather than extensive preexisting 
experimental data.

• It is authentic and credible.
• Because of high resource implications of experimental testing at the time of 

scanning large proteome, a number of false positives can be more in contrast to 
a large number of false negatives which is a major problem to be dealt with.

• Amino acids having negative coefficients decrease the affinity of peptides for 
HLA-DRB1.
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Abstract
B cells play a multidimensional role in host immunity. Regulatory B (Breg) cells 
are a class of B lymphocytes with immunomodulatory properties that play an 
important role in maintaining immunological tolerance along with dampening 
harmful immune responses. Bregs suppress various immune pathologies through 
the production of interleukin (IL)-10, IL-35, and transforming growth factor-β 
(TGF-β). They act by inhibition of T helper 1 (Th1) and Th17 cells proliferation, 
suppression of dendritic cell (DC), differentiation and simultaneous enhance-
ment of the expression and differentiation of fork head transcription factor 
P3-positive regulatory T cells (FoxP3+ Tregs). In this chapter, we discuss the 
induction, function, and phenotypes of the various Breg cell subsets defined in 
both mice and humans along with their proposed mechanism of action in various 
immune responses.
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Abbreviations

Bregs B regulatory cells
BCR B cell receptor
TLR Toll-like receptor
PAMPs pathogen-associated molecular patterns
EAE experimental autoimmune encephalomyelitis
IL interleukin
LPS lipopolysaccharide
TGF-β transforming growth factor Beta
Tregs T regulatory cells
MHC major histocompatibility complex
AIA antigen-induced arthritis
Th T helper cells
STAT Signal Transducer and Activator of Transcription
IFN-γ interferon gamma
TNF-α tumor necrosis factor alpha
mAbs monoclonal antibodies
T2-MZP transitional 2 marginal-zone precursor
TIM-1 T-cell Ig mucin domain-1
CTLA-4 cytotoxic T lymphocyte-associated protein 4
iBreg induced B regulatory cells
IDO indoleamine 2,3-dioxygenase
MS multiple sclerosis
SLE systemic lupus erythematosus
RA rheumatoid arthritis
NOD non-obese diabetic
RANKL receptor activator of nuclear factor-κB ligand
OPG osteoprotegerin
T1D Type 1 diabetes
Tr1 T regulatory type 1

5.1  Discovery of Breg Cells

The concept of B cells regulating immune responses dates back to 1974, when the 
suppressive nature of B cells in modulating delayed type hypersensitivity in guinea 
pigs was described [1]. Wolf et al. suggested a regulatory subset of B cells (Bregs) 
exhibiting immunomodulatory properties in an experimental autoimmune encepha-
lomyelitis (EAE) model of mice in 1996 [2]. From 2002 to 2003, Fillatreau et al., 
Mizoguchi et al., and Mauri et al. through independent studies demonstrated that B 
cells produce IL-10 and suppress inflammatory conditions such as EAE, inflamma-
tory bowel disease and collagen-induced arthritis respectively [3–5]. Further, Parekh 
et  al. were the first to show a IL-10-independent mechanism of action in 2003, 
demonstrating TGF-β-dependent B cell–mediated regulation of CD8+ T cell 
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responses, though they did not name these as Bregs at the time [6]. It was only after 
3 years that Mizoguchi and Bhan proposed the concept of Bregs while studying 
their role in colitis, demonstrating that B cell–deficient mice experienced higher 
severity of colitis than normal [7]. Moreover, Mizoguchi et al. also established that 
a specific B cell subset induced in gut-associated lymphoid tissue was secreting 
higher levels of IL-10 and had increased CD1d expression during intestinal inflam-
matory condition [4]. Till date, numerous studies have been carried out to illustrate 
the role of various Breg subsets via IL-10-dependent or IL-10-independent manner 
in modulating host immunity. In 2008, Yanaba et  al. also showed the role of 
CD1dhiCD5+ cells in negatively regulating T-cell responses through IL-10 in contact 
hypersensitivity model [8]. Dittel et al. observed that mice with B cell deficiency 
have reduced numbers of both Foxp3+ regulatory T cells (Tregs) and IL-10 levels in 
EAE and demonstrated a novel IL-10, B7, and MHC class II-independent regula-
tory role for B cells in suppressing autoimmunity by the maintenance of Tregs via 
glucocorticoid-induced TNFR family–related gene ligands [9, 10]. In 2010, Amu 
et al. reported that helminths-induced Bregs were responsible for Treg induction 
that could suppress allergic airway inflammation (AAI) in the murine model [11]. 
Carter et al. demonstrated the unique ability of Bregs in inhibiting Th1/Th17 cells 
during arthritic conditions in mice [12]. Strikingly, the regulatory function of B cells 
is mediated by the production of various regulatory cytokines such as IL-10, IL-35, 
and TGF-β1, which are responsible for suppressing autoreactive B cells and patho-
genic T cells in a cytokine or cell-cell contact-dependent manner [7, 13]. Another 
mechanism of immune regulation by B cells involve expression of FAS ligand on 
CD5+ B cells, known as killer B cells that regulate effector immune responses by 
inducing cell death [14]. Kaku et al. showed a population of B cells that express 
both CD73 and CD39, ectoenzymes responsible for the production of adenosine, 
which inhibited the severity of colitis [15]. Khan et al. described additional pheno-
type of Bregs, PD-L1hi B cells, which regulate humoral immunity through their 
interaction with CD4+CXCR5+PD-1+ follicular helper T cells and ameliorate EAE 
[16]. Recently, Oleinika et al. reported a novel role of CD1d+ T2-MZP Bregs in the 
induction of immunosuppressive iNKT cells that downregulate excessive Th1/Th17 
responses partially via secreting IFN-γ and limit inflammation in experimental 
arthritis [17]. Together, these studies indicate that Bregs suppress inflammation by 
inhibiting the differentiation of pro-inflammatory cells and inducing a population of 
immunosuppressive cells. In addition, studies on exacerbation of colitis and devel-
opment of psoriasis in patients treated with anti-CD20 mAb (rituximab) suggest the 
regulatory function of B cells in human subjects [18, 19]. Bregs constitute fewer 
than 10% of immature B cells in healthy individuals and play an important role in 
functioning of the immune system by maintaining tolerance and immune homeosta-
sis [20]. Over the last decade, numerous studies in both mice and human have exten-
sively shown the importance of Bregs in regulating various diseases, including 
inflammatory disorders, autoimmunity, and cancer [21, 22] Bregs with their wide 
range of immunomodulatory functions can thus be exploited for therapy in various 
B cell–mediated diseases. Thus, it is important to exhaustively consider the known 
Breg cell phenotypes, their induction, and function in a chronological manner 
(Fig. 5.1 and Table 5.1).
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5.2  Identification and Phenotypes of Breg Cells

B cell subsets with strong immunomodulatory functions have been reported both in 
vitro and in vivo (Figs. 5.2 and 5.3) (Table 5.1). Phenotypic identification of Breg 
cells using the immunomodulatory cytokine IL-10 continues to be a matter of debate 
due to difficulties in assessing the functionality of Bregs, because IL-10 detection 
requires intracellular staining. Therefore, other surrogate markers have been 
employed to identify various Breg subsets. Different overlapping markers are pres-
ently being used to describe these cells. Here we discuss both murine and human 
Breg subsets under separate heads for clarity and distinction among these subsets.

5.2.1  Mouse Breg Subsets

In mice, Plasma B cells, B-1 cells, CD5+CD1dhi B10 B cells, CD21hiCD23hiCD24hi 
transitional type 2 marginal zone precursors (T2-MZP) Breg cells, and TIM-1+ B 
cells have been proposed with regulatory functions in a variety of infections, in 
autoimmune and transplantation settings [21, 23]. IL-10+ Bregs have also been 
observed to inhibit IFN-γ production in hepatitis B virus (HBV) infection by modu-
lating CD8+ T cell responses [24, 25]. Furthermore, IL-10+ Bregs inhibit TNF-α 
production by activated monocytes following stimulation with LPS and bacterial 

Plasma 
Bregs

BR2 Bregs
(mTGFβ+)

B10 BregsB-1 Bregs

T2-MZP Bregs

TIM-1+Bregs

Mice Bregs journey

1982 2002 20101965 2001 2005 2011 2013 2014 2015 2018

Transitional
B10 Bregs

Memory B10 
Bregs

Plasmablasts

BR1 Bregs &
GRB+ Bregs iBregs

IGA+ Bregs

Human Bregs journey

Fig. 5.1 Chronological journey of Bregs. This timeline represents the important events in the 
journey of Bregs discovery, establishing them as a functionally and developmentally distinct cell 
lineage
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CpG DNA [9, 22]. Bacterial components such as LPS and CpG are known to induce 
the expansion, differentiation, and activation of murine Bregs through TLR signal-
ing in vitro [26, 27]. Furthermore, mice harboring TLR2- or TLR4-deficient B cells 
fail to recover from EAE. Alltogether these studies clearly indicate that inflamma-
tion acts as stimuli for the activation and differentiation of Bregs.

5.2.1.1  Plasma Bregs
Plasma B cells are representative antibody-secreting cells (ASCs) [28] present in all 
lymphoid organs. Plasma cells have also been found to occur in significant numbers 
in the bone marrow compared to their lower numbers in the spleen. Indeed, the bone 
marrow is primarily responsible for the long-term maintenance of plasma cells aris-
ing from immunization [29]. Recently, Lino et  al. described a subset of resident 
Plasma B cells specialized for producing IL-10 upon TLR stimulation and are found 
to occur naturally, i.e., prior to antigenic challenge [30]. Genome-wide approaches 
have shown that this Breg lineage is triple-positive for the following markers: 
IL-10+LAG-3+CD138hi. The lymphocyte activation gene 3 (LAG-3+) helps in 
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Fig. 5.2 Breg subsets in mice and humans. Mice have a total of five defined Breg subsets: 
Plasma B cells (CD138+MHC-11lo B220+), B1 Bregs (CD5+), BR2 Bregs (CD40+TGFβ1), B10 
Bregs (CD19hiCD1dhiCD5+), and T2-MZP Bregs (CD19+CD21hiCD23hiCD24hi). Humans, on the 
contrary, have seven defined human Breg subsets: Br1 Bregs (CD19+CD25+CD71+ CD73−), 
CD19+CD24hiCD38hi Bregs, CD19+CD24hiCD27hi Bregs, Plasmablasts (CD19+ CD27intCD38+), 
iBregs (IDO, TGFβ), GrB+Bregs (CD19 +CD38+CD1d+IgM+CD147+), and IGA+Bregs (IgA+)
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regulating humoral immunity and in maintaining immunological tolerance toward 
endogenous T-independent type 2 antigens, which are  normally not detected by 
CD4+Foxp3+ T regulatory cells. Unlike conventional plasma cell differentiation, 
which requires several days for proliferation, the detection of IL-10+LAG-3+CD138hi 
plasma cells at day one post-infection with Salmonella typhimurium in the spleen 
of mice, confirmed that this subset is derived from already existing cells LAG- 
3+CD138hi cells. These LAG-3+CD138hi cells are likely induced by self-antigen 
and remain in a quiescent state. Further, genome-wide methylome, transcriptome, 
and gene-set enrichment analysis of LAG-3+CD138hi cells in naïve mice and at day 
one post-Salmonella infection showed that after antigenic challenge, LAG-3+CD138hi 
cells express IL-10 and become IL-10+LAG-3+CD138hi plasma Bregs [30]. 
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Th1
IFN-γ

IL-17

CD8+ T cellsIFN-γ

MonocytesTNF-α

DCs

Th17

IL-12

IL-35 mTGF-β

IL-10

IL-10
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IL-10

IL-10

Foxp3+Tregs

Tr1

IL-10

iNKTIL-10

CD4+CD25-

T cells

IL-10

PD-L1

IDO

GZB

Fig. 5.3 Regulatory mechanisms of Bregs in various immune responses. Bregs lead to the 
suppression and inhibition of pro-inflammatory lymphocytes such as Th1, Th17, cytotoxic CD8+ T 
cells, monocytes, and IL-12-producing dendritic cells through the production of various factors 
like IL-10, IL-35, TGF-β, IDO, GZB, and so on. IL-10 production by Bregs is primarily respon-
sible for restoring the Th1/Th2 balance, where it is shifted toward Th2. One more mechanism of 
inhibiting inflammatory cascades is via tweaking the Treg/Th17 balance, leading to suppression of 
Th17 cells. The Breg population is reportedly responsible for enhancing the differentiation of 
Foxp3+Treg cells and helps in the maintenance of iNKT cells
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Thus, these results indicate that plasma Bregs provide a first layer of immune regu-
lation in response to stimuli. In contrast, Matsumoto et al. showed that mice lacking 
genes such as Prdm1 and IRF4, which are required for plasma cell differentiation, 
develop a severe form of EAE compared to control mice. This study suggested that 
Bregs are inducible in nature. Thus, these studies clearly establish both the innate 
and inducible nature of Bregs. During EAE, plasma B cells are known to be the 
main source of IL-35 and facilitate recovery from EAE. IL-35 secreted by plasma 
Bregs exhibits anti-inflammatory properties by expanding the immunosuppressive 
CD4+CD25+ Tregs population which inhibits CD4+CD25− T effector cell prolifera-
tion when cultured in vitro [31]. IL-35 also inhibits the differentiation of inflamma-
tory Th17 cells. Recent studies have indicated the role of BATF/IRF-4/IRF-8 axis in 
regulating IL-35 and IL-10 expression in activated B cells [32]. IL-35 cytokine can 
act as a potential target in the treatment of both autoimmune and inflammatory con-
ditions. Interestingly, declined populations of LAG-3+CD138hi cells have been 
reported in mice deficient in CD19 or Bruton’s tyrosine kinase [33], further estab-
lishing that differentiation of LAG-3+CD138hi cells to plasma cells is under the con-
trol of BCR. Taken together, these studies establish that B cell differentiation into 
LAG- 3+CD138hi cells is a steady-state process driven primarily by BCR signaling 
rather than TLR-mediated signaling or T cells.

5.2.1.2  B1 Bregs
B-1 cells represent a class of innate immune cells that are responsible for higher 
antibody production, especially IgMs for mounting rapid immune responses against 
pathogens [34]. This subset of CD5+ B cells was initially identified in the early 90s 
in mice, as a set of distinctive fetal B cells to differentiate them from B-2 cells that 
usually develop in the adult bone marrow [35, 36]. B-1 cells represent a population 
of B cells found predominantly in the pleural and peritoneal cavities (35–70%). A 
smaller number of B-1 cells are also found in the spleen [37], bone marrow, mucosal 
sites, lymph nodes, and blood [38]. Despite their very low frequency in lymphoid 
tissues, B-1 cells are important regulators of immune defense and tissue homeosta-
sis. B-1 B cells are chiefly produced in the absence of any antigen exposure [39, 40] 
and are a major source (>80%) of naturally occurring antibodies [41]. Higher levels 
of natural IgMs are produced by B-1 cells residing in the spleen and bone marrow 
[38]. These polyreactive [42, 43] antibodies help in recognizing self as well as for-
eign antigens [44, 45], act as the first line of defense, and are analogously linked to 
innate immune responses. B-1 cells are categorized into different functioning sub- 
subsets based on the relative CD5 expression. B-1a represents a class of CD5+(Ly-1) 
B-1 cells that chiefly express IL-10 upon innate activation [46] whereas B-1b repre-
sents a class of CD5− B-1 cells [34, 45]. B-1a cells are major producers of B-cell- 
derived IL-10 [46], and their activation and expansion are regulated by 
cross-regulatory cytokines such as IL-12 and IFN-γ [47]. Using Schistosomal infec-
tion model, Vellupillai P et al. demonstrated that the outgrowth of IL-10 producing 
B-1 after infection is genetically restricted and regulated by polylactosamine sug-
ars. Interestingly, it has also been shown that B-cell defect in BALB.Xid mice 
impart susceptibility to develop filariosis and is associated with lack of antibody 
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production and IL-10 production in response to dominant surface molecule of 
invading pathogen [48]. B-1a cells were shown to inhibit TLR-mediated excessive 
inflammation in neonatal mice in an IL-10-dependent manner [49]. Another subset 
of B-1a, FAS ligand expressing B-1a cells also known as killer B cells, has been 
shown to mediate T cell apoptosis during schistosomal infection and prevent granu-
lomatous inflammation [14]. Interestingly, the regulatory role of IgM-producing 
B-1a cells has also been associated with the suppression of colitis in mice that were 
kept in conventional facility as compared to mice kept under specific pathogen free 
facility [50]. Thus, B-1a cells play an important role in immune regulation and tis-
sue homeostasis.

5.2.1.3  BR2 (mTGFβ+) Bregs
Here, we propose a novel subset of Bregs called “BR2” Bregs. These Bregs were 
first reported and studied by Parekh et al. in 2003. They found that B cells activated 
via T-independent mechanisms such as LPS showed membrane expression of 
TGFβ1, leading to CD8+ T cell anergy. These Bregs thus have the unique phenotype 
of mTGFβ+ Bregs. This manner of B cell activation is a major factor influencing 
CD8+ T cell responses as T-dependent activated B cells provide higher stimulatory 
properties to CD8+ T cells [6]. Membrane expression of TGFβ1 was found to be 
solely responsible for conferring these B cells with regulatory properties, thus influ-
encing CD8+ T cell responses. Thus, we now name these Bregs as BR2 
(mTGFβ+Bregs), with regulatory properties governed by membrane TGFβ expres-
sion. These findings provide insights into the immune evasion strategies adopted by 
retroviruses and gram-negative bacteria that target toll-like receptor-4 (TLR-4) sig-
naling in B cells. Recent reports have also shown that Bregs producing TGF-β 
induce Tregs for promoting transplantation tolerance [51]. These results illuminate 
the importance of novel modes of B-cell activation in the development of therapeu-
tic strategies to modulate the balance between active immunity and tolerance [6].

5.2.1.4  B10 Bregs
B10 cells are defined by their ability to express IL-10 following ex vivo stimulation 
with PMA and ionomycin and are enriched within CD1dhiCD5+ B cell subset [8]. 
Mouse B10 cells represent around 1–3% of cells in the spleen. Other tissues like the 
lymph nodes, central nervous system, Peyer’s patches, and intestinal tissues com-
prise a very small number of B10 cells. Their presence in peritoneal cavity is also 
prominent [29, 52, 53]. Mouse B10 cells have a typical phenotype as IgDloIgMhi 
cells, although a very small number of B10 cells are also reported to co-express IgA 
or IgG [54]. B10 cells secrete polyreactive or Ag-specific IgMs and IgGs upon dif-
ferentiation [53, 54]. T-cell Ig mucin domain-1 (TIM-1) is a type of transmembrane 
glycoprotein responsible for immunomodulatory responses [55], and its expression 
was found to be important for the induction and maintenance of IL-10-producing B 
cells, whereas a defect in TIM-1 expression leads to increased production of proin-
flammatory cytokines such as IL-1 and IL-6 [56]. During allotransplantation, TIM-1 
is particularly responsible for Breg stimulation to prolong allograft survival. TIM-1+ 
B cells usually express IL-4 and IL-10 and promote Th2 responses with subsequent 
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allograft tolerance [57]. Numerous studies have shown the potential of B10 cells in 
inhibiting disease initiation and subsequent pathology after their adoptive transfer 
in models of contact hypersensitivity [8], EAE [3, 52, 58], lupus [59], IBD [53, 60], 
and graft-versus-host disease [61]. Mauri et al. were the first to elucidate the thera-
peutic potential of B cells using agonistic CD40 mAbs for treating mice with 
collagen- induced arthritis [5, 62]. Depletion of B10 cells can have either therapeutic 
or detrimental effects in the course of various human pathological mouse models. 
Depletion of IL-10-producing B cells is known to enhance the innate, humoral, and 
cellular immune responses in mice [62, 63]. This intensifies the severity of disease- 
related symptoms in various autoimmune diseases in mice such as EAE, skin trans-
plant rejection, and contact hypersensitivity [27, 58, 64].

5.2.1.5  T2-MZP Bregs
The T2-MZP Breg cell subset was discovered by Evans et al. in 2007 [65]. T2-MZP 
Bregs are immature transitional B cells found in the spleen with a CD19+CD21hiC
D23hiCD24hiIgMhiIgDhiCD1dhi phenotype. Among the different B-cell subsets 
residing in the spleen of mice with arthritis, this specific Breg cell type is respon-
sible for IL-10 production after collagen stimulation. T2-MZP Bregs were discov-
ered to have decisive suppressing properties both in vitro and in vivo, and the 
mechanism of suppression includes inhibition of pathogenic Th1 responses via 
producing IL-10 [65]. IL-10-producing T2-MZP B cells are shown to exert immu-
nomodulatory properties in various immune-mediated pathologies, including auto-
immune diseases, cancer, and allergy [21, 65, 66]. Recently, Oleinika et al. reported 
a novel role of CD1d+ T2-MZP Bregs in the induction of immunosuppressive in-
variant Natural Killer T (iNKT)-cells that downregulate excessive Th1/Th17 
responses partially via secreting IFN-γ and limit inflammation in experimental 
arthritis [17]. Recently, T2-MZP Breg cells have been linked as the precursors of 
B10 Bregs, but the interrelation between these two Breg subsets needs to be further 
established [21].

5.2.2  Human Breg Subsets

Similar to mouse Bregs, human Breg cells also play an important role in the mainte-
nance of tissue homeostasis. Mauri et al. in an extensive study demonstrated that 
CD19+CD24hiCD38hi B cells with a phenotype very similar to immature B cells pro-
duce the highest fraction of IL-10 in healthy human peripheral blood upon CD40 
stimulation [20]. Separately, Tedder et  al. also categorized human Breg cells as 
CD24hiCD27+, a phenotype related to memory B cells [22]. Furthermore, Bosma 
et al. reported that due to altered CD1d recycling in B cells, defect in B-cell- mediated 
iNKT expansion was observed in SLE patients [67]. Human Bregs exert immuno-
modulatory properties through their actions on various immune cell types such as 
inhibiting cytokine production in monocytes [22]; inducing immunosuppressive 
NKT cells [67], restraining IFN-α production from pDCs [68]; and regulating CD4+ 
T cell proliferation [69], inhibition of Th1 and Th17 differentiation, and conversion 
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of CD4+ T-cells into CD4+CD25+ cells along with enhancing FOXP3 and PD-1 
expression on Tregs [20, 70, 71]. In humans, research on Bregs is mainly restricted 
due to lack of access to the human spleen, the primary site of the Bregs population. 
Thus, the majority of identified human Bregs are from peripheral blood where Bregs 
ranging from immature B cells to differentiated plasmablasts are found. Other phe-
notypes of human Bregs comprise CD19+CD25+CD71+CD73− B regulatory 1 (Br1) 
cells [72], CD19+CD27intCD38+ plasmablasts [73]. Furthermore, human Bregs (i.e., 
equivalent to B10 of mice) with the CD19+CD24hiCD27+ phenotype along with 
Tim1+ Bregs are preferentially found in the transitional B cells [22, 74]. Thus, it is 
important to describe different defined subsets of human Bregs.

5.2.2.1  CD19+CD24hiCD38hi Bregs
Human B cells with regulatory function have been described in CD19+CD24hiCD38hi 
immature subset of peripheral blood B cells. After CD40 stimulation, this subpopula-
tion isolated from peripheral blood of healthy individuals is known to inhibit the dif-
ferentiation of Th1 cells via IL-10 production and CD80 and CD86 engagement [20]. 
However, CD24hiCD38hi cells isolated from SLE patients lacked regulatory capacity 
[20]. Recently, in patients with SLE, an expanded population of CD19+CD24hiCD38hi 
Bregs was observed with deficient IL-10R expression, which is correlated with com-
promised Breg function despite showing enhanced IL-10 expression [75]. Thus, tar-
geting the ‘Bregs/IL-10/IL-10R’ axis may prove to be a novel therapeutic approach in 
the treatment of SLE. In addition to inhibiting Th1 and Th17 differentiation, these 
cells also convert CD4+CD25− into Tregs [70]. Both numerical and functional impair-
ment has been observed in a number of autoimmune diseases such as SLE [20, 75] 
and RA [70]. Recent studies showing reduced capacity of CD19+CD24hiCD38hi Bregs 
to secrete IL-10  in GVHD patients as compared to transplant tolerant and healthy 
controls indicated their important role in preventing graft rejection by promoting tol-
erance. Moreover, Cherukuri et  al. in 2014 found low IL-10/TNF-α ratio by 
CD19+CD24hiCD38hi transitional B cells in renal patients with graft rejection when 
compared with healthy controls, further highlighting their role in establishing trans-
plant tolerance [76] TIM-1 is also a marker for IL-10+ Bregs and around 50% of 
IL-10+ B cells were TIM-1+. On evaluating TIM-1 expression on human B cell sub-
sets, this transitional subset was enriched in TIM-1+ subset [74]. In the same study, 
authors found a decreased number as well as impaired function of TIM-1+ in patients 
with systemic sclerosis [74]. In 2015, Kristensen et al. stated that in humans, 40% of 
IL-10+ B10 cells expressed TIM-1 [77]. Supporting this study, Liu et al. found that 
compared to HIV-infected patients, healthy controls have more than 75% of periph-
eral B10 cells expressing TIM-1. These studies highlight the role of TIM-1 as a marker 
of Bregs and will open new avenues for the isolation of Bregs that could be utilized 
for achieving immune homeostasis.

5.2.2.2  CD19+CD24hiCD27hi Bregs
The IL-10-producing B cells, named B10  in humans, are predominantly 
CD19+CD24hiCD27+ memory subset of B cells, known to be a major source of IL-10 
after stimulation with LPS or CpG along with CD40 ligation B cells. B10 cells 
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also express CD48, and CD148 [22]. IL-21 has the potential to further induce IL-10 
production from CpG- or LPS-treated CD19+CD27+ memory B10 cells [78]. Among 
other subsets, B10 cells are also present in the tonsils, spleen, and newborn cord 
blood [76]. Interestingly, an increase in the number of B10 cells was observed in a 
number of autoimmune diseases [22, 79, 80]. In patients with RA, B10 cells are 
highly capable of expressing receptor activator of nuclear factor-κB ligand (RANKL) 
compared to those in the healthy controls, suggesting a possible mechanism by 
which B10 cells are involved in RA pathogenesis [81]. At the molecular level, 
Zheng et al. in 2017 reported that microRNA-155 (miR-155) positively regulates 
IL-10 expression in B10 cells, which is impaired in patients with Crohn’s disease 
(CD), leading to miR-155-induced expression of TNF-α by monocytes. These find-
ings further suggest a novel miRNA-mediated approach in developing Breg-based 
strategies to control the progression of autoimmune diseases.

5.2.2.3  Br1 Bregs
This subset of human Bregs with the CD19+CD25+CD71+CD73− phenotype was 
identified by Van de Veen et al. in 2013. These IL-10-producing Br1 Bregs share 
homology with the Tr1 subtype of T cells. Due to the low CD73 expression on their 
surface, the immunosuppressive function of Br1 cells was considered to be indepen-
dent of adenosine and could thus be IL-10 dependent. In support of this, further 
studies substantiated the role of IL-10 in imparting immunosuppressive functions to 
Br1 cells. This IL-10+ subset of Bregs is reported to induce tolerance toward aller-
gens by repressing the proliferation of allergen-specific CD4+ T cells as well as by 
producing allergen-specific anti-inflammatory IgG4 antibodies [72], thus contribut-
ing to peripheral tolerance. This subset of Bregs can induce tolerance against bee 
venom allergen and PLA2 (phospholipase A2) in an IL-10-dependent manner and 
also showed tolerance toward various food allergens like casein (cow milk protein). 
Van de Veen et al. used flow cytometry and whole-genome sequencing to further 
show that human Br1 cells express the inhibitory ligand PD-L1 (programmed death 
ligand-1), which binds PD-1 on T cells to inhibit T cell activation and promote the 
maintenance of Tregs cells.

5.2.2.4  Plasmablasts
This subset of Bregs is known to be derived from both naïve and immature B cells 
in humans with the CD19+CD27intCD38+phenotype, which secretes IL-10 [73]. In 
the presence of IL-2, IL-6, CpG, and IFN-α, immature B cells undergo differentia-
tion, leading to expansion of plasmablasts with increased expression of IRF4, 
Blimp1, and XBP1 [73]. In normal tissues, CD30 expression is limited to a few T 
and B cells, whereas in B cell lymphoma, CD30 expression is upregulated on B 
cells. Recently, in a mouse model of B cell lymphoma, higher CD30 expression on 
B cells was found to promote the differentiation of plasma B cells to plasmablasts 
via NF-κB activation and enhanced phosphorylation of STAT3, STAT6, and nuclear 
factor IRF4 [82]. Interestingly, exacerbation of inflammatory symptoms in MS 
patients upon treatment with Atacicept, which deplete antibody-secreting cells, 
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further suggests the regulatory function of plasmablasts [83]. Patients with immu-
noglobulin G4 (IgG4)–related disorder (IgG4-RD), primary Sjögren’s syndrome 
[84, 85], and SLE [86] have increased plasmablast number, indicating their expan-
sion could be the result of inflammatory conditions. In 2019, Arbore et al. further 
reported that microRNA-155 (miR-155) plays an important role in the survival and 
proliferation of plasmablast B cells [87].

5.2.2.5  Granzyme B (GrB+) Bregs
Granzyme B–expressing Bregs are known to display the characteristic phenotype of 
CD19+CD38+CD1d+IgM+CD147+ [88]. Expression of Granzyme B on Bregs (GrB+ 
Bregs) mediates their inhibitory effect on T cells by suppressing their proliferation 
and inducing apoptosis. In various inflammatory conditions such as SLE [89] and in 
acute viral infections [90], the percentage of GrB+ Bregs is relatively high. Peripheral 
B cells stimulated in the presence of IL-21 are reported to produce and secrete 
GrB. These cells mediate their suppressive function by repressing T cell prolifera-
tion, partly via downregulation of the TCR zeta chain, thereby promoting T cell 
apoptosis [88]. In the case of RA, the proportion of GrB+ Bregs is significantly 
reduced due to the lowered expression of IL-21R, which in turn impairs the negative 
regulation of Th1/Th17 by GrB+ Bregs [91], suggesting that impaired GrB+ Bregs 
are associated with RA pathogenesis.

5.2.2.6  iBregs (Induced Bregs)
B cells like other immunosuppressive cells differentiate into induced Breg 
(iBreg) cells when subjected to certain stimuli and express indoleamine 2,3-diox-
ygenase (IDO) and TGFβ. T cells expressing cytotoxic T lymphocyte–associated 
protein 4 (CTLA-4) enhance the induction of iBregs, which then convert T cells 
into TGF-β- and IL-10-producing Tregs, thereby modulating various immune 
responses [92].

5.2.2.7  IgA+ Bregs
This subset of Bregs has been identified recently by Fehres et  al. in 2019. They 
described that overexpression of APRIL (A Proliferation-Inducing Ligand) instead 
of BAFF induces activation of IL-10+ human Bregs that further repress inflammatory 
immune reactions. These APRIL-induced IgA+ Bregs suppress the effector function 
of T cells and macrophages and induce Tregs via IL-10 and PD-L1 expression [93]. 
These findings collectively suggest the importance of the novel APRIL- induced Breg 
subset with IgA+ phenotype, both in the immunopathology and homeostasis of 
immunological reactions. In colorectal cancer patients, a higher proportion of IgA+ 
Bregs was observed at the tumor site due to lowered expression of microRNA15A 
(miRNA15A) and microRNA16–1 (miRNA16–1). These microRNAs exhibit the 
ability to regulate proliferation, drug resistance, and apoptosis. These studies thus 
concluded that microRNAs and IgA+ Bregs are negatively correlated and that a lower 
level of microRNAs along with higher proportion of IgA+ Bregs reduces the survival 
rates in cancer patients [94].
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5.3  Bregs in Health and Diseases

The discovery of various defined subsets of Bregs has now compelled researchers to 
revisit the understanding of B cell biology in the context of various immune- 
mediated diseases. Vaccines have been ideally responsible for eradicating several 
diseases via the specific activation of B cells. Similarly, cancer immunotherapies 
demonstrate their course of action via production of different B cells. Moreover, B 
cell deficiencies lead to various devastating impacts on health and immunity. It is 
now well established that B lymphocytes produce antibodies and are associated 
with various immunomodulatory properties. Bregs are now extensively studied for 
their novel immune-regulatory roles, as mice deprived of B cells are reported to 
demonstrate higher incidences of immune-related disorders. Bregs are known to 
produce various cytokines and immunomodulatory factors responsible for proper 
functioning of the host immune system [95]. A cohort study indicated that targeted 
depletion of B cell populations serves as a treatment in autoantibody-mediated auto-
immune disorders such as SLE [96]. Thus, Bregs undoubtedly play an important 
role in host pathology, thereby opening Pandora’s Box in harnessing the potential of 
Bregs in mediating health. In the following sections, we focus on the role of Bregs 
in selected diseases/pathologies.

5.3.1  Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disorder occurring due to T and B cell 
hyperactivation, leading to demyelination and axonal damage in the central nervous 
system (CNS). Apart from the role of B cells as pathogenic cells, they also modulate 
immune responses in MS. IL-10-producing Bregs were first observed in MS patients 
infected with helminthes; these Bregs were found to suppress the proliferation 
and IFN-γ production in T cells in vitro [97]. The role of Bregs in MS was further 
substantiated by diminished levels of IL-10 production in MS patients. In relapsing- 
remitting MS patients, a significantly reduced number of IL-10-producing naïve 
Bregs were observed compared to that in the controls [98]. Further, treatment of MS 
patients with IFN-β, fingolimod, or alemtuzumab is reported to increase the number 
and function of Bregs [99, 100]. In EAE, one of the most widely studied animal 
model of MS, the importance of Bregs in alleviating EAE progression was recently 
illustrated [52, 58, 101, 102]. The suppressive functioning of Bregs involves binding 
to the BCR co-receptor CD19, which plays an inhibitory role in the development of 
EAE by modulating the Th1/Th2 cytokine balance [103]. Fillatreau et al. found that 
B-cell-depleted mice have a persistent type I immune response in EAE and that 
their recovery was dependent on myelin oligodendrocyte glycoprotein (MOG)-
specific IL-10-producing B cells [3]. Further studies indicate that Bregs with the 
CD1dhiCD5+ phenotype are effective in inhibiting EAE progression. CD1dhiCD5+ 
Bregs possess highly decisive immunomodulatory properties in controlling the 
pathogenesis of the initial and late phase of EAE [52, 58]. Further, depletion of 
CD20+ B cell enhances the pathogenesis of EAE.  This was evident from a 
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simultaneous increase in the expression of various inflammatory cytokines in the 
CNS and an increased number of autoreactive CD4+ T cells due to absence of the 
IL-10- producing CD1hiCD5+ Bregs subset [52, 58].

5.3.2  Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is a highly deteriorating inflammatory condition 
of the intestine, usually represented by Crohn’s disease (CD) and ulcerative colitis 
(UC) [104, 105]. Recently, an alarming rise in the prevalence and incidence of IBD 
has been observed globally [105]. Numerous studies have reported the functions of 
Bregs in regulating intestinal inflammation. Mizoguchi et al. [106] credited B cells 
and autoantibody production as important factors in protecting T cell receptor 
(TCR) α chain-deficient (TCRα−/−) mice, which are highly susceptible to develop 
chronic colitis. They showed that CD1+ B cells producing higher levels of IL-10 
upon induction in the gut-associated lymphoid tissues in TCRα−/− mice reduced the 
intestinal inflammation and disease incidence [4]. IL-10-producing Bregs have now 
been linked with downregulating the inflammatory cascade associated with IL-1 
and signal transducer and activator of transcription 3 (STAT3) without tweaking 
T cell responses. Wei et al. demonstrated that adoptive transfer of B cells from 
mesenteric lymph nodes could repress IBD by enhancing the Tregs population 
[107, 108]. A numerical (number/percentage of Bregs) defect in IL-10-producing 
Bregs has also been described in patients with both CD and UC [109].

5.3.3  Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is designated as a systemic multigene autoim-
mune disorder characterized by higher production of autoantibodies with simulta-
neous deposition of immune complexes, resulting in tissue inflammation and 
damage to the skin, kidneys, and joints. This phenomenon results in proteinuria and 
large-scale renal tubule inflammation (glomerulonephritis), which eventually affects 
the immune system [110, 111]. Both B- and T-cell abnormalities have been found to 
be responsible for the occurrence of SLE in mammals [112]. SLE-affected individu-
als usually show a reduced number as well as decreased functional activity of circu-
lating Bregs. This defect usually arises as immature B cells (CD19+CD24hiCD38hi) 
fail to differentiate into Bregs [20, 68, 113]. Various mouse models have been iden-
tified to study the role of regulatory B cells in spontaneous lupus. Recently two 
well-defined models, New Zealand Black (NZB) × New Zealand White (NZW) F1 
hybrid (NZB/W) mice and MRL/lpr mice, have been used to investigate the inhibi-
tory role of Bregs in regulating the severity of SLE [59, 112]. Depletion of Bregs in 
infant mice resulted in higher severity of SLE, whereas deletion of Bregs from adult 
mice did not affect SLE progression. Thus, Bregs have been found as predominantly 
effective during the initiation phase of SLE rather than during disease progression 
[59, 112]. Additionally, the higher therapeutic interventions of Bregs have come 
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into play due to their role in enhancing the number of Tregs after the transfer of 
splenic CD1dhi CD5+ B cells from wild-type NZB/W F1 mice to CD19 −/− NZB/W F1 
[95]. Blair et al. further observed that anti-CD40-induced T2 Breg cells significantly 
improved the survival rate in MPL/lpr mice via higher expression of IL-10. 
Collectively, these findings indicate that T2-MZP B cells as well as B10 cells effec-
tively help in protecting mice from severe SLE [21].

5.3.4  Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune disease with a worldwide 
prevalence of 0.3–1%. It is responsible for increased societal dependency with 
simultaneous reduction of mobility and working ability [114]. RA is characterized 
by autoimmune inflammatory responses at synovial membranes and joint capsules, 
resulting in significant morbidity and mortality due to synovial proliferation, carti-
laginous injury, and bone erosion [115]. B cells produce various factors including 
autoantibodies like anti-citrullinated protein antibodies (ACPAs) and rheumatoid 
factor (RF) that are responsible for severe disease activity in RA [116]. Moreover, 
reduced numbers of Bregs such as IL-10-producing Bregs, CD19+TIM-1+IL-10+ 
Bregs, CD19+CD5+CD1dhi B cells, and CD19+CD5+CD1d+IL-10+ Bregs were 
observed in RA patients compared to those in healthy controls upon stimulation 
with CpG or LPS along with phorbol myristate acetate and ionomycin [117, 118]. 
Further, the function of Bregs was found to be impaired in RA. One study demon-
strated that CD24hiCD38hi Breg cells from healthy individuals inhibited Th1 and 
Th17 differentiation and favored the conversion of CD4+CD25− T cells to Tregs via 
IL-10 expression. In contrast, CD19+CD24hiCD38hi cells from RA patients were 
unable to reduce Th17 development and induce Tregs differentiation [70]. In 2017, 
Banko et al. showed that CD19+CD27+IL-10+ Bregs are significantly reduced in RA 
patients compared to those in the controls and that the existing Bregs showed a 
reduced ability to suppress IFN-γ production by T helper cells. Breg-deficient mice 
demonstrate higher incidences of autoimmune arthritic conditions due to enhanced 
induction of Th1 and Th17 cells along with simultaneous suppression of Treg cells 
[113]. Bregs have thus been found instrumental in suppressing inflammation via 
restoring or modulating the Th1/Th2 balance in various T-cell-mediated autoim-
mune diseases such as EAE and RA [113].

5.3.5  Type 1 Diabetes

Type 1 diabetes (T1D) is an autoimmune disease caused by the obliteration of 
insulin- producing pancreatic β cells mediated by CD4+ and CD8+ T cells [119]. 
Onset of T1D usually occurs around 13–15  weeks of age in non-obese diabetic 
(NOD) mice, a model of human T1D.  The prevalence of T1D in NOD mice is 
higher in females with about 80% females and 20% males affected by this disease 
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by 30 weeks [120]. B cells are particularly found to be responsible for the develop-
ment of pathogenesis of T1D. B cell penetration into the pancreatic islets of NOD 
mice results in selective propagation of T cells within lymphoid structures, leading 
to an increased number of autoreactive B cells [121]. Treatment of 5-week-old NOD 
female mice with anti-CD20 mAbs was found to deplete 95% of B cells, thereby 
arresting insulitis; however, at 15 weeks, the same treatment was inefficient to hinder 
the progression of T1D [8, 122]. Grey et al. found that the increased population of 
CD4+CD25+Foxp3+ Treg cells due to B cell depletion reduced the occurrence of dia-
betes [123]. Smith and Tedder further postulated that B-cell-depleted NOD mice 
remained free from diabetes even after reconstitution with B cells [124]. Among vari-
ous types of B cells, IL-10-expressing B cells have been primarily found to be respon-
sible for decreasing the pathogenicity of insulitis and reducing T1D incidence. 
Simultaneously, various Th1 immune-related responses were curbed, leading to the 
diversion of CD4+ T cells toward the Th2 phenotype upon introduction of activated B 
cells in pre-diabetic NOD mice [125]. Tian and colleagues further established that 
LPS-activated B cells mediate apoptosis of diabetogenic Th1 cells in NOD mice via 
expression of FasL and secretion of TGF-β [24]. These findings provide new insights 
into treating human T1DM via targeting the T cell-B cell interaction. Reduced num-
bers of IL-10-producing Bregs have been reported in patients with T1D [126]. There 
is substantial evidence that Bregs are either insufficient in number and/or functionally 
compromised in autoimmune diseases. Thus, further studies are needed to understand 
their mechanisms of action in these diseases.

5.3.6  Infectious Diseases

The role of B cells in infectious diseases has been studied extensively. In contrast, the 
role of Bregs in intracellular infections is unclear. Studies on Bregs in infections will 
uncover the valuable targets/potent markers in developing therapeutic interventions 
to treat various infectious diseases. Recent studies have shown that successful treat-
ment of Mycobacterium tuberculosis infection induces Bregs with the ability to 
express FasL and IL-5RA in TB patients. Thus, these molecules could be potentially 
utilized as indicators of monitoring treatment responses during infections [127, 128]. 
Various studies have demonstrated the suppressive role of Bregs in chronic hepatitis 
B virus infection. Das et al. [129] first demonstrated that Bregs are responsible for 
regulating antigen-specific CD8+ T cells in hepatitis B virus infection. They also 
found that inhibition of IL-10 may reestablish HBV-specific CD8+ T cells in vitro. 
Various studies have reported that in HIV infection, Bregs impaired T cells via 
expression of IL-10 and programmed death (PD)-L1, contributing to immune dys-
function [130]. In 2014, Jiao et al. found that the frequency of Bregs in HIV patients 
was negatively correlated with the CD4+ T cell count but was positively correlated 
with the viral load. Supporting this, it is also observed that following anti-retroviral 
treatment, the frequency of Bregs was decreased along with a concomitant step-wise 
increase in the CD4+ T cell count.
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5.3.7  Allergy and Asthma

Bregs also exert protection against allergic airway inflammation [131]. Through 
antigen- specific/non-specific immunomodulatory mechanisms, it is apparent that 
Bregs demonstrate allergen tolerance and contribute to suppress allergic diseases. 
Allergic inflammation is reported to be suppressed by IL-10-producing Bregs and 
involves a delicate balance between IL-10 induced parasite responses and detri-
mental IL-4-mediated allergic responses [132]. Br1 and Br3 cells increase in 
response to casein in milk-tolerant individuals [133] but not in milk-allergic indi-
viduals. Thus, both Br1 and Br3 cell types are critical for immune tolerance in 
non-IgE-mediated food allergies related to atopic dermatitis. Patients with aller-
gic asthma and allergic rhinitis have a decreased number of IL-10-producing 
CD24hiCD27+ Bregs [134]. In a similar manner, beekeepers also develop tolerance 
against bee venom allergen, i.e., Phospholipase Az (PLAz)–specific to BR1 cells 
producing IgG4 antibodies by suppressing T cell responses in an IL-10-dependent 
manner [71, 135]. In allergic asthma, treatment with oral corticosteroids (OCS) 
significantly affects the frequency of Bregs as well as their ability to express 
IL-10 in a Breg subset–specific manner [136].

5.3.8  Osteoporosis

Osteoporosis represents one of the most common bone loss conditions, leading to 
higher fragility and bone fractures often related to advanced age and post- menopausal 
conditions [137, 138]. Osteoporosis is often a neglected disease with more than 
200 million affected individuals worldwide, thus also referred as a “silent killer” [139, 
140]. In the bone marrow, B cells are a major source of the osteoclastogenesis inhibi-
tor osteoprotegerin (OPG), in the presence of activated T cells signaled by 
CD40L-CD40 interaction on B cells. Moreover, a CD40L-CD40-deficient mice 
showed reduced bone mass compared to the control mice. B cells also express 
RANKL along with OPG, which in the long run affects bone physiology. Furthermore, 
mice with B cell deficiency show suppressed OPG production and high prevalence of 
osteoporosis [141]. Bregs suppress various proinflammatory cytokines such as IL-1 
and TNF-α, which are osteoclastogenic in nature, therefore leading to enhanced bone 
loss. The ratio of Th1/Th2 is an important parameter defining bone strength [142], 
including the rate of bone resorption and the resulting bone loss. Moreover, several 
subtypes of Bregs have now been reported with the suppression of Th1-, Th2-, or 
Th17-mediated autoimmune responses with a subsequent increase in Foxp3+ Treg 
cells along with conversion of effector T cells into Tr1 cells (CD4+ Foxp3+IL-10+ Treg 
1 cells). Bregs have also been observed to suppress the expression of Th17 cells [59, 
109], which are responsible for enhanced osteoclastogenesis and bone loss [142]. 
Recent observations (unpublished) from our lab clearly demonstrate the role of 
CD19hiCD1dhiCD5hiIL-10hi Bregs in modulating bone health. Thus, further research is 
needed to establish the precise role of Bregs in regulating bone health.
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5.4  Therapeutic Potential of Bregs: From Bench to Bedside

The present global scenario arising from various studies using experimental mod-
els and human disorders validate the vital role of Bregs in several diseases. 
Together, these studies indicate that Bregs have the potential to modulate a number 
of immune pathologies. Tedder et al. demonstrated that Bregs are involved in auto-
immune responses and also provide protection to host tissues during the immuno-
pathogenesis of infectious diseases [143]. More importantly, understanding the 
basic principle underlying the induction of Bregs will help in tweaking cellular 
tolerance and amend the influence of disease. As a small number of Bregs are inef-
ficient in inhibiting inflammation, mechanisms that can enhance both the number 
and effector functions of Bregs can result in enhanced immune-suppressive func-
tions. In the context of immunological conditions such as autoimmunity and trans-
plantation, long-term usage of immunosuppressive drugs increases the likelihood 
of life-threatening infections. In certain conditions such as during graft transplan-
tation, autoimmune diseases, and so on, expansion of the immunosuppressive 
Bregs population is needed. Thus, strategies that can be exploited by therapeuti-
cally targeting Bregs can open new avenues in treating various immune-mediated 
diseases such as the following: (a) ex vivo expansion of Bregs: stimulation of B 
cells in patient-derived PBMCs, leading to expansion of Bregs, followed by adop-
tive transfer of Bregs sorted by FACS may suppress the inflammation and re-induce 
tolerance. (b) in vivo modulation of Bregs for expansion: stimuli that can shift the 
differentiation of B cells toward immunosuppressive regulatory B cells. Some evi-
dence suggest that pro-inflammatory cytokines such as B cell–activating factor 
(BAFF), IL-1β, IL-6, IL-21, IFN-α, and IFN- γ [23, 68] are the key cytokines that 
expand the Bregs population upon exposure. Interestingly, in arthritic mice, the gut 
microbiota has the potential to induce the expression of IL-1β and IL-6, which 
further promote Bregs differentiation and production of IL-10 cytokine [23]. (c) 
Depletion of Bregs: B cell depletion therapies (viz. rituximab), usage of targeted B 
cell therapies, that can target a specific subtype of B cells is more advantageous 
than total B cell depletion. Thus, further in-depth studies are required to develop 
Breg- dependent immunotherapies and to enhance their applications in treating 
various immune disorders and pathologies.
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Abstract
Different types of T effector cells function centrally in the immune-regulatory 
network, which acts as a line of defense for the body and elicits immune response 
during any diseased condition. At the molecular level, this functioning is main-
tained by an intricately designed network of signaling and metabolic pathways 
that function via multiple cross-talks to regulate complex immune responses dur-
ing different antigenic challenges. These pathways regulate phenomena such as 
quiescence exit of naïve T cells, their activation, and differentiation into different 
effector T cells. Signaling properties of these T cells and their response to differ-
ent cytokine signals have been well studied. Immune-metabolism is compara-
tively a new area of research that has been identified as driver for immune 
response. However, to gain a holistic understanding of the activation and differ-
entiation of naïve T cells into the subtypes, the integration of signaling and meta-
bolic pathway information is a prerequisite. The bidirectional mode of regulation 
between these cross-talking signaling and metabolic pathways governs the dif-
ferentiation patterns. In this chapter, we review the activation and differentiation 
pattern of naïve T cells from both signaling and metabolic perspectives and also 
look into their cross-talk to understand their mutual regulation during differentia-
tion into effector T cells.
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6.1  Introduction

The immune system forms the sentinel of the body that protects it from infectious 
disease and cancer. The adaptive immune system, composed mainly of the T and B 
lymphocytes, is responsible for maintaining this defense mechanism of the body as 
it helps to generate immune responses specific to the type of antigenic challenge that 
the body encounters [1]. The helper T cells (TH) form the central orchestrators of the 
entire immune-regulatory network. They have been known to have an essential role 
in the recognition of the antigen when presented on the surface of the antigen- 
presenting cells and secrete cytokines that aid in the proliferation of the cytotoxic 
T cells and B cells, thereby playing an active role in stimulating both the humoral and 
the cell-mediated immunity [2]. The effector functions of these immune systems are 
mediated mainly by the cytokines and other microbicidal molecules secreted by 
them as a result of the activation of complex biochemical signaling pathways inside 
the immune cells. The TH cells themselves produce a high amount of interferon and 
tumor necrosis factor via TCR and co-receptor mediated pathways that mediates 
apoptosis of infected and cancerous cells [3, 4].

The differentiation of the helper T cells is primarily influenced by the changes in 
the micro-environmental conditions that favor the proliferation of a certain subset of 
T cells that leads to disruption of the balance and ratio of the normal proportions of 
T-cell subsets present in a healthy individual [5, 6].

Naive T cells circulate in the body surveying for antigens. The metabolic activ-
ity of these cells is maintained low by allowing low uptake of glucose enough to 
fuel the TCA cycle and OXPHOS to produce ATP [7]. These cells are kept in a 
quiescent state that promotes their survival and persistence. On antigen stimula-
tion, the metabolism of T cells is triggered via increased uptake of glucose, which 
allows quiescence exit and initiates clonal expansion and effector differentiation 
primarily by mTOR-mediated signaling responses [8]. Initially, the focus of stud-
ies remained on the immune receptors and transcriptional regulators involved in 
T-cell quiescence and activation, but recent findings highlight cell metabolism as 
a crucial regulator of these processes [9–12]. Receptor-induced signaling and 
metabolic networks in naïve T cells are mutually regulated by each other depend-
ing on the micro- environmental cues obtained by the cell that also influence qui-
escence exit. Here we will discuss the bidirectional communication of signaling 
and metabolic pathways that promotes proliferation, quiescence exit, and activa-
tion of naïve T cells and functioning of T cells upon activation. We will take into 
account the different signaling and metabolic events and their cross-talks that lead 
to differentiation of naïve T cells into TH1, TH2, TH17, Treg, or Tfh effector cells. 
Understanding the cross-talks between T-cell signaling and metabolism under 
different environmental cues will be vital for understanding the differentiation 
patterns of naïve T cells during different pathogenic conditions. This will provide 
better prospects of developing novel approaches to modulate protective and 
pathological T-cell responses in human diseases.
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6.2  Signaling and Metabolic Pathways Involved 
in Activation of Naïve T Cell

The activation of TH cell is mediated by a complex chain of signaling events that 
involve the activation of distinct co-stimulators and co-inhibitors present on the 
surface of the lymphocyte. The interaction between the antigen-bound major histo-
compatibility complex (MHC) on the antigen-presenting cells (APCs) and the T-cell 
receptor (TCR) on TH cells triggers the TCR-mediated signaling pathway. The phos-
phorylation of the LAT signalosome by LCK sends signal to three major cell- 
signaling pathways, viz. NFκB, MAPK, and the calcium-mediated NFAT pathways 
[13]. Along with the TCR, the T cell also expresses several other co-receptor mol-
ecules that can be classified into two major functional groups. The first group con-
sists of co-signaling receptors that have an immunoglobulin (Ig)-like fold in their 
ectodomains, such as CTLA-4, CD28, PD1, and BTLA [14]. The other co-signaling 
group belongs to the tumor necrosis factor receptor (TNFR) superfamily and 
includes DR3, OX40, 41BB, CD27, CD30, and HVEM [14]. Together with the TCR 
activation, a second signal from the co-stimulatory signal emanating from B7-CD28 
interaction is also necessary for the T-cell activation. This is called the “two signal 
hypothesis” [13]. The B7 molecule present on the APC also binds with the CTLA-4 
receptor of the T cell after the clearance of the antigen. This induces T-cell anergy 
after the antigen is cleared from the system and the T-cell activation is no longer 
required. The other co-receptor signaling pathway influences the type of cytokine 
expressed and regulates the T-cell differentiation pattern. Experimental studies have 
shown CD40-L, expressed on the surface of activated T cells, induces the APC to 
produce IL-12, thereby stimulating the TH cells to differentiate into the TH1 cells 
[15, 16]. On the other hand, the TRAF2-mediated OX40 signaling pathway contrib-
utes to long-term survival of TH cells [17]. OX40 has been implicated in the develop-
ment of memory T cells, clonal expansion, and differentiation. It also mediates 
suppression of the Treg cells [17, 18]. The negative regulators of T-cell activation are 
required to maintain homeostasis and deactivate the T cells after the antigen is cleared 
out. This is mediated by the PD1-PDL axis that provides co-inhibitory signal to the 
T-cell activation. The T cell also expresses CD45, a phosphatase, that de- phophorylates 
the carboxyl-terminal tyrosine of p56lck and p59fyn that aids T-cell activation [19]. 
Apart from these, the T cells express several other co-receptors that serve to regulate 
the cytokine expression and differentiation of the cell [20].

The calcium pathway also plays a major role in the proliferation of the TH cell 
activation [21]. The influx of Ca2+ ions from the CRAC channels leads to the activa-
tion of the NFAT (Nuclear Factor of Activated T cell) transcription factor that acts as 
the master regulator of T-cell activation and T-cell anergy [22]. The activation of the 
calcium pathway in the T cell is initiated by the binding of the TCR with an antigenic 
peptide presented on MHC complexes of the APC that induces activation of PLC-γ 
that cleaves PIP2 into IP3 and DAG. This IP3 now activates the IP3- receptors located 
on the endoplasmic reticulum membranes inside the T cell, which causes the release 
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of intracellular stores of calcium, leading to a transient elevation in cytoplasmic 
calcium level. This activates the CRAC channels on the T-cell membrane that allows an 
inward flux of calcium from the extracellular environment. This triggers the calcium-
mediated calmodulin-calcineurin pathway, which leads to the de-phosphorylation 
and nuclear translocation of NFAT proteins where it can cooperate with AP-1 com-
plexes induced by co-stimulatory pathways. The NFAT/AP-1 complexes bind to the 
sites in the promoters of many cytokine genes to activate their transcription to medi-
ate sustained T-cell activation and survival. In the absence of co-stimulation or in the 
presence of anergizing stimuli, sustained increases in intracellular calcium concen-
tration activate NFAT proteins. However, in the absence of concomitant AP-1 activa-
tion, due to lack of co-stimulatory signals, NFAT proteins dimerize and translocate 
into the nucleus, inducing the expression of anergy- inducing genes that include 
E3-ubiquitin ligases, such as Itch, Grail, and Cbl-b that is known to ubiquitinate and 
inactivate the TCR signalosome and the co-stimulatory CD40-ligand, thereby desta-
bilizing the immunological synapse in the anergic T cell. On the other hand, 
the calcium/NFAT-dependent activation of the Ikaros transcription factor in anergic 
T cells leads to the epigenetic changes in the IL-2 promoter by the recruitment of 
HDACs and other chromatin-modifying complexes, which results in stable silencing 
of the IL-2 gene expression [22].

Metabolic regulation of T cell is another aspect that determines activation and 
differentiation of naïve T cells and their functioning upon activation. Naïve T cells 
utilize glucose and glutamine metabolism for activation, and activation signals 
increase glucose and glutamine uptake by T cells through GLUT1 and ASCT2, 
respectively [23, 24]. Thus, both signaling and metabolism cooperate in a bidirec-
tional manner to influence T-cell activation and differentiation. On encountering 
pathogenic antigens, a cascade of TCR signals and co-stimulatory signals are initi-
ated, which leads to quiescence exit in naïve T cells. The first signal that initiates 
quiescence exit is the transduction of TCR signaling via PI3K/AKT/mTOR path-
way, which induces glycolysis in the naïve T cells [25]. This initiation is marked by 
a trigger in the metabolism of T cells that suffices the increasing lipid, nucleotide, 
and amino acid requirement of differentiating cells. During quiescence exit, T cells 
produce lactate to sustain glycolysis. Lactate is also imported into cells through the 
monocarboxylate transporters and converted into pyruvate by lactate dehydroge-
nase A (LDHA). This reaction limits glycolytic programming and proliferation in 
T cells, potentially owing to the attenuated generation of glycolytic intermediates 
such as PEP that sustain glycolysis and biosynthesis reactions [26].

Glutamine metabolism regulates T-cell activation in different ways. It has an 
important role in determining differentiation to TH1 and TH17 cells. TH17 cells utilize 
both glucose and glutamine to fuel the TCA cycle and OXPHOS, which otherwise 
is optional for other T effector cells [27]. It regulates leucine uptake via regulation 
of LAT1-CD98 and together with leucine activates mTORC1 signaling [28]. Other 
amino acid metabolisms like tryptophan and arginine metabolism and their inter-
mediate metabolites such as kynurenine and ornithine differentially regulate T-cell 
survival, apoptosis, and proliferation [29–31].
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Glucose and glutamine metabolism also induce lipid metabolism via mTORC1- 
dependent regulation of AMPK [32]. These pathways are metabolically connected 
to the TCA cycle and OXPHOS, which also affect the redox and oxygen-sensing 
signals in T cells. The conversion of pyruvate to lactate via NAD+-NADH-dependent 
LDH reaction regulates redox signals, and impaired oxygen-sensing machinery of 
OXPHOS results in the formation of ROS, which induces ROS-dependent signaling 
that promotes IL-2 productions and induces T-cell proliferation by activating NFAT 
transcription factor [33].

6.3  TH-Cell Differentiation and Diversity

The TH cells display high plasticity that helps them to differentiate into specialized 
TH cells according to the type of the antigenic challenge and the micro- environmental 
conditions (Fig. 6.1). The early events of the T-cell activation play a major role in 
the determination of the pattern of differentiation of the naïve T cell. The micro- 
environmental cues, in the form of cytokines, activate the signaling pathways of the 
TH cells that eventually lead to the changes at the gene-regulatory levels [34]. The 
selective activation of specific transcription factors mediates the differentiation of 
the naïve cells into specialized CD4+ TH effector cells, viz. TH1, TH2, TH17, etc. 
(Table 6.1) [35]. Additionally, another type of CD4+ TH cell called the regulatory T 
cells (iTreg) has a role in maintaining the TH cell homeostasis.

The mechanism of T-cell differentiation is governed initially by the strength of the 
stimulus that the TCR receives from the APC. The strength of stimulus results in dif-
ferential regulation of phosphatidylinositols that triggers different signaling 

Fig. 6.1 Schematic 
diagram of signature 
signaling factors, 
cytokines, metabolites, and 
metabolic paths, which 
dictate TH cell 
differentiation, 
proliferation, and effector 
function
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pathways downstream. It has been observed that while a weak TCR signal generates 
a high level of PIP2 and lower levels of PIP3, which is required for the activation of 
the focal adhesion kinase and phosphorylation of AKTThr308, stronger signal favors 
the activation of mTORC2, and as a result, elevated level of PIP3 and reduced PIP2 
are generated [36]. In vitro experiments have revealed that a stimulus of a lower 
strength induces the expression of the GATA-3 transcription factor, the master regu-
lator of TH2 cells. Simultaneously, the expression of the IL-2 cytokine activates 
STAT5 that synergizes with GATA-3 to transcribe the IL-4 gene that eventually leads 
to the differentiation of the naïve cell into the TH2 subtype [37]. Recent advances in 
the field also divulged that during viral infection low TCR signals may also favor the 
formation of Tfh and memory T cells. On the other hand, a stronger stimulus favors 
the activation of the T-bet transcription factor that helps in the differentiation into the 
TH1 subtype and triggers the production of IFN-γ and IL12 cytokines. The differen-
tiation of naive CD4+ T cells into TH17 cells is induced by TGF-β/IL-6 in combination 
with TCR stimulation. This triggers the production of IL-23R, which induces the 
transcription factor RORγt, IL-17, and IL-21. The STAT-3 protein plays an important 
role in the production of the TH17 effector molecules and requires the activation of the 
ICOS co-stimulatory pathway. However, under the TH17-inducing conditions, the 
presence of IL2/STAT5 induces the expression of the Foxp3 transcription factor that 
leads to the differentiation of the naïve cells into iTreg cells. The strength of TCR 
stimulus also plays a role in the TH17/iTreg determination process, where it has been 
observed that a weak stimulus favors the differentiation into iTreg cells that is known 
to have a role in immune- suppression [37].

The effect of signaling in TH cell differentiation is further augmented by the 
action of metabolism within these cells. On activation by the upstream TCR and 
co-stimulatory signals, metabolic pathways trigger the process of T-cell activation 
with the initiation of glycolysis in most of the cases [38]. The utilization of glucose 
is maintained nominal in naïve T cells, just to suffice ATP requirement enough to 
maintain survival during quiescence [39]. However, with the transduction of TCR 
signals via mTORC1/2 signaling, the rate of glucose utilization increases, leading to 
quiescence exit and activation of TH cells [8, 38]. Upon activation, differentiation 
patterns are regulated by differential expression of metabolic pathways. For exam-
ple, glutamine metabolism along with leucine induces proliferation and differentia-
tion of TH1 and TH17 cells [27, 28]. In addition, αKG promotes initial programming 
in TH1 cells [40]. Further, glutaminolysis results in the formation of glutathione, 
which is required for TH17 differentiation [41]. An increase in glucose metabolism 
induces lipid metabolism to promote TH2 differentiation [42]. Inhibition of glycoly-
sis and promotion of OXPHOS along with upregulated lipid and mevalonate metab-
olism induce Treg proliferation and differentiation [43, 44]. Intermediate metabolites 
of metabolic pathways, in return, regulate signaling processes as well. For example, 
tryptophan intermediate, kynurenine, and arginine intermediate ornithine regulate 
signaling processes in T cells, which have been discussed in the next section.

Each of the TH sub-type has a specific effector function to perform [34, 35, 
37, 45]. A balance between all the TH cell subtypes is necessary for the proper func-
tioning of the immune system. The effector molecules, in the form of interleukins, 
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interferons, tumor necrosis factor, etc., produced by these diverse groups of immune 
cells, maintain the integrity of the immune-regulatory network (Table 6.1). However, 
during any disease condition, this defense mechanism gets subdued. Changes in the 
micro-environmental conditions lead to alterations in the biochemical reaction net-
work that disrupts the balance between the effector cell populations that favors the 
progression of the disease. This immune-suppression is observed very frequently in 
the cases of chronic infections (e.g., chronic Leishmania infection) and cancer.

6.4  Signaling and Metabolic Cross-Talk Mediated by mTOR 
Regulate Differentiation

Activation of naïve T cells is initiated with the tonic signals generated by T-cell recep-
tor (TCR) on their interactions with self-peptides on MHC molecules. There is an intri-
cate design of the signaling and metabolic interactions of these cells, which allow them 
to proliferate and produce effector molecules (Fig. 6.2). Sensitivity toward TCR signal-
ing in the naïve T cells is partially mediated by the mechanistic target of Rapamycin 
complex (mTORC1 and mTORC2) [46]. Peripheral naive T cells circulate in the blood 
and survey antigens. They maintain a low metabolic rate and import a small amount of 
glucose to fuel the TCA cycle and OXPHOS for ATP production [39]. Naive T-cell 
homeostasis is disrupted by the activation of mTOR signaling [47]. The activation of 
mTORC1 signaling enhances glycolytic metabolism in these cells, inducing entry to 
cell cycle and cell growth. The naive T cells, which otherwise remain in a quiescence 
state, are activated by the enhanced glycolytic pathway. Different regulators of mTORC 
affect the process of naive T-cell activation [46].

Fig. 6.2 Cross-talks of signaling and metabolic pathways regulating the activation of the T-bet, 
GATA3, RORγt, and FOXP3 transcription factors that mediate T-cell differentiation
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mTOR signaling is regulated by a set of upstream signaling, which determines 
the formation of mTORC1 and mTORC2 and subsequent signaling. The signal 
induces upon activation of TCR and subsequently the PI3K/Akt pathway [48]. 
Raptor and rictor are the main components of mTORC1 and mTORC2 complexes, 
respectively. mTORC1 signaling is required for differentiation into TH1 and TH17 
effector cells, and an inhibition of mTORC1 has been observed to induce TH2 dif-
ferentiation and prevent TH1 and TH17 differentiation [25]. However, these observa-
tions differ according to the upstream signal received by the complex. Loss of 
tuberous sclerosis complex 1 (TSC1) results in mTORC1 activation [47]. The meta-
bolic activity of naive T cells can also be enhanced by the exposure to IL-2 released 
by activated CD4+ effector cells [49]. Inhibition of mTORC1 by the TSC (Tuberous 
Sclerosis Complex) via Rheb inhibition leads to failure in differentiation into TH1 
and TH17 effector cells [47].

mTORC1 is a master kinase that helps naive T cells to exit quiescence. TCR 
signaling along with costimulatory and IL-2 signals promote the activation of 
mTORC1 during quiescence exit. The magnitude and duration of mTORC1 activity 
likely determine quiescence exit. TCR signals must meet a certain threshold of acti-
vation to induce T-cell proliferation. This threshold is determined by the level of 
mTORC1 activation and expression of IRF4 and c-Myc [50, 51] that regulate ana-
bolic and mitochondrial metabolism. mTORC1 also regulates sterol regulatory 
element-binding proteins (SREBPs) that has a role in metabolic reprogramming in 
naive T cells. Metabolism in turn regulates the activity of mTORC1. Leucine and 
glutamine coordinate with TCR and CD28 signaling to activate mTORC1 and sus-
tain metabolic flux during quiescence exit [27, 28]. T-cell activation demands for 
the biosynthesis of lipids, cholesterol, nucleotides and amino acids in order to main-
tain the increase in metabolic rates of the activated cells. These increased demands 
are facilitated by the upregulation of hexokinase 2 (HK2), which is the rate-limiting 
enzyme for glycolysis [52, 53]. This induces increased utilization of glucose, which 
can also activate mTORC1 and inhibit the activation of AMP-activated protein 
kinase (AMPK) [32, 54]. AMPK induces lipid and cholesterol biosynthesis through 
the mTORC1-dependent upregulation of SREBP1 and SREBP2 [55]. mTORC1 
forms a bridge between signaling and metabolic responses in T cells that senses 
metabolic cues and mediates signaling regulation over metabolic pathways and 
vice-versa. Thus, mTORC1-dependent responses are crucial in determining prolif-
eration, activation, and functioning of T cells.

TCR signaling targets the transcription factor, c-Myc, in an mTORC1-dependent 
manner. It regulates the transcription of metabolic genes critical for T-cell activation. 
c-Myc induces the transcription factor AP4, which maintains the glycolytic tran-
scriptional program initiated by c-Myc to support T-cell population expansion [50]. 
However, c-Myc expression is not continually sustained after T-cell activation [56].

Metabolites also influence T cells in an mTORC1-independent manner. For 
example, post-translational protein modifications by glycolytic, lipid, or mevalonate 
by-products allow receptors, enzymes, and scaffolding proteins to properly posit at 
their sites of activity [57, 58]. In T cells, extracellular ATP, glucose, and glutamine 
modulate AMPK activity to promote T-cell responses against bacteria and viruses 
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[54]. The glucose metabolite PEP regulates the activation of Ca2+−calcineurin–NFAT 
signaling [59]. TCR signaling can be altered by cholesterol esters and cholesterol 
sulfate, which alter TCR clustering or affinity for antigens [60]. Also, N-glycans 
derived from the hexosamine pathway suppress TCR signaling [61].

mTORC2 also contributes to quiescence exit by enhancing glycolytic pathway. 
AKT/mTORC2 represses forkhead box protein O1 (FOXO1) function [62], which 
induces glucose transporter 1 (GLUT1) expression and enhances glycolytic flux 
[63]. Expression of glucose transporters contribute in determining naïve T-cell sur-
vival. IL-7–IL-7R signaling prevents degeneration of quiescent T cells by increas-
ing glucose and amino acid catabolism [64]. Rate or quantity of glucose uptake via 
the GLUT1 receptor may have a role in determining quiescence versus quiescence 
exit as its expression is lower on naive T cells than on activated T cells. During 
quiescence exit, cell growth and clonal proliferation are favored by glucose metabo-
lism upon survival [51].

Duration and strength of TCR signaling mediate both quiescence and activation 
of T cells. However, based on the type of initiation of these signaling cascades, 
i.e., tonic or antigen-driven, TCR signals differ in both duration and strength. In 
antigen- activated T cells, CD28-mediated co-stimulation of TCR signaling induces 
GLUT1 expression to increase glucose uptake [65]. Expression of the glutamine 
transporter ASCT2 and of sodium-coupled neutral amino acid transporters (SNATs) 
increases on TCR and CD28 co-stimulation [23]. Upregulation of SNATs on T-cell 
activation suggests that they also modulate the rate or quantity of glutamine uptake.

Glutamine metabolism plays a crucial role in determining differentiation to TH1 
and TH17 cells. Glutamine affects LAT1–CD98 activity, which promotes leucine 
uptake to induce the proliferation and differentiation of TH1 cells, TH17 cells, and 
effector CD8+ T cells [23, 66]. Glutamine along with leucine activates mTORC1 
and sustains metabolic flux during quiescence exit [28]. Further, utilization of glu-
tamine to generate glutathione via glutaminolysis is essential for T-cell proliferation 
and differentiation into TH17 cells [27]. Glutaminolysis also generates α-ketoglutarate 
(α-KG), which promotes initial programming of TH1 cells. Glutaminolysis also 
affects IL-2 signaling, as it has been observed to suppress IL-2-induced mTORC1 
activation during type 1 inflammation [27]. However, impaired glutaminolysis may 
promote abnormal leucine uptake to increase mTORC1 activation under such 
inflammatory conditions [23, 66]. Thus, glutamine and glutaminolysis have differ-
ent roles during quiescence exit and upon T-cell activation.

During impaired glutaminolysis, the oxidation of pyruvate acts as a crucial 
checkpoint. The mitochondrial pyruvate carrier (MPC) transports pyruvate into the 
mitochondria to fuel the TCA cycle and OXPHOS and depletes it from the cyto-
plasm. The inhibition of MPC favors glycolysis over OXPHOS, particularly when 
glutaminolysis is also impaired. Downregulation of OXPHOS in T cells require 
inhibition of both MPC and glutaminase 1 (GLS 1) [67]. TH17 cells suffice their 
nutrient requirement using both glucose and glutamine, which otherwise is optional 
for other activated T cells. The plausible explanation for this phenomenon is the 
high-level expression of pyruvate dehydrogenase kinase 1 (PDK1) in TH17 cells, 
which prevents conversion of pyruvate to acetyl-CoA in mitochondria [53]. 
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High expression of PDK1 diverts the pyruvate flux away from TCA in TH17 cells, 
and hence, the cell depends on glutamine to fuel the TCA cycle. The regulation of 
PDK1 is not well understood in TH17 cells; however, studies suggest that hypoxia-
inducible factor 1α (HIF1α) might induce PDK1, promoting TH17 cell responses 
[53]. Also, lactate dehydrogenase A (LDHA), which catalyzes lactate formation 
from pyruvate, sustains glycolytic metabolism and promotes interferon-γ (IFNγ) 
expression in activated T cells [68].

Upon activation, amino acids play an important role in the functioning of acti-
vated T cells. Certain amino acids promote quiescence exit and proliferation of 
naïve T cells, whereas others might suppress proliferation and promote quiescence- 
like programs in naïve T cells. Majority of the biomass of activated T cells is made 
by amino acids. Uptake of essential amino acids such as leucine or conditionally 
essential amino acids such as glutamine are taken up by amino acid transporters, 
such as LAT1–CD98 or ASCT2 [23], but non-essential amino acids accumulate in 
T cells due to influx or de novo biosynthesis from glucose or glutamine. Accumulation 
of amino acid intermediates impact the functioning of activated T cells. Accumulation 
of kynurenine, an intermediate of tryptophan metabolism, suppresses T-cell prolif-
eration [30]. Kynurenine accumulation might also result from its uptake through the 
LAT1-CD98 transporters [69]. Ornithine, an arginine intermediate, reduced glucose 
consumption via glycolysis. However, arginine supplementation increases serine 
biosynthesis and OXPHOS [31], which increases T-cell survival and promotes sec-
ondary effector responses.

Balanced redox reactions are one of the prerequisites for T-cell activation [70]. 
The NAD+-NADH-dependent conversion of pyruvate to lactate is a major redox bal-
ancer of T cells. An accumulation of NAD+ increases lysosome biogenesis, which 
can suppress T-cell activation. Mitochondrial reduction of NAD+ levels is utilized to 
promote aspartate synthesis, which is necessary for T-cell proliferation [70]. Both 
NAD+ and ATP cooperatively influence T-cell responses. Extracellular ATP aug-
ments quiescence exit and T-cell proliferation via the expression of purinergic recep-
tor P2XY, which induces IL-2 production [71]. Conversely extracellular NAD+ 
promotes T-cell death by increasing the ART2-dependent activation of P2XY [72].

Oxygen sensing by T cells also regulates their effector functioning [73]. OXPHOS, 
which requires oxygen, is essential for both T-cell quiescence and activation [70, 74]. 
OXPHOS generates ROS, which stimulates IL-2 production and promotes T-cell pro-
liferation by activating nuclear factor of activated T-cell (NFAT) transcription factors 
[75]. Under pathological conditions, increased levels of mitochondria- derived ROS can 
have antagonizing T-cell responses, including TH17 cell differentiation [27, 53].

FOXP3 is an important determinant of Treg differentiation and the Treg cell 
responses and regulated via the metabolic regulation exerted by FOXP3 [76]. It pro-
motes OXPHOS and inhibits glycolysis in Treg cells. Survival and function of these 
cells are reduced by excessive PI3K or mTOR activity as it decreases FOXP3 expres-
sion and increases glycolytic metabolism [77]. Treg cells, upon activation, upregu-
late mTOR signaling, which induces lipid synthesis, mevalonate metabolism, and 
mitochondrial function [78, 79]. These pathways influence activation programs to 
regulate Treg cell function.
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Mitochondria-derived metabolites like acetyl-Coa, succinate, αKG, and 2-hydrox-
yglutarate (2-HG) alter epigenetic programs. Acetyl-CoA induces histone acetyla-
tion, which is permissive for transcription. α-KG promotes the activity of 
demethylases that target DNA or histones, whereas 2-HG antagonizes demethylases 
[80]. Demethylation in turn allows changes in gene transcription associated with 
specific T-cell effector programs. 2-HG accumulation downstream of the von Hippel–
Lindau disease tumor suppressor (VHL)–HIF1α axis in T cells induces changes in 
DNA and histone methylation that increase CD8+ T-cell proliferation [80].

Thus, we observe metabolic regulation of T-cell activation and functioning at dif-
ferent levels. Mitochondria-derived metabolites affect the functioning and/or expres-
sion of various transcription factors through methylation-demythylation, acetylation 
processes or by mitochondria-derived ROS regulations. The effects of glucose metab-
olism in mTOR and c-Myc regulation have been implicated. Metabolites also regulate 
transcription factor activity. For example, transcriptional regulators BAZ1B, PSIP1 
are activated by arginine and lipids or sterols regulate the activities of LXRs, PPARs, 
and SREBPs [81–83]. Further, metabolic processes also regulate processes at post-
transcriptional and translational levels. For example, amino acid deprivation is sensed 
by GCN2 (or EIF2AK4) and leads to inhibition of protein translation by the EIF2α 
pathway, which supposedly leads to suppression of T-cell proliferation [84]. Also, 
GAPDH produced by the glycolytic pathway has been observed to suppress protein 
translational processes [85]. Metabolites also affect the activity of activated T cells by 
the regulation of transporter proteins and complexes. Amino acids like leucine, gluta-
mine, tryptophan, and arginine and the intermediate metabolites generated during the 
biogenesis or catabolism of these amino acids like kynurenine, ornithine, etc., affect 
the functioning of T cells upon activation via the regulation of transporter proteins like 
LAT1-CD98 or ASCT2. To summarize, metabolism can influence the processes of 
T-cell differentiation, activation, and functioning by regulating molecular processes at 
different levels starting from gene and transcription regulation.

6.5  Methodologies to Unwind the Regulations 
of the Immune Response

A comprehensive understanding of the complex regulations underlying the immune 
responses under different environmental conditions, antigenic challenges, strength 
of stimulus, and metabolic demands have challenged the implementation of suc-
cessful immunotherapy. A need to unveil these regulatory mechanisms has driven 
experimental researchers as well as computational biologists to implement different 
omic studies and model the immunome under different antigenic stimulus. In the 
following section, we have taken up examples of the studies of T-cell responses and 
differentiation during infectious diseases (e.g., Leishmaniasis) and cancer that will 
give a clear insight of how the immune responses are altered under specific anti-
genic challenges.
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6.5.1  Immunomics and Enrichment Analysis

Transcriptomic analysis, e.g., microarray, RNAseq, have opened up new avenues of 
research that allows the analysis of gene expression profile of several patient cohorts 
under various disease conditions. While microarray involves detection and quantifi-
cation of gene expression based on the pairing of an mRNA transcript with its probe 
on a chip, RNA-Seq involves direct sequencing of gene transcripts by high- 
throughput sequencing technologies. This enables the RNAseq technique to detect 
novel transcripts as it does not require transcript specific probes as well as confers 
higher specificity and sensitivity for the detection of a wider range of differentially 
expressed genes, allowing detection of genes even with low expression. Following 
the identification of differentially expressed genes, gene ontology (GO) and path-
way enrichment tools enable the identification of the biological processes (BP), 
molecular functions (MF), cellular component (CC), and biochemical pathways 
that are significantly enriched or over-represented in a given scenario. Various 
online tools and web-servers such as DAVID, GeneCodis, Gene Set Enrichment 
Analysis, and Reactome are available freely for performing enrichment analysis 
[86–90].

Researchers have exploited these techniques to unearth the immunome land-
scape in the microenvironment where the spatio-temporal dynamics of 28 different 
immune cell-types (immunome) have been studied using 105 human colorectal can-
cer patient data. Here the immunome was made up of mRNA transcripts specific for 
most innate and adaptive immune cell subpopulations. Using an integrative analy-
sis, it has been elucidated that the densities of T follicular helper (Tfh) cells and 
innate cells increased, whereas most other T-cell densities decreased along with 
tumor progression. However, the Tfh and B cell numbers are inversely correlated 
with the disease progression and recurrence, and CXCL13 and IL21 genes are 
essential for the Tfh/B cell axis that is correlated with higher chances of survival of 
the patient [91, 92].

RNAseq analyses in the case of Leishmaniasis have been performed, that has 
revealed Leishmania species–specific differences in the expression of mammalian 
macrophage genes due to infection [93]. Such analyses have helped in the under-
standing of the changes in immune response generated during infection by unveil-
ing the notable changes induced in the cytokine expression profiles during the 
Leishmania invasion. Experiments using microarray techniques have been used to 
assess the host cell genes and pathways in human dendritic cells associated with 
early Leishmania major infection. The study revealed 728 genes were signifi-
cantly differentially expressed in the infected cells, and molecular signaling path-
way revealed that the type I IFN pathway was significantly enriched. Here it was 
elucidated that L. major induces expression of IRF2, IRF7, and IFIT5, which 
indicates that the regulation of type I IFN-associated signaling pathways is 
responsible for the production of IL-12. However, this is not observed in the case 
of L.donovani [94].
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6.5.2  Computational Methods for the Study of Immune 
Responses

The understanding of intra-cellular and inter-cellular signaling pathways involved 
in the generation of immune responses requires the study of a complex network 
of biochemical pathways under different disease-affected micro-environmental 
conditions. This is an extremely challenging task that can rarely be achieved 
using in vitro or in vivo experimental techniques. In order to gain insight into the 
immune- regulatory modules involved in T-cell functioning as well as study the 
immune- modulatory mechanisms employed by pathogen and the tumor cells, 
computational tools and mathematical modeling approaches have been extremely 
useful in obtaining a systems-level understanding. These have also helped the 
researchers and medical practitioners in the prediction of immunotherapeutic 
strategies and design of treatment protocols. Here we will throw light onto some 
of the most popular tools and techniques used for such studies and also explore a 
few of the mathematical models that have helped us unravel some of the intrigu-
ing problems in immunology.

6.5.2.1  Signaling and Metabolic Pathway Databases
The signaling pathway databases are important sources of information that collate 
pathway data from experimental studies regarding the intracellular signaling path-
ways in different immune cells [95, 96]. The KEGG provides information regarding 
the core TCR-mediated pathway along with a few co-receptor signaling pathways. 
The database also contains the pathways responsible for the TH1, TH2, and TH17 dif-
ferentiation. Another popular database called Reactome provides detailed biochem-
ical reactions involved in each step of the protein–protein interactions involved in 
the T-cell signaling pathway. It also enlists the pathway information related to CD28 
and PD-1 co-signaling pathways. Simultaneously, Reactome forms a very important 
source for cytokine signaling pathways that includes different interleukin families, 
interferons, tumor necrosis factor, and a few growth hormones. A list of few of the 
available databases and the available information in each has been listed down in 
Table 6.2. However, the information regarding the intercellular cross-talks in the 
immune system is lacking in most of these databases that can be extracted through 
a thorough literature survey.

Few databases also provide data regarding the changes in the pathway during 
disease condition. The KEGG database has a sufficient amount of pathway informa-
tion regarding the endocytosis of the Leishmania pathogen as well as the signaling 
events that occurs inside the infected macrophage. BioLegend database contains the 
cancer immune-editing network that consists of the intercellular signaling cross- 
talks governing the immune responses generated during cancer.

For the analysis of these biochemical pathways, the BIOPYDB database also 
provides an integrated platform for performing network analysis, logical steady- 
state analysis, knock-out analysis, etc. It contains detailed information regarding 
each protein involved in the immunological pathways as well as links them to the 
specific diseases associated with them. Apart from the TCR co-receptor-mediated 
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and cytokine pathways, BIOPYDB also contains detailed information about the 
toll-like receptor (TLR) pathways that has an important role in the regulation of 
immune response [97].

With the realization of the importance of immune-metabolism as a decisive 
factor in eliciting immune responses, metabolic databases have started to incorpo-
rate such details into the database structure. Although the advent is very recent and 

Table 6.2 List of a few signaling and metabolic pathway databases containing T-cell-specific 
pathway data and related cytokine pathways

Database

T-cell activation/
differentiation 
pathways/network Cytokine pathways URL of database

Kyoto 
Encyclopedia of 
Genes and 
Genomes (KEGG)

T-cell receptor signaling 
pathway, TH1 and TH2 
cell differentiation,TH17 
cell differentiation

IL-17, TNF, calcium 
signaling pathway

http://www.
genome.jp/kegg/

Reactome TCR-mediated pathway, 
CD28 co-signaling 
pathway

IFN-α/β, IFN- γ, TNF- α, 
IL-1, IL-2, IL-3, 
IL-5,GM-CSF, IL-4, 
IL-13, IL-6, IL-7, IL-10, 
IL-12, IL-17, IL-20 
family cytokines

https://reactome.
org/

Wikipathways TCR-mediated pathway, 
B7-CD28, B7-CTLA4, 
PDL- PD1 pathways

IL-2, IL4, IL-5, IL-7, 
IL-9, IL-11, Type-1 IFN, 
TNF-α pathways

http://www.
wikipathways.org

NCI – Pathway 
Interaction 
Database (PID)

TCR signaling network 
in naïve CD4 cells, 
B7-CD28 signaling 
networks

IL-1, IL-2, IL-3, IL-4, 
IL-5, IL-6, IL-8, IL-12, 
IL-23, IL-27, TNF 
signaling networks

http://www.
ndexbio.org

BioLegend T-fh, TH1, TH2, TH17, 
Treg, γδ–T-cell 
signaling pathways

IL-1, IL-2, IL-4, IL-6, 
IL-10, IFN, TNF 
pathways and inter- 
cellular cytokine signaling 
network of immune cells

https://www.
biolegend.com/
pathways/

BIOPYDB TCR-mediated pathway, 
co-receptor-mediated 
T-cell activation 
pathway

IL-1 α, IL-β, IL2, IL-4, 
IL-6, IL-12, IL-18, IL-36 
α, IL-36 β, IL-36 γ, TNF 
α, TNF β, IFN α, IFN β, 
IFN γ, TGF β

http://biopydb.
ncl.res.in/
biopydb/index.
php

HumanCyc TH1, TH2, TH17, Treg- 
associated processes 
and pathways

Cytokine pathways are 
not available separately, 
but integrated with the 
other immune processes

https://biocyc.
org/HUMAN/

Brenda TH1, TH2-related 
processes

IL-1, IL-3, IL-5, IL-6, 
IL-8, IL-12, IL-17, IL-18, 
IL-21, IL-33, IFN-α, 
IFN-β, IFN-γ, TNF-α, 
TNF-β ligands

https://www.
brenda-enzymes.
org/
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only a limited number of databases have included this information. Two of the 
popularly used metabolic databases, HumanCyc [98] and Brenda [99], include 
information about immune-metabolites that are linked to immune responses. 
HumanCyc is the Homo sapiens–specific repertoire of the metabolic database 
BioCyc, which enlists metabolism specific to human. The database enlists a range 
of “Biological Process” and “Proteins” related to immune system. The biological 
processes are linked to their “Gene Ontology” term. A few of the important immune 
processes listed are “leukocyte-mediated cytotoxicity,” “adaptive immune response,” 
“immune effector process,” “regulation of immune response,” and “immune system 
development.” The GO IDs of these processes link them to pathways and processes 
to which are linked/cross-linked, which are enlisted as “Parent Classes” and metab-
olites/proteins which are involved in these processes are enlisted under “Instances”. 
These metabolites/proteins are linked to their detailed descriptions along with reac-
tions in which they are involved and the reaction mechanism [98]. Brenda also 
provides details of immune-metabolites. The database has a wide range of entries as 
search option. Upon search of immune processes, it provides a variety of immnune-
metabolites and proteins whose “Enzyme Nomenclature,” “Enzyme-Ligand 
Interactions,” “Diseases,” “Functional Parameters,” “Organism-related Information,” 
“General Information,” “Enzyme Structure,” “Molecular Properties,” “Applications,” 
and “References” are provided.

6.5.2.2  Graph Theoretical Analysis
The Graph Theory was initiated with Euler’s famous publication from 1736 on the 
Seven Bridges of Königsberg problem [100]. However, it was applied to biochemi-
cal networks much later with the advent of the concepts of small-world and scale- 
free networks in 1999 that describes the global architecture of any complex 
real-world network such as the network of biochemical reactions in a cell [101, 
102]. Computational biologists have modeled biochemical pathways as network 
where each protein or metabolite has been considered a node and the reaction 
between any two such species have been denoted as an edge, thereby translating the 
entire reaction network as an interconnected mesh of nodes and edges. Various net-
work parameters such as Degree (k), Betweenness Centrality, Closeness Centrality, 
Eccentricity, Edge Betweenness, and Clustering Coefficient are used to describe the 
topological properties of the network. These parameters help in the identification of 
important hubs, i.e., a highly connected node, and shortest paths in the biochemical 
reaction network that may have significant contribution in the functioning of the 
signaling or metabolic pathways. Tools such as Cytoscape, Gephi, Pajek are freely 
available for performing network analysis of large reaction network [103–105]. 
Cytoscape further offers downloadable plugins for identifying important motifs, 
extracting sub-networks, and performing enrichment analysis and a host of other 
functions required for visualizing and analyzing large biochemical reaction net-
works. These biochemical networks mostly follow the small-world property of a 
network that indicates a relatively short distance from any one node to another and 
a relatively high level of clustering. This network property, termed as scale-free 
property of a network, denotes a connectivity distribution that fits a power law 
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depicted in Eq. 6.1 where the value of γ lies in the range 2 < γ < 3 [106]. It has been 
observed that networks following the scale-free property are generally resistant to 
perturbations and thus are highly robust:

 
P k� � � �� k �  (6.1)

Graph Theory has successfully been applied to signaling pathway networks where 
the concept of shortest path has been used to hypothesize potential signaling mecha-
nisms in Neuro2A cells downstream of CB1R receptors. Here the cells were stimu-
lated with a CB1R agonist for the assessment of activity of transcription factors. 
This experiment revealed CB1R activation modulates the activity of 23 transcrip-
tion factors [107]. Such methods are useful in the identification of important novel 
signaling routes between a cell-surface receptor and downstream transcription. In a 
recent study, Graph theoretic network analysis has been used to identify protein 
pathways responsible for cell death after neurotropic viral infection by Chandipura 
Virus (CHPV) [108]. Another important application of network analysis is that it 
can be used to identify important hub proteins that can be used as potential drug or 
immunotherapeutic target [109, 110].

6.5.2.3  Logic-Based Models
Logical modeling is gradually being recognized as a simple yet powerful tool in 
systems biology for the study of large and complex reaction networks. Here the 
information flow from one node to another in a network is determined by a combi-
nation of input nodes and their relation is specified using logic gates – AND, OR, 
NOT. It was first explained by Kauffmann where he modeled the gene as a binary 
device that can be either in the ‘ON’ or ‘OFF’ states  signifying whether a gene 
expression is upregulated or downregulated, respectively [111]. Here he elucidated 
that a distinct advantage in this choice of a binary model for gene activity lies in the 
fact that the number of different possible rules by which a finite number (K) of 
inputs may affect the output behavior of a binary element is finite, i.e., 22K. 
Figure 6.3a shows a simple toy model of three nodes interacting with one another. 
The reaction network can be represented using Boolean rules or equations (Eqs. 6.2, 
6.3 and 6.4). The truth tables and the state transitions graphs of the reaction network 
show the temporal evolution of the states (0 or 1) of the nodes starting from different 
input combinations (Fig. 6.3a). Here, in this example we observe under the different 
input conditions the system tends to reach certain point steady-state attractors, i.e. 
1–0–0 and 1–1–1 or cyclic attractor, i.e. 1–0–1 ←→ 1–1–0:

 v v v1 1 3= OR NOT( )  (6.2)

 v v v2 1 3= AND  (6.3)

 v v3 2=  (6.4)

Several software packages such as BoolNet (R-based), BooleanNet (Python 
based), and CellNetAnalyzer (software with GUI) are available for performing logi-
cal steady-state analysis of large biochemical networks [112–114]. This concept 
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was later used by Huang and Ingber to model cell signaling networks for demon-
strating that cellular phenotypes correspond to the dynamic steady states of the 
intracellular signaling molecules in a logic-based model. A key advantage of this 
strategy is that it does not require the knowledge of parameter values that is often 
not available for large biochemical networks. Later it has been extensively used for 
the study of cell signaling pathways and identification of drug targets for the treat-
ment of cancer [109, 110]. Logical models have also been developed for the study 
of T-cell signaling pathways where the observations made from the in silico analysis 
were experimentally validated to establish the authenticity of their logic-based 
model. Using this model, the authors have predicted an alternative pathway of acti-
vation from CD28 to JNK that does not involve the canonical pathway involving 
LAT signalosome, nor does it involve the activation of PLCγ1 or calcium flux, but 
depends on the activation of the nucleotide exchange factor Vav1, which activates 
MEKK1 via the small G-protein Rac1 [115]. A logical steady-state model that cap-
tures the effect of the co-receptor signaling pathway cross-talks has been developed 
that shows that simultaneous activation of the TCR:CD3, CRAC, and OX40 

Fig. 6.3 Computational techniques used for study of large biochemical pathways. (a) Interaction 
Graph, Truth Table, and State Transition Graph for a Logic-Based Toy Model; (b) Temporal 
dynamics of Tumor, Effector cells, and IL-2 from an ODE-based model (adapted from Kirshner, 
et al. 1998 [150]); (c) A toy model describing (i) the flux distribution of metabolites A, B. and C 
through different reactions, (ii) the formation of stoichiometric matrix “S” and flux vector “v,” (iii) 
defining constraints and (iv) defining objective and finding optimal solution within the solution 
space of linear optimization problem (Adapted from Kauffman et al. 2003 [157])
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pathways are important for sustained T-cell proliferation. At the same time, it has 
been shown that the co-receptor CD27 and LTBR pathways are important for regu-
lating the cytokine production [116]. A further extension of this work for the study 
of immune responses during Leishmaniasis explains how the differentiation of T 
cell is altered during infection [117]. Another model employing Boolean formalism 
has been used in the study of differentiation of naive cells into TH1, TH2, TH17, and 
Treg subtypes under different environmental conditions [118]. This model provides 
evidences that Foxp3+ Treg cells and TH17 cells are highly plastic and labile, whereas 
the TH1 and TH2 subtypes remain steady under different environmental conditions. 
However, this model also predicts the existence of hybrid states and cyclic attractors 
expressing markers characteristic of two or more canonical cell types under certain 
environmental conditions that lays the foundation for the oscillatory behavior of 
T-cell differentiation. This study further elucidates that under proper polarizing 
environments, the Treg cells may differentiate into TH1 or TH2 subtypes [118]. Later 
another model based on the Boolean formalism was developed to study the molecu-
lar mechanisms controlling the cytokine-driven TH cell differentiation and plasticity. 
This model explained the role for peroxisome proliferator–activated receptor 
gamma (PPARγ) in the regulation of TH17 to iTreg cell switching that gives promis-
ing cues for the prediction of therapeutic target for dysregulated immune responses 
and inflammation [119]. More recently, Probabilistic Boolean Control Network has 
also been employed for the study of TH cell differentiation under varied environ-
mental conditions. Here each input node is activated with a certain user-defined 
probability, which makes the system stochastic. Using this study, the authors have 
identified that the T-cell differentiation process is regulated by composition and dos-
age of signals that the cell receives from the environment. They have also predicted 
novel T-cell phenotypes using their model and have identified the specific environ-
mental conditions that give rise to them [120].

6.5.2.4  Steady-State Metabolic Models
Immunometabolism has gained momentum in recent years as an emerging field of 
investigation at the interface between two highly discussed disciplines of immunol-
ogy and metabolism [9, 10]. The idea of metabolism as a driver of the immune 
response [121] has been appreciated in recent years. However, capturing the bidi-
rectional regulation of signaling and metabolism using a single computational plat-
form is challenging. The mechanism of action of the two cascades is different, and 
the time scales in which the two processes occur also differ enormously. Mostly 
signaling cascades are faster than the metabolic reactions. This, along with the limi-
tation of availability of information about how metabolism regulates immune cell 
responses and functioning, has limited the designing of immune-metabolic models 
to a small scale, mostly considering few parameters to design smaller dynamic 
models. An integrated systems-level computational model of immunometabolism is 
yet to be undertaken. Nevertheless, the currently employed computational 
approaches can be used to address immune-metabolism at a systems-level.

Genome-scale metabolic modeling (GSMM) is currently the most widely used 
systems-level modeling approach that accounts for whole-genome metabolism of 
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biological systems. It is a constraint-based mathematical modeling approach that 
assimilates biochemical, genetic, and genomic information within a single compu-
tational platform [122–126]. It allows the study of the metabolic genotype- phenotype 
relationship of an organism. Genome-scale metabolic models have been used in in 
silico metabolic engineering for the design of studies like defining essentiality of the 
reaction/gene [127, 128], the relevance of distant pathways [129] and overexpres-
sion or knockout analyses of metabolites, reactions, and metabolic pathways [130]. 
These are efficient tools for the prediction of growth in living cells/tissues exposed 
to different external conditions [131]. They have been used to predict conditional 
and absolute essentiality of metabolites and reactions in metabolic networks.

Flux balance analysis (FBA) is the most popularly used constraint-based 
approach in systems-level metabolic modeling, which works on the basic principles 
of linear optimization [132]. The technique assumes a steady-state approach, where 
all the metabolites of the network are considered to be in steady state; i.e., the rate 
of change of metabolites over time remains zero (Fig. 6.3c). This ensures that the 
rate of formation of a metabolite in the network is always equal to the rate of its 
consumption and hence a net difference in the metabolite concentration over time 
always remains zero. All reactions of the network work as constraints to the optimi-
zation problem. The reactions are bounded between a lower and an upper bound, 
which creates the constraint. The metabolites are connected to respective reactions 
in the form of a stoichiometric matrix, “S,” where the rows represent the metabolites 
(m) and the columns represent reactions (n). Thus, a “m × n” matrix is generated in 
which the involvement of a metabolite in a reaction is represented by its respective 
stoichiometry in that reaction. A positive stoichiometric value represents the forma-
tion of the metabolite and a negative stoichiometric value represents consumption. 
The flux through the reactions is represented in a separate flux matrix “v,” which is 
a “n × 1” matrix. The outcome of the optimization is obtained by matrix multiplica-
tion of “S.v  =  0.” The matrix multiplication results in an optimized “v” matrix, 
which assigns an optimized flux to each of the reactions in the network. Generally, 
whole-genome models are large with a few hundreds of reactions and metabolites, 
which make it a multidimensional optimization problem. An objective is assigned to 
the model that depends on the biological question one wants to address. For exam-
ple, if one wants to observe the behavior of the network when it tries to maximize 
ATP production, then one can assign ATP synthase (ATPS) reaction as the objective 
and try optimizing the model by maximizing the objective function. Thus, the model 
gets optimized a per the requirement of maximizing or minimizing the objective 
function.

A further extension of the modeling technique has been done to incorporate 
dynamic regulation of metabolic regulations by signaling pathways. This is popu-
larly known as dynamic FBA (dFBA), where the initial activation of the metabolic 
FBA model depends on the output of signaling response generated by dynamic 
analysis. In yet another extension of FBA, the initial signaling response is analyzed 
using Boolean analysis. This is known as rFBA. The method that takes into account 
a combined FBA, Boolean regulatory, and ODE approach is known as integrative 
FBA (iFBA).
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There are various tools available for performing these analyses. COBRA Toolbox 
is the most widely used platform for flux balance analysis [133]. This is a Matlab 
extension, which allows user-interface for ease in analysis. Other platforms are 
COBRApy [134], PSAMM [135], OptFlux [136], FBASimVis [137], FluxViz 
[138], FlexFlux [139], FAME [140], and Escher-FBA [141].

6.5.2.5  Dynamic ODE-Based Immune Models
Several dynamic models have been developed for the study of immune responses 
for several diseases [142–146]. The study of immune responses during tumor for-
mation using mathematical ODE-based models has helped clinicians in the predic-
tion of tumor evolution and the determination of dosage schedules and treatment 
protocols [147–149]. A seminal work by Kirschner and Panetta has led to the devel-
opment of many such similar models with further improvisations [150]. The model 
developed by them represents an ODE-based model of the tumor-immune interac-
tion and the production of IL-2 that has important roles in the regulation of immune 
response generated during tumor progression (Eqs. 6.5, 6.6, and 6.7). The model 
considers that the proliferation of the effector immune cells increases proportional 
to the antigenicity of the tumor. The model equations comprise three variables, viz. 
tumor (T), effector cells (E), and IL2 (IL), that interact among themselves, and 12 
parameters that describe the rate at which these interactions occur. In this model the 
antigenicity, denoted with c, of the tumor has been considered as an essential param-
eter that regulates the dynamics of the effector cell population:
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Figure 6.3b (adapted from Kirshner et al. 1998 [150]) shows the temporal evolution 
of the system and the oscillating steady state behavior of the variables when antige-
nicity parameter c = 0.02. This model explains short-term oscillations in tumor sizes 
as well as long-term tumor relapse. This model has been further used to explore the 
effects of adoptive cellular immunotherapy for the tumor elimination [150].

A more recent tumor–immune interaction model developed for understanding 
the dynamics of immune-mediated tumor rejection focuses mainly on the role of 
natural killer (NK) and CD8+ T cells in tumor surveillance. Here the techniques of 
parameter estimation and sensitivity analysis have been exploited for the model 
calibration and validation with experimental results. This study has revealed the 
variable to which the model is most sensitive is patient specific and that there exists 
a direct positive correlation between the patient-specific efficacy of the CD8+ T-cell 
response and the likelihood of a patient favorably responding to immunotherapy 
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treatments [151]. A more detailed model of immune responses during tumor pro-
gression has been developed using 13 variables and 71 parameters. The model con-
siders cytokine feedbacks and five different immune cells present in the tumor 
microenvironment. This model is useful for optimizing combinatorial treatment 
dose and schedules for maximal tumor reduction using immunotherapy [152].

There is a range of ODE models that investigate various pathways involved in 
metabolism under different pathological conditions. Immune metabolic models are 
available for glucose metabolism [153], glutathione metabolism [154], folate- 
mediated one-carbon metabolism [154], and arsenic metabolism [155]. A compos-
ite review of these metabolic models is available in Nijhout et al.’s work [156]. The 
recent understanding from experimental research on the metabolic regulation of the 
immune response [9] will help to adapt these mathematical models to the reality of 
metabolic pathways inside immune cells.

6.6  Challenges and Future Directions

The immune-regulatory network forms a complex mesh of interacting cells and 
biochemical reactions that work in a coordinated fashion to eliminate the pathogen- 
infected cells and trigger the remission of any neoplastic growth inside the body. 
However, the intricacies of the immune signaling network are far from being com-
pletely understood, and the regulations governing the differential immune response 
of the T cells under varied antigenic challenges still remain elusive to immunolo-
gists. In this context, the knowledge regarding the signaling routes is essential to 
understand the mechanistic regulations such as the feedback and feed-forward 
loops and the alternative signaling pathways that govern the production of effector 
molecules from the lymphocytes. Hence, an in-depth study of the co-receptor sig-
naling pathways and their cross-talks is essential that will provide valuable infor-
mation regarding the pathways involved in the cytokine regulation and effector 
functions of the immune cells.

T-cell plasticity that determines their differentiation, de-differentiation, sub-
type specification, and T helper memory cell formation under different environ-
mental conditions is yet another area that has remained very less explored. Although 
the recent developments in the field elucidate the process of T-cell differentiation 
with respect to changes in the cytokine milieu under in vitro conditions, the com-
plex interactions in the human immunome needs to be studied using a holistic 
integrative approach in order to gain clear insights into the changes of immune 
responses due to changes in quality and quantity of the antigenic challenge, the 
strength of the stimulus, and the role of the other interacting immune cells. Such 
studies will throw light into the modulations of T-cell subtype ratios that has a 
substantial impact on the disease prognosis and response of a patient to an immu-
notherapeutic intervention.

Metabolic regulation of immune cell in determining T-cell activation, prolifera-
tion, and differentiation is a newer area of research; and studies are in progress to 
understand these processes. Many questions related to immune-metabolism still 
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remain unanswered. How metabolism alters during transition from quiescent T cells 
to activated effector T cells remains poorly understood. Although mTORC1 activity 
has been observed to be central to signaling and metabolic cross-talk and the master 
kinase in guiding quiescence exit of T cells, how nutrients tune mTORC1 activity 
remains to be explored further. Redox metabolism and oxygen sensing have been 
implicated in T-cell proliferation and activation; however, the exact mechanism of 
how they regulate T-cell quiescence and activation in different tissues remains unad-
dressed. Also, the cross-talks between signaling and metabolic pathways are only 
partially explored. A clear understanding of these mechanisms will help augment 
immune responses and pave way for immunotherapy under different pathogenic 
conditions.
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7Innate Immune Signaling in Cardiac 
Homeostasis and Cardiac Injuries
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Abstract
Cardiovascular disease is the leading cause of death worldwide, despite the 
growing advances that have been made in the development of therapeutics. 
Almost all aspects of the pathogenesis underlying a cardiac injury are critically 
influenced by the inflammatory response. Over the past two decades, research-
ers have shown that the myocardium triggers an intense innate immune 
response that activates various immune effectors including the pattern recogni-
tion receptors.

In this chapter, we will give an overview of the innate immune cells involved 
in the cardiac homeostasis and their responses after cardiac injuries, focusing on 
the role of innate immune signaling pathways in the progression of various car-
diovascular diseases.
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Abbreviations

Apo E apolipoprotein E
CARD caspase recruitment domains
CD cluster of differentiation
CVD cardiovascular disease
DAMP danger-associated molecular pattern
ECM extracellular matrix
HF heart failure
HMGB1 high-mobility group box 1
HSP heat shock protein
IFN interferon
IKK inhibitor of kappa B kinase
IL interleukin
IRAK IL-1 receptor-associated kinase
LRR leucine-rich repeat
MDA5 melanoma differentiation-associated protein 5
MMP9 matrix metalloproteinase 9
MyD88 myeloid differentiation primary response protein 88
NETs neutrophil extracellular traps
NF-κB nuclear factor κ-light-chain-enhancer of activated B cells
NLR NOD-like receptor
NLRP NOD-, LRR-, and pyrin domain-containing protein 3
NOD nucleotide-binding oligomerization domain
PAMP pathogen-associated molecular pattern
PRR pattern recognition receptor
RIG-I retinoic acid-inducible gene I
RLR RIG-I-like receptor
TAK transforming growth factor-β–activated kinase
TLR toll-like receptor
TNF-α tumor necrosis factor-α
TRAF tumor necrosis factor receptor-associated factor
TRAM TRIF-related adaptor molecule
TRIF toll/IL-1 receptor homology domain–containing adapter inducing IFN-β

7.1  Introduction

Cardiovascular disorders (CVDs) represent the most life-threatening disease, caus-
ing more deaths, disability, and economic costs than other diseases. CVDs alone are 
accountable for approximately 18 million deaths annually, which represent ~30% of 
all deaths. According to the 2015 WHO report, the overall burden of CVD and the 
associated heart failure (HF) continue to grow in the developed countries as well as 
in low- and middle-income countries. In India, these conditions have become the 

A. Naseem and H. Ali



185

leading cause of mortality, being responsible for 24% of total deaths [1–3]. In par-
ticular, the frequency of coronary heart disease in India has increased at an extremely 
fast rate, rising from 2% in 1960 to 14% in 2013 in urban areas and from 1.7% to 
7.4% in rural areas [2, 4]. A vast part of the CVD burden is due to the biological 
inability of the myocardium to repair the damaged cardiac tissue by regeneration of 
cardiomyocytes. Mammalian cardiomyocytes exhibit robust proliferative activity 
during embryonic and fetal development; this suddenly stops during the first weeks 
of postnatal life. However, it is now well established that adult zebrafish [5] and 
neonatal mice [6] can regenerate their hearts after injuries by the proliferation of 
existing cardiomyocytes, suggesting that latent regenerative capacity exists in the 
heart [6, 7]. Recent studies indicate that less than 1% of cardiomyocyte cycle every 
year in adult individuals and that this percentage increases after infarction [8]. Thus, 
from a clinical outlook, the heart is a postmitotic organ in which repair of damaged 
tissue occurs through the formation of fibrotic scar, and in this process, the immune 
system plays a key role.

According to epidemiological studies, ischemic heart disease (IHD) is the lead-
ing cause of various cardiac diseases. Other common causes include dilated cardio-
myopathy, hypertension, atrial fibrillation, atherosclerosis, infections and 
myocarditis, and inflammation-related cardiomyopathy [9]. In 1990s, Levine et al. 
established the first link between heart failure (HF) and inflammation by reporting 
enhanced levels of tumor necrosis factor-α (TNF-α) in HF patients [10]. Numerous 
studies later showed that HF patients have elevated levels of circulating inflamma-
tory cytokines such as interleukin-6 (IL-6) and interleukin-1β reflecting underlying 
pathogenic mechanisms [11].

To delineate self- from non-self-structures, the innate immune system evolved to 
delimit tissue injury as well as balance the homeostatic responses within the heart. 
A vast amount of literature suggests that intrinsic stress response is mediated by a 
family of pattern recognition receptors (PRRs). In this chapter, we review the roles 
of individual immune cell subsets and how the innate immune signaling pathways 
(involving the PRRs) contribute to both the initial insults and the chronic phase of 
cardiac injuries.

7.2  Cellular Composition of the Heart

The adult mammalian heart is composed of a diverse, symbiotic population of inter-
stitial cells [12, 13]. Cardiomyocytes (CMs) are the most abundant cells and respon-
sible for generating contractile force and control the rhythmic beating of the heart. 
While non-CMs occupy a comparatively small portion, these cells are essential for 
normal cardiac homeostasis, providing the extracellular matrix (ECM), intercellular 
communication, and vascular resource indispensable for CM function and survival. 
In the heart, both CMs and non-CMs respond to physiological and pathological 
stimuli. However, non-CMs play a pivotal role upon cardiac injuries such as inflam-
mation, innate immune system activation, and fibrosis and also participate in vari-
ous cardiac pathologies and HF.
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7.3  Nonimmune Cells in the Heart

The adult mammalian heart contains ~20–35% mature CMs [14], most of which exit 
the cell cycle soon after birth. Therefore, in cardiac injuries such as myocardial 
infraction (MI), a significant portion of CM death occurs due to ischemia/reperfusion 
(I/R) and fast replicating fibroblasts replace the lost CM space, which leads to con-
tractile dysfunction and scarring. CM death itself gives the primary signal for cardiac 
repair by circulating damage-associated molecules called alarmins or damage- 
associated molecular patterns (DAMPs) [15]. Fibroblasts represent the second larg-
est population of cardiac resident cells (~10%) and are allocated throughout the heart 
[12]. Fibroblasts secrete collagen and different components of ECM and provide the 
support to neighboring cells to migrate, proliferate, and also control electrical func-
tions, thus being involved in both cardiac regeneration and pathological conditions 
[16–18]. Fibroblasts also serve as sentinels to sense myocardial injury and trigger 
inflammation via PPR activation [17, 19]. Endothelial cells (ECs) are the most abun-
dant cardiac resident cells and constitute >60% of the non-CMs in both mammalian 
and zebrafish heart [17, 20]. These cells play several essential roles in angiogenesis, 
heart development, CM organization, and immune cell trafficking, besides being 
prominent cells in the process of healing and regeneration in postischemic injuries 
[21, 22]. Further, during inflammation, leukocyte extravasation requires the activa-
tion of endothelial cells. In contrast to the adult mammalian heart, neonatal mouse 
possesses robust regenerative capacity shortly after birth, while fibrosis and scarring 
prevail later. One-day-old mice in response to cardiac injuries regenerate lost CM 
and form functional myocardium within 2–3 weeks postinjury without fibrosis [6, 
23, 24]. More interestingly, cardiac regeneration is also noticed in newborn pigs and 
humans after cardiac injury [25, 26]. However, the regenerative potential of neonatal 
heart is lost on postnatal day 7 [6]. This is possibly due to the accumulation of vari-
ous limiting factors and depletion of positive regulators of CM proliferation [27–30]. 
However, there are some evidences that support the notion that loss of neonatal 
regenerative potential soon after birth also overlaps with remodeling and maturation 
of the immune system (reviewed in [31]). Moreover, it has been shown that immune 
cells also play a pivotal role in CM proliferation after cardiac injuries [32–34].

7.4  Immune Anatomy of the Myocardium

Healthy mammalian hearts contain relatively small populations of immune cells 
[13, 35–37]; the amount and composition of these cells depend on the developmen-
tal stages, species, and cardiac pathologies. Cardiac immune cells include the net-
work of residing or infiltrating cells of which ~25% are of the lymphoid lineage 
(B- and T-cells and NK cells), while ~75% are of the myeloid lineage (macrophages, 
monocytes, neutrophils, dendritic cells, mast cells, and eosinophils) [38–41]. By 
exploiting various genetic tools and cellular markers expressed on the surface of 
immune cells, scientists made successful attempts to identify and quantify the 
immune cell population in mammalian heart (Fig. 7.1); this quantification is based 
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on the quality of antibodies used in the sorting assay [12, 42]. However, cardiovas-
cular pathologies and aging change the subpopulation and composition of the 
immune cells in the heart, in order to promote tissue growth and repair.

Mast cells (MCs) are conventional granular resident cardiac immune cells that 
act as key effectors of innate immune responses. Because of their perivascular 
location and capacity to store and release proinflammatory signaling molecules, 
they act as cellular effectors in inflammatory responses post cardiac injuries. In 
the injured heart, MCs quickly degranulate and release proinflammatory signal-
ing molecules such as TNF-α and histamine, and TNF-α subsequently triggers 
the signaling cascade and recruits the proinflammatory leukocyte in the infarct 
myocardium [35, 43].

Neutrophils (polymorphonuclear granulocytes or PMNs) are leukocytes that 
play a key role in innate immunity by removing foreign pathogens through differ-
ent mechanisms including degranulation and oxidative. PMNs are the immune 
cells which are promptly employed into the injured myocardium by DAMPs and 
other immune modulators (cytokines, chemokines, and histamine) [44, 45]. 
Following a cardiac injury, neutrophils peak within 1–3 days and then drop down 
to their steady- state levels approximately a week later. In comparison to neonates, 
the adult heart is inadequate to remove infiltrating neutrophils, which subse-
quently decrease macrophage recruitment following a cardiac injury. This leads to 
increased matrix degradation, delayed collagen deposition, and increased suscep-
tibility to heart rupture [32, 33, 46]. Neutrophils also play an important role in the 
resolution of inflammation by secreting myeloperoxidase (MPO) during neutro-
phil extracellular trap (NET) formation [47]. NETs are extruded from activated 
neutrophils as extracellular weblike structures in a process known as NETosis 
[48] and are composed primarily of chromatin (DNA and histones) along with a 
milieu of inflammatory mediators such as neutrophil elastase (NE), myeloperoxi-
dases (MPO), reactive oxygen species (ROS), cathelicidin or LL-37, TNF-α, 
cathepsin G, and several cytoplasmic proteins such as annexin I to name a few. In 
CVDs including atherosclerosis, neutrophils activate leukocytes, platelets, and 
endothelial cells in the lumen creating a proinflammatory setting that leads to 
endothelial loss of function and paves the way to plaque formation. Progressing 
plaque lesions may eventually rupture, thus inducing intraluminal thrombosis 
leading to acute events of cardiac stress and ischemic stroke [49, 50]. 
Pharmacological inhibition of peptidylarginine deiminase 4 (PAD4), the enzyme 
that converts arginine into citrulline on histone tails, promoting chromatin decon-
densation in the nucleus, blocked NET formation accompanied by a reduced 
recruitment of neutrophils and macrophages to arteries. This resulted in reduced 
atherosclerosis burden in a murine model and strongly suggests a causative role 
for NET formation in atherosclerosis [51, 52]. Further, neutrophil depletion has 
also been shown to protect against atherosclerosis. Importantly, the protective role 
of PAD4 in atherosclerotic disease confirms the importance of NET formation in 
murine atherosclerosis [53–55].
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7.5  Macrophage-Resident and Monocyte-Derived Cells

In the mammalian heart, resident macrophages are the most abundant immune cell 
subset, which respond to cardiac tissue damage by producing proinflammatory 
cytokines and admitting recruitment of neutrophils [56, 57]. These cells are present 
throughout the myocardium, maintained by local proliferation and intermingling 
directly with CMs and endothelial cells [35, 56]. A combination of studies including 
genetic fate mapping, parabiosis, and adoptive transfer concluded that rather than 
being a homogeneous population, cardiac macrophages comprise three subsets 
based on the differential expression of MHC class II and chemokine receptor 2 
(CCR2). Of these, the dominating class is of the embryonic yolk sac origin and 
expresses MHC class IIhi. The other subset is also derived from embryonic precur-
sors and is MHC class IIlo. These two subsets are CCR2− and they renew themselves 
through in situ proliferation without the need of circulatory monocytic input. The 
third subset expresses CCR2, is MHC class II−, and in contrast to the other two 
subsets is dependent on circulating monocytic input [35, 56]. These macrophages 
are bona fide activators of the inflammasome as they express high levels of proin-
flammatory genes including those affiliated with the NLRP3 inflammasome, where 
they contribute pooling IL-1β to the heart under cardiac stress [35, 58]. Recent 
reports have confirmed the presence of CCR2− and CCR2+ macrophage populations 
in human heart as well where the former plays a more reparative function, while the 
latter are inflammatory in nature [59]. Further, similar to mouse CCR2− macro-
phages, human CCR2− macrophages exist independent of monocyte input. However, 
transcriptomic analysis provided evidence that monocytes contribute to mainte-
nance of CCR2+ macrophages [59]. In this context, recent studies have provided 
fascinating new insights into the regulatory mechanisms of monocytosis relevant to 
atherosclerosis. It has been shown that two subsets of tissue-resident macrophages, 
CCR2− and CCR2+, differentially regulate monocyte recruitment upon cardiac 
injury [59]. Moreover, depletion of CCR2+ cardiac macrophages significantly 
reduces inflammation and fibrosis, which subsequently improves heart function and 
repairs the injured myocardium [59]. Tissue-resident embryonically derived macro-
phages are likely to have critical roles in the tissue-repair response. This is evident 
as cardiac injuries lead to gradual replacement of resident macrophages with infil-
trating monocyte-derived macrophages taking over which contribute to the worsen-
ing of the cardiac regenerative potential because these monocyte-derived 
macrophages are proinflammatory, pro-fibrotic, and less pro-proliferative in nature 
[33, 60]. Conversely, it has also been reported that inflammation or injury are not 
necessarily required for replacement of embryonically derived cardiac tissue mac-
rophages by monocytes [61]. In the injured myocardium, two distinct Ly6Chi and 
Ly6Clo monocyte-derived macrophage populations show sequential dominance 
[62]. Ly6Chi macrophages peak during the early proinflammatory phase and have 
mainly phagocytic, proteolytic, and inflammatory functions, while Ly6Clo macro-
phages come 3 days post injury, exhibit attenuated inflammatory properties, and 
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express mainly endothelial cell growth factor (VEGF) and matrix metalloproteinase 
9 (MMP 9) [60]. In humans, these two populations of monocyte-derived macro-
phages are related to circulating CD14+CD16− and CD14+CD16+ macrophage, 
which also intrude infarcted myocardium in early and late stages, respectively [63–65], 
similar to rodent macrophages [60, 62].

7.6  Dendritic Cells

Dendritic cells (DCs) are professional antigen-presenting cells (APCs), which con-
nect innate and adaptive immune system by presenting antigens to the T-cells. In the 
myocardium, a small number of DCs are present in localized region such as cardiac 
valves and aortic sinus, presumably to sample non-self-antigens [35, 66]. It has been 
observed that DCs infiltrate into injured cardiac tissue, and therefore depletion of 
these cells impaired cardiac remodeling after myocardial infarction. This function 
of DCs might be associated with enhanced inflammatory cytokine production, 
MMP9 protease activation, and infiltration of proinflammatory monocytes/macro-
phages into the infarcted myocardium [67]. Similarly, in humans, a smaller fraction 
of DCs in cardiac tissue is associated with macrophage infiltration, impaired repara-
tive fibrosis, and eventually heart rupture after myocardial infraction [68].

7.7  Adaptive Immune Cells

In addition to innate immune cells, mammalian heart also contains some lympho-
cytes (B and T cells) and NK cells, of which 45% are B-cell population [41]. It has 
been shown that this percentage of lymphocytes increases up to 5–10 times more 
during cardiac injuries [62]. Depletion of B cells using anti-CD20 antibody in heart 
significantly reduces postischemic injury, prevents adverse ventricular remodeling, 
and improves cardiac function after myocardial infarction [69]. Regarding the 
molecular mechanisms involved in B-cell recruitment, secretion of cytokines, which 
induces the deployment of other immune cells in heart diseases, much remains 
unknown and requires detailed investigation.

7.8  Pattern Recognition Receptors

Recent advances in the field of cardiac injury have revealed that mammalian hearts 
use both innate and adaptive immune components to respond to cardiac insults such 
as ischemia or hemodynamic overloading. Immune cells residing in the heart are 
triggered by pathogen-associated molecular patterns (PAMPs) or danger-associated 
molecular patterns (DAMPS) and induce an appropriate inflammatory response 
through their binding to innate immune receptors, known as pattern recognition 
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receptors (PRRs). Classic examples of PRRs include toll-like receptors (TLRs), 
C-type lectin receptors (CLR), nucleotide-binding and oligomerization domain 
(NOD)-like receptors (NLRs), retinoic acid–inducible gene (RIG)-I-like receptors 
(RLRs), absent in melanoma (AIM) 2-like receptors (ALRs), and advanced glyca-
tion end-product-specific receptors (AGER/RAGE) [70, 71].

TLRs are type I transmembrane glycoproteins comprising a leucine-rich repeat 
(LRR) extracellular motif and an intracellular signaling motif that is similar to inter-
leukin (IL-1) [72, 73]. TLRs have been classified into two main groups depending 
on their subcellular localization; TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11 are 
expressed on the plasma membrane, whereas TLR3, TLR7, TLR8, and TLR9 are 
found in endosomes [74, 75]. TLRs 1–10 have been identified in the human heart, 
of which TLR4 and TLR2 have been reported to be the most abundant [76]. TLRs 
need to dimerize for ligand binding [77, 78]. Each TLR recruits a member of a set 
of toll/IL-1 receptor (TIR) domain-containing adaptors differentially such as 
myeloid differentiation factor 88 (Myd88), Myd88 adaptor-like protein (Mal), or 
TIR domain-containing adaptor protein (TIRAP), TIR domain-containing adaptor 
protein inducing interferon (IFN)-β-mediated transcription factor (TRIF), and 
TRIF-related adaptor molecule (TRAM) [74, 75, 79]. Based on the type of adaptor 
recruited, TLR signaling can be divided into two general pathways, namely, the 
Myd88-dependent and Myd88-independent pathways. All TLRs except TLR3 use 
MyD88 as an adaptor protein. TLR3 uses TRIF as the adaptor protein belonging to 
Myd88-independent pathways, whereas TLR4 employs both the Myd88-dependent 
and Myd88-independent pathways [11, 74, 75, 80].

7.9  MyD88-Dependent Signaling

MyD88 is the canonical adaptor that can induce signaling from several TLRs, 
located either at the plasma membrane or in endosomes [81]. Moreover, MyD88 
signaling can lead to the production of pro- or anti-inflammatory cytokines as well 
as type I IFNs [82]. The Myd88-dependent pathway is initiated via Myd88 after 
TLR activation in which the death domain (DD) of Myd88 recruits IL-1 receptor- 
associated kinase 4 (IRAK4) and activates one of other IRAK family members, that 
is, IRAK1 or IRAK2 in a large oligomeric complex known as the myddosome [83]. 
These IRAKs then dissociate from the Myd88-IRAK complex and activate the 
RING domain E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6), so 
that it can interact with transforming growth factor-β-activated kinase 1 (TAK1), 
TAK1-binding protein 1 (TAB1), and TAB2. TAK1 then activates the complex of 
inhibitory κB (IκB) kinase α (IKKα)/IKKβ/IKKγ and induces IκB phosphorylation. 
After phosphorylation, the IκB undergoes proteasome degradation, allowing NF-κB 
to translocate into the nucleus and induce the expression of various proinflamma-
tory cytokines (illustrated in Fig. 7.2) [74, 75].
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7.10  Myd88-Independent Signaling

The Myd88-independent pathway (also known as TRIF-dependent pathway) leads to 
the activation of both interferon regulatory factors (IRFs) and NF-κB [75]. This path-
way is initiated by TRIF (at the endosome by TLR3) and TRAM (TRAM is a particular 
adaptor for TLR4). After recruitment by the TLR, TRIF interacts with TRAF6, which 
activates TRAF family member-associated NF-κB activator-binding kinase 1 (TBK1) 
and IKK-ε for phosphorylation of IRFs. Activated IRFs translocate into the nucleus 
and induce the production of IFNs. In another signaling cascade, TRIF interacts with 
TRAF6, and the latter recruits the receptor-interacting serine/threonine protein kinase 
1 (RIP-1), which in turn interacts with and activates the TAK1 complex, resulting in the 
activation of NF-κB and MAPKs for the induction of inflammatory cytokines. Thus, 
activation of NF-κB contributes to the expression of proinflammatory cytokines, 
whereas the activation of IRF3 is dispensable for the expression of IFNs [11, 75].
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Fig. 7.2 PRR activation in cardiac cells by PAMPs and DAMPs during cardiac injury. Heart cells 
express a variety of PRRs including TLRs (mainly TLR2, TLR3, TLR4, and TLR9), NLRs, and 
RLRs. DAMPs and PAMPs, which include endotoxin, HSP60, HMGB1, ROS, lipoproteins, viral 
RNA, mtDNA, pore-forming toxins, crystalline substances, peptide aggregates, etc., are involved 
in CVD. All these PRRs induce the innate immune responses resulting in the expression of proin-
flammatory cytokines and interferons. Activation of NF-kB also increases the expression of 
NLRP3, which, in subsequent steps, activates inflammasome leading to the production of IL-1B 
and IL-18 (see text for details)
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7.11  Role of TLR Signaling in Cardiac Disease

Cardiac tissue injury can occur through a variety of pathophysiological processes, 
which can be of either ischemic or nonischemic etiology. In regard to the global 
disease burden, ischemic injury is the main pathophysiological mechanism of injury 
and is accompanied by the generation of endogenous signals that are potent activa-
tors of the innate immune system [70, 72]. The damaged ECM of the infarcted heart 
and the intracellular constituents released after tissue necrosis promote activation of 
TLRs [84]. In cardiac monocytes derived from neonatal rats, expression levels of 
TLRs 2, 3, 4 and 6 have been identified [85]. The mRNA expression levels for vari-
ous TLR in the human heart are as follows: TLR4 > TLR2 > TLR3 > TLR5 > TLR
1 > TLR6 > TLR7 > TLR8 > TLR9 > TLR10 [71, 76]. Regarding the regulation of 
TLR expression in the heart, studies have been scarce, although some studies have 
implicated the importance of TLRs in atherosclerosis-related inflammation. For 
example, the expression of TLRs 1, 2, 4, and 5 has been shown in atherosclerotic 
plaques by resident cells and migrating leukocytes into the arterial wall. Moreover, 
TLR4 expression is upregulated and is concentrated in the shoulder region of the 
plaque, which is known to be the most sensitive area to undergo plaque rupture [71, 
86]. Furthermore, genetic loss-of-function studies have emphasized the importance 
of TLR2 and TLR4, both located at the cell surface, as important mediators of 
postinfarction inflammation [87, 88]. Mann DL and colleagues have shown in 
mouse and rat experimental heart failure models that sustained TLR activation is 
maladaptive and can lead to left ventricular (LV) dysfunction and adverse cardiac 
remodeling [89]. Mice with a missense mutation of TLR4 or targeted disruption of 
TLR2, TLR4, or MyD88 have reduced infarct sizes as compared to the wild-type 
controls [90–94]. Moreover, treatment with eritoran, a TLR4 antagonist, led to 
reduced nuclear translocation of NF-κB, decreased expression of proinflammatory 
cytokines such as IL-6 and TNF-α, and reduction in infarct sizes when compared to 
vehicle-treated animals [94]. Further, targeted disruption of TLR2/4 in mice resulted 
in reduced mortality, preservation of cardiac function, increased survival rate, and 
attenuation of myocardial fibrosis after MI [94, 95]. In an early report, it has been 
shown that the decrease in the size of an infarct in a TLR2-deficient mouse ensuing 
an I/R injury was revoked in chimeric TLR2-deficient mice that underwent bone 
marrow transplantation (BMT) with WT bone marrow cells [96]. TLR4 is known to 
recognize some endogenous ligands, such as high-mobility group box 1 (HMGB1) 
and HSP [80], whose association with cardiac injuries and HF is very well known. 
Plasma concentration of HMGB1 was found to be elevated in HF and correlated 
with disease severity in patients with HF [97]. The study of Maqbool A et al. showed 
that tenascins can stimulate TLR4 to upregulate the expression of IL-6, further 
aggravating the worsening and progression of HF [19].

Besides the inevitable roles of TLR2 and TLR4, some reports have also shown 
the involvement of TLR9 in the progression of cardiac diseases. TLR9 is an endo-
somal TLR that recognizes cytosine-phosphate-guanine (CpG) repeats which are 
present within bacterial DNA [98, 99]. In one study using TLR9 KO mice, signifi-
cant reduction in cardiac inflammation with sustained heart function was observed, 
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suggesting an important role of TLR9 in promoting cardiac inflammation and asso-
ciated HF [100]. In a similar study, ApoE−/−/ TLR9−/− double-knockout mice showed 
a further worsening of atherosclerotic lesions with an accumulation of inflammatory 
cells. Moreover, CD4+ T-cell depletion in these DKO mice or treatment of ApoE−/− 
mice with a TLR9 agonist resulted in a significant reduction in the size of athero-
sclerotic lesions [101]. Similar to bacterial DNA, mitochondrial DNA also contains 
CpG and is sensed by TLR9 as potent DAMP. In the setting of hemodynamic stress, 
mitochondria are typically damaged; however, if degradation of mitochondrial 
DNA (mtDNA) is inhibited, a TLR9-dependent inflammation-induced cardiomy-
opathy develops [59, 102, 103].

7.12  Other Pattern Recognition Receptors in Cardiac 
Diseases

C-type lectin receptors. CLRs are calcium-dependent carbohydrate-binding recep-
tors, such as dectin-1 and dectin-2, that specifically recognize major carbohydrate 
structures in fungal cell walls [104]. Although their expression has been reported in 
human and murine heart tissue, very little is known about their role in cardiac injury 
and future studies will be needed to fully define the functions of this class of recep-
tors [105].

NOD-like receptors. NLRs are the cytosolic innate sensors that sense intracel-
lular DAMPs and PAMPs. The human NLR family is composed of 22 intracellular 
pattern recognition molecules that share a conserved central NACHT domain and a 
carboxy-terminal leucine-rich repeat (LRR) region [106, 107]. Upon activation, 
some of the NLRs assemble macromolecular protein complexes called inflamma-
somes. NLR family pyrin domain (PYD)-containing 1 (NLRP1) was the first mem-
ber of the NLR family able to assemble into inflammasomes [108], which convert 
the inactive pro-caspase-1 into the catalytically active caspase-1  in the canonical 
pathway. The canonical inflammasome activation is complemented by a noncanoni-
cal pathway, which promotes activation of caspase-11 (in mice) and caspases-4 and 
5 (in humans). These caspases in turn activate NLRP3 inflammasomes or caspase-1 
[109, 110]. Caspase-1 then converts its substrates (pro-IL-1β, pro-IL-18, and gas-
dermin- D) into their bioactive and secreted forms upon inflammasome activation 
(Fig. 7.2) [111].

Analysis of human heart tissue has shown that NOD1, NOD2, NLRP2, and 
NLRP3 are expressed in the cytosol and activate canonical inflammasomes in the 
heart. They play important roles in adverse cardiac remodeling following I/R injury 
and myocardial infarction; however, the cell types involved remain to be investi-
gated [112]. Inhibition of NLRP3 has been shown to be cardioprotective after isch-
emic as well as nonischemic injury (doxorubicin treatment) in rodents [113]. The 
proinflammatory cytokine IL-18 downstream of NLRP3 inflammasome is being 
considered as a therapeutic target in acute MI and heart failure [114]. The 
Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial, 
using canakinumab, a human monoclonal antibody that potently inhibits IL-1β, has 
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shown good results for the anti-inflammatory therapies in recurrent vascular events 
and acute MI [115]. Besides, some other drugs targeting the NLRP3 inflammasome 
have also been evaluated in clinical trials. For instance, colchicine, which is gener-
ally effective in gout treatment, has been reported in a recent study to significantly 
reduce cardiovascular events in patients with stable coronary artery disease [116]. 
Collectively, these reports suggest that NLRP3 inflammasome plays an important 
role in modulating cardiac inflammation that progresses to heart failure.

RIG-I-like receptors. The RLR family is composed primarily of the helicases 
RIG-I and melanoma differentiation-associated gene 5 (MDA5). RLRs are local-
ized in the cytoplasm and the structure is composed of the caspase activation and 
recruitment domain (CARD), RNA helicase domain, and a C-terminal domain. 
They are specialized in the recognition of genomic RNA of double-stranded (ds)
RNA viruses and dsRNA generated as the replication intermediate of ssRNA 
viruses. RIG-I is expressed by macrophages, endothelial cells, DCs, and fibroblasts 
in human atherosclerotic lesions.

Following activation, RLRs recruit the adapter molecule mitochondrial antiviral 
signaling protein (MAVS) and CARD adapter inducing interferon beta (Cardif), fol-
lowed by the activation of IRF-3 and NF-κB and ultimately leading to the production 
of proinflammatory responses (Fig. 7.2) [112, 117]. It has been reported that RNA 
stimulation of endothelial cells leads to an increased RIG-I expression, impaired vaso-
dilation (endothelial cell-dependent), and augmented production of ROS [118]. 
Involvement of RIG-I has also been shown in the 25- hydroxycholesterol-induced IL-8 
production in atherosclerosis [119].

7.13  Conclusion

Myocardial inflammation including myocarditis, MI, I/R injury, and HF has been 
critically involved to play an important role in the physiological and pathological 
mechanisms of cardiac injury and repair. Inflammation is required for host defense 
against damage and tissue repair and timely repression of this inflammatory process 
is critical for effective healing. This chapter elaborates on the emerging roles of 
various innate immune signaling pathways in excessive chronic myocardial inflam-
mation leading to HF.  In particular, TLR signaling pathway regulates a much 
broader regulation of inflammatory mediators. Therapeutic strategies targeting spe-
cific components of the inflammatory responses emanating from the various innate 
sensing pathways especially TLRs are promising for patients with myocardial 
infarction. Besides, biomarker and imaging-based approaches identifying patient 
groups with overactive proinflammatory signaling might contribute to rational 
design of therapies to prevent HF.
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8.1  Introduction

T cells are conventionally categorized into two basic types, viz., CD4+ helper and 
CD8+ cytotoxic T cells. CD4+ T cells were known to “help” in the activation and 
differentiation of various immune cells such as NK cells, macrophages, and den-
dritic cells, whereas CD8+ T cells were known to kill foreign antigens. In 1970s, it 
was reported that functions exhibited by T cells were not merely restricted to aug-
menting an immune response but also to dampen it [1]. These T supressor cells were 
famously named as regulatory T cells or Tregs. Suppression caused by Tregs on 
various T cells was believed to mediate immunological tolerance by discriminating 
between self- and non-self-antigen [2, 3]. Tregs are believed to play an important 
role in maintaining homeostasis of the immune system by restricting the enormity 
of effector responses and permitting the initiation of immunological tolerance 
[4–6]. Treg populations are majorly divided into two major types: nTregs (natural 
Tregs) originating from the thymus and iTregs (induced Tregs) arising extrathymi-
cally, i.e., from secondary lymphoid organs or inflamed tissues [7]. Tregs are further 
differentiated into five subtypes based upon their origin, phenotypes, and expression 
of markers.
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8.2  Timeline of Treg Discovery

With the gain of knowledge about the importance of cell-mediated immune (CMI) 
responses in a diseased condition, it was validated that T lymphocytes were media-
tors of the CMI. The primary function of CD4+ T cells was to regulate immune 
response against foreign antigens. But with the effort of Gershon and Kondo in 
1970s, it was found that CD4+ T cells are capable of suppressing immune response 
and were termed as “suppressor T cells (Ts cells).” These cells were assessed by 
expression of Lyt-1 (CD5 in mice) and Lyt-2 (CD8 in mice). Existence of Ts cells 
as distinct subset was deserted by the end of 1980s due to the poor characterization 
of the cells and lack of peculiar markers [8, 9]. Advancements such as immuno-
logical tolerance regulated via clonal deletion and anergy questioned the immuno-
suppression triggered by suppressor cells [10, 11]. Also, molecular characterization 
of varied cytokines such as the IL-10 disclosed their redundancy, pleiotropic, and 
cross-regulatory functions [12]. All of these discoveries led to the conclusion that 
immunosuppression was attributed to the immunosuppressive or cross-regulatory 
cytokines secreted by T cells, where suppressor T cells played no significant role 
[13]. Investigation of T cell suppression was done by examining how autoimmune 
diseases develop by breaching natural tolerance and how it can be inhibited, rather 
than inspecting tolerance particularly towards an exogenous antigen. This approach 
convicted that under normal conditions, the immune system fosters T cells with 
autoimmune suppressive activity [6]. Autoimmune suppressive activity of CD4+ T 
cells was validated by systematic examination done by Nishizuka and Sakakura in 
1969. They showed that thymectomized mice underwent destruction of ovaries 
which was earlier connected with ovarian dysgenesis. But with subsequent studies, 
this ovarian lesion was found to be autoimmune in nature [14]. Their results also 
suggested about the coexistence of two different CD4+ T cells in peripheral circula-
tion, one likely mediating autoimmunity and the other authoritatively suppressing 
autoimmunity. Both of these populations can be distinguished based on the expres-
sion of the CD5 marker.

CD5lowCD4+ T cells produced autoimmune disorders when transferred to Balb/c, 
a thymic nude mice congenitally deficient in T cell population [15]. Scientists were 
in need to find more markers that could differentiate between autoimmune-inducing 
and inflammation-inhibiting T cells. In 1995, Sagakuchi’s group identified CD25 
molecule specific for operational identification of CD25+ CD4+ T cells as distinct 
subtype of T cells with suppressive functions (17), and in the mid-1990s, the propo-
sition of a new T cell population was made and euphemistically called as regulatory 
T (TR) cells [16].

FOXP3 gene, a member of the forkhead/winged-helix family of transcription 
regulators encoded in X-chromosome, was identified as a disease-causing gene in 
scurfy mice in 2001 and a single gene mutation in X chromosome resulted in the 
development of severe autoimmune and inflammatory conditions [4, 17]. In case of 
humans also, it has been reported that mutation in the FOXP3 gene was the major 
cause of IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked 
syndrome) [18]. Similarities in disease conditions between IPEX and autoimmune 
disease in humans that resulted from TR cell-depleted conditions convinced several 
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groups to investigate the possible role of FOXP3 in natural TR cell development. In 
2003, a study reported that FOXP3 was a key molecule involved in TR development 
and functions. Two studies demonstrated that retroviral transduction of FOXP3 to 
CD25negCD4+ T cells transformed these T cells into phenotypically and functionally 
TR-like cells [5, 19]. These transduced cells showed suppressive functions in vivo 
and in vitro. These findings collectively suggest that FOXP3 (transcription factor) 
could be a master gene regulator that controls the development and functions of TR 
cells (Fig. 8.1).

8.3  Types of Tregs

Broadly five major subsets of Tregs have been identified based on the markers 
present and their location of origin and maturation, namely, thymic, peripheral, Tr1 
cells, CD8+ Tregs, and IL-17-producing Tregs (Fig. 8.2 and Table 8.1).

8.3.1  Thymic Tregs (tTregs)

This subset is termed as custodians of tissue-specific and systematic immunity. 
CD4+FOXP3+ Tregs are named as natural or thymic Tregs because of their evident 
origin from the naïve CD4+ T cells in the thymus itself. These Tregs arise in the 
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Fig. 8.1 Chronological journey of Tregs. A timeline representing important events in the 
discovery of Tregs and their establishment as a functionally distinct lineage
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thymus in response to self-antigens and were termed as natural or naïve Tregs 
(nTregs). nTregs are believed to migrate from the thymus to the periphery and 
comprise only 5–10% of the peripheral CD4+ T cell population [31]. Thymic Tregs 
(also called as tTregs) are generated in the thymus itself through positive selection 
by MHC-II-restricted self-peptides with greater affinity presented to the CD4+ thy-
mocytes. The critical compartment of tTreg development is the thymic medulla 
[32]. The direction of CD4+ thymocytes in the thymic medulla towards the tTreg 
lineage is driven by the signal strength of TCR stimulation. TCR stimulation 
should be higher than that required for positive selection and lesser than that 

Fig. 8.2 Tregs subsets. Tregs have been classified into six different subtypes based on differential 
expression of surface markers
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required for negative selection. In Rag2−/− mice, expression of MHC-II-restricted 
transgenic TCRs resulted in positive selection and development of CD4+ thymo-
cytes rather than tTregs [33]. An experiment where IL2R−/− and CD28−/− knock-
outs failed to produce tTregs indeed led to the development of lethal autoimmunity 
disorders early in life [34, 35]. This study confirmed the significance of IL-2 and 
CD28  in tTreg development. IL-2 was considered important but not entirely 

Table 8.1 Types of Tregs showing their phenotypes, mechanism of action, and functions

S. 
no.

Types of 
Tregs

Abbreviated 
form Phenotype

Mechanism 
of action Function References

1. Natural or 
thymic 
regulatory 
T cells

nTregs/
tTregs

CD4+ 
CD25+ 
FOXP3+ 
CD45RBlow 
Helios+

TGF-β, 
IL-10

Control allergy 
and allograft 
rejection, 
suppress 
antigen-specific 
autoimmune 
responses

[5, 20, 21]

2. ICOS+ 
natural 
regulatory 
T cells

ICOS+ Tregs CD4+ 
CD25+ 
FOXP3+ 
ICOS+

IL-10, 
IL-17, and 
IFN-γ

Involved in 
antitumor, 
allogenic graft 
rejection, 
antiviral 
response, wound 
healing

[22–26]

3. Peripheral 
or induced 
regulatory 
T- cells

pTregs/
iTregs

CD4+ 
CD25- 
FOXP3+

TGF-β, 
IL-10

Involved in 
immunological 
response at 
inflammatory 
sites especially 
mucosal surfaces

[27, 62]

4. Type 1 
regulatory 
T cells

TR1 cells CD4+ 
CD25+

IL-10 Inhibit migration 
and functions of 
effector TH cells, 
suppress 
eosinophils, 
basophils, and 
mast cells

[28–30]

5. CD8+ 
regulatory 
T cells

CD8+ Tregs CD8+ 
CD25+ 
CD28+ 
FoxP3+

TNF-α, 
IL-10, and 
IFN-γ

Suppress 
activation of 
naive and 
effector T cells, 
inhibit IgA/IgE 
responses

[31]

6. IL-17- 
producing 
FOXP3+ 
regulatory 
T cells

IL-17 
FOXP3+-
producing 
Tregs

CD4+ 
ROR-γt+ 
FOXP3+ 
CCR6+

IL-17 Suppress 
formation of 
CD4+ effector T 
cells

[119]
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necessary for the development of tTregs [36]. CD28 stimulation was believed as 
the most essential factor for tTreg development [37]. In contrast to this, a recent 
study reported the generation of normal numbers of tTregs in CD28 conditional 
knockout mice [38]. However, these knockout mice developed critical autoimmu-
nity due to dysfunction of tTregs. Another important factor involved in tTreg devel-
opment is TGF-β. It is not directly driving the tTreg lineage commitment and 
development but might be providing useful signals needed for survival during ini-
tial tTreg development [39]. Ultimately, APCs are considered as the key regulators 
behind Treg development. It was proposed that plasmacytoid dendritic cells (pDCs) 
in the human thymus could initiate progression of CD4+CD25+FOXP3+ tTregs 
after activation with IL-3 and CD40 ligand (CD40L) [40]. Also, IL-3 expands the 
population of Tregs in mice [41]. It was revealed that the CD27-CD70 co-stimula-
tory pathway was important for the development of tTregs by liberating them from 
apoptosis, following induction of FOXP3 by CD28 and TCR signals [42].
Expression of CD70 on mTECs (medullary thymic epithelial cells) and DCs in the 
medulla region of the thymus stimulates the CD27 signal on tTregs to encourage 
their survival chances by suppressing apoptosis in the mitochondria [43]. 
Conclusively, microenvironment, APCs, co-stimulatory signals, and cytokine 
milieu all cooperate in generating and maintaining tTregs. Tregs are known to 
develop in the thymus by a two-step process [44, 45]. The first step involves TCR-
dependent strong signals which upregulate CD25 expression, as CD25 is the key 
element of the IL-2 receptor as well as TNF receptor superfamily members TNFR2, 
OX40, and GITR [44, 46]. The second step, which is TCR independent, involves 
the conversion of the progenitor CD25+ Treg population to mature CD25+ FOXP3+ 
Tregs which is dependent on IL-2 and STAT5 (signal transduction and activator of 
transcription 5), a transcription factor [44, 45, 47, 48].

Natural Tregs, in mice, make up for 5–10% of the total peripheral CD4+ T cell 
population. Characteristic features of natural Tregs involve lowered expression of 
CD45RB and constitutive expression of CD25 [49, 50]. In humans, it comprises 
1–2% of CD4+ T cells, especially the ones with the highest expression of CD25 [5]. 
But CD25 is not unique to Tregs as it is also present on activated T cells and 
expressed by effector T cells such as Th1 and Th2. It has also been found that acti-
vated T cells in humans are also capable of expressing FOXP3 without having sup-
pressive activities [51, 52]. Various markers were studied such as CTLA-4, GITR, 
CD26Lhigh, CD103, neuropilin1, CD5, CD38, CD39, CD27, CD73, CD122, 
CD134(OX-40), CCR4, CCR7, and CCR8, but none was found to be exclusive for 
Tregs [53]. Presently, to distinguish Tregs from conventional/activated CD4+ T 
cells, low expression of CD127 and modulated expression of CD45RB are used as 
co-markers along with expression of CD25 and FOXP3 [54, 55].

A distinctive marker employed for identification of tTregs is Helios, which is a 
zinc finger transcription factor [56]. About 70% of Tregs circulating in the periph-
eral blood of humans and peripheral lymphoid tissue present in mice are Helios+. As 
reported, over 95% of Treg population residing in the thymus of mice are Helios+. 
More than 90% of Treg population were found to be Helios+ when analyzed from 
the specimens of human thymus and umbilical cord [57]. An interesting study by 

N. Shokeen et al.



207

Dhamen and McClymont groups in 2011 and 2012 demonstrated a methylation pat-
tern of Tregs in a Treg-specific demethylation region (TSDR) of the FOXP3 pro-
moter. It was found that in humans, Helios+ FOXP3+ Tregs have less than 10% CpG 
methylation within the TSDR.  On the other hand, Heliosneg Foxp3+ subset was 
reported to be more than 40% methylated [58, 59]. Furthermore, thymus-derived 
FOXP3+ Tregs are classified into two subtypes based on the differential expression 
of a co-stimulatory molecule known as inducible T cell co-stimulator (ICOS). A 
subset, which is ICOS+FOXP3+, is endowed with increased IL-10 generating capac-
ity and ICOSnegFoxP3+ subset is provided with increased TGF-β production [60]. 
Both of these subsets use contact-dependent and contact-independent mechanisms 
for suppression in periphery. Since there are no specific cell surface markers for 
distinguishing nTregs, a number of cell surface proteins expressed by nTregs such 
as CD25 can help in the selective study of this Treg subtype. nTregs are CD25+ 
CD4+ FoxP3+ cells which secrete TGF-β and IL-10 and represent one of the largest 
subsets of the Treg population. But an nTreg population with CD4+CD25+CD127(low/

neg)FoxP3+ expression was detected in the thymus of neonates which acts by sup-
pressing the proliferative response to allogenic stimulation of CD25neg and CD4+ T 
cells. It has also been reported that Treg turnover and suppressive activity increase 
with advancing age. It was also found that there is an inverse relationship between 
CD127 and FOXP3 expression suggesting that cell surface expression of CD127 
can be used along with FOXP3 for functional analysis of Tregs [61]. ICOS+ Tregs 
are a subtype of nTregs that arise by expansion of nTregs in response to its allied 
antigen. ICOS+ Tregs are distinguished from all other FOXP3+ Tregs by the expres-
sion of IL-10, IL-17, and IFN-γ.

8.3.2  Peripheral Tregs (pTregs)

pTregs differentiate from naïve CD4+CD25neg T cells particularly in peripheral lym-
phoid tissues. It has been shown that upon antigenic interaction, adoptive transfer of 
CD4+CD25neg T cell into antigen-expressing transgenic mice from Rag−/− TCR 
mice leads to their conversion to CD4+CD25+ Treg population [62, 63]. CD103+ 
DCs found in the lamina propria and mesenteric lymph nodes of the small intestine 
can also trigger conversion of pTregs [43]. It has been found that CD8+CD205+ 
splenic DCs in the peripheral lymphoid tissue are involved in pTreg development 
[64]. Various studies showed the importance of antigenic challenge in governing the 
polarization of Tregs into pTregs. In 2010, Gottschalk et al. reported that induction 
of pTregs in  vivo could be done by providing low dosage of high-affinity TCR 
ligand [65]. Another study demonstrated the role of a high peptide dose or increased 
polyclonal TCR stimuli in preventing the induction of FOXP3 via NF-κB-mediated 
cytokine production [66, 67]. Therefore, interpretation drawn from the above 
studies is that tTregs arise as a result of moderate/strong affinity interaction with 
self- antigens in the thymus, whereas induction of pTregs in the periphery occurs as 
a response to suboptimal/low dosage of strong affinity alloantigen. Commensal 
microbiota of the colon can also serve as an antigenic source for peripheral 
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induction of pTregs [68, 69]. For example, Clostridium species inhabiting the intes-
tine can encourage induction of pTregs which is correlated with enhanced bioavail-
ability of cytokines such as TGF-β [69]. Lactobacillus acidophilus and Bacillus 
clausii have also been reported by our group in the induction of pTregs [70, 71]. 
Polysaccharide A present in Bacteroides fragilis was also able to stimulate the pro-
liferation of pTregs via TLR2 signaling [72]. Conclusively, an interaction between 
various signaling pathways like TGF-β, retinoic acid, IL-2, TLRs, and a milieu of 
cytokines is required for differentiation of naïve T cells towards pTregs or other 
effector subsets of T cells. The role of CNS (conserved noncoding sequence 1) in 
driving differentiation of pTregs in gut-associated lymphoid tissue (GALT) was 
investigated by Rudensky’s group. CNS3 is crucial for the development of both 
tTregs and pTregs. The CNS role has been further demonstrated by the same group 
that selectively blocks the differentiation of pTregs in CNS1−/− mice that did not 
cause aggravation of pathologies related to induced tissue-specific autoimmunity, 
enhanced proinflammatory responses to Th17 and Th1 cells, or unprovoked multi-
organ autoimmunity [73] But these mice impromptu developed Th2 pathologies 
like asthma and allergic inflammation at the mucosal sites in the GI tract and lungs. 
It was further reported that mice had altered microbiota indicating the importance of 
pTregs in maintaining a balance between intestinal immunity and gut microbiome. 
pTregs serve an essential and distinct function in directing the adaptive immune 
response to restrict inflammation at mucosal surfaces due to allergic reactions [74]. 
Following the removal of invaded pathogens, induction of pTregs can function as 
mediators to repress antigen-specific immune response and avert genesis of cross- 
reactive T cell. Consequently, failure of any of the mentioned mechanisms can lead 
to emergence of immune-mediated disorders. pTregs can be distinguished from 
tTregs based on the expression of Helios. From the studies performed, it was con-
cluded that Helios can be used as a distinctive marker for tTregs and the Heliosneg 
subset constitutes pTregs [57]. But some controversies prevail whether Helios can 
be used to accurately define pTregs. A CNS discovery by Zheng et  al. (2011) 
revealed the essentiality of CNS1 in the development of pTregs. He developed a 
model where CNS1−/− FOXP3 GFP− T cells possessed the ability to transform into 
pTregs in vivo whilst smaller than wild-type controls [75]. Unfortunately, it was not 
discussed whether Tregs present in CNS1−/− mice were predominantly Helios+ or 
Heliosneg. Several groups have challenged the claim of Helios as a marker for distin-
guishing pTregs from tTregs. The first study in 5C.C7 Rag2−/− transgenic mice 
showed that Helios could be expressed in vivo in pTregs and in vitro in iTregs [76]. 
A study conducted using human experiments has reported that tTregs can be 
Heliosneg [77]. Hence, it becomes unclear how “naïve” Heliosneg Tregs were stimu-
lated to become pTregs without changing their naïve markers. Also known as effec-
tor or induced Tregs, iTregs are derived from naïve CD4+ T cells in the periphery 
which upon encounter with a foreign antigen begins to express FOXP3, exhibiting 
a suppressive function as that of nTregs. Th3 cells are a subtype of iTregs which 
secrete TGF-β and IL-10. However, the nomenclature of Tregs as natural and 
peripheral is ambiguous and to some extent inaccurate as it may indicate the exis-
tence of peripheral Tregs as unnatural [78].
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8.3.3  TR1 Cells

A new subset of Tregs was discovered in 1997 by Roncarolo et al. which can sup-
press antigen-specific T cell response and prevent colitis. These are the CD4+ sub-
set of Tregs which do not express FOXP3 but secrete IL-10 and have a suppressive 
action on effector T cells. Tr1 cells induced by IL-27 are known to play a role in 
suppressing immune responses by producing IFN-γ [79]. It has been found that 
TR1 cells play a protective role during colitis by supporting the immune homeosta-
sis to the intestinal microbiome [80]. TR1 cells are demarcated from conventional 
Tregs in FoxP3 and CD25 expression, where TR1 cells are CD25neg FoxP3negIL10+ 
[81]. TR1 cells are usually differentiated from the alternate CD4+ T cell population 
by the expression of unique cytokines such as IL10+, IFN-γ, IL5+, TGF-β+, IL2low/−, 
and IL4 [82, 83]. TR1 cells are known to have a mediocre expression of CD49b, 
LAG3, CD69, CD40L, CD28, CD152/CTLA-4, PD-1 (programmed cell death pro-
tein), and HLA-DR (human leukocyte antigen-DR) and a higher expression of 
regulatory factors like GITR, OX40/CD134, and TNFRSF9 [83]. It has been known 
that TR1 cells have a substantial expression of ICOS and overexpression of CD18 
integrin [84, 85].

8.3.4  CD8+ Tregs

This subset of Treg was discovered by Gershon and Kondo in 1970 [1]. CD8+ Tregs 
were known to have dual effects in immune responses. Primarily, they suppress the 
immunological response against pathogens and also the host’s inflammation caused 
by pathogen infection [86–88]. These CD8+ Tregs are mainly characterized by FOXP3 
expression and IL-10 secretion and this subtype of Tregs originates from OT-1 CD8 T 
cells in the presence of IL-12 and IL-4. CD8+ Tregs can be generated in vitro from 
naïve CD8+ T cells through polyclonal stimulation which are predominantly CD25high 
CD28 high and secrete increased level of granzyme B, TNF-α, and IFN-γ. Common 
markers for Tregs are CD25, CD39, CD127, CD73, and FOXP3 [17] and markers that 
can differentiate CD8+ Tregs from the conventional CD8+ T cells are CD25, HLA-DR, 
CD28, CD122, LAG-3, CD38, CD27, CD103, CD8αα, and GITR [89]. In mice, 
FoxP3 is predominantly expressed in CD4+CD25+ T cells but has limited expression 
in CD8+ Tregs. However, in humans, FOXP3 expression is significantly higher in 
CD4+ Tregs when compared with the CD8+ Tregs [5, 90]. In humans, majority of 
CD8+ Tregs are predominantly CD8+CD28neg Tregs, but two subtypes of CD8+ Tregs 
were produced in vitro by induction, specifically CD8+CD28neg Tregs and CD8+CD28+ 
Tregs [91, 92]. Three different types of CD8+ CD28neg Tregs are recognized till now, 
viz., types I, II, and III. Type I cells directly interact with DCs and negatively regulate 
the expression of CD80 and CD86 (co- stimulatory molecules). Type II cells exert an 
inhibitory role by secreting IFN-γ and IL-6 without directly involving with APCs 
(antigen-presenting cells), whereas type III acts by secreting IL-10 [93–95]. Varied 
classes of CD8+ Tregs function by producing inhibitory chemokines and cytokines 
such as TGF-β, IL-10, IFN-γ, IL-16, and CCL4 (chemokine C-C ligand 4). Certain 
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subtypes of CD8+ Tregs exert their inhibitory role via a contact-dependent manner, 
where TGF-β and CTLA-4 (cytotoxic T lymphocyte–associated protein) present on 
the cell play pivotal roles [96, 97]. Ovulation is considered as an inflammatory process 
but there is little understanding regarding the participation of the immune system 
[98, 99]. Unconventional CD8αα+ Tregs were recognized in the thecal region of 
antral follicles [100]. Existence of CD8αα+ Tregs was validated with the observation 
that ovaries of nude mice (lacking thymus) and anovulatory C31F1 mice undergoing 
estradiol treatment had low fertility and lacked CD8αα+ Tregs [101]. TECK (thy-
mus-expressed chemokine) present in the ovaries reportedly attract the CD8αα+ 
Tregs to ovaries. Nevertheless, TECK expression in anovulatory mice was found to 
be normal, indicating deprivation in migration of CD8αα+ Tregs to the ovaries led to 
infertility. Ultimately, the origin of CD8αα+ Tregs residing in the ovaries was traced 
back to the thymus [100, 101]. An interesting finding suggests that a subset of CD8+ 
Tregs is essential for maintaining self-tolerance and preventing autoimmunity in 
mice [102–104]. Any disruption in the interaction between Qa-1+ follicular helper 
T cells and CD8+ T cells can give rise to SLE (systematic lupus erythematosus), 
specifying the importance of this subtype of CD8+ T cell in regulating immune 
response and monitoring the immunological tolerance [105, 106]. CD8+ Tregs have 
also been reported by our group to be involved in bone remodeling by inhibiting bone 
loss in ovx mice model [107].

8.3.5  IL-17-Producing FOXP3+ Tregs

These cells are characterized by co-expression of both RORγt and FOXP3 tran-
scription factors. This subset was observed in peripheral blood along with lymphoid 
tissue but not in the thymus. The CD4+FOXP3+ T cells expressing CCR6 can pro-
duce IL-17 upon activation. IL-17-producing CCR6+ FOXP3+ Tregs are known to 
greatly inhibit the expansion of CD4+ responder T cells [108]. IL-17-producing 
FOXP3+ Tregs are considered as a population of immune cells which can have a 
novel crossover from Tregs into Th17 and are related with decreased suppressive 
function of CD4+ FOXP3 T lymphocytes [54]. Conventional Tregs perform an 
immunosuppressive function via the production of anti-inflammatory cytokines like 
TGF-β, IL-35, and IL-10. But there have been studies directed towards a type of 
Tregs with the property of secreting proinflammatory cytokines [109–112]. IL-17A- 
producing FOXP3+ Tregs originated from the induction of naïve CD25neg Tregs 
either through the ectopic action of FOXP3 or TGF-β signaling [113]. Culturing 
murine CD4+FOXP3+ Tregs in an environment capable of inducing Th17 differen-
tiation leads to induction of IL-17A from these CD4+FOXP3+ Tregs [114]. When 
naïve CD4+ T cells were cultured in the same conditions, they too produced IL-17A 
and transiently expressed FOXP3 [114, 115]. Tregs producing proinflammatory 
cytokines are demarcated into two types based on their FOXP3 expression. The first 
subset termed as ex Treg cells [116, 117] are reprogrammed cells which have lost 
their FOXP3 expression and attain the properties of T helper cells, i.e., releasing 
proinflammatory cytokines in immunocompromised conditions [118]. The second 
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subset is the Th-like Tregs which substantially express FOXP3, secrete proinflam-
matory cytokines, and express lineage-specified transcription factors [119]. Th1- 
like Tregs express T-bet (transcription factor specific to Th1 cells) and secrete IFN-γ, 
which is a type of Th1 cytokine. Th17-like Tregs express RORγt along with FOXP3 
and secrete IL-17A [119]. During autoimmune diseases, inflammatory Tregs act 
like pathogen-eliminating effector T cells and in turn play a major role in inflamma-
tion and tissue injury [101]. In the course of pathogenic infections, inflammatory 
Tregs may eliminate pathogens by producing proinflammatory cytokines. A distinc-
tive feature of IL-17A-producing Tregs is the expression of RORγt along with tran-
scription factor specific to the Th17 lineage [119]. Even though all FOXP3+ RORγt+ 
Tregs are not IL-17A-producing Tregs, the presence of CD49d, CCR6, CD161, and 
IL-1Rβ and absence of HLA-DR have been reported as selective markers for 
IL-17A-producing Tregs [108, 110, 120, 121]. Broadly, IL-17A-producing Tregs 
are CD4+, CD49d+CD25hi, CD161+CCR6+, RORγt+, HLA-DRnegCD45RAneg, 
CD127lo, Foxp3lo, and Heliosneg T cells.

8.4  Proposed Mechanisms of Action

Regulatory mechanisms are activated by Tregs to perform the functions needed for 
maintaining immunological homeostasis especially under conditions of pathogen 
encounter or any other external stimuli inducing inflammation. Tregs receive help 
from a variety of immune components, viz., IL-10, IL-35, TGF-β, granzyme, perfo-
rin, CTLA-4, and many more, to maintain equilibrium. Herein, we will discuss vari-
ous routes through which Tregs retain the balance of the immune system. 
Mechanisms involved are broadly divided into four different categories based on 
their modes of action: anti-inflammatory cytokines, viz., IL-10, TGF-β, and IL-35, 
cytolysis by the granzyme-/perforin-mediated pathway, and immune attenuation by 
CTLA-4 (Fig. 8.3).

8.4.1  Anti-inflammatory Cytokines

8.4.1.1  IL-10
IL-10, a pleiotropic cytokine, suppresses immune response at different levels by mod-
ulating the APCs [122] or inhibiting the T cell expansion [123] and most interestingly 
by sustaining the function of the Treg population [124, 125]. Along with TGF-β, 
IL-10 is also involved in the differentiation and function of iTregs. A justifying expla-
nation is: how significant reduction in IL-10 production leads to the failure of IL-10Rβ-
deficit M2 macrophages to form functional Tregs in the gut [126]. Coexistence of 
IL-10 with TGF-β is the main determinant of tolerance [127]. It is an established fact 
that IL-10 mainly functions by STAT3 phosphorylation [128]. Regulation of iTregs 
through STAT3 was validated in a study where IL-10- induced iTregs when cultured 
for 7 days showed upregulated STAT3 phosphorylation. The role of STAT3 phos-
phorylation was in turn demonstrated by treating the IL-10-induced iTregs with 
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Stattic V, a STAT3 inhibitor, at a concentration of 50 ng/ml [129]. In cell cultures 
where Stattic V was added along with IL-10, no significant increase in expression 
FOXP3 or CTLA-4 was observed when compared to cells cultured in the absence of 
IL-10. Inarguably, iTregs cultured with Stattic V and IL-10 were unsuccessful in gain-
ing prominent suppressive activity. Along with STAT3 phosphorylation, IL-10 also 
regulates the Treg suppression by inhibiting the PI3K/Akt signaling pathway in effec-
tor T cells [130], since phosphorylated Akt regulates the expression of Foxo1 [131], 
important for Treg function [132]. Keeping in mind the divergent role of IL-10, it can 
be suggested that IL-10 may hold some therapeutic importance in the possible treat-
ment of various immunological disorders such as allergy, autoimmunity, etc. via 
human iTregs generated in vitro, although some questions still need to be addressed 
on the stability of in vitro cultured iTregs.

8.4.1.2  TGF-β
It is found to be synthesized by different cell types and belongs to a superfamily of 
growth factors. Due to the diversity in functions performed by TGF-β, multiple 
responses are observed based on differentiation state and type of responder cell 
[133]. Several immune responses have been found to be affected by TGF-β such as 
T cell proliferation [134], differentiation [135–137], and apoptosis [138, 139]. A pos-
sible justification to differing effects displayed by TGF-β is that it acts at various 

Fig. 8.3 Regulatory mechanisms of Tregs. Different mechanisms have been employed by Tregs 
to suppress immunological responses and maintain a state of homeostasis
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levels for activation and maturation of lymphoid cell. TGF-β binds to its respective 
responsive cells via three different types of receptors, viz., TRI (TGF receptor Type 
1), TRII (Type 2), and TRIII (Type 3) [140]. TRI and TRII have three main regions: 
an extracellular domain, a transmembrane segment, and a serine-threonine kinase 
domain found in the cytoplasmic region. TRII is capable of binding a free ligand; on 
the other hand, TRI only recognizes a ligand when it is bound to TRII. A heterotet-
ramer formed as a result ligand interaction with TRI and TRII is crucial for signaling. 
The Smad protein family is known to mediate the signaling pathway by TGF-β 
receptors [141, 142]. Earlier studies have suggested that IL-10 is capable of inducing 
anergy [143] and driving differentiation of Tr1 (Type 1 regulatory T cells) Tregs [82]. 
An experiment by Zeller et al. showed that TGF-β enhances the function of IL-10, 
suggesting a synergistic relationship between TGF-β and IL-10 [144].

8.4.1.3  IL-35
IL-35 is a newly found cytokine involved in the suppression mediated by Tregs and 
have the potential to directly suppress proliferation of conventional T cells [145]. 
Belonging to the IL-12 family, IL-35 is made of the IL-12α chain p35 and another 
IL-27β chain EBI3 (Epstein-Barr virus–induced gene), joined by a disulfide bond 
[146]. EBI3 and IL-12 p40 are homologous [147]. The IL-12 p35 subunit has ubiq-
uitous expression, whereas IL-12 p40 has inducible expression. Both of these sub-
units can dissociate and interact with some subunits to give rise to new cytokine 
profiles [148]. p40 may interact with a p19 subunit to form IL-23, which is consid-
ered to be important for TH1 responses [148, 149], whereas EBI3 may associate 
with p28 to give rise to IL-27, which possess both pro- and anti-inflammatory roles 
[150, 151]. Deficiency in any of the IL-35 chains reported leads to alteration in the 
suppressive ability of Tregs under both in vivo and in vitro conditions in IBD mice 
model, but it did not show occurrence of autoimmune disease. In comparison to 
mice, humans lack a constitutive expression of IL-35 [152]. The role of IL-35 in 
humans was reported by culturing mouse T cells or naïve human T cells in the pres-
ence of IL-35. This treatment polarized a new population of Tregs called iTR35 
regulatory cells which act by producing IL-35 and did not require FOXP3, TGF-β, 
or IL-10 for suppression [153]. In in  vivo mice models, iTR35 cells have been 
reported to be considered as “strongly suppressive.” Human Tregs are not known to 
have a higher expression of IL-35 but enhanced IL-35 production was indeed 
reported after long-term activation of Tregs for 3 days [154]. Suppression mediated 
via these mentioned long-term activated Tregs was contact independent and thus 
depended upon IL-35. Based on the above observations, IL-35 is also believed to 
play a role in infectious tolerance [155].

8.4.2  Cytolysis by the Granzyme-/Perforin-Mediated Pathway

Granzyme, a well-known serine protease, is found to be present in particularized 
cytotoxic vesicles of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. 
Expression of granzymes and perforin is restricted to NK cells and CD8+ T cells 
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[156]. There have been reports of granzyme and perforin expression in CD4+ T cells 
but functional importance of granular exocytic pathway in CD4+ T cells has not yet 
been elucidated [157, 158]. Effector lymphocytes such as CTLs and NK cells 
destroy their cellular targets by employing two different mechanisms of action. In 
the first mechanism, perforin (protein-disrupting membrane) and granzyme (serine 
proteases) are produced through exocytosis and collectively stimulate cell death 
pathways in targeted cell [159]. Apoptotic pathways activated through exocytosis of 
granules act by stimulating apoptotic cysteine proteases (called caspases), but it can 
also cause cell death when activated caspases are absent [160, 161]. The second 
mechanism involves assembly of cell death receptors (such as FAS) and its respec-
tive ligands (like FASL) on the cell membrane which ultimately leads to classical 
caspase-dependent apoptotic pathway [162]. The main function employed by FAS- 
FASL pathway is to destroy lymphoid cells that have become self-reactive [163]. 
Granzymes and perforin induce apoptosis of the targeted cell in a cooperative man-
ner. The apoptosis-inducting potential of granzymes has been found to be associated 
with perforin for their delivery into the targeted cell. Granzyme B is the most vigor-
ous activator of caspase-mediated and independent cell death. It cleaves at specific 
aspartate residues of target cell proteins. Mannose-6-phosphate receptor is believed 
to be the mediator for the entry of granzyme into the target cells through endocyto-
sis [164]. Granzyme A is incapable of activating caspases but can directly destroy 
cells by cleaving the nuclear proteins and in turn induces the formation of ssDNA 
breaks [165]. Activated CD4+ CD25+ natural Tregs principally express granzyme A, 
whereas adaptive Tregs express granzyme B. Both the Treg populations act on their 
autologous target, i.e., CD4+ and CD8+T cells and DCs, via the perforin-dependent 
pathway [166]. The mechanism by which Tregs recognize their targets is still not 
well understood, but several evidence hint that it is a TCR/MHC-independent mech-
anism, somewhat related to target recognition by NK cells. Some key points to 
understand the Treg mechanism are as follows: Adaptive Tregs are capable of kill-
ing K562 (an allogeneic tumor cell line) [166] which lacks the expression of MHC-I 
and MHC-II [166]. Effector Tregs did not interact with their target cells preceding 
the killing assay, and both subsets of Tregs could effectively kill their autologous 
targets. The different expressions of granzyme A and B in various subsets of Tregs 
enable them to kill their respective target cells. After stimulation, natural Tregs pre-
dominantly express granzyme A as nTregs target or suppress autologous activated 
target cells expressing endogenous factors capable of inhibiting granzyme B, like 
proteinase inhibitor-9 (PI-9) [167].

8.4.3  CTLA-4-Mediated Mechanism

CTLA-4 is a homologue of CD28 and a well-known immune attenuator; CTLA-4 
interacts with B7.1 (CD80) and B7.2 (CD86) expressed on APCs with a much higher 
affinity than CD28 [168, 169]. The competitive binding of CTLA-4 to B7 with respect 
to CD28 prevents the co-stimulation by secreting inhibitory signals and downregulat-
ing T cell activation [168, 170, 171]. Thus, the interaction between CTLA-4 and B7 
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does not trigger a stimulatory signal in effector T cells. In fact, the relative proportion 
of CTLA-B7 binding and CD28-B7 binding is the deterministic factor that influences 
the fate of effector T cells, whether it enters into anergic state (functionally unrespon-
sive) or undergoes activation [172]. TCR and CD28-B7 binding leads to stimulation 
of CTLA-4 and its expression on the cell surface is dependent on exocytosis of vesi-
cles containing CTLA-4 [173]. Upregulation of CTLA on the cell surface occurs in a 
graded feedback mechanism where higher TCR signaling stimulates greater translo-
cation of CTLA-4 to the cell surface. Net negative signal delivered through binding of 
CTLA-4 with B7 prevents activation of T cells by inhibiting the production of IL-2 
and progression of cell cycle [172]. The discussion so far indicates that the main bio-
logical role of CTLA-4 is to negatively regulate CD28 signaling mechanism. Several 
studies performed on Ctla knockouts have shown that immune dysregulation was pre-
vented by blockade of CD86 and CD80 with the CTLA-4 antibody [174]. Similar 
experiments conducted with triple knockout mice, lacking CTLA-4 along with CD80 
and CD86, showed no symptoms of immune impairment linked to CTLA-4 defi-
ciency [175]. From various studies, we can conclude that CTLA-4 plays a crucial role 
in inhibiting autoimmunity. Thus, an intersection exists between Tregs and CTLA-4 
for mediating tolerance. Phenotypic similarities between FoxP3-deficient and CTLA-
4-deficient mice attracted a lot of interest in whether both of these are connected 
through a common pathway. Tregs are known to maintain peripheral tolerance by 
regulating activity of effector T cells [176]. Constitutive expression of CTLA-4  in 
Tregs is believed to play an important role in its immune-suppressive actions [177]. 
An impairment in suppressive functions was observed in Tregs lacking CTLA-4 
expression [177, 178]. CTLA-4 gene–deficient mice showed impaired T cell immu-
nity leading to tissue infiltration and early death at the age of 3 weeks [179, 180]. The 
CTLA-4 pathway was considered as a deciding factor between tolerance and immu-
nity. Antibodies against CTLA-4 aggravated autoimmunity in various mice models 
[181–183] and induced autoimmune expression such as oophoritis, gastritis, and 
sialoadenitis in normal mice [177]. Polymorphisms found in the CTLA4 locus are 
believed to be involved in autoimmunity [184–186]. An interesting example showing 
the interdependency of Tregs and CTLA4 pathway is how the presence of wild-type 
cells can correct CTLA4−/− and Foxp3−/−phenotypes. It was shown that injecting 
CD4+ CD25+ wild- type cells directly into scurfy mice could lead to the restoration of 
immune homeostasis [5]. Restoring the Treg deficiency in scurfy phenotype by 
administering CD4+ CD25+ wild-type cells could be easily anticipated as the role of 
Tregs in regulating cell extrinsic properties has been known. In 1999, Bachmann 
et  al.’s group suggested that CTLA-4 deficiency could be corrected by combining 
CTLA-4−/− bone marrow along with wild-type bone marrow in chimeric mice. Their 
observation also included that CTLA-4−/− bone marrow reconstituted to Rag−/− mice 
resulted in death of mice roughly after 10 weeks, but those mice that received wild-
type bone marrow were completely healthy [187]. Tregs lacking CTLA-4 can easily 
ignite an autoimmune response indicating a fundamental role played by CTLA-4 in 
regulating the Tregs lineage [178]. However, there have been reports that Tregs defi-
cient in CTLA-4 were functional enough to cause suppression. A uniformity is absent 
in defining the role of CTLA-4 with respect to Treg functions.
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8.5  Role of Human Regulatory T Cells in Infection

Bacterial and viral infections like leprosy, TB, and HIV in common wealthy coun-
tries show more morbidity and mortality. Treg cells are an active area of investiga-
tion over the last two decades in human chronic infections. Treg cell immune 
responses have now been implicated in a large range of pathogens like Mycobacterium 
leprae, M. tuberculosis (M.tb), human immunodeficiency virus (HIV), and malarial 
parasites that cause chronic infections [188–191]. During chronic infection, Treg 
cells secrete immunosuppressive cytokines such as TGF-β and IL-10 that play piv-
otal role in preventing tissue damage that occurs due to inflammation mediated by 
Th17, neutrophils, NK, and monocytes, but these immunosuppressive cytokines are 
also involved in preventing pathogen clearance from the host [192].

8.5.1  Bacterial Diseases

8.5.1.1  Leprosy
Treg, Tr1, and Th3 cells are the primary mediators of anti-inflammatory responses 
against exogenous antigen (M. leprae) such as those associated with mucosal immu-
nity. High TGF-β promotes the development of a microenvironment required for 
differentiation of Th3 cells, M. leprae progresses with the TGF-β and IL-10 cyto-
kine milieu, and increased production of TGF-β and CTLA-4 leads to T cell anergy 
[193, 194]. Some seminal studies also reported that acetylating FOXP3 leads to 
induction of Th3 environment via increased production of TGF-β from cholesterol- 
deprived M. leprae–infected macrophages [193, 195]. Reports on FOXP3+ cells are 
varied in leprosy patients where higher association with tuberculoid and ENL sub-
jects was observed [196]. In contrast to this, other studies found that FOXP3+ cells 
were increased in leprosy patients [194]. A subset of CD4+CD25+IL10+ Treg cells 
was also observed in leprosy patients [197]. Also a genetic study described IL-10 
and TNF-α cytokine gene polymorphism for determining predisposition to leprosy 
progression [198]. A study by Saini et al. reported increased TGFβ+FoxP3+ naïve 
and memory cells in these patients [194]. Saini et al. further confirmed the presence 
of natural Treg (nTreg) and induced Treg (iTreg) phenotypes, with the help of 
CD25high, CD25low, and CD25neg FOXP3+Treg cells and observed that pSTAT5A sig-
naling activates TGF-β production [194]. Subsequently, unstimulated basal levels of 
the CD8+CD25+FoxP3+Treg phenotype were significantly higher in the leprosy 
group, but they lacked expression of intracellular TGF-β [194, 199]. Similar results 
were also observed in 15-year leprosy patients. All these results showed an increase 
in antigen-specific induced Tregs in leprosy [200]. Some studies showed the molec-
ular mechanism of class II (HDAC7 and HDAC9) activated FOXP3-mediated 
immunosuppression of Treg cells in leprosy [201]. Subsequently, they silenced 
FOXP3 gene expression and showed downregulation of CTLA-4 and CD25 in lep-
romatous patients [201]. Hence, these results suggest that FOXP3 directly regulates 
the promotion of IL-2R and CTLA-4 genes and is involved in immune suppression 
in leprosy patients. Moreover, Tariqe et al. showed that IL-35+ Treg and Breg cells 
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are associated with PD1-PD-L1 contact-dependent mechanism for immune sup-
pression in leprosy [202]. Consequently, it indicates that IL-10-producing Breg 
cells promote CD4+CD25neg cells to CD4+CD25+cells in leprosy disease [203]. 
Importantly, nonconventional T cells (γδ) also expressed FOXP3 and TGF-β in 
stable leprosy patients associated with severity of leprosy [204]. Moreover, Saini 
et al. in 2018 showed that γδ T cells produce IL-17 and IFN-γ and also express 
FOXP3 in inflammatory leprosy reactions [205]. It has been reported earlier that 
because of hyperimmunization of mice with M. leprae sonicated antigens (MLSA), 
the frequency of Treg cell drops. It thus proves that M. leprae is capable of inducing 
homeostatic imbalance in the immune system of the host and is a major factor for 
the development of auto-reaction [206–208].

8.5.1.2  Tuberculosis
The immune response to Mycobacterium tuberculosis (M.tb) regulates various types 
of cells, cell surface markers, and cytokines. But recent studies have exposed that 
Treg cells also showed immunopathology in tuberculosis [209, 210]. Although the 
primary studies of Treg cells in tuberculosis (TB) give many proofs for their pres-
ence in M.tb infection, Guyot-Revol et  al. and Ribeiro-Rodrigues et  al. in 2006 
suggested that Treg cells showed anti-inflammatory immune responses to prevent 
damage to host tissues during TB [211, 212]. A study by Shafiani et al. in 2010 
showed the initial stages of immune T cell responses against M.tb infection [213]. 
M.tb infection develops Treg cell-mediated immune suppression and allows it to 
replicate inexhaustibly in the lungs until T helper cells finally reach the infection 
site. TB patients showed a high percentage of Tregs at the site of granuloma and in 
the blood that compromise protective Th1 response and interfere with stasis of M.tb 
bacterial growth in macrophages. M.tb causes pulmonary and extrapulmonary 
tuberculosis and manipulates immune response against immune tolerance and 
pathogen persistence. The involvement of Treg and Th17 cells in pulmonary TB has 
also been observed. In 2018, Saini et al. observed an increased TGF-β-producing 
FOXP3+Treg population in cutaneous tuberculosis (CTB) patients as compared to 
healthy individuals, suggesting that Treg cells play a pivotal role in negatively regu-
lating T cell immune responses in CTB. In addition, the balance of Tregs and Th17 
cells in terms of high TGF-β may downregulate IFN-γ and IL-17 responses leading 
to downregulation of antigen-specific immune responses associated with CTB 
patients [214].

8.5.1.3  Leishmaniasis
Leishmania is an intracellular protozoan parasite causing leishmaniasis. The role of 
Treg cell is also important in leishmania infection. The first study showed that there 
is reduction in immune response in mice infected with leishmania parasite. Negative 
selection of CD4+CD25+FoxP3+ cells during bacterial diseases resulted in improved 
cell-mediated immunity and rapid bacterial clearance [215]. Subsequent studies by 
Suffia et al. in 2006 showed that Treg cells mediated immunity-induced prolifera-
tion of antigen-presenting cells, suggesting that FOXP3+ cells bind to a leishmania- 
derived antigen [216]. Subsequently, Katar et al. in 2011 and 2013 supported the 
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above findings and showed that gene expression of FOXP3, CD25, and IL-10 
directly correlated with parasite load in an in situ study [217, 218]. Moreover, these 
results proved the positive correlation between frequencies of Treg cells with para-
site burden. Taken together, Tregs showed immunopathologies in disease severity in 
dermal leishmaniasis.

The homeostasis between Tregs and T helper cells can be changed in cases of 
infection, controlling the recognition of antigen-specific effector T cells and rein-
fection of pathogens [219]. However, in case of human visceral leishmaniasis (VL), 
no evidence has been found to support the idea behind the role of FOXP3+cell–
mediated immune suppression [220]. In humans, both IFN-γ- and IL-10-producing 
T helper cells showed a significantly higher percentage in leishmania antigen- 
specific stimulated PBMC cultures of VL patients [221]. IL-10 showed pathogene-
sis in cutaneous leishmaniasis (CL) produced by all FOXP3+ and non-FOXP3 cells 
in the chronic lesion of CL [217]. In chronic phase of the infection, both IFN-γ- 
producing CD4+FOXP3neg and IL-10-producing FOXP3+ Treg cells migrate to the 
site of infection. In human VL, high level of IFN-γ gene expression in lymphoid 
organs is correlated by high expression of IL-10 [222, 223], where the predominant 
source of IL-10 is the T helper (CD3+FOXP3neg) cells [220]. In accord to this, a type 
of regulatory dendritic cells in L. donovani–infected spleen produces IL-10 that 
induces the development of IL-10-producing regulatory T cells, inhibiting the anti-
microbial potential by reactive oxygen (RO) and nitrogen intermediates produced 
by macrophages and other phagocytic cells. IL-27-producing regulatory APCs and 
IL-21-producing T cells together drive the differentiation of Th1-like cells to Tregs, 
along with inhibiting Th17 cell development and IL-17 production. In conclusion, 
acquiring better knowledge about leishmania species-specific Treg cell phenotypes 
and functions, their network of interaction and regulation with other subsets of 
T cells could further help in finding a novel immunological target for the cure and 
management of leishmaniasis.

8.5.2  Viral Diseases

Tregs play a pivotal role in viral infections and a balance between useful and harm-
ful effects of Tregs can be changed in case of acute and chronic phases of virus 
infection. Tregs have been reported in RNA, DNA, and retrovirus viral infections in 
human as well as in mice models [224]. In chronic viral infection, CD4+FOXP3+ 
and CD8+FOXP3+Treg subsets have been identified but not in acute infections 
[225]. Although, in hepatitis A virus, infection showed acute inflammatory condi-
tions, hepatitis A virus and its HAV cellular receptor (HAVCR1) suppress Treg 
function [226]. In acute dengue virus cases, the ratio of CD4+CD25highFoxP3+Treg 
cells/T effector cells increases, indicating that the rise in this ratio is beneficial for 
the disease outcome [227]. In contrast, blockade of Treg functions in acute viral 
infection may help in viral clearance, at the cost of temporarily high inflammation, 
which can be due to effector immune responses. Higher inflammation is related with 
low activity of Tregs. On the other hand, TGF-β-producing Treg cells also assist the 
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host during acute infection: First, negative selection of Treg cells in murine herpes 
simplex infection improved lymph node levels of interferon-α and interferon-γ. But 
due to downregulation of IFN-γ in infection site, the influx of antigen-presenting 
cells, natural killer cells, and T helper cells at the infected lesion is delayed [228], 
resulting in the role for Treg promotion in the lymph node and efflux of Th17 cells 
[229]. Second, FOXP3+Treg cells showed a protective nature in early HIV infection 
and inhibited the proliferation of infected cells. Because of this, infection did not 
establish at the mucosal entry level [230, 231]. One study on West Nile virus infec-
tion model showed that Tregs play a vital role in memory T cell formation through 
activating antigen persistence [232].

The role of human Tregs in chronic viral infection showed high CD4+Treg popu-
lation in chronic hepatitis B virus (HBV) infection as compared to acute HBV infec-
tion and noninfected individuals. This study supports a positive correlation of Tregs 
with disease progression and viral load [233]. The higher percentage of FOXP3+Treg 
cells seen in chronic HCV infection, on the other hand, lessened the inflammatory 
T cell immune responses [234, 235]. Subsequently, Riezu-Boj et al. described the 
recruitment of Tregs with the help of CCL17and CCL22 migratory molecules in the 
liver [236], promoting pathogen persistence. However, Tregs may also be involved 
in HCV-induced liver damage by chronic inflammation [235]. Although 
CD4+FOXP3+Treg cells remain also high in chronic HIV infection as compared to 
healthy individuals, Treg-mediated immune homeostasis on anti-HIV immune 
responses always remained a matter for debate [237]. Moreno-Fernandez et  al. 
showed that CD39 mediated ectonucleotide shifts to block HIV replication in T 
cells in vitro via CD4+FoxP3+Tregs [238]. Subsequently, Treg cells showed transfer 
of cAMP via gap junctions formed with conventional (αβ) T cells [238]. During the 
antigen presentation of the virus from dendritic cells to T cells, FOXP3+ cells inhib-
ited immunological synapse and contained virus spreading [238]. In 2011, Nikolova 
M et al. performed a CD39 experiment to show the maintenance of cytokine pro-
ductions by HIV-1 gag protein–stimulated cytotoxic T cells [239] resulting in dis-
ease progression and HIV viral load correlating with the percentage of CD4+CD39+ 
Tregs [240]. These mechanisms of Tregs may be explained by viral load and control 
of viral replication by CD4+CD39+ Tregs. It may also be important for early and late 
HIV infection with a partial number of infected cells. Taken together during chronic 
HIV infection, Tregs are unable to suppress proliferation of proinflammatory 
immune response and potentially become more harmful due to decreasing anti-HIV 
immune responses. This points to the need for more detailed analyses of Treg func-
tions in acute vs. chronic inflammation.

8.5.3  Autoimmunity

Autoimmune diseases are estimated to affect 3–5% of individuals in western coun-
tries [241]. Autoimmunity cannot be permanently diagnosed, which adversely 
affects the health-related value of life of patients and is a leading cause for morbid-
ity and mortality. This is unclear what triggers the original event that breaks down 
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immune tolerance to autoimmunity against self-antigens and allows for the activa-
tion of autoreactive immune cells [242]. This is found to be associated with specific 
human leukocyte antigen (HLA) haplotypes and the presentation of specific autoan-
tigens via the major histocompatibility complex (MHC) [243]. Additionally, spe-
cific T lymphocytes also play key roles in autoimmune reactions [244]. Treg cells 
suppress autoinflammatory episodes in patients through various mechanisms. Treg 
cells secrete immunosuppressive cytokines such as TGF-β, IL-10, and IL-35 [52]. 
These suppressive cytokines can suppress multiple cell types at the site of inflam-
mation. One mechanism by which Tregs are able to target autoreactive CD4+T 
effector memory cells is through the generation of tolerogenic APCs. When APCs 
contact TGF-β and IL-10, they express a tolerogenic phenotype that promotes an 
anergic state of memory T cells that bind to their MHC molecules [245, 246]. APCs 
also induce IL-10-producing Treg cells, but it is unclear whether these T cells were 
naive or memory cells, when they are communicating with the tolerogenic APCs. 
This phenomenon allows for the targeting of antigen-specific memory T cells when 
cells become reactivated by tolerogenic APCs at the site of inflammation. 
Subsequently, IL-10-secreting Tregs, which cause anergy in CD4+CD45RO+ T cells 
and moreover activation of tolerogenic APCs, upregulate the programmed death 
ligand 1 (PD-L1) signaling pathway that is important for the suppression of memory 
T cells post activation in autoimmunity [247, 248]. After antigen activation, 
exhausted cytotoxic CD8+ T cells upregulate the expression of certain cell surface 
markers, such as PD-1 [249]. This upregulation of PD-1 leaves CD8+ T cells suscep-
tible to PD-L1-dependent anergy. The generation of exhausted PD-1+CD8+ T cells 
involves the blockade of IL-2 in the cytokine milieu. Treg shows high amounts of 
the high-affinity IL-2R (CD25) and are capable of depleting local inflammatory 
cytokines [250]. In autoimmune diseases, Treg cells are expected to saturate IL-2 at 
the site of inflammation leading to exhaustion of CD8+ T cells and leaving them 
prone to PD-1-PD-L1-mediated cell death. Moreover, B cells also play a significant 
role in the immunopathology of autoimmune disease via the secretion of autoanti-
bodies. These antibodies target endogenous proteins and allow for direct binding of 
specific cell types by the Fc receptor and complement system [251]. The effector 
mechanism of autoantibodies has been verified via adoptive transfer of autoantibod-
ies into animal models, whereby they exacerbate tissue pathology in a similar man-
ner as in the human disease [252, 253]. Subsequently, Treg cells are also able to 
suppress autoantibody secretion from B cells via cell-to-cell contact-dependent 
manner [254]. Animal model studies have shown that negative selection of Treg 
cells leads to increase autoantibody production [255]. Patients which do not express 
the functional FOXP3 gene, responsible for a disease condition called immune dys-
regulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, lack 
natural Treg cells and suffer from a number of acute autoimmune and inflammation 
disorders that are dangerous if not treated by bone marrow transplantation [256]. 
Immunotherapy for autoimmune disorders aims to inhibit the proinflammatory 
immune response by depleting specific adaptive immune cell populations like Th1 
and Th17 or inhibiting the activation of these cells in target organs [257]. These 
immunotherapies are helpful in preventing proinflammatory immune response 
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against organ-specific autoimmunity, but they also inhibit protective immunity and 
can leave the patient’s immune system compromised and susceptible to infections. 
Newer therapies are thus being designed to utilize the suppressive capabilities of 
human Treg cells to suppress autoimmune cells in an antigen-specific manner [258].

8.5.4  Allergy

Tregs can change and modulate the progress of allergic diseases shifting the ongo-
ing hypersensitivity and effector T cell development via many important pathways. 
Tregs dampen the proinflammatory immune response. Moreover, Tregs have the 
ability to promote dendritic cells to prime effector responses via IFN-γ, IL-4, and 
IL-17, along with initiating the expansion of tolerogenic dendritic cell phenotypes 
[178]. Subsequently, Tregs directly suppress humoral immune response and its 
cytokine milieu (via IL-4, IL-5, IL-13, and IL-9) for inactivation of allergen-specific 
immunity during an allergy [259–261]. Tregs also play an important role in suppres-
sion of mast cells, basophils, and eosinophils in allergic inflammation. TGF-β- 
producing Tregs are also involved in tissue remodeling with the help of resident 
tissue cells [239, 262]. Moreover, FOXP3+ regulatory T cells use suppressive cyto-
kine in a contact-dependent manner to suppress hypersensitivity reactions by block-
ing entry of effector T cells into inflamed tissues due to allergic reaction [263]. 
Moreover, Treg cells also stop polarization of effector cells, to abrogate apoptosis of 
keratinocytes and bronchial epithelial cells, thereby preventing tissue injury [264]. 
Importantly, Tregs also suppress B cells and stop the production of allergen-specific 
IgE and IgG4 antibodies [265].

Numerous studies on healthy humans have showed predominantly IL-10- 
producing Treg cells against common environment allergy-specific immune 
response [259–261]. A phenotype of Tregs showed no difference between nonal-
lergic healthy and allergic individuals as allergen-specific Th1, Th2, and TR1 (IL- 
10 producing) cells all recognize the same T cell epitopes. Accordingly, depending 
on the predominance of Th2 and TR1 subsets and their balance, allergic people may 
develop allergy with high Th2 immune response or recovery with TR1 predomi-
nance. A study in human models for the last decades established the fact that high- 
dose exposure of allergens leads to Treg induction [266, 267]. Taking into 
consideration the beekeepers that are generally exposed to bee venom allergens, 
there is reduction in T-cell-associated cutaneous late-phase response. In response, 
the allergen-specific T cells proliferate and release Th1 and Th2 cytokines. The 
above mechanism correlates with a clonal switch of venom antigen-specific CMI 
response towards IL-10-producing Tr1 cells [266]. Another study showed that high- 
dose exposure to cat allergens activate Tr1 and IgG4 antibody responses without 
following the development of a new hypersensitivity or asthma development [267]. 
The above study indirectly establishes the fact that Treg cells have a protective 
effect in allergy reaction. A study by Verhasselt et al. 2008 in mice has shown that 
breast milk mediated transfer of antigens to the neonates for the development of 
antigen-specific FOXP3+Treg cells and stop allergic airway inflammation [268]. 
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This mechanism is dependent on TGF-β+FOXP3+Tregs and also depends on TGF-β 
signaling. Same is the case with children who develop milk allergy; these children 
possess a higher percentage of Tregs with reduced in vitro proliferative response 
than their counterparts with no tolerance to milk [269].

8.5.5  Cancer

T cells with suppressive function were reported in patients with cancer back in the 
1990s [270–272]. However, these studies were unclear until the identification of 
CD4+CD25+FOXP3+Treg cells in 1995 [273]. Various studies demonstrated the 
presence of FOXP3+ regulatory T cells in patients with lung and ovarian carcinoma 
[274, 275]. Treg cells blocked antitumor immune responses and the higher fre-
quency of Treg cells in peripheral blood of human cancers has been found to be 
increased [276–278]. From these studies we can conclude that the presence of Treg 
cells inhibits the development of antitumor immune responses; thus, methods of 
preventing the activity of FOXP3+ Tregs may be crucial for the successful immuno-
therapeutic treatment in humans [279]. It has been reported that patients with gas-
trointestinal cancer had a significantly higher percentage of Treg cells in peripheral 
blood [280, 281]. Patients who had gastric carcinoma with higher percentages of 
FOXP3+Treg cells had a poorer prognosis than those with lower percentages. 
Interestingly, FOXP3+Treg cell proportions were also found to be enhanced in asci-
tes from patients who had advanced-stage disease with peritoneal dissemination 
[280, 281]. Moreover, another study showed that the percentages of high CD25+Treg 
cells in peripheral blood mononuclear cells (PBMCs) from patients with gastric and 
esophageal cancer were significantly higher as compared to healthy donors [282]. 
Ichihara et al. in 2003 showed that the percentage of Treg cells in the TILs of gastric 
cancer patients in the later stage was significantly higher as compared to patients 
with early-stage disease [283]. Moreover, it has been shown that prevalence of Treg 
cells in the peripheral blood of gastrointestinal cancer patients is significantly higher 
than that in early-stage patients and healthy controls [284]. Since Treg cell popula-
tion is significantly reduced after curative surgery, it is possible that tumor cells may 
have induced and expanded the Treg cell pool [284]. Shen et al. in 2009 have char-
acterized CD4+CD25+CD127neg as the surface marker of Treg cells in gastric cancer 
and found that the frequency of Treg cells in the PBMCs of gastric cancer patients 
was significantly higher as compared to healthy controls [285]. They proposed that 
CD4+CD25+FOXP3+CD127neg can be used as a selective biomarker to enrich human 
Treg cells and also to perform functional in vitro assay in gastric cancer. Furthermore, 
a study by Xu et al. in 2009 has also shown that the prevalence of Treg cells in the 
peripheral blood of gastrointestinal cancer patients is significantly higher than that 
in healthy donors, but it also increased in parallel with tumor progression [286].

A study by Mizukami et al. in 2008 investigated the frequency of Treg cells in 
TILs, tumor-draining regional lymph nodes, and PBMCs of patients of gastric can-
cer and evaluated the relationship between the CCL17- and CCL22-producing cells 
with such an observation occurring in early-stage gastric cancer [287]. Some studies 
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demonstrated that CCL22 chemokines derived from tumors induce the migration of 
Treg cells through CCR4, which is a chemokine receptor for CCL22, and impairs 
antitumor immunity in primary breast cancer and lung cancer [288, 289]. Moreover, 
in 2009, it has been found that Treg frequency is significantly higher in the periph-
eral blood of patients with IL-2-treated melanoma and in formalin-fixed tissue from 
patients with lung and colon cancer [290]. In addition, they also demonstrated that 
Treg cell numbers are predictively elevated in the peripheral blood of patients with 
various solid tumors. Patients with squamous cell carcinoma of the head and neck 
have increased number of Treg cells in their peripheral circulation compared with 
normal controls and have a depressed antitumor immunity [291, 292]. Surprisingly, 
higher frequency of Tregs and levels of suppression were observed in patients with 
no clinically defined disease than in untreated patients with active disease [291]. 
Furthermore, a study showed that patients with hepatocellular carcinoma also have 
increased numbers of FOXP3+Treg cells in their peripheral blood, suggesting that 
the increased number of FOXP3+Treg cells might play a role in the modulation of 
the immune responses against hepatocellular carcinoma and could be important in 
designing novel immunotherapeutic approaches [273]. Moreover, Treg cells are 
associated with hepatocellular carcinoma invasiveness and intratumoral balance of 
Tregs and cytotoxic T (CD8) cells are a promising independent biomarker for recur-
rence and survival in hepatocellular carcinoma [293]. It has also been showed that 
primary hepatic carcinoma develops in the liver that is immunosuppressed by a 
marked infiltration of CD4+CD25+FOXP3+Treg cells. A high prevalence of Treg 
cells infiltrating hepatocellular carcinoma cells is thought to be an adverse prognos-
tic indicator [294]. Prostate carcinoma patients showed significantly a higher fre-
quency of CD4+CD25highTreg cells inside the prostate compared with benign tissue 
from the same prostate [295]. Moreover, Treg cells from blood and supernatants 
from cultured prostate tumor tissue samples exhibited immunosuppressive function 
in vitro. These studies point out that Treg cells are important for the development of 
early-stage prostate tumors, and thus new therapeutic strategies aimed at negative 
selection of Treg cells may improve prostate cancer immunotherapy [296]. 
Additionally, it has been reported that more than four hundred prostate cancer 
patients have elevated numbers of circulating and tumor-infiltrating Treg cells and 
increase tumor growth in vivo and these Treg cells potently inhibit tumor-specific T 
cells [297].

Interestingly, administration of high-dose IL-2 in patients with renal cell carci-
noma increased the percentage of circulating Treg cells [298]. These studies suggest 
that selective inhibition of IL-2-mediated proliferation of Treg cells may improve 
the therapeutic values. Jensen et al. in 2009 reported that infiltration of FOXP3+Treg 
cells significantly increased during IL-2-based immunotherapy, and after treatment, 
high FOXP3+ cells were correlated with poor prognosis in patients with metastatic 
renal cell carcinoma [299]. In patients with ovarian cancer, tumor-associated T cells 
from patients with advance-stage ovarian cancer contain increased CD4+CD25+ T 
cells and were involved in T cell immune suppression [274]. In addition, higher 
percentage of CD4+CD25+Treg cells in PBMC, TIL, and tumor-associated lympho-
cytes in ovarian carcinoma patients has also been reported [300]. Tumor cells and 
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macrophages produce the chemokine CCL22, which mediates trafficking of Tregs 
to the tumor. These studies suggested that this specific recruitment of Treg cells 
represents a mechanism by which tumors may promote immune privilege and block 
Treg cell migration [272, 301]. One line of evidence showed that FOXP3+Treg cells 
were not influenced by ovarian cancer tissue, but median disease-specific survival 
of patients with a high CD8+/FOXP3+ ratio in ovarian-derived tumor tissue was 
twice as high as in patients with a low CD8+/FOXP3+ratio [302].

In patients with breast and pancreatic cancer, the frequency of Treg cells in the 
peripheral blood is enhanced when compared with normal individuals. Similarly, 
Treg cells are present in TILs and tumor-draining lymph nodes (TDLNs) infiltrated 
by tumor. These cells secrete IL-10 and TGF-β and prevent activation of T helper 
cells [303]. Quantification of FOXP3+Treg cells in breast cancer for monitoring the 
disease prognosis and progression is an important therapeutic approach in breast 
cancer. Thus, FOXP3+Treg cells represent a novel marker for identifying late- relapse 
patients (Bates GJ 2006). In patients with acute myeloid leukemia (AML), the popu-
lation of CD4+CD25highTreg cells in peripheral blood is significantly higher as com-
pared to healthy individuals. Notably, Treg cells in AML presented significantly 
higher apoptosis and proliferation than healthy individuals [304]. It has been reported 
that Treg cells accumulate in the peripheral circulation of acute myeloid leukemia 
patients via contact-dependent and contact-independent mechanisms [305]. However, 
most of these studies have been performed on carcinomas, with the role of Treg cells 
in hematologic malignancies such as non-Hodgkin lymphoma being still unestab-
lished. Such studies suggest that the role of Treg cells in the pathogenesis of these 
B cell lymphomas may be different than carcinomas. The majority of non-Hodgkin 
lymphomas are B cell dependent, but the tumor tissue can be variably infiltrated with 
T cells. A recent study showed that a subset of FOXP3+ Tregs with high level of 
CTLA-4 is identified in biopsy specimens of B cell non- Hodgkin lymphoma and 
these cells suppressed the production of IFN-γ and IL-4 by infiltrating T helper cells 
in response to phytohemagglutinin (PHA) stimulation [306].

8.5.6  Osteoporosis and Bone Health

Osteoporosis is a well-known systemic skeletal disease that in general leads to 
abnormal bone remodeling resulting in dysregulated bone resorption and bone for-
mation process. Age associated decline in bone health is being observed in both 
men and women. In postmenopausal women, progression of osteoporosis is acceler-
ated due to declining levels of estrogen hormone, known to have osteoprotective 
role [307]. A study by Tai's group in 2008, demonstrated that osteoprotective hor-
mone estrogen can stimulate the proliferation of Tregs cells that have been shown to 
inhibit osteoclast function [308]. Numerous studiesin mice (including our group) 
and humans suggested that immune cells of both innate and adaptive arm of immune 
response plays an important role in dynamic regulation of bone homeostasis, a field 
coined by our group as “Immunoporosis” i.e. Immunology of osteoporosis. Among 
various immune cells FOXP3+ Treg cells play indispensable roles in immune 
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homeostasis, differentiation of HSCs and functions of osteoblasts (bone forming 
cells) and osteoclasts (bone resorbing cells). Several in vitro studies have reported 
that Tregs exhibits the potential to inhibit osteoclastogenesis either by secreting 
inhibitory cytokines (TGF-β, IL-10 and IL-4) or in a cell-cell contact dependent 
manner [309, 310]. Various in vivo studies also have suggested that Tregs directly 
inhibit osteoclastogenesis by downregulating production of RANKL and MCSF 
and hence enhancing bone health [71, 311, 312]. Furthermore, it has been found that 
adoptive transfer of Treg cells ameliorated the disease in autoimmune arthritis ani-
mal model, whereas depletion of Treg cells induced the more severe form of arthri-
tis [313–316]. Recently, a study in 2019 reported that Tregs via expressing CTLA-4 
may interact with osteoclast precursors expressing CD80/CD86 and thus inhibit the 
differentiation of osteoclasts precursors into to mature osteoclasts [317]. Moreover, 
in Ovx mice, it has been found by our group that oral supplementation of probiotics 
viz. Lactobacillus rhamnosus and Bacillus clausii enhance Tregs population in lym-
phoid organs such as bone marrow, spleen etc. which in turn regulatesbone health 
by secreting immune suppressive cytokines such as IL-10 and IL-4 as compared to 
control groups [70, 71].  There are evidences which also suggest that Tregs play a 
role in bone formation by promoting differentiation of osteoblasts. A study in 2018, 
showed that supplementation of probiotic Lactobacillus rhamnosus GG enhances 
the Tregs population which further upregulates the expression of osteogenic factor 
Wnt10b by osteoblasts [318]. These observations raise the question that whether the 
accumulation of Foxp3+ Tregs within bone marrow is due to the recruitment of pre-
formed FOXP3+ Tregs into the bone marrow microenvironment or due to the de 
novo induction of FOXP3- T cells to Foxp3+Treg cells. Altogether these studies 
indicate that any dysregulation in the population or functioning of Tregs would 
result in enhanced bone loss. In fact, this has been proposed and demonstrated in 
mice, although human studies are still lacking. Thus, exploring novel mechanisms 
regulating the correlation between Tregs and bone cells is highly anticipated for 
future clinical implications.

8.6  Conclusion

The past decades have provided outstanding insights into the diverse phenotypic and 
functional types of Tregs. A wealth of studies has demonstrated that Tregs are crucial 
in maintenance of immune tolerance. This chapter has focused specifically on the 
discovery of Tregs, its specific markers and how the various regulators control the 
development and functions of Tregs. Here, we have discussed the various proposed 
mechanisms of actions that are displayed by immune suppressive Tregs. The present 
global scenario arising from various studies using experimental models and human 
disorders validate the vital role of Tregs in several diseases including bone health. 
Together, these studies indicate that Tregs have the potential to modulate a number of 
immune pathologies. In the context of immunological conditions such as autoimmu-
nity and transplantation, long-term usage of immunosuppressive drugs increases the 
likelihood of life-threatening infections. In certain conditions such as during graft 
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transplantation, autoimmune diseases and so on, expansion of the immunosuppressive 
Tregs population is needed. Thus, elucidation of mechanismsthat govern the amplifi-
cation and attenuation of theTreg lineage will have important implications for therapy.
Thus, strategies can be exploited by therapeutically targeting Tregs can open new 
avenues in treating various immune-mediated diseases.
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Abstract
Synthetic biology is an emerging field where biology, computer, chemistry and 
engineering are reciprocally revisited to manipulate, design, construct and 
develop new biological entities with novel functionalities. Synthetic biology has 
been widely used in pharmaceutical, chemical, agricultural and energy indus-
tries. It is used to design and build complex circuits inspired by electrical engi-
neering for fast and effective solutions of biomedical challenges including 
antibiotic resistance, viral infections and cancer. Synthetic biology enables us to 
modify and reconstruct various cells and their components and even whole 
organisms precisely. Synthetic biology plays significant roles in biotherapeutic 
engineering for the development of diagnostics, drug designing, enzymes, tailor-
ing tissues and synthetic organs. In addition, it has been widely used in the design 
and development of medical therapeutics including drugs, diagnostic devices 
and biocompatible materials to improve the living standards of individuals. 
Synthetic biology provides an enthusiastic platform to develop biotherapeutic 
engineering via providing precise molecular biology tools that allow us to 
manipulate living cells for beneficial use. In this chapter, we cover a detailed 
overview of recent advancements in molecular tools and approaches to engineer 
microbial biotherapeutics using synthetic biology especially in human therapeu-
tics and biomedical engineering.
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9.1  Introduction

Synthetic biology is an emerging discipline that covers vast scientific areas, espe-
cially biomedical engineering with the ultimate goal to improve human health. It 
deals with designing, programming cellular behaviour, modifications and creation 
of new biological parts, devices and biological systems [14]. Synthetic biology 
enables us to redesign the existing natural systems, even whole organisms, for ben-
eficial resolution. Synthetic biology plays a vital role in the development of simple, 
fast and effective diagnostic [2].

Engineered bacteriophages are another example of synthetic biology which are 
used to detect specific bacterial strain producing bioluminescence [22] and can be 
designed to attack antibiotic-resistant bacteria by disrupting their defence mecha-
nism [19]. Engineered enzymatic bacteriophages can degrade biofilms to inhibit 
bacterial pathogenesis. Engineered E. coli can screen gut microbiome for real-time 
biosensing to monitor changes in the cellular environment of organisms and can be 
used as a biosensor for whole-cell biosensing to detect pathogenic infections and 
even cancer [21]. Bacteria and phage are also being engineered selectively for a 
substance, for example, detecting arsenic in water.

RNA-based biosensor is another beautiful example of synthetic biology which 
can detect disease-specific RNA and metabolites. Taken together, synthetic biology 
has been widely used in biomedical engineering to develop human therapeutics and 
synthetic constructs for the treatment of bacterial infections and to improve pre- 
existing antibiotics [4].

Biotherapeutic engineering is another growing field where biological principles 
in complex with engineering tools are used to design and develop economically 
viable therapeutic products [23]. It has been widely used in designing and develop-
ing medical therapeutics including therapeutic drugs, diagnostic devices and bio-
compatible materials to improve the quality of life. For the development of 
biotherapeutics, synthetic biology provides an attractive platform via providing spe-
cific molecular biology tools to manipulate living cells, even whole organisms [25].

In this chapter, we cover a detailed overview of the use of synthetic biology espe-
cially in human therapeutics covering development of biotherapeutics, biological 
parts, and approaches in robust biotherapeutic engineering. We also discuss some 
state-of-the-art available tools of synthetic biology and their advancement in trans-
lational biology for human therapeutics using different approaches, mainly from the 
perception of biotherapeutic engineering.

9.2  Rise in Synthetic Biology Publications

Synthetic biology is one of the most growing interdisciplinary sciences in the devel-
oping world. We analysed the publication records of the Web of Science with key-
word “Synthetic Biology” from 2000 to 2019 indicating a significant rise in the 
publications from synthetic biology (Fig. 9.1). Annual worldwide synthetic biology 
publication output grew from an average of about 150 publications per year from 
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January 2000 to December 2010 to over 1200 publications per year in the period 
from January 2011 to September 2019. This record includes 12,500 publications by 
more than 35,000 authors at 5500 organizations located in 105 countries. The United 
States is the leading country in synthetic biology research contributing about 42.0% 
of total publications, while authors from the United Kingdom, China, Germany, 
France, Japan and India contribute 11.1%, 10.5%, 9.8%, 5.3%, 4.4% and 2.4%, 
respectively. Figure  9.1 clearly reflects the advancement in synthetic biology 
research globally.

9.3  Synthetic Biology in Development of Biotherapeutics

Synthetic biology is dramatically improving the existing production process of anti-
biotics, vitamins, enzymes, organic acids and synthetic organs. It has undergone 
considerable growth in scope, prospect and productivity and has become an exten-
sively recognized branch of biomedical science [25]. It has already contributed sig-
nificantly to modern medical science to encounter several global challenges, e.g. 
synthesis of artemisinin, an antimalarial drug through engineered E. coli and yeast. 
Biotherapeutics, for example, antibodies and therapeutic replacement enzymes, are 
the most successful and rapidly growing drugs for the treatment of complex dis-
eases including cancer, neurodegeneration, inflammation, autoimmune diseases, 
infections and rare genetic disorders [13]. The approval and success rate of bio-
therapeutics is comparatively higher than small-molecule therapeutics.

Fig. 9.1 A rise in synthetic biology publications globally and the contributions of leading nations. 
Source: Web of Sciences (http://apps.webofknowledge.com) data from January 2000 to September 
2019. Marked lines showing worldwide annual publications while the stacked columns are show-
ing annual publications for the six leading countries along with India
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Biotherapeutics such as monoclonal antibodies, large peptides and fusion pro-
teins cannot be completely synthesized by chemical procedures [13]. Biotherapeutics 
can only be produced in living cells or organisms in predefined conditions to main-
tain product safety and efficacy using biotherapeutic engineering strategies. The 
integration of novel strategies and approaches of modern science such as synthetic 
biology tools are very useful in the modification of model organisms to produce the 
desired output such as therapeutic proteins with novel and improved efficacy [8]. 
Several biotherapeutic engineering platforms such as protein conjugation and 
derivatization approaches including generation of antibody-drug conjugates using 
synthetic biology are currently in use to improve half-life, efficacy, purity and pro-
duction yield and to further limit toxicity of a drug [30]. A few examples of techno-
logical innovation and biotherapeutic engineering platforms are transgenic animal 
and plant, glyco-engineering, Fc fusion, antibody-drug conjugates and monoclonal 
antibody humanization/chimerism [29].

9.4  Engineering Microbial Therapeutics Using Synthetic 
Biology

Using microorganisms as small living factories to synthesize biologically active 
compounds is a systematic approach [26]. Different biotherapeutics such as 
monoclonal antibodies, small peptides, hormones, antigens, enzymes, vitamins 
and antibiotics are being produced by engineered microorganisms (bacteria and 
fungi) at industrial scale [9]. Microbes have probiotic and productive features 
which can be combined using a  synthetic biology approach to protect from 
pathogens and to develop immunity and biotherapeutics against life-threatening 
diseases [26].

Engineered living cells including microbes are the future of biotherapeutics to 
treat complex diseases including cancer, neurodegeneration and metabolic disor-
ders. They can be engineered to act like living therapeutics for defined actions 
within the human body. Recently, synthetic biology allowed us to develop micro-
bial genetic tools for living therapeutics, biosensors, bio-switches and electrical-
inspired circuits [26]. Engineered microbes are self-replicative, can detect 
abnormal conditions, and produce and transport therapeutics to the site of action 
inside the body. This approach will have numerous advantages over traditional 
therapeutics such as a significant reduction of cost for production and develop-
ment. Using synthetic biology, microbes can be engineered to produce more than 
one biotherapeutic at a time making them more effective than currently used ther-
apeutics to treat life- threatening diseases [20]. These engineered microbes can 
produce therapeutics directly in the human body thereby reducing many down-
stream processes; as a result, lowering dose, reduced side effects and much 
cheaper than traditional small- molecules therapeutics [15].
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9.5  Overview of Biotherapeutic Discovery 
and Development

Biotherapeutics poses several challenges during their development as they require 
more complicated manufacturing and characterization process to produce them 
from living cells. With the advancement in synthetic biology applications and bio-
therapeutic engineering, it has been easy and accessible to produce a new genera-
tion of biotherapeutic designer drugs with increased efficacy and safety as compared 
to traditional and small-molecule therapeutics [17].

Since the first recombinant-DNA-derived human insulin was approved, more than 
170 biotherapeutics have been marketed for medical applications [31]. Biotherapeutic 
drugs can be grouped into (1) peptides which include growth factors, hormones and 
cytokines represented by insulins, epoetin alpha and granulocyte colony-stimulating 
factor; (2) non-immune proteins which include therapeutic replacement enzymes, 
blood factors and anticoagulants represented by naglazyme, myozyme, elaprase, tis-
sue plasminogen activator, recombinant hirudin and activated protein; and (3) anti-
bodies and Fc fusion proteins including therapeutic antibodies and Fc-like fusion 
protein (rituximab, adalimumab, CD2-Fc, abatacept, Nplate, etc.) [12].

The success of biotherapeutic drugs cannot be described without the use of syn-
thetic biology, providing a protein engineering platform that increased the stability 
and aggregation resistance of therapeutic candidates. Hybridoma technology, chi-
merization and humanization, human antibodies from transgenic mice and phage- 
display libraries, glycoengineering, multi-specific antibodies, intrabodies and 
protein engineering represent considerable examples of recent developments in bio-
therapeutic engineering with synthetic biology [16, 31]. A detailed discussion on 
using the synthetic biology approach in biotherapeutic engineering, available tools 
and development has been described previously [21, 22]. A pictorial representation 
of synthetic manipulation in living cells and its components using a biotherapeutic 
engineering approach to restore normal function is illustrated in Fig. 9.2.

Selection of potential drug target that drives a specific disease is a crucial step 
in biotherapeutic development. However, most tyrosine kinases and cytokine 
receptors fall in target categories for oncological and immunological disorders. 
Complex biotherapeutics such as rituximab – a genetically engineered chimeric 
monoclonal antibody targeting protein CD20 has been approved locally in India, 
China, and South Korea to treat autoimmune diseases and varying types of can-
cer – is a successful example [31].

9.6  Biotherapeutic Safety

Human diseases are complex and heterogeneous in nature and determined by different 
robust and diverse mechanisms that contribute to multifaceted pathologies with 
different  symptoms. Biotherapeutic administration can cause adverse effects and 
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immune response in the human body, for instance, induction of acute infusion reac-
tions, immunogenicity, autoimmune diseases, tumorigenicity, platelet and throm-
botic disorders, dermatitis, cardiotoxicity, hypercytokinemia, etc. [5]. Synthetic 
biology plays a crucial role in minimizing these side effects to develop safer and 
more effective biotherapeutics. Appropriate preclinical animal models are very 
important to develop safe and effective translational medicines targeting a specific 
pathway in complex disease. Synthetic biology helps to choose and even provide 
appropriate and customizable models for preclinical trials [25].

9.7  Synthetic Biology in Stabilizing Biotherapeutics

Synthetic applications in bioengineering have been extensively employed to stabi-
lize recombinant biotherapeutics produced in engineered living cells [11]. To stabi-
lize therapeutic proteins, modification of cysteine residues is used to form disulfide 
bridges which ultimately results in protein stability. Synthetic biology allow us to 
introduce precise alterations in proteins for their stabilization and resist them from 
degradation and formation of aggregates. Engineered E. coli-expressing non- 
glycosylated cytokine interleukin-2 is an aggregation-prone protein and showed 
decreased stability. Aldesleukin (recombinant interleukin-2) with Cys125Ser muta-
tion is one of the wonderful examples of using classical protein engineering to sta-
bilize proteins without altering their biological activity [6]. Likewise, interferon- β1b 
is another biotherapeutic cytokine which contains three cysteines at 17th, 31st and 
141st positions, which form one disulfide bond, leaving cysteine at 17th position in a 
reduced state. The Betaferon® and Betaseron® (recombinant interferon beta-1b) 
containing Cys17Ser mutation stabilize the protein without influencing its biologi-
cal activity [24]. This approach with a fusion of advanced technologies has also 

Fig. 9.2 A therapeutic approach of synthetic biology using biotherapeutic engineering approach 
to restore normal function in humans

T. Mohammad et al.



251

been used to produce a stable variant of keratinocyte growth factor (KGF) by deleting 
N-terminal residues without influencing its native activity and is marketed as 
Biovitrum®, used in preventing chemotherapy- and radiotherapy-induced mucositis 
[3, 10]. Hence, altering basic constituents of biotherapeutics using advanced molec-
ular editing tools of synthetic biology are beneficial for their stability and preserva-
tion without affecting their biological activity.

9.8  Synthetic Biology in the Pharmacoeconomics 
of Biotherapeutics

Biotherapeutics are relatively expensive due to high production costs and financial 
risk owing to their complex developmental process. Advancements using synthetic 
biology strategies can make these promising drugs more affordable with the aid of 
innovations. Improvement of trial designs, biomarker identification approaches and 
proper patient selection can increase their affordable biotherapeutic productivity by 
decreasing production cost. Recent advances in synthetic biology in biotherapeutic 
engineering are high-throughput production of mammalian cells to produce anti-
bodies with shorter purification, formulation and production time [7]. Synthetic 
biology has become an effective tool in developing non-mammalian systems, e.g. 
engineered yeast and plant cells, to produce lower-cost biotherapeutics via eliminat-
ing costly viral inactivation validations step, used in production [18, 27].

9.9  Synthetic Biology in Vaccine Development

The developing world is in urgent demand for cost-effective vaccines to prevent 
growing infections. Still, the development of safe and new vaccines is a laborious 
task that requires precise identification (antigens, e.g. virus or microbial toxins) and 
development of immunogens to prevent or treat diseases [1]. Synthetic biology 
opens new avenues to develop precise molecular engineering tools required to read 
genetic information of different organisms to formulate vaccines in an effective and 
appropriate way, allowing scientists to save time and money. It enables researchers 
to engineer, produce and develop immunogens with high expression and improved 
efficacy. People can develop custom gene constructs for several vaccine candidates 
such as HIV and Ebola. The vaccines that come from such strategies are safer and 
well-tolerated which can trigger a stronger and long-lasting immune response in 
humans than ever existing vaccines [28].

9.10  Conclusions and Perspectives

Synthetic biology plays a very important role in the research and development of 
biotherapeutic engineering. Innovative technologies of synthetic biology are always 
emerging to address imminent challenges such as oral delivery of biotherapeutics, 
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cost-saving production and development, and phase III success rate. With advance-
ments in molecular biology tools and technologies, biotherapeutic engineering is 
extensively evolving over time. The existing biotherapies need to be optimized to 
achieve enhanced efficiency and functionalities with least adverse effects. The 
advanced engineering strategies along with synthetic biology tools allow us to mod-
ify existing entities for customization to introduce them for novel functionalities with 
precise clinical use. Using synthetic biology strategy represents a powerful approach 
to develop safe and effective biopharmaceuticals. It has been effectively used to 
improve stability and modulate native functionalities of biotherapeutics without 
unwanted side effects. Bioengineering is no longer limited to modifying and chang-
ing the genetic materials of living things. It is practical to expect that the existing 
biotherapeutics including proteins will be further studied and engineered in the near 
future. The rise in the  scientific literature of synthetic biology and biotherapeutic 
engineering reflects an evocative meeting of advanced computational and high-
throughput experimental methods for bioengineering platforms and has opened a 
new avenue to design and develop safe, effective and suitable biotherapeutics.
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Abstract
Cytokines are effector molecules of the immune system that act as messengers 
for cell to cell communications. Cytokines play an indispensable role in immune 
regulation and are involved in cell proliferation, cell death, inflammation, tissue 
repair, and cellular homeostasis. In recent years, with the advent of modern inno-
vative technologies, our understanding of the immune system has expanded sig-
nificantly. This increased understanding about our immune system has enabled 
us to target several immune mediators, including cytokines, in different diseases, 
ranging from autoimmunity to cancers. Recent success in the development of 
checkpoint blockade immunotherapies, targeting PD1 and CTLA-4, in treatment 
of cancers has revolutionized cancer treatment and sparked renewed interest 
among cancer immunologists for the discovery of new potential targets. Despite 
significant success, the response rate with checkpoint blockade therapies still 
remains limited to a fraction of patients and is often associated with several life- 
threatening side effects. Therefore, heightened efforts are being made to develop 
new and better therapies or improve current therapies for cancer treatment. 
Because of their pleiotropic effects on immune cells and their role in immune 
activation, cytokines have emerged as potential candidates for cancer immuno-
therapy and hold a central stage in this whole process of cancer immunothera-
peutics. This chapter discusses about the major cytokines involved in cancer 
immunotherapy and their targeting strategies.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3350-1_10&domain=pdf
mailto:rakisudan@wustl.edu


256

10.1  Introduction

Cytokines comprise a large family of regulatory proteins produced by various cell 
types of both immune and nonimmune origin that play a pivotal role in regulating 
and shaping both innate and adaptive immune responses. Cytokines could be 
secreted or membrane bound and act locally in an autocrine or over a distance in a 
paracrine manner. Membrane-bound cytokines act through cell to cell contact and 
communicate information between cells, often bidirectionally [1–5]. Cytokines 
exert their effects by binding to their specific receptors expressed on target cells. 
Cytokine receptors are often composed of two or more different receptor subunits 
that may be specific or shared between different cytokines. Among others, mem-
bers of common gamma chain cytokine family play a crucial role in the develop-
ment and functions of immune cells and are actively being explored for their 
antitumor potential either alone or in combination with other immunomodulatory 
agents. Common gamma chain cytokine family includes IL2, IL4, IL7, IL9, IL15, 
and IL21. As their name suggests, these cytokines share a common gamma chain 
receptor (γc or CD132) that is essential for signaling through JAK3. Other than 
common gamma chain, receptor complexes of IL4, IL7, IL9, and IL21 consist of a 
cytokine-specific alpha chain. IL2 and IL15, besides having a gamma chain and 
cytokine-specific alpha chains, also share IL2Rβ/IL15Rβ chain (CD122). IL2 and 
IL15 thus signal via JAK1/3 and STAT3/5 pathways leading to transcription of 
their target genes [3, 6–10].

Cytokines play an important role in the development of both innate and adaptive 
immune responses. Cytokines have emerged as attractive targets for cancer immu-
notherapy research because of their pleiotropic effects on immune cells and their 
role in shaping tumor microenvironment [2, 3, 5]. IL2 was the first cytokine that was 
FDA approved for use in patients with cancer. It proved the concept that cytokines 
can be used for cancer therapy and opened doors for a vast area of cytokine-based 
cancer immunotherapeutics [6–8]. Cytokines’ ability to activate immune effector 
cells like CD8 T cells and NK cells is crucial for their immunotherapeutical poten-
tial. In modern-day cancer immunotherapy research, various cytokine-based immu-
notherapy strategies are used. Engineered versions of cytokines, like fusion products 
or agonists, where cytokines are fused to their receptor subunits and in some cases 
with Fc region of antibody or to tumor-antigen-specific antibodies, are being devel-
oped. These engineered cytokine products possess better activity and stability com-
pared to recombinant parent cytokines. Cytokines or their engineered products are 
either used as monotherapy or in combination with other antitumor agents for can-
cer immunotherapy. Various cytokine-based combination strategies involve use of 
cytokines or their engineered products in combination with other antitumor agents 
like with chemotherapeutic drugs, with other cytokines, with cancer vaccines, with 
agonistic or tumor-antigen-specific antibodies, with checkpoint blockade antibodies 
like anti-PD1 and anti-CTLA4, and with adoptive cell therapy for cancer immuno-
therapy (Fig. 10.1) [1–3, 5, 9]. All these approaches will be covered briefly below 
[1–3, 5, 9]. This chapter discusses about IL15, IL21, and IL7 and their role in cancer 
immunotherapy.
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10.2  IL15

10.2.1  Introduction

IL15 is a 14- to 15-kDa protein that was codiscovered in 1994 by two groups as a 
T-cell growth factor [11–13]. It is a member of the four α-helix cytokine bundle 
family. IL15 is primarily produced by cells of the innate immune system including 
dendritic cells, macrophages, and monocytes. IL15 expression is regulated tightly at 
the levels of transcription, mRNA splicing (post-transcription), translation, and 
intracellular trafficking. There are two isoforms of IL15 mRNA formed as a result 
of alternative splicing. These isoforms encode for IL15 protein either bearing a 
short signal peptide or long signal peptide. The signal peptides play a role in the 
intracellular trafficking of protein. The long signal peptide bearing IL15 is directed 
to endoplasmic reticulum (ER) secretory pathway and is exported outside the cell, 
whereas short signal peptide IL15 is not secreted and localizes to the cytoplasm and 
nucleus [13–17]. Also, multiple AUG present at 5′ UTR play a role in regulation of 
IL15 mRNA translation. This regulation at multiple points therefore ensures strin-
gently controlled production of IL15, primarily by monocytes, macrophages, and 
dendritic cells, despite the fact that IL15 transcript is detected in multiple tissues 
and cell types. Probably this tight regulation of IL15 production is required because 
indiscriminant production of IL15 can induce inflammation and autoimmunity 
through the production of TNFα, IL1β, IFNγ, and other proinflammatory cytokines. 

Fig. 10.1 Depiction of various cytokine-based approaches for cancer immunotherapy. 
Cytokines are either used as monotherapy or in combination with other anticancer agents for can-
cer immunotherapy. Different engineered cytokine-based products like cytokine-cytokine receptor 
subunit fusion proteins and cytokine-antibody fusion products provide better stability and activity 
for cancer immunotherapy. Cytokines are also being used in combination with other anticancer 
treatments like chemotherapy, antibody therapies, cancer vaccines, and with adoptive cell therapies 
in order to obtain better responses in patients with malignancies
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TLR stimulation, CD40 stimulation, and type I and type II interferons are known to 
induce IL15 transcription [13–18].

IL15 receptor complex is composed of three subunits and includes the common 
γc subunit shared by all γc cytokines, IL2Rβ/15Rβ (shared with IL2), and a specific 
IL15Rα subunit. Once IL15 is produced by cells of myeloid lineage (monocytes, 
macrophages, and DC), it binds to either secreted or membrane-bound form of its 
high-affinity unique receptor subunit, IL15Rα, that is almost ubiquitously expressed, 
and is presented in trans (trans-presentation) to the target cells expressing the 
dimeric IL2Rβ/γc receptor complex and signals through JAK1/3 and STAT3/5 path-
ways [14, 17–20]. Trans-presentation involves direct cell to cell contact and can 
stimulate neighboring or opposing cells, thus offering a tighter regulation by pro-
viding cell-directed delivery. The expression of IL2/15Rβ and γc is thought to be the 
major deciding attribute of a cell type to IL15 responsiveness. Also, soluble com-
plexes of IL15 bound to IL15Rα (sIL15) are cleaved from IL15-expressing cell 
types in response to certain inflammatory signals such as TLR activation, CD40 
ligation, and type 1 interferons, providing a sudden burst of IL15 activity [13, 14, 
17, 18, 21]. IL15 alone, in the absence of high-affinity IL15R alpha, can also bind 
to the IL2Rβ/γc receptor complex, though with intermediate affinity, resulting in 
activation of Lyn, Lck, Fyn, and Syk tyrosine kinases and PI3K-MAPK pathway. 
However, soluble IL15 complexes are found to be superior to support an immune 
response compared to recombinant IL15 (rIL15). IL15 bound to its unique receptor, 
IL15Rα, is reported to undergo endosomal recycling, thus resulting in persistence of 
membrane-bound IL15 for longer durations of time. IL15 plays an important role in 
natural killer (NK) cell, innate lymphoid cell (ILC) 1, NKT-cell, B-cell, and T-cell 
development and function [13, 14, 17, 18, 21, 22].

10.2.2  IL15 in Immunomodulation and Cancer Therapy

10.2.2.1  Biology and Immunomodulatory Effects of IL15
IL15 was originally identified for its ability to induce T-cell proliferation, in a way 
similar to IL2 [11, 12]. Like IL-2, IL15 is reported to induce proliferation and dif-
ferentiation of activated T cells. Further, IL15 also enhances the cytotoxic potential 
of CD8+ T cells. The similar functions of IL2 and 15 are attributed to their sharing 
of common receptor components, IL2/IL15Rβ and γc, and their signaling through 
JAK1/JAK3 and STAT3/STAT5 pathways. Despite these similarities with IL2, IL15 
has certain unique functions too. IL15 is shown to have no major effects on 
T-regulatory cells and this is because of the inability of IL15 to bind to the IL2Rα 
chain. Also, unlike IL2 that induces activation-induced cell death of T cells, IL15 
actually suppresses activation-induced cell death and is involved in maintenance of 
long-lasting CD8+CD44 hi memory T-cell phenotype [13, 14, 17, 18, 20].

As far as NK cells and ILC1 are concerned, IL15 is critical for their development 
and function. NK cells are innate lymphocytes that were first identified in the 1970s 
for their ability to kill leukemia cells without any prior sensitization. As their name 
indicates, NK cells exert cellular cytotoxicity through the release of granzyme and 
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perforin and are known to kill tumor and virally infected cells. Also, NK cells 
secrete a number of cytokines and chemokines, thus playing an important role in 
shaping an immune response [14, 23]. Recent success of checkpoint blockade thera-
pies has given a boost to cancer immunotherapy research and heightened efforts are 
being made to define and develop new targets for cancer therapy. The goal of immu-
notherapy in cancer patients is to stimulate the host’s immune system to the point 
where it can attack cancer cells, and because of their cytolytic potential, NK cells 
have been subject of great interest in cancer immunotherapy research. IL15 regu-
lates almost every aspect of NK cell’s biology and has been shown to be essential 
for their development, proliferation, survival, and cytotoxic functions as evidenced 
from the phonotype of IL15Ra and IL15 KO mice. Because of these immune cell 
modulatory effects, IL15 holds a pivotal position in cancer immunotherapy research 
[13, 14, 18, 23].

10.2.2.2  Recombinant IL15 and IL15 Superagonists in Cancer 
Therapy

Prompted by studies showing immune-stimulatory effects of IL15, IL15 was tested 
for its antitumor potential in several preclinical experimental murine tumor models. 
IL15 protected MC38 colon carcinoma cell–injected mice, as IL15 transgenic mice 
survived longer than 6 months compared to wild-type mice. Wild-type mice died 
because of lung metastases in this study [24]. IL15 was shown to prolong survival 
or treatment with recombinant IL15 (rIL15) resulted in reduced tumor growth and 
decreased metastasis in several other transplantable murine tumor models like 
CT-26 colon cancer, B-16 melanoma, LA795 lung adenocarcinoma, P1A+, 
TRAMP-C2 prostate cancer, etc. [13–16, 18, 25, 26]. In all these murine tumor 
studies, the antitumor effects of IL15 were primarily due to its ability to enhance 
NK cell and CD8 T-cell responses and IFNγ production [13–16, 18, 25, 26]. Some 
of the mice treated with IL15 completely eradicated tumors, and upon rechallenge, 
these mice remained tumor-free suggesting that IL15 treatment can result in long- 
lasting antitumor immunity [15, 27]. Based upon the data showing immuno- 
stimulatory effects of IL15 and promising results from preclinical animal tumor 
model studies, the National Cancer Institute (NCI) ranked IL15 as the most promis-
ing immunotherapeutic agent to be brought to clinical trials [28]. Potential of toxic-
ity remains a concern for use of IL15 as a therapeutic agent in humans. In this 
regard, the safety of recombinant human IL15 (rhIL15) and macaque was evaluated 
in primates (rhesus macaques) by several groups. It was observed that treatment 
with IL15 resulted in significant expansion of CD8 T cells and NK cells and in some 
cases CD4 T cells also. Higher dose and continuous delivery of cytokine resulted in 
greater response but there were clinical toxicities associated. These toxicities 
included diarrhea, reduced appetite, weight loss, anemia, rash, and reversible grade 
3–4 neutropenia. Despite these transient toxicities, treatment with rhIL15 was well 
tolerated and no severe autoimmune reactions were observed [15, 29]. These obser-
vations led to use of rhIL15 as an alternative treatment in patients with metastatic 
melanoma and refractory metastatic renal cell cancer as a first human phase I clini-
cal trial. The results from this recently completed phase I clinical trial reveal that 
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similar to animal model studies, IL15 treatment resulted in efflux of NK cell and 
CD8 memory T cell as early as in 30 mins of treatment. Also, expansion of NK 
cells, CD8 cells, and gamma delta cells was observed as evident from their increased 
count. Serum levels of multiple proinflammatory cytokines like IL6, IL8, IFNγ, and 
TNFα were markedly elevated in treated patients. A half-life of 2.5 h was reported 
by pharmacokinetic studies. Treatment with rhIL15 resulted in decrease and/or 
clearance of lung lesions in melanoma patients; however, there were clinical toxici-
ties like grade 3 hypotension, thrombocytopenia, fever, and increased transaminase 
levels. Elevated cytokine levels were thought to be responsible for these toxicities. 
Disease stabilization was reported as the best response in this first phase I trial. 
Toxicities associated with this trial suggested need to reconsider dosing and route of 
administration in future studies [15, 30]. Several other trials using different routes 
and schedules of rhIL15 treatment are still going on.

Despite being a promising immunotherapeutic candidate for cancer treatment, 
short in vivo half- life of rIL15 is a limiting factor for its applications. Because of 
this short half-life, often high doses of rIL15 are required to achieve the maximum 
response and this in turn results in toxicities. Therefore, several strategies have been 
used to develop new and better formulations of IL15 to address these limitations. As 
mentioned earlier, IL15 is predominantly present bound to IL15Rα, under physio-
logical conditions, for its long-term persistence and is presented in trans to NK and 
CD8 T cells for their activation and function [13–16]. Therefore, these new strate-
gies focused on designing protein complexes of IL15/IL15Rα, with better half-life 
and activity, often termed as IL15 superagonists. Also, these strategies address the 
issue of low expression of IL15Rα when rIL15 is used as monomer as soluble com-
plexes of IL15/IL15Rα need not to be presented in trans. These new approaches are 
briefly mentioned in coming lines. One approach involved combining rIL15 with 
recombinant soluble murine IL15Rα linked to the human IgG1 Fc portion (sIL15/
IL15Rα-Fc). This soluble IL15/IL15Rα-Fc complex had an impressive half-life of 
20 h and was more potent compared to rIL15 and induced expansion of NK cells, 
NKT cells, and memory CD8 T cells (more than 50-fold). Importantly, treatment 
with IL15/IL15Rα-Fc in mice prevented tumor growth in a B16 melanoma model or 
resulted in regression of pancreatic (RIP1-Tag2) tumors and B16F10 melanoma 
tumors without significant toxicities [14–16, 31]. Another strategy involved devel-
opment of a fusion protein consisting of a cytokine-binding amino-terminal domain 
of IL15Rα (Sushi domain) coupled to IL15 via an amino acid linker. This fusion 
protein termed as RLI (receptor-linker-IL15) has potent NK- and T-cell stimulatory 
activity and increased half-life compared to rIL15. RLI also showed strong antitu-
mor activity in preclinical tumor models (B16F10 melanoma and in an orthotopic 
colon cancer model) [14–16, 18, 32]. Another fusion protein known as ALT-803 
consisting of a mutated version of IL15 (N72D) linked to the Sushi domain of 
IL15Rα fused to the Fc region of human IgG1 also showed enhanced NK and CD8 
stimulatory activity and antitumor potential in a mouse myeloma model [15, 33]. 
All these superagonists are currently being tested in several clinical trials and it will 
be interesting to know how these different superagonists will behave.
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10.2.2.3  IL15 in Combination Cancer Therapy
Tumor heterogeneity and the presence of multiple immunological barriers at tumor 
sites, among many others, are the major detrimental factors for the success of a 
single immunotherapeutic agent to be effective in achieving complete remission. 
Therefore, modern-day approaches for cancer treatment involve combining differ-
ent antitumor agents to achieve better results. In this regard, IL15 and its different 
agonists have been investigated in combination cancer therapy. The different com-
binatorial approaches involve combining IL15 therapy with another cytokine, with 
chemotherapeutic agents, with checkpoint blockade antibody therapy using anti- 
CTLA4 and anti-PD1/PD-L1, and with agonistic antibodies like CD40 and other 
tumor antigen–directed antibodies for successful treatment of different types of can-
cers [14, 15, 25, 34–38].

Combining IL15 treatment with multiple chemotherapeutic agents resulted in 
increased survival as well as tumor regression in multiple experimental murine 
tumor models compared to a single agent alone. This enhanced antitumor effect 
could be due to the ability of chemotherapy to induce tumor cell death resulting 
in less tumor burden and tumor-mediated immunosuppression and subsequently 
induction of increased CD8 T-cell and NK cell activity by IL15 because of its 
stimulatory effects on these cell types. IL15 when used in conjunction with other 
cytokines showed more potent antitumor effects. In mouse models, combined 
IL15 and IL12 therapy acted synergistically to achieve maximum tumor clearance 
mostly through stimulation of CTLs and IFNγ production. Despite having various 
immune- stimulatory effects, IL15 is associated with induction of PD-1, TIGIT, 
and IL10, thus suggesting that combining checkpoint blockade therapy with IL15 
treatment will provide enhanced antitumor activity. In view of this, IL15 or its 
agonists mentioned above were tested in combination with different checkpoint 
blocking antibodies (anti-CTLA4, PD1, PD-L1) in experimental murine tumor 
models. Results from these studies were promising as combined treatment showed 
enhanced efficacy as observed by prolonged survival and reduced tumor burden in 
mice receiving combination therapy [14, 15, 17, 25, 34–39]. Currently, this 
approach of using IL15 or its agonists with checkpoint blockade therapy is tested 
in clinical trials for treatment of several advanced malignancies. In same lines 
based upon promising results from murine studies, IL15 or its agonists are being 
tested in combination with agonistic antibodies or antibodies directed against spe-
cific tumor antigens. In another approach, IL15 or IL15 agonists are being fused 
with proteins (e.g., Apo-A1) or antibodies (anti-CD20 antibody, anti-GD2 gan-
glioside antibody) that specifically direct IL15 to tumors and are tested for their 
clinical efficacy. Also, IL15 is being tested as an adjuvant either alone or in com-
bination with other agents in NK-cell- and T-cell-based adoptive cell therapies 
[14, 15, 17, 25, 34–40]. Overall, it is expected that these ongoing studies will help 
us in expanding our understanding of IL15 and tell us how and which combination 
therapy works best.
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10.3  IL21

10.3.1  Introduction

IL21 is another cytokine from the common γ-chain cytokine family that is being 
actively investigated for its antitumor potential. IL21 is primarily produced by CD4 
T cells, both Th1 and Th17, NKT cells, and follicular helper T cells (Tfh). The IL21 
receptor is a heterodimeric receptor composed of IL21Rα and common γ-chain 
subunits and signals through JAK1 and JAK3 resulting in activation of STATs 
(STAT3, STAT1, and STAT5). Involvement of PI3K as well as MAPK signaling 
pathway is also reported in IL21 signaling [41–44]. IL21 has pleiotropic effects on 
a variety of immune cells including T cells, B cells, NK cells, NKT cells, macro-
phages, and dendritic cells. It plays an important role in B cell differentiation into 
plasma cells and in Th17 development. IL21 enhances cytotoxicity of NK cells, 
CD8 T cells, and NKT cells. It has suppressive effects on FOXP3 expression and 
expansion of T-reg cells. Because of its ability to enhance NK and CD8 cell function 
and suppress T-regs, IL21 has been evaluated for its antitumor potential [41–46].

10.3.2  IL21 in Cancer Immunotherapy

In several experimental murine tumor models, treatment with IL21 or IL21 gene 
transfer successfully inhibited tumor growth. The various murine tumor models 
tested included melanoma, mammary adenocarcinoma, colon cancer, renal cell car-
cinoma, bladder cancer, pancreatic carcinoma, fibrosarcoma, etc. IL21-producing 
cells were also used as whole-cell vaccines in certain mouse tumor studies (TS/A 
mammary adenocarcinoma, glioblastoma, myeloma) to treat mice with established 
tumors from wild type tumor cells. Significant tumor regression was observed in 
these studies because of enhanced CTL and NK cell responses including cytotoxic-
ity and cytokine (IFNγ) production [41, 42, 45, 47–51]. In other studies, IL21 treat-
ment when combined with another antitumor agent (cytokine, antibodies, adoptive 
cell transfer) mediated enhanced antitumor activity compared to the treatment with 
single agent alone. IL21 and IL15 when coadministered acted synergistically result-
ing in enhanced expansion and function of CD8 cells and clearance/regression of 
established B16 melanomas [52]. IL21 is known to induce cell death in certain B 
cell lymphomas like diffuse large B-cell lymphoma and mantle cell lymphoma [41–
44, 53]. Also, when used in combination with anti-CD20 monoclonal antibody 
rituximab, enhanced killing of cancer cells was reported. Further effective tumor 
regression or clearance was reported when IL21 was combined with antibody- 
mediated depletion of CD4 T-regs. When combined with checkpoint blockade ther-
apy or agonistic antibody therapy (anti-CD40, anti-DR5, anti-CD137), IL21 showed 
cooperative antitumor activity [41–43, 54–56]. Further, IL21 enhances NK-cell- 
mediated ADCC and is reported to enhance the therapeutic activity of tumor anti-
gen–directed monoclonal  antibodies [41–43, 50, 57]. It is important to note that 
treatment with rIL21 was not associated with significant toxicity in mice as unlike 
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IL2 no vascular leak syndrome was observed thus suggesting it being a safe candi-
date to be potentially used for clinical cancer immunotherapy.

Prompted by its success in preclinical murine tumor models, several clinical tri-
als were initiated using IL21 as monotherapy or in combination with other agents 
for cancer immunotherapy. First clinical trials using recombinant IL21 in patients 
with metastatic melanoma and renal cell carcinoma reported favorable antitumor 
response. At higher doses of treatment, some reversible adverse effects including 
pruritus, neutropenia, thrombocytopenia, fatigue, and liver toxicity were observed. 
However, no vascular leak syndrome and significant autoimmune reactions were 
observed suggesting treatment to be safe and well tolerated within a maximum tol-
erated dose of 30 micrograms per kg [41, 42, 58]. IL21 therapy in combination with 
several other agents has been evaluated in several other phase I/II clinical trials. The 
combination treatment of rIL21 and sorafenib (a kinase inhibitor) in patients with 
metastatic renal cell carcinoma was evaluated and partial response and disease sta-
bilization were the main response reported [59]. Complete or partial response was 
also observed in a phase I trial when IL21 treatment combined with anti-CD20 
antibody (rituximab) was tested in patients with relapsed and refractory B cell lym-
phoproliferative disorders [60]. In other phase I trials, IL21 treatment is actively 
being tested in combination with checkpoint blockade therapy and other tumor anti-
gen–directed antibody therapies for its safety and efficacy [41, 42, 48, 50, 61]. Also, 
there is a great interest in using IL21 in adoptive cell therapies and this area is also 
being actively explored. Overall data from clinical studies suggest that IL21 is a 
promising candidate for cancer immunotherapy as IL21 therapy is well tolerated 
and should be evaluated further.

10.4  IL7

10.4.1  Introduction

IL7 is another member of the common γc cytokine family discovered in 1980 that 
is being actively investigated in anticancer therapies. IL7 is primarily produced by 
non-hematopoietic cells including fibroblastic stromal cells, endothelial cells, 
keratinocytes, and epithelial cells. Dendritic cells are also reported to produce 
small amounts of IL7. IL7 signals through IL7 receptor, which is a heterodimeric 
receptor consisting of IL7Rα (CD127) and common γc (CD132) subunits [62–67]. 
Expression of IL7Rα is reported on a variety of immune cells including T and B 
cell precursors, most mature T-cell types, and innate lymphoid cells (ILCs). A sol-
uble form of IL7R is also reported which competes with the cell-bound form of the 
receptor for IL7, thus regulating its availability and activity. Binding of IL7 to 
IL7R results in the activation of JAK-STAT as well as PI3K-AKT pathway. JAK1 
and JAK3 are the two JAKs associated with IL7R complex and their activation 
results in activation of STAT5 and transcription of STAT5-regulated genes. IL7 is 
critical for the development and maintenance of T cells, B cells, and innate lym-
phoid cells (ILC1, ILC2, ILC3). Both αβ and γδ T-cell lineages require IL7 for 
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their development. It is required for the survival of naive T cells as well as for the 
generation and maintenance of both CD4 and CD8 memory T cells. IL7R is down-
regulated on the activation of naive T cells. T-regs express very low levels of IL7R, 
and unlike IL2, IL7 does not induce their proliferation. Although being a critical 
factor for B cell development, mature B cells lack IL7R and are not dependent on 
it. Il7 is also implicated in the development of thymic NK cells which produce 
IFNγ. IL7 is required for the proper development of lymph nodes and Peyer’s 
patches in the gut by regulating LTi cells (a subset of ILCs), thus playing an impor-
tant role in immune regulation at barrier sites. There is evidence that both ILCs and 
T cells compete for the IL7 pool and this competition appears to have an effect on 
the size of ILC compartment. Due to all these immune modulatory effects, IL7 is 
being explored in cancer immunotherapy [62–70].

10.4.2  IL7 in Cancer Immunotherapy

In preclinical mouse studies, IL7 administration significantly expanded the T-cell 
compartment and improved their function. IL7 augmented antigen-specific T-cell 
responses to tumor vaccination resulting in recognition of weak subdominant tumor 
antigens. IL7 administration either alone or in combination with another antitumor 
agent resulted in reduced tumor burden and prolonged survival in several murine 
tumor studies [62–66]. For adoptive T-cell therapy, when tumor-specific T cells 
were expanded in the presence of IL7 plus IL15, greater tumor regression was 
observed in a melanoma and 4T1 mammary carcinoma models. IL7 when combined 
with IFNγ enhanced its antitumor effects in rat glioma tumor models. In another 
study, intratumoral injection of adenoviral transduced IL7-expressing DC resulted 
in complete tumor regression in two murine lung cancer models. In another 
approach, IL7-producing whole cell vaccines were found effective in a prostate can-
cer model. IL7 when used as an adjuvant after a vaccine-induced response signifi-
cantly improved survival and induced enhanced antitumor immune responses in 
another murine tumor model. The improved immune response was associated with 
increased IL6 production and augmented Th17 differentiation. Also IL-7 was shown 
to inhibit PD1 expression as well as antagonize the effects of TGFβ on CD8 T cells. 
Thus, all these preclinical studies employing different strategies for use of IL7 in 
different preclinical tumor models strongly supported the application of this cyto-
kine in clinical cancer therapy [62–77].

In early clinical trials using recombinant human IL7 (rhIL7) as monotherapy for 
the treatment of patients with advanced malignancies, IL7 was found to be safe and 
well tolerated with limited toxicity. Treatment with hIL7 resulted in sustained 
increase in both CD4 and CD8 cells along with decrease in percentage of T-regs in 
these patients. Significant increase in TCR receptor diversity was also observed 
indicating that IL7 can broaden an immune response by selective expansion of naïve 
T cells. However, no significant anticancer response was observed in these two trials 
suggesting that rIL7 monotherapy may not be sufficient to achieve significant 
response and hence must be combined with other anticancer therapies [62, 65, 78, 
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79]. Patients with relapsed or refractory pediatric sarcoma are subject to antineo-
plastic regimens resulting in lymphocyte depletion. Recombinant IL7 when used as 
adjuvant therapy in these patients promoted immune recovery (as measured by CD4 
counts) and enhanced immune response. In another approach, IL7 was also used in 
CAR T-cell therapy in combination with other cytokines like IL15 and IL2 for 
expansion of these cells. CAR T cells expanded in the presence of IL7 along with 
IL4 and IL21 expressed less inhibitory receptors. CAR T cells expanded well and 
persisted for longer duration and showed enhanced antitumor responses when IL7 
was combined with another cytokine (IL15/IL21), thus signifying an important and 
beneficial role of IL7 in adoptive cell therapy. Currently, IL7 is being actively tested 
in clinical trials using CAR T cells [62, 63, 65, 67, 80]. IL7 when administered with 
a prostate cancer vaccine Provenge resulted in increased PSA (prostate-specific 
antigen)-specific T cells. Recently, a hybrid version of IL7 consisting of recombi-
nant human IL-7 fused with hybrid Fc (rhIL-7-hyFc) was developed that showed 
enhanced antitumor effects in preclinical models. This rhIL-7-hyFc addresses the 
limitation of short half-life and stability of rhIL7. Currently, rhIL-7-hyFc is being 
tested in several clinical trials combined with other anticancer agents including 
pembrolizumab (anti-PD-1) in triple-negative breast cancer; atezolizumab (anti- 
PD- L1) for treatment of melanoma, Merkel cell carcinoma, cutaneous squamous 
cell carcinoma; in combination with temozolomide in glioblastoma [62–65, 67]. 
In another clinical trial, glycosylated recombinant human interleukin-7 (CYT107) 
is tested with atezolizumab for treatment of advanced urothelial carcinoma [62, 63, 
65, 67, 80]. Results from all these ongoing studies will expand our understanding 
of IL7 biology and will tell us how effective it is as an agent for cancer 
immunotherapy.

10.5  Conclusion

Cytokines play a critical role in shaping an immune response against tumors because 
of their pleiotropic effects on immune cells. Their ability to stimulate NK cells and 
CD8+ cytotoxic T lymphocytes is vital for their antitumor potential. IL15, IL21, 
and IL7, all three cytokines discussed above, have some degree of immuno- 
stimulatory activity that is crucial for antitumor immunity. These three cytokines are 
currently being tested for clinical cancer therapy in several malignancies. As early 
data from clinical trials suggest that these cytokines are not very effective when 
used as monotherapy, the current approaches using these cytokines in clinical trials 
involve various combinatorial approaches, where these cytokines are used in com-
bination with another anticancer agent for cancer immunotherapy. There are cur-
rently several challenges in developing successful cytokine-based immunotherapies. 
Short in vivo half-life, low availability at tumor site, potential toxicities associated 
with systemic administration, autoimmunity, deciding maximum tolerable dose, 
and best route of administration are few among the many challenges. Also because 
of their effect on inducing proliferation of lymphoid cells, chronic cytokine stimula-
tion sometime results in development of lymphoid tumors. Therefore, it is crucial to 
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use the right dose for the right duration of time for the right type of tumors to 
achieve a finely tuned and calibrated antitumor immune response for any cytokine 
immunotherapy to be effective, which itself seems a challenging job. Modern-day 
approaches employing new and novel strategies to engineer better versions of cyto-
kines with enhanced half-life or designing cytokine-based fusion products, which 
combine cytokine with some antibody or protein, hold promise and are currently 
being tested for anticancer potential. It is believed that with all these new approaches, 
cytokines will ultimately hold an important position in cancer immunotherapy, but 
only the future can tell that.
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