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Abstract. Hyperspectral images (HSIs) have far more spectral bands
than conventional RGB images. The abundant spectral information pro-
vides very useful clues for the followup applications, such as classification
and anomaly detection. How to extract discriminant features from HSIs
is very important. In this work, we propose a novel spatial-spectral fea-
tures extraction method for HSI classification by Multi-Scale Depthwise
Separable Convolutional Neural Network (MDSCNN). This new model
consists of a multi-scale atrous convolution module and two bottleneck
residual units, which greatly increase the width and depth of the net-
work. In addition, we use depthwise separable convolution instead of
traditional 2D or 3D convolution to extract spatial and spectral fea-
tures. Furthermore, considering classification accuracy can benifit from
multi-scale information, we introduce atrous convolution with different
dilation rates parallelly to extract more discriminant features of HSIs
for classification. Experiments on three standard datasets show that the
proposed MDSCNN has got the state-of-the-art accuracy among all com-
pared methods.

Keywords: Hyperspectral images classification · Multi-scale ·
Depthwise separable convolution · Residual learning

1 Introduction

Recently, hyperspectral imaging technology has attracted widespread attention
in the remote sensing society. The hyperspectral imager can capture accurate
spectral response characteristics and spatial details of surface materials, which
makes it possible to identify and classify the landcovers. HSI classification aims
to assign a unique category to each pixel in the image, enabling automatic iden-
tification of categories and serving for following applications. However, due to
the limit of labeled samples, the existence of mixed pixels, and the Houghes
phenomenon, HSI classification is a very challenge problem.
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Based on traditional machine learning methods, many HSI classification
approaches such as support vector machine (SVM) [1], multiple logistic regres-
sion [2], decision trees [3], etc. are proposed for pixel-level classification of HSI.
However, HSIs usually provide hundreds of spectral bands, which contain a large
amount of redundant information. Therefore, using raw spectral information
directly not only results in high computational cost, but also reduces classifi-
cation performance. Consequently, there are some methods that focus on mit-
igating the redundancy of HSIs with principal component analysis (PCA) [4]
or linear discriminant analysis (LDA) [5]. Furthermore, spatial information has
been reported to be very helpful in improving the representation of HSI data [6].
Thus more and more classification frameworks based on spatial-spectral features
have been presented [7,8]. Although these spatial-spectral classification methods
have achieved some progress, they all need to perform feature extraction engi-
neering through human prior knowledge, which limits these methods in different
scenarios.

Deep learning has become an important tool for big data analysis, and has
made great breakthroughs in many computer vision tasks, such as image clas-
sification, object detection and natural language processing. Recently, it has
been introduced into the HSI classification as a powerful feature extraction tool
and shows great performance. Compared with the traditional artificial feature
extraction methods, deep convolutional neural network can extract rich features
from the original data through a series of layers. Since the learning process is
completely automatic, deep learning is more suitable for dealing with complex
scenes. Chen et al. [9] first applied the Stacked Autoencoder (SAE) to the HSI
classification which is composed of multiple sparse autoencoders. Mughees et
al. [10] proposed a Spectral-Adaptive Segmentation DBN (SAS-DBS) for HSI
classification that exploits the spatial-spectral features by segmenting the origi-
nal spectral bands into small sets and processing each group separately by local
DBNs. However, deep neural networks such as SAE are based on the fully con-
nected layer. Although the above-mentioned deep neural network models can
effectively extract deep features in HSIs, they may ignore the spatial informa-
tion of HSIs. Unlike SAE, Convolutional Neural Networks (CNN) can directly
extract spatial and spectral features of HSIs while keeping the input shape. For
this reason, most of the current HSI classification networks with spatial-spectral
features are based on CNN structure. They can be divided into two main cate-
gories. The first is to extract spatial and spectral features separately and then
combine them and feed to the classifier [11]. Another strategy is to extract the
spatial-spectral joint features of HSIs simultaneously by 3D convolution [12,13].
Although these methods can effectively extract the spatial spectral information
of HSIs, they all ignore the multi-scale characteristics. Because of the complexity
and diversity of HSI scenery, it is often difficult to extract spatial information
from a single scale.

In this work, we propose a Multi-Scale Depthwise Separable Convolutional
Neural Network (MDSCNN) for HSI classification which can effectively exploit
spatial-spectral features and achieve competitive HSI classification performance.
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This new model consists of a multi-scale atrous convolution module and two
bottleneck residual units, which greatly increase the width and depth of the net-
work. In addition, we use depthwise separable convolution instead of traditional
2D or 3D convolution, which leads to extract spectral features poorly or has high
computational complexity. In contrast, the depthwise separable convolution can
not only extract spatial-spectral features separately, but also greatly reduce the
amount of training parameters. Furthermore, considering classification accuracy
can benifit from multi-scale information, we introduce atrous convolution with
different dilation rates parallelly to extract more discriminant features of HSIs.
Experiments on three standard datasets show that the proposed MDSCNN has
got the state-of-the-art accuracy among all compared methods.

The remainder of this paper is organized as follows: In Sect. 2 several related
techniques are described. Section 2 introduces the proposed MDSCNN model.
The experiments and results analysis are shown in Sect. 3, A conclusion is made
in Sect. 4.

Fig. 1. Overview of the proposed Multi-Scale Depthwise Separable CNN (MDSCNN)
model.

2 Method

In this section, we have discussed the overall architecture of the proposed
MDSCNN firstly. Then we provide a detailed explanation about each module.

2.1 Overall Architecture

We have constructed a wide and deep network with a specially developed multi-
scale atrous convolution module and two depthwise separable bottleneck residual
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units for HSI classification. As shown in Fig. 1, the proposed MDSCNN is a fully
convolutional network (FCN) [19] without any fully connected layers, so that
it can handle any input patches with arbitrary size and produce the same size
output. Let’s denote IH and IL as the input HSI patch and predicted labels of
MDSCNN.

Table 1. The proposed MDSCNN topology. M is the number of bands.

Module Layer Input channel Output channel Kernel size Padding Parameters

Multi-scale

atrous conv

module

DW 1 × 1 M M 1 × 1 0 1 × 1 × M

PW 1 × 1 M 128 1 × 1 0 1 × 1 × M × 128

DW 3 × 3 (r = 1) M M 3 × 3 1 3 × 3 × M

PW 1 × 1 M 128 1 × 1 0 1 × 1 × M × 128

DW 3 × 3 (r = 2) M M 3 × 3 2 3 × 3 × M

PW 1 × 1 M 128 1 × 1 0 1 × 1 × M × 128

DW 3 × 3 (r = 3) M M 3 × 3 3 3 × 3 × M

PW 1 × 1 M 128 1 × 1 0 1 × 1 × M × 128

ImgPool M M 2 × 2 0 0

M 128 1 × 1 0 1 × 1×M×128

Concatenate

Conv

Conv 640 128 1 × 1 0 1 × 1 × 640 × 128

Depthwise

separable

bottleneck

residual unit

Layer1 DW 3 × 3 128 128 3 × 3 1 3 × 3 × 128
Layer1 PW 1 × 1 128 64 1 × 1 0 1 × 1 × 128 × 64

Layer2 DW 3 × 3 64 64 3 × 3 1 3 × 3 × 64

Layer2 PW1 × 1 64 64 1 × 1 0 1 × 1 × 64 × 64

Layer3 DW 3 × 3 64 64 3 × 3 1 3 × 3 × 64

Layer3 PW 1 × 1 64 128 1 × 1 0 1 × 1 × 64 × 128

Classification

module

Conv 1 128 128 3 × 3 1 3 × 3 × 128 × 128

Conv 2 128 128 3 × 3 1 3 × 3 × 128 × 128

Conv 3 128 C Number 1 × 1 0 1 × 1 × 128 ×
C Number

The input to the spectral pixel based methods usually is a pixel vector
x1×1×M , where M is the number of spectral bands. In order to simultaneously
exploit the spatial and spectral features, it is necessary to introduce a three-
dimensional approach to incorporate the contextual information. In this method,
we feed the network with a d×d patch P centered on x, where d is the width and
height of the patch. In this way, the original spatial and spectral features can be
considered simultaneously. Especially, the model is designed to predict the label
of center pixel, whose position index is [d/2+1, d/2+1,M ]. Meanwhile, we need
to select the value of d carefully. It will result in lacking spatial information if d
is too small. On the other hand, when we set d too large, it may introduce some
pixels that are not belong to the same class. Furthermore, a multi-scale atrous
convolution module is introduced to extract rich spatial and spectral features.
It extracts multi-scale features FM from IH
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FM = HMAC(IH), (1)

where HMAC(·) denotes multi-scale atrous convolution operation. FM is a joint
maps with multi-scale features, then FM is concatenated together via one 1 × 1
Conv layer

FCAT = WCAT (FM ), (2)

where WCAT (·) and FCAT denote the weight set to the Conv layer and joint
features respectively. The following are backbone of the network, two specially
designed Depthwise Separable bottleneck Residual (DSR) units, implemented
with depthwise separable convolution

FDF = HDSR(HDSR(FCAT )), (3)

where HDSR(·) denotes our residual unit, FDF is the obtained deep discrimina-
tive feature. The end of the model are three convolutional layers for classification,
and we insert the dropout layer (p = 0.5) during training to prevent overfitting

IL = HCLS(FDF ), (4)

where HCLS(·) and IL denate classification module and label map predicted by
MDSCNN.

Fig. 2. The developed multi-scale atrous convolution module.

In this paper, we select the cross-entropy as the loss function to train the
network, which can be formulated as:

E = −
T∑

i=1

yi · log h (xi) , (5)
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where T denotes the total number of training samples, yi is the ground truth of
xi, and h(·) denotes the softmax function which is computed as:

hxi
=

ezi∑C
j=1 ezj

, (6)

where zi is the features learned from sample xi, and C is the number of label
categories.

We have summarized the proposed MDSCNN in Table 1, which includes the
number of channels, kernel size, padding value and parameters for each convo-
lution or pooling layer of each module.

2.2 Multi-scale Feature Extraction with Atrous Convolution

It has been proved that classification can benifit from abundant contextual fea-
tures [20]. Inspired by the Atrous Spatial Pyramid Pooling (ASPP) module
[15] which is commonly used in semantic segmentation, we design a multi-scale
atrous convolution module based on depthwise separable convolution. As shown
in Fig. 2, it consists of four filters: 1×1, 3×3 (r = 1), 3×3 (r = 2), 3×3 (r = 3),
and an ImagePooling branch. Atrous convolution can enlarge the receptive field
of the filter while maintaining the amount of parameters. These convolutions are
extracted in parallel with different dilation rates, and then the generated feature
maps are concatenated together. Therefore, we pad the input patches to ensure
the shape of generated feature maps are same. Early studies have shown that
a 3 × 3 atrous convolution with an extremely large rate will degenerate into a
simple 1 × 1 convolution. In this way, it will not be able to capture long range
information due to image boundary effects [15]. Therefore, considering the spa-
tial size d of input patch is generally between 9–25, we set the maximum dilation

Fig. 3. Different residual unit architectures. (Left) Traditional residual units, (Mid-
dle) Bottleneck residual units, (Right) The developed Depthwise Separable bottleneck
Residual (DSR) units.
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rate to 3. In addition, The pooling filter preserves the image-level features of the
original HSIs and enriches the diversity of features.

2.3 BottleNeck Residual Block with Depthwise Separable
Convolution

Deep convolutional neural networks often appear degradation phenomenon due
to inadequate training, therefore, He et al. [21] constructed an identity mapping
to ease the training process. The basic idea is that if E is a perfect network with
best performance, the T is a deeper network with some redundant layers, so
the goal is to make redundant layer become an identical transformation. That
is to say, T ’s performance is the same as E. Therefore, the network needs to
learn a residual F (x) = H(x)− x, where x is original feature, H(x) denotes the
features learned from x. H(x) will be equivalent with x if the network learns
nothing, i.e. F (x) = 0. Since fitting the residual F (x) is easier than fitting the
original H(x), residual network can effectively avoid degradation of network.
The design of the residual units becomes a point worth exploring, as we can
see, there are three different residual units showed in Fig. 3. Basic residual unit
(Left) contains two convolutional layers. Bottleneck residual unit (Middle) [22] is
more economical than the conventional residual block, and its input and output
feature maps dimension is first reduced and then restored, which reduces the
calculation amount of the middle layer and allows a faster execution.

Fig. 4. Classification maps for IP dataset. (a) Simulated RGB composition of the
scene. (b) Ground-Truth classification map. Classification maps obtained by (c) MLP,
(d) SVM, (e) 2D-CNN, (f) 3D-CNN, (g) HybridSN, (h) MDSCNN

As we know, these traditional residual units mainly focus on the spatial
features of RGB images, the spectral features are not well extracted. Inspired by
bottleneck, here we have specially designed a DSR unit for HSI classification as
shown in Fig. 3 (Right). It mainly consists of three convolutional layers, which
extract spatial features using depthwise convolution firstly, and then convolute
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point by point to extract spectral features. After the first convolutional layer,
the feature map dimension is reduced (from the number of channels point of
view). A nonlinear activation function is introduced between the first and second
convolutional layers

FMID = WpwWdwσ(WpwWdw · x), (7)

where Wpw and Wdw denate the weights of pointwise convolution and depthwise
convolution respectively. σ(·) denotes the ReLu activation function. FMID is the
feature map after the second Conv layer in DSR. Since the depthwise convolu-
tion’s output is shallow, in order to retain as much information as possible, a
linear output is put between the second and third convolutional layers without
adding any nonlinear activation function. Thus a output FDF is obtained via
the shortcut connection:

FDF = WpwWdw · FMID + x, (8)

where + is an elementwise addition that does not change the size of the feature
map.

The experimental results show that adding two depthwise separable convo-
lutional units improves the classification accuracy while using limited training
samples.

Fig. 5. Classification maps for UP dataset. (a) Simulated RGB composition of the
scene. (b) Ground-Truth classification map. Classification maps obtained by (c) MLP,
(d) SVM, (e) 2D-CNN, (f) 3D-CNN, (g) HybridSN, (h) MDSCNN
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3 Experiments

3.1 Experimental Datasets

We have evaluated our model on three well-know HSI datasets, which are widely
used for HSI classification, Indian Pines (IP), University of Pavia (UP) and
Salinas Valley (SV).

IP: This scene was gathered by AVIRIS sensor in North-western Indiana, which
consists of 145×145 pixels and 224 spectral reflectance bands in the wavelength
range from 400 nm to 2500 nm. We have also reserved the number of bands to
200 by removing 24 damaged bands.

Fig. 6. Classification maps for UP dataset. (a) Simulated RGB composition of the
scene. (b) Ground-Truth classification map. Classification maps obtained by (c) MLP,
(d) SVM, (e) 2D-CNN, (f) 3D-CNN, (g) HybridSN, (h) MDSCNN

UP: This dataset captured the urban area around the University of Pavia,
Italy. The spatial resolution of the image is 1.3 m per pixel, the spectral coverage
ranges from 0.43 m to 0.86 m. After 12 bands is removed due to noise, there are
103 bands left. The image consists of 610 × 340 pixels, but it contains many
background pixels.
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Table 2. Classification results for IP dataset using 15% of the labeled data for training
and 15 × 15 input spatial size.

Class Training/Test SVM MLP 2D-CNN 3D-CNN HybirdSN MDSCNN

Alfalfa 6/46 72.50 63.63 0.00 75.86 95.65 95.65

Corn-notill 214/1428 81.24 72.15 92.45 93.10 98.47 99.72

Corn-mintill 124/830 81.14 77.02 99.21 94.65 98.67 97.87

Corn 35/237 73.45 64.71 73.96 87.83 99.58 100.00

Grass-pasture 72/483 90.56 81.42 93.36 97.38 98.74 100.00

Grass-trees 109730 93.08 91.44 99.17 98.38 99.05 100.00

Grass-pasture-mowed 4/28 100.00 100.00 0.00 99.04 89.28 100.00

Hay-windrowed 71/478 95.36 89.33 90.87 99.58 99.17 98.97

Oats 3/20 70.00 100.00 100.00 78.26 95.24 100.00

Soybean-nottill 145/972 78.63 69.91 94.92 97.64 99.37 99.49

Soybean-mintill 368/2455 79.52 70.04 92.95 98.61 99.02 99.79

Soybean-clean 88/593 80.42 58.74 90.18 97.22 98.17 99.32

Wheats 30/205 94.74 89.03 97.15 98.55 98.56 100.00

Woods 189/1265 93.36 91.35 93.71 95.01 99.92 98.21

Building-Grass-Trees 57/386 79.61 73.74 93.80 95.97 96.98 98.92

Stone-Steel-Towers 13/93 97.78 98.90 98.93 97.85 98.94 98.94

OA 81.96 76.62 96.27 97.84 98.88 99.33

AA 85.09 80.71 81.92 94.12 97.80 99.45

Kappa 81.96 73.11 92.52 95.75 98.72 99.23

SV: The SV dataset was captured by an onboard visible/infrared imaging spec-
trometer over Salinas Valley,California. The image has 512 × 217 pixels with a
spatial resolution of 3.7 m per pixel. The image originally contained 224 bands,
but the remaining 204 bands were usually used for experiments after removing
20 water absorption bands.

Table 3. Classification results for UP dataset using 15% of the labeled data for training
and 15 × 15 input spatial size.

Class Training/Test SVM MLP 2D-CNN 3D-CNN HybirdSN MDSCNN

Asphalt 994/6631 94.32 88.72 96.61 99.14 99.89 99.77

Meadows 2797/18649 95.28 86.02 98.03 98.45 99.97 98.47

Gravel 314/2099 84.91 78.88 100.00 90.19 99.43 99.81

Trees 459/3064 97.95 87.39 98.49 98.89 99.19 99.71

Sheets 201/1345 99.48 99.48 100.00 100.00 100.00 100.00

Bare soils 754/5029 93.40 91.90 100.00 100.00 98.28 100.00

Bitumen 199/1330 89.65 84.70 99.32 86.24 100.00 100.00

Bricks 552/3682 85.19 76.27 94.16 99.53 95.00 99.95

Shadows 142/947 100.00 100.00 100.00 99.79 99.58 100.00

OA 93.82 86.38 97.98 98.14 98.52 99.26

AA 93.35 88.15 98.51 96.92 99.04 99.75

Kappa 91.76 81.48 97.34 97.56 98.04 99.03
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In this paper, we implement the proposed method with Pytorch framework.
Before training, we have enhanced the data by randomly flipping and adding
noise. We use the Adam optimizer to train the network with a batch size of 64
and initially set a base learning rate as 0.001 then reduce it with poly (0.9).

3.2 Experimental Results

We compare the proposed MDSCNN with several classical and state-of-the-art
HSI classification methods. (1) SVM; (2) MLP; (3) 2D-CNN [23]; (4) 3D-CNN
[12]; (5) HybidSN [13]. SVM and MLP both are spectral-based methods. 2D-
CNN is based on spatial features. 3D-CNN utilizes spatial-spectral features of
HSIs with 3D convolution, which consists of two 3D convolutional layers and one
fully connected layer. The HybridSN firstly get a low-dimensional data with PCA
as input, and it contains three 3D convolutional layers, one 2D convolutional
layer, and three fully connected layers in the end of model. We evaluate all of
these methods on three standard datasets described above. In order to evaluate
the proposed MDSCNN and demonstrate the effectiveness of the multi-scale
strategy, we have conducted the following three experiments.

(1) In our first experiment: the first step is to randomly divide the original IP,UP
and SV dataset respectively into two subsets: the training set and testing
set, whose sample numbers are shown in the first column of Tables 2, 3 and
4. We train all methods mentioned above with some optimal parameters. In
addition, for our model, the input patch size is set to 15 × 15 × M .

(2) In our second experiment: intuitively, different spatial size of patch has sig-
nificant effect on the classification performance of model. We takes three
different sizes of patch as input: 9 × 9, 15 × 15, 21 × 21 and 15% of the
available training data for experiment.

(3) In our third experiment: to verify the effectiveness of the multi-scale atrous
convolution module used to jointly extract the mutli-scale spatial-spectral
features, we compare the proposed MDSCNN to the network without the
multi-scale module. To verify the effectiveness of the DSR units, we also
compare the performance of the proposed MDSCNN to a similar network
with the DSR unit replaced with traditional two convolutional layers residual
unit.

To evaluate the performance of different methods, three objective metrics:
overall accuracy (OA), average accuracy (AA), and the Kappa coefficient, are
adopted in these experiments.

Experiment 1: Tables 2, 3 and 4 show the quantitative results, moreover,
the best result is highlighted in bold font. As shown, the results of traditional
spectral-based pixel-level classification methods are not satisfactory, like SVM
and MLP, which are far worse than spatial-spectral based methods like 2D-CNN,
3D-CNN, HybridSN. The proposed MDSCNN achieves the best classification
accuracy on each dataset. Furthermore, the proposed MDSCNN has improved
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Table 4. Classification results for SV dataset using 15% of the labeled data for training
and 15 × 15 input spatial size.

Class Training/Test SVM MLP 2D-CNN 3D-CNN HybirdSN MDSCNN

Brocoli-green-weeds-1 302/2009 100.00 100.00 99.87 100.00 100.00 100.00

Brocoli-green-weeds-2 559/3726 99.71 98.59 99.97 99.84 99.97 100.00

Fallow 297/1976 98.64 95.40 99.83 99.92 99.92 99.85

Fallow-rough-plow 210/1394 98.58 98.86 99.21 99.78 99.85 99.50

Fallow-smooth 402/2678 98.92 91.49 99.22 99.78 99.18 99.51

Stubble 594/3959 99.98 99.98 99.94 99.92 99.95 100.00

Celery 537/3579 99.78 99.02 99.66 100.00 99.80 99.92

Graphes-untrained 1691/11271 79.21 68.92 90.04 98.86 94.68 99.34

Soil-vinyard-develop 931/6203 99.18 97.14 99.69 99.96 99.66 100.00

Corn-senesced-green-weeds 492/3278 95.46 87.82 99.33 99.96 99.69 99.91

Lettuce-romaine-4wk 161/1068 97.71 90.77 94.19 100.00 99.98 99.91

Lettuce-romaine-5wk 290/1927 98.32 97.27 99.43 99.84 99.94 100.00

Lettuce-romaine-6wk 138/916 99.12 94.23 99.89 99.93 100.00 100.00

Lettuce-romaine-7wk 161/1070 98.03 95.64 97.43 99.90 100.00 100.00

Vinyard-untrined 1091/7268 83.69 80.02 78.22 82.95 99.98 99.01

Vinyard-vertical-trellis 272/1807 99.89 97.51 99.83 100.00 99.93 99.63

OA 92.65 87.69 94.45 97.18 98.70 99.87

AA 96.64 93.29 97.53 98.86 99.55 99.78

Kappa 91.80 86.21 95.14 96.86 98.57 99.86

the OA value 0.5% at least compared to the suboptimal method on all testing
sets, and there are surprising improvements in AA and Kappa. In addition to
the qualitative results, the Figs. 4, 5 and 6 show three visual classification maps
of the different methods on three datasets respectively. It can be observed that
the traditional single-pixel-based methods have a lot of noise due to the lack of
spatial information. Meanwhile, the classification maps obtained by the spatial-
spectral based methods are smoother, and the most of the ewrong classified
pixels exist around the boundaries of some categories. Taking all these obser-
vations into account, it is possible to state that the MDSCNN provides a more
accurate and robust classification result than all of the other tested methods.

Table 5. Results on the proposed MDSCNN when considering different spatial size
input patches.

Spatial size IP UP SV

OA AA Kappa OA AA Kappa OA AA Kappa

9 × 9 98.41 97.11 98.19 98.79 99.15 98.40 98.57 99.27 98.42

11 × 11 98.91 99.08 98.75 99.23 99.94 98.98 98.73 99.57 98.58

15 × 15 99.33 99.45 99.23 99.27 99.96 99.03 99.87 99.93 99.86

21 × 21 98.62 97.71 98.43 99.24 99.95 98.99 97.17 98.86 96.86
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Experiment 2: Table 5 shows the classification results of the proposed
MDSCNN when using different spatial size patches as input. The OA, AA, and
Kappa values all increase firstly and then decrease on the three datasets. The
highest score was reached as the spatial size is set to 15 × 15. It is not difficult
to understand that increasing the spatial size of the patch will introduce a cer-
tain amount of spatial information at first. But as the spatial size continues to
increase, a lot of noise or pixels with different classes will be also introduced.

Table 6. Classification performance comparison of the proposed MDSCNN and the
network without multi-scale atrous convolution module and the network with tradi-
tional two layers residual unit.

Method UP IP

OA AA Kappa OA AA Kappa

w/o MS 94.71 93.80 93.02 89.65 88.23 88.92

w/o DRS 96.34 96.05 95.29 92.51 92.64 92.36

MDSCNN 99.26 99.75 99.03 99.33 99.45 99.23

Experiment 3: As shown in Table 6, the multi-scale atrous convolution module
outperforms the network without it (by 4.55% for the UP dataset, 9.68% for the
IP dataset in OA classification performance). Beyond that, our developed DRS
units achieve better performance than traditional residual units.

4 Conclusion

In this paper, a novel multi-scale separable convolutional network for HSI clas-
sification is proposed, the model leverages a multi-scale atrous convolutional
module to extract spatial-spectral features from a HSI patch. In addition, a
specially designed depthwise separable bottleneck residual unit is applyed to
increase the depth of the network and improve classification performance. The
proposed MDSCNN is deep while it doesn’t introduce large quantities of training
parameters because of the depthwise separable convolution. The final experimen-
tal results show that our method achieves outstanding classification performance
with a relative small number of training samples. Although multi-scale features
fusion has been adopted in our MDSCNN, the features at different stages of the
network is not considerated. In the future, we will continue to explore some new
multi-stage information fusion ways for HSI classification.
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