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Abstract New variable selection method is considered in the setting of clas-
sification with multivariate functional data (Ramsay and Silverman, Functional
data analysis, 2005). The variable selection is a dimensionality reduction method
which leads to replace the whole vector process, with a low-dimensional vector
still giving a comparable classification error. The various classifiers appropriate
for functional data are used. The proposed variable selection method is based on
functional distance covariance (Székely et al. Ann Appl Stat 3(4):1236–1265, 2009;
Stat Probab Lett 82(12):2278–2282, 2012). and is a modification of the procedure
given by Kong et al. (Stat Med 34:1708–1720, 2015). The proposed methodology is
illustrated on real data example.

1 Introduction

Much attention has been paid in recent years to methods for representing data as
functions or curves. Such data are known in the literature as functional data (Ramsay
and Silverman 2005; Horváth and Kokoszka 2012). Applications of functional data
can be found in various fields, including medicine, economics, meteorology, and
many others. In many applications there is a need to use statistical methods for
objects characterized by multiple variables observed at many time points (doubly
multivariate data). Such data are called multivariate functional data. In this paper
we focus on the classification problem for multivariate functional data. In many
cases, in the classification procedures, number of predictors p is much greater than
the sample size n. It is thus natural to assume that only a small number of predictors
are relevant to response Y .

Various basic classification methods have also been adapted to functional data,
such as linear discriminant analysis (Hastie et al. 1995), logistic regression (Rossi
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et al. 2002), penalized optimal scoring (Ando 2009), kNN (Ferraty and Vieu 2003),
SVM (Rossi and Villa 2006), and neural networks (Rossi et al. 2005). Moreover,
the combining of classifiers has been extended to functional data (Ferraty and
Vieu 2009). Górecki et al. (2016) adapted multivariate regression models to the
classification of multivariate functional data.

Székely et al. (2007), Székely and Rizzo (2009), Székely and Rizzo (2012,
2013) defined the measures of dependence between random vectors: the distance
covariance (dCov) coefficient and the distance correlation (dCor) coefficient. These
authors showed that for all random variables with finite first moments, the dCor
coefficient generalizes the idea of correlation in two ways. Firstly, this coefficient
can be applied when X and Y are of any dimensions and not only for the simple
case where p = q = 1. Secondly, the dCor coefficient is equal to zero, if and only if
there is independence between the random vectors. Indeed, a correlation coefficient
measures linear relationships and can be equal to 0 even when the variables are
related. Based on the idea of the distance covariance between two random vectors,
we introduced the functional distance correlation between two random processes.
We select a set of important predictors with large value of functional distance
covariance. Our selection procedure is a modification of the procedure given by
Kong et al. (2015). Entirely different approach to the variable selection in functional
data classification is presented by Berrendero et al. (2016). It is clear that variable
selection has, at least, an advantage when compared with other dimension reduction
methods (functional principal component analysis (FPCA), see Górecki et al. 2014;
Jacques and Preda 2014, functional partial least squares (FPLS) methodology, see
Delaigle and Haal 2012, and other methods) based on general projections: the output
of any variable selection method is always directly interpretable in terms of the
original variables, provided that the required number d of selected variables is not
too large.

The rest of this paper is organized as follows. In Sect. 2 we present the
classification procedures used through the paper. In Sect. 3 we present the problem
of representing functional data by orthonormal basis functions. In Sect. 4, we define
a functional distance covariance and distance correlation. In Sect. 5 we propose a
variable selection procedure based on the functional distance covariance. In Sect. 6
we illustrate the proposed methodology through a real data example. We conclude
in Sect. 7.

2 Classifiers

The classification problem involves determining a procedure by which a given
object can be assigned to one of q populations based on observation of p features
of that object.
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The object being classified can be described by a random pair (X, Y ), where
X = (X1, X2, . . . , Xp)′ ∈ Rp and Y ∈ {1, . . . , q}. An automated classifier can
be viewed as a method of estimating the posterior probability of membership in
groups. For a given X, a reasonable strategy is to assign X to that class with the
highest posterior probability. This strategy is called the Bayes’ rule classifier.

2.1 Linear and Quadratic Discriminant Classifiers

Now we make the Bayes’ rule classifier more specific by the assumption that all mul-
tivariate probability densities are multivariate normal having arbitrary mean vectors
and a common covariance matrix. We shall call this model the linear discriminant
classifier (LDC). Assuming that class-covariance matrices are different, we obtain
quadratic discriminant classifier (QDC).

2.2 Naive Bayes Classifier

A naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes’ theorem with independence assumptions. When dealing with continuous
data, a typical assumption is that the continuous values associated with each class
are distributed according to a one-dimensional normal distribution or we estimate
density by kernel method.

2.3 k-Nearest Neighbor Classifier

Most often we do not have sufficient knowledge of the underlying distributions. One
of the important nonparametric classifiers is a k-nearest neighbor classifier (kNN
classifier). Objects are assigned to the class having the majority in the k nearest
neighbors in the training set.

2.4 Multinomial Logistic Regression

It is a classification method that generalizes logistic regression to multiclass problem
using one vs. all approach.
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3 Functional Data

We now assume that the object being classified is described by a p-dimensional
random process X = (X1, X2, . . . , Xp)′ ∈ L

p

2 (I ), where L2(I ) is the Hilbert space
of square-integrable functions, and E(X) = 0.

Moreover, assume that the kth component of the vector X can be represented by
a finite number of orthonormal basis functions {ϕb}

Xk(t) =
Bk∑

b=0

αkbϕb(t), t ∈ I, k = 1, . . . , p, (1)

where αk0, αk1, . . . , αkBk
are the unknown coefficients.

Let α = (α10, . . . , α1B1 , . . . , αp0, . . . , αpBp)′
and

�(t) =

⎡

⎢⎢⎣

ϕ′
1(t) 0′ . . . 0′
0′ ϕ′

2(t) . . . 0′
. . . . . . . . . . . .

0′ 0′ . . . ϕ′
p(t)

⎤

⎥⎥⎦ ,

where ϕk(t) = (ϕ0(t), . . . , ϕBk
(t))′, k = 1, . . . , p.

Using the above matrix notation, process X can be represented as:

X(t) = �(t)α, (2)

where E(α) = 0. This means that the realizations of a process X are in finite-
dimensional subspace of L

p

2 (I ). We will denote this subspace by L
p

2 (I ).
We can estimate the vector α on the basis of n independent realizations

x1, x2, . . . , xn of the random process X (functional data). We will denote this
estimator by α̂.

Typically data are recorded at discrete moments in time. Let xkj denote an
observed value of the feature Xk , k = 1, 2, . . . , p at the j th time point tj , where
j = 1, 2, . . . , J . Then our data consist of the pJ pairs (tj , xkj ). These discrete data
can be smoothed by continuous functions xk and I is a compact set such that tj ∈ I ,
for j = 1, . . . , J .

Details of the process of transformation of discrete data to functional data can be
found in Ramsay and Silverman (2005) or in Górecki et al. (2014).
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4 Functional Distance Covariance and Distance Correlation

For jointly distributed random process X ∈ L
p

2 (I ) and random vector Y ∈ R
q , let

fX,Y (l,m) = E{exp[i < l,X >p +i < m,Y >q ]}

be the joint characteristic function of (X,Y ), where

< l,X >p=
∫

I

l′(t)X(t)dt

and

< m,Y >q= m′Y .

Moreover, we define the marginal characteristic functions of X and Y as follows:
fX(l) = fX,Y (l, 0) and fY (m) = fX,Y (0,m).

Here, for generality, we assume that Y ∈ R
q , although the label Y in the

classification problem is a random variable, with values in {1, . . . , q}. Label Y

has to be transformed into the label vector Y = (Y1, . . . , Yq)′, where Yi = 1 for
i = 1, . . . , q if X belongs to class i, and 0 otherwise.

Now, let us assume that X ∈ L
p

2 (I ). Then the process X can be represented as:

X(t) = �(t)α, (3)

where α ∈ R
K+p and K = B1 + · · · + Bp.

In this case, we may assume (Ramsay and Silverman 2005) that the vector weight
function l and the process X are in the same space, i.e. the function l can be written
in the form

l(t) = �(t)λ, (4)

where λ ∈ R
K+p.

Hence

< l,X >p=
∫

I

l′(t)X(t)dt = λ′[
∫

I

�′(t)�(t)dt]α = λ′α,

where α and λ are vectors occurring in the representations (3) and (4) of process X

and function l, and

fX,Y (l,m) = E{exp[iλ′α + im′Y ]} = fα,Y (λ,m),

where fα,Y (λ,m) is the joint characteristic function of the pair of random vectors
(α,Y ).
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On the basis of the idea of distance covariance between two random vectors
(Székely et al. 2007), we can introduce functional distance covariance between
random processes X and random vector Y as a nonnegative number νX,Y defined
by

νX,Y = να,Y ,

where

ν2
α,Y = 1

CK+pCq

∫

RK+p+q

|fα,Y (λ,m) − fα(λ)fY (m)|2
‖λ‖K+p+1

K+p ‖m‖q+1
q

dλdm,

and |z| denotes the modulus of z ∈ C, ‖λ‖K+p, ‖m‖q the standard Euclidean norms
on the corresponding spaces V chosen to produce scale free and rotation invariant
measure that does not go to zero for dependent random vectors, and

Cr = π
1
2 (r+1)

�( 1
2 (r + 1))

is half the surface area of the unit sphere in R
r+1.

The functional distance correlation between random vector process X and
random vector Y is a nonnegative number defined by

RX,Y = νX,Y√
νX,XνY ,Y

if both νX,X and νY ,Y are strictly positive, and defined to be zero otherwise.
We have RX,Y = Rα,Y as νX,Y = να,Y .
For distributions with finite first moments, distance correlation characterizes

independence in that 0 ≤ RX,Y ≤ 1 with RX,Y = 0 if and only if X and
Y are independent. We can estimate functional distance covariance using data
{(α̂1, y1), . . . , (α̂n, yn)}.

Let

ᾱ = 1

n

n∑

i=1

α̂k, ȳ = 1

n

n∑

i=1

k̂k,

α̃k = α̂k − ᾱ, ỹk = yk − ȳ, k = 1, . . . , n

and

A = (akl), B = (bkl),

Ã = (Akl), B̃ = (Bkl),
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where

akl = ‖α̂k − α̂l‖K+p, bkl = ‖yk − yl‖q,

Akl = ‖α̃k − α̃l‖K+p, Bkl = ‖ỹk − ỹl‖q, k, l = 1, . . . , n.

Hence

Ã = HAH , B̃ = HBH ,

where

H = In − 1

n
1n1′

n

is the centering matrix.
Let Ã ◦ B̃ = (AklBkl) denote the Hadamard product of the matrices Ã and B̃.

Then, on the basis of the result of Székely et al. (2007), we have

ν̂2
X,Y = 1

n2

n∑

k,l=1

AklBkl.

The sample functional distance correlation is then defined by R̂X,Y = R̂α,Y ,
where

R̂α,Y = ν̂α,Y√
ν̂α,α ν̂Y ,Y

if both ν̂α,α and ν̂Y ,Y are strictly positive, and zero otherwise.

5 Variable Selection Based on the Distance Covariance

In this section we propose the selection procedure built upon the distance covari-
ance. Let Y = (Y1, . . . , Yq)′ be the response vector, and X = (X1, . . . , Xp)′ be the
predictor p-dimensional process. Assume that only a small number of predictors are
relevant to Y . We select a set of important predictors with large R̂X,Y = R̂α,Y . We
utilize the functional distance covariance because it allows for arbitrary relationship
between Y and X, regardless of whether it is linear or nonlinear.

The functional distance covariance also permits univariate and multivariate
response. Thus, this distance covariance procedure is completely model-free. Kong
et al. (2015) prove the following theorem.
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Theorem 1 Suppose random vectors X,Z ∈ R
p and Y ∈ R

q , and assume Z is
independent of (X,Y ), then

ν2
(X,Z),Y ≤ ν2

X,Y .

And a consequence of this theorem is the statement in the next corollary.

Corollary 1 For the sample distance covariance, if n is large enough, we should
have

ν̂2
(X,Z),Y ≤ ν̂2

X,Y ,

under the assumption of independence between (X,Y ) and Z.

We implemented the above theorem as a stopping rule in the selections of
responses. The procedure took the following steps:

1. Calculate marginal distance covariances for Xk , k = 1, . . . , p with the response
Y .

2. Rank the variables in decreasing order of the distance covariances. Denote the
ordered predictors as X(1), X(2), . . . , X(p). Start with XS = {X(1)}.

3. For k from 2 to p, keep adding X(k) to XS if ν̂2
XS ,Y does not decrease. Stop

otherwise.

6 Real Example

As a real example we used Japanese Vowels data set which is available at
UCI Machine Learning Repository (Lichman 2013). Nine male speakers uttered
two Japanese vowels /ae/ successively. For each utterance, it was applied 12◦
linear prediction analysis to obtain a discrete-time series with 12 LPC cep-strum
coefficients. This means that one utterance by a speaker forms a time series whose
length is in the range 7–29 and each point of a time series is of 12 features (12
coefficients). The number of the time series is 640 in total. The samples in this data
set are of different lengths. They were extended to the length of the longest sample
in the data set (Górecki and Łuczak 2015).

During the smoothing process we used Fourier basis with five components. In the
next step we applied the described earlier method of selecting variables (we stopped
the procedure if the increase in covariance measure was less than 0.01). In such way
we obtained four variables (Fig. 1).

Next, we applied described classifiers to reduced functional data and to full
functional data. To estimate the error rate of the classifiers we used tenfold cross-
validation method. The results are in Table 1.

We can observe that the error rate increases if we reduce our data set. This
behavior is expected. However, the increase seems not too big. Particularly inter-



Variable Selection for Classification of Multivariate Functional Data 223

Variables

D
is

ta
nc

e 
co

va
ria

nc
e

0.
45

0.
50

0.
55

0.
60

0.
65

V
ar

 1

V
ar

 2

V
ar

 3

V
ar

 6

V
ar

 9

V
ar

 7

V
ar

 4

V
ar

 5

V
ar

 8

V
ar

 1
0

V
ar

 1
2

V
ar

 1
1

Selected variables =  4

Selected dCov =  0.589

Maximum dCov =  0.608

Fig. 1 Variables selection for Japanese Vowels data set

Table 1 Classification accuracy (in %) for Japanese Vowels data set

Classifier Selected variables (4) All variables (12)

LDC 93.60 99.37

Logistic regression 91.06 97.97

kNN (k = 1, . . . , 8) 90.94 96.71

Naive Bayes (normal) 90.77 95.50

Naive Bayes (kernel) 90.15 94.34

QDC 89.85 Too small groups

esting is the case of QDC. For this method we do not have enough data to estimate
covariance matrices for all groups for full data. When we select only four variables
this procedure could be performed. We can also notice that the order of classifiers
stays unchanged (the best classifier for full data is LDC, and the same is the best for
reduced data).

During the calculations we used R (R Core Team 2017) software and caret
(Kuhn 2017), energy (Rizzo and Székely 2016), and fda (Ramsay et al. 2014)
packages.
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7 Conclusion

The paper introduces variable selection for classification of multivariate functional
data. Use of distance covariance as a tool to reduce dimensionality of data set
suggests that the technique provides useful results for classification of multivariate
functional data. For the analyzed data set only four from twelve variables were
included in the final model. We can observe that classification accuracy could drop
a little. However, we expect that this drop should be reasonable and in return we
could gain a lot of computation time.

In practice, it is important not to depend entirely on variable selection criteria
because none of them works well under all conditions. So our approach could be
seen as a competitive to another variable selection methods. Additionally, model
obtained by the proposed method of variable selection seems comparable with the
full model (model without variables reduction). Finally, the researcher needs to
evaluate the models using various diagnostic procedures.
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Górecki, T., Krzyśko, M., Wołyński, W.: Multivariate functional regression analysis with applica-
tion to classification problems. In: Wilhelm Adalbert, F.X., Kestler Hans, A. (eds.) Analysis
of Large and Complex Data, Studies in Classification, Data Analysis, and Knowledge
Organization, pp. 173–183. Springer, Berlin (2016)

Górecki, T., Łuczak, M.: Multivariate time series classification with parametric derivative dynamic
time warping. Expert Syst. Appl. 42(5), 2305–2312 (2015)

Hastie, T.J., Tibshirani, R.J., Buja, A.: Penalized discriminant analysis. Ann. Stat. 23, 73–102
(1995)

Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer, New York
(2012)

Jacques, J., Preda, C.: Model-based clustering for multivariate functional data. Comput. Stat. Data
Anal. 71, 92–106 (2014)

Kong, J., Wang, S., Wahba G.: Using distance covariance for improved variable selection with
application to learning genetic risk models. Stat. Med. 34, 1708–1720 (2015)

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z.,
Kenkel, B.: caret: Classification and Regression Training. R package version 6.0-76 (2017).
https://CRAN.R-project.org/package=caret

https://CRAN.R-project.org/package=caret


Variable Selection for Classification of Multivariate Functional Data 225

Lichman, M.: UCI Machine Learning Repository. University of California, School of Information
and Computer Science, Irvine (2013). http://archive.ics.uci.edu/ml

R Core Team: R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna (2017). https://www.R-project.org/

Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)
Ramsay, J.O., Wickham, H. Graves, S., Hooker, G.: fda: Functional Data Analysis. R package

Version 2.4.4 (2014). https://CRAN.R-project.org/package=fda
Rizzo, M.L., Székely, G.J.: Energy: E-Statistics: Multivariate Inference via the Energy of Data. R

Package Version 1.7-0 (2016). https://CRAN.R-project.org/package=energy
Rossi, F., Delannayc, N., Conan-Gueza, B., Verleysenc, M.: Representation of functional data in

neural networks. Neurocomputing 64, 183–210 (2005)
Rossi, F., Villa, N.: Support vector machines for functional data classification. Neural Comput. 69,

730–742 (2006)
Rossi, N., Wang, X., Ramsay, J.O.: Nonparametric item response function estimates with EM

algorithm. J. Educ. Behav. Stat. 27, 291–317 (2002)
Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of

distances. Ann. Stat. 35(6), 2769–2794 (2007)
Székely, G.J., Rizzo, M.L.: Brownian distance covariance. Ann. Stat. 3(4), 1236–1265 (2009)
Székely, G.J., Rizzo, M.L.: On the uniqueness of distance covariance. Stat. Probab. Lett. 82(12),

2278–2282 (2012)
Székely, G.J., Rizzo, M.L.: The distance correlation t-test of independence in high dimension. J.

Multivar. Anal. 117, 193–213 (2013)

http://archive.ics.uci.edu/ml
https://www.R-project.org/
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=energy

	Variable Selection for Classification of Multivariate Functional Data
	1 Introduction
	2 Classifiers
	2.1 Linear and Quadratic Discriminant Classifiers
	2.2 Naive Bayes Classifier
	2.3 k-Nearest Neighbor Classifier
	2.4 Multinomial Logistic Regression

	3 Functional Data
	4 Functional Distance Covariance and Distance Correlation
	5 Variable Selection Based on the Distance Covariance
	6 Real Example
	7 Conclusion
	References


