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Preface

This volume contains revised versions of selected papers presented at the biennial
conference of the International Federation of Classification Societies, which was
held in Tokyo from August 8–10, 2017. Japanese Classification Society and
Department of Mathematics of Tokai University organized this IFCS conference.
Tadashi Imaizumi (Tama University) chaired the Scientific Program Committee
and Sadaaki Miyamoto (University of Tsukuba) served as the vice chair of the
Scientific Program Committee. Yoshiro Yamamoto (Tokai University) chaired the
Local Organizing Committee.

We are grateful to the members of the Scientific Program Committee: Brian C.
Franczak (CSS), Salvatore Ingrassia (CLADAG), Hans Kestler (GfKl), Éva Laczka
(HSA-CMSG), Sugnet Lubbe (SASA-MDAG), Berthold Lausen (IFCS President-
Elect), Fionn Murtagh (BCS), Christian Hennig (IFCS Secretary), Mohamed Nadif
(SFC), Paul McNicholas (IFCS Publication Officer), Heon Jin Park (KCS), Nema
Dean (IFCS Treasurer), Józef Pociecha (SKAD), Vladimir Batagelj (SSS), Abder-
rahmane Sbihi (MCS), Theodoros Chadjipantelis (GDSA), José Fernando Vera
(SEIO-AMyC), Sonya Coleman (IPRCS), Jeroen K. Vermunt (VOC), José Con-
claves Dias (CLAD), Patrick Groenen (IASC Delegate), and Carlos Cuevas Covar-
rubias (SoCCCAD).

Over 300 scholars from 26 countries attended the conference. More than 250
contributions were organized into special sessions, contributed paper sessions, and
one poster session. Moreover, five keynote lectures were given on different topics
of data analysis and classification.

The volume is a collection of full papers submitted after the conference. Papers
were selected after a peer-review process, according to the high-quality standards
of the series. The volume is complied with 40 contributions organized in five parts
including contributions on:

• Classification and Cluster Analysis
• Multidimensional Analysis and Visualization
• Statistical Methods
• Statistical Data Analysis
• Statistical Data Analysis for Social Science

v
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Classification and Cluster Analysis



Multilevel Model-Based Clustering: A
New Proposal of Maximum-A-Posteriori
Assignment

Silvia Bacci, Francesco Bartolucci, and Fulvia Pennoni

Abstract We deal with the problem of latent variable prediction in the context
of multilevel latent class models for categorical responses provided by individuals
nested in groups. In particular, we propose a posterior assignment rule that jointly
predicts the individual- and group-level latent variables. This proposal is alternative
to the common maximum-a-posteriori rule, which is based on first predicting the
latent variables at cluster level and, then, those at individual level. To illustrate the
proposal, we show the results of two simulation studies and two applications on data
related to the national and the international assessment of student skills.

1 Introduction

Multilevel models (Goldstein 2011) are employed when sample units are clustered
in groups, as is typical in educational studies, to account for the unobserved
heterogeneity between and within groups. These models take into account that
group-level unobservable factors may affect in a similar way the behavior of all
individuals in the same group. This behavior is observed through the response
variables considered in the study. Consequently, the dependence between the
responses provided by individuals in the same group is suitably considered and it is
possible to compare groups and produce league tables (Goldstein and Spiegelhalter
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1996). For instance, schools or classes are compared at national and international
level on the basis of the students’ acquired knowledge assessed by test scores.

In particular, we focus on models based on discrete latent variables (Skrondal and
Rabe-Hesketh 2013) to account for the multilevel structure of the data and on the
case of categorical responses. The latent variables are associated with each group
and to each individual, with that at group level characterized by a finite number of
support points (and related weights) identifying latent clusters. Groups belonging
to the same latent cluster share a common effect on the units within the group.
Similarly, the components of the discrete latent variable at individual level define
homogenous classes of individuals, named latent classes, so that individuals in
the same latent class have the same behavior. The approach at issue relies on the
Multilevel Latent Class (MLC) model (Vermunt 2003), which is an extension of the
classical latent class model (Lazarsfeld and Henry 1968; Goodman 1974; Pennoni
2014). It has been applied by many authors in the educational context (Gnaldi et al.
2016; Vermunt 2008).

While maximum likelihood estimation of the MLC model parameters through
the Expectation-Maximization (EM) algorithm (Baum et al. 1970; Dempster et al.
1977) is already well established, an issue that still deserves attention concerns the
prediction of the latent variables at individual and group level on the basis of the
estimated parameters. In the literature about latent class models and in that about
multilevel models based on discrete latent variables, the Maximum-A-Posteriori
(MAP) approach is considered as the standard rule to assign individuals to the
latent classes (Goodman 1974, 2007). This rule is also very popular for finite-
mixture models in general (McLachlan and Peel 2000). It consists in selecting,
for every individual, the latent class having the highest posterior probability, which
corresponds to the conditional distribution of the latent variable given the observed
responses. The MAP allocation has been proved superior with respect to the method
of the expected proportions, as stated by Goodman (2007), and to the method
of bagging proposed by Dias and Vermunt (2008). More recently, extending the
method proposed in Bandeen-Roche et al. (1997), Bray et al. (2015) discussed an
alternative approach for multiple categorical responses, which is based on multiple
pseudo-class draws. This method is similar to the MAP, but it randomly assigns
individuals to latent classes for a repeated number of times according to the posterior
probabilities. The authors proved that the MAP assignment is still superior in terms
of bias.

For MLC models, the MAP rule must be applied to each hierarchical level, allo-
cating first each group to the latent cluster having the highest posterior probability
and then allocating individuals to the latent classes. The latter may be applied in two
different ways named in the following as marginal MAP and conditional MAP. In
the marginal MAP each latent variable at individual level is considered separately
with respect to the latent variable at group level and, then, each individual is assigned
to the latent class with the highest marginal posterior probability. In the conditional
MAP the latent class is predicted for each individual, conditionally on the value
predicted for the corresponding group-level latent variable.
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From a certain point of view, both marginal and conditional MAP rules lead
to suboptimal solutions because the allocation of individuals and groups may not
correspond to the joint MAP probability of the latent variables. We propose a variant
of MAP that is inspired by a similar problem arising with longitudinal data in the
context of hidden Markov (HM) models (Bartolucci et al. 2013; Zucchini et al.
2016). In detail, we propose to adapt the Viterbi algorithm (Juang and Rabiner
1991; Viterbi 1967) to the MLC model as it is simple to implement by forward
and backward recursions and has a linear complexity.

The remainder of this article is organized as follows. In Sect. 2 we describe the
MLC model, focusing on its formulation based on discrete latent variables at group
and individual level. In Sect. 3 we provide technical details on the proposed Viterbi-
based allocation algorithm. In Sect. 4 we show the results of two simulation studies
aimed at comparing the performance of the clustering algorithms. In Sect. 5 we
provide the results of the proposal applied to two different datasets on education
and, finally, in Sect. 6 we summarize the main conclusions.

2 Multilevel Latent Class Model

Let Yhij denote the categorical response variable for individual i within group h and
item j , with h = 1, . . . , H , i = 1, . . . , nh, j = 1, . . . , r , let Yhi = (Yhi1, . . . , Yhir )

′
be the vector of responses referred to this individual, and let Yh = (Y′

h1, . . . , Y′
hnh

)′
be the collection of all responses referred to group h. The corresponding observed
values are denoted in lower case, that is, by yhij , yhi , and yh, respectively. In the
binary case, each response variable may assume values 0 or 1, otherwise it may
assume lj values from 0 to lj − 1. In the latter case, the responses typically come
from ordinal polytomous items. When available, we consider covariates at group
and individual level, which are collected in the vectors wh and xhi , respectively.

We assume two discrete latent variables, Uh and V hi , identifying latent clusters
and latent classes, respectively (in the following we use a different text color to
distinguish between them). The distribution of each latent variable has a finite num-
ber of support points. For each Uh, the support points are kU , with corresponding
mass probabilities λh,u = p(Uh = u|wh), u = 1, . . . , kU , which possibly depend
on the fixed covariates wh. The support points of each V hi are kV and the mass
probabilities are denoted by πhi,v|u = p(V hi = v|Uh = u, xhi), v = 1, . . . , kV ,
at individual level depending on the group-specific latent variable Uh and, possibly,
on the fixed covariates xhi . Note that, if no covariate is available, these probabilities
are equal across groups and individuals. On the other hand, when these covariates
are available, we adopt a multinomial logit parameterization:

log
λh,u

λh,1
= w′

hφu, u = 2, . . . , kU ,

log
πhi,v|u
πhi,1|u

= x′hiψuv, u = 1, . . . , kU , v = 2, . . . , kV ,
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for suitable parameter vectors φu and ψuv; see also Dayton and Macready (1988),
Formann (2007).

A crucial assumption of the MLC model is that of local independence, according
to which the responses in Yhi are conditionally independent given the latent variable
V hi for every individual i in group h. This enforces the interpretation of the latent
variable as the only factor affecting the response variables. Moreover, in agreement
with the typical structure of multilevel models, for each group h the latent variables
V hi , i = 1, . . . , nh, are conditionally independent given Uh. This implies the
following manifest distribution for the responses referred to the same group h:

p(Yh = yh) =
kU∑

u=1

λh,up(Yh = yh|Uh = u),

p(Yh = yh|Uh = u) =
nh∏

i=1

p(Yhi = yhi |Uh = u),

p(Yhi = yhi |Uh = u) =
kV∑

v=1

πhi,v|up(Yhi = yhi |V hi = v),

p(Yhi = yhi |V hi = v) =
r∏

j=1

p(Yhij = yhij |V hi = v),

where the dependence on the covariates is not explicitly indicated as these covariates
are assumed to be fixed and given. We also assume independence between the
group-level latent variables, so that the overall manifest distribution is

p(Y1 = y1, . . . , YH = yH) =
H∏

h=1

p(Yh = yh).

Given observed data referred to a sample of n subjects collected in H groups, the
log-likelihood of the MLC model is

�(θ) =
H∑

h=1

log p(Yh = yh),

where θ is the vector of free model parameters. These parameters are estimated
by maximizing �(θ) through the EM algorithm (Baum et al. 1970; Dempster
et al. 1977). As usual, this algorithm relies on the complete data log-likelihood,
denoted by �∗(θ), which corresponds to the log-likelihood that we would compute
if we knew the values of the latent variables describing clusters and classes. The
algorithm alternates two steps (E and M) until convergence. The E-step computes
the conditional expected value of �∗(θ) given the observed data and the current value
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of the parameters. This expected value is maximized at the M-step with respect to θ

and the estimate of this parameter vector is then updated until convergence.
After estimation, an important task is the prediction of the latent variables at

group and individual level. The conditional MAP approach provides the following
two predicted components:

ûh = argmax
u=1,...,kU

âh,u, h = 1, . . . , H, (1)

v̂hi = argmax
v=1,...,kV

b̂hi,v|ûh
, i = 1, . . . , nh, h = 1, . . . , H, (2)

where âh,u and b̂hi,v|u are the estimated posterior probabilities at both levels. These
quantities are obtained by substituting the parameter estimates in the following
posterior probabilities:

ah,u = p(Uh = u|Yh = yh) = λh,up(Yh = yh|Uh = u)

p(Yh = yh)
,

bhi,v|u = p(V hi = v|Uh = u, Yhi = yhi) = πhi,v|up(Yhi = yhi |V hi = v)

p(Yhi = yhi |Uh = u)
.

It is worth noting that this rule does not provide an optimal solution in the sense
that, for a given cluster h, it does not maximize the following posterior probability

p(Uh = u, V h1 = v1, . . . , V hnh = vnh |Yh = yh)

= λh,u

∏nh

i=1 πhi,vi |up(Yhi = yhi |V hi = vi)

p(Yh = yh)
(3)

jointly with respect to (u, v1, . . . , vnh )
′. In fact, using the terminology of HM

models (Bartolucci et al. 2013; Zucchini et al. 2016), the method based on
solutions (1) and (2) is a sort of local decoding.

In the following section, we introduce an algorithm to maximize (3) with respect
to (u, v1, . . . , vnh)

′ that is based on a simplified version of the Viterbi algorithm
(Juang and Rabiner 1991; Viterbi 1967). This algorithm is used for global decoding
in dealing with HM models.

3 Proposed Latent Variable Prediction Algorithm

We introduce a unidimensional discrete latent variable Zhi derived from the discrete
latent variables (Uh, V hi), having a number of support points (or latent states
according to the terminology adopted in the HM literature) equal to the product
of kU and kV ; these support points are denoted in the following by z, with z =
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Table 1 Example: support
points of Zhi when kU = 2
and kV = 3

u 1 1 1 2 2 2

v 1 2 3 1 2 3

z 1 2 3 4 5 6

1, . . . , kZ. Table 1 shows an example for the case of kU = 2 and kV = 3 to illustrate
how the values of Zhi are coded depending on those of Uh and V hi .

Obviously, the latent variables in the sequence Zh1, . . . , Zhnh are not indepen-
dent, differently from the original latent variables Uh and V hi . In particular, it is
important noting that each sequence Zh1, . . . , Zhnh follows a Markov chain of first-
order with initial probabilities

ρh,z = p(Zh1 = z) = λh,u(z)πh1,v(z)|u(z),

where u(z) and v(z) are the categories of the underlying latent variables Uh and V hi

corresponding to Zhi , and transition probabilities

ρhi,z|z̄ = p(Zhi = z|Zh,i−1 = z̄) = πhi,v(z)|u(z), iff u(z) = u(z̄), (4)

and ρhi(z|z̄) = 0 when u(z) �= u(z̄). The latter constraint guarantees that the latent
cluster of every group is constant for all individuals within the same group. Besides,
given the arbitrary order of individuals within groups, we assume that the transition
probability from z̄ to z does not depend on z̄. For the example illustrated in Table 1,
this leads to the following matrix of the transition probabilities, defined as in (4),
which has a block diagonal structure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρhi,1|1 ρhi,2|1 ρhi,3|1 0 0 0
ρhi,1|2 ρhi,2|2 ρhi,3|2 0 0 0
ρhi,1|3 ρhi,2|3 ρhi,3|3 0 0 0

0 0 0 ρhi,4|4 ρhi,5|4 ρhi,6|4
0 0 0 ρhi,4|5 ρhi,5|5 ρhi,6|5
0 0 0 ρhi,4|6 ρhi,5|6 ρhi,6|6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Given that the overall multilevel model resembles the HM model, we propose to
use a Viterbi algorithm (Juang and Rabiner 1991; Viterbi 1967) to jointly allocate
individuals and groups by maximizing the posterior probability in (3), so as to obtain
a predicted sequence z̃h = (z̃h1, . . . , z̃hnh) given the observed responses in yh. In the
end, we get the predicted latent cluster ũh = u(z̃hi) and the latent class ṽhi = v(z̃hi )

for i = 1, . . . , nh.
For a given group h and for z = 1, . . . , kZ, let

ph1(z, yh) = p(Zh1 = z, Yh1 = yh1),



Multilevel Model-Based Clustering 9

and

phi(z, yh) = max
z1,...,zi−1

p(Zh1 = z1, . . . , Zh,i−1 = zi−1, Zhi = z,

Yh1 = yh1, . . . , Yhi = yhi),

with i = 2, . . . , nh. The Viterbi algorithm is based on the following forward-
backward recursions:

1. for i = 1 and z = 1, . . . , kZ compute

ph1(z, yh) = ρh1(z)p(Yh1 = yh1|Zh1 = z);

2. for i = 2, . . . , nh and z = 1, . . . , kZ compute

p̂i (z, yh) = p(Yhi = yhi |Zhi = z) max
z̄=1,...,kZ

(ph,i−1(z̄, yh)ρhi,z|z̄);

3. for i = nh find the optimal state

z̃h,nh = argmax
z=1,...,kZ

phnh(z, yh);

4. for i = nh − 1, . . . , 1 predict the optimal state

z̃hi(yh) = argmax
z=1,...,kZ

[phi(z, yh)ρh,i+1,z̃h,i+1|z].

It is worth noting that the resulting algorithm has a numerical complexity that
linearly increases with the overall sample size as it must be repeatedly applied for
all clusters.

4 Simulation Study

In order to compare the proposal illustrated above, we performed two separate
simulation studies of the allocation accuracy for individuals and groups: in the first
study (Study I) the model is correctly specified whereas, in the second (Study II),
it is misspecified. Each study is based on different scenarios; 50 random samples
are generated under each scenario. In all cases, the comparison between the two
approaches is based on the rates of different allocations (DISagreement , indicated
as DIS in the following sections) of groups in latent clusters (denoted by DISU )
and of individuals in latent classes (denoted by DISV 1 for the marginal MAP and
DISV 2 for the conditional MAP).
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A summary of the results of the two studies is provided in Table 2, whereas
details on each design and the discussion of the results are provided in the following
two subsections. The complete results are available from authors upon request.

4.1 Study I

The first simulation study is based on 20 different scenarios resulting from the
following design:

• r = 8 binary response variables (items);
• H = 50, 100 (groups) with nh = 10, 50 (individuals).

We generated binary responses by assuming a discrete distribution for U and V , with
a number of latent classes and clusters equal to 3 (i.e., kU = 3 and kV = 3). Their
components are defined as the quadrature nodes of a Gaussian distribution with
null mean and standard deviations σU and σV , respectively. To consider distinctive
latent clusters and classes we fixed their values as illustrated in Table 3. Moreover,
the weights of U correspond to the weights for the Gaussian quadrature, whereas
the weights of V are affected by the components of U through an inverse logit
transformation.

As shown in Table 2 (Study I), under the correct model specification both MAP
and Viterbi approaches tend to be very coherent in the allocation of groups and
individuals. More precisely, all the statistics computed for DISU in Study I are
smaller (except for the standard deviation) than the corresponding measures in Study
II: disagreement rates of latent clusters range from 0.00% (vs 6.0%) to 62.7% (vs
73.6%), with mean equal to 15.8% (vs 28.1%) and median equal to 8.9% (vs 24.5%).
The level of concordance between the two approaches is also higher in the allocation
of individuals. These results confirm the lower discordance between conditional
MAP and Viterbi rather than between marginal MAP and Viterbi allocations.

Table 2 Main results of the simulation studies (Study I and Study II): disagreement rates between
Viterbi and MAP approaches in the allocation of groups (DISU ) and individuals (DISV 1 for
marginal MAP and DISV 2 for conditional MAP)

Study I Study II

Statistic DISU DISV 1 DISV 2 DISU DISV 1 DISV 2

Min. 0.000 0.010 0.000 0.060 0.020 0.009

q1 0.006 0.018 0.001 0.141 0.071 0.030

Median 0.089 0.076 0.010 0.245 0.130 0.055

q3 0.134 0.123 0.045 0.380 0.197 0.107

Max. 0.627 0.470 0.453 0.736 0.473 0.271

Mean 0.158 0.126 0.096 0.281 0.146 0.077

St. dev. 0.199 0.145 0.167 0.166 0.100 0.061
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Table 3 Simulation design
for the variability of the
components of U and V

Scenario Type Variability

1 Low σU = 0.2 σV = 0.2

2 Intermediate σU = 1.0 σV = 1.0

3 High σU = 2.0 σV = 2.0

4 Mixed type 1 σU = 0.2 σV = 1.0

5 Mixed type 2 σU = 1.0 σV = 0.2

Regarding their performance, the allocation improves when latent classes and
clusters are highly separated. For instance, under scenario 1 in Table 3, rates of
misclassified groups range from 0.9 to 1.5% for the proposed Viterbi algorithm
and behave similarly for MAP approach, whereas rates of misclassified individuals
range around 4.5% with a slightly worse behavior of marginal MAP. Coherently, the
rates of correct global allocations (i.e., allocation of groups and individuals at the
same time) range from 14.8 to 14.9% in the presence of many individuals within
groups and from 62.1 to 62.2% in the presence of a few individuals within each
group.

4.2 Study II

The second simulation study is based on 72 different scenarios resulting from the
combination of the following criteria:

• r = 8, 10 binary response variables (items);
• H = 50, 100 (groups) with nh = 10, 25, 50 (individuals);
• Uh ∼N(0, 1) (latent variables at cluster level) and V hi ∼N(μu, 1) (latent

variables at individual level).

As shown in Table 2 (Study II), the disagreement rates on the latent clusters
(DISU ) range from 6.0 to 73.6% with mean equal to 28.1% and median to
24.5%. Concerning the allocation of individuals to the latent classes, the two MAP
approaches have quite different behaviors. Disagreement rates between marginal
MAP and Viterbi (DISV1 ) range from 2.0 to 47.3%, whereas the range for
conditional MAP (see values of DISV2 ) is definitely shifted toward lower values,
from 0.9 to 27.1%. Coherently, the 14.6% of individuals are in average differently
allocated through the marginal MAP compared to the Viterbi approach, against
the 7.7% of individuals allocated through the conditional MAP (median values are
13.0% and 5.5%, respectively).

Overall, we observe that the disagreement between the MAP approach and the
proposed Viterbi algorithm increases when the number of groups (H ), the number of
individuals within groups (nh), and the number of latent clusters and classes (kU and
kV ) increase, whereas it decreases when the number of items (r) increases. We also
monitored the trend of three different normalized entropy criteria for the degree of
separation within the latent classes and clusters and between them (see Celeux and
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Soromenho (1996) and Lukocienė and Vermunt (2010) for details). We found that
disagreement rates tend to follow the trend of the corresponding entropy measures.

5 Examples on Educational Data

The first example we use to illustrate our proposal is based on data derived from
the Italian and Mathematics tests elaborated by the Italian National Institute for
the Evaluation of the Educational System (INVALSI) and the second is based on
the Italian data of the International Association for the Evaluation of Educational
Achievement provided by the Trends in International Mathematics and Science
Study (TIMSS) and Progress on International Reading Literacy Study (PIRLS).

In both cases, we account for the presence of covariates and we compare
the results of the MAP and Viterbi approaches in terms of rates of schools and
students that are differently assigned to latent clusters and classes. Similarly to
the simulation studies illustrated in Sect. 4, the discordance in the allocations are
denoted respectively by DISU , DISV 1, and DISV 2. The complete results are
shown in Tables 4 and 5 in the Appendix.

5.1 Example 1: Application to INVALSI Data

The INVALSI tests were administered in June 2009, at the end of the pupils’
compulsory educational period in Italy, which is stated to be of 10 years according
to current Italian legislation. The sample includes 16,877 students nested in 1302
schools. The Mathematics test consists of 27 items covering four main content
domains (Numbers, Shapes and Figures, Algebra, and Data and Previsions),
whereas the Italian test includes two sections: Reading Comprehension and Gram-
mar. The first section is made of 30 items, which require students to demonstrate a
range of abilities and skills in constructing meaning from the two written texts. The
Grammar section is made of 10 items, which measure the ability of understanding
the morphological and syntactic structure of sentences within a text. All items are
of multiple choice type, with one correct answer and three distractors, and are
dichotomously scored (assigning 1 point to correct answers and 0 otherwise). For a
more detailed description and analysis on these data see Gnaldi et al. (2016).

We estimate three types of MLC models for responses on: (i) Mathematics
without considering covariates; (ii) Mathematics accounting for the effect of gender
on the weights at student level and for the effect of geographical area at school level;
and (iii) Mathematics, Reading, and Grammar tests including the effects of gender
and geographical area. Each model is estimated for different combinations of the
number of support points of the latent components: kU = 4, 5 and kV = 3, 4, 5, 6
(see Table 4 in the Appendix).
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Overall, the entropy measures suggest that latent classes and, mostly, latent
clusters are weakly separated (all values of the entropy measure range from 0.30
to 0.50). Table 4 shows high rates of discordant classifications between the MAP
approach and the proposed Viterbi algorithm. Indeed, as concerns the allocation of
schools, DISU ranges in the interval 4.1 to 8.1%, corresponding to a number of
schools that are differently allocated ranging from 53 to 105 with a mean equal to
82 (6.3%). Regarding the allocation of students, the marginal MAP performs much
worse than conditional MAP, in terms of comparison with Viterbi approach. In fact,
DISV 1 ranges from a minimum of 3.3% (560 students) to a maximum of 12.9%
(2184 students) with a mean of 8.4% (1418 students), whereas the same values under
the conditional MAP are substantially reduced, ranging from 0.3% (54 students) to
1.8% (300 students) with a mean equal to 1.2% (198 students).

5.2 Example 2: Application to TIMSS&PIRLS Italian Data

The second example concerns the combined Italian data collected within the 2011
large-scale studies TIMSS&PIRLS. For more details on these two international
assessments on Mathematics, Science, and Literacy provided by the International
Association for the Evaluation of Educational Achievement (IEA) see Foy (2013).

We consider the achievement scores at the fourth grade when the Italian pupils
are 9 to 10 years old. The sample includes 3741 students nested in 200 schools.
The analysis considers 5 ordinal responses for Mathematics, 5 for Reading, and 5
for Science. Each variable has the following ordered categories: 0, below the low
International Benchmark (IB); 1, at or above the low IB, but below the intermediate
IB; 2, at or above the intermediate IB, but below the high IB; 3, at or above the
intermediate IB, but below the high IB; 4, at or above the advanced IB.

The covariates are collected from the background parents’ questionnaires,
the principals’ questionnaire, and from external data archives. We consider four
covariates referred to the pupils and four to the schools: gender; home resources for
learning; early literacy/numeracy tasks of the pupil; dummy variable for the Italian
language spoken at home (1 if yes); school adequate environment and resources;
school safety and orderly; socio-economic condition of the area where the school
is located (gross value added at province level, from an external data archive)
and dummy variables for five Italian geographical areas (North-West, North-East,
Center, South, South-Islands). A more detailed description and analysis of these
data can be found in Grilli et al. (2016).

We compare the allocation algorithms by considering the following MLC models
for responses on: (i) Mathematics; (ii) Mathematics with covariates at student and
school level; (iii) Mathematics, Reading, and Science; (iv) Mathematics, Reading,
and Science with covariates at student and school level. Each model is estimated for
increasing values of the latent components (see the first two columns of Table 5 in
the Appendix). Then, the two allocation rules are evaluated similarly to the previous
example.
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The estimated entropy values suggest that latent classes are well-separated (the
entropy values for the latent classes range from 0.03 to 0.12), whereas the latent
clusters are less separated (the entropy for the latent clusters ranges from 0.20 to
0.50). As shown in Table 5 for models (i) and (ii), the disagreement rates referred
to the schools’ allocations lie in the interval 0.005 to 0.05. This corresponds to a
number of schools that are differently classified from 2 to 14 with an average value
equal to 5 (2.5%). These rates are lower for models (iii) and (iv): the number of
schools that are differently classified ranges from 2 to 8. We also observe that the
rates of disagreement are not particularly influenced by the presence/absence of
covariates at both levels.

Regarding the students’ allocation, the marginal MAP performs much worse
than the conditional MAP, when compared with the proposed Viterbi algorithm.
The disagreement rates under the marginal MAP range from a minimum of 35
students to a maximum of 149 students when models (i) and (ii) are considered,
whereas they are lower under models (iii) and (iv), for which the number of students
that are differently allocated ranges from 10 to 77. Under the conditional MAP the
differences substantially reduce, ranging from 0 to 11 students for models (i) and
(ii) and from 0 to 3 students for models (iii) and (iv).

6 Conclusions

In the Latent Class (LC) literature the most accredited method to allocate individuals
to the classes is the Maximum-A-Posteriori (MAP) approach. In this contribution,
we study the behavior of the MAP method in the context of the Multilevel Latent
Class (MLC) model, which represents a generalization of the standard LC model
to account for hierarchical data structures. More in detail, we compare the MAP
rule with an alternative approach based on a suitable adaptation of the Viterbi
algorithm employed in the hidden Markov literature for global decoding and, as
such, representing a gold standard.

Our analyses based on simulation studies and real data show that a different
classification of individuals and groups may be found between the standard MAP
approach and the proposed one, mainly when the latent components (latent classes
and latent clusters) are poorly separated. This is an important aspect as the allocation
of individuals and groups can have relevant consequences from a practical point of
view, mainly when the identification of classes of individuals or clusters of groups
performing poorly or highly on a certain latent variable of interest is translated
into specific decisions (e.g., incentives for the best performers and penalties for the
wrong performers).

As a possible development of the proposed approach we suggest the extension
to more complex models in terms of hierarchical structure and parameterization
adopted for the conditional distribution of the responses given the latent variables.
In fact, depending on the specific context of application, this conditional distribution
may be parameterized as in certain item response theory models (Bartolucci et al.
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2015) to take into account, for instance, the ordinal structure of the responses on the
basis of individual and item parameters.
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Appendix

Table 4 Results of models
(i), (ii), and (iii) estimated
for the INVALSI data with an
increasing number of support
points of U and V

kU kV # U #V1 #V 2 DISU DISV 1 DISV 2

Mathematics (i)

4 3 95 1159 206 0.073 0.069 0.012

4 4 72 1420 196 0.055 0.084 0.012

4 5 83 2144 280 0.064 0.127 0.017

5 4 105 1320 212 0.081 0.078 0.013

5 5 92 2157 271 0.071 0.128 0.016

5 6 102 2184 256 0.078 0.129 0.015

Mathematics with covariates (ii)

4 3 93 1221 190 0.071 0.072 0.011

4 4 62 1305 180 0.048 0.077 0.011

4 5 80 1871 241 0.061 0.111 0.014

5 4 81 1445 181 0.062 0.086 0.011

5 5 89 1935 265 0.068 0.115 0.016

5 6 88 1933 262 0.068 0.115 0.016

Mathematics, reading, grammar with covariates (iii)

4 3 53 560 54 0.041 0.033 0.003

4 4 64 831 93 0.049 0.049 0.006

4 5 66 835 95 0.051 0.049 0.006

5 4 100 1037 300 0.077 0.061 0.018

5 5 72 855 103 0.055 0.051 0.006

5 6 87 1307 182 0.067 0.077 0.011
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Table 5 Results of models
(i), (ii), (iii), and (iv)
estimated for the
TIMSS&PIRLS combined
data with an increasing
number of support points of
U and V

kU kV #U #V 1 #V 2 DISU DISV 1 DISV 2

Mathematics (i)

4 3 3 90 5 0.015 0.024 0.001

4 4 6 51 3 0.030 0.014 0.001

4 5 2 105 0 0.010 0.028 0.000

5 4 11 61 1 0.055 0.016 0.000

5 5 12 111 5 0.060 0.030 0.001

5 6 14 107 9 0.070 0.029 0.002

Mathematics with covariates (ii)

4 3 4 80 6 0.020 0.021 0.002

4 4 8 35 2 0.040 0.009 0.001

4 5 4 102 2 0.020 0.027 0.001

5 4 3 53 4 0.015 0.014 0.001

5 5 10 97 4 0.050 0.026 0.001

5 6 7 149 11 0.035 0.040 0.003

Mathematics, reading, science (iii)

3 2 3 23 1 0.015 0.006 0.000

3 3 2 34 2 0.010 0.009 0.001

3 4 3 16 0 0.015 0.004 0.000

4 3 2 32 1 0.010 0.009 0.000

4 4 2 30 1 0.010 0.008 0.000

4 5 3 27 0 0.015 0.007 0.000

5 4 4 10 2 0.020 0.003 0.001

5 5 8 27 3 0.040 0.007 0.001

5 6 6 50 0 0.030 0.013 0.000

6 5 8 50 2 0.040 0.013 0.001

Mathematics, reading, science with covariates (iv)

3 2 1 22 0 0.005 0.006 0.000

3 3 5 30 2 0.025 0.008 0.001

3 4 2 22 0 0.010 0.006 0.000

4 3 2 26 1 0.010 0.007 0.000

4 4 0 49 0 0.000 0.013 0.000

4 5 2 30 1 0.010 0.008 0.000

5 4 2 41 2 0.010 0.011 0.001

5 5 4 21 3 0.020 0.006 0.001

5 6 6 77 1 0.030 0.021 0.000

6 5 5 32 5 0.025 0.009 0.001
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Multi-Criteria Classifications in Regional
Development Modelling

Beata Bal-Domańska

Abstract The article presents the discussion regarding the influence of taking
selected approaches to the classification of regions on estimation results of Solow–
Swan growth models (case of convergence processes). As the existing modelling
effects, obtained in the area of regional development, show the estimation results
of the production function parameters’ assessment, based on Solow–Swan growth
model or beta-convergence models, are divided depending on the period and units
covered by the study (countries, regions). The article presents modelling results of
the development of economies in the European Union regions at NUTS 2 level,
depending on the development factors in line with the extended MRW (Mankiw–
Romer–Weil) growth model in the selected period for various groups of regions.
Each time the econometric analysis was conducted in the groups of NUTS 2 regions,
separated in terms of the level of smart specialization. However, every time, along
with the change in the grouping method, the dividing boundary of the inclusion of
regions into a given group was changing. It allowed the assessment of estimations
stability depending on the inclusion of the selected regions into particular groups of
smart specialization.

To sum up, the conducted analysis allowed for presenting conclusions regarding
the stability of the obtained estimations in the groups of the European Union regions
in the period of 2003–2015 characterized by a different level of smart specialization
in the defined groups. The more favourable results were obtained based on models
developed for two groups and using the k-means method.
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1 Introduction

The research covering regional development and convergence has been among the
mainstream interests of scientists and politicians for years (Mankiw et al. 1992;
Sala-i-Martin 1996; Kliber and Malaga 2002; Próchniak and Witkowski 2006;
Batóg and Batóg 2006; Pukeliene and Butkus 2012; Smȩtkowski and Wójcik 2012;
James and Campbell 2013). They are often carried out using econometric models.
In the course of regional studies the frequently encountered problem is related to the
selection of variables, methods and assessment criteria, which allow analysing the
research problem in the most optimal way.

The article is focused on the problem of absolute (unconditional) and conditional
convergence modelling in the groups of regions presenting a similar profile of
smart specialization. The basic problem is related to the assessment of cluster
analysis methods selection and the number of groups as an initial stage of analysing
relationships and processes occurring in the defined groups of units.

2 The Assumptions and Research Procedure

While developing the procedure for assessing regional development one often
comes across the following problems:

• how to define regional groups in order to obtain unambiguous results allowing the
diagnosis of similarities in the occurring development processes in the particular
groups of regions—this is the question about the selection of cluster analysis
methods and the number of groups of regions,

• is the cluster analysis method selection important for the obtained results? In
terms of this problem not just the change of the value of model structural
parameters is important (it is obvious with almost every modification of the
structure or scope of the model objects), but the stability of the drawn conclusions
as to the direction of dependence, the strength of the relationship (rate of
changes), the significance of the obtained parameters in the regions characterized
by the same profile.

The discussion presented below was focused on answering these two questions.
The analysis was carried out based on convergence models developed for the NUTS-
2 European Union groups of regions, which were previously grouped according
to the level of smart specialization, i.e. in the knowledge-intensive and high-
technologies based sectors. The assessment was performed for the panel of 267
regions in the period of 2003–2015.

Research procedure:

1. Defining smart specialization characteristics of NUTS-2 EU regions
Smart specialization emphasizes the actual size and role of knowledge-based

sectors (manufacturing and service) in the employment structure of particular
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countries. Smart specialization was defined by means of two basic diagnostic
indicators presenting, in terms of smart specialization, the most important parts
of economy:

• HT—employment in high and medium high-technology manufacturing as the
share of total employment (%) (NACE Rev 2 Code: 20, 21, 26–30),

• KIS—employment in knowledge-intensive services as the share of total
employment (%) (NACE Rev 2 Code: 50–51, 58–66, 69–75, 78, 80, 84–93),
and additional variables, presenting employment in the other sectors:

• LHT—employment in high and medium high-technology manufacturing as
the share of total employment (%) (NACE Rev 2 Code: 10–19, 22–25, 31–
33),

• LKIS—employment in knowledge-intensive services as the share of total
employment (%) (NACE Rev 2 Code: 45–47, 49, 52, 53, 55, 56, 68, 77, 79,
81, 82, 94–99),

• Other—not listed above.

2. Defining time range and spatial extent of the research
According to the data availability the analysis was conducted based on the

panel covering 267 (among 276 EU regions) EU NUTS-2 regions in the period
2003–2015.

The cluster analysis of regions in terms of smart specialization level was
carried out based on the data collected in 2015.

3. Defining groups of regions presenting a similar level of smart specialization
One of the research stages was to determine the number of groups, and also

to identify the group profile (i.e. distinguished at the background of other in the
smart specialization sector, with particular focus on HT and KIS sectors).

It was assumed that:

• the number of groups should not be too large, so as to ensure the appropriate
number of objects in groups and thus the degree of freedom relevant for
model quality. Ultimately, the regions were divided into 2 or 4 groups of
smart specialization. The classification into two groups allowed assessing the
stability of estimation results in the groups of similar size. It was followed
by dividing these groups into smaller ones and, simultaneously, featuring the
higher level of specialization (less internally differentiated ones),

• grouping variables: the division was based on one (HT or KIS), two (HT,
KIS), four (HT, KIS, LKIS, Other) or five (HT, LHT, KIS, LKIS, Other)
indicators of smart specialization defined in the first stage of the research.
Each of the indicator sets included at least one of the key variables to
determine the level of regional smart specialization (key variables: KIS or
HT).

When defining the character (profile) of each group, special attention
was paid to the level of key variables, KIS and HT. It was shown in the
group name by indicating which of the variables (and specifically their mean
value) reached the highest level in the given group of regions. For example,
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hHT (high level of the mean for HT variable) means that in this group the
average employment level in the sector of medium and high-technology in
manufacturing was the highest among all analysed groups. In the situation
when mean values of one of the key variables adopted a very similar level in
all groups (the difference was less than 1% point), the name showed the level
of the second key variable (significantly differentiating the groups), e.g. for
two groups, in both groups the level of employment in HT was similar, but the
level of employment in KIS sector was significantly different in each of them,
therefore group (class) 1. received the name—hKIS (high level of the mean
for KIS variable), and group 2. lKIS (low level of the mean for KIS variable).

• grouping methods: three methods were used in grouping the analysed
regions: (A) method based on descriptive statistics (arithmetic mean and
median), (B) hierarchical clustering Ward method, (C) k-means which aims at
grouping n observations into k clusters in which each observation belongs to
the cluster with the nearest mean. Each of these three methods generated two
classifications with two or four groups. Based on this, it was possible, within
each method, to compare the stability of modelling results with slight changes
in the assumptions, such as e.g. the change of distance measurement method
within the same cluster analysis method. Finally, the following variants of
groups were obtained:

(A) Descriptive statistics—the division performed based on the value of arith-
metic mean or median; this approach was used to define groups of regions
based on one or two key variables (HT, KIS).

The regions classified using this method have a clearly defined position
in the group, which results from obtaining the highest or the lowest values
of a given variable. The outlier groups (presenting the highest or the
lowest values) clearly aggregate the regions with precisely defined values
of variables. In case of the grouping variant with a median based on one
variable the advantage is the division into two n-equal groups.

(B) Ward method—the division made using Euclidean distance (in table
marked as “Euclid.”) or square of Euclidean distance (“sq. Euclid.”); this
approach was used to define the classes of regions based on two (HT, KIS),
four (HT, KIS, LKIS, Other) or five variables (HT, LHT, KIS, LKIS, Other).

(C) k-means method—the division performed following different assumptions
as to the initial clustering vector, in case of “sorted” variant—the option
was to “sort the distances and take observations at a constant interval,” and
for “max. distance” variant—“select observations as to maximize cluster
distances”; this approach was used to define groups of regions based on 2,
4 or 5 variables of smart specialization.

The cluster analyses for (B) and (C) variants were calculated in
STATISTICA program.

4. Estimation of regional development and convergence models in the groups of
regions
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The analysis covered convergence models presenting the following struc-
ture:

• absolute (unconditional):

lnGDPit =
(

1 + 1 − e−βT

T

)
lnGDPi(t−1) + αi + εit (1)

• conditional:

lnGDPit =
(

1 + 1 − e−βT

T

)
lnGDPi(t−1) + λ1lnΔEMPLit

+ λ2lnT ET Rit + αi + εit (2)

where: β—the parameter defining the convergence rate against the long-term
equilibrium (the distance covered in a year); lnGDP—logarithm of gross
domestic product in t-th year (t = 1, 2, . . . , T ) and i-th object (region)
(i = 1, 2, . . . , N); lnT ET R—logarithm of employment among workers (15
years or over) with tertiary education (level 5–8) as the percentage of total
employment (Eurostat: lfst); lnΔEMPL—logarithm of employment growth
rate (15 years or over) and the deprecation rate plus δ and technological
progress rate g (δ+ g)—it was assumed to be equal to 0.5; lnS—logarithm of
investment rate (due to lack of data for a group of regions, this variable was
eliminated from further analysis), λ—parameter defining the impact of j -th
(j = lnT ET R, lnΔEMPL) variable in l-th group of regions (l = 1, 2 or
l = 1, 2, 3, 4); αi—specific for each region, fixed in time, individual effects;
εit—random term.

In order to obtain estimates of the convergence model (1) and (2) parameters the
system General Method of Moments estimator (Arellano and Bover 1995; Blundell
and Bond 1998; Bond et al. 2012) was used.

The calculations of convergence models were performed in STATA 11 program.
The conclusions drawn from the analysis result directly from the realization of

the studied population variables and can be sensitive to outliers, which in case
of regional studies, where all analysis objects (regions) are included, means that
including or excluding even a single region from a group can affect the obtained
results.

The following assumptions were made for the analysis:

• convergent conclusions are expected for the groups covering similar regions in
terms of the level of characteristics describing the structure of employment in
smart specialization sectors, including, in particular, the key innovation sectors,
i.e. HT and KIS,

• in case of grouping based on descriptive statistics (mean and median) the
differences in cluster analysis results for two groups are only expected for
the population of regions presenting asymmetrical distribution (for symmetrical
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distribution the results should be similar both for the groups distinguished based
on the mean and median),

• in case of grouping based on measures clearly identifying the phenomenon level
(mean, median) similar conclusions are expected for at least the outlier classes
(the highest or the lowest variable values),

• more consistent results are expected for models obtained for a smaller number
of groups and/or variables, distinguished by critical (strict) criteria (e.g. low-
est/highest level groups of development among four groups).

3 Analysis of the Results

The analysis results were different depending on the number of identified groups. In
case of two groups of regions, presenting different smart specialization levels, high
consistency of results was achieved for conditional and unconditional (absolute)
convergence models compared within the framework of groups (A, B or C) defined
in terms of the same convergence method (see Table 1). The consistency of
obtained results referred to both structural parameters signs, their values and their
significance. It referred to all groups regardless of the number of grouping variables
used. Moreover, for groups distinguished based on mean measures and the majority
of group variants obtained based on cluster analysis methods (Ward and k-means) in
most cases the differences in parameter values of lnGDPit−1 , for both conditional
and unconditional convergence models, did not exceed 2% (see Table 1).

In case of k-means method in two cases two identical grouping were obtained.
In this case the measure of comparability equals 0.0 suggesting “no differences in
parameters value”.

In case of Ward method significant differences in estimates were visible. The
achieved result can be related to the differences in number of regions in groups.
For the variant “Ward; four variables”, the large differences in parameters for the
appropriate profiles (classes) were noted, ranged 1.1–7.8%. According to variant
based on 5 variables and “Ward method and Euclidean distance” the cluster analysis
results were characterized by a similar level of employment in HT sector and
simultaneously by significant differences in employment in KIS sector. As a result
the groups of high and low KIS profile were developed including 136 and 131
regions, respectively. In case of grouping using variant 2 “Ward method with
squared Euclidean distance” different group profiles were developed—a relatively
small group of high HT profile (68 regions) and a large group of high KIS profile
(199 regions). Such extensive differences in profiles and numbers resulted, naturally,
in different results (processes).

Summing up the collected results, the speed of convergence in the same profile
groups was evaluated. In case of convergence speed (estimated based on lnGDPit−1
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Table 1 Parameters of β absolute (1) and conditional (2) convergence models and their
compatibility—case of two groups

Cluster Estimation res. (p-value) Comparability %

Grouping analysis Model (1) Model (2) No. Model (1) Model (2)

variables method Groups a a b c observ. a a b c

All x All 0.863 0.805 0.627 0.088 267 x

HT Mean hHT 0.915 0.873 0.666 0.076 104 −0.1 −1.7 −6.6 14.4

lHT 0.823 0.769 0.588 0.082 163 −1.9 −0.4 5.5 −17.4

Median hHT 0.913 0.859 0.625 0.089 133 x

lHT 0.807 0.765 0.622 0.070 134 x

KIS Mean hKIS 0.868 0.796 0.595 0.067 134 −0.9 −1.0 0.5 3.5

lKIS 0.903 0.912 0.717 0.036 133 0.0 −0.2 −0.8 2.9

Median hKIS 0.860 0.788 0.598 0.069 130 x

lKIS 0.902 0.911 0.712 0.037 137 x

HT KIS Ward hHT 0.914 0.921 0.716 0.033* 124 0.1 −0.6 0.1 16.1

Euclid. hKIS 0.874 0.796 0.648 0.074 143 −0.3 −0.3 −1.9 −2.6

Ward hHT 0.914 0.916 0.717 0.039 136 x

sq. Euclid. hKIS 0.871 0.793 0.636 0.072 131 x

k-mean hHT 0.908 0.913 0.71 0.038 130 0.0 0.0 0.0 0.0

max dist. hKIS 0.870 0.789 0.626 0.076 137 0.0 0.0 0.0 0.0

k-mean hHT 0.908 0.913 0.71 0.038 130 x

sorted hKIS 0.870 0.789 0.626 0.076 137 x

HT KIS Ward hHT 0.9 0.908 0.718 0.035 147 −1.1 −2.6 −5.7 33.0

LKIS Euclid. hKIS 0.858 0.776 0.601 0.075 120 3.7 7.8 −1.8 −109

Other Ward hHT 0.890 0.886 0.679 0.052 169 x

sq. Euclid. hKIS 0.890 0.842 0.590 0.036 98 x

k-mean hKIS 0.869 0.801 0.622 0.071 149 0.0 0.0 0.0 0.0

max dist. lKIS 0.891 0.907 0.702 0.030 118 0.0 0.0 0.0 0.0

k-means hKIS 0.869 0.801 0.622 0.071 149 x

sorted lKIS 0.891 0.907 0.702 0.030 118 x

HT LHT Ward hKIS 0.875 0.807 0.617 0.060 136 −1.8 −3.8 21.1 32.4

KIS Euclid. lKIS 0.875 0.889 0.687 0.038 131 No corresponding group

LKIS Ward hKIS 0.858 0.777 0.783 0.089 199 x

Other sq. Euclid. hHT 0.924* 0.94 0.565 0.006 68 x

k-mean hHT 0.913 0.921 0.688 0.029* 111 −1.1 −0.9 1.8 15.4

max dist. hKIS 0.874 0.789 0.626 0.076 156 −0.3 1.0 1.3 −6.3

k-mean hHT 0.903 0.913 0.701 0.035 119 x

sorted hKIS 0.871 0.797 0.634 0.071 148 x

Source: Own calculation in STATISTICA and STATA 11
a lnGDPit−1, b lnΔEMPLit , c lnTETRit

( ) if not marked, parameter statistical significant at the level of 0.003
∗Parameter statistical significant at the level of 0.08
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Table 2 Comparison of rate of absolute convergence based of model (1)—case of two groups

Minimum value within groups Maximum value within groups

Param. of Speed of Half time to Param. of Speed of Half time to

lnGDPit−1 Converg. β Convergence lnGDPit−1 Converg. β Convergence

Groups obtained using (A) (descriptive statistics) method

hHT 0.913 9.1 7.6 0.915 8.9 7.8

lHT 0.807 21.4 3.2 0.823 19.5 3.5

Groups obtained using (A) descriptive statistics and (C) k-means methods; four variables variant

hKIS 0.860 15.1 4.6 0.875 13.4 5.2

lKIS 0.875 13.3 5.2 0.903 10.2 6.8

Groups obtained using (B) Ward and (C) k-means methods; 2 and 5 variables variant

hHT 0.890 11.6 6.0 0.924∗ 7.9 8.8

hKIS 0.858 15.4 4.5 0.890 11.6 6.0

Source: author’s compilation
( ) if not marked, parameter statistical significant at the level of 0.003
∗Parameter statistical significant at the level of 0.08

parameters) in absolute convergence models (1) the following was observed (see
Table 2):

• when comparing groups of high and low HT profile the lnGDPit−1 parameter
was higher, and thus lower convergence speed in hHT groups (these groups were
present in the cluster analysis according to (A) variant descriptive statistics),

• in case of high and low KIS groups higher lnGDPit−1 parameter (and lower
convergence speed) was obtained for lKIS group (these groups were present in
the cluster analysis according to (A) variant descriptive statistics and (C) “k-
means, for four variables”),

• in case of hHT and hKIS groups higher lnGDPit−1 parameter (and thus lower
convergence speed) was obtained for hHT group (these groups were present in
the cluster analysis performed according to Ward method (variant B) and (C)
“k-means, for 2 and 5 variables”).

The results presented in Table 2. indicate the presence of absolute beta-
convergence processes within each of defined groups. The occurrence of beta
convergence means that poorer regions catch up with the richer ones. The speed of
convergence (until the situation of long-term balance is reached) in high and low HT
regions reached the level of about 8.9–9.1% in hHT groups and about 19.5–21.4%
in lHT ones. It means that the low HT regions growth at faster rates. In the high HT
groups of regions about 7.6–7.8 years to reduce the development gap by half, while
in low HT groups from 3.2 to 3.5 years are needed.

More demanding models were developed for four groups of smart specialization
regions (Table 3). This was due to the fact that the groups obtained the same division
method, but on the basis of various smart specialization variables, they differed in
numbers and profile.

According to the comparison results of models developed for four groups, it
should be observed that in most cases the statistically significant parameters were
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Table 3 Selected estimation results of β absolute and conditional convergence models—case of
four groups

Cluster Estimation results (p-value)

Grouping analysis Model (1) Model (2) No. of

variables method Groups a a b c observ.

HT KIS LKIS Other Ward hHT 0.951* 0.966* 0.51* 0.001 87

Euclid. hKIS 0.858* 0.776* 0.608* 0.075* 120

med. high 0.831 0.854 0.1.01 0.027 48

med. low 0.888 0.834 0.443 0.050 12

Ward hHT 0.912* 0.899* 0.541* 0.05* 120

sq. Euclid. hKIS 0.890* 0.842* 0.590* 0.036* 98

med. high 0.789 0.868 0.980 0.024 34

med. low 0.88 0.834 0.489 0.038 15

k-mean hHT 0.917* 0.911* 0.648* 0.045* 84

max hKIS 0.877* 0.819* 0.567* 0.052* 118

dist. lHT 0.759 0.834 0.950 0.028 42

lKIS 0.896 0.867 0.391 0.052 23

k-mean hHT 0.918* 0.909* 0.665* 0.048* 83

sorted hKIS 0.876* 0.815* 0.568* 0.054* 117

lHT 0.759 0.835 0.950 0.028 42

lKIS 0.89 0.856 0.383 0.059 25

Source: Own calculation in STATISTICA and STATA 11
a lnGDPit−1, b lnΔEMPLit , c lnTETRit
*Parameters significant at 0.02 level

not obtained. While the values of structural parameter, e.g. in absolute convergence
models (1) for groups of the same profile, can be considered as close in the vast
majority of cases, then the conclusions drawn for them differed considerably. Often,
for one of them, the parameter close to the value was statistically significant, while
for the counterpart it was statistically insignificant. Contrary to expectations, the
smallest consistency was presented by the models based on descriptive statistics.
High consistency of models for four groups was obtained for models of regional
groups defined based on four variables (HT, KIS, LKIS, Other) (see Table 4). An
interesting case was recorded for the groups identified using k-means method. Out
of four groups one (including 42 low HT regions) was the same as its equivalent
obtained in both the “k-means sorted” variant and “max.distance” variant.

It should be noted that parameters of lnGDPit−1 were characterized by higher
stability (comparability). It was observed in case of models for both 2 and 4 groups
of smart specialization regions. The differences in their values most often, for
both conditional and unconditional convergence models, did not exceed 2% (see
Tables 1 and 4 of “Comparability (%)” column). Similar results were achieved for
lnΔEMPLit variable. Much more significant differences were observed, however,
for lnT ET Rit variable, recorded even for models regarded as comparable in terms
of lnGDPit−1 parameter values.
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Table 4 Compatibility of β absolute and conditional convergence parameters—case of four
groups

Comparability (%)

Grouping Cluster analysis Model (1) Model (2)

variables method Groups a a b c

HT Ward Euclid. hHT 4.3 7.6 5.8 98.0

KIS vs. hKIS 3.7 7.8 3.0 109.8

LKIS Ward Med. high 5.3 1.6 3.4 12.7

Other sq. Euclid. Med. low 1.0 0.0 9.4 31.3

k-means hHT 0.1 0.2 2.6 7.1

Max. dist. hKIS 0.2 0.5 0.2 3.7

vs. lHT 0.0 0.0 0.0 0.0

k-means sort. lKIS 0.6 1.3 2.1 12.8

Source: Own calculation in STATISTICA and STATA 11
a lnGDPit−1, b lnΔEMPLit , c lnTETRit

4 Conclusions

The presented results offer a preliminary analysis aimed at the application possi-
bilities of various methods and tools in the regional analyses. While answering the
question asked at the beginning of the presented discussion, it should be pointed out
that better results were obtained based on models developed for two groups. The
number of variables, on the basis of which the groups were defined, does not seem
to affect the formulated conclusions. Among the cluster analysis methods used, good
results (high consistency of results) were achieved in the groups (in particular for
case of four groups) obtained using k-means method.
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Non-parametric Latent Modeling
and Network Clustering

François Bavaud

Abstract The paper exposes a non-parametric approach to latent and co-latent
modeling of bivariate data, based upon alternating minimization of the Kullback–
Leibler divergence (EM algorithm) for complete models. For categorical data,
the iterative algorithm generates a soft clustering of both rows and columns of
the contingency table. Well-known results are revisited, and new procedures are
presented. In particular, the consideration of square contingency tables induces
a clustering algorithm for weighted networks, differing from spectral clustering
or modularity maximization techniques. Also, we present a novel co-clustering
algorithm, distinct from the Baum–Welch algorithm, applicable to HMM models
for unrestricted bigrams counts. Three case studies illustrate the theory.

1 Introduction: Parametric and Non-parametric Mixtures

Two variables can be dependent, yet conditionally independent given a third one,
that is X ⊥ Y |G but X �⊥ Y : in bivariate latent models of dependence M , joint
bivariate probabilities P(x, y) express as

P(x, y) =
m∑

g=1

p(x, y, g) =
m∑

g=1

p(g)p(x|g)p(y|g) (1)

where x, y, g denote the values of X, Y , G, and p(x, y, g) their joint probability.
Bivariate data, such as summarized by normalized contingency tables F(x, y) =

n(x,y)
n(•,•) , where n(x, y) counts the number of individuals in x ∈ X and y ∈ Y , can be
approached by latent modeling, consisting in inferring a suitable model P(x, y) ∈
M of the form (1), typically closest to the observed frequencies F(x, y) in the

F. Bavaud (�)
University of Lausanne, Lausanne, Switzerland
e-mail: fbavaud@unil.ch

© Springer Nature Singapore Pte Ltd. 2020
T. Imaizumi et al. (eds.), Advanced Studies in Classification and Data Science,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-981-15-3311-2_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3311-2_3&domain=pdf
mailto:fbavaud@unil.ch
https://doi.org/10.1007/978-981-15-3311-2_3


32 F. Bavaud

maximum-likelihood sense, or in the least squares sense. Mixture (1) also defines
memberships p(g|x) = p(x|g)p(g)/p(x) and p(g|y); hence latent modeling also
performs model-based clustering, assigning observations x and y among groups
g = 1, . . . ,m.

Latent modeling and clustering count among the most active data-analytic
research trends of the last decades. The literature is simply too enormous to
cite even a few valuable contributions, often (re-)discovered independently among
workers in various application fields. Most approaches are parametric, typically
defining p(x|g) and p(y|g) as exponential distributions of some kind, such as the
multivariate normal (continuous case) or the multinomial (discrete case) (see e.g.
Govaert and Nadif 2013 and references therein). Parametric modeling allows further
hyperparametric Bayesian processing, as in latent Dirichlet allocation (Blei et al.
2003).

By contrast, we focus on non-parametric models specified by the whole family
of log-linear complete models M corresponding to X ⊥ Y |G, namely (see e.g.
Christensen 2006)

M = {p | ln p(x, y, g) = a(x, g)+ b(y, g)+ c}

Equivalently,

M = {p | p(x, y, g) = p(x, •, g) p(•, y, g)

p(•, •, g)
}

where “•” denotes the summation over the replaced argument. The corresponding
class of bivariate models M of the form (1) simply reads M = {P | P(x, y) =∑

g p(x, y, g) ≡ p(x, y, •) , for some p ∈M }.
Observations consist of the joint empirical distribution F(x, y), normalized to

F(•, •) = 1. In latent modeling, one can think of the observer as a color-blind agent
perceiving only the margin f (x, y, •) of the complete distribution f (x, y, g), but
not the color (or group) g itself (see Fig. 1). Initially, any member f of the set

D = {f | f (x, y, •) = F(x, y)}

Fig. 1 Left: observed data, where (x, y) are the object coordinates. Right: complete data (x, y, g),
where the group g is labeled by a color. In psychological terms, (x, y) is the stimulus, and (x, y, g)

the percept, emphasizing the EM algorithm as a possible model for cognition
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seems equally compatible with the observations F , and the role of a clustering
algorithm precisely consists in selecting a few good candidates f ∈ D , or even
a unique one, bringing color to the observer.

This paper exposes a non-parametric approach to latent and co-latent modeling
of bivariate data, based upon alternating minimization of the Kullback–Leibler
divergence (EM algorithm) for complete log-linear models (Sect. 2). For categorical
data, the iterative algorithm generates a soft clustering of both rows and columns
of the contingency table. Well-known facts are re-exposed, and new results are
presented. In particular, the consideration of square contingency tables induces
a clustering algorithm for weighted networks, differing from spectral clustering
or modularity maximization techniques (Sect. 3). Also, we present a novel co-
clustering algorithm, distinct from the Baum–Welch algorithm, applicable to HMM
models for unrestricted bigrams counts.

Three case studies illustrate the theory: latent (co-)betrayed clustering of a term-
document matrix (Sect. 2.3), latent clustering of spatial flows (Sect. 3.2), and latent
co-clustering of bigrams in French (Sect. 3.4).

2 EM Latent Clustering: A Concise Derivation from First
Principles

The alternating minimization procedure (Csiszár and Tusnády 1984) provides an
arguably elegant derivation of the EM algorithm; see also e.g. Cover and Thomas
(1991) or Bavaud (2009). The maximum-likelihood model P̂ ∈ M of the form (1)
minimizes the Kullback–Leibler divergence K()

P̂ = arg min
P∈M

K(F‖P) K(F‖P) =
∑

x,y

F (x, y) ln
F(x, y)

P (x, y)

where F(x, y) denotes the empirical bivariate distribution. On the other hand, the
complete Kullback–Leibler divergence K(f ‖p) = ∑

x,y,g f (x, y, g) ln f (x,y,g)
p(x,y,g)

,
where f (x, y, g) is the empirical “complete” distribution (see Fig. 1), enjoys the
following properties (see e.g. Bavaud 2009 for the proofs, standard in Information
Theory):

p̂(x, y, g) := arg min
p∈M

K(f ||p) = f (x, •, g) f (•, y, g)

f (•, •, g)
M-step (2)

f̃ (x, y, g) := arg min
f∈D

K(f ||p) = p(x, y, g)

p(x, y, •) F (x, y) E-step (3)



34 F. Bavaud

Furthermore, minf∈D K(f ||p) = K(F ||P), and thus

min
P∈M

K(F ||P) = min
p∈M

min
f∈D

K(f ||p)

Hence, starting from some complete model p(0) ∈ M , the EM-sequence f (t+1) :=
f̃ [p(t)] defined in (3) and p(t+1) := p̂[f (t+1)] defined in (2) converges towards a
local minimum of K(f ||p). Observe the margins to coincide after a single EM cycle
in the sense p(t)(x, •, •) = F(x, •) and p(t)(•, y, •) = F(•, y) for all t ≥ 1.

For completeness sake, note that D and M are closed in the following sense, as
they are in other instances of the EM algorithm in general. Critically and crucially:

1. D is convex, that is closed under additive mixtures λf1 + (1 − λ)f2; this turns
out to be the case for maximum entropy problems in general.

2. M is log-convex, that is closed under multiplicative mixtures pλ
1p

(1−λ)
2 /Z(λ)

where Z(λ) is a normalization constant; this is the case for exponential models,
as well as for non-parametric log-linear models in general.

2.1 Latent Co-clustering

Co-clustering describes the situation where each of the observed variables is
attached to a distinct latent variable, the latter being mutually associated. That is,
X ⊥ Y |(U, V ), X ⊥ V |U , and Y ⊥ U |V while X �⊥ Y , and U �⊥ V in general.
Equivalently, X → U → V → Y forms a “Markov chain," in the sense of Cover
and Thomas (1991). Bivariate joint probabilities express as

P(x, y) =
m1∑

u=1

m2∑

v=1

p(x, y, u, v) =
∑

u,v

p(u, v)p(x|u)p(y|v) (4)

Complete models M , restricted models M , and complete empirical distributions D
are

M = {p | p(x, y, u, v) = p(x • u•) p(•y • v) p(• • uv)

p(• • u•) p(• • •v)
} (5)

M = {P | P(x, y) = p(x, y, •, •) with p ∈M } (6)

D = {f | f (x, y, •, •) = F(x, y)} (7)

where F(x, y) denotes the observed empirical distribution. The steps of the former
section apply again, yielding the EM algorithm

p̂(x, y, u, v) := arg min
p∈M

K(f ||p) = f (x • u•) f (•y • v) f (• • uv)

f (• • u•) f (• • •v)
M-step

(8)
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f̃ (x, y, u, v) := arg min
f∈D

K(f ||p) = p(x, y, u, v)

p(x, y, •, •) F (x, y) E-step

(9)

where K(f ‖p) = ∑
x,y,u,v f (x, y, u, v) ln f (x,y,u.v)

p(x,y,u,v)
measures the divergence of

the complete observations from the complete model.

2.2 Matrix and Tensor Algebra for Contingency Tables

The material of Sects. 2 and 2.1 holds irrespectively of the continuous or discrete
nature of X and Y : in the continuous case, integrals simply replace sums. In the
discrete setting, addressed here, categories are numbered as i = 1, . . . , n for X, as
k = 1, . . . , p for Y and as g = 1, . . . ,m for G. Data consist of the relative n × p

contingency table Fik normalized to F•• = 1.

2.2.1 Latent Co-clustering

Co-clustering models and complete models express as

Pik =
m1∑

u=1

m2∑

v=1

cuv au
i bv

k pikuv = cuv au
i bv

k (10)

• where cuv = P(U = u, V = v) = p(• • uv), obeying c•• = 1, is the joint latent
distribution of row, respectively column groups u and v

• au
i = p(i • u•)/p(• • u•) (with au• = 1) is the row distribution conditionally to

the row group U = u, also referred to as emission probability (Sect. 3)
• bv

k = p(•k • v)/p(• • •v) (with bv• = 1) is the column distribution or emission
probability conditionally to the column group V = v.

Hence, a complete model p is entirely determined by the triple (C,A,B), where
C = (cuv) is m1 × m2 and normalized to unity, A = (au

i ) is n× m1 and B = (bv
k )

is p ×m2, both row-standardized.
It is straightforward to show that the successive application of the E-step (9) and

the M-step (8) to p ≡ (C,A,B) yields the new complete model p̈ ≡ (C̈, Ä, B̈)

with

c̈uv = cuv

∑

j l

Fjl

Pjl

au
j bv

l (11)
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äu
i = au

i

∑
lv′ cuv′

Fil

Pil
bv′
l

∑
j lv′ cuv′

Fjl

Pjl
au
j bv′

l

(12)

b̈v
k = bv

k

∑
ju′ cu′v

Fjk

Pjk
au′
j

∑
j lu′ cu′v

Fjl

Pjl
au′
j bv

l

(13)

Also, after a single EM cycle, margins are respected, that is P̈i• = Fi• and P̈•k =
F•k .

In hard clustering, rows i are attached to a single group denoted u[i], that is
au
i = 0 unless u = u[i]; similarly, bv

k = 0 unless v = v[k]. Restricting P in (10) to
hard clustering yields block clustering, for which K(F ||P) = I (X : Y )−I (U : V ),
where I () is the mutual information (e.g. Kullback 1959; Bavaud 2000; Dhillon
et al. 2003).

The set M of models P of the form (10) is convex, with extreme points consisting
of hard clusterings. K(F‖P) being convex in P , its minimum is attained for convex
mixtures of hard clusterings, that is for soft clusterings.

2.2.2 Latent Clustering

Setting m1 = m2 = m and C diagonal with cgh = ρg δgh yields the latent model

Pik =
m∑

g=1

ρg a
g
i b

g
k pikg = ρg a

g
i b

g
k (14)

together with the corresponding EM-iteration p ≡ (ρ,A,B) → p̈ ≡ (ρ̈, Ä, B̈),
namely

ρ̈g = ρg κg ä
g

i = a
g

i

∑
l b

g
l

Fil

Pil

κg

b̈
g

k = b
g

k

∑
j a

g
j

Fjk

Pjk

κg

(15)

where κg = ∑
j l a

g

j b
g

l

Fjl

Pjl
. Similar (if not equivalent) updating rules have been

proposed in information retrieval and natural language processing (Saul and Pereira
1997; Hofmann 1999), as well as in the non-negative matrix factorization frame-
work (Lee and Seung 2001; Finesso and Spreij 2006).

By construction, families of latent models (14) Mm with m groups are nested in
the sense Mm ⊆ Mm+1.

The case m = 1 amounts to independence models Pik = aibk, for which the
fixed point äi = Fi• and b̈k = F•k is, as expected, reached after a single iteration,
irrespectively of the initial values of a and b.
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By contrast, m ≥ rank(F ) generates saturated models, exactly reproducing the
observed contingency table. For instance, assume that m = p = rank(F ) ≤ n; then
taking a

g
i = Fig/F•g , b

g
k = δkg and ρg = F•g (which already constitutes a fixed

point of (15)) evidently satisfies Pik = Fik .

2.3 Case Study I: Reuters 21578 Term-Document Matrix

The n × p = 20 × 1266 document-term normalized matrix F , constituting the
Reuters 21578 dataset, is accessible through the R package tm (Feinerer et al. 2008).
The co-clustering algorithm (11), (12), and (13) is started by randomly assigning
uniformly each document to a single row group u = 1, . . . ,m1, and by uniformly
assigning each term to a single column group v = 1, . . . ,m2. The procedure turns
out to converge after about 1000 iterations (Fig. 2), yielding a locally minimal value
Km1m2 of the Kullback–Leibler divergence. By construction, Km1m2 decreases with
m1 and m2. Latent clustering (15) with m groups is performed analogously, yielding
a locally minimal value Km.

Experiments with three or four groups yield the typical results K3 = 1.071180
> K33 = 1.058654 > K43 = 1.038837 > K34 = 1.036647 > K4 = 0.877754
> K44 = 0.873071. The above ordering is expected, although inversions are
frequently observed, under differing random initial configurations. Model selection
procedures, not addressed here, should naturally consider in addition the degrees of
freedom, larger for co-clustering models. The latter do not appear as particularly
rewarding here (at least for the experiments performed, and in contrast to the results
associated with case study III of Sect. 3.4): indeed, joint latent distributions C turn
out to be “maximally sparse,” meaning that row groups u and column groups v are
essentially the same. Finally, each of the 20 documents of the Reuters 2157 dataset
happens to belong to a single row group (hard clusters), while only a minority of the
1266 terms (say about 20%) belong to two or more column groups (soft clusters).
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Fig. 2 Case study I: convergence of the latent and co-latent iterating procedure. Left: latent model
with m = 3. Middle: co-latent model with (m1,m2) = (3, 4). Right: co-latent model with
(m1,m2) = (4, 4)
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3 Network Clustering

When the observed categories x and y belong to the same set indexed by i, j =
1, . . . , n, the relative square contingency table Fij defines a directed weighted
network on n vertices: Fij is the weight of edge (ij), Fi• is the outweight of vertex
i (relative outdegree), and F•i its inweight i (relative indegree), all normalized to
unity. Frequently, Fij counts the relative number of units initially at vertex i, and
at vertex j after some fixed time. Examples abound in spatial migration, spatial
commuting, social mobility, opinion shifts, confusion matrices, textual dynamics,
etc.

A further restriction, natural in many applications of latent network modeling,
consists in identifying the row and column emission probabilities, that is in requiring
b

g

i = a
g

i . This condition generates four families of nested latent network models of
increasing flexibility, namely

Pij =
m∑

g=1

ρg a
g

i a
g

j latent (symmetric) network model (16)

Pij =
m∑

u,v=1

cuv au
i av

j with cuv = cvu co-latent symmetric network model (17)

Pij =
m∑

u,v=1

cuv au
i av

j with cu• = c•u co-latent MH network model (18)

Pij =
m∑

u,v=1

cuv au
i av

j co-latent general network model (19)

By construction, P = P ′ in models (16) and (17), making latent and co-
latent symmetric clustering suitable for unoriented weighted networks with Fij =
Fji . By contrast, unrestricted co-latent models (19) describes general oriented
weighted networks. Symmetric matrices F = (Fij ) appear naturally in reversible
random walks on networks, or in spatial modeling where they measure the spatial
interaction between regions (spatial weights), and constitute a weighted version of
the adjacency matrix, referred to as an exchange matrix by the author (Bavaud 2014
and references therein; see also Berger and Snell 1957).

Latent models (16) are positive semi-definite or diffusive, that is endowed with
non-negative eigenvalues, characteristic of a continuous propagation process from
one place to its neighbors. In particular, the diagonal part of P in (16) cannot be too
small. In contrast, co-latent symmetrical network models (17) are flexible enough to
describe phenomena such as bipartition or periodic alternation, implying negative
eigenvalues.
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The condition (18) of marginal homogeneity (MH) on the joint latent distribution
C is inherited by the restricted models, in the sense Pi• = P•i . They constitute
appropriate models for the bigram distributions of single categorical sequences (of
length N , constituted of n types), for which Fi• = F•i+O(N−1); see the case study
III of Sect. 3.4. Formulation (18) describes m hidden states related by a Markov
transition matrix p(v|u) = cuv/cu•, as well as n observed states related to the hidden
ones by the emission probabilities au

i = p(i|u). Noticeably enough, (18) precisely
encompasses the ingredients of the hidden Markov models (HMM) (see e.g. Rabiner
1989).

3.1 Network Latent Clustering

Approximating F by P in (16) amounts in performing a soft network clustering: the
membership of vertex i in group g (of weight ρg) is

zig = p(i|g) = p(i)p(g|i)
p(g)

= fi a
g

i

ρg

with fi = Fi• = F•i and ρg =
n∑

i=1

fi zig

EM-updating rules for memberships (instead of emission probabilities, for a change)

Pij = fifj

m∑

g=1

zigzjg

ρg

z̈ig = zig

∑

j

Fij

Pij

fj zjg

ρg

ρ̈g =
∑

i

fi z̈ig

(20)

define a soft clustering iterative algorithm for unoriented weighted networks,
presumably original.

3.2 Case Study II: Inter-Cantonal Swiss Migrations

Consider the n × n matrix N = (Nij ) of inter-cantonal migratory flows in
Switzerland, counting the number of people inhabiting canton i in 1980 and
canton j in 1985, i, j = 1, . . . , n = 26, for a total of sum(N) = 6′039′313
inhabitants, 93% of which lie on the diagonal (stayers). The symmetric, normalized
matrix F = 1

2 (N + N ′)/N•• is diffusive, largely dominated by its diagonal. As a
consequence, direct application of algorithm (20) from an initial random cantons-
to-groups assignation produces somewhat erratic results: a matrix F = (Fij ) too
close to the identity matrix I = (δij ) cannot by reasonably approximated by the
latent model (16), unless m = n, where each canton belongs to its own group.
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Here, the difficulty lies in the shortness of the observation period (5 years, smaller
than the average moving time), making the off-diagonal contribution 1 − trace(F )

too small. Multiplying the observation period by a factor λ > 1 generates, up to
O(λ2), a modified relative flow F̃ij = λFij + (1 − λ)δij fi , where fi = Fi• =
F•i is the weight of canton i. The modified F̃ is normalized, symmetric, possesses
unchanged vertex weights F̃i• = fi , and its off-diagonal contribution is multiplied
by λ. Of course, λ cannot be too large, in order to insure the non-negativity of F̃

(λ ≤ 6.9 here) as well as its semi-positive definiteness (λ ≤ 6.4 here).
Typical realizations of (20), with λ = 5, are depicted in Figs. 3 and 4: as

expected, spatially close regions tend to be regrouped.
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Fig. 3 Decrease of the Kullback–Leibler divergence for the two realizations of Fig. 4, respectively.
Horizontal plateaux correspond to metastable minima in the learning of the latent structure,
followed by the rapid discovery of a better fit

Fig. 4 Case study II: two realizations of the network latent clustering algorithm (20), applied to
the modified flow matrix F̃ , with random initial assignment to m = 6 groups, and final hard
assignment of canton i to group arg maxg zig
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3.3 Network General Co-clustering

Latent co-clustering (19) applies to contingency tables F of general kind, possibly
asymmetric or marginally inhomogeneous, and possibly exhibiting diffusivity,
alternation, or a mixture of them. Implementing the common emission probabilities
constraint in the M-step (8) yields together with (19) the updating rule

c̈uv = cuv

∑

ij

Fij

Pij

au
i av

j äu
i = au

i

∑
j ′v′(cuv′

Fij ′
Pij ′

+ cv′u
Fj ′ i
Pj ′ i

) av′
j ′

∑
i′j ′v′(cuv′

Fi′j ′
Pi′j ′

+ cv′u
Fj ′i′
Pj ′i′

) au
i′ a

v′
j ′

(21)

Let us recall that the classical Baum–Welch algorithm handles the HMM modeling
of a single sequence of tokens, whose bigram counts are, up to the first and
last token, marginally homogeneous by construction. By contrast, the presumably
original iterative algorithm (21) can handle marginally inhomogeneous data as
well, such as those resulting from concatenation of multiple sequences. Further
experimentations are needed at this stage to gauge the generality of model (19),
and the efficiency of the hidden transition parameters estimates by means of (21).

For symmetric data F = F ′, the symmetric model (17) can be tackled by (21)
above, with the simplifying circumstance that the additive symmetrization occurring
in the numerator and denominator of äu

i is not necessary anymore, provided that
the initial joint probability cuv is symmetrical, a circumstance which automatically
insures the symmetry of further iterates c̈uv .

3.4 Case Study III: Modeling Bigrams

We consider the first chapters of the French novel “La Bête humaine” by Zola
(1890). After suppressing all punctuation, accents, and separators with exception
of the blank space, and converting upper-case letters to lower-case, we are left
with a sequence of N = 725′000 tokens on n = 27 types (the alphabet + the
space), containing 724’999 pairs of successive tokens or bigrams. The resulting
n× n normalized contingency table F = (Fij ) is far from symmetric (for instance,
the bigram qu occurs 6’707 times, while uq occurs only 23 times), but almost
marginally homogenous, that is Fi• ∼= F•i + 0(N−1) (and exactly marginally
homogenous if one starts and finishes the textual sequence with the same type, such
as a blank space).

Symmetrizing F as Fs = (F + F ′)/2 does not make it diffusive, and
hence unsuitable by latent modeling (16), because of the importance of large
negative eigenvalues in Fs , betraying alternation, typical in linguistic data—think in
particular of the vowels–consonants alternation (e.g. Goldsmith and Xanthos 2009).
This being said, symmetric co-clustering of Fs (17) remains a possible option.
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Table 1 results from the general co-clustering algorithm (21) applied on the
original, asymmetric bigram counts F itself. Group 4 mainly emits the vowels,
group 3 the blank, group 2 the s and t, and group 1 other consonants. Alternation
is betrayed by the null diagonal of the Markov transition matrix W—with the
exception of group 2.

The property of marginal homogeneity Fi• = F•i permits in addition to obtain
the memberships Z from the emissions A, by first determining the solution ρ of∑

g ρg a
g
i = fi , where fi = Fi• = F•i is the relative frequency of letter i, and then

by defining zig = ρg a
g
i /fi .

Table 1 Case study III: emission probabilities A (left), memberships Z (middle), joint latent
distribution C (right, top), latent probability transition matrix W (right, middle) and its
corresponding stationary distribution π (right, bottom). All values are multiplied by 100 and
rounded to the nearest integer

Group 1 2 3 4

_ 61

a 25

b 3

c 10 1 1

d 12 2

e 1 45

f 4

g 3 1

h 2 1

i 1 3 13 5

j 2

k

l 17 4

m 8 2

n 17 9

o 13

p 8 1

q 5

r 10 6 4 3

s 6 28

t 7 26

u 8 10 3

v 7

w

x 2

y 1

z 1

Group 1 2 3 4

_ 100

a 100

b 89 11

c 87 5 8

d 90 10

e 2 1 97

f 87 13

g 71 26 3

h 65 35

i 4 9 61 26

j 100

k 100

l 77 2 21

m 76 24

n 53 47

o 100

p 89 9 2

q 88 12

r 40 21 22 17

s 20 80

t 26 74

u 27 57 16

v 100

w 100

x 100

y 60 40

z 100

1 2 3 4

1 0 0 1 21

2 0 3 12 2

3 17 7 0 7

4 5 8 17 0

1 2 3 4

1 0 0 7 93

2 0 15 71 14

3 54 24 0 22

4 17 27 57 0

1 22

2 18

3 31

4 30
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4 Conclusion

The non-parametric approach to clustering and co-clustering presented in this
study circumvents the necessity of specifying a particular family of generating
models together with associated parameters—a considerable simplification. Its
final outcomes and numerical efficiency yet remain to be carefully compared to
parametric approaches currently in use. The parsimony of the formal assumptions,
firmly rooted in the alternating minimization paradigm of Information Theory (aka
EM algorithm for complete models), must be underlined. Many important issues
and well-identified paradigms (log-linear models, latent semantic indexing, non-
negative matrix factorization, block clustering, HMM modeling) emerge naturally
in this framework, a promising circumstance regarding the formal coherence of
clustering methods.

The procedure for network clustering, outlined in Sect. 3.1, should be further
investigated and presumably improved, either by prior preprocessing of the network
data of by refinement of the formalism, and compared to alternative existing
approaches, such as spectral clustering or modularity maximization. Also, the
Bayesian extension of the non-parametric formalism, taking into account prior
information, should be addressed as well, and compared to the topic modeling
parametric approach.
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Efficient, Geometrically Adaptive
Techniques for Multiscale
Gaussian-Kernel SVM Classification

Guangliang Chen

Abstract Single-scale Gaussian-kernel support vector machines (SVM) have
achieved competitive accuracy in many practical tasks; however, a fundamental
limitation of the underlying model is its use of a single bandwidth parameter which
essentially assumes that the training and test data has a uniform scale everywhere.
In cases of data with multiple scales, only one parameter may be unable to fully
capture the heterogeneous scales present in the data. In this paper, we present
two efficient approaches to constructing multiscale Gaussian kernels for SVM
classification by following the multiple-kernel learning research by Gonen and
Alpaydin (J Mach Learn Res 12: 2211–2268, 2011) and a self-tuning spectral
clustering procedure introduced by Zelnik-Manor and Perona (Advances in Neural
Information Processing Systems 17:1601–1608, 2004) in the unsupervised setting,
respectively. The resulting kernels adapt to the different scales of the data and are
directly computable from the training data, thus avoiding expensive hyperparameter
tuning tasks. Numerical experiments demonstrate that our multiscale kernels lead
to superior accuracy and fast speed.

1 Introduction

Given training data x1, . . . , xn ∈ R
d with binary labels yi = ±1, the Gaussian-

kernel Support Vector Machine (GSVM) Boser et al. (1992), Cortes and Vapnik
(1995) trains a nonlinear classifier

f (x) = sgn
(∑

λiyiκσ (xi , x)+ b
)

, ∀ x ∈ R
d (1)
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by solving the following quadratic optimization problem:

max
λ1,...,λn

∑

i

λi − 1

2

∑

i

∑

j

λiλj yiyj κσ (xi , xj )

subject to 0 ≤ λi ≤ C and
∑

λiyi = 0. (2)

Here, κσ represents the Gaussian radial basis function (RBF) kernel

κσ (z1, z2) := e−‖z1−z2‖2/(2σ 2) = e−γ ‖z1−z2‖2
, ∀ z1, z2 ∈ R

d (3)

with the Euclidean distance and associated bandwidth parameter σ , or γ = 1/(2σ 2)

in an alternative formulation, that affects the smoothness of the decision boundary.
The variable C in (2), on the other hand, is a tradeoff parameter (which can
be seen in the primal formulation of the problem) that controls the size of the
margin between the two classes in a feature space. The two hyperparameters γ,C

together often sensitively affect the predictive accuracy and are typically tuned by
numerically solving an expensive optimization problem that maximizes the cross
validation (CV) accuracy over the first quadrant of R2 (Hsu and Lin 2002; Bergstra
and Bengio 2012; Lin et al. 2008; Snoek et al. 2012):

max
γ>0, C>0

CVaccuracy(γ, C). (4)

For example, the popular Grid-Search algorithm (Hsu and Lin 2002) selects the
best combination (γ, C) from a two-dimensional grid obtained through a finite
discretization of the optimization domain.

Recently, in view of the high computational complexity of (4) (which is due to
the non-analytical form of the objective function), Chen et al. (2017) have proposed
a new hyperparameter tuning scheme that essentially solves the same problem but
over a small, finite, one-dimensional set in the (γ, C) space. Their method has the
following two steps in order: First, for the σ parameter, they interpret it as the
local scale of the training data and compute it directly as the average distance of
all the training points to their kth nearest neighbors in the same class (for some
fixed integer k ≥ 1). This directly exploits the intrinsic data geometry and is
much more efficient than conducting grid search in the γ space. Afterwards (for
the fixed σ ), they choose an elbow C value from a finite grid of the C domain
which only achieves “nearly” the highest validation accuracy. Overall, such a
procedure approximately solves the problem in (4), but it yields bigger margins
between the different classes (and hence better generalizability of the model) and
is computationally much more tractable. Numerical experiments conducted in Chen
et al. (2017) seem to demonstrate competitive performance of this new approach in
terms of both accuracy and speed.

Despite the advance in efficient hyperparameter tuning for the GSVM classifier,
a fundamental limitation of the model in (2) is its use of a single scaling parameter
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Fig. 1 Left: A small random sample of the MNIST Handwritten Digits (LeCun and Cortes 1998);
Right: Average distance (within each digit class) between the different images and their kth nearest
neighbors in the same class. We see that the digit 1 class seems to have a smaller local scale than
the other digits

σ which essentially assumes that the training data has a uniform scale everywhere.
However, in many cases, the data often exhibits different scales in different locations
so that a global σ may be unable to fully capture their geometric complexity (see
Fig. 1 for an example). As a result, multiscale kernels which combine together
several single-scale kernels, each constructed with a distinct value of σ , have been
developed in the literature (Kingsbury et al. 2015; Phienthrakul and Kijsirikul 2010;
Gonen and Alpaydin 2011; Bao et al. 2017). Apparently, this introduces even more
parameters to the GSVM learning problem and consequently further complicates
the hyperparameter tuning task. To bypass this difficulty, the method in Kingsbury
et al. (2015) simply uses a fixed geometric sequence of σ values which hopefully
cover the various scales of the training data, and the work in Bao et al. (2017)
focused on the simple case of two scaling parameters σ1 < σ2 (along with the
tradeoff parameter C) and performed grid search in a three-dimensional space.
These methods clearly ignore the actual data geometry and as a result, the training
of the GSVM model may be inefficient or inaccurate.

In this paper we extend the work by Chen et al. (2017), which learns a global
scale from the training data, to the setting of multiscale GSVM classification by
directly learning the scales of the training data at the class level and using them
in two different ways to form multiscale kernels: (1) we follow the framework
laid out in Gonen and Alpaydin (2011) to build multiple kernels, one with each
classwise scale, and then combine them together into a single kernel; (2) we adapt
the self-tuning spectral clustering technique (Zelnik-Manor and Perona 2004) for
our setting by using all the classwise scales simultaneously to build exactly one
kernel matrix. We expect such learned kernels to represent the different scales within
the training data (at the class level). Meanwhile, our methods avoid intensive grid-
search procedures for tuning the scaling parameters and thus are very efficient.
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The rest of the paper is organized as follows. In Sect. 2, we present our method-
ology for constructing multiscale kernels. Numerical experiments are conducted in
Sect. 3 to test the performance of the proposed algorithms. Finally, in Sect. 4, we
conclude the paper while pointing out some future directions.

2 Methodology

Assume a set of training examples x1, . . . , xn ∈ R
d that are divided into c disjoint

classes with index sets I1∪· · ·∪Ic = {1, . . . , n} and sizes n1+· · ·+nc = n. For each
1 ≤ i ≤ n, let �(i) represent the label of the class containing xi . We fix a positive
integer k representing the number of nearest neighbors to be examined for each xi .
In particular, we denote the kth nearest neighbor (kNN) of xi in its own class by
x(k)
i . The distance between xi and x(k)

i is denoted as d
(k)
i = ‖xi − x(k)

i ‖, which is
an estimate of the local scale around xi : In high density regions such distances tend
to be small while in high scatter regions they are much bigger. Collectively, these
distances indicate the local geometry of the training set.

Chen et al. (2017) assumed that the training data has a uniform scale everywhere
and consequently estimated that scale by averaging all the local scales:

σ̂ = 1

n

n∑

i=1

d
(k)
i . (5)

As we pointed out earlier, a single scaling parameter may not fully capture the
overall geometric complexity of the data which often displays heterogeneous local
scales. Here, we extend the work in Chen et al. (2017) by requiring the training data
to have a uniform scale only within each class (between the different classes, their
scales may be different). In such cases, it is natural to average the local scales within
each class to calculate the classwise scales:

σ̂� = 1

n�

∑

i∈I�

d
(k)
i , 1 ≤ � ≤ c. (6)

Below we present two different ways to construct multiscale Gaussian kernels
for SVM classification, by following the procedures in Gonen and Alpaydin (2011)
and Zelnik-Manor and Perona (2004), respectively.

2.1 Multiple-Kernel Learning Method

The multiple-kernel learning research (Gonen and Alpaydin 2011) starts by learning
several kernel matrices K1, . . . , Kg ∈ R

n×n from different sources. For example,
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they may correspond to different kernel types (such as linear, polynomial, and RBF),
or different similarity measures (e.g., Gaussian and cosine), or the same kernel
function with different parameter settings. Afterwards, those kernels are combined
into a single kernel matrix under a pre-selected combination rule f :

K = f (K1, . . . , Kg). (7)

In this paper we consider the simplest combination rule—matrix addition and denote
the resulting kernel by K(sum):

K(sum) = f (K1, . . . , Kg) = K1 + · · · + Kg. (8)

It is easy to see that K(sum) is still symmetric and positive semidefinite, thus being
a valid kernel. For other combination rules such as the Hadamard product, we refer
the reader to Gonen and Alpaydin (2011). Such a synthetic kernel is expected to
possess the advantages of individual kernels, and thus capable of handling certain
heterogeneous data sets.

In our setting, since we focus on the Gaussian kernel with the Euclidean distance,
we will only vary the values of the σ parameter in (3) to generate multiple kernel
matrices. Specifically, letting σ be each of the classwise scales σ̂�, 1 ≤ � ≤ c, we
obtain a total of c kernel matrices {K�}:

K�(i, j) = κσ̂�(xi , xj ), 1 ≤ i, j ≤ n, (9)

each adapted to the scale of a distinct training class. We then use (8) to combine the
K�’s into a single kernel matrix for SVM classification.

Remark When test data t1, . . . , tm ∈ R
d is involved, a second matrix linking

the training and test data needs to be built. One can use the same procedure for
constructing the synthetic kernel on the training data to construct this link matrix

L = L1 + · · · + Lc, (10)

where for each � = 1, . . . , c, the matrix L� is defined as follows:

L�(i, j) = κσ̂�(xi , tj ), 1 ≤ i ≤ n, 1 ≤ j ≤ m. (11)

2.2 Self-Tuning Kernel Learning Method

Self-tuning spectral clustering is an unsupervised learning approach introduced
by Zelnik-Manor and Perona (2004) to cluster data that has multiple scales.
Specifically, given data x1, . . . , xn ∈ R

d , they start by computing an n × n affinity
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matrix that adapt to the local scales of the data as follows:

Aij = e−‖xi−xj ‖2/(2σiσj ), 1 ≤ i, j ≤ n, (12)

where σi, σj represent the distances of the two points xi , xj to their respective
kNN’s in the entire data set. Such a similarity matrix has been experimentally shown
to improve the vanilla spectral clustering algorithm by Ng et al. (2001) in the setting
of multiscale data.

Here, we adapt the self-tuning idea for the supervised setting by constructing a
Classwise Self-Tuning (CST) kernel matrix on the training data from its classwise
scales {̂σ�} :

K(cst)
ij = e−‖xi−xj ‖2/(2σ̂�(i)σ̂�(j)), 1 ≤ i, j ≤ n. (13)

That is, each training example uses the scale of its own class (instead of the global
scale) for better adaptivity. We also expect such a kernel to be more robust than that
directly built on individual scales {d(k)

i }, as in (12). In Fig. 2 we compare such a
kernel matrix with the single-scale kernel matrix on a toy data set.

To classify new data t1, . . . , tm ∈ R
d with the correspondingly trained GSVM

model, we need to build a similar link matrix from the training data to the test data
by following the parameter setting of the CST kernel:

L(cst)
ij = e−‖xi−tj ‖2/

(
2σ̂�(i)σ̂�∗(j)

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (14)

where �∗(j) represents the ground-truth label of tj which unfortunately is unknown
at the time of classification. We propose two strategies to get over this obstacle.

• Method 1: Global scaling. Set

σ̂�∗(j) = σ̂ , ∀ j = 1, . . . ,m. (15)

That is, we use the global scale σ̂ (5), which is a weighted average of the
classwise scales,

σ̂ = 1

n

c∑

�=1

n�σ̂� (16)

to approximate the unknown class scale, yielding:

L(cst)
ij = e−‖xi−tj ‖2/(2σ̂�(i)σ̂ ), 1 ≤ i ≤ n, 1 ≤ j ≤ m (17)

• Method 2: kNN scaling. Set

σ̂�∗(j) = d̂
(k)

j , (18)
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Fig. 2 Demonstration of the single-scale and classwise self-tuning kernels on a toy data set with
multiple scales. Top row: training data (left) and test data (right), each having 800 points with
equal-sized classes. Middle row: the single-scale RBF kernel matrix (left) and classwise self-tuning
kernel (right), both built on the training data (which have been sorted according to the two classes).
Bottom row: classification results on the test data corresponding to the two kernels (in same order).
We can see that the self-tuning kernel has more balanced blocks and also performs better than the
single-scale kernel along the boundary between the two classes
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the distance from tj to its kNN in the whole training set. We expect it to
reasonably approximate the local scale of the ground-truth class in most cases.

We denote the combinations of the CST kernel with the two scaling techniques (for
building the link matrices) as CST+global and CST+kNN, respectively.

3 Experiments

In this section we examine the performance (in terms of classification accuracy and
CPU time) of the proposed multiscale kernels, K(sum) (8) and K(cst) (13), relative to
the single-scale kernel (3) whose σ parameter is to be tuned in two different ways:
grid search (Hsu and Lin 2002) and (deterministic) kNN (Chen et al. 2017).

We implemented the corresponding classifiers in MATLAB based on the LIB-
SVM software (Chang and Lin 2011) which directly performs the grid-search
GSVM classification. For this method, we followed the recommendations in Hsu
and Lin (2002) to rescale all features to the [0, 1] range and focus on the following
candidate values for γ and C, respectively: γ ∈ {

2−10, 2−9, . . . , 24
}

and C ∈{
2−2, 2−1, . . . , 212

}
. For any training data, the maximizer of the CV accuracy

function in (4) restricted to this grid was used to retrain the model for classifying
the test data. The number of CV folds was fixed to 10.

When testing the other methods, which all directly infer the scaling parameter(s)
from training data based on a kNN procedure, we did not rescale the data to the
[0, 1] range (this is not needed and also meant to preserve the original scales of
the data). We fixed k = 7 for those methods and used MATLAB’s knnsearch
function to perform kNN search tasks. We then computed the kernel and link
matrices accordingly for each method and provided them to LIBSVM under the
custom kernel option. To tune the C parameter, we conducted grid search in the
same candidate set (as above) for each of these methods, including the single-scale,
kNN method (Chen et al. 2017) (in order to have a fair comparison between the
different kernels). Similarly, we fixed the number of CV folds to 10 in these cases.

We chose nine benchmark data sets from the LIBSVM website1: astroparticle,
bioinformatics, dna, madelon, pendigits, satimage, splice, usps, and vowels. They
were also used in Chen et al. (2017) and some of them were used in Hsu and Lin
(2002). Additionally, we include in our study the toy data in Fig. 2 and the digits
“1” and “7” in the MNIST data set (LeCun and Cortes 1998), denoted mnist17.
Summary information of the eleven data sets is displayed in Table 1. For the data
sets with more than two classes, we adopted the one-vs-one multiclass extension of
the binary GSVM classifier. All the experiments were conducted on a Lenovo Yoga
2 Pro laptop with 8 GB memory and 2.40 GHz CPU.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1 Summary
information of the data sets
used in the experiments of
this section

Data sets # classes # dims # train # test

Astroparticle 2 4 3089 4000

Bioinformatics 2 21 1243 41

DNA 3 180 2000 1186

Madelon 2 500 2000 600

mnist17 2 784 13, 007 2163

Pendigits 10 16 7494 3498

Satimage 6 36 4435 2000

Splice 2 60 1000 2175

toydata 2 2 800 800

usps 10 256 7291 2007

Vowels 11 10 528 462
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Fig. 3 CPU time needed by each method on each data set

The CPU time used by each of the different methods is shown in Fig. 3.
Meanwhile, the test accuracy rates are shown in Table 2 and also displayed in Fig. 4
for easy graphical comparison. The following observations are at hand:

• CPU time. Grid search is computationally the most expensive method to run,
often taking one to two magnitude more time, while the other methods are all
very close except in two cases. This clearly shows the significant speed advantage
of the kNN-based kernels.

• Classification accuracy. Numerically, grid-search GSVM achieved the highest
accuracy rates on six data sets, but the lead over the second best method in each
case is at most 0.54%. In particular, its improvement over the single-scale kNN-
GSVM is under 1% in all of the six cases. Also, grid-search GSVM performed
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Table 2 Test accuracy rates (%) obtained by each kernel method on the data sets in Table 1 (the
highest rate for each data set has been highlighted in bold)

Single-scale GSVM Multiscale GSVM

Grid search kNN tuning Sum CST+global CST+kNN

Astroparticle 96.58 96.83 96.63 96.70 96.25

Bioinformatics 82.93 87.80 90.24 21.95 39.02

DNA 95.45 95.19 95.19 95.03 95.03

Madelon 59.33 65.83 65.83 66.00 66.67
mnist17 99.72 99.68 99.72 85.58 97.97

Pendigits 98.48 97.51 97.60 97.83 97.94

Satimage 91.10 90.45 90.65 89.85 88.60

Splice 90.11 89.61 89.56 88.41 88.64

toydata 99.00 99.00 99.25 99.50 99.50
usps 95.32 95.32 95.17 82.66 92.28

Vowels 60.82 68.61 69.26 67.32 66.67
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Fig. 4 Test accuracy rate achieved by each method on each data set

quite poorly on three data sets: bioinformatics, madelon, and vowels. The single-
scale kNN-GSVM classifier achieved nearly the best accuracy in all but one case
(bioinformatics), which shows that it is a fairly competitive method. Among the
three multiscale kernels, the sum kernel consistently achieved the best (or nearly
the best) accuracy rates. It also outperformed the single-scale kNN-GSVM on
six data sets (including mnist17), demonstrating the advantage of the multiscale
kernel. Finally, between the two scaling methods for the CST kernel, kNN scaling
seems to be more superior than global scaling overall.
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4 Conclusions and Future Work

In this paper we presented two simple yet effective ways of constructing efficient
multiscale Gaussian-kernel SVM classifiers by learning the scales of the training
data at the class level and using them to build multiscale kernels by following
the multiple-kernel learning research (Gonen and Alpaydin 2011) and the self-
tuning spectral clustering work (Zelnik-Manor and Perona 2004). Such kernels are
expected to adapt better than the single-scale kernel to the geometry of the data.
Numerical experiments demonstrated that they can improve the accuracy of the
single-scale kernels in some cases, while running very fast. We plan to continue
the work along two directions: (1) we will further study the CST kernel (13) to
understand its theoretical properties and find better ways to set the scaling parameter
for the test data; (2) we will apply our proposed multiscale GSVM classifiers to more
challenging data sets and see how they perform in those cases.

Acknowledgement G. Chen was supported by the Simons Foundation Collaboration Grant for
Mathematicians.
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Random Forests Followed by Computed
ABC Analysis as a Feature Selection
Method for Machine Learning in
Biomedical Data

Jörn Lötsch and Alfred Ultsch

Abstract Background: Data from biomedical measurements usually include many
parameters (variables/features). To reduce efforts of data acquisition or to enhance
comprehension, a feature selection method is proposed that combines the ranking of
the relative importance of each parameter in random forests classifiers with an item
categorization provided by computed ABC analysis.

Data: The input data space, comprising an example subset of plasma concentra-
tions of d = 23 different lipid markers of various classes, acquired in Parkinson
patients and healthy subjects (n = 100 each).

Methods: Random forest classifiers were constructed with various different
scenarios of the number of trees and the number of features in each tree. The relative
importance of each feature calculated by the classifier was submitted to computed
ABC analysis, a categorization technique for skewed distributions to identify the
most important feature subset “A,” i.e., a reduced-set containing the important few
items.

Results: Using different parameters for the algorithms, the classification perfor-
mance of all reduced-set random forest classifiers was almost as good as that of a
random forest classifier using the full set of d = 23 lipid markers; all reaching 95%
or better classification accuracy. When including additional “nonsense” features
consisting of concentration data permutated across the subject groups, these features
were never found in the ABC set “A.” The obtained features sets provided better
classifiers than those obtained using classical regression methods.

Conclusions: Random forests plus computed ABC analysis provided a feature
selection without the necessity to predefine the number of features. A substantial
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reduction of the number of features, following the “80/20 rule,” was obtained. The
classifiers using the A-class performed better than with a regression-based feature
selection and were (nearly) as good as using the complete feature set. The obtained
small feature sets are also well suited for domain experts’ interpretation.

1 Introduction

Data acquisition for biomedical research becomes increasingly complex (McDer-
mott et al. 2013; Rinaldi 2011) due to the rising molecular and clinical knowledge
of disease pathomechanisms and technological advances in laboratory equipment
and computer science. Such typically high-dimensional data enables data driven
research approaches (Lötsch and Geisslinger 2010; Breiman 2001). These are
facilitated by developments in data science as a rapidly growing interdisciplinary
research area that deals with the problem-oriented processing of large amounts
of (complex) data with the aim to discover and process knowledge (President’s
Information Technology Advisory 2005; James et al. 2013; Dhar 2013).

Among key technologies for complex data evaluation figures machine learning
(Murphy 2012), which in its supervised form aims at identifying an intelligent
algorithm that maps the input features X comprising vectors xi =<x1, · · · , xd>

with d > 0 different parameters (features) acquired from n > 0 cases to the
output space Y comprising yi ∈ C = {1,· · · ,c} of c possible classes in the data
space, D = {(xi, yi) |xi ∈ X, yi ∈ Y, i = 1, . . . , n}. Among reasons to reduce the
number of available features are (1) enhancement of understanding of the biological
mechanisms in knowledge discovery (Miller 1956), (2) reducing the costs and
efforts of data acquisition, and (3) reducing the number of analyzed parameters to
increase statistical power and to avoid that it exceeds the number of assessed cases.

Reduction of the number of parameters is obtained by applying methods of
feature selection (Saeys et al. 2007). Here a feature selection method is pro-
posed that is based on random forests combined with computed ABC analysis.
Specifically, implementations of random forest classifiers (Breiman 2001) often
output quantitative measures of the importance of each feature for the overall
classification performance. This provides a basis for feature selection, for which a
precise statistical limit of the most informative subset is provided by categorization
techniques such as computed ABC analysis (Ultsch and Lötsch 2015).

2 Methods

2.1 Biomedical Data Set

A data set suitable for the present assessment of the utility of random forests
and computed ABC analysis based feature selection for biomedical problems
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was available as plasma concentrations of d = 23 lipid markers assayed in
probes drawn from Parkinson patients and healthy controls. Plasma concentrations
had been analyzed using liquid chromatography-electrospray ionization-tandem
mass spectrometry (LC-ESI-MS/MS) as described elsewhere (Zschiebsch
et al. 2016; Sisignano et al. 2013). The selection included endocannabinoids
(AEA, OEA), lysophosphatidic acids (LPA16:0, LPA18:1, LPA18:2, LPA18:3,
LPA20:4), ceramides (Cer16:0, Cer18:0, Cer20:0, Cer24:0, Cer24:1, GluCerC16:0,
GluCerC24:1, LacCerC16:0, LacCerC24:0, LacCerC24:1; Cer= ceramide,
GluCer= glucosylceramide, LacCer= lactosylceramide), and sphingolipids
(sphinganine, sphingosine, S1P, SA1P C16Sphinganine, C18Sphinganine,
C24Sphinganine, C24:1Sphinganine). The assessment of lipid markers in the
context of Parkinson’s disease is based on evidence of an involvement of lipid
regulation (Pisani et al. 2005; Pyszko and Strosznajder 2014; Mielke et al. 2013; Li
et al. 2015; Xing et al. 2016; France-Lanord et al. 1997; Boutin et al. 2016).

2.2 Data Preprocessing

Data were analyzed using the software environments R (version 3.4.0 for Linux;
http://CRAN.R-project.org/, R Development Core Team 2008) and SPSS (version
24 for Linux, IBM SPSS Statistics, Chicago, USA) on an Intel Xeon® computer
running on Ubuntu Linux 16.04.3 64-bit.

From the originally enrolled n = 128 patients and n = 350 controls (Ethics
approval and informed written consent obtained), BMI and sex matched samples
of n = 100 subjects per group were drawn. Data preprocessing included (1)
log transformation, (2) age correction, (3) uniform scaling, and (4) imputation
of missing data. Specifically, (1) as quantile-quantile plots predominantly pointed
log-normal distributions of the data, which is in line with general observations
in blood-derived concentrations (Lacey et al. 1997), data was zero invariant log-
transformed, except for the two endocannabinoids (AE and OEA) for which
the plots suggested to prefer the original linear scaling. Subsequently, (2) the
influences of age on the lipid marker plasma concentrations (Parkinson patients
being older than controls with age= 69± 8.2 versus 26.9± 6.6 years, respectively)
were reduced by applying corrections based on robust linear regression using
the Levenberg–Marquardt nonlinear least-squares algorithm implemented in the R
library “minpack.lm” (https://cran.r-project.org/package=minpack.lm, Elzhov et al.
2016). To obtain (3) a uniform scaling of all lipid marker plasma concentrations
data were transformed into percentages (Milligan and Cooper 1988), i.e., into
the interval [0,100]. Finally, a single missing data point was imputed via the k
nearest neighbor method with k = 3 (Altman 1992) using weighted average
and Euclidean distance, as implemented in the “DMwR” R library (https://cran.r-
project.org/package=DMwR, Torgo 2010).

http://CRAN.R-project.org/
https://cran.r-project.org/package=minpack.lm
https://cran.r-project.org/package=DMwR
https://cran.r-project.org/package=DMwR
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2.3 Random Forest and Computed ABC Analysis Based
Feature Selection

For the 1000 repeated experiments a training data set of 44% (d = 10), test
data set of 22% (d = 5), and a validation data set of 33% (d = 8) were created
using class-proportional bootstrap resampling from the training data set (Efron and
Tibshirani 1995). Sampling was performed using the R library “sampling” (https://
cran.r-project.org/package=sampling, Tillé and Matei 2016).

For the training data in each of the 1000 experiments, random forests were
created, sized between 500 and 2000 trees and each tree containing e ≤ d features
randomly drawn from the d = 23 lipid marker plasma concentration vectors (Fig. 1).

The classification error rate on the test data sets was monitored for each run
and the median and non-parametric 95% confidence intervals (2.5th to 97.5th
percentiles of the parameter values obtained in the 1000 Bootstrap resampling runs).
The influence of the number of features included in each tree on the resulting
selection of features was tested by rerunning the 1000 experiments with nine
different ranges for the number of features chosen from the feature space of d = 23
different lipid markers to be included per tree, consisting of (1) sqrt(d), which is
the standard procedure implemented in the R library “randomForest” (https://cran.
r-project.org/package=randomForest, Liaw and Wiener 2002), (2) 0.5*sqrt(d), (3)
2*sqrt(d), (4) 0.5*sqrt(d)–2*sqrt(d), (5) 0.5*sqrt(d)–sqrt(d), (6) sqrt(d)–2*sqrt(d),
(7) 1–2*sqrt(d), (8) 0.5*sqrt(d)–d, and (9) 1–d, i.e., one to all lipid markers were
allowed to be included in the trees. The experiments were performed modifying the
“mtry” parameter of the above-mentioned R library.

For each of the 1000 random forest classifier the influence of the tree count on the
classification outcome was submitted to computed ABC analysis (Ultsch and Lötsch
2015). This is a categorization technique for the selection of a most important subset
among a larger set of items and it was chosen since it fitted to the basic requirements
of feature selection using filtering techniques (Saeys et al. 2007), i.e., it does easily
scale to very high-dimensional data sets, it is computationally simple and fast, and
independent of the classification algorithm. ABC analysis aims at dividing a set of
data into three disjoint subsets called “A,” “B,” and “C.” Set “A” should contain
the “important few,” i.e., those elements that allow obtaining a maximum of yield
with a minimal effort (Pareto 1909; Juran 1975). Set “B” comprises those elements
where an increase in effort is proportional to the increase in yield. In contrast, set
“C” contains the “trivial many,” i.e., those elements with which the yield can only
be achieved with an over-proportionally large additional effort (Pareto 1909; Juran
1975). The final size of the feature set was equal to the most frequent size of set “A”
in the 1000 runs. The final members of the feature set were chosen in decreasing
order of their appearances in ABC set “A” among the 1000 runs. These calculations
were done using our R package “ABCanalysis” (http://cran.r-project.org/package=
ABCanalysis, Ultsch and Lötsch 2015). A random forest classifier on the reduced
feature set using only the most frequent number of features in set “A” was then tested
in the 1000 runs.

https://cran.r-project.org/package=sampling
https://cran.r-project.org/package=sampling
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=randomForest
http://cran.r-project.org/package=ABCanalysis
http://cran.r-project.org/package=ABCanalysis
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Fig. 1 Importance of single features when many or few features have been allowed for tree
building. The bar plot at the upper left side shows the features’ importance resulting tree building
allowed selecting 2*sqrt(d) = 10 features from the set of d = 23 lipid markers, which had
the effect that a few features were recognized to possess a particularly high importance for the
classification. On the upper right side, tree building was allowed selecting sqrt(d) = 5 features,
among which the relative importance of the features was less different. In the subsequent computed
ABC analyses (bottom), the skewness of the distribution of feature importance was directly related
to the size of set size “A” (blue bars). That is, computed ABC analysis is an item selection procedure
aiming at identification of most profitable items from a larger list of items. The ABC plot (blue
line) shows the cumulative distribution function of the mean decreases in accuracy, along with
the identity distribution, xi = constant (magenta line, i.e., each feature contributes similarly to the
classification accuracy (for further details about computed ABC analysis, see Ultsch and Lötsch
2015)
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2.4 Comparative Assessment of Classifier Performance

As feature selection, based on random forest and computed ABC analysis, was in the
focus of the present assessments, the classifiers using different feature sets were built
using the same procedure chosen to be random forests with standard parameters.
Specifically, a subsymbolic classifier was generated by means of random forest
machine learning using the number of lipid markers in ABC set “A” resulting from
the different variants of the feature selection procedure. A further random forest
based classifier was created using the complete set of d = 23 lipid markers. Finally,
for comparison feature selection was done using a classical logistic regression
approach as implemented in the SPSS software package (version 24 for Linux, IBM
SPSS Statistics, Chicago, USA). Variables were included “stepwise forward” into
the logistic regression and the likelihood ratio was used as statistical criterion.

Classifiers were optimized using the test data set. The performances of all
classifiers were assessed on the validation data set drawn at the start of the data
analysis. Measures of performance (Altman and Bland 1994) included: sensitivity,
specificity, precision, recall, prevalence, detection rate, and balanced accuracy
(Table 1). The 95% confidence intervals of the performance test parameters were
obtained as the 2.5th and 97.5th percentiles of the results of 1000 runs on Bootstrap
resampled data.

2.5 Feature Selection Using an Extended Data Set with
Features Unrelated to Classes

An extended data set with d = 46 features was created by doubling each feature,
however, using random permutation of the original biomarker concentrations
thereby destroying their possible association with the disease status. Thus, the
extended data set comprised d = 23 original plus d = 23 randomly permuted
lipid marker concentrations. Feature selection was repeated using this extended
control data set. The expectation was that the feature selection method avoided the
“nonsense,” i.e., the permutated features.

3 Results

3.1 Classification Performance Using the Full and Reduced
Feature Sets

The set of plasma concentration data of several different lipid markers provided
a suitable basis for the creation of a diagnostic biomarker with a high accuracy
of > 95% (Table 1). The presently proposed feature selection method provided a
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substantial reduction of the necessary lipid marker analyses while the classification
performance of the reduced-set random forest classifiers was almost as good as
that of a random forest classifier using the full set of d = 23 lipid markers; all
reaching 95% or better classification accuracy. Specifically, as desired the random
forest based quantification of the importance of each candidate feature for the
classification success with subsequent separation of the most relevant features using
computed ABC analysis reduced the original set of d = 23 features to 3–5 single
markers.

3.2 Performance of Different Parameter Implementation in
Random Forests Feature Selection

The results of the random forest analyses were only weakly dependent on the
number of trees planted in the random forests. That is, the classification error rate
quickly decreased to a minimum that was reached already with approximately 100
trees. Importantly, more trees did not influence the result, which provides a robust
parameter setting as a too large number would merely cost computational power and
time but not jeopardize the quality of the result.

In contrast to the weak importance of the number of trees, the number of features
included in each of the random trees directly influenced the selection of the features
resulting from the subsequent analyses (Fig. 1). That is, with the inclusion of an
increasing number of features, a few highly relevant features had increasingly often
the chance to be part of a tree, which resulted in a highly skewed distribution of
feature importance. The skewness was less pronounced when only a few randomly
selected features were allowed for tree construction, which increased the chance of
the selection of different features as most important among a specific subgroup of
features allowed for tree building. The skewness of the distribution of the feature
importance was directly related to the size of ABC set “A”, hence, the number of
features selected by the presently proposed method.

3.3 Reassessment Using Features Unrelated to the Classes

The extended data set included in addition to the original lipid marker concentra-
tions as found in either Parkinson patients of healthy subjects a set of concentration
data permutated across the subject groups. During the 1000 runs on resampled data
as described above, a dummy, i.e., permutated feature was never found in the ABC
set “A.” Hence, inclusion of nonsense features did not reduce the classification
performance of the reduced feature sets selected using the presently proposed
method.
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4 Discussion

Computed ABC analysis provides a method to select the most informative variables.
ABC analysis is a categorization technique for (positively) skewed distributions
such as different importance of features for the classification success. Classical
ABC analysis is a heuristic method to identify in a set of positive parameters
the “important few,” i.e., a subset as small as possible containing the largest
values. By contrast, computed ABC analysis uses an optimization of cost (i.e.,
number of parameters) versus yield (i.e., sum of selected parameters) applying
a mathematically precise definition of optimality in cost versus effort. Thus, it
replaces heuristics by an algorithmically precise calculation of the three sets (Ultsch
and Lötsch 2015). In addition to the present biomedical application, computed ABC
analysis has also been used in economic sciences, for example, in business process
management (Iovanella 2017) or bankruptcy prediction (Pawelek et al. 2017).

The present experiments using feature selection based on the feature importance
measure estimated in the random forest analysis provided the following main
results. Firstly, the method substantially reduced the number of features included
in final classifiers, which was paid with only a minimum reduction in classification
performance. Secondly, random forests qualify as a feature selection procedure
and slightly outperformed a classical approach of, e.g., logistic regression. Thirdly,
the method was robust against the inclusion of nonsense, i.e., permuted features,
which were never selected. Fourthly, for random forest feature based selection,
the number of trees in the forest is of minor importance provided that minimum
number, presently 100, has been used. More trees did not improve the classification
performance; however, they also did not worsen it. Therefore, a too large number
can be safely used at the cost of computational power. Fifthly, the number of
features allowed to be selected in the trees provides a tuning parameter of the
size of ABC set “A.” However, the best performance of the resulting classifier
was obtained when allowing rather few features for tree building, with the simplest
variant being 0.5*sqrt(d). This had the effect of avoiding that very few features gain
relative high importance reducing the set size of “A,” which in turn increased the
number of features in the final classifier. An alternative feature ranking criterion
is the Gini impurity (https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_
impurity); preliminary assessments indicated a similar utility as the decrease in
classification accuracy criterion (details not provided). It should be noted that this
type of feature selection is not readily suited for uncertain data such as the so-called
Japanese Vowels data set (Zhang et al. 2017).

While with the present data set, all scenarios provided good classification
performances, differences nevertheless existed (Fig. 2), with trees containing a
slightly larger feature set chosen from the d = 23 lipid markers providing slightly
better random forest classifiers as assessed on the test data set. The classification
performance set was obtained when allowing a small set of feature to be included in
single tree building, sized 0.5*sqrt(d). This resulted in a set of d = 5 lipid markers
that provided the comparatively best classification. By contrast, the classical

https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
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Fig. 2 Radar plot of the product (red) and mean (green) of classification sensitivity and specificity
of a random forest classifier created following feature selection based on random forests followed
by computed ABC analysis, using different computational parameters for random forests (complete
performance measures shown in Table 1). The mean of sensitivity and specificity corresponds to the
balanced classification accuracy. The different random forest implementations of feature selection
mainly differed with respect to the number of features, d, taken into the random forests, ranging
from 1 to d features (d in the ranges around the radar plot denoting the total count of available
candidate features)

approach of logistic regression provided a different feature set, which resulted in
a comparatively lower classification performance. Of note, the differences were
narrow with overlapping confidence intervals (Table 1).

With d = 3−5 features selected from a candidate feature set of d = 23 features,
which corresponds to 13–21.7% of the original set size, and considering that the
best performing feature set had a size of d = 5 (21.7%), the proposed method
meets the so-called 80/20 rule (Pareto 1909; Juran 1975), i.e., it is compatible
with more general concepts used in the search for a minimum possible effort that
gives the maximum yield, which often converge toward the effect that with 20% of
the effort 80% of all yield can be obtained. This may substantially reduce efforts
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to acquire the biomedical data necessary to apply a complex diagnostic tool. A
smaller feature list is also better accessible to biomedical interpretation than a more
complex subsymbolic classifier. The five features are supported by reports of a
particular importance of ceramides and shingosides in Parkinson disease (Pyszko
and Strosznajder 2014; Mielke et al. 2013; Xing et al. 2016; France-Lanord et al.
1997).

5 Conclusions

Employing random forests classifier as supervised machine learning provides a
ranking of available features according to their importance for successful classi-
fication. The application of a feature selection technique in form of computed ABC
analysis, proved suitable for creating classifiers from high-dimensional biomedical
(laboratory) data that are accessible to topical expert interpretation. Random forests
plus computed ABC analysis provide feature selection without the necessity to
predefine the number of features that are taken to further analytical steps. The
number of selected features can be (slightly) tuned by adapting the computation
parameters of mathematically precise definition of optimality in cost vs effort, the
random forest analysis. The feature selection method is based on a mathematically
precise definition of optimality in cost (= number of features) versus the effort
(= sum of selected parameters) (Ultsch and Lötsch 2015). This accommodates the
intuitive perception of a substantial and effective feature selection and the obtained
small feature set is readily accessible to domain expert’s interpretation (Miller
1956). The classifier obtained performed better than an alternative classifier for
which the features had been selected using classical regression, and it was (almost)
as good as a classifier using the full feature set. Thus, random forests followed by
computed ABC analysis may be applied as feature selection method for machine
learning on biomedical problems.
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Non-hierarchical Clustering for Large
Data Without Recalculating Cluster
Center

Atsuho Nakayama and Deguchi Shinji

Abstract The k-means non-hierarchical clustering is one of the most widely used
methods to partition a dataset into groups of patterns. An advantage of the k-
means calculation process is that it is simple and convenient. However, the k-means
method converges to one of many local minima, in which the final result depends
on the initial starting points. Thus, it is necessary to duplicate the analysis using a
different initial value. To obtain the optimum solution for each pair of initial values,
the algorithm repeatedly calculates the cluster centers to minimize the average
squared distance between objects in the same cluster, so the computational resources
required can be costly. Thus, it is important to decrease the number of iterations
to reduce processing costs. To solve this problem, we performed k-means analysis
without recalculation of the full dataset using the number and the centers of clusters
obtained from the analysis of sampling data. The proposed method can be used to
simplify and reduce calculation costs by removing the cluster center recalculation
step.

1 Introduction

Methods of summarizing and extracting information are often applied to large
multivariate datasets, as it can be difficult to understand the relationships among
variables or objects. This issue has gained attention due to the large amounts of
data that are now electronically collected and gathered. Classification involves
the investigation of sets of objects to establish whether these object sets can be
summarized into a small number of classes of similar objects (Gordon 1999).
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Classification methods are used in many disciplines. The relevant information for
extraction depends on the nature of the investigation and the questions of interest.
Very large datasets tend to be subjected to less elaborate analysis than smaller
datasets. Several clustering algorithms have been proposed; they can be classified
into hierarchical and partitioning clustering algorithms (Gordon 1999). Hierarchical
algorithms decompose data consisting of n objects into several levels of nested
segments, as represented by a dendrogram. Partitioning algorithms construct a
single partition of data, consisting of n objects and k clusters, such that the objects in
a cluster are more similar than objects in different clusters. The k-means algorithm
is one of the most widely used methods to partition a dataset into groups of patterns.
The k-means algorithm (MacQueen 1967) is built upon four basic operations:
selection of the initial k means for k clusters, calculation of the dissimilarity between
an object and the mean of a cluster, allocation of an object to the cluster whose
mean is nearest to the object, and recalculation of the mean of a cluster from the
objects allocated, such as to minimize intracluster dissimilarity. Except for the first
operation, these operations are performed repeatedly until the algorithm converges.
The selection of the initial k means may be conducted in a random manner or
according to specific heuristics. The k-means algorithm aims at minimizing the
following cost function:

k∑

j=1

n∑

i=1

‖ x
(j)
i − cj ‖2 (1)

where‖ x
(j)

i − cj ‖ is the chosen distance measure between a data point x
(j)

i and
the cluster center cj , is an indicator of the distance of the n data points from their
respective cluster centers. An advantage of the k-means calculation process is that it
is simple and convenient.

However, the k-means method converges to one of many local minima, in which
the final result depends on the initial starting points. Thus, it is necessary to duplicate
the analysis using a different initial value. To obtain the optimum solution for
each pair of initial values, the algorithm repeatedly calculates the cluster centers
to minimize the average squared distance between objects in the same cluster,
so the computational resources required can be costly. Thus, it is important to
decrease the number of iterations to reduce processing costs. To solve this problem,
previous studies have proposed algorithms to refine the initial cluster center values
by selecting subsamples from the dataset (e.g., Bradley and Fayyad 1998; Fahim
et al. 2009).

Fahim et al. (2009) introduced an efficient method to obtain good initial starting
points for k-means computation. The dataset is first divided into several blocks.
The k-means algorithm is then applied to each block independently, to produce the
k centers for each block, as described below. Thus, if the dataset is partitioned
into m blocks, then the compressed data will contain m × k objects. The k-
means is then applied to the compressed data to produce k centroids, in which
the resulting k centroids are the initial starting points for the k-means algorithm
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that works on the full dataset. Thus, the cluster center is recalculated using the k-
means approach; however, the recalculation step can involve high processing costs,
especially for large datasets. Therefore, the present study proposes a method in
which recalculation of the cluster center is not required.

2 The Method

The proposed method performs clustering without recalculating the cluster centers
in the full dataset, by simplifying the calculations. Here, the Ward method is
applied to a compressed dataset to obtain k centroids. The results of this method
visually show the grouping process between objects, using a dendrogram; using
this approach, it is possible to gain some idea of the suitable number of classes for
grouping data. In clustering large datasets, the k-means algorithm is much faster
than the hierarchical clustering algorithm, whose general computational complexity
is O(n2) (Murtagh 1992). The hierarchical clustering method is usually applied to
small datasets, due to the low efficiency of the approach with larger datasets.

A description of the steps involved in our proposed approach is given below.
First, m subsamples are selected from the full dataset. The k-means algorithm is
applied to each subsample independently, to produce k centers for each subsample.
The size of k is set to be larger than the expected size for the full dataset. Thus, the
compressed dataset will contain m× k objects. Each subsample size is smaller than
the full dataset size, such that the compressed dataset is much smaller than the full
dataset. The Ward method using a hierarchical clustering algorithm is then applied
to the compressed dataset to determine the centers of the full dataset, using the mean
value of the variables as the initial starting points of the full dataset. Each case is
distributed to the clusters whose cluster center is in closest proximity; this eliminates
cluster center recalculation. Distortion takes a set of k estimates of the means and
computes the sum of the squared distances of each data point to its nearest mean;
this step provides a measure of the degree-of-fit of a set of clusters to the dataset.
When creating the cluster center of the original data from multiple sampled data,
the proposed method uses hierarchical cluster analysis, as opposed to the k-means
method. Notably, it is possible to determine how many clusters to adopt by visually
checking the linkage of multiple sampled data between objects when classifying the
full dataset.

The advantages of our approach are that cluster centers can be calculated from
sample data and are uniquely determined in the proposed method. Recalculation of
cluster centers is not required, so the calculation time and computational cost are
reduced.
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3 The Analysis

We analyzed the customer purchase history data “True Data” at a drug store;
these data were provided by True Data, Inc. The customer purchase history data
contained 232,030,245 records. Among them, 4,671,856 records with both attribute
information and purchasing information were used for this analysis. In the product
category, Level 4 (6 digits) of the Japan Item Code File Service/Integrated Flexible
Database (JICFS) classification was used, with 629 categories of food and daily
necessities. Matrices of individuals (members) and product categories with purchase
amounts were calculated based on customers’ purchase history data. Multiple
sampling data were sufficiently small such that clustering and results analysis could
be performed easily. Twenty sampling data were obtained by extracting members
based on a systematic sampling process. The sample size n consisted of 2000
individuals and 629 categories. Multiple sampling data were analyzed using the
ordinary k-means method; a larger number of clusters than the expected number of
true clusters was applied. The number of clusters was set to 20. Thus, 20 sampling
data consisting of 2000 individuals and 629 product categories were analyzed
using the ordinary k-means method. The compressed data to calculate the initial
cluster centers in the full dataset consisted of 400 objects (20 sampling data ×
20 clusters). The Ward method of hierarchical cluster analysis was performed on
the compressed dataset (size: 400 × 629). The initial cluster centers for the full
dataset were calculated using the analysis results of the Ward method. We attempted
to obtain an initial solution mechanically. Eleven clusters were adopted based on
the dendrogram projections. Using the proposed method, we can interpretatively
calculate the number of clusters and cluster average expected from sampling data to
obtain the initial solution.

The mean of the purchase amount of all variables for the 11 clusters was
calculated as the initial cluster center for the full dataset. Figure 1 shows the mean
of each variable of 11 clusters obtained from the analysis of the Ward method.
These mean values are the initial cluster centers for the full dataset. In clusters
1 and 2, the means of the purchase amount of various products were slightly
higher. Cluster 1 consisted of customers who purchased various products. Cluster
2 consisted of customers who purchased various items and more food than other
customers. In clusters 3–11, the means of purchase amounts of specific products
were high. Clusters 3 and 11 consisted of customers who frequently purchased
“Health food”; the number of product categories in health foods was 190,201
in Level 4 (6 digits) of the JICFS. Cluster 4 included customers who frequently
purchased “Coke products”; the number of Coke product categories was 140,307 in
JICFS Level 4 (6 digits). Cluster 5 consisted of customers who frequently purchased
“Yogurt”; the number of yogurt product categories was 130,205 in JICFS Level 4
(6 digits). Cluster 6 was comprised of customers who frequently purchased “Cat
food”; the number of cat food product categories was 262,201 in JICFS Level
4 (6 digits). Cluster 7 consisted of customers who frequently purchased “Baby
food”; the number of baby food product categories was 190,103 in JICFS Level
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Fig. 1 Mean of each variable of 11 clusters obtained using the Ward method

4 (6 digits). Cluster 8 included customers who frequently purchased “Spirits”; the
number of spirit product categories was 140,671 in JICFS Level 4 (6 digits). Cluster
9 consisted of customers who frequently purchased “Cat food”; the number of
cat food product categories was 262,201 in Level-4 (6 digits) JICFS. Cluster 10
represented customers who frequently purchased “Instant soup and cup noodles”;
the numbers of instant soup and cup noodles product categories were 110,605 and
111,203, respectively, in JICFS Level 4 (6 digits). Clusters 6 and 9 have a similar
tendency to buy “Cat food” often, but purchasing trends in categories other than Cat
food differ.

We used the purchase amount means of all categories as the initial starting
points of the 11 cluster centers in the full dataset. Each case, nearly 4,600,000 in
total, was distributed to clusters having the closest cluster center. Although the
initial solution was 11 clusters, nearest data did not exist at the center of three
clusters. As a result, eight clusters contained many cases; however, three clusters
(clusters 6, 7, and 9) were empty. Figure 2 shows the mean of each variable of
the final eight clusters obtained from the proposed method. Cluster 1 consisted
of customers who purchased various products. In clusters 2–5, 8, 10, and 11, the
means of purchase amounts of specific products were high. Cluster 2 consisted of
customers who frequently purchased “Biscuits and Cookies”; the number of biscuit
and cookie product categories was 130,127 in JICFS Level 4 (6 digits). Cluster 3
was comprised of customers who frequently purchased “Baby food”; the number of
baby food product categories was 190,103 in Level 4 (6 digits) of the JICFS. Cluster
4 consisted of customers who frequently purchased “Coke products”; the number of
Coke product categories was 140,301 in JICFS Level 4 (6 digits). Cluster 5 included
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Fig. 2 Mean of each variable of the final eight clusters obtained from the proposed method

customers who frequently purchased “Other soft drinks”; the number of other soft
drink product categories was 140,397 in JICFS Level 4 (6 digits). Cluster 8 consisted
of customers who frequently purchased “Brandy”; the number of brandy product
categories was 140,663 in JICFS Level 4 (6 digits). Cluster 10 was comprised of
customers who frequently purchased “Japanese tea”; the number of Japanese tea
product categories was 140,313 in JICFS Level 4 (6 digits). Cluster 11 consisted of
customers who frequently purchased “Baby food”; the number of baby food product
categories was 190,103 in Level 4 (6 digits) of the JICFS. Clusters 3 and 11 have a
similar tendency to buy “Baby food” often, but purchasing trends in categories other
than “Baby food” differ.

4 Conclusion

We performed k-means analysis without recalculation of the full dataset using
the numbers and centers of clusters obtained from the analysis of sampling data.
Table 1 lists the final eight clusters. The features of the initial and final clusters
had similar tendencies. The proposed method can be used to simplify and reduce
calculation costs by removing the cluster center recalculation step. We selected
several subsamples from the full dataset and applied the k-means algorithm with
a larger number of clusters than expected on each subsample independently, to
obtain the centers for each subsample. The centers of each cluster obtained by
analyzing a compressed dataset were analyzed using the Ward method, and the
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Table 1 Sizes and features of the final clusters

Final cluster size Feature of final cluster Feature of initial cluster

Cluster 1 4, 668, 454 Various product Various product

Cluster 2 277 Biscuits and cookies Various product (a little more food
is purchased than the others)

Cluster 3 1735 Baby foods Health foods

Cluster 4 97 Coke Coke

Cluster 5 453 Other soft drinks Yogurts

Cluster 8 4 Brandy Spirits

Cluster 10 747 Japanese tea Instant soup and cup noodles

Cluster 11 89 Baby foods Health foods

Table 2 Distances from the
center of the cluster to objects
and the corresponding
standard deviation

Distances from center

of cluster to objects Standard deviation

Cluster 1 319 56, 530

Cluster 2 175 191

Cluster 3 1408 25, 052

Cluster 4 3502 4879

Cluster 5 378 1700

Cluster 8 551 216

Cluster 10 621 463

Cluster 11 11, 476 20, 416

numbers of clusters and the centers of the clusters for analysis of the full dataset
were determined from the results. The proposed method achieved good results.

We mechanically adopted 11 clusters based on the dendrogram, because many
variables were used in this analysis. However, some clusters were not chosen as final
clusters, e.g., initial clusters 6, 7, and 9. To be selected as a final cluster, there must
be an object close to the center of the initial cluster. There were also clusters that
did not fit well, such as clusters 4 and 11, in which the means of the distance from
the center of the cluster to individual objects and the associated standard deviations
were large (Table 2). To solve these problems, the numbers of clusters and the cluster
average expected from sampling data must be calculated on the basis of statistical
indicators. The motivation for this study was to reduce the calculation cost and time
by creating initial values from subsamples and classifying all data based on these
initial values. Therefore, the validity of the initial value obtained by the proposed
method and the numbers of clusters adopted were not assessed. More research will
be needed in the future to examine whether the optimal cluster numbers and centers
can be determined by the initial value obtained from the proposed method using
statistical indicators such as the Elbow method, the Silhouette method, and gap
statistics.
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Supervised Nested Algorithm for
Classification Based on K-Means

Luciano Nieddu and Donatella Vicari

Abstract The aim of this paper is to present an extension of the k-means algorithm
based on the idea of recursive partitioning that can be used as a classification algo-
rithm in the case of supervised classification. Some of the most robust techniques
for supervised classification are those based on classification trees that make no
assumptions on the parametric distribution of the data and are based on recursively
partitioning the feature space into homogeneous subsets of units according to the
class the entities belong to. One of the shortcomings of these approaches is that the
recursive partitioning of the data, i.e. the growing of the tree, is achieved considering
only one variable at a time and, although it makes the tree pretty simple in terms of
determining rules to obtain a classification, it also makes them hard to interpret.
Building on these ideas we carry the integration of parametric model into trees
one step further and propose a supervised classification algorithm based on the k-
means routine that sequentially splits the data according to the whole feature vector.
Results from applications to simulated data are shown to address the potentiality of
the proposed method in different conditions.

1 Introduction

The problem of supervised classification has been gathering lots of interest since
the seminal work of Sir R. Fisher (1936). Given a set of vectors xi , i = 1, . . . , n

spanning a feature space X , consisting of elements that have been previously
classified by an expert or in any other way deemed appropriate into a set of mutually
disjunctive classes K , the problem of classification consists in training a classifier

L. Nieddu (�)
UNINT-Universitá degli Studi Internazionali di Roma, Rome, Italy
e-mail: l.nieddu@unint.eu

D. Vicari
Dipartimento di Scienze Statistiche, Sapienza – Universitá di Roma, Rome, Italy
e-mail: donatella.vicari@uniroma1.it

© Springer Nature Singapore Pte Ltd. 2020
T. Imaizumi et al. (eds.), Advanced Studies in Classification and Data Science,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-981-15-3311-2_7

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3311-2_7&domain=pdf
mailto:l.nieddu@unint.eu
mailto:donatella.vicari@uniroma1.it
https://doi.org/10.1007/978-981-15-3311-2_7


80 L. Nieddu and D. Vicari

in order to classify new units of unknown class. The classifier is usually a function
ψ : X → K which should mimic the behaviour of the expert and the problem is
then of getting an estimate of ψ(·) based on the sample at hand.

The dataset of previously classified vectors is known as training set (Watanabe
1985). If the classification of the elements of the training set is certain and not
affected by error, then the problem is known as recognition with perfect supervisor,
otherwise it is known as recognition with imperfect supervisor (Katre and Krishnan
1989).

In this paper we will be dealing with recognition with perfect supervisor but we
will show some insights that should allow the proposed approach to be extended to
the problem of recognition with imperfect supervisor.

When the training set is composed of elements of unknown classes then the
problem becomes of recognition without supervisor and is usually tackled using
clustering or finite mixture models (Fraley and Raftery 2002; Celeux 2007).
Recently some attempts have also been carried out to extend the finite mixture model
semi-parametric approach to supervised classification (see Hastie and Tibshirani
1996; Nieddu and Vitiello 2013 for instance). Nonetheless this paper will focus
only on the problem of recognition with perfect supervisor.

In general, to build a classification rule, given a dataset composed of a set of
measurements on n objects, three main steps are required regardless if the problem
is with or without supervisor:

1. a pre-processing is applied to the data in order to make them comparable and
to try to filter-out the part of information which is not directly related to the
classification problem;

2. feature selection and/or extraction is applied to the data in order to reduce the
dimension of the space embedding the dataset, retaining as much as possible of
the information related to the class while trying to avoid the curse of dimen-
sionality (Bellman 1957). The features selected/extracted should be invariant
to incidental changes that are not related to the classification problem, e.g. the
features selected in a face recognition problem should be invariant to changes
in environmental factors (e.g. lighting) and sensing configuration (e.g. camera
placement) (Claudio et al. 2008; Ye et al. 2016);

3. the pattern recognition algorithm is trained on a subset of the dataset (training
set) and its performance is evaluated using a cross-validation scheme. The latter
is valid only for supervised classification (see Watanabe 1985; Duda and Hart
1973). Estimating the classifier on a subset and testing its performance on an
independent subset is a mandatory requirement since each classification rule
would be optimal for the dataset it has been trained on, therefore having an
independent dataset to verify the classifier is the only way to get an unbiased
estimate of the performance of the classifier. The performance of the classifier
on the training set is a biased estimate of the real performance and is usually
referred to as apparent recognition rate (Mclachlan 2004).

Over the years a plethora of approaches have been suggested to handle the
problem of supervised classification (see for instance Jain et al. (2000); Nieddu
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and Patrizi (2000) among many others). It is fair to assume that no algorithm is able
to achieve the best performance on any classification problem without any prior
assumptions on the data. This has been mathematically clarified in 1996 with the
proof of the “no free lunch theorem” (NFL) (Wolpert 1996).

Therefore robustness of a classification algorithm is a key requirement when no
specific assumption can be made on the data. Some of the most robust techniques
for supervised classification are nonparametric approaches based on classification
trees (Breiman 1984; Quinlan 1986) that make no specific parametric assumption
on the distribution of the data. These approaches work by recursively partitioning
the feature space X into subsets of elements that are homogeneous according to
the class the elements belong to. Usually the Gini index or entropy are used as a
measure of homogeneity.

The tree growing process employs a greedy approach (Curtis 2003) to determine
the best partition on the data splitting the data on the account of just one variable at
a time.

This approach has been recently further developed incorporating simple para-
metric models into the terminal nodes of the tree. Research in this direction was
motivated by the fact that a constant value in the terminal node tends to produce
large and thus hard to interpret trees (Chan and Loh 2004).

One of the major shortcomings of partitioning algorithms is that the recursive
partitioning of the data, i.e. the growing of the tree, is achieved considering only
one variable at a time and, although it makes the trees pretty simple to read, it also
may render them hard to interpret (for instance, some variables might show up more
than once at various levels in the tree path).

Building on these ideas, we carry the integration of parametric models into
trees one step further and propose a supervised classification algorithm where the
recursive partitioning of the feature space X is based on the whole feature vector.
The proposed methodology is based on the k-means algorithm and although it has
been tested only on supervised classification problems we believe that it can be
extended to recognition with imperfect supervisor.

The outline of the paper is as follows: in Sect. 2 the proposed methodology will
be presented and an algorithm will be outlined, in Sect. 3 a simulation study will
be outlined to test the performance of the proposed methodology with respect to
classification trees which use a similar approach to classification. In Sect. 4 finally
some conclusions and future extensions will be drawn.

2 The Algorithm

The algorithm presented in this paper is a supervised classification algorithm, i.e.
a dataset of elements with known classes is supposed to be available. The aim of
this algorithm is to find subclasses in the dataset which can be used to classify
new vectors of unknown classes. Starting from the available partition on K known
classes the objective is to find a finer partition in subclasses consistent with the
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original partition that can be used to better classify new entities. This is achieved by
recursively partitioning the training set.

The performance of the algorithm is assessed via cross-validation (Watanabe
1985; Mclachlan 2004).

Given a training set of n pattern vectors in R
p, let us assume a partition defined

on the dataset, i.e. each pattern vector is assigned to one and only one of K known
classes. Let us assume a Euclidean norm defined on the dataset and let ψ be a
function from R

p onto the set C = {1, 2, . . . ,K} which maps each pattern vector
xj , j = 1, . . . , n into the class c ∈ C that it belongs to.

The proposed algorithm works as follows:

• compute the barycentre of each class and compute the distance of each vector
from each barycentre;

• if each vector in the training set is closer to the barycentre of its class the
algorithm stops, otherwise there will be a nonempty set M of pattern vectors
which belong to a class and are closer to a barycentre of a different class. In M
select the pattern vector xw that is farthest from the barycentre of its class. This
pattern vector will be used as a seed for a new barycentre for class ψ(xw);

• a k-means algorithm (MacQueen 1967) will then be performed for all the pattern
vectors in class ψ(xw) using, as starting points, the set of barycentres for class
ψ(xw) and the vector xw. For ease of exposition let us assume that there are
m barycentres in class ψ(xw). Once the k-means has been performed the set of
barycentres for class ψ(xw) will be composed of m+1 elements. The barycentres
at the new iterations need not be computed for all classes, but only for class
ψ(xw), since the barycentres for the other classes have remained unchanged. In
the following step the distance of each pattern vector from all the barycentres is
computed anew, and so is the set M (see Fig. 1);

• if M is not empty then the pattern vector in M which is farthest from a
barycentre of its own class is once again selected to serve as a seed for a new
barycentre. This procedure iterates until the set M is empty.

The algorithm is depicted in pseudo-code in Fig. 1.
Upon convergence, the algorithm yields a set of barycentres which, in the worst

case, are in a number equal to the number of elements in the training set and which
has a lower bound in the number of classes.

It is worth noticing that if the partition defined on the dataset is consistent with
the features considered, i.e. if the pattern vectors are linearly separable, then the
algorithm generates a number of barycentres equal to the number of classes. On the
other hand, if the classes in the dataset are not linearly separable, then the algorithm
continues splitting the classes until the subclasses obtained are linearly separable. It
is obvious that it can continue splitting until all the subclasses are composed of only
one vector (singleton). It must be stressed that it will not converge if two vectors in
the training set belong to different classes and are represented by the same pattern
vector. Nonetheless if two elements in the training set belong to different classes
but show the same pattern vector, either the classification is wrong or the set of
measurement is not sufficient to discriminate properly between the two classes. The
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Step1 Let
x j, j = 1, . . . ,n be the pattern vectors in the training set

B0 be the set of K initial barycentres bi, i= 1, . . . ,K

Step2

Compute the distances of each x j from all the bi B0

Let be the set of xw that are closer to a barycentre of a class different from
their own.

t 0

Step3 while = /0

Let xs, be the vector with the greatest distance from its own barycen-
tre.

c (xs)
Let Bt+1 Bt xs
for all the elements of class c perform a k-means routine using as starting
points the barycentres of Bt+1 that belong to class c

t t+1

Compute the distances of each x j from all the bi Bt

Let be the set of xw that are closer to a barycentre of a class different
from their own.

end

Fig. 1 Algorithm in meta-language

latter problem can be easily overcome increasing the dimension of the vector space
gathering more information on the objects we are trying to classify.

Upon convergence, the sets of barycentres can be used to classify new elements
(query points) assigning the new element to the class of the barycentre it is closest
to. It should be stressed that if elements from the training set are used as query
points, then the algorithm always classify them correctly because, once converged,
all pattern vectors in the training set are closer to a centroid of their own class, i.e. if
the class of the closest barycentre is used to classify new elements, then the apparent
error rate for the proposed method is zero (perfect recognition).

The algorithm can be generalized allowing for impurity in the result, i.e. the
recursive partitioning of the feature space can be performed until the percentage of
elements that are closer to a barycentre of another class has decreased under a certain
threshold which can be set to a value different from zero. This can be helpful when
the training set has been classified with error (imperfect supervisor): in this case
allowing for impurity in the subclasses can prevent the algorithm from overfitting
the data.
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3 Simulation Study

The proposed algorithm has been tested on a simulated dataset. The dataset has been
generated adding multivariate Gaussian noise to a set of 9 barycentres on R

2.
First the coordinates of the barycentres have been randomly generated according

to a continuous uniform random variable (Bj ∼ U [−5; 5]2, j = 1, . . . , 9) and
then r random points in R

2 have been drawn from a Gaussian process centred in
each barycentre.

Each barycentre and its associated points have then been randomly assigned to
one of K = 2 classes according to Bernoulli process with probability θ = 0.5. This
should ensure variable shapes and sizes of the two classes.

In order to test the performance of the algorithm on a dataset with various error
levels, the covariance matrix for the Gaussian noise has been chosen as

Σ = γ

[
1 0.7

0.7 1

]
with γ ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50}

The number of points for each barycentre has been chosen in r ∈ {5, 10, 15, 20,

30, 40} for total sample sizes of {45, 90, 135, 180, 270, 360} elements, respectively.
For ease of exposition in Fig. 2 the three steps of the generation of a dataset have

been displayed.
It should be noted that the random assignment of the centroids and their

associated points to one of two classes allows to mimic the pattern of real datasets
with different sizes and correlation levels between variables, simulating various
shapes for each of the two classes and allowing the classes to present a “tangled”
appearance.

The performance of the proposed technique has been assessed using correct
recognition rates i.e. the number of correctly classified units divided by the total
number of units (Watanabe 1985). Since the correct recognition rate determined
on the same set used for training would result in an inflated estimate (apparent
classification rate) a cross-validation framework has been used. More formally
the performance of the proposed technique has estimated via leave one out cross-
validation (Sammut and Webb 2010) and it has been compared with the results
of classification trees on the same datasets. Therefore at each iteration the same
element is singled out for testing and the two techniques are both trained on the
remaining n − 1 points and tested on the performance obtained on the singled out
unit. This process has been repeated n times and the average correct recognition for
each configuration of the simulation parameters has been computed.

In Fig. 3 the correct recognition rates for the proposed technique and the
analogous results for the classification trees obtained using the rpart() package
in R have been depicted.

The proposed method almost always performs better than classification trees.
The recognition rates of the proposed method are always greater than the random
recognition rate which, for a two-class problem, is 0.5. The same cannot be said
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Fig. 2 Simulation process for the generation of “tangled” classes
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Fig. 3 Recognition rates for the proposed method (dashed blue plot) and for classification trees
(continuous red plot) for different sample sizes and varying error levels (γ )

about the classification trees, that, for r = 5 yield a recognition rate lower than 0.5
as γ increases (plot on the top left corner of Fig. 3).

Out of the 6 × 9 cells of the simulation setup (9 levels of noise and 6 different
number of points for each barycentre) the proposed methodology obtained a better
recognition rate than CART 45 times.

It must be stressed that, although these results can be readily compared since
they are based on the same sample and show a better performance of the proposed
method, a more extensive simulation study needs to be carried out in order to get a
better understanding of the performance of the proposed technique in more different
conditions with various shapes and sizes of the datasets.

In Table 1 the average recognition rates and their standard deviations have been
displayed. Averages have been calculated over different values of γ (noise size).
As the sample size increases both techniques tend to achieve a better average
performance with comparable standard deviations. The proposed methodology, on
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Table 1 Simulation results:
average correct recognition
rates and associated standard
deviations for the proposed
methodology and CARTs
over varying number of
points in each barycentre

r Proposed methoda SD CARTa SD

5 0.7531 0.1419 0.5185 0.1073

10 0.7741 0.1232 0.6691 0.1271

15 0.7613 0.1377 0.7103 0.1109

20 0.7778 0.1260 0.7401 0.1268

30 0.7504 0.1277 0.7437 0.1126

40 0.7589 0.1302 0.7586 0.1163
a Average performance over various levels of noise for

different values of points in each original barycentre (r)

average, outperforms classification trees although the performances tend to be very
similar with a very large number of points for each barycentre.

It should be noted that since the simulation was carried in R
2 as the number of

points and the noise size for each barycentre increase the two classes tend to overlap
since each barycentre is associated randomly with one of the two classes (see Fig. 2)
and therefore it is possible that the proposed method starts to overfit the data.

4 Conclusions

The idea for a new classification algorithm that builds on the concept of model based
recursive partitioning (Zeileis et al. 2008) has been presented in this paper. The
classification results on the small simulation study are promising when compared
with the performance of classification trees on the same simulated data. CARTs
have been chosen as a comparison since they apply a very similar approach to
classification. The idea of trying to find a finer partition on the training set that
is coherent with the original classes but that allows for a better classification of new
entities is at the basis of the proposed method and is applicable to many real data
problems where the number of features that have been collected to represent a class
are only a part of those that could perfectly separate the classes and therefore the
projection of a possible well separated dataset on the observed feature space ends
up in a class structure that is not easily separable.

The algorithm has already been tested on its form without allowing impurity, i.e.
assuming that the training set has been classified without error (perfect supervisor).
The same approach can be applied in the case of imperfect supervisor, allowing
for impurity in the training. The possibility to allow for impurity can prevent the
proposed method from overfitting possible noise in the data that could result in
unnecessary barycentres from the training set.

The version with impurity is currently being tested and the results are promising.
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Using Classification of Regions Based
on the Complexity of the Global Progress
Indices for Supporting Development
in Competitiveness

Éva Sándor-Kriszt and Anita Csesznák

Abstract On the methodological difficulties of creating social measurement indi-
cators. This paper focuses on the three pillars of the Regional Competitiveness Index
with a special emphasis on higher education. The research used data gathered from
the 262 regions of the European Union on higher education and lifelong learning,
labour market efficiency and market size. Using cluster analysis, the 262 regions
were arranged into five clusters.

1 Introduction

The purpose is to bridge existing geographical distances between a small East-
Central European country, Hungary and the member countries of the International
Federation of Classification Societies analysing the methodology of global progress
indices in the process.

This is a great opportunity for economists from a small country to show their
findings in Tokyo. Although Hungary is very far from Asia, our aims in higher edu-
cation are common: to improve academic standards, to foster internationalization
and to meet the new requirements triggered by globalization.

This paper gives an overview of the applicability of recently published global
indices for measuring social, environmental and economic progress at different
regional levels. The critical investigation is based on determining the relevance
and comparability of the referred data sources and aggregation techniques used
for composing complex indicators. Advantages and barriers for appropriate geo-
graphical/regional classification in context of measuring achievement of globally
recognized sustainable development goals, are presented and prioritized. Classifi-
cation of sustainability measures related to the development of new business and
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non-profit models based on shared values provides new tools for evaluation and
interpretation of both temporary and longer term regional differences in support
of global and local development policies. In this way, the current and desirable
states of the key drivers for the development of human well being, like innovation
in higher education systems, can be better identified and explained for the policy-
makers, especially in Central-Eastern Europe, where dramatic changes of current
“business as usual” strategies and models and the proper and fast adoption of
globally successful innovative solutions are necessary at all overarching macro,
medium and micro levels within the common universe of society, environment and
economy.

2 Statistical Literacy as a Precondition of Globalization

The basic skills required to do any research work in any field include linguistic
skills—researchers need to understand research literature published in English;
intercultural skills—research work entails cooperation between specialists coming
from diverse cultural backgrounds; IT skills and last, but not least, statistical skills.

It is easy to see that to be able to carry out research work one must work with
data and information. Today’s question is not how or where to acquire the necessary
information. To be able to process data into information and use that in a meaningful
way, it is imperative that one should acquire statistical literacy. This means being
skilled in reading, selecting, identifying, analysing and interpreting information.
The authors of this paper have also been challenged by this problem: it was easy
to gather data about the regions of the European Union, but less so to select the
necessary indicators and to construct the Regional Competitiveness Index.

Selecting the right indicators poses problems: economic and social processes do
not lend themselves to easy measurability.

3 Problems with the Measurability of Social Processes

Economic indicators can be and are calculated for countries, regions, industries,
etc., but unfortunately they are not exact measures as compared with the ones used
in natural sciences. Some of these indicators are volatile—the prices of securities are
continuously changing on the Stock Exchange, and so are the values of commodities
and services. Most economic indicators are usually based on uncertain data. This
means that GDP or GNP figures, inflation rates and unemployment statistics are
more or less estimates.

Ranking is also an accepted way to evaluate performance. It is used in all walks
of life—from singing competitions to measuring creditworthiness.
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Ranking universities is also done this way. Surveys are carried out asking
employers or alumni how satisfied they are with a particular institute of higher
education.

However, in the case of universities, it is possible to make a more precise
evaluation of their performance, which can be done using a set of indicators and
statistics.

Unfortunately, even these indicators and statistics do not provide an exact
measure of the performance of universities. There are about 18,000 institutions
of higher education in the world so to be able to evaluate the performance of a
particular university, we need to examine its own mission statement and the demand
for its alumni on the labour market among other things. Such complex phenomena
cannot be presented using only one indicator; rather, a whole system of indicators
or a complex indicator ought to be created and used.

4 An Overview of the Regional Competitiveness Index

(RCI, Pillars, Index Construction)
To improve the understanding of territorial competitiveness at the regional level,

the European Commission has developed the Regional Competitiveness Index—
RCI—that shows the strengths and weaknesses of each of the EU NUTS 2 regions.
We are going to discuss the Index on the basis of EU Regional Competitiveness
Index RCI 2013 in JRC Scientific and Policy Reports Angrist and Pischke (2015).

4.1 Changes in the RCI Over Time

The development of the index started in 2008 and has built on the methodology
developed by the World Economic Forum for the Global Competitiveness Index.
It covers a wide range of issues related to territorial competitiveness including
innovation, quality of institutions, infrastructure and measures of health and human
capital.

In 2010, a joint project led to the publication of the RCI 2010, the first composite
in Europe aiming at mapping the economic performance and competitiveness of
regions. Results showed great variation within each country, with under-competitive
regions scattered all around strong regions. In this respect, the national level is not
assumed to make the real difference in terms of competitiveness.

The project provided a method to benchmark regional competitiveness and to
identify the key factors which would allow a low competitive region to catch-up.
RCI can be considered as an overall but synthetic picture of regional competitive-
ness.

RCI 2013 is the second edition of the index and includes updated and more data
together with method refinements.
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RCI can provide a guide to what each region should focus on, taking into account
its specific situation and its overall level of development. In this perspective, RCI
may play a critical role in the debate on the future of cohesion policy.

RCI 2013 was based on a set of 80 candidate indicators of which 73 have been
eventually included in the index.

The results demonstrate that territorial competitiveness in the EU has a strong
regional dimension, which national level analysis does not properly capture in the
EU. The gap and variation in regional competitiveness should stimulate a debate as
to what extent these gaps are harmful for their national competitiveness and to what
extent the internal variation can be remediated.

4.2 Composition of the Current RCI

RCI 2013 has basically the same framework and structure as the 2010 edition and
includes most recent data for all the indicators. As for the previous version, the
index is based on eleven pillars describing both inputs and outputs of territorial
competitiveness, grouped into three sets describing basic, efficiency and innovative
factors of competitiveness.

The basic pillars represent the basic drivers of all economies. They include (1)
Quality of Institutions, (2) Macro-economic Stability, (3) Infrastructure, (4) Health
and the (5) Quality of Primary and Secondary Education. These pillars are most
important for less developed regions.

The efficiency pillars are (6) Higher Education and Lifelong Learning, (7) Labour
Market Efficiency and (8) Market Size.

The innovation pillars, which are particularly important for the most advanced
regional economies, include (9) Technological Readiness, (10) Business Sophisti-
cation and (11) Innovation. This group plays a more important role for intermediate
and especially for highly developed regions. Overall, the RCI framework is designed
to capture short- and long-term capabilities of the regions.

When the Index was constructed, some regions were merged with surrounding
ones to correct for commuting patterns following the new OECD-EC city definition.
For example, more capital regions were merged with their surrounding regions:
Wien (AT), Brussels (BE), Praha (CZ), Berlin (DE), Amsterdam (NL) and London
(UK).

Candidate indicators are mainly selected from Eurostat with some additional
official sources, such as the World Economic Forum. These indicators have been
standardized and, using Principal Component Analysis, artificial variables have
been created.

A score is computed for each pillar as simple average of the z-score standardized
and/or transformed indicators. Sub-indexes for the basic, efficiency and innovation
groups of pillars are computed as arithmetic means of pillar scores. The overall
RCI score is the result of a weighted aggregation of the three sub-indexes. We
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standardized the published data for cluster analysis and calculated the Z-scores. We
used SPSS software to do the calculations.

We have examined the Efficiency sub-index with a view to formulating homoge-
nous groups from the regions. The Pillars included in the Efficiency sub-index are
in Table 1.

Table 1 Name and description of indicators

Name Description Pillar

Population 25–64 with
higher education

Population aged 25–64 with
higher educational attainment
(ISCED5_6) % of total
population of age group

Higher education

Lifelong learning Participation of adults aged
25–64 in education and training,
% of population aged 25–64

Higher education

Accessibility to
universities

Population living at more than
60 min from the nearest
university, % of total population

Higher education

Employment rate
(excluding agriculture)

% of population 15–64 years Labour market

Long-term
unemployment

% of labour force Labour market

Unemployment % of active population Labour market

Labour productivity GDP/person employed in
industry and services (e) Index,
EU27 = 100

Labour market

Gender balance
unemployment

ABSOLUTE difference between
female and male unemployment
rates

Labour market

Female unemployment % of female unemployed Labour market

Share of population
aged 15–24 not in
education, employment
or training (NEET)

% of population aged 15–24 Labour market

Disposable income per
capita

Gross adjusted disposable
household income in PPCS per
capita index

Market size

Potential GDP in PPS Potential market size expressed
in GDP (pps), index EU28 =
100

Market size

Potential POP Potential market size expressed
in population, index EU28 =
100

Market size
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5 The Results of the Cluster Analysis

5.1 The Characteristics of Clusters

After standardization, we have used the published Efficiency pillar scores (Higher
Education and Lifelong Learning; Labour Market Efficiency and Market Size) for a
cluster analysis. Data were not fully available for 4 out of the 262 regions so those
four regions have been left out of the cluster analysis.

The first step in a cluster analysis is to determine the number of clusters. In
order to do that we used hierarchical clustering, the end result of which gave a
recommendation of one of 5-7-10 clusters. For reasons of manageability and having
more balanced cluster sizes, we have decided to use five clusters. We have calculated
EESS%—one of the cluster quality coefficient measures recommended by Vargha
et al. (2016)—for all the three cluster structures and it showed the highest value
(75.7%) at the 5-cluster solution.

We have performed our cluster analysis using K-means clustering. The cluster
method used was between-groups linkage with squared Euclidean distance.

Cluster 4 in Table 2 shows the regions that have the most beneficial position
within the five clusters as they have the highest scores in Higher Education, Labour
Market and Market Size. These are the regions that have the largest market potential
and can be regarded as well positioned in the other variables as well. All in all, 51
regions make up this cluster.

Cluster 5 includes the regions that have a better-than-average Higher Education
score (0.68786) and Labour market (0.79666) and around average Market Size
(0.07966) scores. These regions are in a similar position as the ones in Cluster 4,
but the size of the market is smaller, around average size. The number of regions in
this cluster is 70.

Regions of a worse than average position belong to the other three clusters. The
best of these regions can be found in Cluster 3 (71 regions) with all the three factors
being slightly under-average.

The members of Cluster 1 (22 regions) and Cluster 2 (44 regions) are very
much below average as regards all the three factors. The biggest difference between
Cluster 1 and Cluster 2 can be seen in the Labour Market factor. The members of
Cluster 1 are in the worst position since they have the lowest scores in both the
Higher Education (−1, 44557) and Labour Market (−1, 97820) factors.

Variance analysis proves that in the case of clusters, there is a significant
difference in the expected values of variables. Table 3 shows that the Market Size

Table 2 Final cluster centres

1 2 3 4 5

HE scores −1.44557 −1.10819 −0.25790 0.99458 0.68786

Labour market −1.97820 −0.71304 −0.16317 0.76643 0.79666

Market size −0.94794 −1.14655 −0.14239 1.53838 0.07966
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Fig. 1 Market size values for the regions

variable has the largest F -value, which is to say that this factor has the most
important role in distinguishing clusters.

We have used Fig. 1 to show the Market Size scores of individual regions. The
various geometric shapes indicate which cluster the particular region belongs to. The
graph highlights the fact that members in Clusters 4 and 5 are in the best position
as they have the highest value Market Size factor. It is also interesting to note that
regions with similar Market Size values may belong to different clusters as the value
of their other factors may be very different.
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5.2 Homogeneity

We have examined how many regions in every country belong to a cluster. Belgium,
for example, has six regions in Cluster 4, and two in Cluster 5, which indicates
the country’s very good position in the examined areas. Greece, on the other hand,
has twelve regions in Cluster 1 and only one in Cluster 3, which is a clear sign of
Greece’s bad position in comparison with other European countries. Hungary is also
having problems: four of its regions are in Cluster 2 and three in Cluster 3, which
places the country near the bottom of the list (Table 4).

Table 4 Number of national regions in the individual clusters

Country

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Total
Worst Smallest Close Best Good pos.

position market size to average position with smaller market

Austria 8 8

Belgium 1 6 2 9

Bulgaria 1 5 6

Cyprus 1 1

Czech Republic 6 1 7

Germany 1 16 20 37

Denmark 5 5

Estonia 1 1

Spain 5 2 9 1 2 19

Finland 4 4

France 1 18 1 2 22

Greece 12 1 13

Croatia 2 2

Hungary 4 3 7

Ireland 2 2

Italy 4 2 15 21

Lithuania 1 1

Luxembourg 1 1

Latvia 1 1

Malta 1 1

Netherlands 8 3 11

Poland 11 5 16

Portugal 4 3 7

Romania 7 1 8

Sweden 8 8

Slovenia 1 1 2

Slovakia 2 1 1 4

United Kingdom 4 18 12 34

Total 22 44 71 51 70 258
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Fig. 2 Market size by region and country

From the point of view of cluster analysis, countries with all their regions falling
into one category are considered homogenous.

Countries with up to three regions are considered small. Examples are Estonia,
Cyprus, Croatia, Ireland, Lithuania, Luxembourg, Latvia, Malta and Slovenia, and
only Croatia (2 regions) may be called homogenous. Slovenia’s two regions are not
in the same cluster: one is in Cluster 3 (average position), the other is in Cluster 5
(good position).

Countries with 4–10 regions are medium sized. Austria, Denmark, Finland and
Sweden are homogenous as there is no significant difference between their regions.
In other medium-sized countries differences can be observed between the regions,
for example, Portugal’s four regions are in Cluster 2 and three in the around-average
Cluster 3, which is very similar to Hungary’s situation.

Among countries with 10–20 regions, Spain can be considered rather heteroge-
neous: at least one of Spain’s 19 regions appears in all the clusters.

Countries with more than 20 regions (Germany, France, the UK, Italy) are
considered large. France is the only one of these countries that has regions in as
many as four clusters, the regions of the others fall into three clusters.

We have shown the position of the various regions of each country according to
the factors of Market Size, Labour Market and Higher Education (Fig. 2).
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To which cluster a region belongs is determined by the market size factor. By far
the largest market is the UK00 (Bedfordshire and Hertfordshire + Essex + Inner
London+ Outer London). The graph shows which clusters the regions of a country
belong to and the clusters are represented by the same shapes as in Fig. 1.

In the case of the Higher Education factor the position of a region in the cluster
structure is a bit less unambiguous. (From the point of view of clustering this
factor has the least important role as its F -value in Table 3 has the lowest value.)
We can see regions which have similar values but belong to different clusters,
the reason for which is that we have used not one but three factors creating the
clusters. Denmark, for example, has been categorized as a homogenous country;
however, if we consider only one factor, namely Higher Education, we can observe
quite significant differences between the regions. If we consider all the factors,
however, the differences between the regions are not sizeable enough to place them
in different clusters.

Examining the Labour Market factor, similar conclusions can be drawn. It is
easy to see in which countries there are significant differences between regions
concerning either factor values or belonging to a particular cluster (e.g. Spain or
Italy).
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6 Final Remarks

The results demonstrate that territorial effectivity in the EU has a strong regional
dimension. Regions within a country may show greater differences in development
than the countries they belong to. In this way the regions of a country may fall in
different clusters. This information can be highly important when the distribution of
various EU development funds is considered.

As we have shown, the Market Size factor has the most important role in
differentiating clusters—and Higher Education the least important. That needs to be
taken into consideration when assessing the development potential of a particular
region.

As we have seen, there are regionally homogenous and heterogeneous coun-
tries. Austria, Denmark, Finland and Sweden can be considered homogenous:
their regions are all in Cluster 5, obviously, they are all very highly developed
economically.

A further question to examine may be whether there is a significant difference in
competitiveness between regions belonging to different clusters. That is to say, can
we draw conclusions as to the competitiveness of a region on the basis of just a few
factors?
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Another question is which factor has the most important role in measuring
competitiveness. As various factors may be more or less important in making up
competitiveness, we may need to find the most relevant factors.
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Estimation Methods Based on Weighting
Clusters

Roland Szilágyi, Beatrix Varga, and Renáta Géczi-Papp

Abstract Research based on samples and their conclusions play an increasing role
in making business decisions and also in creating information. The study gives an
overview of the different estimation methods that can be used for the description
of socio-economic relations. In addition, we searched for solution variants for
handling of mistakes, based on different distributions. Identifying tendencies plays
a significant role in eliminating the bias caused by failed assumptions. It is worth
examining the differences between tendencies of different groups. In order to
achieve a successful procedure the samples should be grouped based on variables
which are in stochastic relation with the examined criterion. The tendencies must
be examined with the help of simulations and modeled according to this. That was
the reason why we created an estimating model of weighted tendencies, in which
the estimated values of the above-mentioned tendencies were defined as average
estimated values by weighting the explanatory features of functions.

1 Introduction

Due to alterations in market structure, the rapid changes in the environment and
the development of information technology, the time necessary for preparing a
decision has significantly decreased. The decision-makers of business life can only
compete effectively with both time and competitors if they constantly improve the
techniques used during the preparation of decisions. There is a wide choice of
quantitative analytic methods for the inspection of the characteristic features of
individuals. However, choosing and applying the adequate quantitative method is
not the only key to success. The other important factor must be the reliability of
the data used to obtain information. It is known from the specialized literature that
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valid results, those producing and publishing relatively few errors resulting from
surveys based on sampling, can only be guaranteed if there are adequate databases.
It is not uncommon to use auxiliary information, which is mainly used to determine
the sampling error, to increase the response ratio, and to reveal bias (see Estevao
and Särndal 2002; Roy 2006). The auxiliary information necessary for correcting
the results of surveys based on sampling is widely dispersed and can be found in
the data collections of different offices and organizations (though it may not always
be accessible). In practice, however, companies and researchers often do not have
access to the necessary auxiliary information for financial or technical reasons, so
they use as much internal information as possible. For this reason, other methods
are used that are not able to meet the general estimation criteria, like computational
cost, unbiasedness, efficiency, or asymptotic properties (Kennedy 1998). The aim
of the research is to work out an analytic system which enables minimization of
mistakes and the reduction of bias. The method was created in a generalized way,
so that this process could be of help to both individual researchers in the social
sciences and to research organizations. It can be utilized not only on a macro-level
but even on the level of small-size enterprises. Such enterprises typically do not
have access to error calculating software and algorithms, unlike the representatives
of official statistical organizations. Without adequate methods they are not able to
produce quality information. The methodological results of this empirical research
aim at filling this gap.

During the analysis, we offer a solution for those who do not have the possibility
of using auxiliary information. For this purpose, partial samples were created from
the available population data by simple random sampling. For each subsample,
several independent cluster analyses were performed, and the results of the cluster
analyses obtained were weighted according to their homogeneity using the weight
system we developed. Finally, we calculated the results of the different cluster
procedures to the extent of the weighting, thus improving the estimation procedure.
The structure of the study is as follows: the second section describes the related
literature; the third section details the database and the created estimation procedure;
in the fourth section empirical results are presented; the study ends with the
conclusions in the fifth section.

2 Related Literature

The literature related to the statistical inference and sampling is quite wide. In
practice, it is rare to know the population data, because of financial, methodological,
and other reasons. Companies and researchers therefore use different sampling
methods in many cases and try to correctly (or incorrectly) describe the char-
acteristics of the population on the basis of samples. Since the paper’s goal is
the introduction of a new estimation process, the different sampling techniques
are not presented. Many estimation procedures are known, and because of the
IT development their application is becoming simpler. Here we introduce basic
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estimation procedures closely related to the purpose of the study. The described
methods are valid for a finite population. The following notations were used in
the equations: N—population size; n—sample size; (y1, y2, . . . , yN) vector is a
realization of N independent, randomly distributed random variable; μ—expected
value of the population; σ 2—population variance.

2.1 Independent, Identically Distributed Random Variables,
Simple Sampling Without Replacement

If we have independent, identically distributed random variables (μ, σ 2
y ) and the

sampling method is simple, without replacement, then the sample mean is an
unbiased estimate of the expected value of the population. In this case, the following
formula can be used (Fuller 2009):

This means that

E{(σ 2
y − μ)2} = n−1σ 2

y

is the best estimation, which minimizes the mean square error (MSE).

2.2 Stratified Sample

The characteristics of the population do not change in the case of stratified sample.
(The description of stratification procedures exceeds the scope of this study.)
Basically, it is advisable to use stratified sampling for a heterogeneous population.
For the same sample size, with appropriate stratification, the expected value and the
standard deviation are obtained with a smaller error than for simple sampling (Bunce
et al. 1983). The following formula contains an estimate in the case of stratified
sampling where H represents the number of groups (Fuller 2009):

yst =
H∑

h=1

Whyh, where Wh = N−1Nh

3 Estimation Methods Based on Weighting Clusters

In cases where no auxiliary information is available, the researcher may choose from
two options: use internal (sample) information or apply typical trends of clusters and
project the pattern to the entire population. In the present study, the latter option was
selected.
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3.1 Dataset

The database of the Household Budget Survey (HBS) in 2005 was used for the
analysis, provided by the Hungarian Central Statistical Office, revised by Eurostat.
The size of the population is 9058, with 42 different stock and flow variables.
Subsequently, 15 more variables were created based on existing variables (per
capita or per employee). There are both quantitative and qualitative; categorical and
continuous; nominal, ordinal and ratio scales variables. This variety ensures that the
analysis is implemented as fully as possible. Observation units of the database were
included in the analysis without weighting, as individuals. Since the data comes
from a population survey, many variables can be considered with high missing
values. During the selection of the variables included in the analysis, the ratio of
the missing values also played an important role. In the specification of model
the continuous variables with few missing values were preferred. We proposed to
estimate the household’s average net income (net income means the total income
from all sources including non-monetary components minus income taxes) in the
population. For clustering we used the following variables:

• Age (in completed years) of reference person;
• Useful living area in (m2) (principal residence);
• Number of cars;
• Total consumption expenditure;
• Consumption on food and non-alcoholic beverages;
• Consumption on clothing and footwear;
• Consumption on housing, water, electricity, gas, and other fuels;
• Consumption on furnishings, household equipment, and routine maintenance of

the house;
• Consumption on communication;
• Sum of household members.

We took 10 different samples, each consisting of 900 households, according to
the rules of simple random sampling. With the help of these samples we made a total
of 100 classifications where different numbers of clusters were created. In order to
ensure comparability, 16 different stratified samples were used to evaluate the results
where the stratifying variables were the region, density, and sex.

3.2 Methodology

In cases where it is not possible to take a stratified sample, we need to estimate
the parameters of the heterogeneous population based on a sample. The estimation
method based on weighting clusters is capable of drawing conclusions, even in
the absence of auxiliary information. Simulation studies performed with the HBS
database proved to be useful in three ways. First of all, because the original
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database provided the population’s expected value—estimating this effectively and
accurately was the fundamental aim. Secondly, the procedure takes advantage of
cluster analysis. Finally, the results of classification are used not only partially, but
for describing the entire database. The stages of the weighted estimation based on
cluster analysis are the following:

1. Creating subsamples, using simple random sampling.
2. For each subsample, making different cluster analyses using different variables

for the classification in each case.
3. Ranking the solutions of classifications based on their homogeneity.
4. Creating a suitable system of weights.
5. Estimating points.
6. Estimating confidence intervals.

3.2.1 Cluster Analysis

It should be taken into account that cluster analysis is primarily an exploratory
method and that there is no single best solution. The development of clusters
depends on the chosen methods, distance calculation methods, and variables
involved in the analysis (Hair et al. 2010). From among the agglomerative hierarchi-
cal classification methods, the Ward method was chosen. In this method, the cluster
to be merged is the one which will minimize the increase in within-group variance
(Ward 1963). During the formation of groups, general statistical knowledge has to
be kept in mind. We know that having too few groups does not assist in effective
analysis, while the formation of too many groups leads to the results of analysis of
data without grouping. The clusters were created according to the following criteria:
the grouping variables are uncorrelated; the database does not contain outliers;
the grouping variables should be continuous, and categorical variables should be
avoided. However, in order to illustrate the effects of ignoring the criteria, some
clusters were allowed to keep outliers and to include categorical variables. If we
measure n observations in criteria/variables m, this can be described with a matrix
of n×m:

X = [xij ] =

⎡
⎢⎢⎣

x11 x12 x1m

x21 x22 x2m

xn1 xn2 xnm

⎤
⎥⎥⎦ ,

where i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Each row of the matrix represents
an observation; xij is the value of variable j for observation i.

In this way the clusters are

G = {G1,G2, . . . ,Gk, . . . ,Gl},
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Fig. 1 The result of the different cluster analysis in the first subsample. *Clusters were created
based on the variables in parentheses. Source: Own compilation

where k is the id of the cluster (where: k = 1, 2, . . . , l) and l means the total number
of clusters, nk is the number of observations/elements of the kth cluster (where
nk = 1, 2, . . . , u). By clustering, we mean the division of the set X into subgroups
to which the following properties must be fulfilled: for every xi : xi ∈ Gk i.e. all
elements belong to a cluster; Gk ∩Gl = ∅ if k �= l, i.e. all elements belong to only
one cluster, and clusters are mutually disjoint sets; nk �= 0, i.e. there are no clusters
having no elements; ∪l

k=1Gk = X together the clusters cover all elements. During
the simulation, ten subsample and several different cluster analyses was performed
(according to the cluster procedure assumptions) using different groups of variables
as clustering criteria. At the end of the process, 100 classifications were finally
obtained from the 10 subsamples. Each of the classification procedures divided the
samples into 4 to 6 clusters, depending on the result of cluster analyses (Varga and
Szilágyi 2011). The analyses were carried out using the SPSS (Statistical Package
for the Social Sciences) software. Figure 1 illustrates the process and Table 1 helps
to understand the process.

3.2.2 Ranking Classifications

The determinant of the covariance matrix of the grouping variable is the generalized
variance of the given cluster: det(Ck). This is used to describe the homogeneity of
the clusters. The larger the generalized variance, the more heterogeneous the clusters
are. Cluster analysis can be considered successful when the homogeneity within a
group is high and the distance among groups is also high. In this paper we introduce
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Table 1 Number of cluster
analyses by subsamples Subsample

Number of

classifications

1 10

2 14

3 10

4 7

5 9

6 10

7 10

8 10

9 10

10 10
Total 100

Source: Own compilation

an indicator that can characterize the homogeneity of the clusters, which helps in
ranking the clusters. For this indicator we use ω.

ωk = 1 − det(Ck)∑l
k=1 det(Ck)

.

A low value of ω indicates that the cluster is more heterogenous and a higher
value indicates more homogeneity. The advantage is that ω it is independent of the
measurement and scale of original variables; it is a relative indicator which makes
it easier to compare the homogeneity of clusters. Based on the above formula, the
clusters became comparable for each of the 100 classifications. Later on this feature
is used in the weight system design. Evaluation of homogeneity allows us to take
the “quality” of the classifications into account during the weighting process so that
it is incorporated in the estimation process.

3.2.3 Developing a Weight System

The design of the weight system has a great importance in the estimation process.
If weights are poorly defined, results will be biased. In order to benefit from the
cluster analysis in the estimation process, it is important to consider the cluster
properties. Determination of the weight system was based on the following criteria:
higher weight was given to clusters that had more elements and that were more
homogeneous; clusters with higher dispersion in the target variable (estimated
variable) were also given higher weight. The formula based on these considerations



110 R. Szilágyi et al.

is the following:

Wk = nk · s2
k · ωk

∑l
k=1 nk · s2

k · ωk

,

where
∑l

k=1 Wk = 1; sk is the variance of the target variable (estimated variable) in

the kth cluster.

4 Result

In the study 10 randomly selected random samples of 900 elements were gen-
erated from the 9058 item database of the Hungarian Central Statistical Office’s
Household Budget Survey. Based on these samples, a total of 100 different cluster
classifications were made; in each case the number of clusters was between 4 and 6.
Point estimates were prepared based on the methodology described in the previous
section. In order to illustrate the consequences of ignoring the assumptions, so-
called test clusters were also included among the clusters (raw cluster based on
Fig. 2). In these cases, the expectations concerning outliers or the type of variables
included in the survey (avoiding categorical variables) are not met. As we assumed
would happen, estimates from these clusters significantly differed from the expected
value. From the population data, it was also possible to determine the expected
value (mean) of the population. In the present case, the value of the net annual
income in the population is HUF 2,114,213. In addition to the estimation based
on weighting clusters, simple point estimates for clusters based on simple random
samples were also determined to ensure comparability. Since the main purpose of
the method was to provide an alternative when stratified sampling is not possible, it
is also advisable to compare the results with the stratified samples. There were 16
different stratifications based on different criteria and we got 900-element samples.
From these samples we estimated the expected net income. We illustrate the results
graphically, as this helps to understand and process the data better (Kovács and
Kriszt Sándorné 2016). We can compare the results of the estimation based on four
different aspects altogether. The results are summarized in Fig. 2.

Figure 2 shows the differences of the point estimates and the expected value for
annual household net income in Hungary. As you can see, estimates are randomly
dispersed around the expected value. We did not find systematic bias. The unusual
clusters in raw cluster based category can be traced back to different causes: the
involved variables have a significant amount of missing data; outlier values were
not filtered out during the analysis; categorical and qualitative variables were used
in the model. Compared to estimation of simple random sampling, it can be seen
that the range of the method now introduced is smaller. However, the results are
less asymmetric than in the case of simple random samples. Compared to stratified
sampling, the range of estimation based on clustering is larger. Based on the results,
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Fig. 2 Comparison of point estimates in case of different methods

the method offers an effective, unbiased alternative in cases where no stratified
sample is available to perform the analysis on. There are several advantages to
our method that make it suitable for situations such as corporate data analysis.
When the method is used with a simple random sample, it acts as a kind of
post-stratification. The bias of outliers is decreased. Information that is internal
to the sample is used effectively, and external information is not necessary. Just
like any analytical method, the new procedure also has limitations. This method is
suitable for a relatively large sample size and when categorical variables are not
used. A complete data set is also advantageous, since a missing item leads to the
entire element being filtered out, which reduces sample size. Improving the method
(maybe with the contribution of institutions of higher education outside Hungary)
can provide wider use. International cooperation provides great opportunities and
can bring significant results.
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5 Conclusions

In this paper we have introduced an estimation procedure that can be used to
estimate a parameter of a heterogeneous population in cases when it is not possible
to take a stratified sample during sampling. Within the observation units, we have
created groups that differ from each another in the joint patterns of many variables
(long distances between them), whereas within one group we cannot find big
differences (clusters should be homogeneous). The clusters were sorted by their
homogeneity and then the weight system was created. During the determination of
the weights, cluster size, homogeneity, and volatility of variables that were more
closely related to the dependent variable played important roles. As a final step,
point and interval estimates were made. Comparison of results with simple random
samples and stratified samples provided evidence that the proposed procedure is
effective. Although the estimation range is the largest for the new method, values
do not show asymmetry or systematic distortion. This is true even though the
test clusters (for which the required conditions were not met) are present in the
results; the estimation accuracy can be further increased by fully complying with
the necessary conditions. The method can be improved. Future research directions
include testing of other clustering methods and using larger samples. Simple random
and stratified sampling is still an important benchmark, and the use of additional
sampling methods is not justified, as our experience is that more complicated
methods are not used in corporate research. The estimation method based on
weighting clusters can serve as an effective alternative for companies when it is
not possible to include auxiliary information or stratified sampling.
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Five Strategies for Accommodating
Overdispersion in Simple
Correspondence Analysis

Eric J. Beh and Rosaria Lombardo

Abstract Traditionally, simple correspondence analysis applied to a two-way
contingency table is performed by decomposing a matrix of standardised residuals
using singular value decomposition where the sum-of-squares of these residuals
gives Pearson’s chi-squared statistic. Such residuals, which are treated as being
asymptotically normally distributed, arise by assuming that the cell frequencies
of the table are Poisson random variables so that their expectation and variance
are equivalent. However there is clear evidence in the statistics literature that
suggests that the variance of these residuals is less than one. Thus, we observe
overdispersion in the table. Various strategies can be undertaken to study, and
deal with, overdispersion. In this paper we shall briefly review five possible
strategies. Although we conceed that the purpose of this paper is not to provide a
comprehensive examination of their utility—future investigations of their properties
will confirm any further benefits in their use.

1 Introduction

Correspondence analysis is a very popular approach for visualising the association
between two or more categorical variables. There is a plethora of books, articles
and reports that describe the practical and technical features of correspondence
analysis. One may consider, for example, the texts of Beh and Lombardo (2014),
Greenacre (1984) and Lebart et al. (1984) for a comprehensive description of the
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range of issues that a correspondence analyst is confronted with. There are a number
of starting points from which one may consider correspondence analysis but the
most common approach involves the singular value decomposition (SVD) of the
standardisation of the cell frequencies of a contingency table. The standardisation
rests on the assumption that the cell frequencies are random variables from a Poisson
distribution so that their expectation and variance are identical. However, in many
situations, such an equality is rarely observed. Instead, the data may either exhibit
characteristics that are consistent with overdispersion (variance > expectation)
or, less likely, underdispersion (variance < expectation). These features are not
confined to just the Poisson distribution, but also apply to all single parameter
distributions including the binomial and exponential distributions (Cox 1983). The
possibility of over/underdispersion in a contingency table has implications for how
one performs simple correspondence analysis. As we shall discuss, overdispersion is
much more of a concern than underdispersion for contingency table analysis and so
we shall confine our attention to overdispersed cross-classified categorical data. In
doing so, we will briefly explore five strategies for accommodating overdispersion
in a contingency table. This shall be achieved by first providing a brief overview of
some of the fundamental features of simple correspondence analysis; see Sect. 2.
Section 3 provides a glimpse at the problem of overdispersion in contingency
tables as described by Agresti (2013) and Haberman (1973). The five strategies
that we consider here can be divided between those involving variants of the
Poisson distribution (which accommodate for overdispersion by the presence of an
additional, dispersion, parameter—see Sect. 4) and variance stabilising approaches
(Sect. 5). The variance stabilising approaches we discuss include the SVD of what
we term the Freeman–Tukey residual (see Beh et al. 2018 for a comprehensive
discussion of this approach) and the adjusted (Pearson) residual proposed by
Haberman (1973); a comprehensive description of this particular approach to
accommodating overdispersion in the correspondence analysis of a two-way table
was given by Beh (2012).

We must acknowledge that the discussion of overdispersion for the Poisson
distribution is not new. For example, Greenwood and Yule (1920) and Satterthwaite
(1942) provide early discussions of this issue which led to an evolution of numerous
variants and extensions of the Poisson distribution. What has not been adequately
discussed, however, is how one may take advantage of these variants and undertake
a correspondence analysis of a two-way contingency table when the cross-classified
data exhibit overdispersion. There has been limited attention paid to this aspect
of correspondence analysis and the purpose of this paper is NOT to provide a
comprehensive discussion of overdispersion in correspondence analysis. Nor is our
intention to definitively state a preference of one strategy over another. Instead,
the aim of this paper is to discuss possible generalisations and alternatives of
the Poisson distribution to accommodate overdispersion in contingency tables. A
detailed examination of each of these strategies will be left for future consideration.
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2 A Brief Overview of Correspondence Analysis

2.1 Notation

Suppose we have two categorical variables that are cross-classified to form an I ×J

two-way contingency table, N, where the (i, j)th cell entry is denoted by nij for i =
1, 2, . . . , I and j = 1, 2, . . . , J . Let the grand total of N be n and let the matrix
of relative frequencies be P so that the (i, j)th cell entry is pij = nij /n where∑I

i=1
∑J

j=1 pij = 1. Define the ith row marginal proportion by pi• = ∑J
j=1 pij .

Similarly, define the j th column marginal proportion as p•j =∑I
i=1 pij .

To determine whether there exists a statistically significant association between
the row and column variables, one may calculate Pearson’s chi-squared statistic

X2 =
I∑

i=1

J∑

j=1

(
nij − ni•n•j /n

)2

ni•n•j /n
= n

I∑

i=1

J∑

j=1

(
pij − pi•p•j

)2

pi•p•j
.

Given a level of significance, α, the statistical significance of the association may
be tested by comparing X2 with the 1− α percentile of the chi-squared distribution
with (I − 1) (J − 1) degrees of freedom.

2.2 Pearson’s Residuals

When it is found that a statistically significant association exists between two
categorical variables, a visual inspection of this association can be made using
correspondence analysis; see, for example, Beh and Lombardo (2014), Greenacre
(1984) and Lebart et al. (1984). Central to correspondence analysis is the partition
of Pearson’s chi-squared statistic. This is achieved by applying the singular value
decomposition (SVD) to Pearson’s residuals, rP

ij , such that

rP
ij =

pij − pi•p•j√
pi•p•j

=
M∑

m=1

aimλmbjm,

where M = min (I, J ) − 1. Here aim is the mth element of the singular vector
associated with the ith row category. Similarly, bjm is the mth element of the
singular vector associate with the j th column category. These elements have the
property

I∑

i=1

aimaim′ =
{

1 m = m′
0 m �= m′

J∑

j=1

bjmbjm′ =
{

1 m = m′
0 m �= m′ .
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The values of aim and bjm are commonly viewed as scores that provide insight into
those rows and columns that play an important role in defining the association struc-
ture between the variables. They are also sometimes used as standard coordinates
for visualising the association. Also, λm is the mth singular value of the Pearson
residuals so that

λm =
I∑

i=1

J∑

j=1

pij aimbjm ,

where 1 > λ1 > λ2 > . . . ,> λM > 0. Through the SVD of rP
ij , a visualisation of

the association between the row and column categories of a two-way contingency
table can be made by considering either a traditional correspondence plot or a biplot.
For a traditional correspondence plot, the ith row and j th column categories are
depicted using the principal coordinates along the mth dimension by

fim = aim√
pi•

λm gjm = bjm√
p•j

λm,

respectively. Biplot coordinates can be depicted by plotting the principal coordinates
for one variable and standard coordinates for the other variable. There has been
plenty of discussion of the use of plotting schemes, including biplots, in the
correspondence analysis literature; see Beh and Lombardo (2014, Section 4.5) for
more details.

An important property of these features is that they are directly linked to
Pearson’s chi-squared statistic such that

X2

n
=

M∑

m=1

λ2
m =

I∑

i=1

M∑

m=1

pi•f 2
im =

J∑

j=1

M∑

m=1

p•jg2
jm.

From this classical approach to correspondence analysis, the (i, j)th cell propor-
tion can be exactly reconstituted from the association model

pP
ij (M) = pi•p•j

(
1 +

M∑

m=1

ăimλmb̆jm

)
,

where the inclusion of the subscript (M) indicates that the model accounts for the
association reflected in an M-dimensional correspondence plot. For this model,
ăim = aim/

√
pi• and b̆jm = bjm/

√
p•j so that

I∑

i=1

pi•ăimăim′ =
{

1 m = m′
0 m �= m′

J∑

j=1

p•j b̆jmb̆jm′ =
{

1 m = m′
0 m �= m′ . (1)
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Therefore, simple correspondence analysis may be performed using a gener-
alised SVD (GSVD) of the matrix of Pearson’s ratio’s whose (i, j) element is
pij /

(
pi•p•j

) − 1 using these constraints; see, for example, Beh (2004) and Beh
and Lombardo (2014, p. 125) for more details.

3 Dealing with Overdispersion

Despite the popularity of Pearson’s chi-squared statistic, the problem is that the
Pearson residuals, rP

ij , are based on the assumption that the cell frequencies, nij ,
are random variables from a Poisson distribution with expectation npi•p•j . This
implies that the mean and variance of nij are assumed to be identical, which may
not be valid. In fact, Agresti (2013, p. 80) points out that the asymptotic variance
of

√
nrij “is less than 1.0, averaging [(I − 1) (J − 1)]/(number of cells)”—or

(1 − 1/I) (1 − 1/J ). Also, it was pointed out by Haberman (1973) that, under
independence, the maximum likelihood estimate (using the Poisson distribution, for
example) of the variance of

√
nrP

ij is (1 − pi•)
(
1 − p•j

)
< 1.0. Both results imply

that the variance of the residuals exceeds its expectation and so the residuals, and
hence nij , exhibit overdispersion when it is treated as a Poisson random variable.
Therefore, performing correspondence analysis using rP

ij may, in some cases, not
be the most appropriate means of studying the association structure between the
variables. By adopting the strategy used by Efron (1992), one may easily detect
overdispersion in cross-classified data by plotting the standard deviation of each
cell against the Pearson residual, rP

ij . Due to space restrictions here we confine
our discussion to introducing some of the technical aspects of various strategies
for dealing with overdispersion in the correspondence analysis of a two-way
contingency table. However, for a more visual perspective of this issue, one may
consult, for example, Beh and Lombardo (2014, Sections 9.2 & 9.3) and Beh
et al. (2018) who provided a practical demonstration of the role of correspondence
analysis and overdispersion in contingency tables.

4 Strategies Based on Variants of the Poisson Distribution

4.1 A General Standardised Residual

There are a range of alternative strategies that one can take to deal with overdis-
persion. Suppose we define γ to be the dispersion parameter associated with a
particular variant of the Poisson distribution so that E

(
nij ; γ

)
and Var

(
nij ; γ

)
is
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the expectation and variance of nij , respectively, given the dispersion parameter. So,
a general standardised residual of nij is

rG
ij (γ ) = nij − E

(
nij ; γ

)
√

Var
(
nij ; γ

) .

Therefore a general approach to performing correspondence analysis of a contin-
gency table that consists of overdispersed data is to apply an SVD to the matrix
with elements rG

ij (γ ) whose generic element is

rG
ij (γ ) =

M∑

m=1

ãimλ̃mb̃jm,

where

I∑

i=1

ãimãim′ =
{

1 m = m′
0 m �= m′

J∑

j=1

b̃jmb̃jm′ =
{

1 m = m′
0 m �= m′ . (2)

The choice of γ that is made to reflect the overdispersion in a contingency table
depends on the choice of which variant of the Poisson distribution is considered.
We now discuss a few such variants and other variance stabilising options that
the correspondence analyst can use. Since further investigation of each strategy
described below, and the properties of their γ parameter, needs to be undertaken,
we shall include a subscript on each γ .

4.2 Generalised Poisson Distribution

One strategy that can be adopted when performing a simple correspondence analysis
on overdispersed data is to assume that the cell frequencies are random variables
from the generalised Poisson distribution with a mean and variance of

E
(
nij ; γ1

) = npi•p•j
1 − γ1

Var
(
nij ; γ1

) = npi•p•j
(1 − γ1)

3 ,

respectively; see Consul (1989), Consul and Jain (1973) and Tripathi and Gupta
(1984) for more details on this distribution. Note that when the dispersion parameter
is γ1 = 0, E

(
nij ; γ1 = 0

) = Var
(
nij ; γ1 = 0

)
so that there is zero dispersion.

Conversely, γ1 > 0 and γ1 < 0 reflect overdispersion and underdispersion,
respectively.

By considering such an amendment to the mean and variance of the Poisson
distribution, correspondence analysis of overdispersed cross-classified data may be
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performed by considering the SVD of the (generalised) standardised residual

rGP
ij (γ ) = pij − pi•p•j / (1 − γ1)√

pi•p•j / (1 − γ1)
3

=
M∑

m=1

ãimλ̃mb̃jm . (3)

Note that for zero dispersion, γ1 = 0, the left hand side of (3) simplifies to the
standardised residual rP

ij .

By applying an SVD to the matrix of elements consisting of rGP
ij , the (i, j)th

cell proportion can be exactly reconstituted using the model

pGP
ij (M) =

pi•p•j
1 − γ1

+
√

pi•p•j
(1 − γ1)

3

M∑

m=1

ãimλ̃mb̃jm

= pi•p•j
1 − γ1

(
1+ 1√

1 − γ1

M∑

m=1

ăimλ̃mb̆jm

)
,

where ăim and b̆jm are constrained by (1). Note that, as expected when γ1 = 0,
pGP

ij (M) = pP
ij (M). Therefore, by constraining ăim and b̆jm by (1), correspondence

analysis may be equivalently performed by applying a GSVD to the matrix with
elements

√
1 − γ1pij /

(
pi•p•j

) − 1/
√

1 − γ1. Note that, again, when there is zero
dispersion (so that γ1 = 0) this results in the GSVD of Pearson’s ratio.

4.3 Negative Binomial Distribution

Another strategy that can be adopted to deal with overdispersed cross-classified data
is to consider that nij is a random variable from a negative binomial distribution
(Fisher 1941). By doing so, the expectation and variance of nij is

E
(
nij ; γ2

) = npi•p•j Var
(
nij ; γ2

) = npi•p•j +
(
npi•p•j

)2

γ2
,

respectively. Overdispersion arises for all γ2 > 0, although as γ2 → ∞,
Var
(
nij ; γ2

) → E
(
nij ; γ2

)
. In this case, correspondence analysis may be per-

formed by first considering the SVD of the standardised nij under this distribution
such that

rNB
ij (γ2) = pij − pi•p•j√

pi•p•j + (n/γ2)
(
pi•p•j

)2 =
M∑

m=1

ãimλ̃mb̃jm .
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By applying an SVD to the matrix consisting of rNB
ij , the (i, j)th cell proportion

can be exactly reconstituted using the model

pNB
ij (M) =

pi•p•j
pi∗p∗j

(
1 +

√
1 + npi•p•j

γ2

M∑

m=1

ăimλ̃mb̆jm

)

where ăim and b̆jm are constrained by (1). Note that, as γ2 →∞, pNB
ij (M) → pP

ij (M).

4.4 Conway–Maxwell Poisson Distribution

Another variant of the Poisson distribution that accommodates for dispersion is the
Conway–Maxwell Poisson (CMP) distribution; see Conway and Maxwell (1962).
For such a distribution, there is no closed form for the expectation and variance of
nij ; however, they may be approximated (Sellers et al. 2012) by

E
(
nij ; γ3

) ≈ (npi•p•j
)1/γ3 − γ3 − 1

2γ3
Var
(
nij ; γ3

) ≈
(
npi•p•j

)1/γ3

γ3
,

where γ3 > 1 reflects underdispersion in the contingency table and 0 < γ3 <

1 reflects overdispersion. Note that when γ3 = 1, there is zero dispersion since
E
(
nij ; γ3 = 1

) = Var
(
nij ; γ3 = 1

)
. It was shown by Shmueli et al. (2005) that

such approximations work well when γ3 ≤ 1 or when npi•p•j > 10γ3 . In this case,
correspondence analysis of overdispersed cross-classified data may be performed
by considering the SVD of a matrix whose general element is the residual

rCM
ij (γ3) = pij − n(1−γ3)/γ3

(
pi•p•j

)1/γ3 + (γ3 − 1) / (2nγ3)√
n(1−γ3)/γ3

(
pi•p•j

)1/γ3 /γ3

=
M∑

m=1

ãimλ̃mb̃jm .

(4)
Note that when there is zero dispersion, γ3 = 1, the left hand side of (4) simplifies
to rP

ij . Otherwise, one cannot escape from the standardised residual being dependent
on the sample size, n.

5 Variance Stabilising Strategies

Strategies to accommodate for overdispersion of the cell frequencies of a contin-
gency table are not just confined to considering variants of the Poisson distribution.
Here we consider two relatively common approaches that can be used to stabilise
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the variance of the Poisson distribution—by incorporating the variance structure of
rP
ij described by Haberman (1973) and by using the Freeman–Tukey transformation.

5.1 Adjusted Standardised Residual

One strategy that may be adopted to accommodate the presence of overdispersion
in a contingency table is to consider the adjusted Pearson residuals proposed by
Haberman (1973)

rA
ij =

pij − pi•p•j√
pi•p•j (1 − pi•)

(
1 − p•j

) .

One advantage of considering rA
ij is that, unlike rP

ij ,
√

nrA
ij is a standard normally

distributed random variable. In fact, Beh (2012) showed how correspondence
analysis can be performed through the SVD of the matrix whose general element
is rA

ij . For example, it was shown that the (i, j)th cell proportion can be exactly
reconstituted by

pA
ij (M) = pi•p•j

(
1 +

M∑

m=1

ăimλ̃mb̆jm

)
,

where ăim and b̆jm are constrained by

I∑

i=1

(
pi•

1 − pi•

)
ăimăim′ =

{
1 m = m′
0 m �= m′

J∑

j=1

(
p•j

1 − p•j

)
b̆jmb̆jm′ =

{
1 m = m′
0 m �= m′ .

Therefore, with these orthogonal constraints, a correspondence analysis may be
equivalently performed by applying a GSVD to the matrix whose elements are
Pearson’s ratio, pij /

(
pi•p•j

)− 1.

5.2 Freeman–Tukey Residual

Since overdispersion arises because the variance of nij is larger than its expectation,
a popular method used to stabilise its variance is to consider the transformation
proposed by Freeman and Tukey (1950) who, adapting their notation for a two-way
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contingency table, showed that

√
nij +

√
nij + 1

has a mean and variance of
√

4npi•p•j + 1 and 1, respectively. Thus, Freeman and
Tukey (1950) proposed

T̃ 2 =
I∑

i=1

J∑

j=1

(√
nij +

√
nij + 1 −√4npi•p•j + 1

)2

as an alternative to Pearson’s chi-squared statistic. Note that T̃ 2 may be alternatively,
but equivalently, expressed as

T̃ 2 = n

I∑

i=1

J∑

j=1

(
√

pij +
√

pij + 1

n
−
√

4pi•p•j + 1

n

)2

.

For large sample sizes, T̃ 2 may be approximated by eliminating 1/n. Doing so gives
the Freeman–Tukey statistic

T̆ 2 = 4n

I∑

i=1

J∑

j=1

(√
pij −√

pi•p•j
)2

.

From the perspective of correspondence analysis of a contingency table, Beh and
Lombardo (2014) introduced the idea that overdispersed cross-classified data can be
treated by applying an SVD to the Freeman–Tukey residual such that

rFT
ij = √

pij +
√

pij + 1

n
−
√

4pi•p•j + 1

n
=

M∑

m=1

ãimλ̃mb̃jm . (5)

This strategy was extensively elaborated upon in the context of studying sparse
archaeological data by Beh et al. (2018). Here λ̃m is the mth singular value of the
I × J matrix of Freeman–Tukey residuals whose (i, j)th element is rFT

ij and b̃jm

are subject to the constraints given by (2). When n is large, one may consider the
SVD of rT

ij such that

rT
ij = 2

(√
pij −√

pi•p•j
) =

M∑

m=1

ãimλmb̃jm . (6)

For many practical situations where n is large, choosing between (5) or (6) will have
a minimal effect on the numerical summaries when performing a correspondence
analysis. Nor will there be any considerable difference in the configuration of points
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when comparing their correspondence plots. Refer to Beh et al. (2018) for more
details on this approach, including specific comments on the association model

pT
ij (M) = pi•p•j

(
1 + 1

2
√

pi•p•j

M∑

m=1

ãimλmb̃jm

)2

which, unlike pP
ij (M), guarantees that any reconstitution of the cell frequencies (or

their marginal frequencies) for any M < min (I, J )− 1 will be non-negative.

6 Discussion

The aim of this paper is to propose a variety of strategies that one may adopt for deal-
ing with overdispersion in cross-classified data when performing correspondence
analysis. In all of the cases described above, a visualisation of the association can
be undertaken by either constructing a traditional correspondence plot or a biplot.
For a correspondence plot, the coordinate along the mth axis for the ith row, and j th
column, is

fim = ãimλ̃m√
pi•

gjm = b̃jmλ̃m√
p•j

,

respectively, where ãim and b̃jm are constrained by (2). For all of the strategies
outlined here, the total inertia of the contingency table can still be quantified through
the sum-of-squares of the residuals, and with the orthogonality constraints (2), can
be expressed as

X̃2

n
=

M∑

m=1

λ̃2
m =

I∑

i=1

M∑

m=1

pi•f 2
im =

J∑

j=1

M∑

m=1

p•jg2
jm.

However, unlike the classical approach to correspondence analysis, such a measure
will not always be equal to Pearson’s chi-squared statistic.

In all cases, one may also construct a biplot to visualise the association. If we
consider a more general set of coordinates such that

f̃im = ãimλ̃
β
m√

pi•
g̃jm = b̃jmλ̃

1−β
m√

p•j
,

then there are two types of biplots that are typically considered, namely the row
isometric biplot where β = 1 and the column isometric biplot where β = 0; see
Beh and Lombardo (2014, Section 4.5.3), and the references mentioned therein,
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for more details on the numerous biplot displays when performing correspondence
analysis.

When reflecting upon the benefits of the strategies outlined in this paper, it is
important to keep in mind some of the key features that make correspondence
analysis very versatile at visualising association between categorical variables. We
have alluded to some of the features associated with the models obtained from
each of the strategies, but perhaps of paramount importance is the interpretation
of the distance between row, and column, points. When an SVD of the matrix of rP

ij

residuals is performed, it is well established that the (squared) distance between two
row (or column) points whose coordinate is defined by fim (or gjm) is Euclidean.
For the row categories, these Euclidean distances reflect the chi-squared distance
between two centred row profiles, pij /pi• − p•j and pi′j /pi′• − p•j , say. When
an SVD is applied to the matrix of Freeman–Tukey residuals, rT

ij , the distance
between two row (or column) points in the correspondence plot is measured using
the Hellinger distance (Beh et al. 2018) and reflects the difference between the
square-root of two centred profiles; in the case of the rows, such profiles are defined
by
√

pij /pi• −√p•j . In all other cases described in this paper, further investigation
needs to be undertaken to more fully understand the interpretation of distances
between two row, or column, points and how they relate to comparing the centred
row, and column, profiles. The issue of assessing the distance between a row point
and a column point is a long, and contentious, one. One may refer to, for example,
Beh et al. (2018, Section 4.6.3) (and the references within this section) and Nishisato
and Clavel (2003) for more of a discussion of this issue.

While this paper introduces some possible options for accommodating overdis-
persion in cross-classified data when performing correspondence analysis, it cer-
tainly does not provide a comprehensive overview of the issues. There are certainly
various other issues that require deeper investigation to more fully appreciate the
utility of these strategies.
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From Joint Graphical Display to
Bi-Modal Clustering: [2] Dual Space
Versus Total Space

José G. Clavel and Shizuhiko Nishisato

Abstract There are two ways to use dual scaling results of the condensed response-
pattern matrix, one in terms of dual space and the other in total space. The main task
of this paper is to explore the differences in dealing with dual space and total space,
and it is hoped that the study will offer some insights into the characteristics of these
two types of space for cluster analysis. Bi-modal clustering is defined as a method
of cluster analysis to identify only between-set clusters (i.e., clusters consisting of
both rows and columns of the contingency table), and the surest way to find such
clusters is to use the between-set distance matrix as an input for clustering. Since this
input matrix is typically rectangular, most traditional and currently popular methods
of cluster analysis cannot handle rectangular distance matrices. Thus, the current
study has chosen an intuitive method, called exploratory clustering, as a start. Since
there are two ways to compute the between-set distance matrix, namely in dual
space and total space, the current study aims at demonstrating the differences in
clusters formed by two approaches. After examining the results, the study concludes
that bi-modal clustering should be carried out in dual space. This conclusion is
discussed in the current paper, and it is hoped that our conclusion can be supported
by researchers. This conclusion also means that the initial object of total information
analysis or comprehensive dual scaling by Nishisato and Clavel can be justified. This
connection is also discussed in the current paper.
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1 Introduction

The main purpose of this paper is to present numerical examples to explore the
differences in the distance matrices in dual space and total space of the same data.
Under these two situations, the between-set distance matrices will be calculated
and then subjected to exploratory clustering with flexible filters to examine the
differences in cluster compositions. We aim to find clues for justifying the use
of dual space in bi-modal clustering through numerical demonstrations. This
choice of the space is primarily the problem of whether we should use the same
multidimensional space to define the distance between two variables, or allow the
situation in which one spans, for example, in 2-dimensional space and the other in
4-dimensional space. We hope that numerical examples will justify the use of dual
space for bi-modal clustering.

As mentioned in the paper [1] (Nishisato in this volume), dual space and total
space are identical when the number of rows and that of column of the contingency
table are equal. When they are not equal, total space is larger in dimensionality
than dual space. In computing the distance between a row and a column of the
contingency table, we have two points of view: one is to define the distance between
the two variables in the common space (e.g., two sets of color chips which vary
in hue and brightness), here referred to as dual space, and the other view is to
define the distance between variables which span different numbers of dimensions
(e.g., one set of color chips that vary in hue and brightness, and the other set of
chips which vary in hue, brightness, and saturation). The second case requires space
which accommodate not only the common space of hue and brightness, but also an
additional dimension associated with saturation, and the space for the second case
is called total space.

These two views appear to be equally reasonable, namely, one is the view to
define the distance between two variables over the common attributes, and the other
is to define the distance between two variables which possess different numbers of
attributes. In quantification research, we do not deal with such distinct attributes
as hue, brightness, and saturation, but attributes are deduced from the common
set of variables which contribute to particular components (e.g., introvert-extravert
dimension from a set of common personality traits). The views of using dual space
and total space seem to be equally reasonable to define distances between two
objects, but our numerical examples will show quite convincingly that dual space
is more appropriate for bi-modal clustering than total space.

2 Exploratory Clustering in Dual Space and Total Space

The main role of the paper is to provide a number of numerical examples of
exploratory clustering, carried out in both dual space and total space to offer a
glimpse of differences between the two approaches. It should be noted that this
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problem of two alternatives has not arisen in the traditional quantification theory,
and the main reason for the rise of this new problem is due to the fact that
quantification analysis is expanded to between-set analysis from the traditional
within-set analysis.

2.1 Example 1: Rorschach Responses Under Different Moods

Garmize and Rycklak (1964) collected data with the focus on eleven Rorschach
inkblot responses (e.g., bat, blood, butterfly, . . . ) under six types of experimentally
induced moods: fear, anger, depression, ambition, security, and love. The results are
as summarized in the contingency table (Table 1).

In the current paper, this contingency is then converted into the condensed
form of response-pattern table (Nishisato 1980, 2019). Since this is one of the
key procedures, we need to explain this process clear enough to understand. The
original data are too large to explain the procedure in detail. Therefore, for this
demonstration of constructing a condensed form of response-pattern table, let us
use a subset of the above table as shown below.

The Table 2 can be expressed as a condensed form of the response-pattern table,
that is, a summarized form of the incidence table, as shown in Table 3. In case it is
difficult to follow this part of conversion, please refer to Nishisato (1980, 2019).

Table 1 Rorschach responses and induced moods

Induced moods

Responses Fear Anger Depression Ambition Security Love

Bat 33 10 18 1 2 6

Blood 10 5 2 1 0 0

Butterfly 0 2 1 26 5 18

Cave 7 0 13 1 4 2

Clouds 2 9 30 4 1 6

Fire 5 9 1 2 1 1

Fur 0 3 4 5 5 21

Mask 3 2 6 2 2 3

Mountains 2 1 4 1 18 2

Rocks 0 4 2 1 2 2

Smoke 1 6 1 0 1 0

Table 2 Subset of the Rorschach data

Responses Fear Anger Depression Ambition Security Love

Bat 33 10 18 1 2 6

Butterfly 0 2 1 26 5 18

Mountains 2 1 4 1 18 2
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Table 3 Condensed response-pattern table

Bat Butterfly Mountains Fear Anger Depression Ambition Security Love

33 0 0 33 0 0 0 0 0

10 0 0 0 10 0 0 0 0

18 0 0 0 0 18 0 0 0

1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 2 0

6 0 0 0 0 0 0 0 6

0 2 0 0 2 0 0 0 0

0 1 0 0 0 1 0 0 0

0 26 0 0 0 0 26 0 0

0 5 0 0 0 0 0 5 0

0 18 0 0 0 0 0 0 18

0 0 2 2 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 4 0 0 4 0 0 0

0 0 1 0 0 0 1 0 0

0 0 18 0 0 0 0 18 0

0 0 2 0 0 0 0 0 2

The rows of this new table consist of combinations of the row and column
variables, thus the total number of rows of this table corresponds to the total number
of non-zero elements of the original 3×6 contingency table, that is, 17. The columns
of this table consist of the row variables (3) and the column variables (6) of the
original contingency table. Notice that the rows and the columns of the contingency
table are now placed in the columns of the condensed response-pattern table.

Recall (1) that if we subject the original 3 × 6 contingency table, we obtain
two components, but (2) that these two components require 4-dimensional space
because of the discrepancy between row and column space. In contrast, if we subject
the response-pattern table to dual scaling, we obtain seven components. Out of the
seven components, four components constitute dual space, that is, the space shared
by both sets of variables. How to identify these four components is explained in
Nishisato (2019).

These four components and the remaining three components comprise total
space. To make this distinction clear, let us show the principal coordinates of
the seven components (see Table 4). As (Nishisato 1980) indicated, the average
eigenvalue is 0.5. Notice that the average of the four components which constitute
dual space also has the average eigenvalue of 0.5. In addition, the remaining three
eigenvalues are each equal to 0.5. Notice, further, that the three Rorschach inkblots
have principal coordinates in these three dimensions all zero, indicating that these
inkblots have no contributions to the three components. In other words, the extra
three components have nothing to do with the Rorschach inkblots. To show that
those four components for dual space are correct can be numerically demonstrated
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Table 4 Principal coordinatesa of condensed response-pattern Table 3

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7

Bat −0.924 −0.391 0.000 0.000 0.000 −0.189 −0.317

Butterfly 1.194 −0.485 0.000 0.000 0.000 −0.234 0.410

Mountains 0.093 1.878 0.000 0.000 0.000 0.907 0.032

Fear −1.097 −0.420 −0.555 −0.775 −0.903 0.203 0.377

Anger −0.659 −0.371 3.121 −0.086 0.371 0.179 0.226

Depression −0.830 0.000 −0.588 1.831 1.026 0.000 0.285

Ambition 1.367 −0.640 0.058 0.771 −1.080 0.309 −0.469

Security 0.293 1.968 0.062 −0.232 −0.259 −0.951 −0.101

Love 0.786 −0.453 −0.415 −1.141 1.534 0.219 −0.270

Eigenvalue 0.8947 0.8108 0.500 0.500 0.500 0.1892 0.1053
aComponent 1, 2, 6 and 7 constitute the dual space. See Nishisato (2019)

by the results that the between-set (rows and columns of the contingency table)
distances calculated from the coordinates of the four components are exactly
the same as the between-set distances calculated from the formulation of total
information analysis TIA (Nishisato and Clavel 2010), that is, the distances from
two dimensions with space discrepancies taken into consideration. This in turn
means that TIA offers analysis in dual space, not in total space. The extra three
components in total space are solely to accommodate the variations of the moods,
not explained by the Rorschach inkblot responses. So, in summary, the space
common for both Rorschach responses and induced moods is called dual space,
which is in the current example 4-dimensional, while the entire space for the
columns of the response-pattern table is called total space, which is in this example
7-dimensional. Another way of interpreting dual space is that it is the space in which
the column space in the current example is projected onto the row space, hence
it is the space in which the relations between the row and the column variables
are maximized, and this is another way of looking at dual space. With this much
introduction, let us get back to the original data in Table 1, and look at the between-
set (Rorschach-by-moods) distance matrices obtained in total space (Table 5) and
dual space (Table 6).

Let us now subject these two distance matrices to clustering with filters, a
procedure in which all distances greater than the threshold filter are discarded and
the remaining distances are used to form clusters. The threshold filters we used
are 10, 20, 30, 40, 50, and above 50 percentiles. These choices are quite arbitrary,
and the study is indeed only exploratory. Table 7 shows a number of interesting
differences with respect to the threshold values and two types of space, dual and
total.

Before we look at the clusters of the variables, let us keep in mind that altogether
17 variables (11 Rorschach responses and 6 induced moods) are considered for
exploratory clustering. In Table 7, clusters are indicated by alphabets (upper case
letters for total space, lower case letters for dual space). Let us summarize our
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Table 5 Between-set distances in total space

Fear Anger Depression Ambition Security Love

Bat 2.28 3.11 2.63 3.53 3.57 3.09

Blood 4.29 4.69 4.72 5.09 5.23 4.96

Butt 3.46 3.57 3.25 2.56 3.65 2.88

Cave 3.91 4.40 3.58 4.46 4.31 4.18

Cloud 3.40 3.31 2.44 3.63 3.82 3.30

Fire 4.54 4.28 4.66 4.91 5.05 4.80

Fur 3.80 3.83 3.51 3.84 3.89 2.90

Mask 4.76 4.92 4.52 5.00 5.05 4.77

Mount 4.11 4.29 3.90 4.41 3.14 4.13

Rock 6.04 5.74 5.81 6.12 6.03 5.89

Smoke 6.50 5.98 6.42 6.77 6.67 6.60

Table 6 Between-set distances in dual space

Fear Anger Depression Ambition Security Love

Bat 1.90 2.85 2.31 3.30 3.34 2.82

Blood 2.22 2.92 2.96 3.53 3.72 3.34

Butt 3.45 3.55 3.23 2.54 3.63 2.86

Cave 2.55 3.26 2.02 3.33 3.13 2.95

Cloud 3.21 3.12 2.16 3.45 3.65 3.10

Fire 3.07 2.69 3.25 3.61 3.78 3.45

Fur 3.75 3.78 3.46 3.79 3.85 2.84

Mask 2.22 2.55 1.64 2.71 2.79 2.24

Mount 4.02 4.21 3.81 4.33 3.02 4.04

Rock 3.25 2.64 2.79 3.39 3.23 2.95

Smoke 4.47 3.67 4.36 4.85 4.71 4.62

observations on clustering of 17 variables in terms of the number of clusters as
functions of threshold percentiles and two different types of space, dual and total:

• As a demonstration, we used only up to 50 percentile point, which turned out to
be too small to include all 17 variables into some clusters, namely, smoke, mask,
and rock are absent in total space, and smoke is absent in dual space. This raises
a question if one should increase the threshold value until all the variables are
included in at least one cluster.

• Fixing the 10% threshold, we have four clusters in total space [Bat; Fear], [Cloud,
Bat; Depression], [Butterfly; Ambition], [Fur, Butterfly, Bat; Love] and only two
in dual space [Bat, Blood, Mask; Fear], [Cave, Cloud, Mask; Depression, Love].
In both spaces, the moods Depression, Fear, and Ambition and the responses
Bat, and Cloud are clustered, but Butterfly only appears in total space, and Mask
only is clustered in dual space. Selecting 30% as threshold for the filtering, that
is, discarding all distances greater than the 30-percentile point and identifying
the clusters from the remaining distances, we find five clusters in both spaces



From Joint Graphical Display to Bi-Modal Clustering: [2] Dual Space Versus. . . 137

Table 7 Clusters formed by different threshold percentile points

Filter threshold Clusters Responses Moods

Clusters in total space

10% A Bat Fear

B Cloud, Bat Depression

C Butterfly Ambition

D Fur, Butterfly, Bat Love

20% A Bat Fear, Anger

B Cloud,Bat, Butterfly Depression

C Butterfly Ambition

D Fur, Butterfly, Bat Love

E Mountain Security

30% A Bat, Cloud Fear, Anger

B Cloud, Bat, Butterfly, Cave Depression

C Butterfly Ambition

D Fur, Butterfly, Bat, Cloud Love

E Mountain Security

40% A Bat, Cloud Fear, Anger

B Cloud, Bat, Butterfly, Cave, Fur Depression

C Butterfly Ambition

D Fur, Butterfly, Bat, Cloud Love

E Mountain Security

50% A Bat, Cloud, Fire Fear, Anger

B Cloud, Bat, Butterfly, Cave, Fur Depression

C Butterfly Ambition

D Fur, Butterfly, Bat, Cloud Love

E Mountain Security

Clusters in dual space

10% a Bat, Blood, Mask Fear

b Cave, Cloud, Mask Depression, Love

20% a Bat, Blood, Mask Fear

b Cave, Cloud, Mask Depression, Love

c Butterfly Ambition

d Fire, Rock, Mask Anger

30% a Bat, Blood, Mask Fear

b Cave, Cloud, Mask, Fur Depression, Love

c Butterfly Ambition

d Fire, Rock, Mask Anger

e Mask Security

40% a Bat, Blood, Mask, Fire Fear

b Cave, Cloud, Mask, Fur, Rock Depression, Love

c Butterfly Ambition

d Fire, Rock, Mask Anger

e Mask, Mountain Security

(continued)
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Table 7 (continued)

Filter threshold Clusters Responses Moods

50% a Bat, Blood, Mask, Fire Fear

b Cave, Cloud, Mask, Fur, Rock Depression, Love

c Butterfly Ambition

d Fire, Rock, Mask Anger

e Mask, Mountain, Cave, Rock Security

including all the moods. In total space: [Bar, Cloud; Fear, Anger], [Cloud,
Bat, Butterfly, Cave; Depression], [Butterfly; Ambition], [Fur, Butterfly, Bat,
Cloud; Love], [Mountain; Security]. In dual space: [Bat, Blood, Mask; Fear],
[Cave, Cloud, Mask, Fur; Depression, Love], [Butterfly; Ambition], [Fire, Rock,
Mask; Anger], [Mask; Security]. Although some clusters are similar, see cluster
“C” in total space and cluster “c” in dual space, both containing [Butterfly;
Ambition], there are important differences. For example, in total space, the
response Butterfly appears clustered with the moods Depression, and Love, but
in dual space, it is related only with Ambition. Other clear difference is the
response Mask that forms overlapping clusters in dual space: Mask belongs to
four out of five clusters and it is related with all the moods but Ambition. In
total space, Mask has not appeared yet. Using the 50% threshold the response
Fire, that was clustered in several groups in dual space, finally appears clustered
with Fear and Anger in total space, meaning that its distance in total space was
so big that they were discarded with filters below 50-percentile. At 50% there
are some coincidences between spaces: [Mountain; Security], [Bat; Fear], [Fur,
Cloud; Love], [Fire; Anger]. . . but the differences show clearly that we should be
careful clustering between-set distances.

• As a rule of thumb, as we go up with the threshold values from 10% on, there
seems a definite tendency for clustering in dual space to show more inclusive and
gradual changes as opposed to clustering in total space. This can be interpreted
as a reflection in which variations in space orthogonal to the common space are
affecting the outcomes of clustering in total space.

• If we are to seek a stable set of clusters, it looks as though the clusters [Bat,
Blood, Mask; Fear], [Cave, Cloud, Mask; Depression, Love], [Fire, Rock, Mask;
Anger], [Mask; Security], obtained with the filters 20 and 30% in dual space are
the solution. However, “Smoke” is not included in this exploratory clustering.

• As we see it clearly in the exploratory clustering outcomes in total space and dual
space are quite different. As anticipated, dual space is where the quantification
is carried out in such a way that the row variables and the column variables are
maximally correlated. This observation is very important for dual space to be
preferred to total space for exploratory clustering.

Due to the limited space, we cannot discuss some details of the exploratory
clustering differences between total space and dual space. However, without even
looking at numerical results, one can advance the view that dual space should
be used for bi-modal clustering since dual space is where row variables and



From Joint Graphical Display to Bi-Modal Clustering: [2] Dual Space Versus. . . 139

Table 8 Between-set distances in total space

Fear Anger Depression Ambition Security Love

Bat 2.02 2.85 2.42 3.28 3.49 3.15

Blood 3.77 4.18 4.25 4.6 4.86 4.71

Butt 3.14 3.27 3.03 2.26 3.5 2.72

Cloud 3.08 3.01 2.11 3.35 3.69 3.29

Fire 4.03 3.78 4.22 4.44 4.68 4.54

Mask 4.24 4.41 4.02 4.51 4.66 4.44

Mount 3.68 3.89 3.54 4.02 2.64 3.98

Smoke 5.77 5.25 5.73 6.06 6.04 6.08

column variables are most highly correlated. As is stated above, this aspect was
demonstrated in the results that all row and column variables are better presented
in clusters than in total space. In contrast, total space involves some independent
contributions of the larger set of variables, and this condition is totally against the
fundamental purpose of bi-modal clustering, that is, to find clusters of row variables
and column variables.

2.2 Example 2: A Subset of Rorschach Responses Under
Different Moods

The above example is a case in which the discrepancy in dimensionality between
dual space and total space is relatively large, that is, 10 dimensions of dual space
and 15 dimensions of total space. Let us now see a case in which the dimensions
of two kinds of space are a little closer than the previous case, and see what will
happen to the clustering differences. As an example, let us choose eight Rorschach
inkblots (Bat, Blood, Butterfly, Cloud, Fire, Mask, Mountain, and Smoke) and the
six moods. Then, dual space is 10-dimensional (5 dimensions times 2), and total
space is 12-dimensional (8 − 1 + 6 − 1) so that the difference is 2.

The two distance matrices in dual space and total space are given in Tables 8
and 9. In this comparison, dual space and total space yield the following clusters as
shown in Table 10.

Table 9 Between-set distances in dual space

Fear Anger Depression Ambition Security Love

Bat 1.92 2.78 2.34 3.23 3.43 3.09

Blood 3.44 3.88 3.96 4.33 4.61 4.44

Butt 3.13 3.26 3.01 2.24 3.49 2.7

Cloud 3.06 2.99 2.09 3.33 3.68 3.27

Fire 2.94 2.59 3.19 3.48 3.79 3.61

Mask 2.58 2.86 2.22 3.02 3.23 2.9

Mount 3.68 3.88 3.53 4.02 2.63 3.97

Smoke 4.67 4.01 4.63 5.03 5.00 5.05
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Table 10 Clusters formed by different threshold percentile point

Filter threshold Clusters Responses Moods

Clusters in total Space

10% A Bat Fear

B Cloud, Bat Depression

C Butterfly Ambition

D Mountain Security

20% A Bat Fear, Anger

B Cloud, Bat Depression, Anger

C Butterfly Ambition, Depression

D Mountain Security

E Butterfly Love

30% A Bat Fear, Anger

B Cloud, Bat Depression, Anger

C Butterfly Ambition, Depression

D Mountain Security

E Butterfly, Bat, Cloud Love

40% A Bat Fear, Anger

B Cloud, Bat Depression, Anger

C Butterfly Ambition, Depression

D Mountain Security, Depression

E Butterfly, Bat, Cloud Love

50% A Bat, Blood Fear, Anger

B Cloud, Bat Depression, Anger

C Butterfly Ambition, Depression

D Mountain Security, Depression

E Butterfly, Bat, Cloud Love

Clusters in dual space

10% a Bat Fear

b Mask, Cloud, Bat Depression

c Butterfly Ambition

20% a Bat, Mask Fear

b Mask, Cloud, Bat Depression

c Butterfly Ambition, Love

d Fire, Bat Anger

e Mountain Security

30% a Bat, Mask Fear

b Mask, Cloud, Bat, Butterfly Depression

c Butterfly Ambition, Love

d Fire, Bat, Mask, Cloud Anger

e Mountain Security

(continued)
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Table 10 (continued)

Filter threshold Clusters Responses Moods

40% a Bat, Mask Fear

b Mask, Cloud, Bat, Butterfly Depression

c Butterfly, Bat Ambition, Love

d Fire, Bat, Mask, Cloud Anger

e Mountain Security

50% a Bat, Mask Fear

b Mask, Cloud, Bat, Butterfly Depression

c Butterfly, Bat Ambition, Love

d Fire, Bat, Mask, Cloud Anger

e Mountain, Mask Security

Let us again summarize the main outcomes of exploratory clustering.

• Again in this case too, we can see that more variables are involved in clustering
in dual space than in total space.

• Without specifying detailed comparisons, the results of exploratory clustering in
total space are closer to those of dual space than the above case in which the
dimensionality of the two spaces is wider than the current case.

• Even at the 50% threshold value, Mask and Smoke are not included in total space
clustering, and Blood and Smoke are not included in dual space.

• In total space, a strange combination of Depression and Ambition appears, while
in dual space, Ambition appears with Love and Depression is a sole existence,
which common sense would understand.

• Another strange result in total space is the combination of Depression and
Security—why are they clustered together? In dual space Security is a lone
existence.

These are only some observations, and what we can conclude are: first we must
deal with the question of whether or not we should seek the threshold value in such a
way that all variables are included in some clusters; second we should use dual space
to capture the essence of the between-set relations; thirdly, the use of total space for
exploratory clustering appears to bring in information which is not relevant to the
objective of bi-modal clustering.

3 Concluding Remarks

Following the thorough historical background for this giant leap in quantification
theory as presented in the first part of the paper by Nishisato, this paper provided
numerical examples to draw some conclusions on the new approach to quantification
theory. The main new developments are twofold: the strategic shift from popular, but
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problematic, joint graphical display to exploratory clustering of the quantification
results—we observed that the correct way for joint graphical display requires
doubling the multidimensional space, which makes graphical displays even more
difficult than what is done in practice today; the second, but equally important,
point is to apply cluster analysis to the between-set distance matrix, unlike the
traditional within-set analysis, which makes it certain that the resultant clusters are
bi-modal, that is, clusters consisting of both row variables and column variables of
the contingency table. Under these objectives, we went on a step further to quantify
the condensed response-pattern table, generated by the contingency table, which led
to the distinction between dual space and total space. Noting that a typical between-
set distance matrix is rectangular, we applied Nishisato’s exploratory clustering
method (Nishisato 2014) to the between-set distance matrices calculated in dual
space and total space. The between-set distance matrix calculated in dual space is
identical to the between-set distance matrix obtained by total information analysis
(Nishisato and Clavel 2010). Theoretically, at the onset of the study, we arrived
at the conclusion that cluster analysis of the between-set distance matrix in dual
space should be preferred to that in total space. This was partly supported by the
fact that the between-set distance matrix calculated in dual space is identical to the
between-set distance matrix used in total information analysis TIA, which is the
traditional extension of dual scaling to the doubled space. We should further note
that bi-modal clustering is to identify clusters consisting of both row variables and
columns variables of the contingency table, and that it is natural to consider the
joint space of both row and column variables, which is dual space. Nevertheless, the
current study also investigated total space for the reason that we need total space to
reproduce the response-pattern table, generated from the contingency table.

We used the exploratory clustering method with flexible filters as proposed by
Nishisato (2014) for the purpose to demonstrate analysis of between-set distance
matrices. As is obvious, this clustering method is totally descriptive and exploratory,
and requires much more elaborations before it can be regarded as one of the routine
methods of cluster analysis. It is interesting, though, that the method does not
depend on any optimization algorithm nor a cluster model, and as such it has also
revealed the “truth” of data structure, more concretely that there were a number of
overlapping clusters in data. This suggests an interesting problem that most cluster
analysis methods which are currently in use impose the condition that the clusters
are non-overlapping. Our numerical results strongly suggest that this condition of
non-overlapping clusters may be too restrictive to understand data in hand. For the
flexible filter method, the most urgent problem is how to define the most reasonable
threshold value. This question requires much more theoretical and empirical work
in response to such a question as whether or not all variables in the data set should
be clustered into at least one cluster. As demonstrated in the current study, such an
inclusive threshold value will undoubtedly result in many overlapping clusters.

The main contributions of the current two-part research [1] and [2] are: devel-
opment of an alternative approach to joint graphical display, an implementation
of analysis in doubled Euclidean space, analysis of between-set distance matrices,
use of a cluster analysis method which can handle rectangular input matrices, and



From Joint Graphical Display to Bi-Modal Clustering: [2] Dual Space Versus. . . 143

separation of dual space and total space for data analysis. The main task for the
future research will be on the development of objective criteria for determining
an optimal threshold percentile point for the flexible clustering procedure. As was
demonstrated in the current study, it is very likely that real data would favor
overlapping clusters, rather than forced non-overlapping clusters as typically done
today.

References

Garmize, L.M., Rycklak, J.F.: Role-play validation of socio-cultural theory of symbolism. J.
Consult. Psychol. (28), 107–115 (1964)

Nishisato, S.: Analysis of Categorical Data: Dual Scaling and Its Applications. The University of
Toronto Press, Toronto (1980)

Nishisato, S.: Structural representation of categorical data and cluster analysis through filters. In:
Gaul, W., Geyer-Schulz, A., Baba, Y., Okada, A. (eds.) German-Japanese Interchange of Data
Analysis Results. pp. 81–90. Springer International Publishing, Cham (2014)

Nishisato, S.: Reminiscence: Quantification theory and graphs. Theory Appl. Data Anal. 8(1), 47–
57 (2019) (in Japanese)

Nishisato, S., Clavel, J.G.: Total information analysis: comprehensive dual scaling. Behaviometrika
37(1), 15–32 (2010)



Linear Time Visualization and Search in
Big Data Using Pixellated Factor Space
Mapping

Fionn Murtagh

Abstract It is demonstrated how linear computational time and storage efficient
approaches can be adopted when analysing very large data sets. More importantly,
interpretation is aided and furthermore, basic processing is easily supported. Such
basic processing can be the use of supplementary, i.e. contextual, elements, or
particular associations. Furthermore, pixellated grid cell contents can be utilized
as a basic form of imposed clustering. For a given resolution level, here related to
an associated m-adic (m here is a non-prime integer) or p-adic (p is prime) number
system encoding, such pixellated mapping results in partitioning. The association
of a range of m-adic and p-adic representations leads naturally to an imposed
hierarchical clustering, with partition levels corresponding to the m-adic-based
and p-adic-based representations and displays. In these clustering embedding and
imposed cluster structures, some analytical visualization and search applications are
described.

1 Introduction

Often in data analytics the objective is to have clusters formed and studied, but even
then, some open questions may need to be: to define the dissimilarity or distance
measure to use; then to define the cluster optimization criterion, or the hierarchical
agglomerative clustering criterion. This provides both motivation and justification
for the following.

Our approach here is to assume a factor or principal component space, thoroughly
taking semantic relationships into account, and that is endowed with the Euclidean
metric. For original data that is comprised of categorical (qualitative) and quanti-
tative values, Correspondence Analysis is most suitable. Since the factor space is
constructed through eigenvalue, eigenvector decomposition of the source data, it
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follows that if the number or rows, n � m, the latter here being the number of
columns, then the computational requirement is for O(m3) processing time. This is
likely to be achievable in practice.

A particular benefit of Correspondence Analysis is its suitability for carrying
out an orthonormal mapping, or scaling, of power law distributed data. Power
law distributed data are found in many domains. Correspondence factor analysis
provides a latent semantic or principal axes mapping. Cf. Murtagh (2017b).

The case study used in this paper comes from the data studied in Murtagh (2016).
It is a large set of Twitter, social media, data. There are 880,664 retained tweets and
481 retained dates. Our major aims here are (1) to simplify, in an easily interpretable
way, the output, biplot or factor space planar plot, display; (2) to use an image-
like approach to displaying such a plot; and (3) to relate our data to forms of data
encoding that are other than real-valued and that are complementary to real-valued
data. In Sect. 3.1, a first stage of agglomerative hierarchical clustering is at issue,
but this is contiguity- or adjacency-constrained. While the latter terms are relevant,
it is better expressed as being sequence-constrained where that constraint applies to
what is to be clustered (to be seen later, this applies to row or column sets of grid
cells).

Our priority is to consider here the two-dimensional, principal factor plane. This
is produced from 880,664 Twitter tweets, sometimes also termed micro-blogs. In
Fig. 1, rows, here tweets, and columns, here attributes that can be selected words
in the tweets, and perhaps other tweet properties, these here are mapped into the
principal plane of factors 1 and 2, so terms are used such as planar projection
or mapping, and also being termed a biplot, with the mapping too of the three
references in these tweets to the Cannes film festival. Used here are “C”, “c” and

Fig. 1 880,664 Twitter tweets projected on the principal factor, i.e. principal axis plane, with
attributes projected
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“CN” for different use of upper can lower case in these references to the Cannes film
festival. Also in this mapping, there are references to the Avignon theatre festival,
using labels “A”, “a” and “AV”, relating to the user of upper can lower case letters
in the tweets.

Our first task is to have an analogy of a two-dimensional histogram of what
is displayed in the two previous figures. This can be advanced towards an image
representation. Pixellation of a spatial domain can be displayed using heatmaps or
false colour coding, implying the predominant visualization role for such display.

2 Algorithm for Determining and Contextual Displaying of a
Two-Dimensional Histogram

Pixellating the data is equivalent to hashing, and for an image representation,
the viewpoint is employed, of having this considered as a two-dimensional (2D)
histogram.

2.1 Pixellating the Mapped Data Point Cloud

Firstly, given that the factor space is endowed with the Euclidean distance, the
coordinates of the projected cloud of points can be rescaled. One reason for this is to
have a standardized algorithmic processing approach. If there were to be particular
topological patterns (e.g. the horseshoe effect, curvilinear pattern related to cluster
ordering through embeddedness) or other targeted cluster morphologies (shapes,
whether in two dimensions or in the full dimensional space), the analytics would
focus on such patterns. Here, algorithmically, the general and generic objective is
carried out by mapping the coordinates of the projected data cloud, in the factor
plane, onto coordinates that are in the (closed lower bound, open upper bound)
interval [0, 1). This mapping results from the interval of minimum value, maximum
value, on each coordinate.

This then allows pixellation of the rescaled, unit square area containing the
mapped cloud of points. This could also be generalized to unit volumes if more than
two factors are at issue. Pixellation, i.e. imposing a regular grid, can be displayed
as a grid structure. Furthermore, the pixel value is to be defined by the frequency of
occurrence of points mapped into the given pixel area. To be both precise about what
is displayed and computational and storage efficient, the frequency of occurrence
values, comprising our pixel values here, will be displayed.

Such objectives in data analysis are largely consistent with the computational and
interpretational advantages and benefits that are described in Murtagh et al. (2000).
First, we may note that the heatmap display provides colour coding of the data
matrix values. This is based on permutation of rows and columns with adjacency
that is compatible with the hierarchical clustering of both rows and columns. Such
visualization of hierarchical clustering is at issue in Zhang et al. (2017).
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Now, a similar view of analysis might start with a very large data array and
decide that a convenient and computationally efficient analysis process is as follows.
Firstly, have the rows and columns permuted so that there is at least some relevance
of the proximity taken into account by the permutation. In Murtagh et al. (2000),
this was based on principal factor projections. Then, secondly, the row and column
permuted input data array is considered such that all array values are the pixel
values of an image. So, the input data array is thus considered as an image. Then,
computationally efficient processing can be undertaken on the image representation
of the input data array. Such processing is quite likely to involve a wavelet transform
of the image, with filtering carried out in wavelet transform space. This provides
a manner of determining clusters, and all is very relevant when visualization is a
desirable outcome.

An initial process here of the analysis is the carrying out of the factor space
mapping, endowed with the Euclidean metric, and that can be computationally
efficient if, for example, having n rows, and m columns, then eigen-reduction that
determines the factor space mapping, when m � n, is computationally, O(m3).
This can be quite efficient, assuming that m � n. Then, all of the work here
is, analogously, to map large data arrays into images, here directly based on the
Euclidean metric endowed factor space.

Sample R code used for pixellation is available at this website, http://www.
multiresolutions.com/strule/papers.

3 Visualization Through 2D Histogram Representation

Following Figs. 1 and 2 shows how we can have displays that are both informative
and also that provide alternative display capability for very large numbers of
projection locations, i.e. mapped rows or columns, observations and attributes.

In Fig. 2, it seems visually that the high frequency value in the grid cell that has a
projection greater than 4 on axis 2, and greater than 1 on axis 1, is unacceptably high
in value. This grid cell has 13,333 projected points. In fact, we verified that there
are 13,333 overlapping points here. (Their values on factor 2 are all: 4.476693).

A heatmap may be derived from this representation, that is grid-based, and can
be characterized as a two-dimensional histogram. The heatmap, being false colour
coding of the data matrix being hierarchically clustered, in regard to both the row
set and the column set, is used in Zhang et al. (2017). Such a heatmap display has
a somewhat different objective, relative to what will now follow. Our later aim is to
have the data structured to support search and retrieval.

http://www.multiresolutions.com/strule/papers
http://www.multiresolutions.com/strule/papers
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Fig. 2 A 10 × 10 grid display with supplementary elements projected. These projections,
associated with tweet content, are related to the Cannes Film festival and the Avignon Theatre
festival

3.1 Varying Number Theoretic Representations of the Data:
m-Ary and p-Adic Representations

Having pixellated the projected cloud of points, this is based on associating each
projected point with its grid cell. Integral to this is that the grid cell containing the
projected point becomes an expression that labels each of its grid cell members.
This is analogous to the projected point being a member of a cluster, and perhaps
it is also analogous to the projected point being conceptually characterized by the
superset of projected points associated with the grid cell. Since the grid cells are
defined by default as decimal numbers, that will also be termed here, 10-ary, i.e. m-
ary with m = 10, we will next consider alternative number theoretic representations.
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With p being a prime number and m being a non-prime integer, we will consider the
best-fitting grid cell mapping representations that are derived from the decimal or
m = 10, m-ary, representation. We considered: m = 9, m = 8, p = 7, m = 6,
p = 5, m = 4, p = 3, p = 2, number representations.

Considerable background discussion on p-adic number systems, and their role in
various domains, is in Murtagh (2017a). Specifically using the algorithm now to be
described, for closest fit of one number theoretic system to another, this is described
in Murtagh (2016).

Algorithmically to move from an m = 10 m-ary representation to an m = 9
m-ary representation, we take the definition of the grid cells from their projections
on factor 1 and on factor 2. We first consider factor 1, i.e. axis 1, with identical
reasoning applied to factor 2, i.e. axis 2. Let v be the constant interval between grid
lines. For m = 10, we have the axis 1 values as follows: 0, 0 + v, 0 + 2v, 0 +
3v, . . . , 0 + 9v. We now want to form grid cell boundaries for m = 9, so that on
axis 1, we will have: 0, 0+ v′, 0 + 2v′, 0 + 3v′, . . . , 0 + 0 + 8v′.

Because we want a closest fit by the 9-ary representation to the 10-ary repre-
sentation, the former is based on the latter. We take the least difference between the
total sum of successive grid bins. In effect, then, we merge these two successive grid
bins. By relabelling higher valued grid bin sequence numbers, this directly provides
us with a 9-ary representation.

The same approach is used for factor 2, i.e. axis 2. Then, we can proceed through
further stages to find a best-fit 8-ary representation to the just determined 9-ary
representation. The following stage is to find a best-fit 7-ary representation to the
just determined 8-ary representation. This continues stagewise until we have a 2-
ary representation, i.e. a binary representation of the grid cell axis 1 and axis 2
projections.

Further study of pixellation was for a 9 × 9 grid display, an 8 × 8 grid display, a
7× 7 grid display, and so, continuing to a 2× 2 grid display. The latter is associated
with a binary encoding of the grid cell boundary coordinates.

Thus, to state what is at issue here, it is visualization through 2D (two-
dimensional) histogram display, possibly accompanying m-adic and p-adic repre-
sentation, in our mapped or represented data.

We may wish to determine a rather good display of the supplementary elements
relative to particular grid cells.

There can be a display of local densities using the projected elements. Taking
previous outputs, Fig. 3 displays local densities of the tweets, provided by the 10×10
grid. The grid cells can be considered as three-dimensional histogram bins. Then in
Fig. 4, the supplementary variables are projected, relating to the words used for the
Cannes Film Festival and the Avignon Theatre Festival. At issue here is largely the
display.
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2D histogram of 880664 tweets in principal factor space.

Fig. 3 The grid structure, used for the two-dimensional histogram binning, is not displayed but
the histogram bin values alone

4 Hashing and Binning for Nearest Neighbour Searching

In Murtagh (1993), a framework for all that is at issue here was described with
relevance in the fields of information retrieval and kindred areas related to search
and retrieval. For nearest neighbour searching, what is discussed initially is: hashing,
or simple binning or bucketing. The grid structure cell constitutes the way forward
for searching in other neighbours of the query point that have also been mapped into
the one grid cell. Some consideration may need to be given to one or more adjacent
grid cells if the query point is closer to a grid cell boundary, than it is to any potential
nearest neighbour in the given grid cell. With uniformly distributed data, here in
the two-dimensional context, then it is noted how constant time, i.e. O(1) time, is
the expectation (statistical first-order moment, mean) of the computational time. A
proof of this is in Bentley et al. (1980).
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Fig. 4 As previous figure, Fig. 3, with supplementary elements projected. These projections,
associated with tweet content, are related to the Cannes Film festival and the Avignon Theatre
festival

It is to be noted, Murtagh (1993, p. 33), that when searching requires use of
adjacent multidimensional grid cells, by design hypercube in their hypervolume,
then this implies a computational limitation that increases with dimensionality.
In Murtagh (1993), for dimensionality reduction that supports nearest neigh-
bour searching, reference is made to principal components analysis, non-metric
multidimensional scaling, and self-organizing feature maps. In our work here,
Correspondence Analysis provides semantic mapping, i.e. the factor that is, in
effect, the principal component space, with a unified scale for both observations
and attributes.

Extending this approach to higher dimensional spaces, there is the k-d (k-
dimensional, for integer, k) tree, or multidimensional binary search tree. This is
a balanced tree, by design, representation of the multidimensional point cloud.
Stepwise binarization of the data is carried out using the median projection on each
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axis. However, the computational complexity of requiring the checking of adjacent
clusters that are, by design, hyperrectangular has the following consequence:
computationally such an approach needs to be limited in the dimensionality. Up
to dimensionality of 8 is reported on in the literature.

Also discussed in Murtagh (1993) are bounds on the nearest neighbour distance,
given a candidate nearest neighbour; other such bounding using metric properties,
especially the triangular inequality; branch and bound is the at issue in such
methodology; for high dimensional, sparse, binary data, and where binary here
represents presence or absence values in, e.g., keyword-based document data (as
an example, there could be 10,000 documents, crossed by the presence or absence
of 10,000 keywords). For the high dimensional, sparse, binary data, such data have
always been traditional in information retrieval, and what is used is the mapping
of documents to keywords, and the inverted file that is the mapping of keywords
to documents. Cluster-based retrieval can extend some of these approaches. Further
discussion in Murtagh (1993) is for range searching using the quadtree, for two-
dimensional images, the octree, for three-dimensional data cubes (just one example
here is a three-dimensional image volume), and a quadtree implementation on a
sphere, for spherical data. The latter is relevant for remotely senses earth data, and
for cosmological data. Range searching involves moving beyond location-oriented
search.

5 Multidimensional Baire Distance

An open issue, motivated by this work, is to aim at having a multidimensional
Baire distance. This could be based on the following. Take a full factor space,
perhaps with 5 factors retained (as it the default in the FactoMineR package in
R), and for such labels here as C, A, etc., looking at grid binned factor pairwise
(biplots) supplementary mapping. This is to see what grid cells are relevant for the
supplementary elements. But, based on this approach, we may have supplementary
rows or individuals, that with Twitter data, is to then do digit-wise mapping of tweets
against the selected supplementary elements.

In general, related to such a multidimensional Baire distance is the Baire distance
formulated for multi-channel data, i.e. hyperspectral images, and used for machine
learning (Support Vector Machine, supervised classification) in Bradley and Braun
(2015).

6 Conclusion

A central theme of this work can be expressed as follows: performing data mapping
that results in a domain-relevant data encoding. One aim of the work here has been
to benefit from just how very evident it is, that human visual-based information,
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and both measure and approximated data, become very efficient as well as effective.
At issue are: image, display, and biplot. Further practical benefits are demonstrated
in Murtagh et al. (2000), by representing the data to be analysed as an image, and
thereby carrying out wavelet transform-based filtering, and object detection, and so
on.

Informally expressed, therefore, we may state that this work is in relation to the
visualization of data that accompanies having the data verbalized: see Blasius and
Greenacre (2014) for this phrasing. The application objectives cover data mining
(as contrasted with supervised classification and mainstream data mining), data
analytics (encompassing both processing and output), and inductive reasoning (what
the analysis achieves). Furthermore, the computational complexity of the processing
and all of the implementation is implicit in this work.

Largely, the terms used here, pixellation and a 2D histogram, are identical. Search
in Big Data is the basis for matching, such as in nearest neighbour matching,
and associated or relevant data querying. Although not always done, from a
mathematical sciences point of view, well-based, past work ought to be cited.
In Murtagh (1985), chapter 2 entitled “Fast nearest neighbour searching” covers
multidimensional binary search tree structuring of the data and hashing for nearest
neighbour or best match searching, accompanied by implementation optimization,
and with twenty-two references on these, and directly related, themes.

All that is at issue here is open to the possibility of implementation using
distributed computing. For future research, there can be applications that are well
associated with this work, and a further objective can well be to have distributed
computing implementations set up and having them functioning operationally.
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From Joint Graphical Display
to Bi-Modal Clustering: [1] A Giant Leap
in Quantification Theory

Shizuhiko Nishisato

Abstract Joint graphical display is popular in correspondence analysis as a tool to
illustrate the results of quantification analysis, known by many names such as dual
scaling, correspondence analysis, homogeneity analysis, and optimal scaling. Most
methods of joint graphical display, however, are at best rough approximations to the
analytical results. The present study starts with an extensive historical overview of
joint graphical display as opposed to algebraic analysis without graphs to identify
some perennial problems surrounding graphical display in quantification theory.
This review leads to the conclusion that a better alternative to joint graphical display
may be a special form of cluster analysis, called bi-modal clustering, defined later.
The current study, therefore, marks the beginning of replacing the long-standing
graphical approach with cluster analysis. This transition also implies a giant leap
in quantification theory from the traditional heavily weighted within-set analysis
to between-set analysis. Recently, some studies have been carried out in the new
direction, and this paper is devoted to the historical background for this new
approach. Some controversial views will be presented here, but it is hoped that
the paper will lay a foundation for the future direction of quantification theory.
The paper by Clavel and Nishisato, which accompanies this paper, will show some
preliminary numerical results with the hope that future problems of this new horizon
will be identified.

1 To Begin With

In the history of quantification theory (see, for example, Nishisato 1980; Greenacre
1984; Gifi 1990; Beh and Lombardo 2014), we can identify two extreme positions
of emphasis, one “no emphasis” on joint graphical display of quantification results
and the other “strong emphasis.” During the past 50 years or so, joint graphical
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display of rows and columns of the contingency table has become the mainstream
of quantification theory, and the algebraic approach without graphical display has
been pushed away into oblivion. The current study is an attempt to remedy this
situation to resuscitate the non-graphical algebraic approach as a better strategy
for meaningful multidimensional data analysis than the approach of joint graphical
display, plagued with theoretical justifications. In this new context, the traditional
within-set analysis of quantification theory is extended to between-set analysis. This
is a tall order, but it is important to realize that the current within-set analysis,
coupled with joint graphical display, does not offer a good approximation to the
exact representation of data structure, and therefore should be used only with serious
cautions that Lebart et al. (1977) insightfully pointed out 43 years ago.

2 Bock–Nishisato Versus Benzécri–Greenacre Streams

In the history of quantification, we have seen two contrasting teams of supervisor
(mentor)–student relations:

Bock–Nishisato Team Bock (1960) published a famous article on optimal scal-
ing and supervised Ph.D. thesis on “minimum entropy clustering of test items”
(Nishisato 1966). In turn, Nishisato (1980) published a book on dual scaling, the
name coined by him for optimal scaling.

Benzécri–Greenacre Team Benzécri et al. (1973) published the bible of French
“analyse des correspondances” and his student Greenacre (1984) published a very
popular book on correspondence analysis in English.

As mentioned above, the two teams created contrasting approaches: the Bock–
Nishisato stream did not emphasize joint graphical display at all, while the
Benzécri–Greenacre stream emphasized joint graphical display to the extent that
correspondence analysis has become almost synonymous to graphical analysis.

3 Early Publications in English

Historically, the book by Nishisato (1980) appears to be one of the first English
books on quantification theory, yet, probably due to the popularity of joint graphical
analysis in recent years, some claim that Greenacre (1984) is the first English
book. This discrepancy may have arisen because (Nishisato 1980) discussed “dual
scaling” which he coined, while (Greenacre 1984) presented the now popular
“correspondence analysis.” (Note: the story behind various names for quantification
theory is a topic for another paper). It should be remembered, however, that
Nishisato (1980) covered not only simple correspondence analysis (dual scaling of
contingency tables) and multiple correspondence analysis (dual scaling of multiple-
choice data) but also dual scaling of paired comparison and rank-order data, dual
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scaling of multidimensional tables, analysis of variance of categorical data (i.e.,
data with a designed structure for the row, a forerunner of multi-way analysis by
Nishisato and Lawrence (1989), or that of conditional principal component analysis
by Takane and Shibayama (1991)), order constraints, and missing responses, the
only intentional omission being graphical display. This omission of graphical
display may be another reason why Greenacre (1984) is considered to be the first
English book. There is also a historical background that researchers at the Soviet
Academy of Sciences chose Nishisato (1980) for Russian translation and that the
contract was signed between the University of Toronto Press, Canada and the
Finansy I Statistika Publishing House in Moscow, USSR. B. Mirkin and S. Adamov
completed the Russian translation in 1990, just before the collapse of the USSR.
This historical event, however, led to the closure of the publisher, and in spite of the
efforts for finding funds through 1994, the publication of the Russian translation of
Nishisato (1980) was never realized.

Please note that the above discussion should not give a wrong impression that
researchers in English speaking community emerged after the Hayashi School
in Japan (e.g., Hayashi 1950) or the Benzécri School in France (e.g., Benzécri
et al. 1973). On the contrary, quantification theory was well known in the English
community and researchers were well versed in the developments before Hayashi or
Benzécri school. See, for example, Richardson and Kuder 1933; Hirschfeld 1935;
Horst 1935; Fisher 1940, 1948; Guttman 1941, 1946; Maung 1941; Mosier 1946;
Hayashi 1950, 1952, 1954, 1964, 1967, 1968; Williams 1952; Bock 1956, 1960;
Lord 1958; Torgerson 1958; Baker 1960; Slater 1960; Kendall and Stuart 1961;
Bradley et al. 1962; Lingoes 1964, 1968; Shiba 1965; McKeon 1966; Whittaker
1967; McDonald 1968; Benzécri 1969; Gabriel 1971, 1972; Nishisato 1971, 1972,
1973, 1976, 1978, 1979; Nishisato and Inukai 1972; de Leeuw 1973; Hill 1973,
1974; Nishisato and Arri 1975; Nishisato and Leong 1975; Teil 1975; de Leeuw
et al. 1976; Healy and Goldstein 1976; Young et al. 1976; Gauch et al. 1977;
Greenacre and Degos 1977, Lebart et al. 1977; Takane et al. 1977; Greenacre 1978;
Iwatsubo 1978; Lang 1978; Tanaka 1978; Van Rijckevorsel and de Leeuw 1978;
Young et al. 1978; McDonald et al. 1979.

Many of these are cited in Nishisato (1980). In addition, a book by Gauch
(1982) was published 2 years before (Greenacre 1984), and we also have Lebart
et al. (1984). In the late 1970s and early 1980s, there was an impressive surge of
publications by such Dutch researchers as de Leeuw, van de Geer, van Ricjckevorsel,
Heiser, Meulman, van der Burg, van der Heijden, ter Braak, ten Berge, Israls,
Sikkel, Stoops, Kroonenberg, Mooijart, Bethlehem, Bettonvil, and Wansbeek (Note:
due to the space, their publications are not included in References). Their work
was eventually culminated into an outstanding book (Gifi 1990). In the 1980s,
we saw enhanced and excellent communications among researchers from different
parts of the world. Noting that recent researchers tend to cite only relatively new
publications, one should remember that many papers on quantification theory were
published before 1984 in English. There were also many publications in French and
Japanese as well in early days.
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4 Principal Coordinates and Standard Coordinates

To identify the basic aspect of Euclidean graphs, let us consider continuous
variables. Suppose we have a set of standardized continuous variables, which span
two-dimensional space. Then, if we draw a two-dimensional graph, all the variables
are located somewhere on the circle of radius 1 (see Fig. 1a); similarly, if a set
of standardized variables span three-dimensional space, each variable is located
at a distance of 1 from the origin on the sphere (Fig. 1b). These configurations,
whether a circle or a sphere, remain the same, irrespective of the eigenvalues. The
eigenvalues are associated with the distributions of the data points on the circle or
the sphere: if the first eigenvalue is much larger than the second eigenvalue in the
two-dimensional data, most variables would be close to the both ends of the first
(horizontal) axis, while only a few would be located close to the both ends of the
second (vertical axis) (Fig. 1c). No matter what, these positions of the variables are
at the distance of 1 from the origin. The corresponding coordinates of the variables
are called principal coordinates (or any orthogonal transformations of principal
coordinates will do). In data analysis, we also use standard coordinates, which are
normed to the same constant for all the axes, irrespective of the eigenvalues. Thus,
in the two-dimensional case, corresponding to Fig. 1c, those points lying along the
vertical axis (the smaller eigenvalue) are located much further than 1 from the
origin and those points lying along the horizontal axis (the larger eigenvalue) are
located much closer than 1 from the origin. Therefore, one can conclude that the
data points on the standard coordinates can no longer depict the original structure
of data, or rather their locations have nothing to do with the geometry of the data.
Note therefore that only the principal coordinates provide the configuration of the
data. This point was stressed in Nishisato (1996, 2016). We should also note that
the principal coordinates are the square root of the eigenvalue times the standard
coordinates, and that the square root of the eigenvalue is the singular value.

Fig. 1 Circle, sphere of radius 1, and 2-dimensional configuration of data
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5 Joint Graphical Display as a Problematic Approach

In quantification of the standardized contingency table C = (cij ), we use singular-
value decomposition, C = YΛX′, or more precisely as

cij = ci.c.j

c..

[1 + ρ1yi1x1j + ρ2yi2xj2 + · + ρKyiKxjK

where ρk is the k-th singular value, Λ is the diagonal matrix of singular values, K is
the rank of C− 1, yik is the i-th element of the left-singular vector k, xkj is the j -th
element of the right-singular vector k, ci. is the i-th row marginal of C, c.j is the j -th
column marginal of C, and c.. is the total frequency of C. In this expansion, principal
coordinates for rows and columns are ρkyik and ρkxkj , standard coordinates are yik

and xkj . Popular joint graphical methods which are currently used are as follows:

Symmetric Plot (Also Called French Plot) We plot ρkyik and ρkxkj in the same
graph, but these variates do not span the same space. Thus, if we want to be exact, a
unidimensional symmetric graph, for example, is a summary of a two-dimensional
graph, the reason why Lebart et al. (1977) warned not to calculate the distance of
two between-set points in a symmetric graph. The fact that the graph uses principal
coordinates is correct, but the graph in reality needs doubled dimensions because
the axis for rows and the axis for columns are separated by an angle (θ ) equal
to the arccosine of the singular value, that is, θ = arccos(ρ). Thus, under the
symmetric scaling, a four-dimensional configuration, for example, is presented by a
two-dimensional graph, corresponding to the first two largest singular values, thus
making the graph at best a rough approximation to the correct graph.

Non-symmetric Graph We plot ρyik and xkj or yik and ρxkj . This graph is
sometimes considered logically correct since this involves projection of one variate
onto the space of the other variable, placing both on the same space. Note that
ρ is known in dual scaling as a projection operator. Although the idea behind
non-symmetric graph may appear logically correct, we should know that ρyik , for
example, is the projection of the standard coordinate onto the standard space of the
other variable. As previously noted, standard coordinates do not reflect information
in data. Therefore, the projection of standard coordinates of one set of variables onto
the standard space of the other set of variables cannot properly represent a graph of
data. Thus, unlike the general belief, a non-symmetric graph is not logical and it is
not a graph of the data structure at all.

Biplot (See Gabriel 1971) The singular decomposition of YΛX′ is expressed as
YΛαΛβX′, where α + β = 1. In the context of joint graphical display, when
α = 1, or when β = 1, this decomposition provides non-symmetric joint graphical
display, that is, the one we have rejected above. There is no form for symmetric
graphical display because symmetric decomposition means that α = β = 0.5, and
we should note that the square root of the singular value is not a projection operator
(recall that the singular value is the projection operator). For the correct graphical
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representation, we must have that α = 1, β = 1 and must use doubled space. In
biplot, however, doubling the space is not a considered operation.

So, none of these popular joint graphical methods would provide a correct
Euclidean representation of data. In this regard, the strong emphasis on joint
graphical display by the Benzécri–Greenacre stream faces a serious drawback
against the popularity that it has so far enjoyed. But, because of the established
popularity of joint graphical display, it would be difficult for most researchers to
give up joint graphical display. Our view, however, is that researchers should be
warned about its inherent problems and pose for a moment of reflection. If one must
choose between symmetric scaling and non-symmetric scaling, choose symmetric
scaling or French plot, and remind yourself of the warning by Lebart et al. (1977).
See also an interesting debate on the Carroll–Green–Schaffer scaling (Caroll et al.
1986; Greenacre 1989).

6 Total Information Analysis or Comprehensive Dual Scaling

Nishisato and Clavel (2010) proposed total information analysis (TIA) or compre-
hensive dual scaling (CDS). The basic idea is to extend the traditional within-set
analysis in quantification theory to both within-set and between-set analyses. The
procedure is to extract all components from the contingency table by dual scaling,
and then using all components we calculate the within-row distance matrix Dyy, the
between-row-column distance matrix Dyx, the between-column-row distance matrix
Dxy, and the within-column distance matrixDxx, resulting in the super-distance
matrix D, consisting of these four sub-matrices. It is known that D spans the space
with doubled dimensions of the original contingency table, thus no more problem of
discrepancy between row space and column space. This doubled space is called dual
space. Because their analysis deals with doubled multidimensional space, which is
likely to make correct joint graphs impractical, they suggest subjecting D to cluster
analysis.

Clavel and Nishisato (2020) then discovered that cluster analysis of the super-
distance matrix often yields within-set clusters (clusters consisting of only row
variables or only column variables), which defeats the original purpose of quantifi-
cation of the contingency tables, that is, to find relations between rows and columns.
Their conclusion then is to subject the between-set distance matrix Dyx to cluster
analysis, which guarantees finding between-set clusters. This is called bi-modal
clustering. Notice that almost all varieties of clustering methods deal with only
square distance matrices, hence fail to deal with typically rectangular between-set
distance matrices, they recommended clustering with the p-percentile filter, or more
generally clustering with flexible filters (Nishisato 2014), which simply screen out
relatively large distances to identify clusters from the remaining small distances. We
will look at some applications of this simple procedure in the paper by Clavel and
Nishisato.
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7 Contingency Table and Response-Pattern Table

Relations between the contingency table and the corresponding response-pattern
table are thoroughly described in Nishisato (1980), where he showed that the
response-pattern table, derived from the contingency table, requires twice the
dimensions for the contingency table when the number of rows, m, and that of
columns, n, are equal, and more than twice the dimensions for the contingency table
when m �= n. Nishisato (2019) has identified two ways to calculate the between-set
distance matrix from a given contingency table, one in dual space and the other in
total space. This distinction will be demonstrated in this section.

Let us use an example, which is a subset of the (Garmize and Rychlak
1964) data on Rorschach inkblots and induced moods as shown in Table 1, the
corresponding condensed form of the response-pattern matrix (Table 2), and the

Table 1 Rorschach responses and induced mood

Responses Fear Anger Depression Love Ambition Security

Bat 33 10 18 1 2 6

Butterfly 0 2 1 26 5 18

Mountains 2 1 4 1 18 2

Contingency table
Notes: Selection from Garmize and Rychlak (1964, Table 1, p. 111)

Table 2 Rorschach responses and induced mood

Bat Butterfly Mountains Fear Anger Depression Love Ambition Security

33 0 0 33 0 0 0 0 0

10 0 0 0 10 0 0 0 0

18 0 0 0 0 18 0 0 0

1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 2 0

6 0 0 0 0 0 0 0 6

0 2 0 0 2 0 0 0 0

0 1 0 0 0 1 0 0 0

0 26 0 0 0 0 26 0 0

0 5 0 0 0 0 0 5 0

0 18 0 0 0 0 0 0 18

0 0 2 2 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 4 0 0 4 0 0 0

0 0 1 0 0 0 1 0 0

0 0 18 0 0 0 0 18 0

0 0 2 0 0 0 0 0 2

Response-Pattern table
Notes: Selection from Garmize and Rychlak (1964, Table 1, p. 111)
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Table 3 Principal coordinates of variables in dual space and total space

Variables 1 2 6 7 3 4 5

Bat −0.92 −0.39 −0.19 −0.32 0.00 0.00 0.00

Butterfly 1.19 −0.49 −0.23 0.41 0.00 0.00 0.00

Mountains 0.09 1.88 0.91 0.03 0.00 0.00 0.00

Fear −1.10 −0.42 0.20 0.38 −0.01 −1.25 0.29

Anger −0.66 −0.37 0.18 0.23 2.74 1.23 0.78

Depression −0.83 −0.00 0.00 0.28 −1.48 1.75 −0.43

Ambition 1.37 −0.64 0.31 −0.47 −0.09 0.11 1.23

Security 0.29 1.97 −0.95 −0.10 0.20 −0.29 0.16

Love 0.79 −0.45 0.22 −0.27 −0.14 −0.31 −1.88

Dual space *** *** *** *** – – –

Total space *** *** *** *** *** *** ***

Notes: *** indicates a check mark

principal coordinates of both Rorschach inkblots and induced moods in dual space
(components 1, 2, 6, and 7) and total space (all seven components) (Table 3). As
discussed by Nishisato (2019), dual space is the space common for both rows and
columns of the contingency table, and total space consists of seven components. In
the current example, the extra components are for the induced moods (components
3, 4, and 5) where the corresponding principal components for the Rorschach
inkblots are all zero, that is, no more variations left among the Rorschach inkblots.

Dual space is the space in which all relations between rows and columns are
accommodated, thus, consisting of components 1, 2, 6, and 7 (see Nishisato 2019,
how these components are identified), while total space is that accommodates these
joint contributions and the unique contributions of induced moods in the current
example.

7.1 Justification of Total Space

First of all, note that the seven components are needed to reproduce the response-
pattern table. Secondly, consider the situation in which we are interested in the
distance judgments between two sets of color chips, where one set consists of chips
which vary in hue and brightness and the other set which consists of color chips that
vary in hue, brightness, and saturations. If we assume that the first set spans two
dimensions (hue, brightness) and the second set three dimensions (hue, brightness,
and saturation), it is quite legitimate for us to calculate distances between two sets of
these color chips, that is, distances between variables in different dimensions. This
is the case in which one must consider total space for between-set distances.

Which space we should use for distance calculation, dual space or total space, is
something that remains unsettled at this stage of research, and the choice is likely
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to rest on the opinion of the researchers, and therefore this matter of choice will be
left for future investigation.

8 Bi-Modal Clustering in Dual Space and Total Space

With this much background information, the following paper by Clavel and
Nishisato will be devoted to numerical illustrations of bi-modal clustering of the
between-set distance matrix and total space. Because of the philosophical problem
of which space to analyze, the current study will remain exploratory, and its main
goal is to provide some numerical results which can be used for further discussion of
analysis in dual space versus total space. It is hoped that the information provided by
the two papers will offer strong enough evidence in support of bi-modal clustering
as a method preferred to the currently popular joint graphical analysis.

Acknowledgement The author wishes to express his heart-felt thanks to Prof. José Garcia Clavel
of Universidad de Murcia, Spain for his great assistance and helpful comments.

References

Baker, F.G.: Quantifying qualitative variables by the method of reciprocal averages. Occasional
Paper No. 7, Laboratory of Experimental Design, Department of Educational Psychology,
University of Wisconsin (1960)

Beh, E.J., Lombardo, R.: Correspondence Analysis: Theory, Practice and New Strategies. Wiley,
Hoboken (2014)

Benzécri, J.-P.: Statistical analysis as a tool to make patterns emerge from data. In: Watanabe, S.
(ed.) Methodologies of Pattern Recognition, pp. 35–74. Academic, New York (1969)

Benzécri, J.-P., et al.: L’analyse des données: II. L’analyse des Correspondances. Dunod, Paris
(1973)

Bock, R.D.: The selection of judges for preference testing. Psychometrika 21, 349–366 (1956)
Bock, R.D.: Methods and Applications of Optimal Scaling. The University of North Carolina

Psychometric Laboratory Research Memorandum No.25 (1960)
Bradley, R.A., Katti, S.K., Coons, I.J.: Optimal scaling for ordered categories. Psychometrika 27,

355–374 (1962)
Caroll, J.D., Green, P.E., Schaffer, C.M.: Interpoint distance comparisons in correspondence

analysis. J. Market. Res. 23, 271–280 (1986)
Clavel, J.G., Nishisato, S.: From joint graphical display to bi-modal clustering. In: Imaizumi, T. et

al (eds.) Dual space versus total space. Advanced Studies in Classification and Data Science.
Springer Nature Singapore 16 (2020)

de Leeuw, J.: Canonical Analysis of Categorical Data. Psychological Institute, Leiden University
(1973)

de Leeuw, J., Young, F.W., Takane, Y.: Additive structure in qualitative data: an alternating least
squares method with optimal scaling features. Psychometrika 41, 471–504 (1976)

Fisher, R.A.: The precision of discriminant functions. Ann. Eugenic. 10, 422–429 (1940)
Fisher, R.A.: Statistical Methods for Research Workers, 10th edn. Oliver and Boyd, London (1948)



166 S. Nishisato

Gabriel, K.R.: Biplot graphic display of matrices with application to principal component analysis.
Biometrika 58, 453–467 (1971)

Gabriel, K.R.: Analysis of meteorological data by means of canonical decomposition and biplots.
J. Appl. Meteorol. 11, 1071–1077 (1972)

Garmize, L.M., Rychlak, J.F.: Role-play validation of a sociocultural theory of symbolism. J.
Consult. Psychol. 28, 107–115 (1964)

Gauch, Jr., H.G.: Multivariate Analysis in Community Ecology. Cambridge University Press,
Cambridge (1982)

Gauch, Jr., H.G., Whittaker, R.H., Wentworth, T.R.: A comparative study of reciprocal averaging
and other ordination techniques. J. Ecol. 65, 157–174 (1977)

Gifi, A.: Nonlinear Multivariate Analysis. Wiley, New York (1990)
Greenacre, M.J.: Some objective methods of graphical display of a data matrix. Special Report,

Department of Statistics and Operations Research, University of South Africa (1978)
Greenacre, M.J.: Theory and Applications of Correspondence Analysis. Academic, London (1984)
Greenacre, M.J.: The Carroll-Green-Schaffer scaling in correspondence analysis: a theoretical and

empirical appraisal. J. Market. Res. 26, 358–365 (1989)
Greenacre, M.J., Degos, L.: Correspondence analysis of HLA gene frequency data from 125

population samples. Amer. J. Hum. Genet. 29, 60–75 (1977)
Guttman, L.: The quantification of a class of attributes: A theory and method of scale construction.

In: The Committee on Social Adjustment (ed.) The Predication of Personal Adjustment, pp.
319–348. Social Research Council, Swindon (1941)

Guttman, L.: An approach for quantifying paired comparisons and rank order. Ann. Math. Stat. 17,
144–163 (1946)

Hayashi, C.: On the quantification of qualitative data from the mathematico-statistical point of
view. Ann. Inst. Stat. Math. 2, 35–47 (1950)

Hayashi, C.: On the prediction of phenomena from qualitative data and the quantification of
qualitative data from the mathematico-statistical point of view. Ann. Inst. Stat. Math. 3, 69–
98 (1952)

Hayashi, C.: Multidimensional quantification with the applications to analysis of social phenom-
ena. Ann. Inst. Stat. Math. 5, 121–143 (1954)

Hayashi, C.: Multidimensional quantification of the data obtained by the method of paired
comparison. Ann. Inst. Stat. Math. 16, 231–245 (1964)

Hayashi, C.: Note on multidimensional quantification of data obtained by paired comparison. Ann.
Inst. Stat. Math. 19, 363–365 (1967)

Hayashi, C.: One dimensional quantification and multidimensional quantification. Ann. Jpn.
Associat. Philos. Sci. 3, 115–120 (1968)

Healy, M.J.R., Goldstein, H.: An approach to the scaling of categorical attributes. Biometrika 63,
219–229 (1976)

Hill, M.O.: Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61, 237–249 (1973)
Hill, M.O.: Correspondence analysis: a neglected multivariate method. Appl. Stat. 23, 340–354

(1974)
Hirschfeld, H.O.: A connection between correlation and contingency. In: Mathematical Proceed-

ings of the Cambridge Philosophical Society, vol. 31, pp. 520–524. (1935)
Horst, P.: Measuring complex attitudes. J. Soc. Psychol. 6, 367–374 (1935)
Iwatsubo, S.: An optimal scoring method for detecting clusters and interpretations from multi-way

qualitative data. Behaviormetrika 5, 1–22 (1978)
Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, vol. 2. Griffin, London (1961)
Lang, C.: Factorial correspondence analysis of oligochaeta communities according to eutrophica-

tion level. Hydrobiologia 57, 241–247 (1978)
Lebart, L., Morineau, A., Tabard, N.: Techniques de la Description Statistique: Méthodes et

Logiciels pour l’Analyse des Grands Tableaux. Dunod, Paris (1977)
Lebart, L., Morineau, A., Warwick, K.M.: Multivariate Descriptive Statistical Analysis. Wiley,

England (1984)



From Joint Graphical Display to Bi-Modal Clustering: [1] A Giant Leap. . . 167

Lingoes, J.C.: Simultaneous linear regression: an IBM 7090 program for analyzing met-
ric/nonmetric or linear/nonlinear data. Behav. Sci. 9, 87–88 (1964)

Lingoes, J.C.: The multivariate analysis of qualitative data. Mult. Behav. Res. 3, 61–94 (1968)
Lord, F.M.: Some relations between Guttman’s principal components of scale analysis and other

psychometric theory. Psychometrika 23, 291–296 (1958)
Maung, K.: Measurement of association in contingency table with special reference to the

pigmentation of hair and eye colours of Scottish school children. Ann. Eugenic. 11, 189–223
(1941)

McDonald, R.P.: A unified treatment of the weighting problem. Psychometrika 33, 351–381 (1968)
McDonald, R.P., Torii, Y., Nishisato, S.: Some results on proper eigenvalues and eigenvectors with

applications to scaling. Psychometrika 44, 211–227 (1979)
McKeon, J.J.: Canonical analysis: some relations between canonical correlations, factor analysis,

discriminant function analysis, and scaling theory. Psychometric Monograph No. 13 (1966)
Mosier, C.I.: Machine methods in scaling by reciprocal averages. In: Proceedings, Research Forum,

pp. 35–39. International Business Corporation, Endicath (1946)
Nishisato, S.: Minimum entropy clustering of test items. The University of North Carolina at

Chapel Hill Ph.D. Thesis (1966)
Nishisato, S.: Analysis of variance through optimal scaling. In: Proceedings of the First Canadian

Conference on Applied Statistics, pp. 306–316. Sir George Williams University Press, Montreal
(1971)

Nishisato, S.: Optimal scaling and its generalizations. I. Methods. Measurement and Evaluation of
Categorical Data (MECD) Technical Report 1. The Ontario Institute for Studies in Education
(OISE), Toronto (1972)

Nishisato, S.: Optimal scaling and its generalizations. I. Applications. MECD Technical Report 2,
OISE, Toronto (1973)

Nishisato, S.: Optimal scaling as applied to different forms of data. MECD Technical Report 4,
OISE, Toronto (1976)

Nishisato, S.: Optimal scaling of paired comparison and rank order data: an alternative to
Guttman’s formulation. Psychometrika 43, 263–271 (1978)

Nishisato, S.: Dual scaling and its variants. In: Traub, R.E. (ed.) Analysis of Test Data, pp. 1–12.
Jossey-Bass, San Francisco (1979).

Nishisato, S.: Analysis of Categorical Data: Dual Scaling and Its Applications. University of
Toronto Press, Toronto (1980)

Nishisato, S.: Gleaning in the field of dual scaling. Psychometrika 61, 559–599 (1996)
Nishisato, S.: Quantification theory: Reminiscence and a step forward. In: Gaul, W., Geyer-Schultz,

A., Schmidt-Thiéme, Kunze, J. (eds.) Challenges at the Interface of Data Analysis, Computer
Science, and Optimization, pp. 109–119. Springer, Berlin (2014)

Nishisato, S.: Multidimensional joint graphical display of symmetric analysis: Back to the basics.
In: Vander Ark, L.A., Bold, D.M., Wang, W.C., Douglas, J.A., Wiberg, M. (eds.) Quantitative
Psychology Research, 291–298. Springer, Berlin (2016)

Nishisato, S.: Notes on the Carroll-Green-Schaffer scaling and joint Graphical display. (2017,
under review for publication)

Nishisato, S.: Reminiscence: Quantification theory and graphs. Theory Appl. Data Anal. 8(1), 47–
57 (2019) (in Japanese)

Nishisato, S., Arri, P.S.: Nonlinear programming approach to optimal scaling of partially ordered
categories. Psychometrika 40, 525–548 (1975)

Nishisato, S., Clavel, J.G.: Total information analysis: Comprehensive dual scaling. Behav-
iormetrika 37, 15–32 (2010)

Nishisato, S., Inukai, Y.: Partially optimal scaling of items with ordered categories. Jpn. Psychol.
Res. textbf14, 109–119 (1972)

Nishisato, S., Lawrence, R.D.: Dual scaling of multiway data matrices: Several variants. In: Copi,
R., Bolasco, S. (eds.) Multiway Data Analysis, pp. 317–326. Elsevier, Amsterdam (1989)

Nishisato, S., Leong, K.S.: OPSCAL: A Fortran IV program for analysis of qualitative data by
optimal scaling. MECD Technical Report 3, Toronto (1975)



168 S. Nishisato

Richardson, M., Kuder, G.F.: Making a r5ating scale that measures. Personnel J. 12, 36–40 (1933)
Shiba, S.: A method for scoring multicategory items. Jpn. Psychol. Res. 7, 75–79 (1965)
Slater, P.: The analysis of personal preferences. Br. J. Stat. Psychol. 3, 119–135 (1960)
Takane, Y., Shibayama, T.: Principal component analysis with external information on both

subjects and variables. Psychometrika 56, 97–120 (1991)
Takane, Y., Young, F.W., de Leeuw, J.: Nonmetric individual differences multidimensional scaling:

an alternating least squares method with optimal scaling features. Psychometrika 42, 7–67
(1977)

Tanaka, Y.: Some generalized method of optimal scaling and their asymptotic theories: the case of
multiple-response-multiple factors. Ann. Inst. Stat. Math. 30, 329–348 (1978)

Teil, H.: Correspondence factor analysis: an outline of its method. Math. Geol. 7, 3–12 (1975)
Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)
Van Rijckevorsel, J., de Leeuw, J.: An outline of HOMALS-1. Department of Data Theory, Faculty

of Social Sciences, University of Leiden (1978)
Whittaker, R.H.: Gradient analysis of vegetation. Biol. Rev. 42, 207–264 (1967)
Williams, E.J.: Use of scores for the analysis of association in contingency tables. Biometrika 39,

274–280 (1952)
Young, F.W., de Leeuw, J., Takane, Y.: Regression with qualitative and quantitative variables: an

alternating least squares with optimal scaling features. Psychometrika 41, 505–529 (1976)
Young, F.W., Takane, Y, de Leeuw, J.: The principal components of mixed measurement level mul-

tivariate data: an alternating least squares method with optimal scaling features. Psychometrika
43, 279–281 (1978)



External Logistic Biplots for Mixed Types
of Data

José L. Vicente-Villardón and Julio C. Hernández-Sánchez

Abstract A simultaneous representation of individuals and variables in a data
matrix is called a biplot. When variables are binary, nominal, or ordinal, a classical
linear biplot representation is not adequate. Recently, biplots for categorical data-
based logistic response models have been proposed. The coordinates of individuals
and variables are computed to have logistic responses along the biplot dimensions.
The methods are related to logistic regression in the same way as classical biplot
analysis (CBA) is related to linear regression, thus are referred as logistic biplot
(LB). Most of the estimation methods are developed for matrices in which the
number of individuals is much higher than the number of variables. When the
number of variables is high, external logistic biplots can be used; row coordinates
are obtained by principal coordinates analysis and then logistic regression is fitted to
obtain the variables representation. In this work, external logistic biplots for binary
data are extended to nominal and ordinal data using parametric and nonparametric
logistic fits and then combined in a single representation.

1 Introduction

A simultaneous representation of individuals and variables in a data matrix is called
a biplot. Biplots were proposed in Gabriel (1971) originally for continuous data.
More information about biplots can be found in Gower and Hand (1995) or Gower
et al. (2011). For binary, nominal, or ordinal variables, a classical linear biplot
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representation is not adequate. A popular alternative for categorical variables is the
Gifi System for Descriptive Multivariate Analysis (Gifi 1990, Michailidis and de
Leeuw 1998). The methods are based on the optimal scaling of categorical variables
using alternating least squares procedures. Gower and Hand (1995) or Gower et al.
(2011) also study some properties of the procedures based on quantification in
relations to the associated biplot representations. Other generalizations of the main
idea are, for example, the non-linear biplots (Gower and Harding 1988) or the
generalized biplot (Gower 1992) in which some pseudo-samples are projected onto
a principal coordinates analysis (Gower 1966, Gower 1968) to obtain a non-linear
trajectory that can be interpreted as a biplot, the introduction of positive definite
metrics for rows and columns (Greenacre 1984, Vicente-Villardon 1992), or the
symmetrical representation of rows and columns (Galindo 1986).

A newer trend is developing similar methods based on logistic rather than linear
relations among observed and combined variables. Principal components for binary
data based on logistic responses were proposed in (De Leeuw 2006), a biplot version
(Logistic Biplot) by Vicente-Villardón et al. (2006), later extended in Demey et al.
(2008) to matrices with more variables than individuals (external logistic biplot).
Extension of the logistic biplots to nominal data can be found in Hernández-
Sánchez and Vicente-Villardón (2017) and to ordinal data in Vicente-Villardóon
and Henández-Sánchez (2014).

In this paper, we consider external biplots for mixtures of different data types,
continuous, binary, nominal, or ordinal. In Sect. 2.1, we present a general definition
of a biplot, wide enough to accommodate the interpretations for different types
of data. In Sect. 2.2, we describe principal coordinates analysis on the Gower’s
distances that will be used to obtain the euclidean map representing the rows.
Section 2.2 describes how to project continuous variables onto the euclidean map,
Sect. 2.3 has the procedure for binary variables, and Sects. 2.4 and 2.5 for the
nominal and ordinal cases, respectively. In Sect. 3, we illustrate the methods with
some examples.

2 Biplots for Mixed Types of Data

We think of a biplot, in a very general way, as a joint representation in a scattergram
of the rows and the columns of a data matrix. Given a data matrix XI×J contains
the measures of J variables of mixed types on I individuals, an S-dimensional
biplot is a joint representation of the rows and columns of the matrix, usually with
a set of points AI×S for the rows and a set of points (or vectors) BJ×S for the
columns. Similarities and differences among rows (individuals) are interpreted as
distances while correlations or similarities among columns (variables) have different
interpretations depending on the kind of data and the kind of biplot used. Joint
interpretation of rows and columns is made using inner products (projection of the
row points onto the column vectors) in the linear, binary, and ordinal cases, and
using distances among row and column points in the nominal case; for the latter,
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there is also a division of the row space into prediction regions for each category of
the nominal variables.

Here, we use an external version of the biplot where the scores for individuals
will be calculated using principal coordinates analysis (PCoA) (Gower 1966) or
classical multidimensional scaling. The scores are represented as points on a
euclidean map (scattergram). This technique tends to cluster together individuals
with similar profiles. The external biplot enables the variables to be represented
on the euclidean map and then to look for the characteristics responsible for the
configuration. In the following sections, we describe how to project and interpret
each type of variable (continuous, binary, nominal, or ordinal).

2.1 Principal Coordinates Analysis and Gower’s Similarity
Coefficient

PCoA is concerned with the problem of constructing a configuration A of I points in
a low dimensional euclidean space in such a way that the distance between any two
points of the configuration approximates, as closely as possible, a dissimilarity (δij )
between the individuals represented by these points. The objective is then to find
a configuration A in an S-dimensional euclidean space, whose inter-point distance
matrix D = (dij ) =

√
(ai − aj )′(ai − aj ) is as close as possible to the observed

dissimilarity Δ = (δij ) matrix. When the observed dissimilarities/distances are
euclidean, it is possible to find an exact configuration in I − 1 dimensions. A lower
dimensional approximation can be obtained projecting onto the first S principal
coordinates (usually S = 2). The theoretical considerations and demonstrations of
the method can be found, for example, in Mardia et al. (1979). We will calculate the
dissimilarities among the individuals using the Gower’s coefficient (Gower 1971)
for mixed types of data with the addition in Podani (1999) to cope with ordinal
variables. We do not describe these methods in more detail here because they are
very well known to most researchers.

2.2 Representation of Continuous Variables

Let XI×J be a data matrix that contains the measures of J continuous variables on
I individuals, and consider the following S-dimensional reduced rank model

X = 1I b′0 + AB′ + E (1)

where b′0 is a vector of constants, usually the column means (b0 = x̄ = 1
I

X′1I ),
A and B are matrices of rank S with I and J rows, respectively, and E is an I × J

matrix of errors or residuals. The expected values of X can be written as

E [X] = 1I b′0 + AB′, (2)
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or

X̂ = E
[
X− 1I b′0

] = E
[
X̃
]
= AB′ (3)

That approximation X̂ of the centered data matrix X̃ is called a biplot (Gabriel
1971) because it can be used to simultaneously plot the individuals and variables in
a reduced rank subspace, using the rows a′1, . . . , a′I of A and the rows b′1, . . . , b′J
of B as markers or coordinates on the low rank subspace. The inner product
x̂ij = a′ibj approximates the element x̃ij . Figure 1 shows the geometry of the
biplot. In summary, the expected values on the original data matrix are obtained
on the biplot using a simple scalar product, that is, projecting the point ai onto the
direction defined by bj (Fig. 1a). This is why row markers are usually represented
as points and column markers as vectors or directions (also called biplot axis in
Gower and Hand 1995). Then the set of points predicting a particular value of one
variable are on a straight line perpendicular to the direction representing the variable
(Fig. 1b).

( )
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= ′ = ( )⊗
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Fig. 1 Biplot approximation: (a) Inner product of the row and column markers. (b) The set of
points predicting the same value are all on a straight line perpendicular to the direction defined by
the column marker bj . (c) Points predicting different values are on parallel lines. (d) The variable
direction can be supplemented with scales to visually obtain the prediction
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Graded scales on the direction of the variable can be added to guide the
interpretation of the projections (Fig. 1c and d). The calculations for obtaining the
scale markers are simple. To find the marker for a fixed value μ, we look for the
point (x, y) that predicts μ and is on the direction of bj , i.e., on the line joining

the points (0, 0) and bj = (bj1, bj2), that is y = bj2
bj1

x. The prediction also verifies
μ = bj1x + bj2y. Then, we obtain

x = μ bj1

b2
j1 + b2

j2

; y = μ bj2

b2
j1 + b2

j2

(4)

Because we assume that the columns are centered to have zero mean, the point that
predicts 0 for all the variables is the origin, that is, it predicts the mean of each
variable. It is convenient to label the graded scales with the initial rather than the
transformed values. For example, if the variable is centered, we could use μ + x̄i

as the label of the point μ. When the variables have different measurement units
is convenient to standardize each column individually dividing by the standard
deviation, in that case the label should be μsi + x̄i . An algorithm to find pretty
values for the scales may be needed.

If we consider the row markers A as fixed and the data matrix previously
centered, the column markers can be computed by regression through the origin:

B′ = (A′A)−1A′X̃. (5)

The global goodness of fit is the amount of variability accounted by the
prediction, that is,

ρ2 = tr(X̂′X̂)/tr(X̃′X̃) (6)

Even for cases in which we obtain a good global fit, this does not imply obtaining
a good fit for each row or each column of the original data matrix. The goodness of
fit for each column is

ρ2
j = diag(X̂′X̂)÷ diag(X̃′X̃) (7)

where ÷ means the element by element operation. ρ2
j is like the R-squared

of the regression of each column of X on A. We call that quantity quality of
representation of the variable in analogy with the terminology of correspondence
analysis (Benzecri 1973, Greenacre 1984). In (Gardner-Lubbe et al. 2008), this
quantity is called predictiveness of the column. The measures are used to identify
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which variables are most related to the representation. Only when the predictiveness
of a variable is reasonable, the approximation of its values is interpretable.

2.3 Representation of Binary Variables

The logistic biplot for binary data was proposed in Vicente-Villardón et al. (2006)
and later extended in Demey et al. (2008) to its external version. Let X be an I × J

binary data matrix containing the measures of J binary characters on I individuals.
A binary matrix can be understood as a matrix of observed probabilities. Let p̂ij =
E(xij ) be the expected probability that the character j be present at individual i. A
logistic bilinear model can be written as

p̂ij = e(bj0+∑k bjkaik)

1 + e(bj0+∑k bjkaik)
(8)

where aik and bjk , (i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , S) are the model
parameters that will be used as row and column markers, respectively. The model is
a generalized bilinear model having the logit as link function.

logit(p̂ij ) = bj0 +
q∑

k=1

bjkaik = bj0 + a′ibj

In matrix form,

logit(P) = 1nb′0 + AB′ (9)

So, we have a biplot in logit scale except for the vector of constants. Except for the
constant, the geometry of the biplot is the same of the linear case to predict the logits
and then, to predict the probabilities. The intercept has to be fitted because it is not
possible to previously center the binary data (see Fig. 2).

The calculations for obtaining the scale markers are simple, is the same as the
linear case but keeping the intercept. To find the marker for a fixed probability p,
we look for the point (x, y) that predicts p and is on the biplot axis, i.e., on the line
joining the points (0, 0) and βj = (bj1, bj2), that is

y = bj2

bj1
x

The prediction verifies

logit(p) = bj0 + bj1x + bj2y
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Fig. 2 Geometry of the binary logistic biplot: (a) Response surface of a binary logistic regression.
(b) Level curves of the response predicting different probabilities and the direction to represent on
the biplot

We obtain

x = (logit(p)− bj0)bj1

b2
j1 + b2

j2

; y = (logit(p)− bj0)bj2

b2
j1 + b2

j2

For example, the point on axis βj predicting 0.5 (logit(0.5)=0) is

x = −bj0bj1

b2
j1 + b2

j2

; y = −bj0bj2

b2
j1 + b2

j2

If the intercept is not fitted, the point predicting 0.5 is always the origin and the
goodness of fit is much lower. To simplify the graph, we represent the segment
(or arrow) joining the points predicting 0.5 and 0.75. The line perpendicular to the
segment at the 0.5 point divides the plot in two regions, one predicting presence and
the other absence of the variable.

If we consider the row markers A as fixed, obtained from a principal coordinates
analysis as before, the column markers b′0 and B can be computed by standard
logistic regression (probably penalized if presences and absences are completely
separated on the scattergram).

Predictiveness of the variables is now measured using, for example, the Nagelk-
erke pseudo R-squared, AIC, BIC, or any fit measure traditionally used in logistic
regression. The percent of correct classifications (assigning presence when the
probability is higher than 0.5) is also a good measure of fit.
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2.4 Representation of Nominal Variables

Let X be a data matrix containing the values of J nominal variables, each with Kj

(j = 1, . . . , J ) categories, for I individuals. The last (or the first) category of each
variable will be used as a baseline. Let πij (k) denote the expected probability that
the category k of variable j be present at individual i. As before, we suppose that
we already have a euclidean map to represent the individuals and we want to obtain
the representation of a nominal variable. We will use a multinomial logistic model
in which the probabilities are obtained as:

πij (k) = e
bj(k)0+

S∑
s=1

bj(k)sais

Kj∑
l=1

e
bj(l)0+

S∑
s=1

bj(l)sais

, (k = 1, . . . ,Kj ). (10)

Using the last category as a baseline in order to make the model identifiable, the
parameter for that category is restricted to be 0, i.e., bj (Kj )0 = bj (Kj)s = 0, (j =
1, . . . , J ; s = 1, . . . , S). The model can be rewritten as:

πij (k) = e
bj(k)0+

S∑
s=1

bj(k)sais

1 +
Kj−1∑
l=1

e
bj(l)0+

S∑
s=1

bj(l)sais

, (k = 1, . . . ,Kj − 1). (11)

The model is fitted using standard nominal logistic regressions. It is easy to see that
the log-odds of each response (relative to the last category) follow a bi-linear model:

log

(
πij (k)

πij (Kj )

)
= bj (k)0 +

S∑

s=1

bj (k)sais = bj (k)0 + a′ibj (k),

where ais and bj (k)s (i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . ,Kj −1; s =
1, . . . , S) are the model parameters. Although the biplot for the log-odds may
be useful, it would be more interpretable in terms of predicted probabilities and
categories.

The points predicting different probabilities are no longer on parallel straight
lines (see Fig. 3); this means that predictions on the logistic biplot are not made in
the same way as in the linear biplots, the surfaces now define prediction regions
for each category as shown in the graph. An algorithm to obtain the prediction
regions and the complete geometry of the biplot can be found in Hernández-Sánchez
and Vicente-Villardón (2017). When the number of categorical variables is high, it
would be very difficult to visualize all the prediction regions. Using methods of
Computational Geometry, the tessellation (prediction regions) obtained from the
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Fig. 3 Nominal logistic biplot: (a) Response surface of a nominal logistic regression. (b) Level
curves of the response predicting 0.5 for each category. (c) Lines for the comparison of each pair
of categories. (d) Prediction regions for each category

multinomial logistic regression on the principal coordinates can be approximated
by a Voronoi diagram and then a set of generators of the diagram obtained (see
Fig. 4). The generators have the role of category points. The interpretation is quite
simple, the prediction for an individual is the category corresponding to the nearest
category point.

Predictiveness of the variables is now measured using any fit measure tradition-
ally used in multinomial logistic regression.

2.5 Representation of Ordinal Variables

Let X be a data matrix containing the measures of I individuals on J ordinal
variables with Kj, (j = 1, . . . , J ) ordered categories each.

Let π∗
ij (k) = P(xij ≤ k) be the cumulative probability that individual i has a

value lower than k on the j − th ordinal variable, and let πij (k) = P(xij = k)
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Fig. 4 Category points (generators of the Voronoi diagram) induced by the prediction regions

the (expected) probability that individual i takes the k-th value on the j -th ordinal
variable. Then π∗

ij (Kj ) = P(xij = Kj ) = 1 and πij (k) = π∗
ij (k) − π∗

ij (k−1)

(with π∗
ij (0) = 0). An S-dimensional ordinal logistic model for the cumulative

probabilities can be written for (1 ≤ k ≤ Kj − 1) as

π∗
ij (k) =

1

1+ e
−
(
djk+∑S

s=1 aisbjs

) = 1

1 + e−(djk+a′ibj )
(12)

where ai = (ai1, . . . , aiS)′ is the vector of latent trait scores for the i− th individual
and djk and bj = (bj1, . . . , bjS)′ the parameters for each item or variable.

Observe that we have defined a set of binary logistic models, one for each
category, where there is a different intercept for each but a common set of slopes
for all.

The bj parameters can also be represented on the graph as directions on the
scores space that best predict probabilities and they are used to help in searching for
the variables or items responsible for the configuration of the individuals.
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Fig. 5 Ordinal logistic biplot: (a) Response surfaces of an ordinal logistic regression. (b)
Prediction regions and direction to represent on the biplot

In logit scale, the model is

logit(π∗
ij (k)) = dj (k) +

S∑

s=1

aisbjs = dj (k) + a′ibj , (13)

with k = 1, . . . ,Kj − 1. That defines a binary logistic biplot for the cumulative
categories. From a practical point of view, we are interested mainly in the regions
that predict each category, that is, the set of points whose expected probabilities
are higher in each category. Those regions are separated by parallel straight lines,
all perpendicular to the direction of bj (See Fig. 5). The details can be found in
Vicente-Villardóon and Henández-Sánchez (2014).

As in the binary case, predictiveness of the variables is now measured using,
for example, the Nagelkerke pseudo R-squared, AIC, BIC, or any fit measure
traditionally used in ordinal logistic regression.

3 Illustrative Example

As illustration, we have used some classical data set available as an example in R
(mtcars). The source of the data is Henderson and Velleman (1981) and contains
information about 32 cars on 11 variables.

• mpg Miles/(US) gallon
• cyl Number of cylinders (ordinal)
• disp Displacement (cu.in.)
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Table 1 Predictiveness of
the continuous variables

mpg disp hp drat wt qsec carb

0.593 0.737 0.629 0.727 0.570 0.672 0.349

• hp Gross horsepower
• drat Rear axle ratio
• wt Weight (1000 lbs)
• qsec 1/4 mile time
• vs V/S
• am Transmission (0 = automatic, 1 = manual)
• gear Number of forward gears (nominal in the example)
• carb Number of carburetors.

The euclidean configuration of the individuals (cars) has been obtained using
principal coordinates from a dissimilarity matrix calculated with the Gower’s
similarity coefficient for mixed types of data. The first two principal dimensions
account for 80.2% of the variability, thus reflecting quite well the actual similarities
and differences among the car models. All the variables have been projected on
the graph in order to interpret the characteristics of the groups (clusters) of cars.
Continuous, binary, and ordinal variables are represented as straight lines with the
adequate graded scales and nominal variables with prediction regions.

There are three main clusters on the graph, coincident with the number of gears
of the car, i.e., the nominal variable gear has a perfect fit. Most of the cars in the red
cluster with 4 gears has 4 cylinders (category 1 of cyl)), the cars in the cluster with
5 gears 6 cylinders and 5 gears is associated to 8 cylinders. The Nagelkerke pseudo
R-squared for the variable cyl is 0.72, i.e., there is a strong relation of the variable
with the principal coordinates solution.

The variable am has also a perfect classification of the cars. All the cars in cluster
3 have automatic transmission and cars in cluster 5 and most of cluster 3 have
manual transmission. The pseudo R-squared is 0.92.

The variable vs has a slightly lower percent of correct classification (84.37) with
a pseudo R-squared of 0.82.

The predictiveness for the continuous variables is in Table 1 and is lower than
the ones for the discrete variables. mpg and disp have inverse high correlation, mpg
is higher in cluster 4 and disp in cluster 3. Cluster 5 has intermediate values for both
variables. drat and wt have also inverse correlation, the first is higher in clusters 4
and 5, while the second is higher in cluster 3. A similar interpretation could be done
for the rest of the variables (Fig. 6).
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Gears

Fig. 6 Principal coordinates analysis of the mtcars data with the continuous and the binary
variables projected onto the euclidean map (biplot)

4 Software Note

All the procedures explained in this paper can be calculated using the R (R Core
Team 2019) packages: MultbiplotR (Vicente-Villardon 2019), NominalLogisticBi-
plot (Hernandez-Sanchez and Vicente-Villardon 2014), and OrdinalLogisticBiplot
(Hernandez-Sanchez and Vicente-Villardon 2014).
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Functional Clustering Approach
for Analysis of Concentration

Yifan Chen, Yuriko Komiya, Hiroyuki Minami, and Masahiro Mizuta

Abstract In this research, we study characteristics of concentration variation with
functional data analysis. Functional data analysis, which combines traditional data
analysis with the characteristics of functions, is suitable to analyze changing trend
of observed data with the utility of derivatives. We applied functional clustering
analysis to milk dataset, which contains milk concentration, sum of rain, average
speed of wind, and average temperature, to reveal the relationship between milk
concentration and other variables. We get eight dendrograms in functional clustering
analysis. Cophenetic correlation coefficient is used to measure the similarities
among the dendrograms. Multidimensional scaling is used to visualize the dis-
similarities of the dendrograms clearly. As a result, we find that the trend of milk
concentration has relation to those of sum of rain and of average speed of wind.

1 Introduction

Concentration variation happens everywhere, such as medicine aspect and dietary
aspect. It has a great meaning in our daily life; therefore, revelation of the affecting
factors of concentration variation is important and necessary. The purpose of this
research is to represent an application of functional data analysis to solve real
problems like “what are affecting factors to concentration variation.”

Functional data analysis is an analysis when data are functions proposed by
Ransay and Silverman (1982). It is a powerful approach in the biological and
pharmaceutical fields. There are many methods in functional data analysis that we
may see in the traditional data analysis as well, including functional clustering and
functional multidimensional scaling (MDS) (Ransay and Silverman 2005).

Y. Chen
Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan

Y. Komiya · H. Minami · M. Mizuta (�)
Information Initiative Center, Hokkaido University, Hokkaido, Japan
e-mail: komiya@iic.hokudai.ac.jp; min@iic.hokudai.ac.jp; mizuta@iic.hokudai.ac.jp

© Springer Nature Singapore Pte Ltd. 2020
T. Imaizumi et al. (eds.), Advanced Studies in Classification and Data Science,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-981-15-3311-2_15

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3311-2_15&domain=pdf
mailto:komiya@iic.hokudai.ac.jp
mailto:min@iic.hokudai.ac.jp
mailto:mizuta@iic.hokudai.ac.jp
https://doi.org/10.1007/978-981-15-3311-2_15


188 Y. Chen et al.

In this research, we propose a method to analyze relationship between concentra-
tion and affecting factors. Meanwhile we also use functional data analysis to explain
the relationship between the changing trends of concentration and those of affecting
factors. Finally, to get a better interpretation, we show some examples of execution
of the proposed method.

2 Proposed Method

Before the introduction of our method, some notations should be claimed. We
assume there are time dependent multivariate objects as described below:

yij , x
(1)
ij , x

(2)
ij , . . . , x

(p)
ij i = 1, . . . , n; j = 1, . . . ,m (1)

where p is the number of variables, n is the number of objects, m is the number of
period, and x

(p)

ij refers to the i-th object at j -th period for the r-th variable. In this

research, we assume yij as an object of concentration, and x
(1)
ij , x

(2)
ij , . . . , x

(p)
ij as

the affecting factors at the j -th period for i-th object.
We describe the proposed method as follows:

STEP 1: Functionalization
STEP 2: Functional hierarchical clustering
STEP 3: Measure of similarity between dendrograms
STEP 4: Visualization

2.1 Functionalization

Functionalization is a step of smoothing. In the step, basis functions are chosen to
make data into functions, which we can calculate by any argument t , with basis func-
tion system. It is a linear combination of basis functions Φk = (φ1(t), . . . , φk(t))

T

and coefficients that are independent from each other. There are several options,
such as Legendre polynomials and Fourier basis system.

Legendre polynomials system is a linear combination of Legendre polynomials
functions, which are the solutions to Legendre’s differential equation with order n:

Pn(t) = 1

2nn!
dn

dtn
(t2 − 1)n, (2)

therefore, the basis function can be written as

Φ(t) = (P0(t), P1(t), . . . , Pk(t))
T.



Functional Clustering Approach for Analysis of Concentration 189

Fourier basis system is a linear combination as well, but this time it is with the
Fourier series, which is:

c0 + c1sin(wt) + c2cos(wt) + c3sin(2wt)+ c4cos(2wt)+ · · · (3)

and its corresponding basis function can be written as

Φ(t) =
(

1√
2π

,
1√
π

sin(wt),
1√
π

cos(wt),
1√
π

sin(2wt),
1√
π

cos(2wt), . . .

)T

.

Since basis functions are independent, basis function system can be an orthonormal
system. Thus, we assume basis functions are orthonormal,

∫
φk(t)

Tφs(t)dt =
{

1 if s = k

0 if s �= k
. (4)

We can choose the kind of basis function system according to the characteristic
of dataset. In this research, the corresponding coefficients c

(r)
ki and cki are calculated

by minimizing the least square criterions,

SMSSE(c(r)
i |x(r)

i1 , . . . , x
(r)
im ) =

m∑

j=1

(
x

(r)
ij −

K∑

k=1

c
(r)
ki φk(tj )

)2

, (5)

SMSSE(ci |yi1, . . . , yim) =
m∑

j=1

(
yij −

K∑

k=1

ckiφk(tj )

)2

, (6)

where x
(r)
ij and yij are the observed values,

∑K
k=1 c

(r)
ki φk(tj ) and

∑K
k=1 ckiφk(tj ) are

the corresponding functions.

Then, for each i and r ,
{
x

(r)
ij , j = 1, . . . ,m

}
can be approximated well arbitrarily

with a linear combination of K basis function (Ransay and Silverman 2005). The
result of functionalization of the original data are

x
(r)
i (t) =

K∑

k=1

c
(r)
ki φk(t) = c(r)T

i Φ(t), (7)

yi(t) =
K∑

k=1

ckiφk(t) = cT
i Φ(t), (8)

where c(r)
i = (c

(r)
1i , c

(r)
2i , . . . , c

(r)
Ki)

T and ci = (c1i , c2i , . . . , cKi)
T correspondingly.
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With the functionalization, data have the characteristics of function, which means
that we can take derivatives and find the integration of those dataset. More precisely,
we can explain changing trends with the derivative of the functions.

To find the effects of changing trends of data, we focus on the derivatives of basis
functions. So we calculated their derivatives of functions as d

dt
yi(t),

d
dt

x
(1)
i (t), . . . ,

d
dt

x
(p)

i (t) from yi(t), x
(1)
i (t), . . . , x

(p)

i (t) correspondingly.

2.2 Functional Hierarchical Clustering

In the step of functional hierarchical clustering, functional clustering should be used
to get an interpretation of the relationship between observed objects.

Functional clustering is used not only in the functions but also in the derivatives
of the functions, because both original functions and their derivative functions may
be useful for analysis of concentration changes.

First, dissimilarity should be calculated. Dissimilarity between two functions
f (t), g(t) is defined by

‖f − g‖1 =
∫
|f (t)− g(t)|dt (9)

or

‖f − g‖2 =
∫

(f (t)− g(t))2dt . (10)

Then, we carry out functional hierarchical clustering to functions
{
yi(t); i =

1, . . . , n
}
,
{ d

dt
yi(t); i = 1, . . . , n

}
,
{
x

(r)
i (t); i = 1, . . . , n, r = 1, . . . , p

}
,{ d

dt
x

(r)
i ; i = 1, . . . , n, r = 1, . . . , p

}
. We can get 2p + 2 dendrograms.

2.3 Measure of Similarity Between Dendrograms
and Visualization

After functional hierarchical clustering, a criterion should be used to evaluate
similarities among dendrograms. Cophenetic correlation coefficient is used in this
research. It is the height between two nodes in the dendrograms (Saraçli1 et al.
2013) and usually considered as a measure to judge how well dendrograms can fit
the original distances.

More precisely speaking, cophenetic distance between two observations that
have been clustered represents the intergroup dissimilarity at which the two
observations are first combined into a single cluster. That means cophenetic distance
is the height of point where two elements first intersect as a union.
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Cophenetic correlation coefficient varies from 0 to 1. When two kinds of distance
fit in 100%, it becomes 1. When two kinds of distance do not fit each other at all, it
moves to 0.

In this research, we use it as a measure of similarity of two classifications or
two dendrograms. We denote ia and ib as the i-th elements of the dendrogram_a
and dendrogam_b, respectively. Also Da(ia, ib), Db(ia, ib) are denoted as the
cophenetic distance between objects ia and ib in dendrogram_a and dendrogam_b,
respectively, and Da , Db as the average cophenetic distance in dendrogram_a and
dendrogam_b, respectively. Cophenetic correlation coefficient is defined as below:

Cab =
∑n

ia=1
∑m

ib=1(Da(ia, ib)−Da)(Db(ia, ib)−Db)√∑n
ia=1

∑m
ib=1(Da(ia, ib)−Da)

√∑n
i1=a

∑m
ib=1(Db(ia, ib)−Db)

.

(11)

If the outcome is close to 1, the correlation between two dendrogram is strong. If it
is moving to 0, the correlation between two dendrograms goes weak. Then we apply
MDS to the cophenetic correlation coefficients

3 Analysis of Concentration Data

The proposed method is applied to an actual dataset below:

{(
yij , x

(1)
ij , x

(2)
ij , x

(3)
ij

); i = 1, . . . , n, j = 1, . . . ,m
}
,

where yij is the concentration value, x
(1)
ij is the sum of rain in one month, x

(2)
ij is

the average speed of wind in one month, and x
(3)
ij is the average temperature in one

month for the i-th place and the j -th period. The number of data from different
places is eighteen (n = 18). All those data are observed every two months, and
continued in one year (m = 6).

In this analysis, the concentration dataset is made of same kind of food but from
different places. The concentration varies from places to places in different time.
The main characteristics of corresponding places are also obtained as the observed
dataset in sum of rain, average speed of wind, and average temperature in one month.
Therefore, the goal is to find out whether the factors are effective to the changing by
using the proposed method above.

In functionalization of this experiment, Fourier basis system resulting from
Fourier series is used, for the dataset is periodic and Fourier series is suitable.
Fourier basis function system below is chosen with five basis functions, here is the
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outcome of functionalization on concentration:

x(r)(t) = a
(r)
i0 + a

(r)
i1 sin(t)+ a

(r)
i2 cos(t)+ a

(r)
i3 sin(2t)+ a

(r)
i4 cos(2t), (12)

and the derivatives as follows:

x(r)′(t) = a
(r)
i1 cos(t)− a

(r)
i2 sin(t)+ 2a

(r)
i3 cos(2t)− 2a

(r)
i4 sin(2t). (13)

Three more variables are obtained as d
dt

x
(1)
ij (t), d

dt
x

(2)
ij (t), d

dt
x

(3)
ij (t), which are

representations of changing trends of sum of rain in one month, changing trends of
average speed of wind in one month, and changing trends of average temperature in
one month correspondingly.

In this case, eight dendrograms can be obtained by L2-norm. We can see four
dendrograms of the outcomes below Figs.1, 2, 3, and 4.
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There are four dendrograms of clustering outcomes from the differential func-
tions below Figs. 5, 6, 7, and 8. In the figures, the number denotes 18 different
locations, which means same number corresponds to same place.

Then cophenetic correlation coefficient (2.11) is applied to measure the similarity
between dendrograms of concentration and the variables. In this case, “Kendall”
method is used instead of “Pearson” method, because coefficient of rank correlation
is considered to be a more suitable measure of rank than others in hierarchical
clustering.

We summarize the similarities in Table 1, where “concentration_d,” “rain_d,”
“wind_d,” and “temperature_d” represent derivatives of concentration, derivatives
of sum of rain in one month, derivatives of average speed of wind in one month, and
derivatives of average temperature in one month correspondingly.

Multidimensional scaling (Torgerson method) is used to visualize the dissimilar-
ity between dendrograms. We can see from Fig. 9 that it reflects directly the outcome
of cophenetic correlation coefficients. It also shows that the dendrogram of the speed
of wind has the closest relationship with the dendrogram of concentration, while the
dendrograms of the derivatives of sum of rain and the derivatives of average speed
of wind in one month are in close relationship with the dendrogram of derivatives
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Fig. 9 Multidimensional scaling of variables

of concentration. With the functionalization, factors affecting the changing trends
of concentration are shown.

4 Conclusion

Functional data analysis, especially functional clustering, gives us more choices to
analyze dataset. Cophenetic correlation coefficient can be used as a measure of
degree of fitness of a classification to a set of data to reveal relationship between
two dendrograms. Multidimensional scaling is a good visualization to show the
dissimilarity between variables in this research.
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Generalized Additive Models for the
Detection of Copy Number Variations
(CNVs) Using Multi-gene Panel
Sequencing Data

Corinna Ernst, Rita K. Schmutzler, and Eric Hahnen

Abstract We present a generalized additive models framework for the detection of
germline chromosomal copy number variations from multi-gene panel sequencing
data. Mean read abundances along a gene panel target are modelled as a product
of two smooth functions, namely a generic background function that contributes
to all samples under consideration and a sample-specific smooth function which
is used for final copy number variation calling. We validated our approach on
442 germline samples that were sequenced on a customized diagnostic gene panel
comprising exons of 49 genes and found that the proposed method outperforms
existing approaches both in sensitivity and specificity.

1 Introduction

We present an application of generalized additive models (GAMs) in the area of
genomic sequence data analysis, namely the identification of germline chromosomal
copy number variations (CNVs) in multi-gene panel data.

Next generation sequencing (NGS) has become an established tool for the
investigation and diagnosis of various diseases, e.g., cancer or mental disorders.
Targeted sequencing approaches restrict analyses to genomic regions of special
interest, e.g., the exome, or, in case of so-called multi-gene panels, to exons of genes
known or assumed to be implicated in a special phenotype. Thus, costs, storage
requirements, and computation times are further decreased, and panel approaches
have become a widely used tool in clinical diagnostics (Antoniadi et al. 2015;
Harter et al. 2017; Schreiber et al. 2013). Targeted sequencing data is typically
characterized by high sequence read coverage within targeted regions next to a
low, partially non-existent overall coverage, as well as strong biases based on local
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mappability, GC-content, and further factors affecting capture efficiency (Kuilman
et al. 2015; Sims et al. 2014). Therefore, multi-gene panels allow for the reliable
detection of genetic variants involving only a few nucleotides, namely single
nucleotide polymorphisms (SNPs) and short insertion/deletion events (indels), but
recent approaches for read depth-based estimation of large genomic rearrangements,
so-called CNVs, show notable lacks of accuracy and robustness (Johansson et al.
2016; Povysil et al. 2017). The term CNV describes large-scale chromosomal copy
number variations, i.e., gains or losses of >50 bp of genomic DNA (Alkan et al.
2011). CNVs occur frequently in healthy individuals (almost 10% of a typical
human genome is supposed to be affected by copy number variation (Zarrei et al.
2015)), but may also be associated with several diseases. For instance, CNVs
in BRCA1 or BRCA2 are known to confer increased risks of breast and ovarian
cancer (Engert et al. 2008).

For the reliable detection of CNVs, complex wet lab experiments are required,
such as multiplex ligation-dependent probe amplification (MLPA) (Schouten et al.
2002), fluorescence in situ hybridization (FISH), or array comparative genomic
hybridization (aCGH) (Oostlander et al. 2004). As these additional analyses are
costly and time-consuming, they are usually applied solely to genes known to be
frequently affected by CNVs (Johansson et al. 2016), e.g., BRCA1 and BRCA2 in
case of hereditary breast and ovarian cancer (Harter et al. 2017).

To explore the whole spectrum of genetic variability among the entire set of a
panel’s sequencing targets, but without the necessity of large-scale laborious wet
lab analyses, several computational approaches for CNV detection from targeted
sequencing data have been published (Johansson et al. 2016; Povysil et al. 2017;
Pugh et al. 2016). All of these methods take single values per sequencing target
and sample as input for read depth-based approximation of copy numbers, e.g., read
counts per target (Povysil et al. 2017), average depth of read coverage (Johansson
et al. 2016), or the fraction of a sample’s total coverage per target (Pugh et al. 2016).
Doing so, the amount of available information is pruned, and subregions with non-
existing coverage, non-linear effects typically occurring at target edges, as well as
copy number changes within sequencing targets hinder reliable detection of CNVs.

We propose an approach for CNV detection which is tailored to the challenges
of multi-gene panel analysis by investigation of read abundances on all base pair
positions along a sequencing target instead of taking solely summed up or averaged
read depths per sequencing target into account. Our method relies on the usage of
generalized additive model (GAMs), which have recently been shown to comprise
a powerful tool for the identification of ChIP-Seq peaks and genomic regions of
aberrant DNA methylation (Stricker et al. 2017). We present a GAM which models
the mean of observed read counts as a product of two smooth functions, namely
a generic background function that contributes to all samples under consideration
and a sample-specific smooth function. The latter function is used for final CNV
calling. It is assumed to deviate significantly from zero in case a CNV exists. We
evaluated our approach on 442 samples containing 17 verified CNVs and found that
it outperforms existing state-of-the-art approaches.
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2 Methods

We assume mapped sequencing reads of m,m ≥ 30, samples which are captured on
the same gene panel, and to be re-aligned around indels and filtered for duplicates as
input. Furthermore, a gene panel specification is required, defining the start and stop
positions, as well as the chromosomes, where the sequencing targets are located. Let
C be the set of chromosomes containing sequencing targets.

Our approach is divided into three processing steps. In the pre-processing step,
sequencing targets are filtered for minimum length and minimum coverage, sample
outliers are determined, and inter-sample normalization factors are computed. Then,
GAM fitting is applied for sample/target combinations comprising putative CNVs.
Finally, fitted GAMs are used for CNV prediction.

2.1 Pre-processing

Pre-processing aims to identify and exclude targets and samples suffering from
low sequencing read coverage or aberrant read abundance patterns due to technical
errors, as these may cause false positive CNV calls. In order to account for varying
sequencing depths among samples, normalization factors are pre-computed.

In a first pre-filter step, sequencing targets covering less than five adjacent
base positions are excluded from downstream analysis. In order to reduce artificial
correlation between adjacent nucleotides, the number of reads centered per genomic
position (henceforth referred to as read count) is used as desired quantity for the
estimation of observed read abundances. Thus, input for CNV detection is a matrix
M = (rij ) ∈ N

n×m
0 , where rij is the number of reads in sample j that are

centered at DNA sequence position xi corresponding to the ith entry in M . If M•j ,
the j th column of M , is zero at more than the half of all genomic positions, the
corresponding sample is assumed to be a subject of sequencing dropout and is
removed from M . Furthermore, sequencing targets t , with

1

nt

⎛

⎝
∑

i=1...nt

1

⎛

⎝
∑

j=1,...,m

rij = 0

⎞

⎠

⎞

⎠ >
1

3
(1)

with nt denoting the number of positions covered by t and 1 denoting the indicator
function, are supposed to be insufficiently covered for technical reasons and
excluded from M .

A common strategy in existing CNV detection methods is the identification and
exclusion of samples that show aberrant read abundance patterns due to technical
reasons. This approach aims to reduce the variance of inter-sample read abundances
per target in order to prevent false positive CNV calls. For that purpose, a condensed
matrix M = (rtj ) ∈ Q

T×m+ with t = 1, . . . , T is generated, where T is the number
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of sequencing targets under consideration, and values rtj are the mean of observed
read counts per target t in sample j .

For each sample j∗, the mean of pairwise Pearson correlations

ρj∗ =
1

m− 1

∑

j=1...m
j �=j∗

ρM•j∗ ,M•j (2)

is used for determination of its read abundance similarity to other samples. Corre-
lation of target-wise read abundances is a widely used measure for the similarity
between samples, e.g., panelcn.MOPS (Povysil et al. 2017) uses the correlation
of summed read counts per target for that purpose. However, determination of a
suitable correlation threshold value tcorr that ρj∗ has to exceed in order to be further
processed is a crucial task, as observed correlations are affected by the overall
sequencing quality, the number of input samples, and the panel specification itself.
As a data-driven approach, we propose to exclude samples with a mean pairwise
Pearson correlation ρj∗ < tcorr := Q1 − 1.5(Q3 − Q1) with Q1, respectively
Q3, denoting the first, respectively the third, quartile of the mean pairwise Pearson
correlations of all m samples. Usage of interquartile ranges for putative outlier
detection is intended to stringently exclude samples that may cause false positive
CNV calls, as required in a clinical setting, but our implementation also offers the
possibility of setting user-defined constraints.

In order to avoid the exclusion of samples due to low correlation caused by
the existence of (large) CNVs, we also compute the mean correlations for putative
outlier samples under iterative exclusion of each single chromosome c ∈ C, i.e.,
exclusion of all sequencing targets that are located on chromosome c. If one or
more values of observed mean correlations exceed tcorr , the corresponding sample
is re-included into downstream analysis.

Comparison of read counts requires normalization of fluctuating overall sequenc-
ing depths. A straightforward approach for inter-sample read abundance normaliza-
tion is division by sample-specific normalization factors sj . We make use of an
inter-sample normalization procedure proposed by Anders and Huber (2010) for the
use in differential expression analysis of RNA sequencing experiments (RNA-seq),
namely determination of sj using the median of the ratios of observed read counts
per sequencing target via

ŝj = median
t=1,...,T

rtk �=0∀j=1,...,m

rtj
(∏m

k=1 rtk

)1/m
. (3)

We use M, i.e., the mean of read counts per target, for computation of ŝj in
order to reduce required computational resources and biases towards outstanding
long targets.
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2.2 A Generalized Additive Model for CNV Detection

We present a GAM which models centered read counts r along a multi-gene panel
target using two smooth functions.

Given a set of xi, i = 1, . . . , n, genomic positions on a single target, the numbers
of reads ri• centered at genomic position xi are assumed to follow a negative bino-
mial distribution with mean μi , i.e., ri• ∼ NB(μi,Θ) and dispersion parameter Θ

relating the variance to the mean such that V ar(ri) = μi+μ2
i /Θ (Anders and Huber

2010). A generalized additive model for examination of sample j∗, 1 ≤ j∗ ≤ m, on
a single target arises via

log(μi) = log(ŝj )+ fall(xi)+ fj∗(xi)1(j = j∗) (4)

with 1(.) denoting the indicator function. In summary, the mean of observed read
counts over all samples is modelled as a product of two smooth functions, namely
fall(xi) that contributes to all m samples and fj∗ that contributes exclusively to
the single sample j∗ under consideration. fj∗ is assumed to deviate significantly
from zero in case a CNV exists in sample j∗, and is used for final CNV calling. In
concordance with Stricker et al. (2017) second-order, cubic P-splines were chosen,
i.e., low rank smoothers using a B-splines basis. Thus, smooth functions fall and
fj∗ are basically represented by linear combinations of a set of k regularly spaced
B-spline basis functions (De Boor 1978). Given a set of k + 4 interval boundaries
(knots), these basis functions take non-zero values over four adjacent intervals.

GAMs are fitted per target and sample using R’s mgcv (Wood 2017) package.
Smoothing parameter λ as well as dispersion factor Θ are estimated as part of fitting,
but k is controlled explicitly by definition of k := max(4, n

20 ). Fitting the proposed
GAM m times for j∗ = 1, . . . ,m results in each m fitted smooth functions fall

and m fitted sample-specific smooth functions fj . Furthermore, estimated standard
errors per position xi can be obtained via the predict.gam functionality of
the mgcv package (Wood 2017). See Fig. 1 for visualization of fall and fj on a
sequencing target in BRCA1 containing a verified single deletion.

The introduced model allows for the examination of read abundances along
a single sequencing target instead of simple comparison of isolated values per
sample and target such as mean coverage or read counts. But, GAM fitting is time-
consuming and computationally expensive, especially if applied for all samples
on all panel targets. Thus, a heuristic strategy is applied for the identification of
sample/target combinations that are suspected to comprise a CNV. Samples j∗ for
which

0.75 <
rij∗/ŝj∗

1
m

∑m
j=1 rij /ŝj

< 1.25 ∀ i ∈ t (5)

holds, are expected to not be affected by copy number variation in the corresponding
sequencing target t without further examination. If the heuristic fold change
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Fig. 1 Fitted smooth functions fall (x) and fj∗ (x) for ten samples on a sequencing target on
chromosome 17 from genomic position 41251765 to 41251922. Sample ID35071 is known to be
heterozygously deleted in the shown target. Thus, corresponding function values of fj∗ (x) deviate
noticeably from zero

undercuts 0.75 (putative deletion) or exceeds 1.25 (putative duplication) on at
least one target position, GAM fitting is executed for the corresponding sample j∗
and under consideration of nc − 1 control samples with highest pairwise Pearson
correlations between M•j∗ and M•j∀j ∈ {1 . . .m|j �= j∗}. nc is set to 30, or
in case nc > m, to the number of samples remaining after outlier exclusion (see
Sect. 2.1). Obtained function values of fall and fj are used for CNV detection in
sample j∗ exclusively.

As computational complexity of GAM fitting grows polynomially with the
number of basis functions k, separate GAM fitting in sequential, overlapping
intervals is performed as proposed by Stricker et al. (2017) for sequencing targets
comprising more than Lmax := 300 base positions.

2.3 Final CNV Calling

Our aim is the derivation of the copy number state of sample j∗ in target t from
observed function values fj (x). Let J ∗, |J ∗| = nc, be the set of samples that GAMs
were fitted for in order to determine the copy number state of sample j∗ in target t ,
and let xi∗ be an arbitrary base position within t . Furthermore, let X be the values of
exp(fj (xi∗))∀j ∈ J ∗. It is assumed that fj (xi∗) will deviate noticeably from zero
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in case a CNV exists in sample j . Furthermore, due to our GAM definition, Xj =
exp(fj (xi∗)) is expected to correspond to a chromosome copy number factor, i.e., to
values close to 0.5 in case of a heterozygous deletion, and values close to 1.5 in case
of a copy number of three alleles. However, the focus lies on the reliable detection
of CNVs rather than the determination of exact copy number states. Consequently,
an approach is introduced which focuses mainly on the classification of Xj∗ in the
“twilight zone”, i.e., values of Xj∗ for which it is hard to decide if aberration from
zero might be explained by noisy data or the existence of a CNV. Therefore, sample
j is expected to contain a CNV per default if Xj ≥ 2 (or at least to not represent a
proper control sample). Xj, j ∈ {J ∗|Xj < 2}, are used to optimize log-likelihood
function

l =
∏

j∈J

((1 − p − q)f (X|1, s)+ p f (X|0.5, s)+ q f (X|1.5, s))

with 0 ≤ p + q ≤ 1,

(6)

using the Nelder–Mead method of R’s optim utility, where f (.|μ, s) stands for the
probability density function of the normal distribution with mean μ and standard
deviation s. See Fig. 2 for some examples of fitted data. Equation (6) represents
a mixture model of three normal distributions, each constituting a distinct event
of possible copy number states, i.e., deletion (DEL,μ = 0.5), copy number 2
(CN=2, μ = 1), and duplication (DUP , μ = 1.5). Hence, likelihoods of observed
values X are obtained via

P(X|DEL) ∼ N (X|0.5, s)

P(X|CN = 2) ∼ N (X|1, s) (7)

P(X|GAIN) ∼ N (X|1.5, s)

Fig. 2 Boxplots of exponentiated function values exp(fj (xi∗ )) and corresponding log-likelihood
functions due to (6) for three positions each in target chr17:56783823–56783994 in RAD51C. The
shown sequencing target is known to contain a CNV, namely a heterozygous deletion. Estimated
values of standard deviation s serve as a measure for quality control, i.e., position 56783829 would
not be evaluated if P(0.75 < x < 1.25|x ∼ N (1, s)) ≥ 0.95 is claimed, resulting in an upper
threshold smax := 0.1276 < 0.1341
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Note, that Eqs. (6) and (7) omit modelling of more extreme events such as CN =
0 and CN > 3, as these events are expected to occur too seldom to distort the
adjusted parameters p, q, s (at least in the use case of examination of non-tumor
samples), and are further reduced due to pre-filtering for extreme fold changes, or
rather, values of Xj ≥ 2.

Posterior probabilities of copy number events Ω ∈ {DEL, CN = 2, DUP }
arise due to Bayes’ theorem via

P(Ω |X) = P(X|Ω)P(Ω)

P(X)
, (8)

whereby P(X) is constant for all copy number events Ω , and can be neglected.
Hence, estimates of conditional probabilities P(Ω |Xj) are given by

P(DEL|Xj ) = αDEL f (Xj |0.5, s)P(DEL)

P(CN=2|Xj) = αCN=2 f (Xj |1, s)P(CN=2) (9)

P(DUP |Xj ) = αDUP f (Xj |1.5, s)P(DUP)

with normalization factors αΩ,Ω ∈ {DEL,CN=2,DUP }, arising from

∑

Ω∈{DEL,CN=2,DUP }
P(Ω |Xj) = 1. (10)

Figure 3 shows posterior probabilities P(DEL|X) and P(DUP |X) in depen-
dence to X for P(DEL) = P(DUP) = 0.1 and five different values of standard

Fig. 3 Posterior probabilities P(DEL|X) for P(DEL) := 0.1 (left) and P(DUP |X) for
P(DUP ) := 0.1 (right) due to (8) and (9) for several values of standard deviation s
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deviation s. It can be seen that, at least in case of comparatively small values of s,
P(DEL|Xj ) behaves like a slightly smoothed step function. Hence, determination
of a threshold for P(Ω |X),Ω ∈ {DEL,DUP } does only affect a small range
of possible values X, as long as the chosen threshold is neither close to 0 nor
close to 1. In the sense of the proposed Bayesian framework, a CNV should be
called if the corresponding conditional probability exceeds the two other values
of conditional probabilities. For meaningful, i.e., sufficient small, values of s,
P(DUP |X) can be expected to be negligibly small if P(DEL|X) � 0, and vice
versa. Hence, it is proposed to call a CNV at position xi∗ in case P(DEL|X) > 0.5
or P(DUP |X) > 0.5, respectively.

Determination of P(DEL) and P(DUP) is crucial, as proper values for coding
regions in humans are not available and prior probabilities for the existence of CNVs
may be target- and cohort-specific. As Zarrei et al. (2015) reported that almost 10%
of a typical human genome is supposed to be affected by CNVs, we propose to set
P(DEL) := P(DUP) := 0.1 to provide an upper bound, at least.

Besides determination of P(X|Ω) due to (7), estimated standard errors s do also
serve as a quality measure for the purpose of preventing false positive CNV calls.
For positions with increased s, values of X resulting in P(Ω |X) > 0.5 for Ω ∈
{DEL,DUP } may be more likely caused by variance than by the existence of
CNVs. For definition of a suitable upper threshold smax , we propose investigation
of the 95% confidence intervals of N (1, s). Claiming P(0.75 < x < 1.25|x ∼
N (1, s)) ≥ 0.95 results in an upper threshold smax := 0.1276, which s has to
undercut in order to assess the corresponding xi∗ as an evaluable position.

We have introduced an approach for CNV calling on the basis of values fj (xi∗)
for a single position i∗. A possible criterion for selection of the most suitable
position i∗ in a given target is the minimum of the mean standard error of
functions fall(xi) over i = 1, . . . , n. Standard error estimates are returned by
the predict.gam() utility of mgcv on the basis of the Bayesian posterior
covariance matrix of the parameters in fall (see Wood 2017 for details). Logically,
standard errors reach local maxima at knot locations, where smooth functions are
supported by only three splines. Hence, we propose to set the values of i∗ to the
local minima of the standard errors of fall between two adjacent knot locations
(Fig. 4). Such an approach scales the number of evaluated positions by target length
and ensures its regularly spacing along the target. In order to determine a copy
number state per target, we propose to claim the existence of a CNV in case
P(DEL|X) > 0.5 or P(DUP |X) > 0.5, respectively, was observed for at least
two adjacent evaluated positions. Given that splines are located at 20 bp intervals,
this criterion is justified by the 50 bp minimum length of CNVs.
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Fig. 4 Estimated standard error of smooth functions fall(x) (above) and exponentiated values of
fj∗ (x) (below) for the fitted GAM also shown in Figure 1. Position-wise CNV calling is performed
on positions xi∗ corresponding to the minima of the mean of SE(fall(x)) between two adjacent
knot locations

3 Results

We evaluated our approach on 442 germline samples from ovarian cancer patients
that were analyzed in the course of the AGO-TR1 study (Harter et al. 2017).
Sequencing was performed on HiSeq 2000 using a customized diagnostic gene
panel (Agilent) comprising exons of 49 genes known or assumed to be implicated
in hereditary cancer. High risk genes BRCA1 and BRCA2 were entirely screened
for CNVs via MLPA. Thereby, six deletions and two duplications were found in
BRCA1, whereas no CNVs could be found in BRCA2. CNVs in the remaining
genes were identified via the SOPHIA DDM® platform (Sophia Genetics), and
subsequently confirmed via aCGH or MLPA. See Table 1 for an enumeration of
all confirmed CNVs. We compared the sensitivity and specificity of our method
against three state-of-the-art approaches for CNV detection on gene panel data,
namely panelcn.MOPS (Povysil et al. 2017), CoNVaDING (Johansson et al. 2016),
and VisCap (Pugh et al. 2016). All of these tools are read depth-based approaches,
i.e., based on the assumption that depth of coverage is correlated with chromosomal
copy number, and have been published recently.
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Table 1 Verified CNVs in six sequencing runs comprising 442 germline samples

Run #Sample CNV Gene Chr Start Stop #Targets

1 ID35071 DEL BRCA1 17 41,251,765 41,258,575 4

ID35073 DEL BRCA1 17 41,197,668 41,197,844 1

ID35080 DEL FANCM 14 45,667,820 45,669,236 2

ID36319 DEL RAD51C 17 56,783,823 56,811,608 6

2 ID40100 DEL FANCA 16 89,818,519 89,825,138 2

3 ID41108 DEL BRCA1 17 41,262,525 41,276,138 3

4 ID41396 DEL RAD51D 17 33,427,945 33,428,080 1

ID41272 DEL BRCA1 17 41,215,323 41,267,821 18

ID41421 DUP XRCC2 7 152,345,700 152,373,189 3

ID41477 DEL BRCA1 17 41,219,598 41,276,138 17

5 ID42064 DEL BRCA1 17 41,242,934 41,247,964 3

ID42068 DUP FANCA 16 89,804,982 89,882,419 43

ID42070 DUP MLH1 3 37,088,983 37,092,169 4

6 ID42585 DUP BRCA1 17 41,215,323 41,215,993 2

ID42614 DEL RAD51C 17 56,783,823 56,811,608 6

ID42618 DUP BRCA1 17 41,251,765 41,251,922 1

ID42640 DEL RAD51C 17 56,787,193 56,787,376 1

Samples were entirely screened for CNVs in BRCA1 and BRCA2 via MLPA. CNVs in additional
genes were verified via aCGH or MLPA. Column #Targets refers to the count of involved adjacent
sequencing targets

3.1 Determination of Sample Outliers

All approaches under consideration identify samples with aberrant read abundance
patterns for prevention of false positives or at least in order to warn of low quality
samples. Whereas panelcn.MOPS and CoNVaDING only report putative outliers,
VisCap and our approach exclude them entirely from analysis. See Table 2 for
an overview of the results of outlier sample detection in our evaluation data set.
Our approach, which is based on outlier detection due to the interquartile range of
mean pairwise Pearson correlations of observed mean read counts per target (see
Sect. 2.1), identified all samples as outliers that were detected by at least one of
the other methods, but turned out to be more stringent. Sample ID42068 from run 5
makes an exception as it was excluded by CoNVaDING and VisCap, but re-included
by our approach due to its mean correlation to other samples under exclusion of
all sequencing targets located in chromosome 16. It can be concluded that its low
correlation to other samples is caused by the existence of a large duplication in gene
FANCA (see Table 1), rather than by an overall deviating read abundance pattern. We
evaluated our approach exclusively on the basis of samples that were not identified
as outlier by none of CoNVaDING, VisCap, or panelcn.MOPS, but adapted tcorr

such that the remaining samples were entirely included by our GAM approach.
Thus, we set tcorr := 0.99 for sequencing runs 1 and 3, tcorr := 0.994 for 4 and 5,
and tcorr := 0.9965 for sequencing run 6.
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Table 2 Identification of samples with aberrant read abundance patterns in six sequencing runs
by our approach, ConVaDING, VisCap, and panelcn.MOPS

Run m tcorr Excluded Corr GAM CoNVaDING VisCap pcn.MOPS

1 80 0.9977 ID35093 0.9971 x

ID35098 0.9958 x

ID36232a x x x x

ID36307 0.9948 x

ID36317 0.9973 x

ID36319 0.9975 x

ID39328 0.9973 x

ID39350 0.9885 x x x

2 32 0.9964 ID40083 0.9864 x x x x

ID40086 0.9939 x x x x

ID40091 0.9950 x x x

ID40099a x x x x

3 96 0.9971 ID41110 0.9957 x

ID41142 0.9957 x

ID41150 0.9968 x

4 96 0.9960 ID41271 0.9920 x x x

ID41486 0.9944 x

ID41507a x x x

5 48 0.9957 ID42068 0.9934b x x

ID42078 0.9953 x

ID42174a x x x x

ID42175a x x x x

ID42176a x x x x

ID42177a x x x x

ID42178a x x x x

ID42180a x x x x

6 90 0.9970 ID42586 0.9954 x x

ID42616 0.9963 x

ID42646 0.9905 x x x

The table shows the number of samples per run (m) and the correlation thresholds tcorr a
sample’s mean correlation have to exceed per default to be analyzed by our approach. Samples
that were identified as outlier and excluded by our approach (GAM), CoNVaDING, VisCap, or
panelcn.MOPS (pcn.MOPS) are characterized by x
a
Excluded due to low coverage

bRe-included into analysis due to mean correlation under exclusion of chromosome 16
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Table 3 Evaluation of CNV detection results for 425 samples for our approach (GAM), pan-
elcn.MOPS, CoNVaDING, and VisCap

GAM panelcn.MOPS CoNVaDING VisCap

Specificity (N = 21148) >0.9999 0.9991 >0.9999 0.9976

Sensitivity (N = 71) 1.0 1.0 0.8493 1.0
MCC 0.9725 0.8856 0.8691 0.7663

Specificities were determined on 21,148 sample/target combinations in BRCA1 and BRCA2,
whereas sensitivities were determined on 71 sample/target combinations on eight different
genes (see Table 1). Maximum values are shown in bold

3.2 CNV Detection Results

We evaluated the specificity of our approach, panelcn.MOPS, CoNVaDING, and
VisCap on all sequencing targets in BRCA1 (24 targets) and BRCA2 (26 targets),
as these genes were entirely screened for CNVs via MLPA (Harter et al. 2017).
Given 49 sample/target combinations known to contain a verified CNV in BRCA1
(see Table 1), and due to the exclusion of 17 out of 442 samples as outliers, this
results in a set of 21,201 sample/target combinations. Sensitivity was evaluated on
the 74 sequencing targets containing verified CNVs as reported in Table 1, but under
exclusion of the large deletion in FANCA in sample ID42068 which was excluded
from analysis by VisCap (Table 2). Our approach classified 56 sample/target
combinations in BRCA1 and BRCA2 as not evaluable, as no two adjacent interval
positions fulfilled criterion s < smax and show identical position-wise calls Ω .
We examined specificities and sensitivities under exclusion of these sample/target
combinations resulting in sample sets of size N = 21148 for determination of
specificities and N = 71 for sensitivities. Evaluation results are summarized in
Table 3.

As CNVs are rare events, evaluation of accuracies is naturally biased towards the
number of true negatives. Therefore, we evaluated Matthews correlation coefficients
(MCCs). The introduced GAM approach reached the highest MCC among all
approaches, outperforms panelcn.MOPS and Viscap due to specificity, and CoN-
VaDING due to its sensitivity.

4 Discussion

We introduced generalized additive models as a promising approach for the analysis
of CNVs in multi-gene panel data. The proposed method outperforms existing
tools due to the investigation of fold changes at several target positions instead of
examination of single values per target and sample, such as read counts or mean
read coverage. Furthermore, our GAM approach allows for independent quality
assessment per sample and sequencing target.
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However, besides omitting the estimation of exact chromosomal copy numbers,
an obvious drawback of our approach is its computational complexity due to the
fitting of nc GAMs per sample/target combination that is expected to represent
a putative CNV. Furthermore, most GAM fittings are applied at low coverage
sequencing targets which then subsequently turned out to be not evaluable due to
criterion s > smax . Clearly, time complexity could be reduced by a parallelized
implementation and a strategy for the identification of low quality sample/target
combinations previous to GAM fitting. Finally, we have to note that we omit to
discuss here the handling of sex chromosomes X and Y which cannot be assumed
to appear twice per default.

Acknowledgments We sincerely thank Andreas Beyer, Achim Tresch, and Michael Nothnagel
for helpful discussions.
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Variable Selection for Classification
of Multivariate Functional Data

Tomasz Górecki, Mirosław Krzyśko, and Waldemar Wołyński

Abstract New variable selection method is considered in the setting of clas-
sification with multivariate functional data (Ramsay and Silverman, Functional
data analysis, 2005). The variable selection is a dimensionality reduction method
which leads to replace the whole vector process, with a low-dimensional vector
still giving a comparable classification error. The various classifiers appropriate
for functional data are used. The proposed variable selection method is based on
functional distance covariance (Székely et al. Ann Appl Stat 3(4):1236–1265, 2009;
Stat Probab Lett 82(12):2278–2282, 2012). and is a modification of the procedure
given by Kong et al. (Stat Med 34:1708–1720, 2015). The proposed methodology is
illustrated on real data example.

1 Introduction

Much attention has been paid in recent years to methods for representing data as
functions or curves. Such data are known in the literature as functional data (Ramsay
and Silverman 2005; Horváth and Kokoszka 2012). Applications of functional data
can be found in various fields, including medicine, economics, meteorology, and
many others. In many applications there is a need to use statistical methods for
objects characterized by multiple variables observed at many time points (doubly
multivariate data). Such data are called multivariate functional data. In this paper
we focus on the classification problem for multivariate functional data. In many
cases, in the classification procedures, number of predictors p is much greater than
the sample size n. It is thus natural to assume that only a small number of predictors
are relevant to response Y .

Various basic classification methods have also been adapted to functional data,
such as linear discriminant analysis (Hastie et al. 1995), logistic regression (Rossi
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et al. 2002), penalized optimal scoring (Ando 2009), kNN (Ferraty and Vieu 2003),
SVM (Rossi and Villa 2006), and neural networks (Rossi et al. 2005). Moreover,
the combining of classifiers has been extended to functional data (Ferraty and
Vieu 2009). Górecki et al. (2016) adapted multivariate regression models to the
classification of multivariate functional data.

Székely et al. (2007), Székely and Rizzo (2009), Székely and Rizzo (2012,
2013) defined the measures of dependence between random vectors: the distance
covariance (dCov) coefficient and the distance correlation (dCor) coefficient. These
authors showed that for all random variables with finite first moments, the dCor
coefficient generalizes the idea of correlation in two ways. Firstly, this coefficient
can be applied when X and Y are of any dimensions and not only for the simple
case where p = q = 1. Secondly, the dCor coefficient is equal to zero, if and only if
there is independence between the random vectors. Indeed, a correlation coefficient
measures linear relationships and can be equal to 0 even when the variables are
related. Based on the idea of the distance covariance between two random vectors,
we introduced the functional distance correlation between two random processes.
We select a set of important predictors with large value of functional distance
covariance. Our selection procedure is a modification of the procedure given by
Kong et al. (2015). Entirely different approach to the variable selection in functional
data classification is presented by Berrendero et al. (2016). It is clear that variable
selection has, at least, an advantage when compared with other dimension reduction
methods (functional principal component analysis (FPCA), see Górecki et al. 2014;
Jacques and Preda 2014, functional partial least squares (FPLS) methodology, see
Delaigle and Haal 2012, and other methods) based on general projections: the output
of any variable selection method is always directly interpretable in terms of the
original variables, provided that the required number d of selected variables is not
too large.

The rest of this paper is organized as follows. In Sect. 2 we present the
classification procedures used through the paper. In Sect. 3 we present the problem
of representing functional data by orthonormal basis functions. In Sect. 4, we define
a functional distance covariance and distance correlation. In Sect. 5 we propose a
variable selection procedure based on the functional distance covariance. In Sect. 6
we illustrate the proposed methodology through a real data example. We conclude
in Sect. 7.

2 Classifiers

The classification problem involves determining a procedure by which a given
object can be assigned to one of q populations based on observation of p features
of that object.
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The object being classified can be described by a random pair (X, Y ), where
X = (X1,X2, . . . , Xp)′ ∈ Rp and Y ∈ {1, . . . , q}. An automated classifier can
be viewed as a method of estimating the posterior probability of membership in
groups. For a given X, a reasonable strategy is to assign X to that class with the
highest posterior probability. This strategy is called the Bayes’ rule classifier.

2.1 Linear and Quadratic Discriminant Classifiers

Now we make the Bayes’ rule classifier more specific by the assumption that all mul-
tivariate probability densities are multivariate normal having arbitrary mean vectors
and a common covariance matrix. We shall call this model the linear discriminant
classifier (LDC). Assuming that class-covariance matrices are different, we obtain
quadratic discriminant classifier (QDC).

2.2 Naive Bayes Classifier

A naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes’ theorem with independence assumptions. When dealing with continuous
data, a typical assumption is that the continuous values associated with each class
are distributed according to a one-dimensional normal distribution or we estimate
density by kernel method.

2.3 k-Nearest Neighbor Classifier

Most often we do not have sufficient knowledge of the underlying distributions. One
of the important nonparametric classifiers is a k-nearest neighbor classifier (kNN
classifier). Objects are assigned to the class having the majority in the k nearest
neighbors in the training set.

2.4 Multinomial Logistic Regression

It is a classification method that generalizes logistic regression to multiclass problem
using one vs. all approach.
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3 Functional Data

We now assume that the object being classified is described by a p-dimensional
random process X = (X1,X2, . . . , Xp)′ ∈ L

p

2 (I), where L2(I) is the Hilbert space
of square-integrable functions, and E(X) = 0.

Moreover, assume that the kth component of the vector X can be represented by
a finite number of orthonormal basis functions {ϕb}

Xk(t) =
Bk∑

b=0

αkbϕb(t), t ∈ I, k = 1, . . . , p, (1)

where αk0, αk1, . . . , αkBk are the unknown coefficients.
Let α = (α10, . . . , α1B1 , . . . , αp0, . . . , αpBp)′
and

�(t) =

⎡

⎢⎢⎣

ϕ′1(t) 0′ . . . 0′
0′ ϕ′2(t) . . . 0′
. . . . . . . . . . . .

0′ 0′ . . . ϕ′p(t)

⎤

⎥⎥⎦ ,

where ϕk(t) = (ϕ0(t), . . . , ϕBk (t))
′, k = 1, . . . , p.

Using the above matrix notation, process X can be represented as:

X(t) = �(t)α, (2)

where E(α) = 0. This means that the realizations of a process X are in finite-
dimensional subspace of L

p

2 (I). We will denote this subspace by L
p

2 (I).
We can estimate the vector α on the basis of n independent realizations

x1, x2, . . . , xn of the random process X (functional data). We will denote this
estimator by α̂.

Typically data are recorded at discrete moments in time. Let xkj denote an
observed value of the feature Xk , k = 1, 2, . . . , p at the j th time point tj , where
j = 1, 2, . . . , J . Then our data consist of the pJ pairs (tj , xkj ). These discrete data
can be smoothed by continuous functions xk and I is a compact set such that tj ∈ I ,
for j = 1, . . . , J .

Details of the process of transformation of discrete data to functional data can be
found in Ramsay and Silverman (2005) or in Górecki et al. (2014).
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4 Functional Distance Covariance and Distance Correlation

For jointly distributed random process X ∈ L
p

2 (I) and random vector Y ∈ R
q , let

fX,Y (l,m) = E{exp[i < l,X >p +i < m,Y >q]}

be the joint characteristic function of (X,Y ), where

< l,X >p=
∫

I

l′(t)X(t)dt

and

< m,Y >q= m′Y .

Moreover, we define the marginal characteristic functions of X and Y as follows:
fX(l) = fX,Y (l, 0) and fY (m) = fX,Y (0,m).

Here, for generality, we assume that Y ∈ R
q , although the label Y in the

classification problem is a random variable, with values in {1, . . . , q}. Label Y

has to be transformed into the label vector Y = (Y1, . . . , Yq)′, where Yi = 1 for
i = 1, . . . , q if X belongs to class i, and 0 otherwise.

Now, let us assume that X ∈ L
p

2 (I). Then the process X can be represented as:

X(t) = �(t)α, (3)

where α ∈ R
K+p and K = B1 + · · · + Bp.

In this case, we may assume (Ramsay and Silverman 2005) that the vector weight
function l and the process X are in the same space, i.e. the function l can be written
in the form

l(t) = �(t)λ, (4)

where λ ∈ R
K+p.

Hence

< l,X >p=
∫

I

l′(t)X(t)dt = λ′[
∫

I

�′(t)�(t)dt]α = λ′α,

where α and λ are vectors occurring in the representations (3) and (4) of process X

and function l, and

fX,Y (l,m) = E{exp[iλ′α + im′Y ]} = fα,Y (λ,m),

where fα,Y (λ,m) is the joint characteristic function of the pair of random vectors
(α,Y ).
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On the basis of the idea of distance covariance between two random vectors
(Székely et al. 2007), we can introduce functional distance covariance between
random processes X and random vector Y as a nonnegative number νX,Y defined
by

νX,Y = να,Y ,

where

ν2
α,Y = 1

CK+pCq

∫

RK+p+q

|fα,Y (λ,m)− fα(λ)fY (m)|2
‖λ‖K+p+1

K+p ‖m‖q+1
q

dλdm,

and |z| denotes the modulus of z ∈ C, ‖λ‖K+p, ‖m‖q the standard Euclidean norms
on the corresponding spaces V chosen to produce scale free and rotation invariant
measure that does not go to zero for dependent random vectors, and

Cr = π
1
2 (r+1)

�( 1
2 (r + 1))

is half the surface area of the unit sphere in R
r+1.

The functional distance correlation between random vector process X and
random vector Y is a nonnegative number defined by

RX,Y = νX,Y√
νX,XνY ,Y

if both νX,X and νY ,Y are strictly positive, and defined to be zero otherwise.
We have RX,Y = Rα,Y as νX,Y = να,Y .
For distributions with finite first moments, distance correlation characterizes

independence in that 0 ≤ RX,Y ≤ 1 with RX,Y = 0 if and only if X and
Y are independent. We can estimate functional distance covariance using data
{(α̂1, y1), . . . , (α̂n, yn)}.

Let

ᾱ = 1

n

n∑

i=1

α̂k, ȳ = 1

n

n∑

i=1

k̂k,

α̃k = α̂k − ᾱ, ỹk = yk − ȳ, k = 1, . . . , n

and

A = (akl), B = (bkl),

Ã = (Akl), B̃ = (Bkl),



Variable Selection for Classification of Multivariate Functional Data 221

where

akl = ‖α̂k − α̂l‖K+p, bkl = ‖yk − y l‖q ,

Akl = ‖α̃k − α̃l‖K+p, Bkl = ‖ỹk − ỹl‖q , k, l = 1, . . . , n.

Hence

Ã = HAH , B̃ = HBH ,

where

H = In − 1

n
1n1′n

is the centering matrix.
Let Ã ◦ B̃ = (AklBkl) denote the Hadamard product of the matrices Ã and B̃.

Then, on the basis of the result of Székely et al. (2007), we have

ν̂2
X,Y = 1

n2

n∑

k,l=1

AklBkl.

The sample functional distance correlation is then defined by R̂X,Y = R̂α,Y ,
where

R̂α,Y = ν̂α,Y√
ν̂α,α ν̂Y ,Y

if both ν̂α,α and ν̂Y ,Y are strictly positive, and zero otherwise.

5 Variable Selection Based on the Distance Covariance

In this section we propose the selection procedure built upon the distance covari-
ance. Let Y = (Y1, . . . , Yq)′ be the response vector, and X = (X1, . . . , Xp)′ be the
predictor p-dimensional process. Assume that only a small number of predictors are
relevant to Y . We select a set of important predictors with large R̂X,Y = R̂α,Y . We
utilize the functional distance covariance because it allows for arbitrary relationship
between Y and X, regardless of whether it is linear or nonlinear.

The functional distance covariance also permits univariate and multivariate
response. Thus, this distance covariance procedure is completely model-free. Kong
et al. (2015) prove the following theorem.
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Theorem 1 Suppose random vectors X,Z ∈ R
p and Y ∈ R

q , and assume Z is
independent of (X,Y ), then

ν2
(X,Z),Y ≤ ν2

X,Y .

And a consequence of this theorem is the statement in the next corollary.

Corollary 1 For the sample distance covariance, if n is large enough, we should
have

ν̂2
(X,Z),Y ≤ ν̂2

X,Y ,

under the assumption of independence between (X,Y ) and Z.

We implemented the above theorem as a stopping rule in the selections of
responses. The procedure took the following steps:

1. Calculate marginal distance covariances for Xk , k = 1, . . . , p with the response
Y .

2. Rank the variables in decreasing order of the distance covariances. Denote the
ordered predictors as X(1), X(2), . . . , X(p). Start with XS = {X(1)}.

3. For k from 2 to p, keep adding X(k) to XS if ν̂2
XS ,Y does not decrease. Stop

otherwise.

6 Real Example

As a real example we used Japanese Vowels data set which is available at
UCI Machine Learning Repository (Lichman 2013). Nine male speakers uttered
two Japanese vowels /ae/ successively. For each utterance, it was applied 12◦
linear prediction analysis to obtain a discrete-time series with 12 LPC cep-strum
coefficients. This means that one utterance by a speaker forms a time series whose
length is in the range 7–29 and each point of a time series is of 12 features (12
coefficients). The number of the time series is 640 in total. The samples in this data
set are of different lengths. They were extended to the length of the longest sample
in the data set (Górecki and Łuczak 2015).

During the smoothing process we used Fourier basis with five components. In the
next step we applied the described earlier method of selecting variables (we stopped
the procedure if the increase in covariance measure was less than 0.01). In such way
we obtained four variables (Fig. 1).

Next, we applied described classifiers to reduced functional data and to full
functional data. To estimate the error rate of the classifiers we used tenfold cross-
validation method. The results are in Table 1.

We can observe that the error rate increases if we reduce our data set. This
behavior is expected. However, the increase seems not too big. Particularly inter-
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Fig. 1 Variables selection for Japanese Vowels data set

Table 1 Classification accuracy (in %) for Japanese Vowels data set

Classifier Selected variables (4) All variables (12)

LDC 93.60 99.37

Logistic regression 91.06 97.97

kNN (k = 1, . . . , 8) 90.94 96.71

Naive Bayes (normal) 90.77 95.50

Naive Bayes (kernel) 90.15 94.34

QDC 89.85 Too small groups

esting is the case of QDC. For this method we do not have enough data to estimate
covariance matrices for all groups for full data. When we select only four variables
this procedure could be performed. We can also notice that the order of classifiers
stays unchanged (the best classifier for full data is LDC, and the same is the best for
reduced data).

During the calculations we used R (R Core Team 2017) software and caret
(Kuhn 2017), energy (Rizzo and Székely 2016), and fda (Ramsay et al. 2014)
packages.
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7 Conclusion

The paper introduces variable selection for classification of multivariate functional
data. Use of distance covariance as a tool to reduce dimensionality of data set
suggests that the technique provides useful results for classification of multivariate
functional data. For the analyzed data set only four from twelve variables were
included in the final model. We can observe that classification accuracy could drop
a little. However, we expect that this drop should be reasonable and in return we
could gain a lot of computation time.

In practice, it is important not to depend entirely on variable selection criteria
because none of them works well under all conditions. So our approach could be
seen as a competitive to another variable selection methods. Additionally, model
obtained by the proposed method of variable selection seems comparable with the
full model (model without variables reduction). Finally, the researcher needs to
evaluate the models using various diagnostic procedures.
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Initial Value Selection for the Alternating
Least Squares Algorithm

Masahiro Kuroda, Yuichi Mori, and Masaya Iizuka

Abstract The alternating least squares (ALS) algorithm is a popular computational
algorithm for obtaining least squares solutions minimizing the loss functions in
nonlinear multivariate analysis with optimal scaling (NMVA). The ALS algorithm
is a simple computational procedure and has a stable convergence property, while
the algorithm only guarantees local convergence. In order to avoid finding a local
minimum of a loss function, the most commonly used method is to start the
ALS algorithm with various random initial values. Such random initialization ALS
algorithm tries to find the least squares solution that globally minimizes the loss
function. However, the drawback of the random initialization ALS algorithm with
multiple runs is to take a huge number of iterations and long computation time.
For these problems, we consider initial value selection for selecting an initial value
leading to a global minimum of the loss function. The proposed procedure enables
efficiently selecting an initial value of the ALS algorithm. Furthermore, we can
increase the computation speed when applying the vector ε acceleration for the ALS
algorithm to the initial value selection procedure and the least squares estimation in
NMVA.

1 Introduction

The alternating least squares (ALS) algorithm is a popular computational algorithm
for obtaining least squares solutions minimizing the loss functions in nonlinear
multivariate analysis with optimal scaling (NMVA). The ALS algorithm is a simple
computational procedure and has a stable convergence property, while the algorithm
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only guarantees local convergence. In order to avoid finding a local minimum of a
loss function, the most commonly used method is to start the ALS algorithm with
various random initial values. Such random initialization ALS algorithm tries to
find the least squares solution that globally minimizes the loss function. However,
the drawback of the random initialization ALS algorithm with multiple runs is to
take a huge number of iterations and long computation time.

For these problems, we consider initial value selection for selecting an initial
value leading to a global minimum of the loss function. The initial value selection
procedure proposed in this paper is based on the emEM algorithm of Biernacki
et al. (2003) that is the EM algorithm including an initial value selection step for
Gaussian mixture models. The proposed procedure enables efficiently selecting an
initial value of the ALS algorithm. Furthermore, we can increase the computation
speed when applying the vector ε acceleration for the ALS algorithm of Kuroda
et al. (2011) to the initial value selection procedure and the least squares estimation
in NMVA.

The paper is organized as follows. Section 2 gives the ALS algorithm for
NMVA. Section 3 describes the ALS algorithm for principal component analysis of
categorical data [nonlinear PCA (NPCA)] and proposes the initial value selection
procedure of the ALS algorithm. Section 4 introduces the vector ε acceleration
for the ALS algorithm of Kuroda et al. (2011) and describes the initial value
selection procedure using this acceleration algorithm. Section 5 presents numerical
experiments to evaluate the performance of the proposed initial value selection
procedures. Section 6 gives our discussion.

2 The ALS Algorithm for NMVA

Let X = [x1, . . . , xp] be a data matrix of n objects by p categorical variables
measured with nominal and ordinal scales. Let xj of X be a qualitative vector with
Kj categories. To quantify xj , the vector is coded by using an n × Kj indicator
matrix

Gj = [gj1, . . . , gjKj ] =
⎡

⎢⎣
gj11 . . . gj1Kj

...
. . .

...

gjn1 . . . gjnKj

⎤

⎥⎦ ,

where

gjik =
{

1 if object i belongs to category k,

0 if object i belongs to some other category k′( �= k).

In NMVA, X is quantified using an optimal scaling technique that optimally
assigns numerical values to qualitative scales (Young 1981). Then the optimal
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scaling finds Kj×1 category quantifications qj under the restrictions imposed by the
measurement level of variable j and transforms xj into an optimally scaled vector
x∗j = Gj qj . There are different ways for quantifying observed data of nominal and
ordinal variables:

• For nominal scale data, the quantification is unrestricted. Objects i and h( �= i) in
the same category for variable j obtain the same quantification. Thus, if xji =
xjh, then x∗ji = x∗jh.

• For ordinal scale data, the quantification is restricted to the order of categories. If
observed data xji and xjh for objects i and h in variable j have order xji > xjh,
then quantified data x∗ji and x∗jh have order x∗ji ≥ x∗jh.

Let Q = {q1, . . . , qp} be a set of category quantifications. We denote optimally
scaled data

X(Q) = [G1q1, . . . , Gpqp] = [x∗1, . . . , x∗p]

as the function of Q. The problem of least squares fitting a model M(θ) =
[m1, . . . , mp] with a set of parameters θ to X(Q) can be solved in minimizing the
loss function

σ(X(Q), M(θ)) = ‖X(Q)− M(θ)‖2
2 (1)

over Q and θ , and then we can find the solutions Q̂ and θ̂ . Because it is not possible
to obtain simultaneously them in the closed-form solutions for this minimization
problem, we do not utilize a non-iterative procedure such as the least squares
method. The alternating least squares (ALS) algorithm is a possible computational
algorithm for the simultaneous estimation of Q and θ . The algorithm updates each
of Q and θ in turn, keeping the other fixed.

Let Q(t) and θ (t) be the t-th estimates of Q and θ . Given X(Q(0)), the ALS
algorithm iterates alternatively the following two steps:

Parameter estimation step: Compute θ (t+1) giving the minimum value of the
loss function (1) for fixed X(Q(t)):

θ (t+1) = arg min
θ

σ(X(Q(t)), M(θ )).

Category quantification step: Obtain the least squares estimate Q(t+1) in mini-
mizing the loss function (1) for fixed θ (t+1):

Q(t+1) = arg min
Q

σ(X(Q), M(θ (t+1)))
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and update X(Q(t+1)) = [G1q(t+1)
1 , . . . , Gpq(t+1)

p ]. Check the convergence
using

σ(X(Q(t)), M(θ (t)))− σ(X(Q(t+1)), M(θ (t+1))) < δ, (2)

where δ is a desired accuracy.

De Leeuw et al. (1976) shows that the ALS algorithm can reduce the value of
the function (1) at each iteration and has the monotonic convergence property. If the
function (1) is bounded, the function will be locally minimized over the entire set of
Q and θ (Krijnen 2006).

3 Initial Value Selection of the ALS Algorithm for NPCA

3.1 The ALS Algorithm for NPCA

In principal component analysis, the set of parameters is θ = {Z, A} and the model
is given by

M(θ) = ZA�, (3)

where Z = [Z1 · · · Zr ] is an n× r matrix of n component scores on r components
and A = [A1 · · · Ar ] is a p × r matrix of p loadings on the r components. Let X
be an n× p matrix of categorical data and X(Q) be the optimally scaled data of X.

For NPCA, the loss function is given by

σ(X(Q), M(θ)) = ‖X(Q)− ZA�‖2
2. (4)

Then the ALS algorithm finds the least squares solutions Q̂ and θ̂ = {Ẑ, Â} mini-
mizing the loss function (4). PRINCIPALS of Young et al. (1978) and PRINCALS
of Gifi (1990) are the ALS algorithms for solving the least squares minimization
problem of the loss function (4). We use PRINCIPALS as the ALS algorithm for
NPCA.

Under restrictions

X(Q)�1n = 0p and diag

[
X(Q)�X(Q)

n

]
= Ip, (5)

the algorithm alternates between the updates of Q and θ . In the initialization, the
observed categorical data X may be used as X(Q(0)). For nominal variables, we
initialize Q(0) with random numbers and determine X(Q(0)) after standardizing
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each column of X(Q(0)) under the restriction (5). The ALS algorithm iterates the
following two steps:

Parameter estimation step: Obtain A(t+1) by solving the eigen-decomposition
of X(Q(t))�X(Q(t))/n or the singular value decomposition of X(Q(t)). Compute
Z(t+1) = X(Q(t))A(t+1) and update M(θ (t+1)) = Z(t+1)A(t+1)�.

Category quantification step: Obtain X(Q(t+1)) by separately estimating x∗j for

each variable j . Compute q(t+1)
j for nominal variables as

q(t+1)
j =

(
G�

j Gj

)−1
G�

j m(t+1)
j .

Re-compute q(t+1)
j for ordinal variables using the monotone regression (Kruskal

1964). Update X(Q(t+1)) = [G1q(t+1)
1 , . . . , Gpq(t+1)

p ] under the restriction (5).
Check the convergence using the criterion (2).

3.2 Initial Value Selection Procedure of the ALS Algorithm

A numerical experiment illustrates the local convergence of the ALS algorithm for
NPCA for r = 10 principal components. X is a random data matrix of n = 50
objects by p = 25 nominal variables with 10 levels each. The random initialization
ALS algorithm starting with 100 random initial values of Q runs to find Q̂ and
θ̂ = {Ẑ, Â} and then computes

σ(X(Q̂), M(θ̂)) = ‖X(Q̂)− ẐÂ�‖2
2.

The histogram of Fig. 1 is drawn from 100 values of σ(X(Q̂), M(θ̂ )). We can see
from the histogram that σ(X(Q), M(θ)) has several local minimum values and its
minimization is deeply related to initial values. In order to obtain Q̂ and θ̂ that
globally minimize σ(X(Q), M(θ)), we commonly perform the random initialization
ALS algorithm, such as this illustration. However, this random initialization ALS
algorithm takes the large number of iterations and long computation time.

We consider an initial value selection procedure that reduces them and finds ini-
tial values of the ALS algorithm leading to the global minimum of σ(X(Q), M(θ)).
We propose an initial value selection procedure of the ALS algorithm based on
the emEM algorithm of Biernacki et al. (2003). The emEM algorithm includes an
initialization step that selects an initial value of the EM algorithm for getting the
global maximum of the likelihood in Gaussian mixture models.

Our proposed initial value selection procedure has three steps: Random starting,
Short running, and Selection. We describe the procedure.
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Fig. 1 Histogram of 100 values of σ(X(Q̂), M(θ̂ )) obtained from the random initialization ALS
algorithm

Iterate the Random starting and Short running steps for h = 1, . . . , H :

Random starting step: Generate a random initial value Q(0,h).
Short running step: Find Q(t+1,h) and θ (t+1,h) using the ALS algorithm. Stop

ALS iterations starting from X(Q(0,h)) at the (t + 1)-iteration using

Condition 0:
σ(X(Q(t+1,h)), M(θ (t+1,h)))− σ(X(Q(t,h)), M(θ (t,h)))

σ (X(Q(t+1,h)), M(θ (t+1,h)))− σ(X(Q(0,h)), M(θ (0,h)))
< δini

or t > Tmax, (6)

where Tmax is the prefixed maximum number of iterations.

Obtain the h-th candidate initial value Q(th,h) and compute σ(X(Q(th,h)),
M(θ (th,h))), where th is the final number of iterations.

Selection step: From H candidate initial values {Q(th,h)}h=1,...,H , select the
initial value Q(0) such that

Q(0) = arg min{σ(X(Q(th,h)), M(θ (th,h)))}h=1,...,H .

The initial value selection procedure does not wait for convergence and stops the
ALS iterations using a lax stop condition (6), and thus we expect to reduce both the
total number of iterations and total computation time of the ALS algorithm in the
Short running step. Given Q(0) selected by the initial value selection procedure, the



Initial Value Selection for the Alternating Least Squares Algorithm 233

ALS algorithm iterates until convergence and finds Q̂ and θ̂ that globally minimize
σ(X(Q), M(θ)).

Next, we consider to improve the computation speed of the initial value selection
procedure by speeding up the ALS computation in the Short running step.

4 Acceleration of the ALS Algorithm in the Initial Value
Selection Procedure

Kuroda et al. (2011) provided the vector ε acceleration for the ALS algorithm that
can accelerate the convergence of the ALS algorithm for NPCA and demonstrated
that its speed of convergence is significantly faster than that of the ordinary ALS
algorithm.

We briefly introduce the vector ε (vε) algorithm of Wynn (1962) for accelerating
the convergence of the ALS algorithm. The vε algorithm is utilized to accelerate
the convergence of a linear convergent vector sequence. It is well known that the
algorithm is very effective when the vector sequence converges slowly. Let {Y(t)}t≥0
be a linear convergent vector sequence generated by an iterative computational
procedure, and let {Ẏ(t)}t≥0 be a faster convergent sequence of {Y(t)}t≥0 obtained
from the vε algorithm. We denote ΔY(t) = Y(t+1) − Y(t) and define [Y]−1 =
Y
/||Y||22 . Then, the vε algorithm enables producing {Ẏ(t)}t≥0 using

Ẏ(t−1) = Y(t) +
[[

ΔY(t)
]−1 −

[
ΔY(t−1)

]−1
]−1

. (7)

When {Y(t)}t≥0 converges to a limit point Ŷ of {Y(t)}t≥0, the vε algorithm generates
{Ẏ(t)}t≥0 that converges to Ŷ faster than {Y(t)}t≥0.

Assume that {Q(t)}t≥0 generated by the ALS algorithm converges to a limit point
Q̂. Then, in order to accelerate the convergence of the ALS algorithm, we apply the
vε acceleration (7) to {Q(t)}t≥0 and obtain the faster convergent sequence {Q̇(t)}t≥0
of {Q(t)}t≥0. We refer to the vε acceleration for the ALS algorithm as the vε-ALS
algorithm. The vε-ALS algorithm iterates the following two steps:

ALS step: Find Q(t+1) and θ (t+1) using the ALS algorithm:

θ (t+1) = arg min
θ

σ(X(Q(t)), M(θ )),

Q(t+1) = arg min
Q

σ(X(Q), M(θ (t+1))).
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vε acceleration step: Compute Q̇(t−1) using {Q(t−1), Q(t), Q(t+1)} from the vε

algorithm:

vecQ̇(t−1) = vecQ(t) +
[[

ΔvecQ(t)
]−1 −

[
ΔvecQ(t−1)

]−1
]−1

,

where vecQ̇ = [q̇�1 , · · · , q̇�p ]�. Check the convergence by

‖vecQ̇(t−1) − vecQ̇(t−2)‖2 < δ,

where δ is a desired accuracy.

Before starting the iteration of the vε acceleration step, the ALS step runs twice to
generate {Q(0), Q(1), Q(2)}. The vε-ALS algorithm finds Q̂ that is the final value of
{Q̇(t)}t≥0 in the vε acceleration step and then computes X(Q̂). Given X(Q̂), we can
immediately obtain θ̂ from

θ̂ = arg min
θ

σ(X(Q̂), M(θ))

in the ALS step. It is most reasonable and efficient to generate {Q̇(t)}t≥0 in the vε

acceleration step.
Note that Q̇(t−1) obtained at the t-th iteration of the vε acceleration step is not

used as the estimate Q(t+1) at the (t + 1)-th iteration of the ALS step. Therefore,
the vε-ALS algorithm guarantees the monotonic convergence property of the ALS
algorithm and moreover enables the acceleration of convergence of {Q(t)}t≥0.

In order to speed up the computation of the initial value selection procedure, we
use the vε-ALS algorithm in the Short running step.

Iterate the Random starting and Short running steps for h = 1, . . . , H :

Random starting step: Generate a random initial value Q(0,h).
Short running step: Compute Q(t+1,h) and θ (t+1,h) in the ALS step. Obtain

Q̇(t−1,h) in the vε acceleration step. Stop the iterations at the (t+1)-th iteration
using either

Condition 1:
‖vecQ̇(t−1,h) − vecQ̇(t−2,h)‖2

2

‖vecQ̇(t−1,h) − vecQ̇(0)‖2
2

< δini or t > Tmax, or

Condition 2: ‖vecQ̇(t−1,h) − vecQ̇(t−2,h)‖2
2 < δini or t > Tmax,

Obtain the h-th candidate initial value Q̇(th,h) and compute σ(X(Q̇(th,h)),

M(θ̇
(th,h)

)), where th is the final number of iterations.
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Selection step: From H candidate initial values {Q̇(th,h)}h=1,...,H , select an
initial value such that

Q(0) = arg min{σ(X(Q̇(th,h)), M(θ̇
(th,h)

))}h=1,...,H .

The Short running step using the vε-ALS algorithm obtains candidate initial values
{Q̇(th,h)}h=1,...,H after the smaller total number of iterations. By using Q(0), the vε-
ALS algorithm estimates Q̂ and θ̂ minimizing σ(X(Q), M(θ)). Then, in both the
initial value selection procedure and least squares estimation of Q and θ for NPCA,
the vε-ALS algorithm reduces their number of iterations and computation time.

5 Numerical Experiments

Numerical experiments examine the performance of the initial value selection
procedures using the ALS and vε-ALS algorithms for NPCA. The first purpose
of the experiments is to investigate whether these procedures can find an initial
value leading to the global minimum of σ(X(Q), M(θ)). The second is to evaluate
how much faster the vε-ALS algorithm computes than the ALS algorithm used
in the initial value selection procedures. All computations are performed with the
statistical package R (R Development Core Team 2015) executing on Intel Core
i5 3.20 GHz with 4 GB of memory. CPU times (in seconds) are measured by the
function proc.time.

We describe the setup of the initial value selection procedures. The Random
initialization step generates 100 random initial values {Q(0,h)}h=1,...,100. The ALS
and vε-ALS algorithms are used in the Short running step. We set δini =
10−3, 10−4, 10−5 for Conditions 0 and 1 and δini = 10−2, 10−4 for Condition 2,
and Tmax = 104. Then, we utilize the C0.ALS, C1.vε, and C2.vε procedures as
the initial value selection procedure shown in Table 1. These procedures starting
with {Q(0,h)}h=1,...,100 obtain 100 candidate initial values of Q and select Q(0) from
them.

In the experiments, we consider a random data matrix X of 100 objects by
50 nominal variables with 5 levels each and NPCA for 10 principal components.
X is generated 100 times, {X(l)}l=1,...,100. For each X(l), the random initializa-
tion ALS algorithm starting with {Q(0,h)}h=1,...,100 finds the minimum value of
σ(X(Q), M(θ)) under the convergence criterion (2) of δ = 10−12. Then we regard

Table 1 The initial value selection procedures: the C0.ALS, C1.vε, and C2.vε procedures

Algorithm Stop condition δini

C0.ALS ALS Condition 0 10−3, 10−4, 10−5

C1.vε vε-ALS Condition 1 10−3, 10−4, 10−5

C2.vε vε-ALS Condition 2 10−2, 10−4
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Table 2 The number of findings of an initial value Q(0) getting the global minimum of
σ(X(Q), M(θ )) for the C0.ALS, C1.vε, and C2.vε procedures

δini = 10−2 δini = 10−3 δini = 10−4 δini = 10−5

C0.ALS – 97 99 100

C1.vε – 96 97 100

C2.vε 97 – 100 –

Table 3 Summary statistics of the total numbers of iterations and total CPU times of the random
initialization ALS algorithm and the C0.ALS, C1.vε, and C2.vε procedures

The total number of iterations Total CPU time

ALS C0.ALS C1.vε C2.vε ALS C0.ALS C1.vε C2.vε

Min. 18,160 5228 3929 4958 245.7 71.69 34.06 43.01

1st Qu. 28,010 7738 5616 7813 377.1 105.20 48.90 67.90

Median 38,820 9100 6488 9560 521.8 124.10 56.70 84.05

Mean 43,050 9208 6510 10,020 580.7 125.30 56.78 87.31

3rd Qu. 51,510 10,520 7314 11,670 691.4 142.00 63.56 101.90

Max. 214,200 14,350 10,060 18,300 2860.0 194.80 87.65 161.90

the minimum value as the global minimum of σ(X(Q), M(θ)). Under the above
setup, we apply the C0.ALS, C1.vε, and C2.vε procedures to each X(l).

Table 2 is the number of findings of an initial value Q(0) getting the global
minimum of σ(X(Q), M(θ)) for the C0.ALS, C1.vε, and C2.vε procedures. We
can see from the table that the C0.ALS and C1.vε procedures require at least δini =
10−5 and the C2.vε procedure does at least δini = 10−4 for these experiments. In
the below experiments for evaluating the computation speed of these procedures,
we give the results of δini = 10−5 for the C0.ALS and C1.vε procedures and
δini = 10−4 for the C2.vε procedure.

Table 3 presents the summary statistics of the total numbers of iterations and total
CPU times of the random initialization ALS algorithm and the C0.ALS, C1.vε,
and C2.vε procedures. We see the mean values of the total numbers of iterations
and total CPU times of these algorithms. The random initialization ALS algorithm
requires 43050 iterations, while the total number iterations of the C0.ALS and C2.vε

procedures are about 10000, and that of the C1.vε procedure is 6510. The table
also indicates that the CPU times of these procedures are much shorter than that of
the random initialization ALS algorithm. Although the CPU time of the random
initialization ALS algorithm is 580.7 s, the C1.vε procedure only takes 56.78 s.
Figure 2 is the scatterplots of the C0.ALS, C1.vε, and C2.vε procedures by the
random initialization ALS algorithm for the total numbers of iterations and total
CPU times. The figure indicates that all the procedures enable efficiently reducing
the total number of iterations and total CPU time.
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Fig. 2 Scatterplots of the C0.ALS (open square), C1.vε (open circle), and C2.vε (filled circle)
procedures by the random initialization ALS algorithms for the total number of iterations and total
CPU time

In order to compare the computation speeds of the C0.ALS, C1.vε, and C2.vε

procedures, we calculate iteration and CPU time speed-ups. The iteration speed-up
of the C0.ALS procedure is defined as

The total number of iterations of the random initialization ALS algorithm

The total number of iterations of the C0.ALS procedure
.

The iteration speed-ups of the other procedures and the CPU time speed-ups of
all procedures are calculated similarly to the iteration speed-up. Table 4 is the
summary statistics of the iteration and CPU time speed-ups of the initial value
selection procedures. The table indicates that the C1.vε procedure provides the best
performance among them in both the total number of iterations and total CPU time.
In particular, the CPU time of the C1.vε procedure is 10 times shorter than that of
the random initialization ALS algorithm and also is about 2.2 and 1.5 times shorter
than those of the C0.ALS and C2.vε procedures in these mean values. The boxplots
of Fig. 3a also show that the C1.vε procedure clearly outperforms the other two
procedures. Figure 3b is the scatterplot of the C0.ALS, C1.vε, and C2.vε procedures
by the random initialization ALS algorithm for the CPU time speed-ups. The figure
indicates that the computation speed of the C1.vε procedure is much faster than
those of the other two procedures when the initialization ALS algorithm takes much
computation time.
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Table 4 Summary statistics of the iteration and CPU time speed-ups of the C0.ALS, C1.vε, and
C2.vε procedures

The total number of iterations Total CPU time

C0.ALS C1.vε C2.vε C0.ALS C1.vε C2.vε

Min. 2.39 3.15 2.34 2.39 4.90 3.64

1st Qu. 3.43 4.73 3.28 3.41 7.33 5.08

Median 4.00 5.56 3.87 3.97 8.61 6.01

Mean 4.66 6.58 4.29 4.62 10.18 6.64

3rd Qu. 5.15 7.49 4.69 5.13 11.57 7.25

Max. 21.79 31.86 18.24 21.53 49.06 28.16
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Fig. 3 (a) Boxplots of the CPU time speed-ups of the C0.ALS, C1.vε, and C2.vε procedures. (b)
Scatterplots of the C0.ALS (open square), C1.vε (open circle), and C2.vε (filled circle) procedures
by the random initialization ALS algorithms for the CPU time speed-ups

6 Discussion

In this paper, we proposed simple and efficient initial selection procedures of the
ALS algorithm for NPCA. The procedures consist of the Random initialization,
Short running, and Selection steps. The Random initialization and Short running
steps iterate a prespecified number of times to obtain candidate initial values, and the
Selection step selects an initial value from these values. Then we utilize the vε-ALS
algorithm for speeding up the computation of the initial value selection procedure.
Numerical experiments demonstrate that all the initial selection procedures greatly
shorten the total number of iterations and total computation time. Especially,
the C1.vε procedure using the vε-ALS algorithm improves the computational
efficiency, and then its total CPU time is much shorter than that of the random
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initialization ALS algorithm. Once Q(0) is selected by the initial value selection
procedures, the vε-ALS algorithm runs to find Q̂ and θ̂ that globally minimize
σ(X(Q), M(θ)).

In the use of the initial value selection procedure, we require to determine the
H number of initial values and the stop condition δini . It seems that they depend
on NMVA and the size of the data matrix. Then we may set large H and small δini

for safety, although it takes long computation time. The advantage of the vε-ALS
algorithm is that its computation speed is fast, and this property is very useful and
important in real data analysis.

We discuss the initial value selection of the ALS algorithm for NPCA. The
proposed procedures are also available to ALS algorithms for various NMVA given
in the ALSOS algorithms of Young (1981).
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Inference for General MANOVA Based
on ANOVA-Type Statistic

Łukasz Smaga

Abstract Inference methods for general multivariate analysis of variance
(MANOVA) are studied. Homoscedasticity and any particular distribution are not
assumed in general factorial designs under consideration. In that general framework,
the existing methods based on the Wald-type statistic may behave poorly under
finite samples, e.g., they are often too liberal under unbalanced designs and skewed
distributions. In this paper, the testing procedures and confidence regions based on
the ANOVA-type statistic and its standardized version are proposed, which usually
perform very satisfactorily in cases where the known tests fail. Different approaches
to approximate the null distribution of test statistics are developed. They are based
on asymptotic distribution and bootstrap and permutation methods. The consistency
of the asymptotic tests under fixed alternatives is proved. In simulation studies, it is
shown that some of the new procedures possess good size and power characteristics,
and they are competitive to existing procedures.

1 Introduction

Following the notation of Konietschke et al. (2015), we consider the multivariate
linear model, which covers various factorial designs of interest in a unified way.
Let Xij = μi + εij , i = 1, . . . , d , j = 1, . . . , ni be N = n1 + · · · + nd

independent observations, where for fixed i = 1, . . . , d , εij are independent and
identically distributed p-dimensional random vectors. Moreover, we assume that
the error terms satisfy the following conditions:

E(εij ) = 0, Cov(εij ) = �i > 0, E(‖εij‖4) < ∞, (1)
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i = 1, . . . , d, j = 1, . . . , ni . The sample or treatment group (resp. the experimental
unit) is represented by the index i (resp. j ). The above model can be expressed as
X = diag(D1, . . . , Dd )μ+ ε, where X� = (X�

11, . . . , X�
dnd

), Di = 1ni ⊗ Ip, 1ni is
the ni × 1 vector of ones, Ip is the unit matrix of size p, ⊗ denotes the Kronecker
product, μ� = (μ�

1 , . . . ,μ�
d ), and ε� = (ε�11, . . . , ε

�
dnd

). As we mentioned,
the considered general design covers such special cases as multivariate Behrens–
Fisher problem, heteroscedastic one- and two-way MANOVA or hierarchically
nested designs (Konietschke et al. 2015, Sect. 4). The reason for this is that the
factorial structure within the components of the vector μ by splitting up the indices
is allowed. Moreover, note that different sample sizes, covariance matrices, and
distributions of error vectors are allowed.

In the above model, we can consider general hypotheses about the mean vectors.
We formulate them by using appropriate contrast and projection matrices. Let H
be a contrast matrix, i.e., H1 = 0, where 0 is the column vector of zeros. Then
T = H�(HH�)+H is the unique projection matrix (symmetric and idempotent),
where A+ is the Moore–Penrose inverse of A. The null hypothesis of interest is H0 :
Hμ = 0 ⇔ Tμ = 0. For example, in the one-way MANOVA, the null hypothesis
H0 : μ1 = · · · = μd is equivalent to H0 : Tμ = 0 with T = (Id − d−11d1�d

)⊗ Ip.
For testing the null hypothesis H0 : Tμ = 0, Konietschke et al. (2015)

considered asymptotically exact tests based on the Wald-type test statistic (WTS)
of the form

QN(T) = NX̄�T(T�̂N T)+TX̄, (2)

where X̄� = (X̄�
1 , . . . , X̄�

d ) is the vector of sample means X̄i = n−1
i

∑ni

j=1 Xij ,

and �̂N = Ndiag(n−1
1 �̂1, . . . , n

−1
d �̂d ) is the block diagonal matrix of the sample

covariance matrices �̂i = (ni − 1)−1∑ni

j=1(Xij − X̄i )(Xij − X̄i )
�, i = 1, . . . , d .

They proposed the asymptotic as well as nonparametric and parametric bootstrap
testing procedures based on QN(T). The asymptotic one, however, requires large
sample sizes to maintain the preassigned type I error level. In general, the nonpara-
metric bootstrap method also behaves unsatisfactorily under small sample sizes (It is
too liberal or conservative in many settings.). The best small sample performance is
presented by the parametric bootstrap test, but it may be unacceptably liberal under
extremely skewed distributions.

In this paper, we study testing procedures using modification of the test statistic
QN(T). Namely, we consider the following statistic:

QA
N(T) = NX̄�TX̄, (3)

which can be seen as the Wald-type statistic with weight matrix being the identity
matrix. It is called the ANOVA-type statistic or unscaled Wald-type statistic
(Brunner et al. 1997; Chen and Qin 2010; Duchesne and Francq 2015; Smaga
2017b). Based on it and its standardized version, we construct different testing
procedures, i.e., asymptotic, bootstrap, and permutation. Some of them behave quite
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well or even better than the tests of Konietschke et al. (2015) in terms of size control
and power under small sample sizes.

The plan of the paper is as follows. In Sect. 2, we derive the asymptotic tests
based on the ANOVA-type statistic (3) and its standardized version. Their theoreti-
cal properties are also stated there. The permutation and bootstrap versions of these
testing procedures are presented in Sect. 3. Section 4 contains the confidence regions
for contrasts based on the results of previous sections. In Sect. 5, the proposed tests
and confidence regions are compared with certain competing ones via simulation
studies. Finally, Sect. 6 concludes the paper.

2 Asymptotic Tests

In this section, the asymptotic null distributions of the test statistic QA
N(T) and its

standardized version are investigated. Based on them and appropriate approxima-
tions, the asymptotic testing procedures for testing H0 : Tμ = 0 are proposed.
Their properties are also established.

The asymptotic null distribution of QA
N(T) is given in the following theorem.

Theorem 1 Under assumptions (1), ni/N → κi > 0, as N → ∞, QA
N(T)

has under the null hypothesis H0 : Tμ = 0, asymptotically, as N → ∞, the
same distribution as

∑r
i=1 λiN

2
i , where r = rank(T), λ1, . . . , λr are the nonzero

eigenvalues of T�T, � = diag(κ−1
1 �1, . . . , κ

−1
d �d), and N1, . . . , Nr are the

independent standard normal variables.

Proof By the multivariate Central Limit Theorem, n
1/2
i (X̄i − μi )

D→ Np(0p,�i),

as ni → ∞, for i = 1, . . . , d (
D→ denotes the converge in distribution.). Thus

N1/2(X̄ − μ)
D→ Ndp(0dp,�), as N →∞, since all the observations are indepen-

dent. Hence, under H0 : Tμ = 0, we obtain N1/2TX̄
D→ N ∼ Ndp(0dp, T�T), as

N →∞. The continuous mapping theorem implies QA
N(T)

D→ N�N, as N → ∞.

Finally, we conclude that QA
N(T)

D→∑r
i=1 λiN

2
i , as N →∞, by the representation

theorem of the quadratic forms in normal variables. � 
In Theorem 1, it is shown that the asymptotic null distribution of QA

N(T) is
that of a central χ2-type mixture (Zhang 2005), which can be approximated by
the Box-type approximation (Box 1954) also called two-cumulant approximation
(Zhang 2013, Chapter 4). The idea of this method is to approximate the distribution
of
∑r

i=1 λiN
2
i by that of βχ2

γ (scaled χ2-distribution). The parameters β and γ

are determined by matching the first two moments of these random variables as
follows: From the proof of Theorem 1, it follows that

∑r
i=1 λiN

2
i = N�N, where

N ∼ Ndp(0dp, T�T), and hence theorem on the moments of quadratic forms
(Mathai and Provost 1992, p. 55) implies E

(∑r
i=1 λiN

2
i

) = trace(T�T) and
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Var
(∑r

i=1 λiN
2
i

) = 2trace((T�T)2). Thus, we obtain

β = trace((T�T)2)/trace(T�T), γ = (trace(T�T))2/trace((T�T)2),

and βχ2
γ,1−α is (1 − α)-quantile of the distribution of βχ2

γ . (When the degrees of

freedom γ is a real number, the distribution χ2
γ is the gamma distribution with scale

parameter 2 and shape parameter γ /2.) These quantities have to be estimated in
practice. The simple estimators as well as the asymptotic QA

N(T) test are presented
in the following result, where their consistency is shown.

Theorem 2 Under assumptions (1), ni/N → κi > 0, as N →∞,

β̂ = trace((T�̂N T)2)/trace(T�̂N T), γ̂ = (trace(T�̂N T))2/trace((T�̂N T)2)

(4)

and β̂χ2
γ̂ ,1−α

are consistent estimators of β, γ , and βχ2
γ,1−α, respectively. Moreover,

the test ϕA
N = I {QA

N(T) > β̂χ2
γ̂ ,1−α

} for the null hypothesis H0 : Tμ = 0 is
consistent under fixed alternatives.

Proof The consistency of �̂N for � immediately implies the consistency the
estimators given by (4). Under the alternative hypothesis H1 : Tμ = h, where h

is fixed nonzero vector, we have X̄�TX̄
P→ h�h > 0 as N → ∞ (

P→ denotes the

converge in probability.). Thus, we obtain QA
N(T)

P→ ∞ as N → ∞. Therefore,
P(QA

N(T) > β̂χ2
γ̂ ,1−α

|H1) → 1, as N →∞. � 
As we will see in Sect. 5, the asymptotic test based on the ANOVA-type

statistic (3) behaves very well under finite samples, when the number of groups
d is small. Unfortunately, this testing procedure may tend to result in conservative
decisions, when d is greater. Therefore, we consider tests based on standardization
of QA

N(T), which demonstrate more accurate performance. Pauly et al. (2015) used
similar ideas for repeated measures designs. To simplify the analysis, we derive the
expected value and variance of the ANOVA-type statistic under assumption of mul-
tivariate normality. More precisely, we assume that εi1 ∼ Np(0p,�i), i = 1, . . . , d .
Then, under the null hypothesis, N1/2TX̄ ∼ Npd(0pd, T�N T), where �N =
Ndiag(n−1

1 �1, . . . , n
−1
d �d). By theorem on the moments of quadratic forms, we

conclude that E(QA
N(T)) = trace(T�N T) and Var(QA

N(T)) = 2trace((T�N T)2).
Therefore, we consider the following test statistic:

Q
A,s
N (T) =

(
QA

N(T)− trace(T�̂N T)
)

/

√
2trace((T�̂N T)2). (5)

The asymptotic null distribution of Q
A,s
N (T) is derived in the following theorem. It

follows from Theorem 1 and the consistency of the estimator �̂N .
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Theorem 3 Under assumptions and notation of Theorem 1, and under the null
hypothesis H0 : Tμ = 0, we have

Q
A,s
N (T)

D→
(

r∑

i=1

λiN
2
i − trace(T�T)

)
/
√

2trace((T�T)2)

as N →∞.

By the results of Zhang (2005), the asymptotic null distribution of Q
A,s
N (T) given

in Theorem 3 can be approximated by a standardized χ2-distribution of the form
(χ2

δ − δ)/(2δ)1/2, where δ = (trace((T�T)2))3/(trace((T�T)3))2, and (χ2
δ,1−α −

δ)/(2δ)1/2 is (1 − α)-quantile of this distribution. The estimators of δ and this
quantile, the asymptotic Q

A,s
N (T) test, and their consistency are established in the

following theorem.

Theorem 4 Under assumptions of Theorem 3,

δ̂ = (trace((T�̂N T)2))3/(trace((T�̂N T)3))2,
(
χ2

δ̂,1−α
− δ̂
)

/

√
2δ̂ (6)

are consistent estimators of δ and (χ2
δ,1−α − δ)/(2δ)1/2, respectively. Moreover, the

test ϕA,s
N = I {QA,s

N (T) > (χ2
δ̂,1−α

−δ̂)/(2δ̂)1/2} for the null hypothesis H0 : Tμ = 0
is consistent under fixed alternatives.

The proof of Theorem 4 is similar to that of Theorem 2, and hence it is
omitted. The asymptotic QA

N(T) and Q
A,s
N (T) tests perform very similarly under

finite samples. However, the permutation and bootstrap testing procedures based
on Q

A,s
N (T) proposed in the next section improve the finite sample behavior of

the asymptotic one, when the number of samples is greater (in contrast to those
procedures based on QA

N(T), see Sect. 5, for more details).

3 Permutation and Bootstrap Tests

In this section, we approximate the null distribution the ANOVA-type statistics by
using the permutation and bootstrap procedures. Some of these methods will result
in better finite sample performance of the tests based on these statistics.

Permutation approach often gives good results and it is even finitely exact
under exchangeability (Chung and Romano 2013, Janssen 1997). Recently, it has
successfully been used in univariate general factorial designs by Pauly et al. (2015)
and Smaga (2015), Smaga (2017b). Below, we extend this approach to multivariate
case. Let SN be a test statistic for H0 : Tμ = 0, e.g., QN(T), QA

N(T) or Q
A,s
N (T).

The permutation testing procedure based on test statistic SN is as follows:

1. Compute SN for original data Xij , i = 1, . . . , d , j = 1, . . . , ni .
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2. Create a permutation sample from the given data in the following way: From
all observations Xij , i = 1, . . . , d , j = 1, . . . , ni , select randomly without
replacement n1 observations for the first new sample, then from the remainder
of the observations choose randomly without replacement n2 observations for
the second new sample, and so on.

3. Repeat step 2 a large number of times, e.g., Bπ = 10,000, and obtain Bπ

independent permutation samples Xπ,l
ij , i = 1, . . . , d , j = 1, . . . , ni , l =

1, . . . , Bπ .
4. For each permutation sample, compute the value of the test statistic SN . Denote

them by S
π,l
N , l = 1, . . . , Bπ .

5. The final p-value of the permutation test is defined by (Bπ )−1∑Bπ

l=1 I (S
π,l
N >

SN).

The permutation tests based on statistics QN(T), QA
N(T), and Q

A,s
N (T) will be

referred to as the permutation Qπ
N(T), Q

A,π
N (T), and Q

A,s,π
N (T) tests, respectively.

Bootstrap is another approach, which may improve finite sample behavior of test
statistics considered in Sect. 1 and Sect. 2. Konietschke et al. (2015) and Smaga
(2017a) investigated different bootstrap methods for hypothesis testing in the case
of multivariate data. The nonparametric bootstrap procedure of Konietschke et al.
(2015) in general framework under consideration can be described as follows:

1. Compute SN for given data Xij , i = 1, . . . , d , j = 1, . . . , ni .
2. Create a bootstrap sample from the original data in the following way: From all

observations Xij , i = 1, . . . , d , j = 1, . . . , ni , select randomly with replacement
n1 observations for the first new sample, then from all observations choose
randomly with replacement n2 observations for the second new sample, and so
on.

3. Repeat step 2 a large number of times, e.g., Bnb = 5000, and obtain Bnb

independent bootstrap samples Xnb,l
ij , i = 1, . . . , d , j = 1, . . . , ni , l =

1, . . . , Bnb .
4. For each bootstrap sample, compute the value of the test statistic SN . Denote

them by S
nb,l
N , l = 1, . . . , Bnb .

5. The final p-value of the bootstrap test is defined by (Bnb)−1∑Bnb

l=1 I (S
nb,l
N >

SN).

The nonparametric bootstrap testing procedures based on statistics QN(T), QA
N(T),

and Q
A,s
N (T) will be referred to as the nonparametric bootstrap Qnb

N (T), Q
A,nb
N (T),

and Q
A,s,nb
N (T) tests, respectively. Taking into account the denominator of Q

A,s
N (T),

we propose to use only those bootstrap samples, for which all diagonal elements of
the matrix T�̂nb

N T are nonzero.
Konietschke et al. (2015) also considered another resampling approach, i.e., the

parametric bootstrap. In this method, the parametric bootstrap samples are gener-
ated from multivariate normal distributions with zero expectation and covariance
matrices �̂i , i = 1, . . . , d . The parametric bootstrap Q

pb
N (T) test is the best

one proposed by them. However, by simulations not included in the article, the
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parametric bootstrap approach applied to the ANOVA-type statistics resulted in even
more conservative tests than the asymptotic ones. So we do not consider them in this
paper.

The finite sample performance of the testing procedures based on asymptotic,
bootstrap, and permutation approaches is investigated in Sect. 5.

4 Confidence Regions

In this section, the confidence regions for contrasts based on the results of previous
sections are derived. In particular for a single contrast, the confidence intervals are
presented.

In statistical analysis, it is usually helpful to complete the information from
p-value of statistical test by this received from the confidence regions and vice
versa. Statistical tests provide mechanisms for making quantitative decisions and
give the information about significance or insignificance of effects of factors under
consideration. On the other hand, confidence regions for the unknown parameters
and their functions (e.g., contrasts) describe the magnitude and variability of effects.

In the general framework of Sect. 1, we consider contrasts of the form Hμ, where
H = (h1, . . . , hh)� is a h× pd contrast matrix of full row rank. The ANOVA-type
statistic (3) for H0 : Hμ = 0 takes the form QA

N(H) = N(HX̄)�(HH�)+(HX̄).

Let q
A,a
1−α, q

A,π
1−α, q

A,nb
1−α denote (1 − α)-quantiles of the asymptotic, permutation,

and bootstrap distributions of QA
N(H), respectively. As described in Sects. 2 and

3, we reject H0 : Hμ = 0 when QA
N(H) is greater than the appropriate quantile

(Depending on the method, we choose one of the quantiles q
A,a
1−α, q

A,π
1−α, q

A,nb
1−α .).

Then, the confidence regions for contrasts Hμ based on QA
N(H) are as follows:

{
Hμ : N(HX̄ − Hμ)�(HH�)+(HX̄− Hμ) ≤ q

A,M
1−α

}
, (7)

where M ∈ {a, π, nb} denotes the method chosen (see, Anderson 2003, for similar
results in multivariate normal distribution). The axes of the confidence ellipsoid (7)
are HX̄± (λiq

A,M
1−α N−1)1/2vi , where λi and vi are the eigenvalues and eigenvectors

of the matrix HH�. For a single contrast h�k μ, the confidence interval is of the form

(
h�k X̄−

√
h�k hkq

A,M
1−α /N, h�k X̄+

√
h�k hkq

A,M
1−α /N

)
.

In much the same way as for QA
N(H), we derive the confidence regions for Hμ

based on the standardized ANOVA-type statistic (5). Let q
A,s,a
1−α , q

A,s,π
1−α , q

A,s,nb
1−α
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denote (1−α)-quantiles of the asymptotic, permutation, and bootstrap distributions
of

Q
A,s
N (H) = N(HX̄)�(HH�)+(HX̄)− trace((HH�)+H�̂N H�)√

2trace(((HH�)+H�̂NH�)2)

,

respectively. For M ∈ {a, π, nb}, the confidence regions for contrasts Hμ based on
Q

A,s
N (H) are as follows:

⎧
⎨

⎩Hμ : N(HX̄ −Hμ)�(HH�)+(HX̄ −Hμ)− trace((HH�)+H�̂N H�)√
2trace(((HH�)+H�̂N H�)2)

≤ q
A,s,M
1−α

⎫
⎬

⎭ .

The axes of this confidence ellipsoid are

HX̄±
√

λi [qA,s,M
1−α

√
2trace(((HH�)+H�̂N H�)2)+ trace((HH�)+H�̂N H�)]/Nvi .

For a single contrast h�k μ, the confidence interval based on Q
A,s
N (H) is of the form

(
h�k X̄ −

√
(q

A,s,M
1−α

√
2 + 1)(h�k �̂N hk)/N, h�k X̄ +

√
(q

A,s,M
1−α

√
2 + 1)(h�k �̂N hk)/N

)
.

5 Simulation Studies

Monte Carlo simulation studies based on the Wald-type statistic (2) and the
ANOVA-type statistics (3) and (5) were performed to investigate their performance
in finite samples in regard to controlling the type I error under the null hypothesis
H0 : Tμ = 0, the power of the statistics under the alternatives and maintaining
the preassigned coverage probability. We conducted all computations in the R
program (R Core Team 2017).

5.1 Simulation Setup

To be consistent with the numerical results of Konietschke et al. (2015), we
conducted simulations in the multivariate one-way layouts with d = 2, 4 groups,
similar to those in that paper. We generated the four-dimensional (p = 4)

independent observations according to the model Xij = μi+�
1/2
i εij , i = 1, . . . , d ,

j = 1, . . . , ni . The random error vectors ε�ij = (εij1, . . . , εijp) were independent

and identically distributed, where εijk = (Zijk − E(Zijk))/(Var(Zijk))
1/2 and Zijk
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were taken from normal, Laplace, t7, χ2
20, and χ2

3 distributions. For d = 2 (resp.
d = 4), the following sample size vectors were used: n1 = (10, 10), n2 = (15, 15),
n3 = (10, 20), n4 = (20, 10) (resp. n5 = (10, 10, 10, 10), n6 = (20, 20, 20, 20),
n7 = (7, 10, 13, 16), n8 = (16, 13, 10, 7)). The covariance structures described in
the following Settings 1–4 (resp. 5–8) were investigated in case of d = 2 (resp.
d = 4):

Setting 1 �1 = �2 = I4 + 0.5(141�4 − I4)

Setting 2 �1 = �2 = (0.6)|k−l|
Setting 3 �1 = I4 + 0.5(141�4 − I4), �2 = 3I4 + 0.5(141�4 − I4)

Setting 4 �1 = (0.6)|k−l|, �2 = (0.6)|k−l| + 2I4
Setting 5 �i = I4 + 0.5(141�4 − I4)

Setting 6 �i = (0.6)|k−l|
Setting 7 �i = iI4 + 0.5(141�4 − I4)

Setting 8 �i = (0.6)|k−l| + iI4

for i = 1, . . . , 4. Therefore, in our simulation designs, different symmetric
and skewed distributions as well as balanced, unbalanced, homoscedastic, and
heteroscedastic settings were considered. Moreover, the positive (increasing sample
sizes combined with increasing variances) and negative (increasing sample sizes
combined with decreasing variances) pairings were also included.

The type I error rate and power were obtained by running 1000 simulations
under each scenario. The p-values of the bootstrap (resp. permutation) tests were
estimated from 5000 (resp. 10,000) replications. The resulting empirical sizes and
powers under the normal and χ2

3 distributions are displayed in Tables 1, 2, 3, and
4. The results obtained in other settings give similar conclusions, and therefore are
omitted for space saving, but available from the author.

Let us remind that the binomial proportion confidence interval is of the form
(p̂−z1−β/2(p̂(1−p̂)/n)1/2, p̂+z1−β/2(p̂(1−p̂)/n)1/2), where p̂ is the proportion
of successes in a Bernoulli trial process (measured with n trials), and z1−β/2 is (1−
β/2)-quantile of the standard normal distribution (β ∈ (0, 1)). Hence, by Duchesne
and Francq (2015, Sect. 5.2), the empirical sizes of a test for a given nominal
level α should belong to (α − z1−β/2(α(1− α)/n)1/2, α + z1−β/2(α(1− α)/n)1/2)

with probability 1 − β, where n denotes the number of replications. Therefore, for
α = 5%, the empirical size over the 1000 independent replications should belong
to [3.6%, 6.4%] (resp. [3.2%, 6.8%]) with probability 95% (resp. 99%). Thus in
Tables 1 and 2, when the rejection proportions are outside the 95% (resp. 99%)
significance limits, they are displayed in bold (resp. underlined).

5.2 Discussion of the Simulation Results

In simulations, we considered twelve tests based on statistics (2), (3), and (5) and
asymptotic, nonparametric, and parametric bootstrap, and permutation methods.
However, we only present results for five testing procedures, i.e., the Q

pb
N (T) test,
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Table 1 Empirical sizes (as percentages) of the Q
pb

N (T), QA
N(T), Q

A,s
N (T), Q

A,s,nb
N (T), and

Q
A,s,π
N (T) tests obtained under the normal and χ2

3 distributions (d = 2, Set.: Setting)

Normal χ2
3

Set. n Q
pb
N QA

N Q
A,s
N Q

A,s,nb
N Q

A,s,π
N Q

pb
N QA

N Q
A,s
N Q

A,s,nb
N Q

A,s,π
N

1 n1 4.7 6.4 6.4 5.2 5.3 4.3 5.3 5.2 4.6 4.8

n2 4.2 5.1 5.1 4.9 5.0 3.4 4.8 4.7 4.8 4.7

n3 4.8 5.2 5.2 4.6 5.0 5.8 4.8 4.8 4.1 4.1

n4 4.9 6.1 6.0 5.2 5.4 6.4 4.6 4.6 4.3 4.5

2 n1 4.5 5.7 5.5 4.4 4.6 4.1 4.9 4.8 4.3 4.5

n2 4.5 4.9 4.9 4.7 4.6 3.3 4.8 4.8 4.5 4.6

n3 4.8 5.1 5.1 4.6 4.9 5.8 4.5 4.5 4.0 4.2

n4 5.0 5.5 5.4 4.9 5.0 6.2 4.7 4.5 4.0 4.4

3 n1 5.4 5.4 5.2 5.0 5.6 6.0 5.5 5.4 4.8 5.7

n2 5.1 4.4 4.1 3.9 4.5 6.5 4.1 4.1 4.2 4.6

n3 4.7 5.3 5.2 5.1 5.6 4.8 4.8 4.6 4.5 4.9

n4 5.9 4.9 4.7 4.2 5.0 10.8 4.9 4.8 4.8 5.2

4 n1 5.7 5.8 5.7 5.4 5.8 6.0 5.2 5.1 4.7 5.4

n2 4.1 4.4 4.2 4.4 4.6 6.7 4.3 4.2 4.5 4.7

n3 4.4 6.1 6.0 5.4 5.9 4.8 4.2 4.1 3.9 4.5

n4 6.2 5.2 5.2 5.0 5.0 11.0 5.0 4.9 4.9 5.3

Table 2 Empirical sizes (as percentages) of the Q
pb
N (T), QA

N(T), Q
A,s
N (T), Q

A,s,nb
N (T), and

Q
A,s,π
N (T) tests obtained under the normal and χ2

3 distributions (d = 4, Set.: Setting)

Normal χ2
3

Set. n Q
pb

N QA
N Q

A,s
N Q

A,s,nb
N Q

A,s,π
N Q

pb

N QA
N Q

A,s
N Q

A,s,nb
N Q

A,s,π
N

5 n5 3.7 5.9 5.7 5.3 5.5 5.5 4.8 4.4 5.2 5.2

n6 5.5 5.8 5.7 5.7 5.6 5.6 4.5 4.3 4.7 4.8

n7 6.0 5.1 4.8 4.3 4.5 6.5 4.6 4.3 4.8 4.8

n8 5.1 5.3 5.1 4.4 4.6 7.3 5.1 5.0 4.8 5.0

6 n5 4.0 5.7 5.6 5.5 5.3 5.7 4.9 4.6 5.5 5.5

n6 5.4 6.2 6.1 6.1 6.1 5.6 5.1 4.7 5.4 5.8

n7 6.4 5.4 5.0 4.6 4.8 6.6 4.8 4.5 4.7 4.9

n8 5.2 5.0 4.8 4.7 4.6 7.1 4.6 4.5 4.6 4.8

7 n5 5.4 4.8 4.6 4.9 5.3 7.3 3.8 3.7 5.2 5.8

n6 4.7 5.3 5.2 6.3 6.7 6.6 3.9 3.8 5.9 6.2

n7 5.0 4.3 4.2 4.7 4.8 5.7 3.4 3.3 4.8 5.1

n8 6.7 3.7 3.3 4.6 5.1 10.8 3.2 2.9 4.2 4.5

8 n5 5.1 5.2 4.9 6.0 6.5 6.9 3.2 3.0 5.0 6.0

n6 6.5 5.4 5.3 5.9 6.1 6.6 4.8 4.2 6.3 6.4

n7 5.8 4.6 4.1 5.0 5.4 5.9 3.1 3.1 3.8 4.7

n8 6.9 3.5 3.1 4.3 4.8 9.5 3.1 2.7 4.6 4.8
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Table 3 Empirical powers (as percentages) of the Q
pb

N (T), QA
N(T), Q

A,s
N (T), Q

A,s,nb
N (T), and

Q
A,s,π
N (T) tests obtained under the normal and χ2

3 distributions (d = 2, n = (15, 15), μ1 = 04,
a1 = 14, a2 = (1�3 , 0)�, a3 = (1�2 , 0�2 )�, Set.: Setting)

Normal χ2
3

Set. μ2 Q
pb

N QA
N Q

A,s
N Q

A,s,nb
N Q

A,s,π
N Q

pb

N QA
N Q

A,s
N Q

A,s,nb
N Q

A,s,π
N

1 a1 68.4 91.7 91.6 91.0 90.7 75.9 91.9 91.9 91.6 91.4

a2 87.5 85.6 85.6 84.8 84.6 90.8 86.6 86.4 85.7 86.2

a3 88.0 73.8 73.7 71.1 71.2 89.9 75.2 74.9 73.7 74.0

2 a1 73.9 92.2 92.1 91.7 91.9 79.2 93.1 93.1 92.5 93.0

a2 82.3 86.0 85.5 84.0 84.3 87.1 85.9 85.9 85.2 85.6

a3 78.2 72.7 72.3 70.8 71.2 80.2 74.7 74.4 72.8 73.4

3 a1 52.9 74.3 74.1 73.7 74.2 48.6 78.5 78.5 78.7 79.9

a2 50.5 63.2 62.8 62.9 63.8 51.1 66.8 66.2 67.0 68.7

a3 45.0 48.4 48.0 48.2 48.8 46.9 49.4 49.1 51.0 51.7

4 a1 55.9 75.1 74.7 74.4 75.2 50.8 79.4 79.1 79.8 80.9

a2 48.7 65.6 64.8 64.4 65.4 47.9 66.5 66.0 66.7 69.1

a3 41.4 48.1 47.8 47.7 48.3 40.1 49.0 48.7 49.7 51.1

Table 4 Empirical powers (as percentages) of the Q
pb
N (T), QA

N(T), Q
A,s
N (T), Q

A,s,nb
N (T), and

Q
A,s,π
N (T) tests obtained under the normal and χ2

3 distributions (d = 4, μi = 04, i = 1, 2, 3,
a1 = 214, a2 = 2(1�3 , 0)�, a3 = 2(1�2 , 0�2 )�, Set.: Setting)

Normal χ2
3

Set. n μ4 Q
pb

N QA
N Q

A,s
N Q

A,s,nb
N Q

A,s,π
N Q

pb

N QA
N Q

A,s
N Q

A,s,nb
N Q

A,s,π
N

7 n5 a1 69.4 97.9 97.9 98.4 98.8 77.3 98.4 98.2 98.7 98.8

a2 64.3 93.7 93.4 94.6 95.0 73.7 93.8 93.4 95.0 95.4

a3 50.3 77.9 77.2 80.7 81.1 57.9 78.9 77.9 83.0 84.5

n7 a1 86.3 99.4 99.4 99.4 99.4 94.5 99.2 99.2 99.3 99.3

a2 82.3 97.2 97.0 97.2 97.2 91.2 96.6 96.4 97.3 97.5

a3 70.3 89.6 89.2 90.2 90.5 80.1 88.3 87.6 90.6 91.4

n8 a1 58.1 92.8 92.3 93.1 93.8 57.7 96.2 96.0 96.8 97.2

a2 52.8 83.0 82.4 85.0 86.0 56.9 89.6 89.2 92.2 93.1

a3 42.7 65.9 64.3 68.3 69.4 51.0 69.9 68.5 74.5 75.9

8 n5 a1 63.2 93.6 93.3 94.1 94.6 69.2 93.0 92.6 95.0 95.4

a2 53.7 86.0 85.9 87.4 88.0 61.2 84.1 83.5 87.8 88.5

a3 39.6 68.3 66.8 71.4 72.4 42.8 63.3 62.8 69.3 70.8

n7 a1 81.3 97.9 97.8 98.3 98.3 88.6 96.3 96.0 96.7 96.9

a2 70.4 93.0 92.7 93.4 94.1 78.2 89.2 88.7 91.2 91.7

a3 54.7 77.9 77.4 80.0 80.7 61.6 72.9 71.6 77.5 78.8

n8 a1 50.6 85.8 84.8 87.6 88.2 51.8 90.3 89.7 92.7 93.6

a2 45.4 74.7 73.5 76.6 77.6 47.3 79.3 78.0 82.7 84.3

a3 35.2 54.2 52.7 57.0 58.3 40.6 54.5 52.8 61.0 63.6
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which performed best in Konietschke et al. (2015), and the QA
N(T), Q

A,s
N (T),

Q
A,s,nb
N (T), and Q

A,s,π
N (T) tests. The other tests are too liberal or conservative in

many cases, and therefore they are not recommended.
In the generalized multivariate Behrens–Fisher problem (d = 2), the Q

pb

N (T),

QA
N(T), Q

A,s
N (T), Q

A,s,nb
N (T), and Q

A,s,π
N (T) tests demonstrate accurate control

of the nominal type I error level under symmetric (see Table 1) and moderately
skewed distributions. However, the Q

pb
N (T) test may tend to result in slightly liberal

decisions in negative pairing. Unfortunately, this testing procedure performs much
more liberal under extremely skewed distributions as χ2

3 -distribution considered
(see Table 1). The tests based on the ANOVA-type statistics still control the type
I error quite well under such distributions.

When the number of groups increases (d = 4), the finite sample behavior of
the tests under the null may change a little (see Table 2). The parametric bootstrap
Wald-type test tends to over-reject the null hypothesis in more situations than for
d = 2, e.g., under extremely skewed distributions and homoscedastic settings
or balanced designs. The asymptotic ANOVA-type testing procedures control the
nominal level in most cases, but they show a tendency to conservativity in positive
and negative pairings, especially under extremely skewed distributions. Fortunately,
the Q

A,s,nb
N (T) and Q

A,s,π
N (T) tests keep the preassigned type I error in all scenarios.

The power results for all tests are quite satisfactory. In case of two samples,
the empirical power of the tests was computed for balanced designs with fifteen
observations in each group (see Table 3), since all competing testing procedures
control the type I error rate in such scenarios. The empirical powers of the tests
based on the ANOVA-type statistic are very similar in all cases. Under Settings 3
and 4 as well as the case of μ2 = a1 in Settings 1–2, these tests have considerably
larger power than the Q

pb
N (T) procedure. In other cases, it is the other way around

or the empirical power of all tests is comparable.
In contrast to power analysis in case of d = 2, we also consider unbalanced

designs for d = 4 to emphasize some interesting observations (see Table 4).
First of all, the empirical powers of the parametric bootstrap Wald-type test are
(usually much) smaller than these of the tests based on the ANOVA-type statistics.
Interestingly, it is very evident in negative pairing, where although this test is too
liberal, it has very low power in comparison to the other ones. The empirical power
of the ANOVA-type tests is not so similar as for d = 2. The empirical powers
of the Q

A,s,nb
N (T) and Q

A,s,π
N (T) tests are even a few percent greater than these

of the QA
N(T) and Q

A,s
N (T) procedures, which is particularly noticeable under

χ2
3 -distribution. This can be explained by slightly conservative character of the

asymptotic ANOVA-type tests for greater number of groups.
We also conducted simulation studies to check the performance of confidence

regions of Sect. 4 in terms of maintaining the preassigned coverage probability. The
results of these simulation studies were consistent with the relationship between
confidence regions and hypothesis testing (Lehmann and Romano 2005, Sect. 6.11).
(For this reason and to save space, the particular simulation results are omitted.)
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More precisely, the confidence regions based on Q
A,s,nb
N (H) and Q

A,s,π
N (H) usually

maintain the preassigned coverage probability quite accurately, since the Q
A,s,nb
N (T)

and Q
A,s,π
N (T) tests keep the preassigned type I error level. On the other hand, the

empirical coverage probabilities of the confidence regions based on Q
pb

N (H) (resp.

QA
N(H) and Q

A,s
N (H)) may be smaller or even much smaller (resp. greater) than the

preassigned coverage probability in the cases, when the Q
pb
N (T) test is too liberal

(resp. the QA
N(T) and Q

A,s
N (T) tests have conservative character).

6 Concluding Remarks

We have studied testing procedures and confidence regions in general MANOVA
designs without assuming homoscedasticity or a particular multivariate distribution.
Inference methods were based on the ANOVA-type statistic and its standardized ver-
sion, which are convenient to apply in general framework under consideration. By
approximating asymptotic distributions of these statistics by scaled and standardized
χ2-distributions, the asymptotic tests were proposed and proved to be consistent
under fixed alternatives. For small number of samples, these testing procedures
controlled the type I error very well, in general even better than (and less time-
consuming than) the parametric bootstrap Wald-type test proposed by Konietschke
et al. (2015). However, for greater number of treatment groups, the asymptotic
ANOVA-type tests may be slightly conservative. On the other hand, the bootstrap
and permutation tests based on the standardized ANOVA-type statistic maintained
the preassigned type I error rate even for greater number of samples. Neither test
dominates the other in terms of its ability to find true rejections. However, in most
cases of our simulation experiments, the ANOVA-type tests offered larger power
than the parametric bootstrap Wald-type test. Of course, the performance of the
proposed methods needs to be further evaluated on additional real and artificial data
sets and other particular designs of general MANOVA framework.
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How To Cross the River? New “Distance”
Measures

Andrzej Sokolowski, Malgorzata Markowska, Sabina Denkowska,
and Dominik Rozkrut

Abstract In this paper, we propose three new “distance” measures which are
the adjustments of Euclidean distance. First two are given for one-dimensional
space, and the third one—called tube distance—provides the generalization for
multidimensional case. New measures take into account points lying between
those for which we calculate the distance as well as points lying in the close
neighbourhood of the ones considered. The aim of the paper is to present the idea
together with some basic simulation studies under uniform and standard normal
generating distributions.

1 Introduction

If you are on one side of the river and have to arrive at some point on the other
side, the distance you have to cover can be calculated in different ways. You can
go directly to the other side which is equivalent to Euclidean distance, or cross
the river perpendicularly and follow your way on the other side to a given point,
along Manhattan distance. If there are stones in the river, you can jump from
one to another. First you should reposition the stones by moving them to the line
connecting two points, but you can move only these points which are close to this
line. If you want to jump from one stone to another, the main problem is created
by the biggest distance between consecutive stones. This story lead us to the new
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propositions of “distance” measures. They take into account points in-between and
point lying in the close outside neighbourhood. The formulas for R1 are given
and generalization for multidimensional space is proposed. The basic behaviour of
proposed measures is studied through simulation analysis. A story about crossing
the river is maybe not an extravaganza. Fan and Raichel (2017) explain Frechet
gap distance by considering a man walking the dog along two different curves or
two military units moving on two roads. Deza and Deza (2006, 2009) published
two excellent reference books on distance measures. In the Preface to Dictionary
of Distances, they wrote “The concept of distance is basic to human experience. In
everyday life it usually means some degree of closeness of two physical objects or
ideas, i.e., length, time interval, gap, rank difference, coolness or remoteness (. . . )”.
Our propositions rely on intuition and not on formal definition of a distance with its
non-negativity, symmetry, reflexivity and triangular inequality.

The basic idea for proposing new distance measures between two points is to
take into account what is going on in the space between these points and in their
neighbourhood. If we consider points on the line, then two points seem to be more
distant if there are no other points between them.

2 Gap Adjusted Euclidean Distance in R1

Let us consider two points A and B, on the line. The other points lying in-between
and distributed uniformly create some kind of a chain connecting A and B, and insist
the impression that A and B belong to the same group, because they are somehow
“connected”. The biggest distance between two consecutive “inside” points creates
an impression of separability.

In Fig. 1, we have A = 1 and B = 7. The Euclidean distance is 6. We propose to
adjust this distance by the biggest gap between two consecutive points lying between
A and B. The adjustment is in the form of geometric average:

AS1(A,B) =
√

d(A,B) · max
x(i),x(i+1)∈AB

d(x(i), x(i+1)) (1)

where x(i), x(i+1) are consecutive points.

Fig. 1 Example 1
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In Fig. 1, the biggest gap is between 3 and 6, so the adjusted Euclidean distance
between A and B is:

AS1(A,B) = √
3 · 6 = √

18 ∼= 4.24

Of course, the smaller the gap, the smaller the AS1, because A and B are
somehow “more” connected. I order to study the distribution of AS1 under null
(homogenous distribution, no clusters) a simulation study was done, according to
the following scheme:

1. generate n points from the null distribution,
2. select randomly A and B from this sample,
3. calculate AS1.

Each simulation went through 10,000 runs, and four sample sizes have been
considered: 10 (definitely small sample), 16 (number of provinces in Poland), 28
(number of EU countries) and 1000 (definitely the large sample). Figure 2 presents
sample distribution of AS1 under U [0, 1] uniform distribution, and Fig.3—under
N(0, 1) standard normal distribution.

Fig. 2 Sampling distribution of AS1 for samples drawn from uniform U [0, 1] distribution
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Fig. 3 Sampling distribution of AS1 for samples drawn from standard normal N(0, 1) distribution

In Fig. 3 for samples smaller than 30, distributions look like log-normal, but the
actual fit was not satisfactory.

3 Euclidean Distance in R1 Adjusted for Gap and Outside
Neighbourhood

This proposition takes into account points lying outside line segment between A

and B, but only points relatively close to A and B. These outside neighbour points
should be no further than r (radius) respectively from A or B.

At the moment, we considered three ways of choosing the radius:

• as a fixed value,
• as a percentage of d(A,B),
• as a maximum value of minimal values from the rows of Euclidean distance

matrix (of course not taking into account the main diagonal).
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Fig. 4 Example 2

Example 2 in Fig. 4 explains the idea, and the formula for adjustment for gap and
close outside neighbourhood is given as:

AS2(A,B)

=
√

d(A,B) · max
x(i),x(i+1)∈AB

d(x(i), x(i+1)) · median{d(x̄A, x̄B), d(x̄A, ¯̄x), d(x̄A, ¯̄x)}
(2)

AS2 measure is calculated as a geometric average of Euclidean distance, the biggest
gap and median distance between averages of neighbourhoods of A and B and the
joint average (the same idea as in median agglomerative clustering strategy).

In Example 2 (Fig. 4), we have d(A,B) = 3, r = 0.2 · d(A,B) = 0.6, gap = 2,
AS1 = 2.449, x̄A = 2.625, x̄B = 6.5, ¯̄x = 3.917, median = 2.583, AS2 = 2.493.

Simulation studies have been performed under the same scheme as for AS1 mea-
sure. For uniform distribution, small samples produce distributions quite symmetric
(Fig. 5). For normal distribution, we have AS2 distributions skewed to the right
(Fig. 6).

4 Tube Distance

Measures AS1 and AS2 have been defined for one-dimensional space. How we can
generalize them onto multidimensional space? The idea is to form a tube (cylinder)
with r-radius and symmetry line connecting A and B points. Points lying in the
cylinder are projected on this line and thus, the problem is transformed to one-
dimensional space. Outside points are defined as those lying within r distance to
(respectively) A and B. So AS3 is a measure obtained by the formula similar to (2),
after projecting points in the tube on AB line.

Simulation study for tube distance has sense for at least two-dimensional
classification space. First, we considered 2D uniform distribution with independent
marginals. Since we considered only small samples, it was possible to take r =
maxi minj D, where D is distance matrix (without the main diagonal).

Distributions of AS3 under uniform generating scheme look symmetric (Fig. 7),
like it was for one-dimensional case illustrated in Fig. 5. The same similarity—
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Fig. 5 Sampling distribution of AS2 for samples drawn from uniform U [0, 1] distribution

this time with skewness—is observed for normal distribution (compare Fig. 6 with
Fig. 8).

The last simulation experiment presented here considers a non-homogeneous
population. A model consists of four standard normal distributions “moving”
along axes in 2D co-ordinate system: N1(a, 0, 1, 1, 0), N2(0, a, 1, 1, 0),
N3(−a, 0, 1, 1, 0) and N4(0,−a, 1, 1, 0). First, we assume that 16 points are
generated, 4 from each distribution. The results are shown in Fig. 9.

If four distributions are relatively close to each other—partially overlapping (a ≤
3)—distributions remain unimodal. When normal distributions move further along
the axes, the distributions of A3 become two-modal. Tube distance for points lying
within one group is small, and for points from different groups—large. Of course
this is also true for classical Euclidean distance, but A3 seems to facilitate the effect
of separability and “emptiness” between points. Generally, the same is observed for
28 objects (Fig. 10).
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Fig. 6 Sampling distribution of AS2 for samples drawn from standard normal N(0, 1) distribution

Fig. 7 Sampling distribution of AS3 under 2D uniform distribution
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Fig. 8 Sampling distribution of AS3 under 2D normal distribution

Fig. 9 Sampling distributions of tube distance for four-group experiment, n1 = n2 = n3 = n4 = 4
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Fig. 10 Sampling distributions of tube distance for four-group experiment, n1 = n2 = n3 =
n4 = 7

5 Closing Remarks

Two adjustments of Euclidean distance have been proposed. They take into account
points lying between considered objects and in their close neighbourhood. Tube
distance is the generalization of an idea onto multidimensional space. This is just
the first presentation and the first simulation results. Much more has to be done in
future research. The most important is to study the behaviour of proposed measures
in classification and clustering tasks, as confronted to the classical distances.
First partial results are promising. Further, we should compare three ways of
establishing radius for neighbourhood with different simulation schemes, as well
as with classical benchmark sets.
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New Statistical Matching Method Using
Multinomial Logistic Regression Model

Isao Takabe and Satoshi Yamashita

Abstract Statistical matching techniques aim to build a dataset by combining
different data sources. In recent years, matching techniques have been employed
in various fields. However, because of some difficulties, there are only a few
applications to company data. In this study, we proposed a new statistical matching
methodology for company datasets by employing multinomial logistic regression
model. The weighted distance was used to compute the probability of true match
pairs through the model. The probability helps classify the record pairs as truly
matched or not. We applied these techniques to a commercial company dataset
and the official economic census microdata. The results showed that our method
performs better than the nearest neighbor method used in the previous study in terms
of true match rate.

1 Introduction

1.1 Background

Statistical matching techniques aim to build a dataset by combining different
data sources (D’Orazio et al. 2006; Rässler 2002; Christen 2012). The most
important objective of these techniques is to create useful and informative synthetic
microdata without conducting any survey or collecting additional data. An accurate
and efficiently linked database offers many benefits. In recent years, matching
techniques have been employed in various fields including marketing, econometrics,
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Fig. 1 Diagram of the statistical matching of two databases

epidemiology, and social sciences (Araki and Yoshizoe 2007; Herzog et al. 2007;
Méray et al. 2007).

Currently, large databases of companies are needed in various fields. For
example, a database is useful for a financial sector company to analyze the default
probability of borrowers. A database may help a public-sector organization to
discuss financial and tax regulations. In practice, however, individual databases
are developed for each organization or company because of costs. In particular, a
financial database generally has a large amount of financial index information, but
such information is limited to borrower companies and biased. In Japan, economic
census is conducted by the statistics bureau (Ministry of Internal Affairs and
Communications), which has rich employment information and offers unbiased data
of all companies, but does not have sufficient financial information (Fig. 1).

By combining these data types, a useful unbiased informative database can be
obtained without additional costs for data collection. However, owing to difficulties
in dealing with big datasets and skewed variables, there are few applications that
utilize company data (Lie 2001; Kurihara 2015). Sometimes we cannot use detailed
information of companies (name, location, etc.) or an organization’s database
because of confidentiality.

1.2 Statistical Matching Methods

There are many statistical matching techniques. One of these methods uses U-
statistics (the probability of matching two different records by chance) and M-
statistics (the probability that equal pairs match), and judges propriety of matching
based on a threshold (Newcombe et al. 1959; Fellegi and Sunter 1969; Harron et al.
2015). The method usually uses many variables including the company’s name and
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location information for matching. However, in many cases, it is considered that
confidential information cannot be used and only few pieces of information can be
used; therefore, these methods are not considered to be appropriate.

Another method assumes a multivariate normal distribution in the structure of
enterprise data and estimating variables, which is not common in two databases
as there are missing values in the framework of multiple regression models and
Bayesian modeling (D’Orazio et al. 2006; Rässler 2002). However, company data
usually has very skewed variables (employment, turnover, etc.) and categorical
variables, which makes it inappropriate to assume a multivariate normal distribution.

The distance hot deck method has been used in early research and is still widely
used in practice. The method often uses the following weighted distance Dij , and
the smallest distance records are matched:

Dij =
K∑

k=1

βk|Xik −Xjk|

where Dij is the distance between record i of one dataset A and record j of another
dataset B. Xik is the field k in record i and j . βk is the weight of the common field
k in both datasets.

Regarding information necessary for discriminating companies like capital
amount, it can be considered that the matching precision is improved by simply
using its difference (distance). The inverse of the standard deviation or range of
variables are often used as the weights of distance (D’Orazio et al. 2006). In
the presence of a set of mixed modes (including both continuous and categorical
variables), the matching procedure has difficulty in determining the weight of each
variable.

Next, we will discuss the statistical matching method based on the weighted
distance function. The method works well without any distribution assumption, and
it also works well in the situation that there are only a few common variables in two
datasets.

1.3 Proposed Method

In this paper, a new statistical matching method using multinomial logistic model
(McCullagh and Nelder 1989; Hosmer et al. 2013) combined with the weighted
distance function is introduced. The weighted distance between records in two
datasets was used to build a multinomial logistic model. This method has the
following merits.

• The assumption of distributions is not needed.
• The methodology makes it possible to determine weights of distances statisti-

cally, and to evaluate matching probabilities.
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• The model can deal with continuous and categorical variables equally in a
multinomial logistic model framework.

• The model can compute the matching probabilities such that the record pairs can
be classified as truly matched or not.

• The t-value makes it possible to analyze the estimation accuracy of the weights.
• The pseudo-R-squared value obtained by the model can be used to compare

different model fitting techniques.

2 Model

In this section, details of the statistical matching method are explained using multi-
nomial logistic regression model framework. Suppose that there are two datasets,
say datasets A and B, having M and N records, respectively. The probability Pij ,
which is defined as the likelihood that company i in dataset A matches company j in
dataset B, is expressed as the following formula using weighted distance Dij where
the weights of the distance β = ( β1 , β2, . . . , βp ) are treated as the parameters in
the multinomial logistic regression model.

Pij = exp(−Dij )∑N
j=1 exp(−Dij )

The maximum likelihood method was used for estimating these parameters
(weights). The following L(β) is the likelihood function of the model:

L(β) =
M∏

i=1

N∏

j=1

Pij
δij

where δij =

{
1 when record i (in dataset A) = record j (in dataset B)

0 otherwise
As explained in the Sect. 3 later, training data and test data were selected from
exactly matched data in which each δij was known. All the weights in the model
were estimated based on the training data, and model performances were compared
and verified by using the test data.

Hence, the log-likelihood function l(β) is as follows:

l(β) =
M∑

i=1

N∑

j=1

δij ln

⎛

⎝
exp
(
−∑K

k=1 βk|Xik − Xjk|
)

∑N
j=1 exp

(
−∑K

k=1 βk|Xik −Xjk |
)

⎞

⎠

The maximum likelihood estimators of the weights β̂ = (β̂1, β̂2, . . . , β̂p ) were
obtained by maximizing the above log-likelihood function. We used the software R
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and its optim function (quasi-Newton method by BFGS algorithm) to calculate the
numerical optimization for maximum likelihood estimation.

The t-value tk of the coefficient βk is as follows (Hosmer et al. 2013):

tk = β̂k√
[∇2l(β̂)]−1

kk

where, [∇2l(β̂)]kk = ∂2l(β̂)/∂βk
2 is the diagonal elements of the Hessian matrix

which is the output of optim function (argument hessian = TRUE).
After determining the model parameters (weights) β̂, the matching probability

of each record pair Pij was estimated. Using these probabilities, for each record in
dataset A, the record with the highest estimated matching probability in dataset B

was matched. Figure 2 illustrates this procedure.

3 Applications

3.1 Data

We applied the proposed method to a commercial firm dataset and the official
economic census microdata. The dataset A is the Teikoku Databank data (TDB data)
of the Japanese commercial database company. It is maintained by the interview
survey. The dataset B is the Economic Census microdata. The economic census
is the official survey conducted by the statistics bureau. In this study, we used the
data in an area. Approximately 5000 records in dataset A and approximately 13,000
records dataset B were used.

These datasets were exactly matched by using name and location information
in advance. Next, these key information were eliminated. Then, the training and
test datasets were selected from the datasets. We used two-thirds of the samples
as training dataset. The remaining data were used for the evaluation of the model
performance as the test dataset.

We used both continuous and categorical variables. The continuous variables are
as follows:

• number of employees;
• capital amount; and
• turnover.

The number of employees of the TDB data sometimes includes part-timers.
The economic census has two types of number of employees (with and without
part-timers); we calculated two patterns of distances for the number of employees
(including part-timers or not) and used its minimum value as the distance of the
number of employees.
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We used the following categorical variables. If two companies in a record pair
belong to the same category, then the distance = 0, otherwise the distance = 1.

• Year of establishments: four categories (1984, 1985–1994, 1995–2004, 2005)
• Industry: Japan Standard Industrial Classification, Major groups
• Region code (County level).

There is a difference in the industry definition in both databases; therefore, we
reorganized the Industry of the TDB data to adapt to the major group of Japan
Standard Industry Classification adopted by the Economic Census.

Each dataset contains missing values; therefore, we imputed these values using
imputation by chained equations (ICE) (Van Buuren 2012) before the estimation
of the models. The ICE imputation procedure was implemented using R package
mice. The continuous and categorical values were imputed by using the multino-
mial logistic model and the predictive mean matching method, respectively.

3.2 Comparison Methods

We compared the proposed models (with the following distances) with the nearest
neighbor matching as the benchmark method.

1. Weighted absolute distance: Dij =∑K
k=1 βk|Xik −Xjk|

2. Weighted absolute distance (log): Dij =∑K
k=1 βk log(|Xik −Xjk| + 1)

3. Weighted Euclid distance (squared): Dij =∑K
k=1 βk(Xik −Xjk)

2

4. Weighted Canberra distance: Dij =∑K
k=1 βk|Xik −Xjk |/(Xik +Xjk + 1)

5. Nearest neighbor method

Nearest neighbor method searches the smallest distance record for matching.
Nearest neighbor method, which was often used in previous studies, used fixed
weights defined as the inverse of the standard deviation of each variable and did not
estimate these weights by data. On the other hand, our proposed methods estimated
optimal weights of weighted distances by data using maximum likelihood method.
We measured performances of proposed methods by using the nearest neighbor
method as a benchmark.

Sometimes the non-linear optimization calculation failed in the weighted Euclid
distance; therefore, each continuous variable was divided by 100 to stabilize the
estimation procedure.

3.3 Matching Performance Evaluation

Table 1 presents the estimation results. The coefficients of the model were indicated
with their standard errors. To see the model fitting, the pseudo-R-square ρ2 was
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Table 1 Estimate results of each model: coefficient, t-value, and pseudo-R-square

WAD WAD(log)

Variables Coeff t-value Coeff t-value

Employees 0.1868 −25.95a 1.0596 −34.68a

Capital amounts 0.0062 −46.79a 0.8598 −58.54a

Turnover 0.0089 −36.09a 0.9384 −66.19a

Industry 3.5368 −66.37a 3.4545 −62.87a

Establishment year 1.5943 −40.89a 1.5758 −37.53a

Region code 11.2817 −15.04a 8.9814 −23.62a

Initial log-likelihood −37934 −37934

log-likelihood −13238 −10041

Pseudo R-sq 0.6510 0.7353

WED WCD

Variables Coeff t-value Coeff t-value

Employees 4.9156 −10.55a 3.6371 −33.13a

Capital amounts 0.0126 −32.07a 14.605 −45.01a

Turnover 0.0037 −9.32a 5.5528 −55.31a

Industry 1.6580 −46.15a 3.4407 −64.91a

Establishment year 1.5943 −40.89a 1.5434 −39.11a

Region code 9.2648 −22.41a 8.9672 −23.69a

Initial log-likelihood −37934 −37934

log-likelihood −18729 −11277

Pseudo R-sq 0.5063 0.7027

Significance level a0.1%
WAD weighted absolute distance, WAD(log) weighted absolute distance (log-transformed), WED
weighted Euclid distance, WCD weighted Canberra distance

also indicated. The initial log-likelihood was defined as the log-likelihood with all
parameters set to 0.

ρ2 = 1 − l(β̂)

l(0)

According to Table. 1, all coefficients were significant at 0.1% significant level.
In particular, the coefficients of Industry and region code had higher values than that
of other variables since these categorical variables have a strong influence on the
matching probabilities estimated by the model. According to the pseudo-R-squared
value, the log-transformed weighted absolute distance achieved the best fitting for
the data.

We evaluated the model performance from the viewpoint of the true match rate.
Based on the method explained in Yoshikawa et al. (2015), we evaluated the model
performances using the probabilities that the true record is included in the top R
candidates for matching pairs. The details of the calculation are as follows. First,
let t (i) be the index of the true record in dataset B corresponding to the record i in
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dataset A. Next, for each company i in dataset A, let C(i, R) be a set of records of the
top R cases in the order of the highest matching probability among the companies
of dataset B. The precision rate P(R) when the correct record is included in the top
R candidates is expressed as follows:

P(R) = 1

Mtest

Mtest∑

i=1

I (t (i) ∈ C(i, R))

where Mtest is the size of the test data in datasets A. I (·) is the indicator function,
which takes the value 1 if the inside of (·) is true, otherwise it takes the value 0.
Figure 3 shows the relationship between P(R) and R. The proposed method, with
any distance function, showed a higher precision value P(R) than that of the nearest
neighbor method. The log-transformed absolute distance model is the best model.
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Fig. 3 True match rate of each statistical matching method

4 Conclusion

We proposed a new statistical matching methodology for company datasets using
the multinomial logistic regression framework. The methodology makes it possible
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to determine the distance weights statistically, and to calculate the matching
probabilities. The proposed method does not assume any distribution for the data,
can evaluate the coefficient by the t-value, and can compare the models by the
pseudo-R-square value. The model can be applied to data having few common
variables. The model performed better than the nearest neighbor method in terms of
true match precision rates. Once the model parameters have been estimated, they can
be applied to the two other similar datasets to calculate the distance and matching
probabilities.

Working with large datasets entails a considerable amount of time to calculate
the distances of all possible pairs. To address the problem, we plan to utilize the
principal component analysis method, which divides the datasets and creates strata
to shrink the searching space of the record pairs. The method is considered to be
useful for searching for a true match pair more efficiently.
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and 15H03390.
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Constructing Graphical Models
for Multi-Source Data: Sparse Network
and Component Analysis

Pia Tio, Lourens Waldorp, and Katrijn Van Deun

Abstract Gaussian graphical models (GGMs) are a popular method for analysing
complex data by modelling the unique relationships between variables. Recently,
a shift in interest has taken place from investigating relationships within a
(sub)discipline (e.g. genetics) to estimating relationships between variables from
various subdisciplines (e.g. how gene expression relates to cognitive performance).
It is thus not surprising that there is an increasing need for analysing large, so-
called multi-source datasets, each containing detailed information from many
data sources on the same individuals. GGMs are a straightforward statistical
candidate for estimating unique cross-source relationships from such network-
oriented data. However, the multi-source nature of the data poses two challenges:
First, different sources may inherently differ from one another, biasing the
estimation of the relations. Second, GGMs are not cut out for separating cross-
source relationships from all other, source-specific relationships. In this paper
we propose the addition of a simultaneous-component-model pre-processing
step to the Gaussian graphical model, the combination of which is suitable for
estimating cross-source relationships from multi-source data. Compared to the
graphical lasso (a commonly used GGM technique), this Sparse Network and
Component (SNAC) model more accurately estimates the unique cross-source
relationships from multi-source data. This holds in particular when the multi-source
data contains more variables than observations (p > n). Neither differences in
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sparseness of the underlying component structure of the data nor in the relative
dominance of the cross-source compared to source-specific relationships strongly
affect the relationship estimates. Sparse Network and Component analysis, a hybrid
component-graphical model, is a promising tool for modelling unique relationships
between different data sources, thus providing insight into how various disciplines
are connected to one another.

1 Background

Gaussian graphical models (GGMs) are a popular method for analysing complex
data by modelling the unique relationships between variables (Koller and Friedman
2009). Both the estimates and their visualisation as a network provide valuable
insights in the underlying structure of the data. However, understanding the path-
ways from genotype or physiology to phenotype or behaviour requires more than
estimating GGMs of each individual discipline; one also needs to know how these
various isolated fields are connected to one another via cross-source relationships
between variables from different data sources. These findings are intrinsically
valuable on their own. However, they do not paint the full picture of genetic-
cognitive interaction. Being able to identify how information from additional
sources such as (functional) brain data fits together with gene expression and
cognitive functioning broadens our understanding of human functioning, opens new
treatment venues, and increases prediction accuracy for those at risk for developing
pathologies.

It is thus not surprising that emerging fields such as systems biology and network
science emphasise the need for collecting and analysing large, so-called multi-
source datasets, each containing detailed information from many data sources on
the same individuals (Silverman and Loscalzo 2012; Bartel et al. 2013). Luckily,
with increasingly more sophisticated instruments and growing interdisciplinary
cooperation, multi-source datasets become more common. However, availability
of multi-source data alone is not enough to answer questions about cross-source
relationships; appropriate statistical tools are needed too.

GGMs are a straightforward statistical candidate for analysing such network-
oriented data. However, the multi-source nature of our data poses a challenge.
In non-multi-source data, unique linear relationships can usually be estimated
straightforwardly using partial correlations. However, if the data come from multiple
sources, it is possible that groups of variables have different characteristics. For
example, one group of variables may contain more noise than another group
because of different measuring techniques or lower granularity; or variables within
a group may be highly correlated to one another (e.g., positive correlations
amongst cognitive variables) compared to other groups of variables (e.g., genetic
information). Disregarding such inherent differences between sources can lead to
incorrect relationship estimates. Furthermore, it could also be the case that the cross-
source relationships that we are interested in are weaker than the source-specific
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relationships. This problem is exacerbated by the fact that only few variables are
relevant for the cross-source mechanism. GGMs, in particular those adapted to deal
with high-dimensional data (p > n), are well suited for estimating the strongest
relationships amongst variables and thus less cut out for separating weaker cross-
source relationships from all other, stronger source-specific relationships. Given
that we already know that we want to estimate cross-source relationships of data
from multiple sources, it makes sense to use statistical analyses that can disentangle
relevant cross-source information from irrelevant source-specific information while
incorporating the multi-source data structure.

In this paper we propose determining the set of variables from different sources
that are most likely to be connected; the GGM focusing on this subset will more
accurately reflect unique cross-source relationships than without such a variable
selection. We use a variant of sparse simultaneous component analysis to assess the
subset of cross-source variables that are connected. In Sect. 2 we will describe GGM
and the multi-source data structure in more detail, followed by introducing sparse
simultaneous component analysis as a pre-processing step that enables GGMs
to estimate cross-source relationships from multi-source data. Section 3 reports
a simulation study investigating whether this Sparse Network And Component
(SNAC) model outperforms regular GGMs. Lastly, in Sect. 4 we discuss current
restrictions and possible improvements of SNAC.

2 Methods

First we present the graphical model as it appears in the literature, this is for data
coming from a single source; second, we introduce the assumed data-generating
model for multi-source data and show how to isolate the cross-source relations; and
third, we show how to apply the graphical model (for single source data) to these
cross-source relations in order to obtain the desired network.

Gaussian Graphical Models Graphical models (GMs) estimate conditional
dependency relationships between variables using probability theory. Conditional
dependence indicates that none of the remaining variables can explain away the
relation between two variables. As such conditional dependence relations can
be said to be unique to the pair of variables. A GM can be visualised as a
graph whose nodes and edges represent variables and conditional dependency
relationships, respectively. Many types of graphical models have been formulated;
here we focus on Gaussian Graphical models (GGMs), which model undirected
unique relationships in a multivariate Gaussian setting (Koller and Friedman 2009).
Let μ = 0 be a p-dimensional zero mean vector and � be a p × p positive
definite covariance matrix. For a p-dimensional vector x, the multivariate Gaussian

density is defined as f (x) = (2π)−p/2|�|−1/2exp
[
− 1

2xT �−1x
]
, with |�| the

determinant of �. Note that this equation is often expressed as x ∼ Np(μ, �).
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Under the assumption of normality a zero off-diagonal element is equivalent to the
two corresponding variables being conditionally independent given all remaining
variables, and a non-zero entry means conditional dependence (Lauritzen 1996;
Koller and Friedman 2009). Gaussian graphical models thus provide a mathematical
and visual representation of unique dependency relationships between variables that
is straightforward to interpret. These dependency relations can be estimated using
maximum likelihood. In multi-source data, it is very likely that there will be fewer
observations than variables (n < p). A popular solution to deal with this situation
is applying sparse modelling through an �1 penalty. This Least Absolute Shrinkage
and Selection Operator (lasso) results in shrinkage of the parameters to zero with
small values set exactly to zero (Tibshirani 1996). The underlying assumption
is that only a small number of all possible parameters is non-zero, i.e., there is
a sparse solution including only the relevant relations and variables. One of the
algorithms used to obtain such a lasso estimate of �−1 is the graphical lasso
(Friedman et al. 2008). Let �̂ = 1

n

∑n
i=1 xixi

T be the empirical covariance matrix;

the graphical lasso optimises the function log |�−1|− tr�−1�̂−λ
∑p

k �=j |(�−1)jk|
where |(�−1)jk| is the absolute value of the jkth (j, k = 1, . . . , p) entry of �−1

and λ ≥ 0 is a tuning parameter for the lasso penalty. Note that we do not use the
diagonal elements in the penalty as this implies shrinking the variance (Bühlmann
and Van De Geer 2011).

Multi-source Data Of interest to this paper are multi-source data and, in particular,
the cross-source relationships existing between the variables of different sources.
We assume that there are several sources of structural variation that give rise
to the interconnections within and possibly between different sources. Together,
these sources form a low-rank representation of the correlation matrix as used in
factor and principal component models where the correlations can be reproduced
on the basis of the loadings of the variables on the factors (or, latent variables).
Let � be the matrix of loadings of the p variables on the R components; then,
the factor analytic model assumes the following data-generating mechanism for
the observed data x ∼ N(0, ��T + diag([σ 2

1 , . . . , σ 2
j , . . . , σ 2

p ]) (1), with σ 2
j the

residual variance of the j th variable and ��T the covariance (correlation) matrix
as reproduced by the factor analytic model. Here, to account for the multi-source
structure p = ∑k pk for k = 1, . . . ,K sources with pk the number of variables in
source k; and also x = [xT

1 . . .xT
K ]T so � = [�T

1 . . .�T
K ]T . Under this model the

covariance matrix � = ��T + diag([σ 2
1 , . . . , σ 2

j , . . . , σ 2
p] and, making use of the

Woodbury formula , its inverse is �−1 = D −D�
(
I −�T D�

)−1
�T D (2) with

D = diag([σ−2
1 , . . . , σ−2

j , . . . , σ−2
p ] and I the R × R identity matrix.

What we aim for is to determine the connection strengths of the bridge nodes
(variables) that connect between different sources. Application of the GGM to the
observed data will not reach this aim. The reason for this is twofold. First, connec-
tion strengths between variables of different sources are low because of the different
nature of the data between different sources. Under sparseness restrictions, such as
a lasso penalty, such weak correlations will be set to zero. Second, several sources
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of structural variation may underlie a variable whereby it may be involved both in
cross-source and within-source relations. Let �C represent the factors associated
with the cross-source structural variation and �S the source-specific variation, then
� = [�C |�S] and ��T = [�C |�S][�C |�S]T = �C�T

C + �S�T
S (3), showing

that the covariances consist of both cross-source and source-specific contributions.
To illustrate this, think of a hypothetical dataset containing data from three

sources: four cognitive, four genetic, and three cardiovascular variables (Fig. 1a).
Here we not only need to a) differentiate irrelevant (orange nodes) from relevant
variables and b) identify which of the relevant variables form cross-source relation-
ships (nodes within at least two circles), but additionally c) separate source-specific
(S1 and S2) from shared (or common; C) variation. In the next paragraph we show
how the cross-source relations can be singled out.

Isolating the Cross-Source Relations To single out the cross-source relations, we
need to disentangle the common sources of variation shared between the different
data blocks (with each block containing the data or variables of one source) from
the sources of variation that are specific for a single or a few data blocks only.
To do this, we perform a so-called sparse DIStinctive and COmmon Simultaneous
Component Analysis decomposition of the data (sparse DISCO SCA; see Gu and
Van Deun 2016, 2019), a method that was developed for the integrated analysis
of multi-source data with the specific aim of separating block-specific sources of
variation from common sources of variation. Sparse DISCO SCA models common
and specific components by using specific constraints on the loadings of each of the
components in �. Next, we explain how this is done.

First, note that the loading of a variable on the component reflects the correlation
of that variable with the component and this property is used to define common and
specific components: A common component is associated with all data blocks and
thus each of the data blocks should have some variables with non-zero loadings on
this component; on the other hand, a source-specific component has no association
at all with one (some) of the blocks and, consequently, for that (these) blocks all
variables of this block (these blocks) should have a zero loading on this component.
Note that sparse components are assumed, meaning that only a few relevant
variables make up the component and thus also for the common component zero
loadings do show up as well as in the non-zero part of the specific components.

To obtain such constrained structures, sparse DISCO SCA makes use of a
combination of penalties and/or hard constraints. Sparseness of the common
component and of the non-zero part of the specific components is imposed by a lasso
penalty on the loadings. The blocks of zero loadings of the specific components
can be obtained in two ways: either by using a constrained approach or by using
a group lasso penalty (Van Deun et al. 2011). The former approach requires prior
knowledge of the structure of the components. In absence of such prior knowledge,
when the number of blocks and components is small—which is often the case
in empirical applications—an exhaustive strategy can be used that compares all
possible combinations of common and specific components. We refer to Schouteden
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S1

S2

C

S3Unique relationships (partial correlations)

(a)

S1

S2

C

S3Relationships (correlations)

(b)

S1

S2

C

S3Graphical Lasso

(c)

S1

S2

C

S3Sparse DISCO SCA

(d)

S1

S2

C

S3Sparse Network and Component Analysis

(e)

Fig. 1 Different models capture different parts of the original data structure. (a) Visualises
the unique relationships between 4 cognitive, 4 genetic, and 3 cardiovascular variables. Pink
circle contains variables involved in cross-source relationships. (b) The corresponding correlation
structure. (c) Graphical lasso recovers a sparse solution of the unique relationships structure
which does not contain the unique cross-source relationships. (d) Sparse DISCO SCA disentangles
source-specific (S) from common (C) sources of variation, retaining only cross-source correlations.
(e) SNAC combines the strengths of graphical lasso and sparse DISCO SCA and can therefore
estimate the unique cross-source relationships
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et al. (2014) and Gu and Van Deun (2019) for further discussion of this model
selection issue.

Once the data have been modelled with common and specific components
through a sparse DISCO SCA analysis, the cross-source relationships can be
obtained from the common components as follows: Let �̂C denote the estimated

loadings associated with the common components, then �̂C = �̂C�̂
T

C reflects the
cross-source correlation. For computational efficiency, only the variables containing
at least one non-zero loading on a common component should be included.

SNAC: Sparse Network and Component Model When estimating unique cross-
source relationships from multi-source data, a statistical procedure is needed that
(a) combines data from different sources where each source may have different
characteristics, (b) selects variables to determine which variables are involved in
cross-source relationships, (c) estimates these unique cross-source relationships,
and (d) presents results that can be interpreted in a meaningful, substantive way.
Sparse DISCO SCA covers both (a) and (b) and graphical models cover (c) and
(d). Therefore, when taken together both models address all the points necessary to
provide effective estimation.

We therefore introduce Sparse Network And Component model (SNAC; Fig. 1e),
a two-step component-graphical model for estimating cross-source relationships
from multi-source, multivariate Gaussian distributed data. First, sparse DISCO SCA
is used to reveal the underlying common and source-specific sources of variation;
as discussed in the previous section this allows us to single out the common source

of variation by calculating �̂C�̂
T

C which is the matrix containing the non-unique
cross-source relations (see Fig. 1d). However, our interest is in the unique cross-
source relations. A straightforward way to obtain these may seem to calculate the

inverse of �̂C�̂
T

C . Yet, �̂C is a low-rank matrix of rank RC , the number of common
components. Furthermore, generalised inverses such as the Moore–Penrose inverse
and the regularised estimation of inverse covariance matrices (shrinkage estimator;
Schäfer et al. 2005)—although able to deal with the singularity incurred by the
low rank—also do not give the desired result. This is because the pre-processing
of the data in the sparse DISCO SCA removes the information in the data on the
residual variances σ 2

j ; see the data-generating model for multi-source data given

by expression (1). Sparse DISCO SCA models the covariance matrix as ��T

with inverse (��T )−1 while the inverse of the population covariance matrix is
given by Eq. (2). Considering the decomposition into common and source-specific
components � = [�C |�S], we find for the inverse (��T )−1 = B+ − B+�C(I −
�T

C(�S�T
S )−1�C)−1�T

CB+ where B = �S�T
S and + denote the Moore–Penrose

inverse. We can see that the source-specific components incorrectly scale the
common components.

Let us now inspect the generalised inverses of this covariance matrix a bit
closer. First, to study the Moore–Penrose inverse, we consider the eigenvalue
decomposition: ��T = V S2V T with V containing the R eigenvectors and S2 a
diagonal matrix containing the eigenvalues. The Moore–Penrose inverse of ��T
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is then equal to V S−2V T while for the population covariance matrix, replacing

� by V S in Eq. (2), is given by �−1 = D − DV S
(
I − SV T DV S

)−1
SV T D.

This implies that the Moore–Penrose inverse is not suitable to estimate the direct
cross-source relations. The regularised estimation of inverse covariance matrices as
presented by Schäfer et al. (2005) is not suitable either as it estimates the variances
on the basis of the given covariance matrix and these are biased downwards as
a result of the sparse DISCO SCA step. The graphical lasso, on the other hand,
inflates the given variances by fixing the variances as follows in the first step
of the iterative estimation procedure used to estimate the off-diagonal elements

of the inverse covariance matrix �̂ = �̂�̂
T + ρI , with ρ ≥ 0, see page

3 in Friedman et al. (2008). Note that this expression is very similar to the
expression of the population covariance matrix (1). The inverse of this covariance

matrix closely resembles the inverse population covariance matrix �̂
−1 = (ρI ) −

(ρI )V S
(
I − SV T (ρI )V S

)−1
SV T (ρI ), showing that the GGM will correctly

estimate the direct relations when σ 2
j = ρ for all j . Hence, the way to go in

constructing networks for cross-source relations is to combine a sparse DISCO SCA
analysis with a Gaussian Graphical model.

3 Simulation Study

In this section, we describe the simulation study designed to compare the per-
formance of graphical lasso, a commonly used GGM technique, and SNAC in
estimating the unique cross-source relationships amongst many variables from
two multivariate normal sources. Additionally we demonstrate that a different
covariance-inversion technique such as Moore–Penrose or shrinkage estimator
inaccurately estimates unique cross-source relationships, and thus are inappropriate
statistical analyses for such research questions.

Design Three factors were systematically manipulated in a factorial design:

• Sparsity of the component structure. Either 20 or 50% of all non-zero component
loadings were set to 0.

• Common component importance ratio. It is not unlikely that, in comparison
to the common source of variation, the source-specific sources of variation
dominate the relationships between variables. To investigate whether cross-
source relationships from a relative weaker common source of variation can
be detected amongst stronger source-specific relationships, we manipulate the
common component such that it is either equally strong (S1) or weaker compared
to the source-specific components (S2).

• n/p ratio. The ratio of number of individuals (n) to number of variables (p): 2/3
(n = 200, p = 300; n < p), 1 (n = 300 , p = 300; n = p), and 3/2 (n = 300,
p = 200; n > p).
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Data Generation For this simulation study we generated multivariate normal data
with variance-covariance matrix �, which reflects a sparse three-component, two-
source structure (see Eq. 3). On two of the three components, only the variables from
one of two groups load; these two components reflect source-specific sources of
variation (source-specific or S-components). The third component contains loadings
for variables of both groups and reflects multi-source or common sources of
variation (common or C-component).

The sparse three-component structure is generated as follows. First, a singular
value decomposition is applied to a randomly generated, standard-normal dis-
tributed data matrix L = UWV T with dimensions n × p, where the first half of
the variables were set to belong to the first data source and the rest to the second
source. From the resulting decomposition we derive orthogonal component loadings
� by setting them equal to the three right singular vectors associated with the three
largest singular values. Component loadings in � are set to zero such that its first
component reflects a common source of variation and the other two components
reflect source-specific sources of variation. Lastly, sparseness was introduced on the
remaining non-zero loadings.

A 3 × 3 diagonal matrix served as singular values matrix S, and indicates how
relative important each component is. When all components are equally important,
S is an identity matrix. To create a data structure that is dominated by source-specific
sources of variation, their singular values will be set to 2 (resulting in the diagonal 1
2 2). In empirical data it is unlikely that two groups of variables have source-specific
correlation structures of equal strength. To incorporate this complexity in the data,
the scaling vector g was manipulated to be g1 = 0.8 for source 1 and g2 = 0.3 for
source 2:

λtrue
kr =

√√√√gk/

R∑

r=1

λ2
kr s

2
rrλkr , (4)

where srr is the singular value of the rth component and k = 1, 2. Using
�t rue and S, the true variance-covariance matrix �t rue was calculated, �t rue =
�t rueS2(�t rue)T , where the diagonal of �t rue was manually set to 1 (see also Eq. 1),
resulting in lower correlations. The true off-diagonal values in the covariance matrix
representing the source-specific sources can be calculated in similar fashion �t rue

S =
V t rue

S S2
S(V t rue

S )T noting that the diagonal values in �t rue
S are not the variances

of the variables. The true covariance matrix of the common source of variability
between variables (the common component) is then the difference between the
previous two equations: �t rue

C = �t rue −�t rue
S . Finally, data was generated from a

multivariate normal distribution with μ = 0 and variance-covariance matrix �t rue.

Analyses The recovery performance of graphical lasso, SNAC and the combination
of sparse DISCO SCA with either Moore–Penrose or shrinkage estimator was
assessed on the inverse covariance matrix of the unique cross-source relationships
�−1

C . Two fit indices were used: (1) the percentage of correctly estimated zeros



284 P. Tio et al.

and non-zeros SSR = (number of 0 and non-0 edges)/(p(p− 1)/2) where p is the
number of variables, and (2) Tucker’s φ = UT Z/

√
(UT U )(ZT Z) (Tucker 1951),

where U is the upper triangle of the population (inverse) covariance matrix, and Z

is the upper triangle of the estimated (inverse) covariance matrix. Values between
0.85 and 0.95 indicate “a fair similarity” and values above 0.95 indicate that the two
covariance matrices can be considered equal (Abdi 2007). With the exception of the
Moore–Penrose inverse, all statistical methods used in this study require input for a
lasso-tuning parameter. Additionally, sparse DISCO SCA requires the status of the
components (common or distinctive), and their sparseness. To avoid confounding
influence of potentially mis-specifying the lasso-tuning parameter, we set it such
that the estimated (inverse) covariance matrix recovers the true amount of zeros as
much as possible. In addition, when running sparse DISCO SCA we assumed the
component structure was known.

Graphical lasso was performed using the function glasso (R-package glasso,
Friedman et al. 2014). Sparse DISCO SCA was performed using the R-package
Regularised SCA (Gu and Van Deun 2019). Moore–Penrose inverse was performed
using the function ginv (R-package MASS). Shrinkage estimation was performed
using the function pcor.shrink (R-package corpcor, Schäfer et al. 2005).

4 Results

Graphical Lasso The graphical lasso has been developed to estimate sparse
(inverse) covariance matrices from datasets. However, because it has no way of
identifying which information is part of the cross-source relationships (captured
in the common component) and which is not, it does not estimate the inverse
covariance matrix of the common source of variance �−1

C very accurately (SSR
0.64–0.91; φ 0.59–0.64), especially when p > n (SSR 0.50–0.65; φ 0.17–0.28; see
Table 1). However, one may wonder what would happen if information on which
variables are part of cross-source relationships is available. Adding such a priori
information to the graphical lasso results in a decrease of the percentage correctly
estimated zeros (SSR 0.55–0.67) but the accuracy of the estimates increases (φ
0.56–0.84). Again, for p > n estimates are less accurate (SSR 0.24–0.54; φ 0.21–
0.42). For both analyses SSR and φ are higher when the data-generating component
structure was sparser. Common component importance ratio does not have much
impact on graphical lasso’s performance.

SNAC The Sparse Network And Component analysis adequately estimates the
inverse covariance matrix of the common source of variation �−1

C (SSR 0.62–0.90;
φ 0.73–0.89; see Table 1). It outperforms graphical lasso in all conditions when
considering φ, and in n > p and p > n when considering SSR. SSR is higher when
the data-generating component structure was sparser, while common component
importance ratio does not have much impact on SNAC’s performance.
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Table 1 Performance of the various methods on estimating unique cross-source relationships
(�−1

C )

Selection status recovery Tucker’s φ

Sparse 20 Sparse 50 Sparse 20 Sparse 50

n/p S1 S2 S1 S2 S1 S2 S1 S2

2/3 Graphical lasso 0.50 0.50 0.65 0.63 0.17 0.17 0.28 0.26

Graphical lasso a priori 0.54 0.54 0.24 0.29 0.21 0.21 0.42 0.41

SNAC 0.75 0.69 0.90 0.89 0.86 0.89 0.87 0.83
Moore–Penrose 0.99 0.91 1.00 1.00 −0.86 −0.85 −0.86 −0.86

Shrink 0.99 0.91 1.00 0.99 −0.57 −0.52 −0.60 −0.56

1 Graphical lasso 0.80 0.79 0.91 0.90 0.59 0.59 0.62 0.62

Graphical lasso a priori 0.60 0.55 0.59 0.56 0.71 0.56 0.82 0.81

SNAC 0.68 0.62 0.86 0.84 0.73 0.75 0.75 0.76
Moore–Penrose 0.99 0.91 1.00 1.00 −0.86 −0.85 −0.86 −0.86

Shrink 0.99 0.91 1.00 0.99 −0.56 −0.52 0.60 −0.56

3/2 Graphical lasso 0.69 0.64 0.83 0.81 0.64 0.64 0.63 0.63

Graphical lasso a priori 0.67 0.60 0.65 0.62 0.76 0.74 0.84 0.84

SNAC 0.75 0.69 0.90 0.89 0.86 0.89 0.87 0.83
Moore–Penrose 0.99 0.90 1.00 0.99 −0.86 −0.84 −0.86 −0.86

Shrink 0.99 0.90 0.99 0.99 −0.57 −0.51 −0.60 −0.56

A priori indicates that information on which variables are part of cross-source relationships
is known. n/p-ratio observation-variables ratio. Results from Sparse Network and Component
(SNAC) analysis are shown in bold

Sparse DISCO SCA Sparse DISCO Simultaneous Component Analysis has been
developed to find source-specific and common components that together maximise
the amount of variance explained. Because we assume a sparse- component data-
generating mechanism, � and �C are singular and thus cannot be inverted. In
such cases, however, it is possible to calculate a pseudoinverse such as the Moore–
Penrose pseudoinverse (MP) and shrunken partial correlations (Shrink). While both
methods almost perfectly identify the zeroes (SSR 0.90–1), the actual estimates are
misspecified (φ −0.51 to −0.86; see Table 1). One may think that an explanation
for these negative φ might be a change in signs; however, this seems unlikely
given that the component model is sign invariant (the change of sign in loadings
is compensated by a change of sign in the component scores).

5 Conclusion and Discussion

In this paper, we propose a component-network hybrid method that is suited for
estimating the unique cross-source relationships amongst multivariate normally
distributed variables found in multi-source datasets. This Sparse Network And
Component (SNAC) model combines the strengths of two existing methods: the
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variable selecting and information dis-entangling properties of sparse DISCO
Simultaneous Component Analysis (SCA) with the conditional dependence focused
theoretical framework of Gaussian graphical models (GGMs). We have shown that
SNAC outperforms a regular graphical model technique in accurately estimating
unique cross-source relationships, especially when the data consists of more
variables than observations. These results hold even when a priori knowledge about
which variables are part of cross-source relations is available. Neither variations in
sparseness of the estimated structure nor in the relative dominance of source-specific
sources of variation influence SNACs performance.

Using the GGM framework, we can model unique relationships by estimating
the inverse covariance matrix. However, adding sparse DISCO SCA to GGM has
two consequences. First, it is not possible to use GGM to estimate an inverse
covariance matrix based on a limited number of SCA-estimated components.
This means that a pseudoinverse is required to gain insight into the relationships
between variables. Second, adding the component pre-processing step changes
the assumed underlying data-generating structure of our model. As demonstrated,
inverse techniques that assume correctly estimated variances, such as Moore–
Penrose and shrinkage estimator, are inaccurate as they do not take the assumed
underlying factor analytic structure, this is including residual variances in the data-
generating model, into account.

Applying the SNAC model to data requires input for several hyper-parameters:
the number of common and source-specific components, and tuning parameters for
several lassos. Because the purpose of this paper is to provide a proof of concept,
we set these parameters as close to their optimal value as possible. Selecting
the proper parameters in a non-simulation study, especially when analysing high-
dimensional data, is challenging. As demonstrated by Gu and Van Deun (2016), the
tuning parameter of l1-Lasso can be successfully selected using (Meinshausen and
Bühlmann 2010)’s resample-based stability selection method, although the multi-
component structure of both (Gu and Van Deun 2016)’s and our work complicates
matters further.

Finally, in this paper we have only considered Gaussian distributed data, which
while common are not the only data-type in multi-source data. Both sparse
DISCO Simultaneous Component Analysis and graphical lasso are able to handle
non-Gaussian variables, and as such we expect that this characteristic will be
transferred to Sparse Network And Component analysis. Further research will have
to investigate the translation from non-Gaussian-based component scores to non-
Gaussian-based partial correlations.
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Understanding Malvestuto’s Normalized
Mutual Information

Hanneke van der Hoef and Matthijs J. Warrens

Abstract Malvestuto’s version of the normalized mutual information is a
well-known information theoretic index for quantifying agreement between two
partitions. To further our understanding of what information on agreement between
the clusters the index may reflect, we study components of the index that contain
information on individual clusters, using mathematical analysis and numerical
examples. The indices for individual clusters provide useful information on what is
going on with specific clusters.

1 Introduction

Cluster analysis is the collection of techniques that can be used to divide unlabeled
data objects into meaningful groups (Hennig et al. 2015; Rezaei and Fränti 2016).
Cluster analysis is applied in many scientific disciplines, e.g. biology, information
retrieval, psychology and medicine (Kumar 2005). All these domains make use
of different data types and seek for different types of clusters, and hence require
different clustering methods (Kaufman and Rousseeuw 1990). This has led to the
development of numerous clustering techniques and algorithms. So far, there is
no ‘best’ clustering algorithm that dominates over all other algorithms across all
application domains (Fisher and Van Ness 1971; Jain 2010).

An important topic in cluster analysis research is which partition best fits the data
set. A large number of both internal and external validity indices have been proposed
to address the important, but challenging task of cluster validation (Rendón et al.
2011). Internal indices assess the clustering itself by measuring characteristics as
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cohesion, likelihood and distortion of the data objects in the clusters (Pfitzner et al.
2009). External validity indices on the other hand are used to compare different
clusterings of the same set of objects, and to assess the similarity between the
different partitions (Pfitzner et al. 2009; Rezaei and Fränti 2016).

External validity indices can be categorized into three approaches, namely (1)
counting object pairs, (2) indices based on information theory and (3) set-matching
measures (Rezaei and Fränti 2016). Most external validity indices are of the pair-
counting approach, which is based on counting pairs of objects placed in identical
and different clusters. Commonly used indices based on the pair-counting approach
are the Rand index (Rand 1971) and the adjusted Rand index (Hubert and Arabie
1985; Steinley 2004; Steinley et al. 2016; Warrens 2008a).

Information theoretic indices are based on the concepts of mutual information
and Shannon entropy (Kvalseth 1987; Shannon 1948). In recent years, information
theoretic indices have received increasing attention due to their strong mathematical
foundation, ability to detect non-linear similarities and applicability to soft clus-
tering (Lei et al. 2016; Vinh et al. 2010). Commonly used information theoretic
indices are the variation of information and different normalizations of the mutual
information (Meilă 2007; Pfitzner et al. 2009).

Because there are many validity indices that one may use to assess similarity
between two partitions, various authors have studied properties of the indices.
Indices based on the pair-counting approach have been studied quite extensively
(Albatineh et al. 2006; Albatineh and Niewiadomska-Bugaj 2011; Baulieu 1989;
Milligan et al. 1996; Milligan and Cooper 1986; Steinley 2004; Warrens 2008,b).
Only a few authors have studied indices from information theory (Pfitzner et al.
2009; Vinh et al. 2010).

Many validity indices quantify agreement between two partitions for all clusters
simultaneously. Since these overall measures give a general notion of what is going
on, their value (usually between 0 and 1) is often hard to interpret (except, perhaps,
for values close to 0 or 1). In this paper we study a version of normalized mutual
information already considered in Malvestuto (1986). To further our understanding
of what information on agreement between the clusters the index may reflect, we
study components of the index that contain information on individual clusters. These
indices for individual clusters provide useful information on what is going on with
specific clusters.

The paper is organized as follows. In Sect. 2 we introduce the notation and define
Malvestuto’s version of the normalized mutual information (Malvestuto 1986). In
Sect. 3 we present two different decompositions of the index, one based on indices
for the clusters of the first partition, and one based on indices for the clusters of
the second partition. The decompositions indicate that Malvestuto’s index may be
interpreted as an overall measure that summarizes the information of both the cluster
indices of the first partition, or the cluster indices of the second partition.

In Sect. 4 we study with numerical examples the various relationships between
the indices and weights presented in Sect. 3. In the presented examples clusters
that are completely mixed up between partitions tend to be more important in the
calculation of the overall Malvestuto’s index than clusters that are a perfect match
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between the partitions. In Sect. 5 we use additional numerical examples to illustrate
that the maximum value of Malvestuto’s index of unity is not easily attained.
Section 6 contains a discussion. It would be good practice to report the measures
for the individual clusters, since they provide more information than a single overall
number.

2 Normalized Mutual Information

Suppose the data are scores of N objects. Let U = {U1, U2, . . . , UI } and V =
{V1, V2, . . . , VJ } be two partitions of the N objects in, respectively, I and J clusters.
One partition could, for example, be a reference partition that purports to represent
the true cluster structure of the objects, while the second partition may have been
obtained with a clustering method that is being evaluated.

Let P = {
pij

}
be a matching table of size I × J where pij indicates the

proportion of objects (with respect to N) placed in cluster Ui of the first partition and
in cluster Vj of the second partition. The relative cluster sizes of the partitions are
reflected in the row and column totals of P , denoted by pi+ and p+j , respectively.

The joint Shannon entropy of partitions U and V (Shannon 1948) is given by

H(U,V ) = −
I∑

i=1

J∑

j=1

pij log pij , (1)

in which log denotes the base two logarithm as is common use in information theory,
and pij log pij = 0 if pij = 0. The entropy of a partition is a measure of the
amount of randomness of a partition. The joint entropy quantifies the amount of
joint randomness of the two partitions.

The joint entropy (1) is always non-negative. Furthermore, we have H(U,V ) =
0 if all objects are in one cluster of the first partition and one cluster of the second
partition, i.e. |Ui | = N and |Vj | = N for some i and j . Moreover, since log(1/2) =
−1, we have −(1/2) log(1/2) = 1/2, and it follows that we have H(U,V ) = 1 if
|Ui | = |Uj | = N/2 and |Vk| = |V�| = N/2 for some i, j , k and �.

Next, the mutual information of partitions U and V is given by

I (U, V ) =
I∑

i=1

J∑

j=1

pij log
pij

pi+p+j

. (2)

The mutual information quantifies how much information the two partitions have
in common (Pfitzner et al. 2009). Mutual information is occasionally referred to as
the ‘correlation measure’ in information theory (Malvestuto 1986). It is always non-
negative and has a value of 0 if and only if the partitions are statistically independent,
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Table 1 Two example
matching tables of size 3 × 3
with corresponding statistics

V1 V2 V3 Total Statistics

(a) U1 0.50 0.50 H = 1.49

U2 0.20 0.20 I = 1.49

U3 0.30 0.30 M = 1.00

Total 0.50 0.30 0.20 1.00

(b) U1 0.02 0.04 0.04 0.10 H = 2.82

U2 0.06 0.12 0.12 0.30 I = 0.00

U3 0.12 0.24 0.24 0.60 M = 0.00

Total 0.20 0.40 0.40 1.00

i.e. pij = pi+p+j for all i and j . Higher values of mutual information indicate more
shared information.

The mutual information (2) is bounded below by zero, but does not have an upper
bound. Various authors have proposed normalizations of (2) such that the maximum
value of the normalized index is equal to unity (Pfitzner et al. 2009). Malvestuto
(1986) considers, among other things, the normalization of (2) given by

M(U,V ) = I (U, V )

H(U, V )
. (3)

Index M can be used to assess how well the clusters of the two partitions match.
The index takes on values in the unit interval. We have M = 1 if each cluster of U

only contains objects from a single cluster of V and, vice versa, if each cluster of V

only contains objects from a single cluster of U . Furthermore, we have M = 0 if the
partitions are statistically independent, i.e. pij = pi+p+j for all i and j . In general,
higher values of index M imply higher similarity between U and V . Index M is a
normalization of the mutual information that is frequently used in cluster analysis
research (Kvalseth 1987; Malvestuto 1986; Quinlan 1986).

To illustrate the extreme values of index M , consider the two matching tables in
Table 1. Both tables have size 3 × 3. We have H = I = 1.49 and M = 1 for panel
(a) of Table 1 because there is a perfect match between the clusters of U and V .
Furthermore, we have H = 2.82, I = 0 and M = 0 for panel (b) of Table 1 since
the two partitions are statistically independent.

3 Decompositions

In this section we present two decompositions of index M into indices that contain
information on individual clusters. Define for Ui ∈ U the weight

ui := −
J∑

j=1

pij log pij , (4)
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and the index

Ri :=

J∑
j=1

pij log
pij

pi+p+j

−
J∑

j=1
pij log pij

. (5)

The numerator of (5) consists of the part of the mutual information between U and
V that is associated with cluster Ui only. Furthermore, the denominator of (5) is the
part of the joint entropy of U and V that is associated with cluster Ui only. The latter
quantity is also identical to the weight in (4).

Index Ri can be used to assess how well cluster Ui matches to the clusters of
partition V . The index takes on values in the unit interval. We have Ri = 1 if
there is a perfect match between Ui and some cluster in V , i.e. all objects from Ui

are in precisely one cluster of V and the latter cluster contains no other objects from
partition U . Furthermore, we have Ri = 0 if pij = pi+p+j for all j . This is the case
if the objects of cluster Ui are randomly assigned (in accordance with the p+j ’s) to
the clusters of partition V .

We have the following decomposition for index M . Index M is a weighted
average of the indices in (5) using the ui’s in (4) as weights:

M =

I∑
i=1

uiRi

I∑
i=1

ui

. (6)

Since M is a weighted average of the Ri -values the M-value lies somewhere
between the minimum and maximum of the Ri-values. Equation (6) shows that the
M-value is largely determined by the Ri -values of clusters with high ui -values. The
M-value will be high if Ri -values corresponding to high ui-values are themselves
high. Vice versa, the M-value will be low if Ri -values corresponding to high ui-
values are low.

Next, define for Vj ∈ V the weight

vj := −
I∑

i=1

pij log pij , (7)

and the index

Cj :=

I∑
i=1

pij log
pij

pi+p+j

−
I∑

i=1
pij log pij

. (8)
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The numerator of (8) consists of the part of the mutual information between U and
V that is associated with cluster Vj only. Furthermore, the denominator of (8) is
the part of the joint entropy of U and V that is associated with cluster Vj only. The
latter quantity is also identical to the weight in (7).

We have the following second decomposition for index (3). Index (3) is also a
weighted average of the indices in (8) using the vj ’s in (7) as weights:

M =

J∑
j=1

vjCj

J∑
j=1

vj

. (9)

Since M is a weighted average of the Cj -values the M-value lies somewhere
between the minimum and maximum of the Cj -values. Formula (9) shows that
the M-value is largely determined by the Cj -values of the clusters with high vj -
values. The M-value will be high if Cj -values corresponding to high vj -values are
themselves high. Vice versa, the M-value will be low if Cj -values corresponding to
high vj -values are low.

4 Numerical Examples

In this section we explore with numerical examples the relationships between
overall index (3), the indices with cluster information in (5) and their corresponding
weights in (4). Fourteen numerical examples are presented in Tables 2, 3, and 4,
four examples in the first two tables, and six in the third. To simplify the discussion
for Tables 2 and 3 a little bit all example matching tables are symmetric so that we
have Ri = Ci and ui = vi for all i. Thus, the discussion on Tables 2 and 3 can be
limited to the weights in (4) and the cluster indices in (5). The overall indices, cluster
indices and weights associated with a particular example are presented behind each
example table in the same panel.

Table 2 presents four example matching tables of size 3 × 3. In each panel of
Table 2 there is a perfect match on one cluster (U1 = V1), while the other two
clusters of the partitions are completely mixed up. The size of the perfect match
cluster decreases from panel (a) to (d). The cluster is the largest cluster in panels (a)
and (b) and the smallest cluster in (c) and (d).

In all tables of Table 2 the cluster index associated with the first cluster shows that
there is perfect agreement on the perfect match cluster (R1 = 1.00). Furthermore,
the Ri-values show that there is less than perfect agreement or rather poor agreement
on the other two clusters (R2 = R3). The R2- and R3-value strictly decrease from
panel (a) to panel (d). If we combine this with the fact that the mixed up clusters
become larger from panel (a) to panel (d), it follows that for mixed up clusters the
corresponding cluster index decreases with the relative cluster size.
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Table 2 Four additional example matching tables of size 3 × 3 with corresponding statistics

V1 V2 V3 Total Overall Cluster Weights

(a) U1 0.92 0.92 H = 0.56 R1 = 1.00 u1 = 0.11

U2 0.02 0.02 0.04 I = 0.40 R2 = 0.65 u2 = 0.23

U3 0.02 0.02 0.04 M = 0.72 R3 = 0.65 u3 = 0.23

Total 0.92 0.04 0.04 1.00

(b) U1 0.40 0.40 H = 2.17 R1 = 1.00 u1 = 0.53

U2 0.15 0.15 0.30 I = 0.97 R2 = 0.27 u2 = 0.82

U3 0.15 0.15 0.30 M = 0.45 R3 = 0.27 u3 = 0.82

Total 0.40 0.30 0.30 1.00

(c) U1 0.20 0.20 H = 2.32 R1 = 1.00 u1 = 0.46

U2 0.20 0.20 0.40 I = 0.72 R2 = 0.14 u2 = 0.93

U3 0.20 0.20 0.40 M = 0.31 R3 = 0.14 u3 = 0.93

Total 0.20 0.40 0.40 1.00

(d) U1 0.08 0.08 H = 2.24 R1 = 1.00 u1 = 0.29

U2 0.23 0.23 0.46 I = 0.40 R2 = 0.06 u2 = 0.98

U3 0.23 0.23 0.46 M = 0.18 R3 = 0.06 u3 = 0.98

Total 0.08 0.46 0.46 1.00

Table 3 Four example agreement tables of size 4 × 4 with corresponding statistics

V1 V2 V3 V4 Total Overall Cluster Weights

(a) U1 0.46 0.46 H = 1.48 R1 = 1.00 u1 = 0.52

U2 0.46 0.46 I = 1.32 R2 = 1.00 u2 = 0.52

U3 0.02 0.02 0.04 M = 0.89 R3 = 0.65 u3 = 0.23

U4 0.02 0.02 0.04 R4 = 0.65 u4 = 0.23

Total 0.46 0.46 0.04 0.04 1.00

(b) U1 0.40 0.40 H = 1.92 R1 = 1.00 u1 = 0.53

U2 0.40 0.40 I = 1.52 R2 = 1.00 u2 = 0.53

U3 0.05 0.05 0.10 M = 0.79 R3 = 0.54 u3 = 0.43

U4 0.05 0.05 0.10 R4 = 0.54 u4 = 0.43

Total 0.40 0.40 0.10 0.10 1.00

(c) U1 0.30 0.30 H = 2.37 R1 = 1.00 u1 = 0.52

U2 0.30 0.30 I = 1.57 R2 = 1.00 u2 = 0.52

U3 0.10 0.10 0.20 M = 0.66 R3 = 0.40 u3 = 0.66

U4 0.10 0.10 0.20 R4 = 0.40 u4 = 0.66

Total 0.30 0.30 0.20 0.20 1.00

(d) U1 0.20 0.20 H = 2.57 R1 = 1.00 u1 = 0.46

U2 0.20 0.20 I = 1.37 R2 = 1.00 u2 = 0.46

U3 0.15 0.15 0.30 M = 0.53 R3 = 0.27 u3 = 0.82

U4 0.15 0.15 0.30 R4 = 0.27 u4 = 0.82

Total 0.20 0.20 0.30 0.30 1.00
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Table 4 Four additional example matching tables of size 3 × 3 with corresponding statistics

V1 V2 V3 Total Overall Rows Columns

(a) U1 0.33 0.33 H = 1.65 R1 = 1.00 C1 = 0.97

U2 0.32 0.01 0.33 I = 1.52 R2 = 0.80 C2 = 1.00

U3 0.34 0.34 M = 0.92 R3 = 0.97 C3 = 0.81

Total 0.32 0.33 0.35 1.00

(b) U1 0.01 0.33 0.34 H = 1.71 R1 = 0.81 C1 = 0.78

U2 0.32 0.01 0.33 I = 1.46 R2 = 0.78 C2 = 0.97

U3 0.33 0.33 M = 0.85 R3 = 0.97 C3 = 0.81

Total 0.33 0.33 0.34 1.00

(c) U1 0.01 0.32 0.33 H = 1.78 R1 = 0.78 C1 = 0.76

U2 0.32 0.01 0.01 0.34 I = 1.39 R2 = 0.63 C2 = 0.78

U3 0.33 0.33 M = 0.78 R3 = 0.97 C3 = 0.80

Total 0.33 0.33 0.34 1.00

(d) U1 0.01 0.32 0.33 H = 1.84 R1 = 0.78 C1 = 0.61

U2 0.32 0.01 0.01 0.34 I = 1.33 R2 = 0.61 C2 = 0.78

U3 0.01 0.32 0.33 M = 0.72 R3 = 0.78 C3 = 0.78

Total 0.34 0.33 0.33 1.00

(e) U1 0.01 0.32 0.33 H = 1.91 R1 = 0.76 C1 = 0.61

U2 0.32 0.01 0.01 0.34 I = 1.26 R2 = 0.61 C2 = 0.63

U3 0.01 0.01 0.31 0.33 M = 0.66 R3 = 0.63 C3 = 0.76

Total 0.34 0.34 0.32 1.00

(f) U1 0.01 0.31 0.01 0.33 H = 1.97 R1 = 0.61 C1 = 0.61

U2 0.32 0.01 0.01 0.34 I = 1.20 R2 = 0.61 C2 = 0.61

U3 0.01 0.01 0.31 0.33 M = 0.61 R3 = 0.61 C3 = 0.61

Total 0.34 0.33 0.33 1.00

The weight ui reflects the importance of each Ri-value in the calculation of
index (3) in (6). In all four panels the weight associated with the perfect match
cluster is substantially lower than the weights associated with the mixed up clusters.
In panels (a) and (c) the latter weights are twice as large, while in panel (d) they are
more than three times as large. It appears that weights are larger if the joint entropy
associated with the clusters is larger. Furthermore, the weights corresponding to the
mixed up clusters increase from panel (a) to panel (d). If we combine this with the
fact that the mixed up clusters become larger from panel (a) to panel (d), it appears
that for mixed up clusters the cluster weights increase with the relative cluster size.

In Table 2, the M-value strictly decreases from panel (a) to panel (d). The decline
may be explained as follows. In panel (a) the perfect match cluster is the largest
cluster by far. The relative size of the perfect match cluster decreases from panel
(a) to panel (d), and the M-value decreases accordingly. The decline may also be
explained in terms of the information related to the individual clusters. The M-
value is a weighted average of the cluster indices Ri in (5) using the weights ui

in (4). Each M-value lies somewhere between the three Ri -values. Since for the two
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mixed up clusters the corresponding cluster index decreases with the relative cluster
size, the M-value, as a weighted average, decreases with the R2- and R3-values.

To better understand the M-value one should consider the values of the cluster
weights. Since the weight associated with the perfect match cluster is substantially
lower than the weights associated with the mixed up clusters, the M-value is pulled
‘more’ towards the cluster indices of the mixed up cluster than the cluster index of
the perfect match cluster. For example, in panel (a) of Table 2 the larger clusters
of the two partitions are perfectly matched, yet the M-value is only 0.72. The
explanation is that the M-value is closer to the values R2 = R3 = 0.65 than the
value R1 = 1.00 due to the weighting.

Table 3 presents four example matching tables of size 4 × 4. In each panel of
Table 3 there are two perfect matches between the clusters (U1 = V1 and U2 = V2)
of the same size, while the other two clusters of the partitions are completely mixed
up. The size of the perfect matched clusters decreases from panel (a) to (d). The
clusters are the largest cluster in panels (a), (b), and (c), and the smallest cluster in
(d).

In all tables of Table 3 the cluster indices associated with the first two clusters
show that there is perfect agreement on the first two clusters (R1 = R2 = 1.00).
Furthermore, the Ri -values show that there is less than perfect agreement or rather
poor agreement on the other two clusters (R3 = R4). The R3- and R4-value
strictly decrease from panel (a) to panel (d). Thus, for the mixed up clusters the
corresponding cluster index decreases with the relative cluster size.

In the top two panels of Table 3 the weights associated with the two perfect
matched clusters are higher than the weights associated with the mixed up clusters.
For the bottom two panels the roles are interchanged. The weights corresponding
to the mixed up clusters increase from panel (a) to panel (d). The weights
corresponding to the perfect matched clusters show less variability. Thus, for mixed
up clusters the cluster weights increase with the relative cluster size. Furthermore,
panels (a) and (b) show that the perfect matched clusters can have the highest
weights. Apparently, it is required that the M-value is relatively high.

In Table 3, the M-value strictly decreases from panel (a) to panel (d). An
explanation is that the relative size of the perfect matched clusters decreases from
panel (a) to panel (d), and the M-value decreases accordingly. The decline of the M-
value may also be explained in terms of the information reflected in the individual
clusters. Each M-value lies somewhere between the four Ri-values. Since for the
two mixed up clusters the corresponding cluster index decreases with the relative
cluster size and the corresponding weight increases with the relative cluster size as
well, the M-value, as a weighted average, decreases with the R2- and R3-values.

5 More Numerical Examples

The examples in Tables 2 and 3, especially those in panel (a), suggest that an M-
value of unity is not easily attained. This is indeed what we found in many examples.
Table 4 presents six example matching tables of size 3× 3. In each panel of Table 4
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there is a very good match for all clusters from the first partition with one cluster
from the second partition (U1 ≈ V2 (but U1 = V2 for panel (a)), U2 ≈ V1 and
U3 ≈ V3). Panel (a) is closest to a perfect match between the partitions. There is
disagreement on only 1% of the objects. From panel (a) to panel (f) the disagreement
between the partitions increases with small steps of 1%.

As the disagreement increases from panel (a) to (f) of Table 4 the value of the
joint entropy H goes up and the value of the mutual information I . Consequently,
the M-value decreases as well, from 0.92 to 0.85 to 0.78 to 0.72 to 0.66 to 0.61.
What is striking about these M-values is that the decline is rather steep, while the
disagreement step is rather small. Apparently, index M can attain high values, say
0.90 or higher, only if the matching table contains a lot of zero cells.

6 Discussion

For assessing similarity between two partitions researchers usually use and report
overall measures that quantify similarity for all clusters simultaneously. Since,
overall indices only give a general notion of what is going on their value is generally
difficult to interpret. In this paper we took a closer look at a version of normalized
mutual information already considered in Malvestuto (1986). Mutual information is
a concept from information theory (Kvalseth 1987; Shannon 1948).

In Sect. 3 we presented two decompositions of Malvestuto’s index from informa-
tion theory, one into indices for the clusters of the first partition, and one into indices
for the clusters of the second partition. The decompositions show that Malvestuto’s
index may be interpreted as an overall measure that summarizes the information
of both the cluster indices of the first partition, or the cluster indices of the second
partition.

We presented numerical examples that showed that clusters that are completely
mixed up between partitions tend to be more important in the calculation of the
overall index than clusters that are a perfect match between the partitions. It would
probably be good practice to report the measures for the individual clusters, since
they provide more (detailed) information than a single overall number. Furthermore,
other numerical examples illustrated that the maximum value of Malvestuto’s index
of unity is not easily attained.
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Understanding the Rand Index

Matthijs J. Warrens and Hanneke van der Hoef

Abstract The Rand index continues to be one of the most popular indices for
assessing agreement between two partitions. The Rand index combines two sources
of information, object pairs put together, and object pairs assigned to different
clusters, in both partitions. Via a decomposition of the Rand index into four
asymmetric indices, we show that in many situations object pairs that were assigned
to different clusters have considerable impact on the value of the overall Rand index.

1 Introduction

In research domains like medical classification, image segmentation, taxonomy,
and web data analysis, it is frequently of interest to find meaningful groupings or
partitions of a set of objects (Dubey et al. 2016; Huo et al. 2016; Katiyar et al. 2016;
Luo et al. 2014; Zeng et al. 2014). Partitions are commonly found with the so-called
clustering methods (Hennig et al. 2015; Jain 2010; Kaufman and Rousseeuw 1990;
Kumar 2005). These methods can, for example, be used to find subtypes of cancer
in tissue samples, and to group consumers based on attitudes, knowledge or uses
concerning a product.

To empirically assess the performance of clustering methods researchers typ-
ically assess the agreement between a reference standard partition that purports to
represent the true cluster structure of the objects, and a trial partition produced by the
method that is being evaluated. High agreement between the two partitions indicates
good recovery of the reference cluster structure. Agreement between the partitions
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can be assessed with the so-called external validity indices (Albatineh et al. 2006;
Albatineh and Niewiadomska-Bugaj 2011; Brun et al. 2007; Pfitzner et al. 2009).

Indices for assessing agreement between partitions can be categorized into three
approaches, namely (1) counting object pairs, (2) indices based on information
theory, and (3) set-matching measures (Pfitzner et al. 2009; Rezaei and Fränti 2016;
Vinh et al. 2010). Most indices are of the pair-counting approach, which is based on
counting pairs of objects placed in identical and different clusters. Commonly used
examples are the Rand index (Rand 1971) and the Hubert-Arabie adjusted Rand
index (Hubert and Arabie 1985; Steinley et al. 2016; Warrens 2008d). The latter
corrects the Rand index for agreement due to chance (Albatineh et al. 2006; Warrens
2008c). Several authors proposed to use the adjusted Rand index as a standard tool
in cluster validation research (Milligan 1996; Milligan and Cooper 1986; Steinley
2004).

The Rand index continues to be one of the most popular indices for assessing
agreement between partitions, probably because it has a simple interpretation
(Anderson et al. 2010). The Rand index may be interpreted as the ratio of the
number of object pairs placed together in a cluster in each of the two partitions and
the number of object pairs assigned to different clusters in both partitions, relative
to the total number of object pairs. Thus, the Rand index combines two sources of
information, object pairs put together, and object pairs assigned to different clusters,
in both partitions.

To understand what the value of the Rand index may actually mean requires
knowledge of how the two sources of information on object pairs contribute to
the overall value of the Rand index. The above interpretation suggests that both
sources may contribute equally. It turns out that this is generally not the case. Via
a decomposition of the Rand index into four asymmetric indices, we show in this
paper that in many situations object pairs that were assigned to different clusters in
both partitions have (a lot) more impact on the value of the overall Rand index than
object pairs that were combined in both partitions.

A problem with the Rand index is that it does not range over the entire [0, 1]
interval, where one indicates perfect agreement between the partitions. Fowlkes and
Mallows (1983) illustrated with simulated data that the Rand index concentrates
in a small interval near one (Meilă 2007). The decomposition of the Rand index
presented in this paper will also be used to provide some insight into this feature of
the index.

The paper is organized as follows. In Sect. 2 we introduce the notation. In Sect. 3
we define the Rand index and present a decomposition of the index into four
asymmetric indices. In Sect. 4 we show with numerical examples that the value
of the Rand index is determined to a large extent by the number of object pairs
that are not joined in either of the partitions. In Sect. 5 we present several results
that suggest the importance of these object pairs increases as the number of clusters
increase. Finally, in Sect. 6 we show what values of the Rand index one may expect
under statistical independence of the partitions.
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2 Notation

In this section we introduce the notation. Suppose we have n objects. Let A =
{A1, A2, . . . , AI } and B = {B1, B2, . . . , BJ } denote two partitions of the objects,
where I ≥ 2 and J ≥ 2 are the number of clusters. The two partitions may, for
example, be a reference standard partition and a trial partition that was obtained
with a clustering method that is being evaluated. Let M = {

mij

}
be a matching

table of size I ×J where mij indicates the number of objects placed in cluster Ai of
the first partition and in cluster Bj of the second partition. The cluster sizes of the
respective partitions are the row and column totals of M:

|Ai| = mi+ =
J∑

j=1

mij and |Bj | = m+j =
I∑

i=1

mij .

Following Fowlkes and Mallows (1983) the information in matching table M can
be summarized in a fourfold contingency table by counting several different types
of pairs of objects:

N := n(n− 1)

2

is the total number of pairs of objects,

T :=
I∑

i=1

J∑

j=1

(
mij

2

)

is the number of object pairs that were placed in the same cluster in both partitions,

P :=
I∑

i=1

(
mi+

2

)

is the number of object pairs that were placed in the same cluster in the first partition
A, and

Q :=
J∑

j=1

(
m+j

2

)

is the number of object pairs that were placed in the same cluster in the second
partition B. Furthermore, define a := T , b := P − T , c := Q − T and d :=
N + T − P − Q. Quantity b (c) is the number of object pairs that were placed in
the same cluster in the first (second) partition but in different clusters in the second
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Table 1 Two 2 × 2 contingency table representations of matching table M

Second partition

First partition Pair in the same cluster Pair in different cluster Totals

Representation 1

Pair in the same cluster T P − T P

Pair in different clusters Q− T N + T − P −Q N − P

Totals Q N −Q N

Representation 2

Pair in the same cluster a b a + b

Pair in different clusters c d c + d

Totals a + c b + d N

(first) partition. The quantity d is the number of object pairs that are not joined in
either of the partitions.

Table 1 presents two representations of the fourfold contingency table that
summarizes matching table M. The upper panel of Table 1 gives a representation
in terms of the counts N , T , P , and Q, whereas the lower panel of Table 1 gives
a representation using the counts a, b, c, and d . The latter notational system is
commonly used for expressing similarity measures for 2 × 2 tables (Albatineh
et al. 2006; Baulieu 1989; Gower and Warrens 2017; Pfitzner et al. 2009; Warrens
2008a,b,c,d,e, 2019).

3 Rand Index and a Decomposition

The Rand index (Rand 1971) is defined as

R = N + 2T − P −Q

N
= a + d

a + b + c + d
.

In the context of 2 × 2 tables (Albatineh et al. 2006; Baulieu 1989; Heiser and
Warrens 2010; Pfitzner et al. 2009; Warrens 2008a,b,c,d,e) the formula on the right-
hand side can be found in Sokal and Michener (1958). We have R = 1 and perfect
agreement if the partitions are identical. Furthermore, we have R = 0 when one
partition consists of a single cluster and the other partition only consists of clusters
containing a single object (Rand 1971).

Wallace (1983) considers the following two asymmetric indices. The first index

U = T

P
= a

a + b
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is the proportion of object pairs in the first partition that are also joined in the second
partition (Severiano et al. 2011). The second index

V = T

Q
= a

a + c

is the proportion of object pairs in the second partition that are also joined in the first
partition. In addition to Wallace indices U and V , we may consider the following
two asymmetric indices. The third index

W = N + T − P −Q

N − P
= d

c + d

is the proportion of object pairs not placed together in the first partition that are also
not joined in the second partition. The fourth index

Z = N + T − P −Q

N −Q
= d

b + d

is the proportion of object pairs not placed together in the second partition that are
also not joined in the first partition. The quantity N + T − P −Q in the numerator
of W and Z is the number of pairs that are not joined in either of the partitions.
As an indication of agreement between the partitions, this quantity is rather neutral,
counting pairs that are perhaps not clearly indicative of agreement (Wallace 1983).

The Rand index is a weighted average of the four fractions U , V , W , and Z using
the denominators of the indices, respectively, P , Q, N −P , and N −Q, as weights:

R = UP + V Q+W(N − P)+ Z(N −Q)

P +Q+ (N − P) + (N −Q)
.

An equivalent expression with relative weights is given by

R = 1

2

[
U

(
P

N

)
+ V

(
Q

N

)
+W

(
1 − P

N

)
+ Z

(
1 − Q

N

)]
.

Many agreement indices are functions of the two Wallace indices U and V

(Albatineh et al. 2006; Baulieu 1989; Warrens 2008a,b). The Wallace indices
contain information on object pairs that were combined in both partitions. The above
decomposition illustrates that the Rand index combines the information in U and V

with the information in W and Z. The latter asymmetric indices contain information
on pairs of objects that were not put together in the same cluster in both partitions. To
obtain more insight into the Rand index and its behavior we study the four indices
U , V , W , and Z together with the relative weights P/N , Q/N , 1 − P/N , and
1 −Q/N .
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4 Numerical Examples

In this section we use numerical examples to illustrate the relationships between
the Rand index and the four asymmetric indices and their corresponding weights.
Table 2 presents four numerical example tables of size 4 × 4. The five agreement
indices are presented behind each example table in the same panel. Behind each
asymmetric index we also present the value of the corresponding relative weight,
P/N , Q/N , 1 − P/N , or 1 −Q/N .

All partitions in the example tables of Table 2 consist of four clusters of about the
same size (n = 24, 25, or 26). Because the four example tables are almost symmetric
we have U = V and W = Z in each case. In panel (a) the clusters can be well
separated. The separateness decreases from panel (a) to panel (d). This is reflected
in all five indices to some extent, since the Rand index and the four asymmetric
indices decrease accordingly. However, the Wallace indices U and V decrease much
faster than the indices W and Z. Apparently, the number of objects that are not
paired in both partitions remains relatively high. Even for panel (d), where the joint
distribution is close to uniform, and we may say that the two partitions are close to
statistically independent, we have W = Z = 0.75. To obtain further insight into
how this affects the overall Rand index we incorporate the relative weights into the
discussion.

Table 2 Four example matching tables of size 4 × 4 with corresponding statistics

B1 B2 B3 B4 Total Indices Relative weights

(a) A1 20 2 0 2 24 R = 0.83 U = 0.64 0.24

A2 2 20 2 2 26 V = 0.64 0.24

A3 2 2 20 2 26 W = 0.88 0.76

A4 0 2 2 20 24 Z = 0.88 0.76

Total 24 26 24 26 100

(b) A1 15 4 3 3 25 R = 0.70 U = 0.39 0.24

A2 3 15 3 3 24 V = 0.39 0.24

A3 3 4 15 3 25 W = 0.80 0.76

A4 4 3 4 15 26 Z = 0.80 0.76

Total 25 26 25 24 100

(c) A1 10 5 5 5 25 R = 0.64 U = 0.25 0.24

A2 5 10 5 5 25 V = 0.25 0.24

A3 6 5 10 5 26 W = 0.76 0.76

A4 4 5 5 10 24 Z = 0.76 0.76

Total 25 25 25 25 100

(d) A1 7 6 6 6 25 R = 0.62 U = 0.22 0.24

A2 6 7 5 6 24 V = 0.22 0.24

A3 6 7 7 6 26 W = 0.75 0.76

A4 6 6 6 7 25 Z = 0.75 0.76

Total 25 26 24 25 100
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Table 3 Four additional example matching tables of size 4 × 4 with corresponding statistics

B1 B2 B3 B4 Total Indices Relative weights

(a) A1 64 0 0 0 64 R = 0.94 U = 0.93 0.45

A2 0 4 4 4 12 V = 0.93 0.45

A3 0 4 4 4 12 W = 0.95 0.55

A4 0 4 4 4 12 Z = 0.95 0.55

Total 64 12 12 12 100

(b) A1 37 0 0 0 37 R = 0.82 U = 0.66 0.26

A2 0 7 7 7 21 V = 0.66 0.26

A3 0 7 7 7 21 W = 0.88 0.74

A4 0 7 7 7 21 Z = 0.88 0.74

Total 37 21 21 21 100

(c) A1 19 0 0 0 19 R = 0.71 U = 0.40 0.25

A2 0 9 9 9 27 V = 0.40 0.25

A3 0 9 9 9 27 W = 0.80 0.75

A4 0 9 9 9 27 Z = 0.80 0.75

Total 19 27 27 27 100

(d) A1 10 0 0 0 10 R = 0.64 U = 0.33 0.27

A2 0 10 10 10 30 V = 0.33 0.27

A3 0 10 10 10 30 W = 0.75 0.73

A4 0 10 10 10 30 Z = 0.75 0.73

Total 10 30 30 30 100

The Rand index R is a weighted average of the four indices U , V , W , and Z. For
all example tables the relative weights are identical. For U and V the relative weight
is 0.24, whereas for W and Z the relative weight is identical to 0.76. Thus, in all
example tables the weight of W and Z is three times as high as the weight of U and
V . The R-value is pulled more towards the values of W and Z than to the values of
U and V . In other words, in the calculation of the Rand index in these examples,
pairs of objects that were not put together in the same cluster in both partitions are
three times more important than pairs of objects that were paired in both partitions.

Table 3 presents four additional numerical example tables of size 4× 4. Because
all three tables are symmetric we have U = V and W = Z in each case. All
partitions in the example tables of Table 3 consist of three clusters that have the
same size and one cluster that has a different size. In all examples there is a perfect
match on the one single cluster, while the other three clusters are completely mixed
up. The size of the perfect match cluster decreases from panel (a) to panel (d). At
the same time the size of the three mixed up clusters increases. The values of the
five indices decrease with the size of the single cluster. Again, the Wallace indices U

and V decrease much faster than the indices W and Z. It seems that the number of
objects that are not paired in both partitions remains relatively high. Even for panel
(d) we have W = Z = 0.75.

Because all example tables of Table 3 are symmetric the weights for U and V ,
and the weights for W and Z, are identical. In panel (a) the relative weights are not
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that far apart. In panel (a) all four asymmetric indices contribute more or less the
same to the overall Rand index. For panels (b), (c), and (d) the weights are very
similar to the weights in Table 2. The weight of W and Z is about three times higher
than the weight of U and V . In the calculation of the Rand index in panels (b),
(c), and (d), pairs of objects that were not put together in the same cluster in both
partitions are three times more important than pairs of objects that were paired in
both partitions.

5 Relative Weights

The numerical examples in Sect. 4 show that the value of the Rand index is in many
situations primarily determined by the asymmetric indices W and Z that focus on
object pairs not placed together in clusters, since these two indices have higher
relative weights than Wallace indices U and V that focus on object pairs put together
in the same clusters. However, the numerical examples in Sect. 4 were limited to
tables of size 4 × 4. In other simulated examples that are not reported here we
found that the values of indices W and Z tend to become more important in the
calculation of the Rand index as the number of clusters increase. In this section we
present several theorems that formalize this observation to some extent.

For three distributions we show that, for a fixed number of objects, the quantities
P and Q strictly decrease in, respectively, I and J . If the quantities P and Q

decrease, and if n, and thus N , is kept fixed, the relative weights

1 − P

N
and 1 − Q

N

increase with the number of clusters, and the indices W and Z become more
important for the overall R-value.

In the theorems below we use that the number of objects in a cluster can be a
real number. Technically this is not a problem, since binomial coefficients can also
be applied to real numbers. With real-life data the number of objects is of course a
positive integer.

In Theorem 1, we consider the case in which the objects are uniformly distributed
over the clusters.

Theorem 1 Suppose n is fixed. If we set mi+ = n/I and m+j = n/J for all i and
j , then P and Q are strictly decreasing in, respectively, I and J .

Proof Under the conditions of the theorem we have

P =
I∑

i=1

(
n/I

2

)
= n2

2I
− n

2
and Q =

J∑

j=1

(
n/J

2

)
= n2

2J
− n

2
.

Thus, for fixed n, P is strictly decreasing in I , and Q is strictly decreasing in J .
� 
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In Theorem 2, we consider a case in which the cluster sizes form an increasing
triangular distribution.

Theorem 2 Suppose n is fixed. If we set

mi+ = 2ni

I (I + 1)
and m+j = 2nj

J (J + 1)

for, respectively, i ∈ {1, 2, . . . , I } and j ∈ {1, 2, . . . , J }, then P and Q are strictly
decreasing in, respectively, I and J .

Proof Under the conditions of the theorem we have

P =
I∑

i=1

ni

I (I + 1)

(
2ni

I (I + 1)
− 1

)
= 2n2

I 2(I + 1)2

I∑

i=1

i2 − n

I (I + 1)

I∑

i=1

i.

Using the identities

I∑

i=1

i2 = I (I + 1)(2I + 1)

6
and

I∑

i=1

i = I (I + 1)

2
,

we obtain

P = n2(2I + 1)

3I (I + 1)
− n

2
.

The first fraction has an I term in the numerator and an I 2 term in the denominator.
Thus, for fixed n, P is strictly decreasing in I . Using similar arguments for Q yields

Q = n2(2J + 1)

3J (J + 1)
− n

2
,

which is strictly decreasing in J . � 
In Theorem 3, we consider a case in which the cluster sizes form a symmetric

triangular distribution with its peak in the middle.

Theorem 3 Suppose n is fixed, and that I and J are even. If we set

mi+ = m(I−i)+ = 2ni

I (I/2 + 1)
and m+j = m+(J−j) = 2nj

J (J/2 + 1)

for, respectively, i ∈ {1, 2, . . . , I/2} and j ∈ {1, 2, . . . , J/2}, then P and Q are
strictly decreasing in, respectively, I and J .
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Proof Under the conditions of the theorem we have

P =
I/2∑

i=1

2ni

I (I/2 + 1)

(
2ni

I (I + 1)
− 1

)
= 4n2

I 2(I/2 + 1)2

I/2∑

i=1

i2 − 2n

I (I/2 + 1)

I/2∑

i=1

i.

Using the identities

I/2∑

i=1

i2 = I

12

(
I

2
+ 1

)
(I + 1) and

I/2∑

i=1

i = I

4

(
I

2
+ 1

)
,

we obtain

P = n2(I + 1)

3I (I/2 + 1)
− n

2
.

The first fraction has an I term in the numerator and an I 2 term in the denominator.
Thus, for fixed n, P is strictly decreasing in I . Using similar arguments for Q yields

Q = n2(J + 1)

3J (J/2 + 1)
− n

2
,

which is strictly decreasing in J . � 
Table 4 presents the values of relative weights P/N and 1 − P/N for n = 100,

the three distributions considered in Theorems 1, 2, and 3, and different values of I .
The numbers in Table 4 show that in most cases 1 − P/N is higher than P/N , and
that in many cases 1 − P/N is even much higher than P/N .

Table 4 Relative weights for n = 100, three distributions and different numbers of clusters

# clusters I = 2 4 6 8 10 12 14 16 20 30 40 50

Theorem 1: uniform distribution

P/N 0.49 0.24 0.16 0.12 0.09 0.07 0.06 0.05 0.04 0.02 0.02 0.01

1 − P/N 0.51 0.76 0.84 0.88 0.91 0.93 0.94 0.95 0.96 0.98 0.98 0.99

Theorem 2: skewed triangular distribution

P/N 0.55 0.29 0.20 0.15 0.12 0.10 0.08 0.07 0.06 0.03 0.02 0.02

1 − P/N 0.45 0.71 0.80 0.85 0.88 0.90 0.92 0.93 0.94 0.97 0.98 0.98

Theorem 3: symmetric triangular distribution

P/N 0.49 0.27 0.19 0.14 0.11 0.09 0.08 0.07 0.05 0.03 0.02 0.02

1 − P/N 0.51 0.73 0.81 0.86 0.89 0.91 0.92 0.93 0.95 0.97 0.98 0.98
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6 Statistical Independence

It has been noted in the literature that the value of the Rand index concentrates in a
small interval near one (Fowlkes and Mallows 1983; Meilă 2007). The results from
the previous sections can be used to explain this phenomenon to some extent. In
this final section we show that the Rand index in many situations already has a high
value under statistical independence of the partitions.

If the partitions are statistically independent, we have the expectation E(T ) =
PQ/N (Albatineh et al. 2006; Warrens 2008c,d). In this case the Wallace indices
are identical to

U = Q

N
and V = P

N
,

which are the relative weights of, respectively, V and U in the decomposition of
the Rand index presented in Sect. 3. Furthermore, the other two asymmetric indices
become

W = 1 − Q

N
and Z = 1 − P

N
,

which are the relative weights of, respectively, Z and W in the decomposition of
the Rand index. Thus, under statistical independence the value of the Rand index is
given by

R = PQ

N2
+
(

1 − P

N

)(
1 − Q

N

)
.

In Sect. 5 we showed for three distributions that the values of P/N and Q/N

decrease when the numbers of clusters I and J increase. As both I and J become
larger the first term on the right-hand side becomes smaller and goes to zero, while
the second term on the right-hand side becomes higher and goes to unity.

Table 5 presents the values of the Rand index under statistical independence for
n = 100, the uniform distribution considered in Theorem 1, and for various values
of I and J . If either I = 2 or J = 2, we have approximately R = 0.50.

Table 5 shows that the value of R increases with the number of clusters. The
R-value may already be quite high (say ≥ 0.60) for a moderate number of clusters,
despite the fact that Table 5 gives R-values that hold under statistical independence.
We obtain a very similar table if we replace the uniform distribution in Table 5
by the distributions considered in Theorems 2 and 3, or any pairing of the three
distributions. Thus, even in the case of statistical independence, the value of the
Rand index concentrates in the upper half of the unit interval [0, 1].
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Table 5 Values of the Rand index under statistical independence for uniform distributed objects
and different numbers of clusters I and J

I J 3 4 5 6 8 10 20 30 50

3 0.56 0.59 0.61 0.62 0.63 0.64 0.66 0.67 0.67

4 0.59 0.63 0.66 0.68 0.70 0.71 0.74 0.75 0.75

5 0.61 0.66 0.69 0.71 0.74 0.75 0.78 0.79 0.80

6 0.62 0.68 0.71 0.73 0.76 0.78 0.81 0.83 0.83

8 0.63 0.70 0.74 0.76 0.79 0.81 0.85 0.87 0.88

10 0.64 0.71 0.75 0.78 0.81 0.83 0.88 0.89 0.90

20 0.66 0.74 0.78 0.81 0.85 0.88 0.92 0.94 0.95

30 0.67 0.75 0.79 0.83 0.87 0.89 0.94 0.95 0.97

50 0.67 0.75 0.80 0.83 0.88 0.90 0.95 0.97 0.98
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Layered Multivariate Regression with Its
Applications

Naoto Yamashita and Kohei Adachi

Abstract Multivariate regression is known as a multivariate extension of multiple
regression, which explain/predict the variations in multiple dependent variables by
multiple independent variables. Recently, various procedures for Sparse Multivari-
ate Regression (SMR) have been proposed, in which a sparse regression coefficient
matrix (having a number of zero elements) is obtained aiming to facilitate its
interpretation. The procedures for SMR can be classified into the following two
types; penalized and cardinality-constrained procedures. In them, the resulting
number of zeros in the regression coefficient matrix is controlled/constrained by
a prespecified penalty parameter or cardinality value. In this research, we propose
another approach for SMR, referred to as Layered Multivariate Regression (LMR).
In LMR, the regression coefficient matrix is assumed to be a sum of several sparse
matrices, which is called layer. Therefore, the sparseness of the resulting coefficient
matrix is controlled by how many layers are used. In LMR, k-th layer can be viewed
as the coefficient matrix in the regression of a partial residual (i.e., the residual
for all but k-th layer) on independent variables, and thus the variance explained
by LMR gets closer to that for the unconstrained regression as the number of
layers increases. We present an alternating least squares algorithm for LMR and
a procedure for determining how many layers should be used. LMR is assessed in
a simulation study and illustrated with a real data example. As an application of
LMR, procedures for sparse estimation in some multivariate analysis techniques
(e.g., principal component analysis) are also presented.
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1 Introduction

Multivariate regression is commonly used for extracting the relationship between
multiple independent and dependent variables. Let X be an N (observations) ×
P (variables) matrix of independent variables and Y be a N (observations) ×
Q (variables) matrix of dependent variables. The multivariate regression of P

dependent variables on Q dependent variables is formulated as the minimization
of the least squares loss function f (W) defined by

f (W) = ||Y− XW||2 (1)

where W denotes a P × Q matrix of regression coefficients (Izenman 2008). The
loss function can be rewritten as f (W) = [w1, . . . , wQ, ]∑q(yq − Xwq) with yq

and wq being the q-th column vector of Y and W, respectively. The solution of the
minimization of (1) is simply given by W = (X′X)−1X′Y and we call the solution
as unconstrained solution in this article. The pth element of wq denoted as wpq

represents the relationship between p-th independent and q-th dependent variable,
and therefore the matrix W shows the correspondences between the set of variables.
As a small example of multivariate regression, multivariate regression is applied
to Tobacco dataset. The total of six variables of chemical compounds, Nitrogen
(N), Chlorine (Cl), Potassium (K), Phosphorus (P), Calcium (Cl), and Magnesium
(Mg), are regressed on the three characteristics of tobacco leaves. Table 1 shows the
estimated regression coefficient matrix.

To interpret a coefficient matrix, it is required to find the correspondence between
a single dependent variable and a reduced number of independent variables. For
example, one can find such correspondence between the dependent variable “Brate”
and the independent variables “Cl,” “K,” and “Ca,” which are considered to be
important for explaining the variation of the dependent variable. In order to find
easily such correspondences, simple structure (Thurstone 1947; Ullman 2006) is
a useful property which coefficient matrices should possess, because it highlights
the between/within-column contrast in the coefficient matrix and facilitate to match
a reduced number of independent variables to each of the dependent variables.
However, the estimated coefficient matrix does not always possess such helpful

Table 1 Estimated
coefficient matrix by
unconstrained multivariate
regression

Brate Sug Nic

N 0.10 −0.58 0.29

Cl −0.58 0.39 −0.32

K 0.45 0.20 0.11

P −0.13 0.22 −0.05

Ca 0.41 0.11 0.24

Mg −0.32 −0.22 0.48

Vexp. 0.744
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structure and thus it is difficult to find the correspondence between the variable
sets, because no constraint is imposed on W with respect to its structure.

In this research, we newly propose a procedure of multivariate regression in order
to facilitate the interpretation of the solution. In this procedure, the coefficient matrix
is reparametrized as a sum of matrices, which are called layers, and each layer is
constrained to have a certain simple structure. This is called Layered Multivariate
Regression (LMR) formulated as

min
W

fLMR(W1, . . . , WL) = ||Y− X
∑

l

Wl ||2 (2)

where Wl denotes the l-th layer for l = 1, . . . , L. As a structure of layers, we
consider a perfect cluster structure where each independent variable is associated
with a single dependent variable; i.e., only one nonzero element in each row of W.
As a result, W contains several elements equaling to zero. The resulting coefficient
matrix W = ∑

l Wl is thus easy to interpret because the between/within-column
contrasts are highlighted.

In order to facilitate the interpretation of W, several approaches have been
proposed in which the structure of W is constrained in some ways. Table 2 shows
the estimated coefficient matrices obtained by the two existing procedures which we
consider here. The first approach is penalized optimization of (1) which is defined
as the minimization of

fPR(W) = ||Y− XW||2 + P(W) (3)

where P(W) is a certain penalty function (Hastie et al. 2015; Zou et al. 2006). For
example, one can consider P(W) = λ

∑
q ||wq ||1 as a lasso penalty with wq being

the q-th column vector of W and λ is the penalty parameter used for controlling
the amount of shrinkage of the entries of W. The minimization of fPR(W) aims
to shrink several elements in W toward zero and therefore element-wise contrast is
highlighted. The penalty approach does not constrain matrix-wise structure of W
and therefore the resulting solution is often difficult to interpret. The first column

Table 2 Estimated coefficient matrices and the rate of variance explained (Vexp.) obtained by
penalty (left) and perfect cluster approach (right); a blank cell shows zero element

Penalty approach Perfect cluster approach

Brate Sug Nic Brate Sug Nic

N 0.09 −0.51 0.37 −0.69

Cl −0.54 0.39 −0.23 −0.61

K 0.40 −0.12 0.62

P −0.13 0.20 0.17

Ca 0.22 0.15 0.33

Mg −0.17 −0.21 0.36 0.73

Vexp. 0.611 0.569
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in the right side of Table 3 gives an example of such difficulty, in that the within-
column contrast is lower compared with the other columns. The second approach
is “perfect cluster approach” in which W is constrained to have a perfect cluster
structure. Because of this structure, each independent variable corresponds to the
single dependent variable, and therefore the independent variables are classified
into the disjoint sets. As seen in left side of Table 2, the procedure proposed by
Yamashita (2012) produces a coefficient matrix with a perfect cluster structure.
The estimated solution fits poorly to the data matrix, however, as seen in the rate
of variance explained (Vexp.) in the table. This is because the constraint imposed
on the structure of W is too restrictive to explain the given data sufficiently. The
proposed procedure is considered to remedy the drawbacks of these procedures;
LMR achieves a simple structure by restricting layer-level structure with better fit
to the data matrix by using multiple layers.

2 Proposed Method

2.1 Algorithm

Our proposed LMR is formulated as the minimization of fLMR(W1, . . . , WL) in (2)
subject to the constraint that each layer has a perfect cluster structure. The loss
function is minimized by alternately updating each layer with keeping the other
layers fixed until convergence is reached. Namely, for updating the l-th layer, the
problem to be solved is the minimization of

fLMR(Wl |Wl′ �=l ) =
∣∣∣∣∣∣

∣∣∣∣∣∣

⎛

⎝Y− X
∑

l′ �=l

W′
l

⎞

⎠− XWl

∣∣∣∣∣∣

∣∣∣∣∣∣

2

= ||Y#
l − XWl ||2 (4)

with Y#
l = Y − X

∑
l′ �=l W′

l , the partial residual of the other L− 1 layers. Because
Wl is constrained to have a perfect cluster structure, Wl is reparametrized as Wl =
DlRl where Dl is a P × P diagonal matrix and R is a P × Q binary and row
stochastic matrix (Vichi 2016; Vichi and Saporta 2009). The diagonal elements in
Dl indicate the values of nonzero elements and Rl indicates these position in each
of P rows. Therefore, Dl and Rl are jointly updated in order to update the l-th layer,
at the D- and R-step which are described in detailed as follows.

In the D-step for the l-th layer, Dl is updated with fixed Rl . For the
minimization, with the partial derivative of the function fLMR(Wl |Wk �=l ) =
fLMR(Dl |Dk �=l, R1, . . . , RL) with respect to Dl being P × P matrix of zeros
denoted as O, we get

2diag(RlY#′
l X)− 2Dldiag(X′X) = O ⇐⇒ Dl = diag(RlY#′

l X)diag(X′X)−1 (5)
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where the notation diag(a) specifies a diagonal matrix with diagonal equal to the
vector a. Further, Rl is updated in the R-step with other parameter matrices kept
fixed. Let, αl

p be the column number of the nonzero element in p-th row of Wl

and it takes an integer within the range [1,Q]. The optimal αl
p can be obtained by

computing the attained function values for all possible values for αl
p, and update αl

p

as the one which attains the minimum of the function values. Namely, the update
formula of αl

p is simply given by

αl
p = arg min

αl
p=1,...,Q

fLMR(αl
p |αl

p′ �=p, Rl′ �=l , D1, . . . , DL). (6)

The above two steps are applied for all ps in order to update the k-th layer, and
layer-wise update is repeated for all layers until convergence is reached. The whole
algorithm is therefore described as follows.

Step 1. Set t = 0.
Step 2. Set initial values for D1, . . . , DL and R1, . . . , RL and construct

W1, . . . , WL.
Step 3. Repeat Step. 3.1. to 3.3. for l = 1, · · ·L.

Step 3.1. (D-step) Update Dl by (5).
Step 3.2. (R-step) Update αl

p by (6) for all ps and construct Rl .
Step 3.3. Update Wl .

Step 4. Increase t by one and go to Step 5, if the decrease in the fLMR(W1, . . . ,

WL) value from the previous round is less than 1.0× 10−7; otherwise, return to
Step 3.

Step 5. Set Ŵl by the current Wl for all ls if fLMR(Ŵ1, . . . , ŴL) <

fLMR(W1, . . . , WL) or t = 1.
Step 6. If t = tmax accept Ŵ1, . . . , ŴP as a final solution and W = ∑

l Wl ;
otherwise go to Step 2.

Because the above algorithm involves the optimization with respect to the discrete
values αl

p , the algorithm is considered to be sensitive to local minimizers. In order
to avoid accepting a local minimum as a final solution, the algorithm is started
from tmax sets of initial values. In the following simulation study and the real
data example, we set tmax = 300, which presents no significant problem from our
experience.

2.2 Layer Number Selection

In the LMR algorithm, the number of layers has to be specified beforehand as a
positive integer L. As an example, Fig. 1 shows the plot of the goodness of fit
against the number of layers. As shown in the figure variance explained gets closer
to the one of unconstrained solution as the number of layers increases. Therefore,
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Fig. 1 Scree plot of variance explained against the number of layers; variance explained of
unconstrained solution is shown as dotted line

we propose to use a scree plot of variance explained for how many layers should be
employed. In the figure, the scree point can be found at the number of layer is equal
to two and this implies that two layers should be employed in the LMR. In addition,
if the one requires a solution which explains at least 72% of total variance, which is
slightly lower than the one of unconstrained solution, the number of layers can be
set at three.

3 Numerical Simulation

In order to assess the behaviors of the LMR algorithm, we performed a numerical
simulation study. The simulation was designed to assess how well the LMR recovers
the true parameters from which the artificial datasets were generated. The number
of observations and independent/dependent variables are set at 100, 20, and 3. The
20 × 3 true coefficient matrix W∗ was synthesized by W∗ = ∑l W∗

l =
∑

l D∗
l R∗

l .
The elements of D∗

l and R∗
l , which denote the true value of Dl and Rl , were

randomly drawn from the standard normal distribution N(0, 1) and the range of
[1,Q], respectively. The sign of the elements in D was randomly determined. The
elements of 100 × 20 matrix of independent variables X and error matrix E were
also drawn from N(0, 1). The matrix of dependent variable Y was synthesized with

Y = XW∗ + μ(ρ)E (7)
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where ρ is the ratio of the variance explained by the model part XW∗ against the
error variance. The function μ(ρ) is defined as

μ(ρ) =
√

1 − ρ

ρ
× ||XW∗||2

||E||2 (8)

and it is used to control the level of errors (adachi 2011). In this simulation
study, we considered low error (ρ = 0.8) and high error condition (ρ = 0.6)
indicating that 80% and 60% of variance of Y is explained by the one of XW,
respectively. In each condition, a hundred of X were synthesized and the LMR
with the layer number L = 1, 2, . . . , 5 were independently applied. The estimated
coefficient matrix Ŵ was compared with W∗ with respect to their proximity. As
a measure of accuracy of parameter recovery, we used Averaged Absolute Error
(AAE) defined as AAE = (PQ)−1|abs(Ŵ) − abs(Wt rue)| where abs(·) denotes
a matrix with elements replaced by these absolute values. Also, as a measure of
goodness of fit, variance accounted for the model part XŴ which is defined as
V E = ||XŴ||2/||Y||2 is used.

Figure 2 shows the resulting AAE values and it is clear from the figure that
AAE value is decreased at a reasonable level (i.e., less than 0.1) as the number
of layers increases. However, too much layers slightly degenerate the quality of
recovery, as AAE increases in the cases of four or more layers were employed. This
is because the zero elements in a layer are overwritten by nonzero element in the
successive layers, although the corresponding element in W∗

t rue is equal to zero. In
addition, Fig. 3 shows the boxplots of V E in two error conditions. As indicated in
the figure, V E is improved as the number of layers increases in both conditions. It
is worthy of note that V E of Ŵ gets closer to one by the unconstrained multivariate
regression when three or more layers employed. The above results indicate that the
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Fig. 2 Boxplots of AAE values against layer numbers in low error condition (left) and high error
condition (right)
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Fig. 3 Boxplots of VE values against layer numbers in low error (left) and high error (right)
condition; * indicates the VE for the unconstrained solution

proposed method fairly recovers true parameter, when a sufficient number of layers
are employed.

4 Real Data Example: Tobacco Data

As a demonstration of the proposed method, LMR is applied Tobacco dataset
refereed in Sect. 1. Table 3 shows the results of LMR with L = 1, . . . , 4 and
the resulting variance explained. It can be seen that the number of the exact
zero elements increases as L increases, and clear correspondences between the
independent variables (rows) and the dependent variables (columns) are observed
in the cases of fewer layers, although the goodness of fit is worse than the
unconstrained solution in Table 1. In other words, the result suggests “trade-off”
of the better fit and the simplicity, because variance explained gets higher but fewer
exact zero elements as the number of layers increases. It is reasonable to assume
that L = 3 is appropriate, since the variance explained is sufficient compared with
unconstrained solution and also inter-/within-column contrast is highlighted.

5 Extension of LMR: Layered Principal Component Analysis

The concept of LMR can be applied to various procedures for multivariate analysis
in order to improve the interpretability of their solutions. In this article, we present
an application to principal component analysis, in which loading matrix is expressed
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as a sum of layers. It is called Layered PCA (LPCA) and formulated as the
minimization of

fLPCA(F, A1, . . . , AL) = ||X− FA′||2 = ||X− F
∑

l

A′
l ||2 (9)

where the N (observations) × P (variables) data matrix X is approximated by the
product of the N ×M (components) matrix of component scores F and the P ×M

loading matrix A.
The loss function fLPCA(F, A1, . . . , AL) is minimized under the constraint

n−1F′F = IM , as well as in the standard PCA. For the minimization, the loss
function can be rewritten as

f (F, A1, . . . , AL) = −2trX′FA′ + c (10)

where c denotes the constant irrelevant to F. Here, let N−1/2XA = UDV′ be the
singular value decomposition of N−1/2XA, where U and V denote matrices of
the left and right singular vector of N−1/2XA, and D is a diagonal matrix of the
corresponding singular values. F which minimizes the loss function is given by

F = N1/2UV′. (11)

In addition, we have

f (F, A1, . . . , AL) =
∣∣∣∣∣∣

∣∣∣∣∣∣

⎛

⎝X− F
∑

k �=l

A′
k

⎞

⎠− FA′
l

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(12)

for l = 1, . . . , L, and it implies the l-th layer is obtained by the D- and R-step in the
optimization of LMR we proposed above. Therefore, F and A which minimize the
loss function can be found by repeating the following until the convergence reached;
(1) update F by (11) based on the SVD of N−1/2XA, (2) LMR for the matrices of
dependent/independent variables (X, F) and update A.

LPCA with three layers and four components is applied to Wine dataset (Lich-
man 2013), where the 173 wines are described by the 13 chemical features. Also,
we applied Sparse PCA by Zou et al. (2006) to the dataset for comparison and the
estimated loading matrix is shown in Table 4. We can see the clear correspondence
of each component and reduced number of variables; the third component obtained
by the LPCA is characterized by “MAc,” “Ash,” and “AAsh” and therefore the
components are easy to be characterized. The values of variance explained indicate
that the solution obtained by LPCA fits to the dataset better than the one of the
existing sparse PCA procedure.
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Table 4 Loading matrices obtained by LPCA with three layers (left) and Sparse PCA (right) by
Zou et al. (2006); exact zero elements are shown as blank cells

Layered PCA (L = 3) Sparse PCA

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Alc 0.16 0.85 0.53

MAc 0.58 0.31 −0.74

Ash 0.34 0.85 −0.02 0.15 0.78

AAsh −0.39 0.80 −0.19 0.62

Mg 0.39 0.80 −0.05 0.33

TotP −0.71 0.53 −0.44 0.07

Flv −0.82 0.46 −0.50

NFlv 0.53 −0.55 0.31 0.11

Pro −0.58 0.38 −0.41

Col 0.60 0.63 0.14 0.54 −0.01

Hue −0.77 −0.10 −0.10 −0.02 0.67

OD −0.86 0.19 −0.50 −0.04

Pro −0.21 0.84 −0.11 0.50

Vexp. 0.712 0.658

6 Concluding Remarks

In this article, we considered to improve interpretability of regression coefficient
matrix and proposed Layered Multivariate Regression in which the coefficient
matrix is expressed as a sum of layers having simple structure. The proposed
procedure allows to capture the relationship between two variable sets more easier
than the unconstrained regression, because a reduced number of independent
variables corresponds to each dependent variables. The results of simulation study
show that LMR correctly recovers true parameters when the sufficient number of
layers are used. Also, it is empirically shown that the goodness of fit of LMR
solution gets closer to the one of the standard multivariate regression as the number
of layers increases. As an extension of the proposed method, layered principal
component analysis is also proposed.

Throughout this article, we considered a perfect cluster structure as the layer-
level structure, in both LMR and LPCA. Another simple structure for layers
should be considered in order to improve interpretability of the resulting solution.
Further, application of the proposed method to another multivariate analysis should
be considered. For example, simple structure in canonical correlation analysis,
multiple correspondence analysis, K-means clustering might be helpful for easier
interpretation of those solutions.
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An Exploratory Study on the Clumpiness
Measure of Intertransaction Times: How
Is It Useful for Customer Relationship
Management?

Yuji Nakayama and Nagateru Araki

Abstract In the field of marketing science, customer relationship management
(CRM) is an important area of research. One of the essential goals of CRM is
to measure customers’ behavior based on their purchase history to predict their
future behavior and find valuable customers. The recency/frequency/monetary value
(RFM) framework that has been used since the 1960s is well known in the industry,
and is still valuable for summarizing customers’ purchase history (Blattberg, Kim,
and Neslin 2008). Recently, Zhang, Bradlow, and Small (2015) proposed the
clumpiness (C) measure of inter-event times, defined as the degree of nonconformity
of equal spacing, and showed that adding C to an RFM framework enhanced the
predictive power of their empirical applications in relation to customers’ future
behavior. In this study, we examine the robustness of their results, and explore
whether it may prove useful in finding profitable customers in the future. For
this purpose, we use the ISMS Durable Goods Dataset 1, a panel dataset of
households’ purchase history at a major US consumer electronics retailer, provided
by Ni, Neslin, and Sun (2012), and conduct Logit and Tobit regression analyses
for prediction. We find that clumpiness does not necessarily have predictive power
in relation to customers’ future visits and their spending. However, we also find
that a low C value, which means the regularity of shopping intervals, predicts
customers’ future spending. Moreover, we also find that the interaction effect
between clumpiness and frequency reduces the prediction error in customers’ future
spending (i.e., a customer with clumpy shopping behavior who frequently visits the
retailer will spend more than other customers in the future). Thus, Zhang, Bradlow,
and Small’s (2015) findings do not hold exactly as they are, but we find the C
measure has helpful aspects that they do not mention.
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1 Introduction

Customer relationship management (CRM) is an established area in the field of mar-
keting science (Neslin 2014; Winer and Neslin 2014). Kumar and Reinartz (2012, p.
4) define CRM from a customer value perspective as “the practice of analyzing and
using marketing databases and leveraging communication technologies to determine
corporate practices and methods that maximize the lifetime value of each customer
to the firm.”

Nowadays, large costs are necessary for acquiring new customers, so it is
indispensable for a firm to retain loyal customers who repeatedly purchase products
from the firm, bringing large profits. These customers have high lifetime value.
Managing the relationship with excellent customers is crucial for a firm to maximize
its corporate value. For that purpose, a firm needs to measure customers’ behavior
based on their purchase history to predict their future behavior and to find valuable
customers.

In this study, we focus on a new concept in customer relationship management
proposed by Zhang, Bradlow, and Small (2015) —clumpiness— which is a measure
of aspects of customers’ purchasing behavior that uses their intertransaction times.
They showed that adding the new measure to the existing framework for summa-
rizing customers’ purchase histories in their empirical applications enhanced the
power to predict future behavior. However, more validation is needed to confirm the
robustness of their results, which is the objective of our study.

The remainder of this chapter is as follows. In Sect. 2, we briefly review
the recency/frequency/monetary value (RFM) framework to summarize customer
behavior. In Sect. 3, we explain the clumpiness measure, which captures an impor-
tant aspect of customers’ behavior that the RFM framework cannot. In Sect. 4, we
explain the data and method used in our empirical analysis. The results are provided
in Sect. 5. Concluding remarks are given in Sect. 6.

2 RFM Measure

In this section, we review the the RFM value framework and point out that it
overlooks an important aspect of customers’ purchasing behavior.

RFM is a summary of the purchasing behavior of a customer from a store in a
specific time period. Recency (R) is the duration between the most recent day of
purchase and the current day. It measures time since a customer’s last purchase.
Frequency (F) is the purchase frequency in the time period. It measures how often a
customer makes purchases at the store. Monetary value (M) is total expenditure in
the period.1 If a customer has low R, high F, and/or high M values, these indicate
that she is an excellent customer.

1Alternatively, average expenditure at one time may be used.
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0 5 10 15 20 25 30

t

Customer A

Customer B

Customer C

Customer D

Fig. 1 Example of customers’ purchasing histories

Figure 1 shows purchasing behaviors by four hypothetical people who become
customers of a given store at t = 0. There are 30 potential opportunities (e.g., days
or weeks) for shopping (t = 1, 2, . . . , 30). A black circle in the figure indicates
a purchase incidence. It is assumed that they spend 30 dollars on each purchase
incidence.

Table 1 summarizes their RFM values. Customer A is the best customer of
the four because this customer’s R is the lowest and F and M are the highest.
Customer B is the second best. On the other hand, based on RFM measures,
we cannot distinguish between the purchasing behaviors of Customers C and D.
However, in the figure, their intertransaction times are very different. Customer
C’s intertransaction times increase over time, while Customer D does make repeat
purchases in a short period of time; then, after a long period of no purchases, she
recommences repeat shopping. That is, Customer D’s purchase event looks like
a clump, collected in a short period of time. Such phenomena motivated Zhang,
Bradlow, and Small (2015) to construct a new concept of purchasing behavior.

Table 1 RFM measures of
the four customers in Fig. 1

Recency Frequency Monetary value

Customer A 2 14 420

Customer B 10 10 300

Customer C 10 5 150

Customer D 10 5 150
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3 Clumpiness Measure

Zhang, Bradlow, and Small (2015), hereafter denoted as ZBS, defined clumpiness as
the degree of nonconformity with equal spacing of visit/purchase incidences (ZBS,
p. 196).2 ZBS provide the following desirable properties of a clumpiness measure
(ZBS, p. 197):

• Minimum. The measure should be the minimum if the events are equally spaced.
• Maximum. The measure should be the maximum if all of the events are gathered

together.
• Continuity. Shifting event times by a very small amount should only change the

measure by a small amount.
• Convergence. As events move closer, the measure should increase.

ZBS provided a metric for clumpiness to satisfy the above properties:

C = 1 +
∑n+1

i=1 log (xi) xi

log (n+ 1)
. (1)

N and n are the number of purchase opportunities and the number of actual
purchases in a given period, respectively, while xi is intertransaction time, which
is standardized as the sum of xi becomes equal to one in a given period defined as:

xi =

⎧
⎪⎨

⎪⎩

t1
N+1 if i = 1,

ti−ti−1
N+1 if i = 2, . . . , n,

N+1−tn
N+1 if i = n+ 1,

(2)

where ti is the ith occurrence of the event time from the start of the period.
Based on formula (1), the clumpiness measures of Customers A, B, C, and D are

calculated as 0.002, 0.109, 0.081, and 0.315, respectively. As these numbers show,
Customer D’s C value is the largest, which means her purchasing behavior is very
clumpy, while Customer A’s C value is the smallest, which means her purchasing
behavior has a regular pattern. On the other hand, Customer B’s C value is larger
than that of Customer C, which seems to be inconsistent with their pattern of
purchasing behaviors. However, strictly speaking, a large C value indicates clumpy
purchasing behavior given N and n. Under different pairs of N and n, clumpiness is
judged using a statistical test. Under the null hypothesis that intertransaction times
are random given N and n, we can make an empirical distribution of the C measure
using a Monte Carlo simulation,3 then, find the critical value of α% on the upper side
of the distribution. If the C value is larger than the critical value, then the customer’s
purchasing behavior is judged to be clumpy. The 5% percentiles on the upper side

2Zhang, Bradlow, and Small (2013) describe the details of this measure.
3See Appendix B of Zhang, Bradlow, and Small (2015) for the test in detail.
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Fig. 2 Empirical distributions of the C measure given N = 30

of the distribution under the null hypotheses of n = 14, 10, and 5 given N = 30
are calculated as 0.112, 0.163, and 0.289, respectively.4 Thus, only Customer D’s
purchasing behavior is considered to be clumpy because her C value, 0.315, is larger
than the critical value of 0.289. Figure 2 shows three empirical distributions of
the C measure given N = 30 under the above null hypothesis. The vertical lines
represent the critical value of 5% on the upper side of distributions. We found that
the shape of distributions and the corresponding critical values are stable to repeated
simulations.5

In their empirical applications, ZBS show that clumpiness is useful in many
but not all cases for predicting customers’ future purchasing behavior in terms of
visits and spending.6 However, ZBS also suggest that the context-specific nature
of clumpiness must be examined in a more systematic manner in future. In the
following sections, we conduct an empirical analysis for such a direction.

4 Data and Method

In this section, we explain the data and method used in our empirical analysis. We
also describe the modification of original metric (1) to adapt to the features of the
data.

4.1 Data

We use the ISMS Durable Goods Dataset 1 provided by Ni, Neslin, and Sun
(2012) for academic research. This contains customers’ purchase history at a major

4These figures are approximately obtained by conducting a Monte Carlo simulation of 20 thousand
repetitions with R Statistical Software (R Core Team 2017).
5Based on our 100 simulations, the standard deviations of the critical values for the cases of n = 14,
10, and 5 were about 1.0 × 10−4, 1.4 × 10−3, and 1.7 × 10−3, respectively.
6They measure C values not only by purchase intervals (Purchase-C) but also by visit intervals
(Visit-C) in their empirical applications.
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(anonymous) US consumer electronic retailer for 6 years from December 1998 to
November 2004. The retailer operates multiple stores. Not only transactions of
electronic durables but also those of products such as music CDs, bottled water,
and snack foods are included in this dataset.

To examine the usefulness of the C measure with RFM values, hereafter denoted
as RFMC measure, we divide the data into two periods: the period from the start of
December 1998 to the end of October 2002 is used for calculating RFMC measures,
while the period from the start of November 2002 to the end of November 2004 is
used for computing the number of purchase incidences and expenditure. We call the
former the in-sample period, and the latter the out-of-sample period.

To choose customers shopping at the retailer during relatively long periods in
similar situations, we set the following criteria: the first purchase was before the
end of January 2001, and shopping was done at only one store at least four times
after the first purchase in the estimation period. We find that 653 customers satisfy
the above criteria.

4.2 Method

We made some changes to the calculation of the C measure. In our dataset, the
purchase frequency is usually not high. Thus, the original formula by ZBS tends to
create a large C value if we use fixed start and end days for all customers.7 Then, we
decided to use customer-specific start and end days, and to calculate intertransaction
times between the first and the last purchase days for measuring C defined in the
following modified formula.

C = 1 +
∑n

i=1 log (xi) xi

log (n)
, (3)

xi =
{

t1
N

if i = 1,
ti−ti−1

N
if i = 2, . . . , n,

(4)

where the first purchase incidence is excluded when calculating xi . That is, t1 is
the interval between the first and the second purchase incidences, while tn is the
interval between the first and the last purchase occurrences. N is the number of
potential purchase opportunities between the first and the last purchase incidences.

Importantly, we judge not only clumpiness but also regularity of purchases by
each customer using Eq. (3). In particular, the critical value of α = 2.5% at both
sides of an empirical distribution is computed under a null hypothesis of random
intertransaction times. For each customer, if her measure (3) is higher (lower) than

7Rao (2015) pointed out a related problem in his commentary on ZBS’s original paper.
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the 2.5% upper (lower) side of a critical value, then she is judged to have a clumpy
(regular) purchasing pattern.

We calculate the chosen 653 customers’ RFM values and dummy variables,
identifying clumpiness and regularity by using in-sample data, and predict their
purchasing behavior; in particular, whether they purchase at least once and how
much they spend in the out-of-sample period.

For the prediction of purchase incidence, we conduct a Logit regression in which
the dependent variable is binary: one if customer i purchases at least once (Buyi =
1), or zero if she never purchases (Buyi = 0) in the out-of-sample period. In Logit
regression model, the probability that customer i purchases at least once (Buyi = 1)
during the out-of-sample period is given as

Pr (Buyi = 1) = exp
(
μ∗

i

)

1 + exp
(
μ∗

i

) , (5)

μ∗
i = β1 + β2Ri + β3Fi + β4Mi + β5Clumi + β6Regi , (6)

where Ri , Fi , and Mi are her recency, frequency, and monetary values, respectively
during the in-sample period, while Clumi or Regi is a dummy variable identifying
whether she has a clumpy or regular purchasing pattern during that period. That is,
if customer i’s measure (3) is higher (lower) than the 2.5% upper (lower) side of a
critical value, then Clumi = 1 (Regi = 1). Otherwise, Clumi = 0 (Regi = 0).

For the prediction of money amount, we conduct a Tobit regression whose
dependent variable is the money spending in the out-of-sample period, which is the
mix of continuous and discrete values: it is positive and varies continuously (Yi > 0)
if customer i purchases at least once during the out-of-sample period, while it is zero
(Yi = 0) if she never purchases in that period. Tobit regression model is formulated
as

Yi =
{

Y ∗
i if Y ∗

i > 0,

0 if Y ∗
i ≤ 0,

(7)

Y ∗
i = β1 + β2Ri + β3Fi + β4Mi + β5Clumi + β6Regi + εi, εi ∼ N

(
0, σ 2

)
,

(8)

where Y ∗
i is the unobserved latent variable expressing the tendency of money

spending and εi is the error term following a normal distribution. The same
explanatory variables as in (6) are also used in the Tobit regression. The parameters
{βi, i = 1, 2, . . . , 6} in the two regression models are estimated by the maximum
likelihood method.
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5 Result

Table 2 contains the summary statistics of explanatory variables during the in-
sample period and dependent variables during the out-of-sample period. On average,
a customer spends $ 1800 and makes purchases about 6 times in the in-sample
period. The mean duration between the most recent day of customers’ purchase and
the end of October 2002 is about 286 days. About 16% of customers have a clumpy
purchasing pattern, while about 2% of customers have a regular purchasing pattern.
About 64% of customers return to the store during the out-of-sample period. Note
that the average monetary value of $590 during that period is based on the purchase
history of all customers including those not returning to the store. Based on the
return customers’ purchase history, the average monetary value is about $927.

The first column in Table 3 shows the estimated parameters of Logit regression
(5)–(6). We find that recency and frequency are statistically significant. That is, they
have the predictive power about the probability of return purchase during the out-
of-sample period. If a customer has a low recency (high frequency) value, then the
probability increases. On the other hand, other variables including clumpiness do
not have that power. Table 4 shows the actual and predicted outcomes of purchase
incidence during the out-of-sample period based on the Logit model. The result is
reasonable since the rates of precision and recall are 69% (376/(166 + 376)) and
90% (376/(40+ 376)), respectively.

The second column in Table 3 shows the estimated parameters of Tobit regression
(7)–(8). We find that recency, frequency, and monetary value are statistically
significant. That is, they have the predictive power about the future money spending.
In addition, we find that regularity is significant, which means that a customer
who has a regular shopping pattern spends more in the future. On the other hand,
clumpiness is not significant as in the Logit model, and has no predictive power for
the future money spending.

Table 2 Summary statistics

Mean S.D. Max Min

In-sample period

Recency (days) 285.80 243.50 1115 0

Frequency (the number of purchases) 5.87 3.22 33 4

Monetary value ($) 1846.95 1618.13 11449.84 66

Clumpiness 0.16 0.36 1 0

Regularity 0.02 0.13 1 0

Out-of-sample period

Buy 0.64 0.48 1 0

Monetary value 590.50 1039.20 7980.90 0
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Table 3 Results of estimation by Logit and Tobit regressions

Logit Tobit 1 Tobit 2

Intercept 0.78∗∗∗ −156.69 −144.53

(0.26) (142.81) (140.80)

Recency −2.51 × 10−3∗∗∗ −1.46∗∗∗ −1.45∗∗∗

(3.72 × 10−4) (0.25) (0.25)

Frequency 0.10∗∗ 93.00∗∗∗ 91.00∗∗∗

(0.04) (19.68) (19.63)

Monetary value −1.88 × 10−5 0.09∗∗ 0.09∗∗

(6.56 × 10−5) (0.04) (0.04)

Clumpiness −0.18 217.77

(0.23) (151.29)

Regularity 0.52 1388.77∗∗∗ 1388.36∗∗∗

(0.70) (389.64) (388.93)

Frequency×Clumpiness 42.40∗

(24.81)

Note: standard errors are reported in parentheses
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Table 4 Actual and
predicted purchase incidence
based on the Logit model

Predicted outcome

Buyi = 0 Buyi = 1 Total

Actual outcome Buyi = 0 71 166 237

Buyi = 1 40 376 416

Total 111 542 653

However, if we remove clumpiness and add the interaction term between
frequency and clumpiness as the explanatory variable as follows:

Y ∗
i = β1 + β2Ri + β3Fi + β4Mi (9)

+ β6Regi + β7 (Fi × Clumi)+ εi, (10)

then, as shown in the third column in Table 3, we find the interaction effect is
weakly significant, which means that a customer with clumpy shopping behavior
who frequently visits the retailer during the in-sample period spends more than
other customers in the out-of-sample period. Moreover, this modification reduces
the mean absolute error of the money spending during the out-of-sample period
from 1527.27 to 544.52. This result seems noteworthy.

6 Conclusion

In this study, we focus on a new concept in customer relationship management
proposed by Zhang, Bradlow, and Small (2015) —clumpiness— which is a measure
of aspects of customers’ purchasing behavior that uses their intertransaction times.
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Contrary to Zhang, Bradlow, and Small’s (2015) findings, we do not observe that
customers with high C values (i.e., those whose purchasing behavior is clumpy)
purchase more in the prediction period than do other customers. Our empirical appli-
cation used transaction data for durable products (mainly consumer electronics) at
a physical retailer. The same products might have been available from competitors.
Thus, customers did not necessarily need to return to the retailer for new transaction.
However, we also find that the interaction effect between clumpiness and frequency
reduces the prediction error in customers’ future spending. That is, a customer with
clumpy shopping behavior who frequently visits the retailer will spend more than
other customers in the future. It suggests that clumpiness when combined with
frequency may become useful.

In addition, we find that customers with low C values (i.e., their purchasing
behavior has regular intervals) purchase more in the prediction period than do
other customers. Zhang, Bradlow, and Small (2015) did not focus on regularity
in transaction intervals. They may have considered that it is not surprising that
customers with regular transaction intervals return. However, the measure that they
developed (1), or that we modified (3), can be used for identifying regularity in
intervals. RFM measures could not identify such regularity in customers’ purchasing
behavior. Therefore, we consider that measures (1) or (3) are valuable tools for
summarizing an aspect of customers’ purchasing behavior.

To clarify the potential of the C measure, more empirical applications are needed.
Moreover, we should explore the cause of heterogeneous intertransaction times
among customers of products in the same category to develop a new model of
purchasing behavior of customers with heterogeneous intertransaction times. Platzer
and Reutterer (2016) proceeded in this direction. However, there remains much
research to be conducted to develop a new model of customers’ purchasing behavior.
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A Data Quality Management of Chain
Stores based on Outlier Detection

Linh Nguyen and Tsukasa Ishigaki

Abstract For successfully analyzing data in the business of chain stores, the quality
of data recorded in their shops or factories is a key factor. Data quality management
is an important practical issue because data qualities widely vary depending on the
managers or workers of many stores in the chain. In this paper, we present a data
quality evaluation method for shops in chain businesses based on outlier detection
and then, we apply this method to a dataset observed in real chain stores, which
provide tire maintenance for vehicles. To evaluate the data quality of each shop,
we use data about truckŠs tire information such as tread depth, tread pattern, and
distance which was recorded by the shops at maintenance time to calculate low-
quality data by using outlier detection methods with reliable experimental data and
practical knowledge. Some outlier detection methods such as Isolation Forest and
one-class Support Vector Machine are applied to detect anomalous tire information,
which is used to calculate dataŠs abnormal rate in each shop. Our result showed that
with this kind of data, Isolation Forest is outstanding than other methods because
Isolation Forest is designed to detect Şfew and differentŤ outliers. The proposed
method can support better maintenance services for customers as well as be able to
get more correct data from these shops, which will be useful for the next research.

1 Introduction

Customer satisfaction is interested topic for not only industry, but also academics
(Morgan et al. 2005; Anderson and Sullivan 1993; Anderson et al. 1997; Guo
et al. 2009). A numerous researches and practical experiments are presented that
service quality, service value, and customer satisfaction may all be directly related
to customer behavior (Jr et al. 2000; Choi et al. 2004; Lai et al. 2009; Grönroos
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1984). Therefore, remaining and improving customer satisfaction is an important
goal of many companies.

In chain stores, as human and device resources are in distributed area, retaining
service quality uniform is even harder (Beckman and Nolen 1938). If a customer
comes to a store and experiences a service, next time, when he comes to another
store in this chain, he hopes to receive at least same service quality. If the
service quality he received at second time does not match with it in first time, his
disconfirmation belief will be negative and affects directly to satisfaction, following
expectation and confirmation theory (Oliver 1977). An effective way to avoid this
situation is standardizing whole chain (Polo-Redondo and Cambra-Fierro 2008;
Smith et al. 2015).

Standardization takes the form of manuals, operating procedures, and other
blue prints to regulate individual behaviors so as to control, predict, and minimize
mistakes and deviation among employees (Wang et al. 2010).

Besides, data have become more and more essential in business process (chin
Chen et al. 2012; Chengalur-Smith et al. 1999). They contribute an objective
view in assessment besides human factor. In data quality management, we use
outlier detection algorithms to observe anomaly data. Anomalies can come from
many sources in collecting process such as failure sensor, imprecise measurement
tool, or inexact reader. This process allows us to track oddity rate of each store
and to highlight unreliable stores. Then, managers in headquarter cooperate with
employees in these unreliable stores to find the cause and give solutions. For
example, if the problem is human factor, they may re-train for employees, or if
device has trouble, they can supply a new one. This step also helps us clean data for
other research purpose as well as improve raw data quality in future.

In this paper, to standardization chain stores, we present a data quality evaluation
method for shops in chain businesses based on outlier detection and then, we
apply this method to a dataset observed in real chain stores, which provide tire
maintenance for vehicles. To evaluate the data quality of each shop, we use data
about truck’s tire information such as tread depth and distance which was recorded
by shop at maintenance time to calculate obviously low quality data by using outlier
detection methods with reliable experimental data and practical knowledge. Some
of outlier detection methods such as Isolation Forest and one-class Support Vector
Machine are applied to detect anomalous tire information, which make use for
calculate data’s anomaly rate in each shop.

2 Problem Setting

In this section, we give a high-level overview of our research and data problems,
which lead to our goals and solutions. Although the context is within our company,
these insights may be same with other chain stores.
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2.1 Research Problem

As we wrote in Sect. 1, if shops in a chain have not same service quality, it will affect
customer satisfaction of the whole system. To solve this problem, our research goal
is detecting unreliable shops which have low data quality, through dataset collected
from chain stores, so that managers and employees of these shops can propose
solution to improve it.

2.2 Data Description

We use a dataset observed in tire maintenance service chain. It contains 2.5M+ rows
with more than 200 stores in Japan. Because stores are in distributed areas, data they
collected have many problems such as missing values, anomalies, and uncorrected
label. We found that high proportion data ( 40%) which have enough information is
untrustworthy. Therefore, we need to review our data quality carefully.

2.3 Research Method

There are many data problems, but we focus on two characteristics which are not
easy to solve, and usually happen in real data, they are:

• High rated untrustworthy data
• Train data only has trustworthy data which can be generated from experiments

With these characteristics, in this work, we try to identify anomalies in high
rated noisy data to detect unreliable shops through semi-supervisor outlier detection
algorithms. To do this, we propose a Data Quality Management Method.

We provide the method in two steps:

• Step 1: Outlier Detection with the following algorithms:

– Isolation Forest
– One-class SVM
– Local outlier factor

• Step 2: Assessment

– Assess algorithms by F-score
– Assess shops
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3 Outlier Detection Algorithms

There are many outlier detection algorithms divided mainly into four categories:
statistical outlier detection methods, distance-based approaches, tree-based
approaches, outlier detection using kernel functions and Fuzzy approach with
the use of kernel functions (Petrovskiy 2003).

In statistical outlier detection, there are some famous methods such as tests and
regression analysis. All these methods require to construct a probabilistic data model
with supervisor data, so they are not suitable with noisy practical semi-supervisor
data.

Distance-based approaches are different. They do not require any probabilistic
model, but based on distance between data. Two well-known branches of this
approach are k-nearest neighbors (kNN) and local outlier factor (LOF). kNN
predicts class of a point by voting class of k-nearest points in training set. Therefore,
with one-class training set, kNN will consider every point in test set be normal and
cannot work. Different with kNN, LOF is only based on distance of a point with the
nearest points in same set. However, test set has a high outlier rate, and outliers are
near each other which leads LOF predicts them as normal.

Outlier detection using kernel function and Fuzzy approach with the use of kernel
functions, which Support Vector Machine (SVM) is the most notable algorithm,
focus on building the hyperplane bounds normal data. There are some studies about
SVM for outlier detection and we use Bernhard Scholkopf’s method (Scholkopf
et al. 1999). This method concentrates to create hyperplane, which has maximum
distance to the origin, to separate and bound the normal data. Because our data has
high untrustworthy ratio, and train data only has trustworthy data which generated
from experiments, it seems not appropriate methods.

There are not much tree-based approaches for outlier detection. However,
recently, Isolation Forest (Liu et al. 2008) which builds a number of binary
trees achieves the-state-of-the-art result. It gives two assumptions about anomalies
characteristics: minority and different. Despite the fact that our data do not have
these characteristics, characteristics of Isolation Tree allow us to beat them. In
Isolation Tree, we do not use the whole data to construct, but only a sub-sample.
Through sub-sample, we can control data size as well as anomalies set in each tree.
Not only novelty but also experiment shows that Isolation Forest be suitable with
real data which has characteristics described in Sect. 2.

In our research, we mainly use Isolation Forest, which belongs to tree-based
approaches. We also add one-class SVM with RBF kernel and poly kernel as well
as LOF to compare.
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Table 1 Assessment method

Predict positive Predict negative

Condition positive True positive (TP) False negative (FN)

Condition negative False positive (FP) True negative (TN)

4 Assessment Method

4.1 Algorithm Assessment

To highlight the accuracy to detect outlier, we use F-score and accuracy which are
calculated following:

precision= tp

tp + fp
; recall= tp

tp + f n
; accuracy= tp + tn

tp + tn+ fp + f n

(1)

where tp, tn, fp, tn are defined in Table 1. From that, we calculate F-score:

F − score = 2 ∗ precision ∗ recall

precision+ recall
= 2 ∗ tp

2tp + f n+ fp
(2)

4.2 Shop Assessment

After applying outlier algorithms, we can classify data into two groups: anomalies
and normal data. We will assess shops based on outlier percentage of each shop.

outlier_pci = n_anomaliesi

n_datai

∗ 100% (3)

where

⎧
⎪⎪⎨

⎪⎪⎩

outlier_pci : outlier percentage of shop i

n_anomaliesi : number of anomalies of shop i

n_datai : number of data in shop i

Good shops have low outlier percentage and vice versa, unreliable shops have high
outlier percentage.

5 Experiment

In this section, we present our detailed data as well as our result.
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Fig. 1 Tread and tread depth of tires

5.1 Data

We have a real dataset about tire maintenance information with 2.5M+ rows. One of
main purpose of tire maintenance service is checking tire and tread status as well as
tread depth as Fig. 1. Staffs in tire service will compare tread depth of checking day
and of the day started to use this tread to decide whether that tire is needed a new
tread or not as well as predict when it need a new tread. We use this dataset as test
set. And after removing missing values, we have:

• 256,788 rows
• Belong to 198 stores

Besides, we also have a train dataset which has 838 rows and contains only normal
data.
We use two main data features:

• Distance which is number of kilometers the truck run since a new tread was used
• Erosion (which is equal to difference between tread depth at new and current

average tread depth)

5.2 Implement

We use Isolation Forest,1 OneClassSVM2, and LOF3 models in sklearn package.
We implement the following four steps.

1http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html.
2http://scikit-learn.org/stable/modules/svm.html#svm-outlier-detection.
3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#
sklearn.neighbors.LocalOutlierFactor.

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://scikit-learn.org/stable/modules/svm.html#svm-outlier-detection
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
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Table 2 Hyperparameter settings for our model

Isolation forest One-class SVM(1) One-classSVM(2)

n_estimator = 100 ν = 0.1 ν = 0.1

max _samples = 500 kernel = RBF kernel = poly

random_state = 42 γ = 1/n_f eatures γ = 1/n_f eatures

5.2.1 Step 1: Train Models

We use the dataset which contains only normal data to train. We construct
hyperparameter settings as Table 2.

5.2.2 Step 2: Classify Data

We divide test dataset following shops and apply the models obtains in step 1 into
dataset of each shop. The predict result will belong to {1,−1}.
• −1 means this datum is anomaly
• 1 mean this datum is normal datum.

5.2.3 Step 3: Classify Shops into Good and Unreliable Groups

We applied Eq. (3) then acquire the percentage of outlier in each shop. We define
that if 0%–23% data of a shop are anomalies, it will be a good shop and if this
percentage is in range of 75%–100%, it will be an unreliable shop.

Figure 2 shows an example of good shop and two examples of unreliable shop.
We can see that unreliable shops have high proportion of data which have short
distance but extremely high erosion (Fig. 2b) or low erosion but extraordinarily long
distance (Fig. 2c). These data are reasonable to be considered as inexact data.

5.2.4 Step 4: Calculate Algorithm Accuracy

We create an obvious outlier area which based on technical information supplied by
company. The lines separated outlier area and normal area are defined as:

d = 2151× e and (4)

d = 27727× e which

⎧
⎪⎪⎨

⎪⎪⎩

2151 and 27727 are provided by company

d : distance (km)

e : erosion (mm)
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Fig. 2 Example of good shops and unreliable shops. (a) Good shop. (b) Unreliable shop. (c)
Unreliable shop

Then normal area is the area inside two lines which distance d and erosion e satisfy:

d ≥ 2151× e and d ≤ 27727× e (5)

and obvious outlier area is the area outside two lines which distance d and erosion
e satisfy:

d < 2151× e or d > 27727× e (6)

Then we calculate tp, fp, f n, tn following Table 1 with:

• Condition Positive: data which are not belong to obvious outlier area in 6
• Condition Negative: data which are belong to obvious outlier area in 6
• Predict Positive: data which are predicted as normal data by algorithms (Isolation

Forest, one-class SVM with RBF kernel, or one-class SVM with poly kernel)
• Predict Negative: data which are predicted as anomalies by algorithms.
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Therefore,

• tp: number of data which are not belong to obvious outlier area and are predicted
as normal data by algorithms

• fp: number of data which are belong to obvious outlier area but are predicted as
normal data by algorithms

• f n: number of data which are not belong to obvious outlier area but are predicted
as anomalies by algorithms

• tn: number of data which are belong to obvious outlier area and are predicted as
anomalies by algorithms

In addition, we calculate precision, recall, accuracy, and F-score for each shop
with each algorithm as in Eqs. (1) and (2).

Finally, we take the average of precision, recall, accuracy, and F-score of all
shops then compare results among algorithms.

5.3 Result

5.3.1 Result about Algorithm

We make Table 3 to compare the precision, recall, accuracy, and F-score of Isolation
Forest, SVM with RBF kernel, SVM with poly kernel, and LOF. Besides, we also
compare the results when using distance and taking logarithm of distance. In the
result, we can see that sometimes SVM looks like better than Isolation Forest.
However, the reason is that SVM with RBF kernel considers all data as outliers
and opposite, SVM with poly kernel considers all data as normal data. As we show
above, in this case, one-class SVM determined a bad original point which leads
all data space to become outlier or normal. With LOF, as we analyzed in Sect. 3,
LOF considers outlier data as normal because they are much near together. It leads
its results are much lower than other algorithms. We show an example in Fig. 3 to
make clear.

Table 3 Algorithm accuracy

Recall Precision Accuracy F-score

log(distance) Isolation forest 0.91 0.76 0.89 0.82

SVM RBF 0.98 0.70 0.88 0.82

SVM poly 0.23 0.48 0.62 0.25

LOF 0.07 0.36 0.31 0.39

Distance Isolation forest 0.56 0.72 0.77 0.57

SVM RBF 1 0.38 0.38 0.56

SVM poly 0.38 0.62 0.69 0.38

LOF 0.16 0.36 0.59 0.18
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Fig. 3 Compare the result of four algorithms in normal distance of Shop D14. The red line is
defined in Eq. (4). (a) Isolation forest. (b) SVM with RBF kernel. (c) SVM with poly kernel. (d)
LOF

Because of Isolation Forest outstanding algorithm, from now, we only use its
results.

5.3.2 Result of Unreliable Shops

We made a rank of shops and plot to see the relationship between outlier percentage
and distance in Fig. 4

6 Discussion

After discussion with managers of company we divide shops into groups like Fig. 4.
Best group contains shops have large data amount (≥250), but low outlier

percentage (<30%). And safe group contains shops have few data amount (<250)
and low outlier percentage (<23%). Company’s managers need to focus on highest
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Fig. 4 Group of shops based on emergency rate

emergency group and second highest emergency group. The reason we divided
unreliable shops into two groups is that company has many unreliable stores (∼41),
so it needs much finance, human resource, and effort to solve problems of all at
the same time. Corresponding with two groups, we divided our solutions into two
stages as Fig. 5.

First is the highest emergency group. It includes shops which have large data
amount (>250) and high outlier percentage (>75%). Company’s managers need to
concern it immediately. We proposed these solutions for company’s managers:

• Go to meet the managers of these shops and find the reason.
• Hold training for managers as well as employees of these shops.
• Let managers of these shops go to best shops to ask about experience along with

good processes.

Second, after solving problems of the highest emergency group, company’s
managers need to continue focusing on shops in second highest emergency group.
At that time, they need to run the model again to check the current situation of this
group. Shops in this group may move following two directions as Fig. 5b:

• Case 1: shops move to safe area or even best area. Shops in second highest
emergency group are new shops. Maybe, at first, they are not familiar with
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Fig. 5 Solution for company’s managers. (a) Deal with shops in Highest Emergency Group. (b)
Deal with shops in Second Highest Emergency Group

process, but after, they can modify by themselves and become good shops. With
this case, we do not need to do anything.

• Case 2: shops move to highest emergency area. At this case, we do as same
as Stage 1, but instead of asking experience of best shops, they will ask the
experience of shops which were in highest emergency group first, but now are
in best area. These shops have much experience about modifying themselves
from unreliable shops to good ones.

Our method not only uses once, but also has ability to apply in lifetime to control and
manage shop quality. Company’s managers can run the model quarterly, monthly,
or even weekly to assess quality improvement of shops in their chain.

7 Conclusion

This paper proposes a method to manage data quality of chain stores based on outlier
algorithms. In addition, we apply this method to a tire maintenance dataset.

Next, we present main groups of outlier algorithms as well as suggest two
algorithms: Isolation Forest and one-class Support Vector Machine. We also show
the performance of two algorithms and see that Isolation Forest is more suitable
with noisy data.

Moreover, we classify shops into groups and propose strategies for improvement
chain quality.

The proposed method can support better maintenance services for customer as
well as be able to get more correct data from these shops, which will be useful for
next research.
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Analysis of Expenditure Patterns
of Virtual Marriage Households
Consisting of Working Couples
Synthesized by Statistical Matching
Method

Mikio Suga and Yasuo Nakatani

Abstract This paper explores the impact of male and female living together,
namely “marriage.” We applied the statistical matching method and estimate the
scale merit of living together. In this method, different single households of the same
statistical survey are matched referring to information of members in the existing
household and create “virtual” households.

1 Introduction

Although benefits of marriage are generally recognized, the marriage rate has been
declining in Japan. The reasons could attribute to unclear advantages of settling
down. However, there is little research which examines the benefits of married
households by comparing with unmarried households with a relevant statistical
method. The unit of consumption expenditure is “household” in the ordinary
economic analysis. “Household” is a group of individuals (household members)
who live together with their residences. These household members are expected to
enjoy the benefits of saving consumption expenditure, that is, the scale merit, by
living together and share living costs. We applied the statistical matching method
and estimate the scale merit of living together. In this method, different single
households of the same statistical survey are matched by referring to information
of members in the existing households and create “virtual” households. In this way,
virtual households are synthesized, and compared with the existing households.
The feature of this method is that it is possible to efficiently analyze the impact
of differences in household structure on consumption expenditure for detailed
items. This paper explores the impact of male and female living together, namely
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“marriage”, on income and expenditure by using the micro-data of National Survey
of Family Income and Expenditure for the year 1989, 1994, 1999 and 2004.

2 Methodology

Following explanations of the statistical matching method and the nearest neighbor
matching is based on D’Orazio et al. (2006). First, the statistical matching method
of micro data is roughly divided into parametric approaches and non-parametric
approaches. Next there are three ways of non-parametric approaches: random hot
deck, rank hot deck and distance hot deck. Of these, the distance hot deck is also
called the “nearest neighbor matching”. Regarding the distance hot deck, there are
studies such as Okner (1982); Ruggles and Ruggle (1982); Rodgers (1982), etc.
In the nearest neighbor matching, each record of the recipient file is imputed by
the record of donor file that is nearest to the recipient. In this paper, we adopt
the nearest neighbor matching. First of all, y is work and salaries income and a

is age class. The superscripts of variables c denotes dual-income couple household,
s denotes single households, m denotes male household member, and f denotes
female household member. The lower subscript is the household identification
number. For example,ycm

j is the wage and salaries income of the male member
of the j-th dual-income couple household. In the anonymous sample data of the
NSFIE, the wage and salaries income is continuous data and the age class is discrete
data.

Here, the distance of the male member of the j-th dual-income couple household
and the k-th single male household is defined as follows:

dm
jk = wy ·

∣∣∣ycm
j − ysm

k

∣∣∣+wa ·
∣∣∣acm

j − asm
k

∣∣∣ j = 1, · · · , nc , k = 1, · · · , nsm

wy ∼ N
(
μy, σ

2
y

)

wa ∼ N
(
μa, σ

2
a

)

Here, w is weight, and n is the number of households. Note that,w is a normal
random variable that follows the normal distribution with mean μ and variance σ2.
Therefore, the distance changes stochastically and the calculation result changes
with each simulation. For this reason, we calculate 100 times for each year. The
minimum distance is expressed by the following equation.

d̂m

j k̂
= min

{
dm
j1, · · · , dm

jnsm

}
j = 1, · · · , nc .

However, the hat (∧) indicates that it is related to the minimum distance, d̂ is the
minimum distance, and k̂ shows the household number of a single household with
the minimum distance.
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Next, the distance of the female member of the j-th dual-income couple
household and the l-th single female household is defined as follows:

d
f
jl = wy ·

∣∣∣ycf
j − y

sf
l

∣∣∣+ wa ·
∣∣∣acf

j − a
sf
l

∣∣∣ j = 1, · · · , nc , l = 1, · · · , nsf

wy ∼ N
(
μy, σ

2
y

)

wa ∼ N
(
μa, σ

2
a

)
.

The minimum distance is expressed by the following equation.

d̂
f

j l̂
= min

{
d

f

j1, · · · , d
f

jnsf

}
j = 1, · · · , nc .

The expenditure of the i-th item of the virtual household is defined as follows.

EV irtual
ij = Esm

ik̂
+ E

sf

il̂
i = 1, · · · , nE , j = 1, · · · , nc

Here, E is the expenditure. By calculating the difference between the consumption
expenditure of this virtual household and the consumption expenditure of an actual
household, it is possible to estimate the influence of the difference in household
structure on item-specific consumption expenditure.

Dij = EActial
ij − EV irtual

ij i = 1, · · · , nE , j = 1, · · · , nc

For example, suppose there is a dual-income couple household consisting of male
whose age is 35 years old, and wage and salaries income is 250,000 yen, and women
whose age is 30 years old, and wage and salaries income is 200,000 yen. Male
member with age of 35 years old and wage and salaries income of 250,000 yen of the
dual-income couple household is matched with male of a single household whose
age is 35 years, and wage and salaries income is 250,000 yen. Females are matched
similarly. As a result, virtual dual-income couple households are synthesized, and
their expenditure pattern can be compared with households with actual households.

3 Data

In order to promote the use of statistical data, according to Article 36 of the
Statistical Law, which was fully implemented from April 2009, anonymous data
produced by administrative institutions who conduct statistical surveys is expected
to contribute to the development of academic research and higher education. It was
decided that the anonymous data could be supplied to user when the Director-
General for Policy Planning (Statistical Standards) admit it. Anonymous data is
processed in the way that the respondents cannot be identified by the specific
individual, corporation or other organization (including identification by matching
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to other information) In this paper, anonymous data of 1989, 1994, 1999, 2004 of
the National Survey of Family Income and Expenditure (NSFIE) were used.

The households to be analyzed are “dual-income couple households”. Its defini-
tion is a household consisted with couple only, and both male and female members
earn wages and salaries income. And the definition of single male household is
a single household of male who earn work and salaries income. Likewise, the
definition of a single female household is a single household of a female who earn
work and salaries income.

The purpose of the analysis is to measure the scale merit by living together.
If a single household who has non-living together family members, that single
household may bear the cost of living more than one person. And thus the scale merit
cannot be measured accurately. Likewise, if a couple household who has non-living
together family members, they may bear the living expenses of people other than
household members (other than that couple). The scale merit cannot be measured
accurately. Therefore, it is necessary to exclude households who have non-living
together family members from the analysis.

In the NSFIE, the non-living together family members and their break-
down(absence of main income earner, absence of non-main income earner, in
hospital, in school, and other cases) are being surveyed. There are few single
households who have non-living together family members, but about 10 to 20% of
dual-income households have non-living together family members, by the reason
of “non-main income earner in school”. This seems to be a case where a child
separates from parents while going to college or university far from house. In such
a case parents may pay tuition fees directly to college or university.

Also, it is well known that consumption expenditure differs greatly even at the
same income level depending on owning houses. Therefore, in order to accurately
measure the scale merit, it is necessary to choose whether household with owned
house or household without it for the target of analysis. According to the NSFIE
survey, small number of single households have their houses. Therefore, households
who owe their houses need to be excluded from targets of analysis.

As already mentioned, the NSFIE surveys non-living together families, and thus
households with non-living together families have been excluded from the target of
analysis. Moreover, there are some households who answered that they are “paying
remittance” while saying “non-living together family member is zero” at the same
time. Such households bear the living expenses of people other than household
members and should be excluded.

In the NSFIE, payment of remittances is surveyed, and 10 to 20% of dual-
income couple households paid remittances. Small number of single households
paid remittances. Even “households without remittance payment” do not necessarily
have “non-living together family.” There are cases where parents are paying rent and
education expenses directly.

As described above, as a result of excluding households with non-living together
families, households with owned households, or households with remittances
payment, the number of households to be analyzed has been determined (Table 1).
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Table 1 The number of
households to be analyzed

Dual income Single HH

Year couple HH Male Female

1989 501 997 701

1994 667 1174 710

1999 760 1084 633

2004 608 782 571

Note: HH is the abbreviation of “House-
hold”

Table 2 Descriptive statistics of earned income by gender (2004)

Male Female

Double income Double income

couple HH Single HH couple HH Single HH

Number of HHs 608 782 608 571

Mean 301,837 297,207 148,929 220,494

Standard deviation 118,793 114,261 96,630 104,199

Skewness 0.781 1.388 0.803 0.844

Kurtosis 2.329 4.833 0.018 1.438

Note: “HH” is the abbreviation of “Household”

Table 2 is the descriptive statistics of earned income by gender for the year 2004.
The distribution of male’s earned income of single household is more skewed than
that of double income couple household. The mean of female’s earned income of
single household is larger than that of double income household.

4 Results of Analysis

4.1 Estimation of Weights by Regression Analysis

In performing the nearest neighbor matching, it is necessary to determine the
weight of the distance. In the case of the missing value imputation, at first we
can experimentally create a missing value in the complete data, and on the second
impute the missing value by changing the weight variously. Finally, we adopt the
weight that can impute the missing value to be the nearest to the complete data. But
in this case, this approach is impossible, since this is not missing value imputation.
Therefore, weight estimation by regression analysis was performed. That is, for a
dual-income couple household, a regression analysis with no intercept such as the
following formula was conducted.

xc
j = wy · yc

j +wa · ac
j + uj j = 1, · · · , nc
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Table 3 Estimation results of regression analysis (1989–2004)

1989 1994 1999 2004

R square 0.807 0.844 0.823 0.738

Adjusted R square 0.804 0.842 0.821 0.736

Number of observations 501 667 677 608

Total income of couple Coeff. 0.554 0.510 0.488 0.415

Std. error 0.033 0.026 0.026 0.031

t-value 16.62 19.67 18.96 13.37

Average age of couple Coeff. 5953 7321 6782 11834

Std. error 1749 1638 1599 1797

t-value 3.40 4.47 4.24 6.59

Here, yc
j denotes the total earned income of the j-th dual-income couple household,

ac
j is the average age class of the j-th couple, and xc

j is the consumption expenditure
of the j-th dual-income couple household, and uj is the error term. Table 3 is
the estimation results of regression analysis. All estimated parameters are 1%
statistically significant and adjusted R squares are over 0.8 for 3 years and over
0.7 for all years.

5 Matching

Weight is set based on the regression coefficient estimated in the previous section
and its standard error. First, uniform random numbers from 0 to 1 are generated.
Next, the value of the inverse function of the cumulative distribution function of
the normal distribution with respect to the average (regression coefficient) and the
standard deviation (standard error) specified as the probability is obtained and set
as each weight. This was done 100 times for each of 4 years. Based on the weights
set in this manner, we matched male and female single households with the closest
distance to each of the male and female in the dual-income couple households.

5.1 Comparison of Income and Expenditure of Virtual
Households and Actual Households

Table 4 shows the income and expenditures of virtual households and actual house-
holds in 1989. Since the dual-income couple households and single households of
male and female are matched by wage and salaries income, the wages and salaries
income of the actual households and that of the virtual households are almost
same. The consumption expenditure of the actual household is 9% smaller than
that of the virtual household, indicating that consumption expenditure can be saved
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Table 4 The difference between actual and virtual households (1989), unit: JPY per month

Virtual HH Difference

Actual HH Mean Std. Dev Difference rate

Earned income 401,355 401,582 334 −227 0%

Consumption
expenditure

267,633 294,767 665 −27,133 −9%

Food 60,709 85,034 249 −24,324 −29%

Raw fish and shellfish 4051 1903 28 2148 113%

Raw meat 4291 2213 33 2078 94%

Fresh vegetables 5156 2731 25 2425 89%

Cooked food 3887 5870 90 −1983 −34%

Beverage 2368 4421 12 −2053 −46%

Eating out 18,170 43,909 254 −25,739 −59%

Housing expenditures 37,883 41,452 178 −3569 −9%

Fuel, light and water
charges

9827 8885 55 942 11%

Furniture and household
utensils

7794 5853 71 1941 33%

Clothing and footwear 20,506 29,170 96 −8664 −30%

Health care 6067 4322 108 1745 40%

Transportation &
communication

37,538 39,706 203 −2168 −5%

Education 144 456 51 −312 –

Culture and recreation 26,736 40,053 357 −13,317 −33%

Other consumption
expenditures

60,429 39,836 213 20,593 52%

Tobacco 2787 5218 63 −2430 −47%

Pocket money 21,650 132 23 21,518 –

Note: “HH” is the abbreviation of “Household”

if single household male and female lives together. Looking at the breakdown of
consumption expenditure, food can be largely saved. The actual households’ food
expenses are 29% smaller than the virtual households. Looking further at breakdown
of food, expenditure on perishable food expenditure is larger. On the other hand,
cooked food expenses, beverage expenses, eating out expenses are smaller. The
expenditure that can be saved next to food cost is the cultural and recreation
expenses. The third biggest expenditure is the clothing and footwear cost. On the
contrary, the other consumption expenditure of the actual household is larger than
that of the virtual household. Among the breakdown of them, the tobacco expenses
is smaller and pocket money is larger. Such a tendency can be observed similarly
for the other 3 years (Tables 5, 6, and 7).
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Table 5 The difference between actual and virtual households (1994), unit: JPY per month

Virtual HH Difference

Actual HH Mean Std. Dev Difference rate

Earned income 478,290 478,782 86 −492 0%

Consumption
expenditure

302,194 342,662 586 −40,468 −12%

Food 63,662 91,010 234 −27,348 −30%

Raw fish and shellfish 3721 1841 11 1880 102%

Raw meat 4043 2333 9 1710 73%

Fresh vegetables 5232 3125 16 2108 67%

Cooked food 5391 9175 20 −3784 −41%

Beverage 2778 5598 15 −2820 −50%

Eating out 19,106 45,173 199 −26,067 −58%

Housing expenditures 51,918 62,996 127 −11,079 −18%

Fuel, light and water
charges

11,977 12,009 21 −32 0%

Furniture and household
utensils

7833 7811 84 22 0%

Clothing and footwear 17,655 21,865 78 −4210 −19%

Health care 6179 4787 16 1392 29%

Transportation &
communication

42,246 41,957 162 289 1%

Education 6 212 0 −206 –

Culture and recreation 33,858 53,362 76 −19,505 −37%

Other consumption
expenditures

66,860 46,653 133 20,207 43%

Tobacco 1669 4914 47 −3245 −66%

Pocket money 28,390 559 2 27,831 –

Note: “HH” is the abbreviation of “Household”

Table 6 The difference between actual and virtual households (1999), unit: JPY per month

Virtual HH Difference

Actual HH Mean Std. Dev Difference rate

Earned income 483,208 485,237 345 −2030 0%

Consumption
expenditure

295,145 336,483 957 −41,337 −12%

Food 59,505 85,619 269 −26,114 −31%

Raw fish and shellfish 3166 1420 16 1747 123%

Raw meat 3785 1877 11 1908 102%

Fresh vegetables 4497 2705 35 1792 66%

Cooked food 5525 10,532 64 −5007 −48%

Beverage 2908 6714 25 −3806 −57%

Eating out 18,258 37,729 329 −19,471 −52%

(continued)
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Table 6 (continued)

Virtual HH Difference

Actual HH Mean Std. Dev Difference rate

Housing expenditures 58,726 63,988 320 −5262 −8%

Fuel, light and water
charges

13,226 14,402 65 −1176 −8%

Furniture and household
utensils

6875 4933 49 1943 39%

Clothing and footwear 14,103 19,863 316 −5760 −29%

Health care 7060 6672 53 388 6%

Transportation &
communication

43,977 51,998 229 −8021 −15%

Education 156 6 0 150 –

Culture and recreation 29,528 49,067 622 −19,540 −40%

Other consumption
expenditures

61,989 39,934 268 22,055 55%

Tobacco 1865 3786 54 −1921 −51%

Pocket money 25,135 594 33 24,541 –

Note: “HH” is the abbreviation of “Household”

Table 7 The difference between actual and virtual households (2004), unit: JPY per month

Virtual HH Difference

Actual HH Mean Std. Dev Difference rate

Earned income 462,809 464,058 67 −1249 0%

Consumption
expenditure

295,199 324,829 975 −29,629 −9%

Food 57,457 77,221 130 −19,765 −26%

Raw fish and shellfish 2521 1240 3 1281 103%

Raw meat 3026 1354 5 1672 123%

Fresh vegetables 3795 2278 2 1517 67%

Cooked food 6547 12,113 18 −5565 −46%

Beverage 3466 7943 8 −4477 −56%

Eating out 17,989 28,767 78 −10,779 −37%

Housing expenditures 51,796 61,720 994 −9924 −16%

Fuel, light and water
charges

12,349 14,842 14 −2493 −17%

Furniture and household
utensils

6393 5335 7 1058 20%

Clothing and footwear 13,750 16,745 18 −2996 −18%

Health care 8434 8582 16 −148 −2%

Transportation &
communication

52,139 52,932 73 −793 −1%

Education 2 0 0 2 –

(continued)
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Table 7 (continued)

Virtual HH Difference

Actual HH Mean Std. Dev Difference rate

Culture and recreation 30,779 43,769 108 −12,990 −30%

Other consumption
expenditures

62,101 43,683 27 18,418 42%

Tobacco 1478 4442 28 −2964 −67%

Pocket money 19,093 818 14 18,274 –

Note: “HH” is the abbreviation of “Household”

6 Conclusion

Considering that food expenses of actual households are smaller than virtual
households. Considering that the perishable foodstuffs expenses are smaller, and the
cooked food expenses, the beverage expenses, and the eating out expenses are larger,
if male and female live together. Presumably, instead of eating out, they purchase
fresh food items and cook at home to have a meal. Since eating out is generally more
expensive than eating at home, it is reasonable that you can save if you eat at home.
On the other hand, there are two ways to interpret that the actual households’ culture
and recreation expenses, clothing and footwear expenses, tobacco expenses are
smaller than the virtual households. One possibility is that each person’s behavior
changes as male and female live together. For instance, it can be interpreted that
clothing footwear expenses will decrease because partner has already been found.
It may be possible to say that tobacco expenses will decrease because the partner
dislikes the tobacco. However, such interpretation cannot explain that the culture
and recreation expenses are smaller. It is difficult to think that male and female
living together becomes to reduce recreational activities. Another interpretation is
that even if both male and female live together, social activities do not change, and
only the expenditure categories are changed. In other words, culture and recreation
expenses, clothing and footwear expenses, and tobacco expenses could be paid via
“pocket money.”
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The Effects of Natural Disasters on
Household Income and Poverty in Rural
Vietnam: An Analysis Using the Vietnam
Household Living Standards Survey

Rui Takahashi

Abstract This study analyzes the relation among natural disasters, household
income, and poverty using microeconometric methods. The effects of natural disas-
ters on household income and poverty have received international attention from the
United Nations, the World Bank, and similar organizations. In rural Vietnam, many
people live in poverty, and Vietnam is one of the regions suffering from considerably
great damage because of natural disasters. Further, we analyzed the effects of
natural disasters on household income and poverty in rural Vietnam using Vietnam
Household Living Standards Survey data. We conducted quantile regression to
clarify the relation between natural disasters and household income. Therefore,
we can confirm that droughts seriously affect all income classes, including those
living in poverty. Therefore, we should consider countermeasures against droughts
to alleviate poverty.

1 Introduction

Recently, the impact of natural disasters on economic development in many indus-
trializing and globalizing countries has become a severe problem that has received
significant interest from the international community. The 2010 World Development
Report, published by the World Bank, indicated that the ability to cope with risk
is poor in developing countries even though the risk of climate change is higher
in these countries when compared with that in developed countries (World Bank
2010). Also, the Institute for Environment and Human Security, United Nations
University has been actively investigating the effects of climate change on economic
development and poverty in developing countries. The research results are published
annually as the World Risk Report. According to the latest version World Risk Report
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2016, Vietnam ranks 18th among 171 countries in terms of natural disasters risk as
measured by the World Risk Index (WRI).

Although Vietnam has developed economically and has become a middle-
income country in Southeast Asia, natural disasters still cause immense damage.
For instance, the drought in the Mekong River Delta of southern Vietnam in early
2016 and the floods and storms in recent years in the North Central Coast and
the Northern Midlands and Mountains are still fresh in our memory. Furthermore,
almost all the shrimp farmers who have been surveyed belonging to the rural areas
of the Quang Ngai province located in the South Central Coast of Vietnam reported
losses in a natural disaster.1 The large population and high poverty rate in rural
Vietnam make the analysis of the effects of natural disasters on rural income an
urgent issue. Therefore, this research examines the effects of natural disasters on
the household income and poverty in rural Vietnam using microeconometrics based
on the aforementioned background.

In Sect. 2, we briefly explain the local administrative units in Vietnam for
defining a rural area. Section 3 gives information about the Vietnam Household
Living Standards Survey (VHLSS) data that we used for our analysis. In Sect. 4,
we examined the existing research and provide an overview of the climate patterns,
household income, and poverty in various parts of Vietnam. In Sect. 5, we conducted
empirical analysis using quantile regression. The final section provides our conclu-
sions.

2 The Administrative Areas of Vietnam

Vietnam is divided into three administrative tiers by the official administrative
system. The first tier is the province-level division; as of November 2017, this
division consists of 58 provinces and 5 centrally governed cities. Rural districts,
district-level towns, provincial cities, and urban districts make up the second tier.
Rural districts and district-level towns are under the authority of both the provinces
and the centrally governed cities. However, urban districts are only under the
authority of centrally governed cities. Provincial cities, on the other hand, are only
under provincial authority. The commune-level division is the third tier, and it
includes communes, commune-level towns, and wards. Communes are under the
authority of the second-tier rural districts, district-level towns, and provincial cities
but not under urban districts. Commune-level towns are only under rural districts.
Wards are under district-level towns, provincial cities, and urban districts. Urban
districts include only wards as the commune-level divisions.2 Since the term “rural

1We conducted a survey on shrimp aquaculture in rural areas of Quang Ngai province (Duc Pho
district) in March 2015.
2The commune is traditionally formed by several natural villages and hamlets.



Effects of Natural Disasters 367

area” in the statistics of Vietnam is generally defined as “commune, ” we also
consider commune to have the same meaning.3

In addition to the local administrative units established by the Vietnamese
government, there are six commonly known regions. In northern Vietnam, there
are the Northern Midlands and Mountains and the Red River Delta. In central
Vietnam, there are the North and South Central Coasts and the Central Highlands.
The Southeast and the Mekong River Delta are in southern Vietnam.4

3 Data

The VHLSS provides most of the household-level microdata, especially the data in
the income and expenditure survey included in the 2010 version (VHLSS 2010).5

The VHLSS is the most important survey concerning Vietnamese household
living standards and poverty. Therefore, the household-level microdata in VHLSS
datasets have been widely used for various research projects throughout the world.
The VHLSS has been conducted 10 times, including the Vietnam Living Standard
Survey (VLSS), which predates the VHLSS. The first survey, VLSS 1992/1993,
was conducted from 1992 to 1993, and the second survey, VLSS 1997/1998, was
conducted from 1997 to 1998. Since the sample households in VLSS 1997/1998
included the households surveyed in VLSS 1992/1993, we were able to create panel
data by merging both datasets.

In the 2000s, VLSS was renamed the VHLSS, consisting of panel surveys, and
the households have been surveyed every 2 years. VHLSS is a new research series
that began in 2002 (VHLSS 2002). It is possible to construct panel data because the
sample contains the household data from the previous surveys until VHLSS 2008,
which is the sixth survey conducted beginning with the first VLSS. Unfortunately,
VHLSS 2010 cannot be combined with VHLSS 2008 data to construct panel
data. The subsequent surveys VHLSS 2012, VHLSS 2014, and VHLSS 2016 are
necessary in order to prepare panel data using VHLSS 2010. Hence, we handled

3For example, the definition of “rural area” is “commune” in the Rural, Agricultural and Fishery
Censuses, which have been implemented by the General Statistics Office of Vietnam (GSO) every 5
years since 2001. However, along with economic development, there are many cases where the area
that was originally a commune is no longer a rural area. The definition of rural areas in Vietnam is
still an important issue today.
4However, Vietnam was divided into the following eight regions before September 2006: the
Northwest, the Northeast, the Red River Delta, the North Central Coast, the South Central Coast,
the Central Highlands, the Southeast, the Mekong River Delta. In this article, we also use this
regional division as needed.
5Because the VHLSS datasets are managed by the Department of Social and Environmental
Statistics of the GSO, it is necessary to apply for use to this Department. For VHLSS 2006 and 2010
(resampling data), it can be used in an on-site laboratory of the Institute of Statistical Mathematics
(IMS) in Japan (https://ds.rois.ac.jp/center3_micro/asia.html accessed on 11 Aug. 2019).

https://ds.rois.ac.jp/center3_micro/asia.html
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the data of VHLSS 2010 as cross-section data because we have not yet obtained
VHLSS 2012, 2014 and 2016.6

Also, the VHLSS datasets have included commune data obtained by interviewing
the head of each commune in addition to household-level data since the first VLSS.
In general, it is difficult to obtain the microdata, including information on household
income and natural disasters. For example, in the case of Cambodia, which is next
to Vietnam geographically and is also exposed to high natural disaster risk (8th
among 171 countries ranked by natural disaster risk measured by the WRI), the data
from the census of agriculture contain the information on natural disasters (Govt. of
Cambodia 2019). However, we are not able to obtain information on household
income or expenditure via the data. On the other hand, with VHLSS 2010 we
can provide information on both household income and natural disasters. Although
only commune datasets can provide the data on occurrence and damage of natural
disasters, we can analyze the causal relation between household income and natural
disasters by merging the household data including the information on household
income and the commune data including the information on natural disasters based
on the commune ID. In addition to this useful feature for the purpose of our analysis,
the VHLSS is highly reliable because the data have been inspected through peer
reviews of the many empirical studies on household income in Vietnam. These are
the major reasons why we regard VHLSS 2010 as appropriate data for our research.

4 Household Income and Climate Change in Vietnam

4.1 Climate Change and Natural Disasters in Vietnam

4.1.1 Regional Patterns of Climate

As mentioned in Sect. 2, Vietnam is a country that extends lengthwise from north
to south with high geographical diversity. Therefore, the climate is different in the
northern area, the central area, and the southern area of Vietnam. Figure 1 depicts
hythergraphs using data on rainfall and temperature obtained at meteorological
stations in various parts of Vietnam.

According to Fig. 1, the northern area of Vietnam is characterized by the tem-
perature that varies greatly throughout the year, but the fluctuation in precipitation
is relatively small. Hence, there is no clear distinction between a rainy season
and a dry season. However, it is noteworthy that precipitation fluctuates greatly in
the Northern Midlands and Mountains (Lai Chau) where flood damage has been
noticeable in recent years.

6It is desirable to use panel data for the control of endogeneity in the analysis as described below;
so we are now negotiating with the GSO for use of the VHLSS 2012, 2014, and 2016 datasets.
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Fig. 1 Climate characteristics in Vietnam (Hythergraph). Source: https://www.gso.gov.vn
accessed on 26 Nov. 2017. Note: The horizontal line indicates the precipitation averaged by month
between 2002 and 2010. Further, the vertical line indicates the temperature averaged by month
between the same period

Since the southern area of Vietnam belongs to the tropical zone, it is stable at
around 30 ◦C throughout the year with a slight change in air temperature. On the
other hand, the change in rainfall is large throughout the year, and it is possible to
distinguish clearly between a rainy season and a dry season.

In central Vietnam both temperature and rainfall fluctuate greatly throughout the
year. The hythergraph of Vinh on the North Central Coast demonstrates this feature
clearly. This area is one of the regions in the path of typhoons in Vietnam, and flood
damage has been considerable in recent years. It is a region where the risk of natural
disasters is high.

4.1.2 Regional Risk of Natural Disasters

Le (2019) argued that climate change is a natural disaster risk. He measured the
potential risks of natural disasters in various parts of Vietnam as the probability
of the occurrence of storms, floods, droughts, and other natural disasters, and
visualized them on a map.

According to Le’s research, the potential risks of natural disasters are higher in
the Northwest, the Northeast, the North Central Coast, and the Central Highlands
than in other areas. These results were consistent with the observations in the
hythergraphs where we confirmed that there was a large variation in the rainfall of
Lai Chau which is located in the Northern Midlands and Mountains, and there were

https://www.gso.gov.vn
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large temperature and rainfall fluctuations on the North Central Coast, in places such
as Vinh.

4.2 Household Income and Poverty in Vietnam

Next, we observed the distribution of household income by region and by urban-
rural areas in Vietnam and the differences. Table 1 confirms the change in the
poverty rate by region and by urban-rural areas. It can be observed from this table
that since 1998 the poverty rates in the Northern Midlands and Mountains, the North
and South Central Coasts, and the Central Highlands have been consistently higher
than in other areas. In other words, as confirmed in Sect. 4.1, these areas are regions
with high disaster risks; therefore, we can confirm there is a correlation between
risks of natural disasters and poverty rates.

In addition, by determining the poverty rate by urban-rural area in Table 1, we
can conclude that the poverty rate of rural households is consistently higher than
that of urban areas although the overall poverty rate has been decreasing.

Table 1 General poverty rate by region and residence (unit: %)

Regions and residence 1998 2002 2004 2006 2008 2010 2011 2012 2013 2014 2015

Whole country 37.4 28.9 18.1 15.5 13.4 14.2 12.6 11.1 9.8 8.4 7.0

Red River Delta 30.7 21.5 12.7 10.0 8.6 8.3 7.1 6.0 4.9 4.0 3.2

Northern Midlands and
Mountains

64.5 47.9 29.4 27.5 25.1 29.4 26.7 23.8 21.9 18.4 16.0

North and South Central
Coasts

42.5 35.7 25.3 22.2 19.2 20.4 18.5 16.1 14.0 11.8 9.8

Southeast 7.6 8.2 4.6 3.1 2.5 2.3 1.7 1.3 1.1 1.0 0.7

Central Highlands 52.4 51.8 29.2 24.0 21.0 22.2 20.3 17.8 16.2 13.8 11.3

Mekong River Delta 36.9 23.4 15.3 13.0 11.4 12.6 11.6 10.1 9.2 7.9 6.5

Rural 44.9 35.6 21.2 18.0 16.1 17.4 15.9 14.1 12.7 10.8 9.2

Urban 9.0 6.6 8.6 7.7 6.7 6.9 5.1 4.3 3.7 3.0 2.5

Source: https://www.gso.gov.vn accessed on 5 Aug. 2017
Note: Poverty rate is calculated by monthly average income per capita of household according to
the government’s poverty line for the 2011–2015 period, which is updated by the consumer price
index (CPI) as follows:

• 2010: 400 thousand dongs for rural areas and 500 thousand dongs for urban areas
• 2012: 530 thousand dongs for rural areas and 660 thousand dongs for urban areas
• 2014: 605 thousand dongs for rural areas and 750 thousand dongs for urban areas
• 2015: 615 thousand dongs for rural areas and 760 thousand dongs for urban areas

https://www.gso.gov.vn
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Fig. 2 Kernel densities of log real per capita expenditure in 1992/1993 and 2010. Source: VLSS
1992/1993 and VHLSS 2010, own calculations. Note: The data of real per capita expenditure are
evaluated by Jan. 2010 price using CPI

Figure 2 shows the estimation of kernel density by urban-rural area on the per
capita consumption expenditure (logarithmic value) of the whole of Vietnam based
on VLSS 1992/1993 and VHLSS 2010.7

According to Fig. 2, comparing the distribution of 1992/1993 with 2006, it seems
that the disparities between urban and rural areas did not change significantly since
the difference in locations of both distributions was almost unchanged. However,
the width of the distribution of per capita expenditure in rural areas has expanded
from 1992/1993 to 2006. In other words, widening disparities within rural areas can
be markedly observed.

In addition to this result, considering that nearly 70% of the population of
Vietnam lives in rural areas (Takahashi 2019) and the poor have been concentrated
in rural areas in recent years, it is extremely important to verify the impact of natural
disasters on low-income classes in rural areas.

7Kernel density estimators (KDE) estimates the density f (x) based upon observations on a
continuous variable x. The kernel density estimate of f (x) at x = x0 is as follows:

f̂ (x0) = 1

Nh

∑N
i=1K

(
xi − x0

h

)

We need to choose a kernel function K (·) and a bandwidth h to obtain kernel density plot.
Hence, the following kernel function and bin width were used:

• The Epanechnikov kernel: K (z) = (3/4)
(
1−z2/5

)
√

5
if |z| < √

5 and K (z) = 0 otherwise.

• h = 0.9m

n1/5 , where m = (sx , iqrx/1.349). iqrx is the interquartile range of x.
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5 Effects of Natural Disasters on Household Income

5.1 Existing Research on Natural Disasters and Household
Income

As mentioned above, it seems that there is a certain relation between natural
disasters and rural poverty in Vietnam. Hence, many existing studies have verified
the impact of natural disasters on the income of Vietnamese rural households using
data such as VHLSS. Arouri et al. (2015) are among the most noteworthy research
efforts in recent years. Their research used VHLSS 2004, 2006, 2008, and 2010 for
the analysis. Its remarkable feature was the analysis of merged commune data and
household data included in VHLSS. From VHLSS 2004 onward, only the commune
data contains information on natural disasters that occurred over the past 3 years.
Therefore, by merging commune data with household data, they could analyze the
impacts of natural disasters on household income.8

Their empirical model used for analysis is as follows:

ln
(
Yij t

) = β0 +Xijtβ1 + Cjtβ2 +Djtβ3 +XijtDjtβ4 + CjtDjtβ5 +Gtβ6 + εij t

(1)

Yijt is welfare indicator of household i at commune j in the year t ; Xijt is the vector
of characteristics of households; Cjt is the vector of characteristics of communes;
Djt is the vector of natural disaster dummies (i.e., storms, floods, and droughts that
happened in communes during the past 3 years); Gt indicates year dummies; and
εij t indicates unobserved variables.

The error term εij t might include unobserved variables at the commune level.
Thus, it can correlate with the natural disaster dummies, which are commune-level
variables. Therefore, Arouri et al. (2015) dealt with these endogenous problems by
conducting commune fixed-effect regression.

5.2 A Quantile Regression: Effects of Natural Disasters on
Household Income and Poverty

Arouri et al. (2015) explained the impact of natural disasters on rural household
incomes in Vietnam, coping with the endogeneity problem with a fixed-effect
model. However, the fixed- effect model conducted by Arouri et al. (2015) only
revealed the average effect of natural disasters on rural household income and
poverty. Hence, we conducted quantile regression to verify the effect of three natural

8Therefore, as the households to be analyzed belong to commune, which is defined as a rural area
in Vietnam statistics, the sample is limited to rural households.



Effects of Natural Disasters 373

disasters (storms, floods, and droughts) for each income class of rural households
using VHLSS 2010. To be more precise, the following q th Koenker and Bassett
estimator was estimated.

β̂q

a∼ N
(
βq , A−1BA−1)

A =∑ifuq (0|xi)xix′i , B =∑iq(1 − q)xix′i
(2)

Although fuq (0|xi) is the conditional density function of the error term uq =
y − x

′
βq at uq = 0, estimating this density function is awkward. Thus, we use a

bootstrap to estimate the variance-covariance matrix. The explanatory variables are
the same as the model used by Arouri et al. (2015).

Table 2 shows the results of our quantile regression in which household income is
used as a dependent variable. The household size, the proportion of adults aged 15–
60 in households, the percentage of high school degree holders in the households,
the proportion of upper-secondary degrees, the proportion of members with college
or university degrees, the total crop land area, per capita living area, the number
of communes with roads that are passable during all 12 months, the communes
with a market, and communes with firms are explanatory variables that indicate
significant positive effects on household income for any income class as expected.
On the other hand, ethnic minority (of the household head) and age of the household
head were significantly negative in any income class. The gender of the household
head and communes with irrigation systems only make a difference depending
on income class. From low-income class to middle-income class (Q10 to Q50),
if the gender of household head is female, it has a significant negative effect on
household income. However, a significant effect cannot be confirmed in the high-
income classes (Q75 to Q90). This is consistent with the fact that many women are
in poor and low-income categories, especially widows. In addition, communes with
irrigation systems indicate a significant negative effect in all classes except for the
low-income class (Q10). It seems that there are many households that depend on
agriculture in these communes, and household income tends to be lower.

How do natural disasters impact household income? For storms, significant
negative effects were seen in middle-income classes (Q50 and Q75). As for floods,
significant negative effects are seen in the middle- and high-income classes (Q50
to Q90). Regarding droughts, significant negative effects were seen for all income
classes.

Table 3 shows the results of quantile regression with the dependent variable as
agricultural income (crop farming and animal husbandry income). We confirmed
storms have significant negative effects in all classes except the lowest income class
(Q10). However, low- and middle-income classes (Q10 to Q50) have significant
positive effects for floods and droughts. Although these results might seem strange
at a glance, it is possible to understand that farmers breed livestock with the
expectation of its liquidity for consumption, so they are better equipped to cope
with the shocks caused by floods and droughts.
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Table 2 A quantile regression of household income in 2010

Explanatory variables
Household income (million VND)

Q10 Q25 Q50 Q75 Q90

Commune affected by 0.2103 −0.5515 −1.8275*** −2.2620** −1.3461

storm (0.5506) (0.4964) (0.5821) (1.0113) (2.2405)

Commune affected by −0.1084 −0.7694 −2.3104*** −4.5950*** −8.8872***

flood (0.5148) (0.4901) (0.5638) (0.9842) (2.1386)

Commune affected by −1.3675** −1.8190*** −2.2966*** −4.3552*** −7.9825***

drought (0.5727) (0.609) (0.7047) (1.076) (2.1114)

Household size 4.3331*** 5.7538*** 7.8544*** 10.6008*** 14.4509***

(0.1945) (0.2048) (0.2606) (0.399) (0.8569)

Proportion of adults 5.0352*** 8.8840*** 12.7918*** 18.1342*** 18.6413***

aged 15–60 in
households

(0.7753) (0.7815) (1.0228) (1.7961) (3.6909)

Ethnic minorities −8.3522*** −11.4451*** −14.7044*** −19.5583*** −24.2405***

(household head) (0.5951) (0.6113) (0.6843) (1.0795) (2.2103)

Age of household head −0.0419** −0.0768*** −0.0733*** −0.0955*** −0.2137***

(0.0181) (0.0171) (0.0198) (0.0312) (0.0723)

Gender of household −2.0897*** −2.1339*** −1.9458*** −1.9849 −0.7772

head (female= 1) (0.6012) (0.5627) (0.7082) (1.2193) (2.5082)

Proportion of members 11.2756*** 13.4486*** 22.2334*** 30.4729*** 42.4958***

with upper-secondary
degree

(1.6936) (1.2286) (2.2378) (3.3883) (6.5776)

Proportion of members 28.7283*** 59.0507*** 75.7484*** 103.8492*** 97.4081***

with college/university
degree

(7.5476) (6.7543) (5.8246) (6.9992) (18.156)

Total crop land area 0.3459*** 0.4958*** 0.6205*** 0.9162*** 1.6270**

(1000 m2) (0.0592) (0.061) (0.0694) (0.001) (0.7971)

Per capita living area 0.1692*** 0.2623*** 0.4224*** 0.7818*** 1.4779***

(m2) (0.0171) (0.0268) (0.0336) (0.0696) (0.1985)

Commune with road 1.7506*** 2.1797*** 3.5945*** 4.7396*** 6.7747***

passable all 12 months (0.5106) (0.5467) (0.5902) (1.1708) (2.1816)

Commune with −0.7363 −1.0064** −1.3290** −3.6966*** −4.4383**

irrigation system (0.4701) (0.4642) (0.5909) (1.0228) (2.3098)

Commune with a 0.3279 1.6295*** 2.3443*** 3.3519*** 6.2833***

market (0.5548) (0.515) (0.6285) (1.0484) (2.2415)

Commune with firms 3.0298*** 4.3828*** 5.9719*** 8.1810*** 14.0125***

(0.5333) (0.5263) (0.6501) (1.1713) (2.1017)

Constant −4.0479** −5.5955*** −9.7293*** −13.3335*** −17.6944***

(1.7914) (1.5115) (2.2356) (3.3885) (6.526)

Observations 6594 6594 6594 6594 6594

Pseudo R2 0.148 0.169 0.191 0.202 0.207

Number of communes 2198 2198 2198 2198 2198

Source: VHLSS 2010, own calculations
Note: Bootstrap standard errors with 1000 replications are in parenthesis
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Table 3 A quantile regression of agricultural income per household in 2010

Agricultural income (million VND)

Explanatory variables Q10 Q25 Q50 Q75 Q90

Commune affected by −0.0426 −0.3503*** −0.8633*** −0.6243** −0.4115

storm (0.0358) (0.1063) (0.2008) (0.2726) (0.5375)

Commune affected by 0.0707* 0.8333*** 0.6385*** 0.4540 0.6802

flood (0.0388) (0.1259) (0.2009) (0.2966) (0.5313)

Commune affected by 0.1352** 0.6052*** 0.6400*** 0.2014 −0.4262

drought (0.0665) (0.139) (0.2346) (0.3138) (0.5476)

Household size 0.0276*** 0.1857*** 0.5715 *** 0.9798*** 1.4658***

(0.0097) (0.0374) (0.0794) (0.1531) (0.3462)

Proportion of adults 0.2594*** 1.3022*** 2.9638*** 3.9476*** 4.0657***

aged 15–60 in
households

(0.0821) (0.1899) (0.3201) (0.5124) (1.0365)

Ethnic minorities 0.1830 0.4383** −0.1912 −1.4406*** −3.0738***

(household head) (0.1262) (0.1924) (0.0215) (0.3406) (0.6064)

Age of household head −0.0012 0.0124*** 0.0350*** 0.0429*** −0.0114

(0.0009) (0.0035) (0.0059) (0.0096) (0.018)

Gender of household −0.1000** −0.5028*** −1.1200*** −1.8596*** −2.5068***

head (female= 1) (0.0437) (0.0853) (0.1735) (0.3428) (0.6496)

Proportion of members −0.0024 0.2070 1.0735*** 2.2994** 8.0393***

with upper-secondary
degree

(0.0491) (0.1847) (0.4124) (1.0065) (2.2005)

Proportion of members −0.1688 −0.8710*** −2.2543*** −1.8741* −1.3790

with college/university
degree

(0.146) (0.2658) (0.4584) (1.0132) (1.4479)

Total crop land 0.6706*** 1.1024*** 1.8087*** 2.8437*** 4.2531***

area (1000 m2) (0.0324) (0.0447) (0.0967) (0.1782) (0.6112)

Per capita living −0.0022 −0.0014 0.0129** 0.0505*** 0.1937***

area (m2) (0.0014) (0.0026) (0.0063) (0.0171) (0.034)

Commune with road −0.0085 0.0821 0.6018*** 0.7932** 1.7445***

passable all 12 months (0.0232) (0.1) (0.2274) (0.3336) (0.4962)

Commune with 0.0745** 0.3810*** 0.7858*** 1.0693*** 0.4948

irrigation system (0.0345) (0.0821) (0.1669) (0.2848) (0.551)

Commune with a −0.0640** −0.3682*** −0.8665*** −0.7236** −0.7040

market (0.0309) (0.0792) (0.175) (0.3007) (0.5403)

Commune with firms −0.0119 0.0583 0.2483 0.3075 1.5404***

(0.0259) (0.1136) (0.1891) (0.3227) (0.5188)

Constant −0.2461** −1.9234*** −4.1566*** −5.0448*** −5.1723***

(0.1085) (0.3305) (0.5729) (0.9801) (1.9192)

Observations 6594 6594 6594 6594 6594

Pseudo R2 0.102 0.207 0.277 0.329 0.367

Number of communes 2198 2198 2198 2198 2198

Source: VHLSS 2010, own calculations
Note: Bootstrap standard errors with 1000 replications are in parenthesis. Agricultural income
contains the income from crop production and husbandry
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6 Conclusion

Based on the above analysis, it can be seen that storms had negative effects on the
middle-income class, and floods had negative effects on the household income of the
middle- and high-income classes and droughts had negative effects on the household
income of all income classes. Therefore, we need to consider countermeasures
against droughts for poverty alleviation. On the other hand, as far as agricultural
income is concerned, the positive effects of floods and droughts could be confirmed
in low- and middle-income classes. It is suggested that these low- and middle-
income classes engaged in agriculture to smooth their consumption by holding
livestock as liquidity against the shock of natural disasters.

Our research involves two tasks that have been left for the future. First, we could
not deal with the endogeneity problem caused by commune-level unobservable
variables, which Arouri et al. (2015) explained because the panel data could not be
constructed. For this reason, we will need to use quantile regression with fixed-effect
and instrumental variables using panel data in the future. Further data acquisition
efforts to construct panel data are necessary. Second, natural disasters are regionally
specific problems. Hence, we will need to analyze the relation between natural
disasters and household income considering the spatial autocorrelation such as
spatial econometric models.

Acknowledgments This study was carried out under the ISM Cooperative Research Program
(2017 ISM CRP83: Study on the Promotion of Secondary Use of Household Micro Data in Asian
Countries). Also, this study is supported in part by research and study Program of Tokai University
Educational System General Research Organization. Furthermore, I would like to thank Enago
(www.enago.jp) for the English language review.

References

Arouri, M., Nguyen, C., Youssef, A.B.: Natural disasters, household welfare, and resilience:
evidence from rural Vietnam. World Dev. 70, 59–77 (2015) https://doi.org/10.1016/j.worlddev.
2014.12.017

Govt. of Cambodia: Census of Agriculture of the Kingdom of Cambodia 2013: National Report on
Final Census Results, 2nd edn. Govt. of Cambodia, Phnom Penh (2015). https://www.nis.gov.
kh/index.php/en/12-publications/15-agriculture-\census-in-cambodia-2013-final-result. Cited
11 Aug 2019

Le, D.T.: Identifying 6000 communes that are the most vulnerable to natural hazards for
the Government CBDRM Programme. RTA (c2012). https://cms.rta.vn/identifying-6000-
communes-that-are-the-most-\vulnerable-to-natural-hazards-for-the-government-cbdrm-
programme. Cited 11 Aug 2019

Takahashi, R.: Features and problems of Vietnamese agriculture under industrialization. J. Fac.
Political Sci. Econ. Tokai Univ. 48, 177–196 (2016) (in Japanese). https://www.u-tokai.ac.jp/
academics/undergraduate/political_science_and_eco/kiyou/2016.html. Cited 11 Aug 2019

World Bank: Development and Climate Change. World Bank, Washington (2010)

www.enago.jp
https://doi.org/10.1016/j.worlddev.2014.12.017
https://doi.org/10.1016/j.worlddev.2014.12.017
https://www.nis.gov.kh/index.php/en/12-publications/15-agriculture-census-in-cambodia-2013-final-result
https://www.nis.gov.kh/index.php/en/12-publications/15-agriculture-census-in-cambodia-2013-final-result
https://cms.rta.vn/identifying-6000-communes-that-are-the-most-vulnerable-to-natural-hazards-for-the-government-cbdrm-programme
https://cms.rta.vn/identifying-6000-communes-that-are-the-most-vulnerable-to-natural-hazards-for-the-government-cbdrm-programme
https://cms.rta.vn/identifying-6000-communes-that-are-the-most-vulnerable-to-natural-hazards-for-the-government-cbdrm-programme
https://www.u-tokai.ac.jp/academics/undergraduate/political_science_and_eco/kiyou/2016.html
https://www.u-tokai.ac.jp/academics/undergraduate/political_science_and_eco/kiyou/2016.html


Generalizability of Relationship Between
Number of Tweets About and Sales
of New Beverage Products

Hiroyuki Tsurumi, Junya Masuda, and Atsuho Nakayama

1 Introduction

Today, many marketers analyze large online word-of-mouth (WOM) data sets of
social networking services (SNSs), such as Twitter, to gather information about
consumers’ product evaluations. However, if online WOM were not related to
product sales, which are performance indicators for many marketers, it could be
considered to be merely “buzz”. If, on the other hand, online WOM were related to
sales, then it would provide valuable marketing information. Although we cannot
directly control online WOM, whether there is a relationship between online WOM
and product sales should be determined.

Therefore, we studied the relationship between online WOM on SNSs and
product sales. Tsurumi et al. (2013) used path analysis to analyze the relationships
among the sales of product A (a new low-malt beer), its gross rating points (GRPs),
and the number of tweets about the product. The results revealed an indirect effect,
whereby TV advertisements increased sales via tweets.
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In this study, we tested the generalizability of this indirect effect based on the
results of a multigroup path analysis of data on new beverage products reported by
Tsurumi et al. (2015). The results indicated that the indirect effect is generalizable to
new beverage products, and we herein consider future directions for market research
based on these findings.

2 literature Review

Many studies on the relationship between Internet communication and product sales
rely on box-office records. Zufryden (2000) analyzed the association between the
box-office records and online traffic to official movie websites. Additionally, Liu
(2006) analyzed the association between negative/positive Yahoo! movie reviews
and box-office records. Mishne and Glance (2006) analyzed the impact of negative
blog posts on box-office records, and Gopinath et al. (2013) analyzed the relation-
ship between box-office records and pre- and post-release advertisements and blog
reviews.

Many previous studies focused on movies due to the ease of obtaining box-
office data. Additionally, the movie experience includes not only watching, but
also sharing reactions to movies both online and offline. Therefore, movie-related
data are easy to obtain and can be used to determine causal relationships. However,
movies are unique in their generation of widespread public comment.

Therefore, our previous study analyzed data on more generic products, i.e.,
consumer packaged goods (CPGs). Tsurumi et al.’s (2013) path analysis of data on a
low-malt beer showed that television advertising had an indirect effect on increasing
sales through Twitter posts. In this study, we analyzed data on four new beverage
products using multigroup path analysis, and compared these analysis results, to
determine the generalizability of this indirect effect.

3 Data

We analyzed data on the following products, which were all introduced in the
fall of 2011, to rule out any impact of previous marketing activities: product A
(low-malt beer), product B (milk tea), product C (green tea), and product D (non-
alcoholic cocktail). All data were collected on a weekly basis from September 2011
to February 2012.

The two variables of interest, “sales performance” and “price,” were calculated
using the National POS Index (NPI). The NPI is national point of sales (POS) data
on supermarkets in Japan provided by the Distribution Economics Institute of Japan.
We extracted data on 234 stores in Tokyo, Nagoya, and Osaka from the NPI.

Sales performance was defined by the purchase index (PI), which is the number
of a given product sold per 1000 visitors to a store. The GRPs of products in Tokyo,
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Nagoya, and Osaka were provided by Video Research Co., Ltd. (Japan). The number
of tweets (num. of tweets; defined as the number of tweets including the product
name) was calculated by a web crawler. We included geographical area dummy
variables. In a previous analysis, we showed that the fitness index was improved
by natural logarithmic transformation of the data; therefore, we performed a natural
logarithmic transformation of the variables.

4 Path Analysis

As the analysis was based on Tsurumi et al. (2013), we used a path analysis
approach. To improve generalizability, we subjected the data for the four products
to multigroup path analysis, where the grouping variable was the product. Tsurumi
et al. (2013) treated sales results, which are indicators of market performance,
as endogenous variables, and treated the number of tweets, GRP, price, and area
dummy variable as exogenous variables. Our model included an additional path,
from GRP to num. of tweets, to reflect the indirect effect of GRP on sales
performance (via num. of tweets).

5 Results

Figures 1, 2, 3, and 4 show the results of applying multigroup path analysis modeling
to the data for the four products. The goodness-of-fit (GFI) indices had relatively
high values: root mean error of approximation (RMSEA), 0.047; GFI, 0.977; and
adjusted GFI (AGFI), 0.840.

Area dummy1

Area dummy2

Price

GRP

Sales
Performance

Num. of
tweet

e1

e2

Fig. 1 Result of multigroup path analysis: product A (low-malt beer)
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Fig. 2 Result of multigroup path analysis: product B (milk tea)
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Fig. 3 Result of multigroup path analysis: product C (green tea)

5.1 Path From GRP to Num. of Tweets

The path from GRP to num. of tweets was positive and significant at the 0.05 level
for all products. Moreover, in all cases, the standardized coefficients were close to
1, indicating that TV advertising had a strong influence on num. of tweets.

5.2 Path From Num. of Tweets to Sales Performance

The path from num. of tweets to sales performance was positive and significant at
the 0.05 level for products A to C; only the path of product D was non-significant at
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Fig. 4 Result of multigroup path analysis: product D (non-alcoholic cocktail)

the 0.05 level (p=0.11). The latter result is attributable to the manufacturer’s decision
to launch a consumer giveaway campaign when the product was released. This
campaign involved automatically tweeting a predetermined phrase that included the
product name when consumers draw lots. These non-spontaneous tweets generated
an analytic noise.

5.3 Indirect Effect

The path from GRP to sales performance was non-significant at the 0.05 level for
three of four products, being significant only for product D. Thus, there was no
direct effect of GRP on sales performance for three of four products.

On the other hand, as noted above, the path from GRP to num. of tweets was
positive and significant at the 0.05 level for all four products. Furthermore, the path
from num. of tweets to sales performance was also positive and significant at the
0.05 level for all products except product D. Thus, GRP had an indirect effect on
sales performance via num. of tweets for three of four products.

No indirect effect could be confirmed for product D, because the relevant data
were influenced by the aforementioned Twitter campaign. Except for such special
cases, it appears that while television advertising has no direct effect on improving
sales performance, it does have an indirect effect via Twitter. Thus, the indirect
effect suggested by Tsurumi et al. (2013) generalized to the new beverage products
assessed in this study.

This phenomenon can be interpreted as follows. There are, at most, several
thousand tweets regarding each of the new products in this study per month.
Although it is difficult to understand how so few tweets could have sufficient
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influence to affect sales results, our data nevertheless showed that num. of tweets
was significantly positively related to the sales performance of these products.

Based on these results, we hypothesized that Twitter communication can be
considered a “proxy index of the topicality” of products. In other words, actual
Twitter posts only represent the “tip of the iceberg,” as they reflect both offline
and online reviews by consumers. Indeed, it is reasonable to assume that products
that generate numerous total reviews (i.e., reviews across all types of media) also
generate numerous online reviews, and vice versa. If so, marketers should treat
Twitter as not only a communication channel, but also as a marketing index that
reflects customer opinion and is associated with product sales.

6 Conclusion

This research had several limitations. First, our results pertain to only a few new
beverage products. Moreover, we did not consider the characteristics of Twitter users
or the content of their tweets. However, as we observed the indirect effects of such
Twitter traffic on the sales of several new beverage products, we hypothesize that
such effects will be observed for other beverage products as well. Indeed, although
additional verification is necessary, it is unlikely that this indirect effect is unique
to only these four beverages. We expect that the same indirect impact will be in
operation for many other types of consumer goods.

In the future, people will likely spend increasing amounts of time on SNSs,
and massive amounts of information will be shared by consumers on such sites.
As a result, the influence of online WOM on purchasing behavior will increase.
Furthermore, various kinds of information, such as photographs, music, videos, and
so on are shared on SNSs. In this context, marketers should place an even greater
emphasis on collecting and analyzing diverse data from SNSs to understand what
consumers are posting and reading on these sites. However, it will be difficult for
marketers to analyze the increasingly massive amounts of information that will
become available. Therefore, following the example of this study, marketers should
first identify the factors with the strongest effects on sales performance. Second,
they should focus on the SNS data with the strongest association with performance
indicators. Understanding the relationship between purchasing behavior and SNSs
will efficiently yield important marketing information.
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Cluster Distance-Based Regression

J. Fernando Vera and Eva Boj del Val

Abstract In distance-based regression analysis, the vector of continuous responses
is projected in a Euclidean space given by multidimensional scaling (MDS). One
of the main problems in this methodology is that of determining the number of
dimensions or latent predictor variables in this framework, particularly when a
large dissimilarity data set is observed in the predictor space. It is well known
that the combined use of cluster and MDS enables a better understanding of the
data and reduces the number of parameters to be estimated. Moreover, the most
appropriate approach is to integrate these procedures within a procedure that pro-
duces a cluster while simultaneously representing the cluster centres instead of the
original responses, in reduced dimensionality. In this paper, we propose a combined
methodology that uses cluster-MDS to determine a Euclidean configuration in a
reduced latent predictor space. Taking into account the classification obtained in
the response space, a distance-based regression model is fitted by projecting the
weighted average vector within each cluster onto the continuous response variable in
the clustered predictor space. The model is applied to a real-world data set obtained
from the automobile insurance industry.

1 Introduction

In distance-based regression analysis (see Cuadras and Arenas 1990; Cuadras
et al. 1996; Boj et al. 2010, 2016, 2017), the vector of continuous responses is
projected in a Euclidean space given by multidimensional scaling (MDS). The
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MDS configuration is obtained by considering a dissimilarity matrix (typically
Euclidean distances) between the observed elements in the predictor space. In a
general procedure, a dissimilarity matrix between individuals is the only predictor
information used, making the models applicable, for instance, to mixed (qualitative
and quantitative) explanatory variables or to a functional-type regressor.

A problem that arise with this approach is that of determining the number of
dimensions or latent predictor variables. This number rises as the sample size
increases with respect to the original number of predictor variables (if any), or when
the observed proximities are previously transformed by the well-known additive
constant procedure. A possible solution is to choose the effective rank of the
distance-based regression using ordinary or generalised cross-validation (OCV or
GCV), or Akaike or Bayesian information criteria (AIC or BIC) (see Boj et al.
2016, 2017). Although these methods effectively obtain an optimal dimension, e.g.,
in order to account for a proportion of the total geometrical variability, they do not
ensure an equally effective reduction in the number of latent variables.

It is well known that the combined use of cluster and MDS provides a better
understanding of the data while reducing the number of parameters to be estimated
(see Kruskal 1977). When the information in distance-based regression comes
from a large dissimilarity matrix in the predictor space, the use of cluster analysis
in conjunction with metric least squares MDS might, in situations such as those
described above, produce a suitable configuration in low dimensionality. Although
performing clustering and obtaining the MDS representation of cluster centres might
seem to be an acceptable alternative in such a situation, it should be noted that the
MDS reduced space is optimal for the embedded points, but it may not be optimal
for the superimposed clusters, while the cluster structure is usually only optimal in
the original space, but not in a reduced one.

To enhance the interpretation of the MDS solution and/or to obtain an adequate
fit of the model when a large number of objects must be represented, cluster-MDS
methods have proved to be useful, both in the classical and in the least squares
frameworks, (see Bock 1986, 1987; Heiser 1993; Heiser and Groenen 1997; Vera
et al. 2008), as well as in a probabilistic framework (Vera et al. 2009a,b). In this
paper, we propose a combined methodology that uses cluster-MDS to determine
a Euclidean configuration in a reduced latent predictor space. Then, assuming
the same estimated classification in the response space, we fit a distance-based
regression model by projecting the weighted average vector within each cluster onto
the continuous response variable in the clustered predictor space.

The rest of this paper is structured as follows: the model is described in Sect. 2,
after which we explain the cluster-MDS procedure in Sect. 3. Section 4 describes
the distance-based regression models used for prediction, and Sect. 5 illustrates the
performance of the proposed procedure by analysing a real-world data set. Some
concluding remarks are then presented in Sect. 6.
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2 The Model

Let us consider a sample of size N of objects O = {o1, . . . , oN }, from a given
population. Moreover, let us denote by Y : Y1, . . . , YN the random response variable
for which y = (y1, . . . , yN)� represents a realization, and w = (w1, . . . , wN)�, a
known positive weighting vector. On the other hand, Δ denotes a N ×N symmetric
matrix of dissimilarities δij between the objects. This matrix is assumed to be the
only information given in the predictor space, and can be obtained either directly
or from a set Z of independent variables, possibly including quantitative and
qualitative measurements or other nonstandard quantities, such as character strings
or functions.

Let X be the N × M matrix of (usually Euclidean) coordinates in a space
of dimension M , with M ≤ N − 1, obtained by an MDS procedure, such that
dij ≈ δij , ∀i, j = 1, . . . , N , where dij = d(xi , xj ), X = (x�1 , . . . , x�N)�,
xi ∈ R

M . Distance-based linear models (DB-LM) have been developed by Cuadras
and Arenas (1990), Cuadras et al. (1996) and Boj et al. (2010), and distance-based
generalised linear models (DB-GLM), by Boj et al. (2016) and Boj et al. (2017).
When M is large it is usually difficult to obtain a good fit of the model. Accordingly,
our aim is to reduce the N original objects into a small number T , with T � N

while simultaneously representing the T cluster centres in a Euclidean space of
dimension M̃ , using a cluster-MDS procedure. By these means, the new MDS
Euclidean configuration of the cluster centres, X̃, has the dimension T × M̃ , with
M̃ ≤ T − 1.

To fit a distance-based regression model, T clusters of objects Õt , t = 1, . . . , T ,
as presented in the above-described cluster-MDS procedure, are considered. To this
end, the criteria proposed by Vera and Macías (2017) to select the number of clusters
in a dissimilarity matrix are used. The positive weight vector is denoted by w̃ =
(w̃1, . . . , w̃T )�, where w̃t , t = 1, . . . , T is the sum of the original weights w for the
nt original individuals belonging to each cluster Õt , t = 1, . . . , T . It is assumed that
w̃ = 1, where 1 is the T × 1 vector of ones. The response variable in the clustered
space is denoted by ỹ = (ỹ1, . . . , ỹT )�, where ỹt , t = 1, . . . , T , are the weighted
means of the original individuals belonging to each cluster t , t = 1, . . . , T .

3 Reduction and Representation: Cluster Differences Scaling

Let us consider the set of sample units O = {o1, . . . , oN } and denote by Δ =
(δij ), i, j = 1 . . .N , a symmetric matrix of dissimilarities between them. Assume
that, based on a partition P(Δ) into T (T + 1)/2 classes Δt l , each individual is
allocated to one and only one of T clusters, denoting by E an indicator matrix of
order N ×T , whose elements eit are equal to one if individual oi , belongs to cluster
t , or zero otherwise. Thus, if we denote by Õt = {oi|eit = 1}, for t = 1, . . . , T , the
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hypothesis that the clusters form a partition is expressed as Õt

⋂
Õl = ∅, for t �= l,

and
⋃

t Õt = O .
The aim in cluster difference scaling is to achieve a configuration, X̃, of T points,

x̃t , t = 1, . . . T , in a Euclidean metric space of low dimension M̃ ≤ T − 1, which
is optimal in the sense that the associated vector of distances, d , in R

T (T−1)/2,
approaches as closely as possible to the estimated latent dissimilarities between
clusters. This model is based on the assumption that when the allocation leads to
individual oi ∈ Õt and individual oj ∈ Õl , their dissimilarity will be represented
in the model as the Euclidean distance dtl between cluster centres x̃t and x̃l . For a
partition, the dissimilarities are assumed to vary randomly within a cluster, while
the corresponding distance is constant within the same cluster, whereas between
clusters, differences in distance will reflect the tendency of the corresponding
dissimilarities to vary systematically (see Heiser and Groenen 1997). Therefore, the
objective here is to minimise the loss function, which is termed stress and defined
as:

σ 2(E, X̃) =
∑

t≤l

∑

i∈Ot

∑

j∈Ol

wij (δij − dtl)
2, (1)

where dtl is the Euclidean distance between points x̃i and x̃j . Considering the Sokal-
Michener dissimilarities between blocks (see Sokal and Michener 1958) denoted by
δtl , the stress can be written as follows:

σ 2(E, X̃) =
T∑

t≤l

N∑

i=1

N∑

j=1

eikejlwij (δij − δtl)
2 +

T∑

t≤l

w̃t l(δt l − ˆ̃
dtl)

2, (2)

where

δtl =

N∑

i=1

N∑

j=1

eit ejlwij δij

w̃t l

, and w̃t l =
N∑

i=1

N∑

j=1

eit ejlwij . (3)

The parameters of the model are estimated in an alternating least squares
procedure in which the following two steps can be distinguished:

Step 1 Initialisation: First a random classification E(0) is obtained for a value T

previously set by the investigator. Then the Sokal-Michener dissimilarities

are calculated and an initial configuration X̃
0

is obtained using classical
MDS.

Step 2 Allocation: An indicator matrix E = (eit )N×T is estimated, with eit = 1
if oi ∈ Ot and zero otherwise for i = 1, . . . , N , determining a partition
P(Δ) into T (T + 1)/2 classes Δt l . To this end, let us denote by κ2(E) =
2σ 2≤(E) with wij = 1,∀i, j , except wii = 0, and let ‖ai − b(i)

t ‖2 denote
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the squared Euclidean distance between the ith row of the N × c matrix
A = {air} and the kth row of the T ×c matrix B = {bkr}, where c = N−1.
The elements of A and B are specified as air = δ∗ir and b

(i)
tr = δ

∗
t r , where

δ∗ir = δis and δ
∗
t r =

∑
l eslδt l for r = 1, . . . , N − 1, with s = r if r < i,

and s = r + 1 if r ≥ i. Then κ2(E) satisfies

κ2(E) =
∑

i

∑

t

eit‖ai − b(i)
t ‖2,

that is, the classical k-means criterion for dissimilarities, and minimising
(2) with respect to E is equivalent to minimising κ2(E).

Step 3 Geometrical representation: Given the estimated values for E, a configu-
ration X̃ = (x̃�1 , . . . , x̃�T )� is estimated for the cluster centres such that

δij ≈ dtl,∀δij ∈ Δt l,

where dtl = d(x̃t , x̃ l), ∀t, l = 1 . . . T .

The stress function, (2), is then evaluated and the procedure concludes if the
convergence criterion holds that the differences between two consecutive values of
the stress should be below a previous fixed small quantity. If it does not, steps two
and three are repeated until convergence is achieved. Finally, a configuration X̃,
usually in low dimension M̃ is estimated.

4 Distance-Based Prediction

This section describes distance-based regression models, in terms of the responses
Ỹ , the weights w̃ and the coordinates X̃ of the cluster space.

4.1 Distance-Based Linear Model

The response Ỹ , the weights w̃ and the distance matrix Δ̃ are said to follow a DB-
LM when μ̃ = E(Ỹ ) w̃-centred (that is, J̃ μ̃, where J̃ is the w̃-centring matrix,
defined as J̃ = I −1w̃�) belongs to the column space G̃ of G̃ (see Boj et al. 2016).

The expression of DB-LM hat matrix is

H̃ = G̃
(
D

1/2
w̃

F̃
+
D

1/2
w̃

)
,

where Dw̃ = diag(w̃) is a diagonal matrix which diagonal entries the weights w̃,

F̃ = D
1/2
w̃

G̃D
1/2
w̃

,

and F̃
+

is the Moore–Penrose pseudo-inverse of F̃ .
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Giving an overparametrised model with unstable predictions, it is advisable to

replace the pseudo-inverse F̃
+

with a lower rank approximation, implemented in
Boj et al. (2017) by the singular value decomposition. Various criteria, such as OCV,
GCV, AIC or BIC can be used to choose the dimension, termed effective rank (see
Boj et al. 2017).

DB-LM contains weighted least squares (WLS) as a particular instance: in
general, if we start from a w-centred N ×M matrix X of M continuous predictors
corresponding to N objects and we define Δ as the matrix of Euclidean distances
between rows of X, then X is trivially a Euclidean configuration of Δ, hence the
DB-LM hat matrix, response and predictions coincide with the corresponding WLS
quantities of ordinary LM. The fitted values can be calculated as follows:

ˆ̃y = ¯̃y1+ H̃
(
ỹ − ¯̃y1

)
,

where ¯̃y = w̃�ỹ is the w̃ weighted mean of ỹ.
Assume that a new original object oN+1 is available, and that it is given the

1 × N vector δN+1 of distances from oN+1 to the N previously known objects. In
the cluster space, the new object is termed the new cluster object õT+1. Now, the
1×T vector δ̃T+1 of distances from õT+1 to the T cluster centres must be calculated.
These can be obtained by using the distances δN+1 to calculate the (weighted) means
in each cluster t for t = 1, . . . , T , that is, the weighted mean of the distances of
δN+1 for the objects belonging to each cluster. To this end, õT+1 can be represented
as an M̃-vector xT+1 in the row space of X̃ using the Gower interpolation or add-a-
point formula (Gower 1968) as follows:

ˆ̃yn+1 = ¯̃y + 1

2
(g̃ − δ̃

2
T+1)

(
D

1/2
w̃

F̃
+
D

1/2
w̃

) (
ỹ − ¯̃y1

)
,

where g̃ is the 1 × T row vector with the diagonal entries of G̃.

4.2 Distance-Based Generalised Linear Model

A DB-GLM consists of random variables Ỹ = (Ỹ1, . . . , ỸT )� whose expectation,
μ̃ = (μ̃1, . . . , μ̃T )�, transformed by the link function and w̃-centred, is a vector in
the column space G̃ of G̃, that coincides with the column space of any Euclidean
configuration X̃ of Δ̃ (see Boj et al. 2016).

Like GLM with respect to LM, DB-GLM differs from DB-LM in two aspects:
The response distribution belongs to the exponential dispersion family, and the
relation between the linear predictor η̃ = X̃β (where β ∈ R

M̃ is an M̃×1 parameter
vector of the latent Euclidean configuration X̃), and the response ỹ is given by a link
function, g(μ̃t ) = η̃t . DB-GLM are fitted using an iterative weighted least squares
(IWLS) algorithm where DB-LM substitutes LM.
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As in DB-LM, a decision about the effective rank of the regression can be taken
according to GCV, AIC or BIC criteria. Furthermore, DB-GLM contains GLM as a
particular case.

A new original object oN+1 described by δN+1, the distances to the N previously
known objects, can be predicted as follows: First, to calculate δ̃T+1 for õT+1 in the
cluster space. Second, to estimate ˆ̃ηT+1 with the quantities of the last IWLS step by
making use of the Gower interpolation add-a-point formula. Finally, the prediction

is ˆ̃μT+1 = g−1
( ˆ̃ηT+1

)
.

DB-LM and DB-GLM can be fitted using functions dblm and dbglm of the
dbstats package for R, see Boj et al. (2017).

5 Actuarial Application

The cluster distance-based procedure is illustrated with a real-world data set
obtained from the automobile insurance industry. In this example, we study the
random variable claim severity in the non-life insurance context. This variable is
commonly used in the a priori rate-making (see, e.g., Haberman and Renshaw 1996
or Boj et al. 2004 among other references), where the objective is to determine:

Claim frequency=Number of claims/Number of policyholders or exposures,
Claim severity=Total claim amount/Number of claims,
Pure Premium=Claim frequency x Claim severity.

In the a priori ratemaking, the clusters correspond to the different risk groups in
the final tariff, and therefore we wish to reduce the dimension. To standardise the
data, a subset related to own-damage cover for passenger cars of the sedan category
is selected. A period of 21 months from 01/06/2010 to 29/02/2012 is considered.
This period includes 22,050 cases from which a subset of 1439 is chosen, which
corresponds to insured vehicles without franchise and private use, excluding the
missing data. The relevant information is

Response: Claim severity (or mean claim amount per claim).
Weights: Number of claims.
Mixed predictors: Vehicle age (continuous); Vehicle power (continuous); Vehicle

weight (continuous); Vehicle price at new (continuous), Driver age (continuous);
Vehicle brand (categorical nominal with 19 categories with the following levels:
AMERICAN, CHEVROLET, CHINESE, CITROEN, FIAT, FORD, HONDA,
HYUNDAI, KIA MOTORS, MAZDA, MITSUBISHI, NISSAN, PEUGEOT-
RENAULT, SAMSUNG, SUBARU, SUZUKI, TOYOTA, VOLKSWAGEN,
OTHER).

The original distance matrix is calculated from the predictor information using the
Gower similarity index (see Gower (1971)). These data have 23 degrees of freedom
in a classical GLM.
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5.1 Fitting Distance-Based Regression

Two DB-GLM models are fitted using the function dbglm in the R package
dbstats (Boj et al. (2017)). The first DB-GLM, dbglm1, is fitted using relative
geometric variability equal to 1, i.e., taking into account all the dimensions, 162:

R> dbglm1 <- dbglm(D, CM_TOTAL, weights = NUM_TOTAL_SIN,
data = AUTOMOBILE, family = Gamma(link = "log"),
method = "rel.gvar", rel.gvar = 1); dbglm1

Call: dbglm(D2 = D, y = CM_TOTAL, ... = pairlist(data =
AUTOMOBILE), family = Gamma(link = "log"), method =
"rel.gvar", weights = NUM_TOTAL_SIN, rel.gvar = 1)

family: Gamma

Degrees of Freedom: 1438 Total (i.e. Null); 1276 Residual
Null Deviance: 2305
Residual Deviance: 1963

AIC: 13383.48
BIC: 14242.77
GCV: 1.4315

R> dbglm1$eff.rank
[1] 162

The second DB-GLM, dbglmGCV, is fitted using the GCV criterion to choose the
effective rank:

R> summary(dbglmGCV)

Call: dbglm(D2 = D, y = CM_TOTAL, ... = pairlist(data =
AUTOMOBILE), family = Gamma(link = "log"), method =
"GCV", full.search = TRUE, weights = NUM_TOTAL_SIN,
range.eff.rank = c(1, 162))

Deviance Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.120 -1.172 -0.494 -0.412 0.266 4.256

(Dispersion parameter for Gamma family taken to be 1.852228)

Null deviance: 2304.6 on 1438 degrees of freedom
Residual deviance: 2265.63 on 1434 degrees of freedom

Number of Fisher Scoring iterations: 7
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Fig. 1 DB-GLM results for the original data set using the Gower similarity index, for mixed
predictors and Method="GCV" dbglm. The values of the GCV statistic up to 162 dimensions
are shown. The minimum is achieved for four dimensions (in red)

Convergence criterion: DevStat

AIC: 13362.95
BIC: 13389.31
GCV: 1.31

From the obtained results we see that the effective rank using the GCC criterion
is equal to 4, with 57.82% explained geometric variability. Figure 1 had shown the
values of the GCV statistic for different dimensions, from 1 to 162, with a minimum
of 4 for a value of 1.31.

We then see that y and w are vectors of dimension N = 1439, and X is of
dimension N ×M , where M = 162. When the GCV criterion is used, the effective
rank is equal to 4.

5.2 Fitting Cluster Distance-Based Regression

This section illustrates the proposed cluster distance-based regression. First the
cluster-MDS is applied to the data. Using the Hartigan statistic (see Vera and Macías
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Fig. 2 Stress values for the cluster-MDS procedure, for T = 21 clusters and two to ten dimensions

2017), we obtain that for T = 21 clusters, the optimal value of the stress is
0.02042572 attained for M̃ = 7, as shown in Fig. 2.

In the application, T = 21 clusters (21 � 1439) are obtained. The optimal
dimension is M̃ = 7, 1 ≤ M̃ ≤ 20, and the coordinates X̃ are of dimension T ×
M̃ = 21 × 7. Thus, 21 clusters or risk groups are obtained. We then calculate the
weighted means of the original response in each risk group to construct the new ỹ.
The original weights for the claims belonging to each risk group t , for t = 1, . . . , T

are summed, to obtain w̃ of dimension 21 × 1. From the cluster-MDS we obtain X̃

of dimension 21 × 7. The associated inner products matrix G̃ = X̃X̃
�

is a positive
semidefinite matrix.

A DB-GLM model is fitted assuming a Gamma distribution and the logarithmic
link, termed dbglmAICclus. The AIC criterion is used in the dbglm function.
The values of the AIC statistic are calculated for dimensions ranging from 1 to 7,
reaching a minimum at 7, as expected, i.e., all the dimensions of the cluster-MDS
are included, thus explaining the total geometric variability of G̃. Figure 3 shows
the values of the AIC statistic for the different dimensions, reaching a minimum at
7 with a value of 8262.97. The command predict of the object dbglmAICclus
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Fig. 3 DB-GLM fitted model for the cluster latent classes using Method = "AIC" dbglm
Values of the AIC statistic for one to seven dimensions. The minimum value is reached at seven
dimensions (in red)

allows us to make predictions for new cases. The resulting cluster distance-based
model can be summarised as:

R> summary(dbglmAICclus)

Call: dbglm(G = Gclus, y = yclus, family = Gamma(link = "log"),
method = "AIC", full.search = TRUE, weights = wclus,
range.eff.rank = c(1, 7))

Deviance Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.01600 -1.21000 -0.29760 -0.09088 0.91100 2.61600

(Dispersion parameter for Gamma family taken to be 3.209092)

Null deviance: 78.09 on 20 degrees of freedom
Residual deviance: 41.17 on 13 degrees of freedom

Number of Fisher Scoring iterations: 7
Convergence criterion: DevStat

AIC: 8262.97
BIC: 8271.33
GCV: 0.05
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6 Concluding Remarks

Distance-based regression analysis is based on the projection of the vector of contin-
uous responses in a Euclidean space given by multidimensional scaling (MDS). One
of the main problems encountered in this approach is that of determining the number
of dimensions or latent predictor variables. When this number becomes large,
for example, when the sample size increases with respect to the original number
of predictor variables (if any), or when the observed proximities are previously
transformed by the additive constant procedure, it is usually difficult to obtain a good
fit of the model. In this paper, a combined procedure of cluster-MDS and distance-
based regression analysis is proposed for situations in which the information to be
analysed is obtained from a large dissimilarity matrix.

It is well known that the combined use of cluster and multidimensional scaling
provides a better understanding of the data and reduces the number of parameters
to be estimated. Since the MDS reduced space is optimal for the embedded points,
but not for the superimposed clusters, while the cluster structure is only optimal in
the original, non-reduced space, integrating the two procedures to represent cluster
centres instead of the original responses in reduced dimensionality is the most
appropriate approach. Given the estimated classification in the response space and
the cluster centres configuration, the fitting of a distance-based regression model is
performed by projecting the weighted average vector within each cluster onto the
continuous response variable within the clustered predictor space.

In our paper, the above procedure was applied to the a priori ratemaking process.
Claim severity was been fitted in automobile insurance with respect to own-damage
cover. First, the clusters and the MDS configuration were calculated, obtaining a
total of 21 risk groups for the tariff in a low seven-dimensional space, and then a
DB-GLM was fitted to the cluster data, assuming a Gamma distribution and the
logarithmic link.

Although a two-step procedure in this framework works well, the formulation of
a cluster distance-based regression model that simultaneously incorporates these
two procedures within a structural equation model framework (Vera and Rivera
2014; Vera and Mair 2019) is a promising approach that is currently being addressed
by the authors.
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Bayesian Network Analysis of Fashion
Behavior

Keiko Yamaguchi and Hiroshi Kumakura

Abstract Fashion behavior, i.e., consumer behavior with regard to choosing,
purchasing, and wearing clothing, is diverse and intricate because it springs from
consumers’ complicated contexts. It is important for those in the fashion industry to
understand the full picture of fashion behavior, find ways to sustain their customers’
interest in fashion, and promote their products appropriately. However, as far as we
know, there has been little comprehensive research on the diverse and intricate chain
reactions involved in fashion behavior. In light of this gap in our understanding,
the aim of this research is to describe consumer fashion behavior holistically using
a Bayesian network approach with actual business data. We train four types of
Bayesian network with different constraints, finding that different types of network
are best suited to describing the behavior of men and women. Then, we validate
the theoretical consistency of the selected networks by comparing their results with
the findings of previous studies. In this paper, we mainly focus on fashion-related
problems and consumer impulse buying behavior because of space limitations. In
addition to these academic contributions, we demonstrate how businesses could
apply Bayesian networks in describing fashion behavior, allowing marketers to
use sensitivity analysis to devise potential marketing campaigns and change their
customers’ behavior.
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1 Introduction

Let us begin our study with the following customer stories.

When I was at school, I took a part-time job in Harajuku, the most fashionable neighborhood
in Japan, which inspired me to become interested in fashion. I purchased a lot of clothes,
eventually acquiring an outrageous purple suit that I could only wear in Harajuku.

My clothing allowance increased after I got married, so I was able to choose more luxurious
brands than I had ever owned before.

How can we interpret these episodes from a marketing viewpoint? They demon-
strate that, with consumer behavior, changes to the environment can cause psy-
chological and behavioral changes, leading to changes in fashion behavior. Some
aspects of this process have been studied in fields such as fashion psychology,
life course theory, and experiential consumption theory. For instance, Solomon and
Schopler (1982) and O’Cass (2000) investigated consumer behavior with respect
to clothing in a fashion psychology context, and Moschis (2007) studied changes
in consumer behavior due to changes and events in terms of life course theory.
The Diderot effect (McCracken (1990)) is one of the most famous findings about
fashion behavior in the field of experiential consumption theory. However, as far
as we know, few studies have attempted to describe the entire consumer behavior
process. The aim of our study is therefore to describe the whole picture of consumer
fashion behavior using empirical data.

One of the most significant advantages for marketers will be to obtain the
entire perspective on such behavior, not just some details of it, so that they
can use suitable psychological and environmental triggers to encourage their
customers to, for example, visit their stores or purchase their products. Previous
research has enabled marketers to understand some of the relationships between
environmental and psychological factors and consumer fashion behavior, but not
the causal relationships among those factors. Hence, we perform simulations to
see how customer behavior would change as a result of particular environmental
and psychological triggers. This study aims to increase understanding of the causal
relationships between factors involved in fashion behavior by analyzing the results
of simulations based on a Bayesian network approach.

After describing the whole picture of fashion behavior, we validate its theoretical
consistency by comparing our results with the findings of previous studies. Since
most of these studies focused on only one aspect of the bigger fashion behavior
picture, we compare them with the corresponding aspects of our picture. On the
basis of these validations of particular aspects of the fashion picture, we mainly
consider impulse buying behavior in a fashion context and consumer rationality here
owing to space limitations because impulse buying is one of the most significant
and interesting fashion behaviors (Shima and Ohashi (1994)) and has been widely
investigated in previous research.

Finally, we aim to derive some management insights from the results of our
network.
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2 Literature Review

As discussed above, in this paper, we mainly consider the impulse buying aspect
of the broader picture presented in the next section. In order not only to validate
this aspect theoretically but also to interpret some relationships between it and other
factors involved in fashion behavior, we now review the literature on impulse buying
behavior and highlight some of the important findings.

“Impulse buying” is the name given to sudden, unpremeditated purchases where
the customer had no previous intention of buying either that specific product or
a product in that category. Such behavior occurs after the customer experiences a
sudden, irresistible urge to buy and tends to be spontaneous, without much reflection
(Beatty and Ferrell 1998). Impulse buying behavior occurs most frequently in
situations where the consumer deems such behavior to be appropriate, such as when
buying a gift for someone else (Solomon 2002).

Further categorizing impulse buying enables us to understand its characteristics
in more detail, and it is typically divided into four types: pure impulse buying,
reminder impulse buying, suggestion impulse buying, and planned impulse buying
(Stern 1962). Of these, only pure impulse buying represents truly impulsive buying,
a novelty or escape purchase that breaks with the customer’s normal buying pattern.
On the other hand, reminder impulse buying occurs when seeing an item reminds a
consumer of information related to that item.

Much research has been done into various aspects of impulse buying. With
respect to fashion behavior, an interest in fashion and positive feelings about fashion
directly affect fashion-oriented impulse buying (Park et al. 2006). In addition,
hedonic consumption has an indirect effect (Park et al. 2006), and impulse buying
also helps to satisfy hedonic needs and provide emotional gratification (Hausman
2000; Piron 1991).

Gender affects not only fashion behavior but also impulse buying. Females
tend to be more impulsive than males (Dittmar et al. 1995; Wood 1998; Coley
and Burgess 2003) and tend to buy symbolic and self-expressive goods that are
associated with their appearance and the emotional aspects of their selves. On the
other hand, males tend to impulse-buy practical and leisure items that project their
independence and activities (Dittmar et al. 1995).

3 Explanatory Analysis of Fashion Behavior

In this study, we train several Bayesian networks based on the fashion behavior
of either men or women. Gender is one of the most crucial factors to consider
in a fashion context because the gender-related differences in impulse buying
behavior have been widely discussed in the fashion behavior literature (Dittmar et
al. 1996), (Khan et al. 2016; Pentecos and Andrews 2010; Tifferet and Herstein
2012). Moreover, practically speaking, fashion goods are typically sold in gender-
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segregated shops, and the types of goods consumers buy are totally different for
each gender. We want to include consumer purchase behavior in our approach, so
we conduct separate analyses for each gender. Our preliminary network analysis
also supported the importance of gender in the network.

3.1 Data

For this study, we used data provided by an anonymous fashion e-commerce site in
Japan via the Joint Association Study Group of Management Science. This included
two types of data: histories of purchases on the site between April 2015 and March
2016 and data from a survey the site’s customers completed during the week of
March 17th, 2016. Both datasets included 985 men and 2159 women. Owing to the
timing of the survey, we excluded the purchase history data after the survey from
consideration.

From these two datasets, we extracted factors related to fashion behavior and
divided them into five groups: Demographics, Environment, Consumer sentiment,
Fashion sentiment, and Behavior. Table 1 shows the extracted factors and their factor
groups.

For the Environment group, we extracted the environmental changes that
occurred during the data period from the responses to open questions in the survey
by morphological and latent semantic analysis. First, we excluded unnecessary
or inappropriate words (e.g., “nothing”) from answers to open-ended questions,
corrected misspellings and missing words in the answers, standardized the
expressions using a dictionary, and extracted morphemes from them using RMeCab
(a Japanese morphological analysis package for R). Then, we conducted a latent
semantic analysis by deducing the contextual meanings of the words used,
extracting the meanings of nouns that were used by more than 2.5% of the
respondents because many of the answers consisted only of nouns. Finally, we

Table 1 The five groups of factors related to fashion behavior used in this study and their related
data source

Group Factors Data source

Demographics Age, gender, membership Survey

Environment Marital status, income, occupation, fashion
budget, pregnancy, childcare

Survey

Consumer sentiment Philosophy of life, happiness, general feelings
about consumption

Survey

Fashion sentiment Thoughts about fashion, problems with
fashion, changes in fashion interest

Survey

Behavior Changes in fashion behavior, purchase timing,
purchased product categories, purchase
frequency, purchase types (on sale, reserved)

Survey, purchase
history
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integrated dimensions such that they satisfied the condition that the cumulative sum
of the singular values was 0.5.

The most significant difference between the Consumer and Fashion sentiment
groups is whether or not the questions focused on feelings specifically related
to fashion purchases. Hence, although factors in the Consumer sentiment group
represent consumers’ tendencies to, for example, cherry-pick and impulse-buy,
factors in the Fashion sentiment group deal with consumers’ problems and thoughts
about fashion.

The types of product purchased were included in the Behavior group in Table 1.
We selected the top 70% of the product categories purchased by volume for each
gender and created a binary variable for each category indicating whether or not a
given consumer purchased a product from that category during the data period.

3.2 Training the Bayesian Network

As discussed in the Introduction, we took a Bayesian network approach in describ-
ing the entire range of consumers’ fashion behavior. A Bayesian network is a
probabilistic graph-based model that represents a set of random variables and their
conditional dependencies in terms of a directed acyclic graph. We used the bnlearn
package for R, developed by Scutari (2010), to train the Bayesian network and
estimate its conditional probability tables using the following procedure:

1. Train 500 networks with resampled data using a bootstrap process.
2. Average the networks and select the most significant paths.
3. Estimate conditional probability table for each node.

In Step 1, we applied a score-based learning algorithm and used the Bayesian
Dirichlet equivalent score (BDe) as a goodness-of-fit index for the algorithm. The
networks trained in Step 1 were then averaged, and the most significant paths in
the averaged network were selected using the “significant threshold” index (Scutari
2013). This resulted in a more robust network with better predictive performance
than choosing the single highest scoring network (Nagarajan et al. 2013). Finally,
we estimated the conditional probability table for each node in the averaged network
using the Bayesian method with a non-informative prior distribution.

The edges in the graph and their directions were learned automatically from
the data by following the above steps. However, not all edges and directions are
theoretically equally likely from a consumer behavior theory viewpoint. In order to
extract a more reasonable and realistic network from the data, we added some path
constraints to the network learning process, as shown in Fig. 1. The first constraint
was that paths to the Demographics group from the other factor groups were not
allowed. Factors in the Demographics group are generally fixed from the start of the
data period, so we hypothesized that these would not be affected by the other factors.
The second constraint was that no paths to the Environment group were allowed
from the Consumer sentiment, Fashion sentiment, or Behavior groups. Over just one
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(a) (b) (c)

Fig. 1 Possible paths under the constraints in (a) Model 1, (b) Model 2, (c) Model 3. Double
lines represent paths in both directions. Bold arrows are possible one-way paths newly added as a
restriction in each model. Acronyms in nodes indicate feature groups as follows: D: Demographics,
E: Environment, CS: Consumer sentiment, FS: Fashion sentiment, B: Behavior

year, environmental changes are likely to cause changes in sentiment or behavior,
but not vice versa, so we believed that this would be a reasonable constraint in
this case. The third constraint was that paths were not allowed from the Fashion
sentiment group to the Consumer sentiment group or from the Behavior group
to either of the other two sentiment groups. This was because consumer behavior
theory suggests that general consumer sentiments are not caused by more specific
sentiments, and how consumers behave is a consequence of what they think or
feel. We trained four models by adding these constraints one by one: the Base
model, Model 1, Model 2, and Model 3. The Base model was trained without
any constraints, whereas Model 1 included the first constraint, Model 2 included
the first two constraints, and Model 3 included all three constraints. Model 3 thus
represented the most rational consumer behavior model of the four options. All of
the models were trained by following the three steps outlined above.

3.2.1 Validation

We used two indices to select the best model for each gender from the four
models listed above. First, we did k-fold cross-validation with k = 1 +
ln(number of samples)/ ln(2) to calculate the expected log-likelihood loss.
Second, we recalculated the BDe score for each averaged network to check its
final goodness-of-fit. The best model for each gender was then selected based on
these two metrics.

3.3 Results

3.3.1 Model Selection

The box charts in Fig. 2 show the log-likelihood losses for each model, and the
goodness-of-fit (BDe) scores are listed in Table 2. For men, both the box charts and
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(a) (b)

Fig. 2 Log-likelihood loss box charts for men (a) and women (b)

Table 2 Goodness-of-fit (BDe) values for the four network models

Base model Model 1 Model 2 Model 3

Men −64,373.1 −64,338.5 −64,405.4 −64,273.2

Women −143,717.3 −143,727.9 −143,677.1 −143,831.9

BDe scores show that Model 3 was the best, so we chose Model 3 to describe men’s
fashion behavior. For women, on the other hand, no one model was the best with
respect to both indices. Using the Base model values as a baseline, only Model 2
improved on the baseline in any way, having the lowest BDe value.

Figure 3 shows an overview of the network selected for men, with the dotted
rectangles indicating the factor groups to which the network nodes belonged.
(Owing to space limitations, only this network is shown as an example.) In order
to explain the differences between the men’s and women’s networks in detail, Fig. 4
shows network overviews for both genders where the nodes have been divided into
interpretable node clusters. In the men’s network, the nodes are roughly divided
into five clusters, namely, Environment changes, Fashion problems, Life priorities,
Consumer and fashion sentiment, and Product category and purchase behavior. The
women’s network shows six clusters, some with slightly different characteristics
from those in the men’s network: Environment and fashion sentiment changes, Fash-
ion problems, Life priorities, Consumer and fashion sentiment, Product category,
and Purchase behavior. Owing to the constraints on the paths allowed, the flow of
the men’s network looks more rational, and the nodes in the men’s network related
to sentiment and purchase behavior were clearer than those in the women’s network.
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Fig. 3 Overview of the men’s network

3.3.2 Implication of the Networks

Next, we investigated the differences between men’s and women’s networks to
obtain some managerial insights.

One of the most interesting differences between men and women is how they
think when faced with a fashion-related problem such as, “I cannot buy clothes
because I do not have enough money for fashion.” Figure 5 shows the relevant parts
of the networks for both genders, and the signs indicate the polarities of the node
relationships based on the network’s conditional probability table: a positive sign
means the node is likely to be true if its parent is true, whereas a negative sign
means the node is likely to be false if its parent is true. Figure 5 indicates that, for
men, this type of problem can be cured by the realistic solution of having a generous
budget he can spend freely when he sees nice clothes. On the other hand, women
are likely to feel sad when faced with this type of problem and tend to (negatively)
restructure their emotional life instead of searching for realistic solutions. These
differences imply that fashion purchasing decisions tend to be made functionally by
men and emotionally by women. Previous studies support this gender difference in
practice (Barrett et al. 1998). For example, NeuroFocus (2009) showed that there
were fundamental differences between the male and female brains and that women
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Fig. 4 Node clusters in the men’s (a) and women’s (b) networks and their interpretations

have a markedly higher tendency to attach emotional significance to stimuli than
men.

Another interesting difference can be seen in the triggers for impulse buying and
its consequences. The sub-networks for impulse buying shown in Fig. 6 indicate
that men who go shopping without a specific purpose and consider brands when
shopping are likely to make impulse purchases. This implies that always carrying
mobile devices could make people more brand-aware and that this brand knowledge
could become a trigger for impulse buying. Emotional aspects, such as releasing
stress, are just a consequence of purchasing behavior. On the other hand, the causes
of impulse buying in women are more emotional: women are likely to buy fashion
products impulsively because buying clothes is a way to release stress. In addition,
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(a) (b)

Fig. 5 Men’s (a) and women’s (b) sub-networks for fashion-related problems

(a) (b)

Fig. 6 Men’s (a) and women’s (b) sub-networks for impulse buying

women who frequently look at what other people are wearing or who show a strong
commitment to fashion as, for example, part of their lifestyle are more likely to buy
clothes to release stress and ultimately make impulse purchases.

According to Park et al. (2006), commitment to fashion has a direct, positive
impact on impulse buying and also has a positive effect on tendency to hedonic
consumption and hence indirectly on impulse buying. We derived the same findings
from the women’s sub-network in Fig. 6 and could categorize women’s impulse
buying as “pure impulse buying,” as defined by Stern (1962), because the triggers for
women’s impulse buying were emotional state and the need to escape from stress.
On the other hand, should men’s impulse buying be categorized as “pure impulse
buying”? The cause here was brand awareness when shopping without a specific
purpose, and there was no emotional driver in the men’s sub-network. This implies
that men were more likely to impulse-buy when they were reminded of their need for
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fashion by seeing, for example, a brand name on a sign, and hence, their behavior
should be categorized as “reminder impulse buying.” In summary, men’s impulse
buying was functional and cognitive, whereas women’s was emotional. Dittmar
et al. (1995) and Coley and Burgess (2003) suggested that men mainly buy practical
products on impulse, whereas women focus on products related to appearance, and
brands are seen as assuring the quality of goods. Our finding that men’s impulse
buying is driven by brand awareness agrees well with the findings of these previous
studies.

In this study, we have taken a Bayesian network approach to describe the
reasons for impulse buying by men and women and have highlighted some of the
differences shown by previous studies. Our study’s novel contribution to the field
is that we also conducted sensitivity analyses of the men’s and women’s networks
to derive managerial insights and plan marketing activities, such as how to promote
impulse buying. Sensitivity analysis is also known as belief updating or probabilistic
reasoning. In particular, we simulated how the posterior probability of an objective
node, the node representing impulse buying tendency, would change given hard
evidence. As hard evidence, we chose to set the “Check other people’s clothes
frequently” and “Consider brands when shopping” nodes to be true or false. Table 3
shows posterior probabilities that the objective (impulse buying tendency) node is
true given these pieces of evidence. It also shows the marginal probability of the
objective node without any evidence as a baseline for comparison.

When the “Check other people’s clothes frequently” node was set to be true, the
posterior probability given evidence is higher than the marginal probability, whereas
no change for men. This result implies that checking other people’s clothes would
reinforce women’s impulse buying tendencies. Hence, marketers who want their
female customers to buy products on impulse might consider designing a system
that encourages women to regularly check out other people’s clothes. However, such
marketing plan would not affect men’s sentiment or behavior.

On the other hand, when we set the “Consider brands when shopping” node to
be true, the posterior probability is higher than the marginal probability for men
and lower for women. When marketers are planning to promote impulse buying,
reinforcing the impact of brand names would be effective for men so that male
customers can easily recognize them and be reminded of their needs for fashion.
Unfortunately, this marketing plan would not work as well for women. These

Table 3 Sensitivity analyses for two pieces of evidence: posterior probability of “impuluse buying
tendency”

Evidence True False

Men’s network

Consider brands when
shopping

0.616 0.422

Check other people’s clothes
frequently

0.557 0.557

No evidence 0.557

Evidence True False

Women’s network

Consider brands when
shopping

0.612 0.616

Check other people’s clothes
frequently

0.637 0.593

No evidence 0.614
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differences in fashion behavior imply that the optimal marketing approaches to
promote impulse buying are different for each gender. Since sensitivity analysis
allows us to investigate the extent to which the evidence changes the posterior
probability, it allows us to take multiple evidence options and choose the most
effective marketing strategy.

4 Conclusion

In this study, we have described consumer fashion behavior holistically by applying
a Bayesian network approach to actual business data. Describing this whole picture
is one of our study’s novel contributions because few studies have attempted to
consider the complete picture of fashion behavior. We have also trained four types
of Bayesian network with different constraints, finding that the two genders were
best described by different types of network. We then validated the theoretical
consistency of the selected networks by comparing their results with the findings of
previous studies. Owing to space limitations, we mainly focused on fashion-related
problems and impulse buying behavior. In addition to these academic contributions,
we have shown that, by applying a Bayesian network approach to describing fashion
behavior and conducting sensitivity analysis, businesses could allow marketers to
simulate different marketing triggers and find ways to change customer behavior.

Our study does, however, have some limitations, which will be addressed in
future work. First, our networks only consider gender differences, but fashion
behavior is different for a variety of different consumer groups. Future studies
could consider other ways of dividing consumers into groups to discover a more
sophisticated consumer behavior in the fashion industry.

Second, the factors in the Behavior group could be reconsidered. Our networks
mainly considered the product category and consumer purchase behavior (such as
frequency and tendency to cherry-pick). One potential approach to derive more
actionable business insights could be to break down the product categories to include
more specific characteristics, such as newly launched products or brands.

Third, we need not only to validate the theoretical consistency of our model’s
sub-networks against the findings of previous studies but also to verify the links
between these sub-networks in more detail so that we can gain a comprehensive
understanding of fashion behavior and discover more effective triggers for changing
consumer behavior.

Finally, our networks are static and do not consider dynamic relationships among
factors. In reality, the products that customers purchase now could affect factors
such as fashion sentiment at later times, as in the episode quoted in the Introduction.
Having a total picture of fashion behavior that incorporates its dynamics will give
us a tool for planning marketing activities to trigger changes in customer behavior
in the longer term.
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Determining the Similarity Index in
Electoral Behavior Analysis: An Issue
Voting Behavioral Mapping

Theodore Chadjipadelis and Georgia Panagiotidou

Abstract The aim of the research is to classify all respondents and parties regarding
their positions on issues. For the purposes of this paper a dataset from Greek
HelpMeVote application (VAA) from 2015 was used. The dataset contains the
answers of voters and candidate parties on questions regarding issues on a Likert
scale 1–5. Additionally, the objective is to introduce an alternative methodology for
similarity metrics in electoral analysis, regarding voter’s opinions about issues. By
using a 3-step methodology of Hierarchical Cluster analysis with Ward’s criteria,
chi-square distances between objects and factor analysis of Correspondence we
create groups of respondents with similar attitude on issues and all clusters will be
placed on the axis system The procedure is described as an issue voting behavioral
mapping. All groups of respondents and issues will be positioned on an axis system,
creating multiple behavioral contexts and depicting positions and distances among
groups and issues. In the end of the analysis we interpret the Greek electoral
behavior map and the parties’ competition of 2015.

1 Methodology

The objective of this research is to examine the electoral profile of voters during
the Greek national elections regarding issues and parties (Carmines and Stimson
1980). A secondary objective is to achieve this while introducing an alternative
methodology for similarity metrics in electoral analysis, regarding voter’s opinions
about issues (Benjamin 2010). The aim is to produce cluster of voters with similar
behavior upon issues (similar issue voting profiles) and to link each group of voters
to the group of issues which contribute the most to the formation of their group.
The procedure will produce an issue voting behavioral map where all relationships
between groups of variables will be depicted. For the purposes of the research,
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analysis was conducted with data gathered by the Greek Voting Advice Applica-
tion’s results for the latest national elections of 2015 (Voting Advise Application
Helpmevote for the Greek national elections of 2015, www.helpmevote.gr). This
online digital application was first implemented in Greece and is a independent,
joint research initiative of the Laboratory of Applied Political Research of the
Department of Political Sciences of the Aristotle University of Thessaloniki and
the e-Democracy Center of the University of Aarau (ZDA) of Zurich. Development
and technical support was provided by Pit Solutions. The electronic platform
was available online to all users eager to participate. The users would answer
to 30 thematic questions on a 1–5 Likert scale (totally disagree–totally agree),
which had already been answered by the candidate parties. The questions were
selected carefully in order to be linked and represent main political, economic, and
social issues which reflect the basic axis of political competition in Greece (Left-
Right, Libertarian-Authoritarian, ethnocentric-European profile (Chadjipadelis et al.
2011)). After having answered all 30 questions the political profile of the respondent
could be estimated and was depicted in a two-dimensional diagram (Chadjipadelis
and Andreadis 2012). In the same diagram all candidate parties were also positioned
according to their answers to the same set of questions, thus their position on issues
(Kessel 2011), so the respondent was informed about his proximity to all available
options to vote (Benoit and Laver 1999). In electoral behavior analysis distance
metrics and mostly the Euclidian or squared Euclidian distance have been used for
the identification of similarities between the answers of two objects, which usually
apply on a 1–5 or a 1–7 Likert scale (Bechrakis 1999). In behavioral analysis the key
question is what the real distance between two respondents is, so determining the
right metric is important (Cho and Endersby 2003). These two sets of respondents
do not share

Respondent 1 answers: 1 (strongly disagree) Respondent 1 answers: 2 (disagree)

Respondent 2 answers: 3 (neither/neither) Respondent 2 answers : 4 (agree)

the same distance. In electoral behavior analysis all contributing factors should be
considered for estimating the proximity between two objects. The similarity index
should include a set of behavioral and social factors that contribute to the formation
of voter’s opinion upon issues. A more efficient similarity index which will be able
to translate the similarities or dissimilarities between voters and candidates based
on issues is essential and should be researched.

Applying a different methodology to classify objects upon their similarity, we use
Hierarchical clustering using Ward’s criteria. The classification of all respondents (r)
is made regarding their positions on issues (q) (Table 1). The table to be analyzed
with HAC is a table of distances between objects. However, the metric we choose for
these distances is chi-square, suitable for qualitative variables (Bechrakis 1999). The
analysis produces a dendrogram with all clusters (Fig. 1). HAC gives five (5) groups
of respondents regarding their position on issues: 1992, 1998, 2001, 2000, and 1999.

www.helpmevote.gr
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Table 1 Contingency table
of all respondents (r) and
their positions on issues (q)

q1 q2 q3 · · · qn

i1 2 4 3 · · · 1

i2 3 3 4 · · · 1

i3 2 3 5 · · · 4
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

in 2 2 4 · · · 3

Fig. 1 Dendrogram (HAC) of the respondents
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Table 2 Clusters of subjects
(respondents)

Cluster 1992 1998 1999 2000 2001

A(I) 1986 1997 1993 1996 1991

B(I) 1945 1964 1994 1995 1987

Count 83 165 153 314 288

i6 i2 i1 i13 i5

i63 i529 i30 i706 i25

i188 i819 i157 i358 i967
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Table 3 Updated data table
with group. Following the
same procedure, adding this
time the group in which each
subject belongs to (gr_9 is a
new variable indicating the
group)

ind q86 q88 q82 q··· gr_9
i1 4 2 2 · · · 1999

i2 1 5 5 · · · 1998

i3 1 2 4 · · · 1999

i4 5 1 5 · · · 1999

i5 3 4 3 · · · 2001

i6 4 5 3 · · · 1992

i7 4 5 4 · · · 1999

In the second step of the analysis we apply the method VACOR (Karapistolis 2002),
which helps to identify the contribution of each statistic unit and each variable in
each cluster and to the following A and B (Table 2) and which variables contribute to
the division of each cluster (Portal for Multidimensional Statistical Data Analysis).1

Furthermore, each respondent is linked to a specific group which has been formed
according to their answers on the issue questions (Table 3). The same procedure
is applied in the new table to create clusters for groups of respondents and their
answers. In this application of HAC four (4) groups appear: 314, 312, 315, and
316 (Fig. 2). Each cluster is formed by answers to the questions and groups of
respondents.

The analysis shows (Table 4) that cluster 312 concentrates mostly those:

– who have answered 5 (strongly agree) in questions 88, 15, 20, 29, 33, 28, e.g. in
favor of the Memorandum and limitation of protests

– Who have answered 1 (strongly disagree) in questions 81, 77, 83, 30, 40, e.g.
against public control of banks, in favor of conservatism

– Who belong in group 1998

In the same way all clusters combine the previous clusters of respondents with
their answers on specific questions. In Tables 5 and 6 contribution of groups in
each option (1–5) to the questions is displayed (Karapistolis 2011). The procedure
concludes to catalogue of issue profiles which correspond to the given clusters
produced by HAC and their linkage to the answers which they have the high con-
tribution (significant contribution > 2.54)(Table 7). Subsequently, Factor analysis

1Karapistolis, D. www.pylimad.gr.

www.pylimad.gr
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Fig. 2 Dendrogram (HAC) of the respondents and their answers to the questions

of Correspondences is applied (Table 8) in order to investigate the interactions
between the variables as divided in clusters (see footnote 1). FACOR is used in order
to position clusters and units that clusters are consisted of in a two-dimensional
field, as created by the two factors who have the highest contribution (Benzécri
et al. 1973/1976). FACOR: This method includes all variables in one system of
two factors taking into account the total number of factors (see footnote 1). The
whole procedure can produce a semantic map positioning on the same system
all questions, answers, and groups of respondents, where all internal relationships
are visible (Fig. 3). The behavioral issue voting map can be enriched with other
variables such as demographics, past vote, vote intention, education, etc. In this
case the same methodology is applied again step by step, adding in the dataset the
answers of HelpMeVote 2015 for past vote (national elections of 2012, European
elections 2014), intention to vote for 2015, and the confidence for their intention to
vote what they declare. The objective in this point is to link all clusters of issues
and respondents with the parties and this new information will be also positioned
on the semantic map of electoral behavior. HAC, VACOR (Table 9), and FACOR
(Table 10) are applied in the same order but for the dataset which contains also the
new variables, with the issue groups which were produced in the previous analysis.
The final diagram (Fig. 4) shows all clusters of respondents with reference to issues,
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Table 4 Clusters consisting of the variable values (position on issues) and the initial cluster of
respondents

vote 2012, EU-vote of 2014, intention to vote for 2015, and confidence of vote
intention with their exact positions on the two-dimensional scatterplot. This map
shows six main clusters and the distances between all objects defining in this way all
competitive relationships between groups. As shown in the scatterplot one cluster
includes strong voters of party no 4 and group 1998, another cluster consisted of
group 2001 which is close to voters of party no 2 in 2012 and intends to vote for
party no 1 in 2015. At the same moment we have already linked the groups of
voters to their issue preferences and political views with the initial analysis. The
result is a map which can indicate all behavioral profiles and their interrelations
with issues, vote intention, or past vote. This electoral behavior mapping can give
important insight to political competition, voters, and parties mobility. The context
of our analysis can take multiple forms:

– mobility over time can be analyzed by using variable of past votes
– mobility on issues and vote
– mobility on other characteristics such as demographics and socioeconomic data
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Table 6 Significant contribution of groups in each variable value (position on
issues)

Table 7 Clusters linked to the response on the questions

2 Issue Voting Behavioral Map: The Greek National
Elections of 2015

Interpretation of the issue voting behavioral mapping procedure for the Greek case
of 2015 produces a clear image of interrelations between issues and parties during
the national elections. Political competition is reflected on three main axes (Fig. 5):
European-anti-European, Left-Right, and Libertarian-Authoritarian (Heath et al.
1994; Evans et al. 1996). Parties which are close to the center of the left-right axis
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Table 8 Application of FACOR producing the factors and the scores of the subjects

IND #F1 COR CTR #F2 COR CTR #F3 COR CTR #F4 COR CTR

q861 −239 150 3 33 3 1 457 554 35 −32 2 1

q862 −287 472 6 −30 5 1 21 2 1 104 62 9

q863 −123 76 1 −139 97 3 −151 115 5 9 0 1

q864 111 92 1 −30 6 1 −144 151 6 −122 109 11

q865 771 757 21 253 81 6 −114 16 2 46 2 1

q881 742 606 13 159 28 2 328 118 10 113 14 4

q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gr_91992 1385 809 40 463 90 10 129 7 1 375 59 34

gr-91998 −507 304 10 682 553 44 −239 67 9 −106 13 5

gr_91999 −235 91 2 33 1 0 664 737 69 −129 27 7

gr_92000 −257 312 5 −233 256 9 −32 4 0 220 229 45

gr_92001 295 295 6 −289 281 13 −220 163 14 −220 163 41

Fig. 3 The semantic map



424 T. Chadjipadelis and G. Panagiotidou

Table 9 Significant contribution on groups of the second step of analysis in each variable value
(voting behavior)

ND (center-right) and PASOK (center-left) create a common cluster focusing on
their pro-European position. An antithesis is found between this cluster and the
cluster of Golden dawn which represents the Anti-European/authoritarian position
and the cluster of anti-European left parties of SYRIZA and the communist party
(KKE). An inner antithesis in the second cluster is found showing the contrast
between left party of SYRIZA and the communist party, as KKE is strongly
positioned to the more left of the axis compared to SYRIZA.

Five groups are shown in the map regarding voter’s behavior profiles: First group
consists of voters of KKE and SYRIZA or other party (8.3% of total voters). The
second group is positioned close to the first one and includes voters of SYRIZA-
PASOK or other (28.7%). Both of these groups have the same characteristics
(Fig. 6): ethnocentric, libertarian, left and are found in group 1992 and 2001 from
the first HAC of the analysis.
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Table 10 Application of FACOR producing the factors and the scores of the voting variables and
the groups of the second step of the analysis

Another group which is formed concentrates the voters of (16.5%) PASOK,
DHMAR, POTAMI, and others (Fig. 7). All parties mentioned belong in the
wider center-left area of the left-right axis and share common characteristics: pro-
European, Libertarian, Right, while their voters belong to group 1998.

The next group corresponds to the anti-European, authoritarian, and right voters
who vote for the extreme right wing of the axis Golden Dawn and for ND (15.3%). A
last but large group of voters (31.3%) follow ND, PASOK, KKE or give no answer,
thus are mentioned as unspecified voters. Even though we do not know their voting
behavior we can presume their electoral profile by their classification upon issues. In
this case these voters are characterized as European, authoritarian, both come from
the left or right side of the axis and are found in group 2000 (Fig. 8).

The importance of the behavioral map is found in the classification of objects
with ward’s criteria and chi-square distances. In this way the map can reflect
relationships between variables and objects, in terms of antithesis and identification.
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Fig. 4 2-dimensional space with all clusters of respondents (with reference to issues), vote 2012,
EU-vote of 2014, intention to vote for 2015 and confidence of vote intention

Fig. 5 Political competition on three main axes: European-anti-European, Left-Right and
Libertarian-Authoritarian (and inner antithesis KKE-syriza)
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Fig. 6 First and second group of voters with their political characteristics

Fig. 7 Third group of voters with their political characteristics

Fig. 8 Fourth and fifth group of voters with their political characteristics

In the Greek case, we can clearly detect the main group of voters and how they relate
to each other, regarding their position on issues and their vote. The main components
of political competition during Greek elections of 2015, regarding parties and their
voters, are three: issues corresponding to the left or right, authoritarian or libertarian,
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and the highest contribution is found on the axis anti-European/ethnocentric or
populists and pro-European, with the issue/dilemma about what should the Greek
stance against Memorandum be.

Appendix

Questionnaire (www.helpmevote.gr)

q86) The right for temporary leaves from prison is more important than the risk
of escape.
q88) The Memorandum has not caused the economic crisis; the economic crisis
has resulted in the Memorandum.
q82) People who break the law should be given stiffer sentences.
q81) Popular demands are today ignored in favor of what benefits the establish-
ment.
q85) Immigrants are good for [country’s] economy.
q2) The police should use stricter enforcement measures to protect the property
of citizens.
q5) We should have more flexible forms of work in order to combat unemploy-
ment.
q83) The government should take measures to reduce income inequalities.
q7) Defense spending should not be reduced to avoid becoming a vulnerable
country.
q8) The reduction of corporate taxes would have a positive impact on the
development of the economy.
q30) With the Memoranda we accumulate debts without any visible benefits.
q20) It is better for Greece to be in the European Union rather than outside.
q13) The requirements for asylum and citizenship must be tightened.
q14) The existence of multiculturalism in Greece is a positive phenomenon.
q77) The people, and not politicians, should make our most important policy
decisions.
q79) Same-sex marriages should be prohibited by law.
q84) People can be better represented by a citizen than by an experienced
politician.
q87) Women should be free to decide on matters of abortion.
q41) We should not apply any law that we feel is unfair.
q29) We ought to have done many of the changes provisioned in the Memoranda
on our own long ago.
q15) It must be possible to operate non-governmental, non-profit institutions of
higher education.
q16) The national health system can become more efficient through partial
privatization.
q19) The church and the state should be completely separated.

www.helpmevote.gr
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q21) The economy of Greece would have been better if we had our own currency
instead of Euro.
q22) The decision power of the European Parliament should be increased on all
matters of internal and foreign policy.
q28) Memoranda of Understanding with the Troika were necessary to avoid the
bankruptcy of Greece.
q40) Banks and utilities must be under public control.
q31) We have every right to cancel the debt without consulting anyone else.
q33) There should be legislation to limit protests.
q39) The probability of Grexit should not be considered as a disaster.
q78) Immigrants should be required to adapt to the customs of [country].
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Well-Being Measures

Mónika Galambosné Tiszberger

Abstract Well-being itself has multiple, very complex definitions, in which the
extent of the necessary variables (both objective and subjective) indicates a wide
range. It is “officially” recognized since 2009—the year of the Stiglitz Report—that
Gross Domestic Product is not an all-powerful indicator. It has a specific purpose,
however, it cannot be used to measure such a multidimensional phenomenon as
well-being. The construction of an indicator to measure well-being is usually
motivated by the aim of making comparisons or that of supporting policy decisions.
The role of the indicator drives the amount and type of the collected variables. There
are several popular and less frequently used measures for well-being with different
contents, concepts, and objectives. This paper tackles the most recent trends in well-
being measures through the collection of ten indicators and concepts. The author
will compare the content of these measures to indicate supreme (the most relevant)
dimensions. The final aim is to give a comprehensive list of those characteristics
and criteria that must be taken into account when a complex well-being indicator is
proposed.

1 Introduction

The quantification of well-being indicators that cover most countries is a complex
challenge, especially when these indicators are expected to be used for comparative
purposes. The purpose of this paper is to contribute to the international literature by
aiding the development process of such indicators. Well-being itself has a number of
complex definitions, in which the extent of the necessary variables (both objective
and subjective) indicates a wide range. It is “officially” recognized since 2009, the
year of the Stiglitz Report, that Gross Domestic Product is not an all-powerful
indicator. It has a specific purpose, however, it cannot be used to measure such a
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multidimensional phenomenon as well-being. Section 2 of the paper gives a brief
summary of the most important conclusions of this report regarding how well-
being ought to be defined. The construction of well-being indicators is usually
motivated by the interest in exploring differences between countries, or by the need
to support policy related decisions. Naturally, the purpose of any indicator dictates
the amount and type of the variables involved. There are several, popular, and less
frequently used measures of well-being with different components, concepts, and
objectives. Section 3 tackles the most recent trends in well-being measures through
the collection of ten indicators and concepts. This study compares the content of
these measures and identifies the most relevant dimensions. The final aim is to
give a comprehensive list of the characteristics and criteria that must be taken into
account when a complex well-being indicator is proposed. It appears that the current
international literature on well-being measurement lacks a framework of evaluation
criteria, however, it can be very helpful or even crucial during the variable selection
to fulfill the purpose of the indicator. The list and detailed description of these
criteria is covered in Sect. 4. The paper concludes by highlighting the contributions.
(Sect. 5).

2 Beyond GDP

Economic production is clearly not the same and sometimes not even in line with
the well-being of nations. This is the main reason why these two phenomena are
assessed individually, and perhaps why more and more indicators started putting
more emphasis on the latter. Many authors Hajdu and Hajdu (2014), Easterlin
(2013), Deaton (2008), Leigh and Wolfers (2006) come to the conclusion that there
is no linear relationship between life satisfaction and wealth, regardless how the
latter is measured: using disposable income or GDP (Gross Domestic Product) per
capita. It also underlines the need for a more accurate measurement of the aspects
of well-being other than wealth. The well-known Stiglitz report, based on academic
research and initiatives developed around the world, suggests a multidimensional
definition that describes well-being in Recommendation 5. It proposes a set of
dimensions that should be considered simultaneously (Stiglitz et al. 2009, pp. 14–
15):

1. Material living standards (income, consumption, and wealth);
2. Health;
3. Education;
4. Personal activities, including work;
5. Political voice and governance;
6. Social connections and relationships;
7. Environment (present and future conditions);
8. Economic and physical insecurity.
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Sustainability and inequality are both crucial points that are missing from this
list, even though the report distinguishes between the two concepts. Sustainability
(which depends on long-term effects) should be measured separately by well-
defined figures, whereas inequality is not a single-dimension variable. It is, in a
way, derived from a composite of all dimensions mentioned earlier, however, its
measurement requires individual level data, which is not always available.

Objective and subjective indicators are both very important in measuring these
dimensions. According to the report, it is important to highlight that subjective
indicators are not only those that refer to abstract ideas such as life satisfaction,
happiness or quality of life, but almost every aspect of well-being can be understood
from a subjective point of view, as one’s self-reported health status, their satisfaction
with the quality of education or other similar factors also play an important role in
understanding the level of individuals’ well-being.

Objective information, on the other hand, is often easier to collect and measure,
as they are typically standard components of official statistics. Moreover, they are
more reliable and also tend to be available in most countries with more or less
well-harmonized definitions and methodologies. The case of subjective indicators,
however, is less straightforward, as there are many ways to capture such information,
each of which may result in different numerical outcomes. This area of measurement
is a rather new challenge to official statistical institutions. There are several ways to
gather information concerning subjective issues, including variants of the Likert-
scale, and ratio scales, but if we try to capture “observable” details like how often
someone smiled or laughed the day prior to responding to the questionnaire, it would
constitute lots of guesses from the side of individuals, and the responses would
depend on the respondents’ disposition at the time. Discrepancies rooted in culture
and tradition may also prevent the quantification of unbiased estimates, therefore,
a seemingly simply comparison between countries can pose its own, substantial
challenges (Kroll 2013).

3 Well-Being Measures

Competition is a natural part of being human. At the same time, ranking can
only rely on precise and harmonized information, measurement or data, and
measuring or ranking social progress, human development or well-being as a
complex phenomenon has a relatively short history. The first attempts to adjust or
amend GDP took place in the 1970s Gáspár (2013). Later, new approaches have
appeared with the purpose of creating more suitable indicators to measure well-
being. Some professionals created composite indices to replace GDP; others applied
multivariate statistical methods such as factor analysis or cluster analysis to provide
better “weightings” of the components. By the year 2000, subjective measures
have been introduced in certain methodologies. The observation and inclusion of
inequality and sustainability have become a prevalent issue in the following years.
Defining the purpose of such indicators is the first and perhaps the most essential
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part of the design process of these indicators and their corresponding monitoring
systems Galambosné (2016). The purpose of an indicator can be to:

• Compare results in space (countries, regions) and in time to monitor differences
and changes.

• Monitor the performance of a given country over time.
• Identify “best practises,” learn from those who rank the highest.
• Define underdeveloped areas and allocate financial or professional support to the

proper locations.
• Identity fields (dimensions), where development is necessary.
• Measure or monitor the effect of certain changes in policies, institutions, and

actions (at country or regional level).
• Disseminate information to a broad audience including residents.

Each one of these objectives may require a particular focus and framework. The
objectives define the level, scope, frequency, and accuracy of the necessary data
input and of the indicators. Hence the designation of the aims needs to be the
first step when measuring the well-being of a nation. The list of objectives clearly
indicates that there is not a single-best indicator that would be capable of answering
all questions. In other words, in most cases, we have one particular objective and
we would like to create a measure or measurement system that only supports that
specific objective.

The following section gives an overview of the currently used indicators. My
aim is to analyze what type of factors were taken into consideration during the
formulation of these indicators. The list includes indicators from across the world:
international—country level, old—new, weighted—unweighted, as well as popular
ones and ones that are less frequently used. The goal is not to give a detailed
overview of them, but to simply describe their purpose and their main features, and
to compare the dimensions they measure. The order of the different indicators is
roughly based on that of the first edition. The list begins with the “oldest” indicator.

• Human Development Index (HDI): This composite index is calculated by the
United Nations since 1990. Since its first announcement results in the form
of ranking and a complete report with special focus are available each year.
Several methodological revisions have been introduced during its 27-year history,
however, the main idea is still the same. It is built on three main dimensions:
health (life expectancy at birth in years), education (expected years of schooling
and mean years of schooling), and standard of living (gross national income per
capita in 2011 PPP in USD). These dimensions are transformed and aggregated
into one single indicator, ranging from 0 to 1. Countries are ranked by their
corresponding HDI figures. There are several other indicators to support a more
overall picture of human development, but this main index is the most well-
known outcome. According to the most recent report, 188 countries are included
in the analyses (UN Development Program 1990; Human Development Report
2016).
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• Measures of Australia’s Progress (MAP): This set of indicators, collected and
published by the Australian Bureau of Statistics, is designed to help Australian
citizens address the question: “Is life in Australia getting better?” It provides
a set of indicators in four main categories: society, economy, environment, and
governance. In the online dissemination of the data and the results the changes are
highlighted. It focuses on making Australians aware of their own situation and
development. It presents data at both national and regional granularity (Trewin
2002).

• Happy Planet Index (HPI):The HPI (also known as a global index of sustainable
well-being) was created by the New Economics Foundation (NEF) in the United
Kingdom (UK) and was first published in 2006. They declare that “it measures
what matters: sustainable well-being for all.” It is also said that it provides
a compass to guide nations and shows that it is possible to live good lives
without costing the Earth. Currently, four years’ data is available (2006, 2009,
2012, and 2016). In the most recent report, HPI covered 140 countries (http://
happyplanetindex.org. Accessed 20 Sept 2017). The innovation of NEF lies
in the direct utilization of inequality and sustainability, and at the same time,
in the indicator itself. The index considers three main areas: life expectancy
(health), experienced well-being (on a 10-point scale, measuring self-reported
well-being), and ecological footprint (sustainability). The first two variables are
corrected with inequality (based on the distribution of life expectancy and well-
being data) on a national level. This indicator results in a very different rank order
compared to the HDI. Wealthy western countries, often seen as the standards of
success, rank relatively low on HPI, compared to other well-being indicators.
The Latin American and the Asia Pacific region lead the rankings because of
their substantially smaller ecological footprint (Happy Planet Index 2016).

• Set of Quality of Life Indicators (SQLI): The European Union (EU) had already
had a “Beyond GDP” conference in 2007, two years before the Stiglitz Report
was published, to discuss how to better measure the progress of societies
and their well-being and how to sustain quality of life in the future. It took
some years to develop a framework of indicators, which is under continuous
improvement. 8+1 dimensions of quality of life had been defined based on
academic research and several initiatives. These dimensions are suggested to be
considered simultaneously, because of potential trade-offs between them. The
“+1” dimension is the overall experience of life. It is highlighted separately
as it covers subjective well-being. The necessary data for this dimension
is gathered within the EU-SILC (European Union Statistics on Income and
Living Conditions) data collection, as part of the official statistics across the
EU member states (http://ec.europa.eu/eurostat/statistics-explained/index.php/
Quality_of_life_indicators_-_measuring_quality_of_life#8.2B1_dimensions_
of_quality_of_life. Accessed 2 Nov 2017).

• Measuring National Well-being (MNW-UK): The Measuring National Well-
being programme was launched and led by the UK Office for National Statistics
in 2010, supported by the UK Government, with a clearly national focus. This
particular set of domains and indicators aims to measure the quality of life of

http://happyplanetindex.org
http://happyplanetindex.org
http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_indicators_-_measuring_quality_of_life#8.2B1_dimensions_of_quality_of_life
http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_indicators_-_measuring_quality_of_life#8.2B1_dimensions_of_quality_of_life
http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_indicators_-_measuring_quality_of_life#8.2B1_dimensions_of_quality_of_life
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UK citizens. There are ten domains supported by 41 measures, including both
objective and subjective measures. Since 2010, detailed datasets and reports have
been published to inform the society, to support policy makers and to monitor
recent changes (Self 2017).

• Canadian Index of Well-being (CIW): After 12 years of research, the CIW
Network found its permanent home at the University of Waterloo in 2011 and
released the first complete version of the CIW national composite index. The
vision of the creators was to enable Canadian citizens to take aim at the highest
well-being status by developing and publicizing statistical measures that offer
clear and valid reporting on the progress toward well-being goals. The target
group of the indicator and the reports are the citizens, policy makers, and the
government leaders of Canada. The eight domains are rooted in core Canadian
values and are broken down into 75 detailed measures (http://uwaterloo.ca/
canadian-index-wellbeing. Accessed 10 Aug 2017 ).

• Measuring National Well-being (MNW-J): This initiative was published by
The Commission on Measuring Well-being in 2011 in Japan as a result of
intensive research and discussions by a study group of leading researchers of
Happiness Studies in Japan. Their framework involves three domains of life:
socio-economic situation, health, and relatedness. They make a clear distinction
between happiness and well-being. Happiness is understood as a state of content
and pleasantness on a daily basis. They apply well-being to capture how well
people are doing in all aspects of life. Altogether nine dimensions and more than
130 potential indicators have been incorporated. Detailed description is given
of the main domains, the purpose of each indicator such as target group of the
questions, sources, what the considerations are behind them, and whether there
are examples of use overseas (Measuring National Well-being - Proposed Well-
being Indicators 2011).

• Better Life Index (BLI): The Organisation for Economic Co-operation and
Development (OECD) proposed the Better Life Initiative in 2011. Since then,
four reports have been published. Each of them covers 35 OECD countries and
6 partner countries. They work with 11 topics that the OECD has identified as
essential in the areas of material living conditions and quality of life. Altogether,
50 indicators are collected and published, including both objective and subjective
ones. On their interactive homepage, anyone can create their own preferences by
assigning arbitrary weights to each of the 11 topics. The status of the person’s
home country and the best country based on the personal preferences update
real-time (www.oecdbetterlifeindex.org. Accessed 12 Sept 2017).

• Equitable and Sustainable Well-being (BES after the Italian acronym): The
Italian government says that they are the first country in the European Union
to include equitable and sustainable well-being indicators besides GDP in their
economic plans in 2017 (www.mef.gov.it. Accessed 29 Oct 2017). The BES
initiative was introduced in 2013 by the Italian National Institute of Statistics.
They defined 12 main topics, among which we find original ideas such as
the quality of services, landscape, and heritage. They collect more than 120
indicators, including subjective measures for the in-depth analysis of each topic.

http://uwaterloo.ca/canadian-index-wellbeing
http://uwaterloo.ca/canadian-index-wellbeing
www.oecdbetterlifeindex.org
www.mef.gov.it
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Their aim is to inform the public and to include the results and trends in the
process of decision making on a national level (BES 2015).

• Indicator System of Well-being in Hungary (ISW): The Hungarian Central Sta-
tistical Office introduced a publication of the status of well-being of Hungarian
citizens with eight dimensions and 40 variables. Statisticians and academics from
various fields cooperated to establish the framework and content of the indicator
system. They have built upon the recommendations of the Stiglitz Report and
created their own understanding of well-being: Well-being includes, in its widest
sense, all the information about the quality, conditions, and comfort of the
citizens’ everyday life that can be captured through statistical data. The objective
of the system and the report is to publicize the information about the state of
Hungary and its citizens (A jóllét magyarországi indikátorrendszere 2013).

Table 1 serves as a summary of the domains (dimensions, factors) that are
included in each individual well-being measure. The heading contains the acronyms
of the indicators along with the corresponding country or organization, in the same
order as they were addressed before. The top section (above the double line) is
based on the list of dimensions in Recommendation 5 from the Stiglitz Report. The
remaining rows, marked with a + sign are the additional ones. The value 1 means
that the given measure includes in a certain way the dimension of the row. Empty
cells mean the lack of that dimension in the given indicator. The last column of
Table 1 (Total) indicates the frequency (sum of the ones), so how many times the
given domain appears (out of 10). Here, a dimensioned is considered as supreme if
its corresponding frequency is eight or more. Those with a frequency of six or seven
are the important dimensions, and the rest I refers to as complementary dimensions.

• Supreme dimensions: Unquestionably, the ultimate “winner” is health. This is
the only dimension that is part of each of the ten indicators. According to
Deaton (2008): “Without health, there is very little that people can do and,
without income, health alone does little to enable people to lead a good life”
(p62). According to the results, the dimension of health is the most universally
defined concept: in most of the cases, it is measured by life expectancy at
birth. Material living standards (income, consumption and wealth, basic needs,
economic well-being) and education (learning, knowledge, skills) are included
in nine indicators. Work (work-life balance, job opportunities, free time, and
employment) and political voice and governance (civic/democratic engagement,
politics and institutions, societal involvement) play role in eight indicators. All
of the supreme dimensions are in line with the recommendations of the Stiglitz
Report.

• Important dimensions: Subjective well-being is included in seven indicators.
Considering that the collection of data on subjective measures of life satisfac-
tion has a rather short history compared to the well-operationalized objective
indicators, its scope is indeed considerably broad. Social connections and rela-
tionships (community connections, social interactions) and environment (natural
environment, landscape) are also part of the important dimensions.
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• Complementary dimensions: Housing (home or primary place of residence) is
covered by five indicators. Insecurity (economic and physical, safety, personal
security) has a frequency of four. Inequality and sustainability are both important
according to the international researches, but in most cases these are not or just
partially included in the measurement system. The three remaining, apparently
the most marginal, dimensions are the economy, research, and innovation, as well
as the quality of services.

4 Evaluation Criteria

Many studies deal with the definition and content of well-being, but much fewer
intend to give detailed overview of what makes a good indicator, i.e. there is little
discussion regarding the evaluation of the set of necessary variables.

Similarly to other statistical institutions, Eurostat (the statistical office of the
European Union) has a thorough system ensure the high-quality official statistics.
These principles are to be respected by every statistical institution in the member
states. The most recent version of Quality Assurance Framework of the European
Statistical System (2015) includes the quality principles of statistical output. It
also describes institutional environment (importance of commitment to quality,
the requirement of statistical confidentiality) and considerations about the required
level of quality in the statistical process (appropriate methodology and procedures,
non-excessive burden on respondents, and cost effectiveness) and output. These
principles are:

• Relevance: This aspect is driven by the data users. It can be guaranteed by
consulting the end users, by monitoring the usability of existing statistics in terms
of how effectively they meet their needs and their emerging priorities.

• Accuracy and reliability: Accuracy means that the data source, the intermediate
results, and the statistical outputs are systematically assessed and validated. The
principle of reliability makes it important that all sampling and non-sampling
errors are measured systematically and that there is continuous effort to improve
statistical processes.

• Timeliness and punctuality: These aspects refer to the frequency of the data
collection together with the preferably short time period between data collection
and publication. A published release calendar covering all statistics ensures that
timing strategy and timeliness can be followed by the data users.

• Coherence and comparability: Coherence means that there must be consistency
between preliminary and final data, between microdata and aggregated data,
between annual, quarterly, and monthly data, between statistics and National
Accounts. Comparability is meant over a reasonable period of time, and calls for
the proper handling of methodological changes. Cross-national comparability is
ensured by the European Statistical System.
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• Accessibility and clarity: Statistics and the corresponding metadata are published
and archived in a form that facilitates proper interpretation and meaningful
comparisons from the users’ end. Microdata is accessible for research purposes
that meet the corresponding regulations on data protection.

We can also read some details about evaluation criteria in Costanza et al.
(2009). The authors refer to these as data barriers and they also talk about two
methodological barriers:

• Data reliability: “whether a change in an indicator is an accurate signal of change
in the system it is supposed to measure.”

• Timeliness: the frequency of the surveys and publications of the underlying data.
• Data scope: how many things, items are covered by the indicator.
• Data scale: the granularity of data, its collection and publication (e.g. settlement,

county, country).
• Methodology standardization: existence of harmonized measurement criteria and

methodology behind the indicator.
• Values embedded in methodology: Through the way of measurement and choice

of indicators we implicitly define the goals. As society changes over time, so
may the relevance of the components associated with well-being, which demands
adjustments in the indicators, as well.

Most of these criteria (namely: relevance, accuracy and reliability, scope, scale,
accessibility, and clarity) are important and are to be taken into consideration in
the process of well-being indicator development. If we focus on national data,
comparability is not a necessary aspect, however, the understanding and observation
of national specifics are substantial. Upon a thorough review of all the indicators
(several hundreds) that are involved in the ten different well-being measures
described in Sect. 3, it appears that there are many more specific features and
characteristics to be analyzed before a variable is selected. I have created an
additional system of evaluation criteria to support decisions in the selection process
of potential well-being measures.

1. Pace of change: Several policy decisions or even environmental change have
“only” long-term effects on a given population. It means that certain, “slowly”
moving variables should be observed only once every two or three years.
There might be others that indicate rapid changes so the frequency of data
collection and dissemination might be higher even within a year. For example,
the reforms in the system of education have slow, long-term outcomes. The
PISA (Programme for International Student Assessment) test results will not
indicate substantial changes within a year. However, change in the social transfer
system or the taxation policies might have strong short-term effects. I suggest
considering the pace of change of the potential indicators in order to determine
how often new information should be collected.

2. Impact on everyday life: Similarly to the “pace of change,” the problem this
criterion highlights is the nature of the effect of changes in certain policies. How
closely and how evenly does it affect the life of an individual? On the one hand,
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new regulations on certain gas emissions affect the overall status of a country or
a region (where the air is going to be less polluted), but individuals may not be
able to report about the change that they may or may not notice. On the other
hand, the costs of food for children in daycare that is paid for by the parents has
a very strong and direct effect on the everyday life of individuals and this effect
is distributed quite unequally.

3. Objective/subjective nature: Subjective measures are usually connected with
overall life satisfaction, happiness or the quality of one’s life. However, many
aspects that have been observed traditionally in an objective manner can also
be measured in the form of subjective indicators. For instance, life expectancy
at birth is a popular indicator of the overall health status of a population.
At the same time, we can also inquire about how a person feels about their
health status. This second approach would be a subjective indicator, and would
provide us with additional information about the health status of a country, and
even inequality could be measured by doing so. Therefore, in the case of most
variables, researchers should consider the type of the question. Should the focus
be put on objective or subjective aspects, or would both be necessary to collect
all relevant intelligence in a given dimension.

4. Suggestibility: This criterion approaches the question of how impressionable a
certain variable is from the perspective of the human life. There are factors with
high importance that are only present at lower levels. For instance, the dimension
of social connections (friends, family) is a very determining part of our lives,
however, it is too “personal,” too close to the individual level to be the subject
of a national or even a regional policy. Social connections can be influenced by
the settlement, or more likely, by decisions and institutions at lower levels of
the community. Therefore, one may consider addressing policies and monitoring
data on low territorial levels.

5. Measurement level: Based on the previously discussed aspects and considera-
tions, the measurement level of a given indicator is determined by its nature. In
each case, the statistician has to choose between individual, household, settle-
ment, regional, and national granularity. This decision affects the characteristics
of the surveys and makes the information more valuable and effective.

6. Relevant population: Similarly to the measurement level criterion, the relevant
population of certain indicators has to be defined, as well. Certain topics only
influence certain groups of people. Pension system affects older generations.
Child care is crucial for families with small children. Unemployment supports
influence those without a job. These are all different clusters of the population,
which can be separated with well-established demographic or other characteris-
tics. Obviously, the surveys should focus on the relevant group of people.

7. Availability: As new and ill-defined aspects arise, we may not be able to rely
on the official statistics in every case. If data has to be gathered from multiple
sources, institutions or agencies, the availability is not always clear. Obviously,
the final aim should be to incorporate all necessary information in the system of
official statistics, but it may take too long or may not be feasible in general. This
possibility should not be ignored, either.
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8. Desirable order of magnitude: This criterion raises the question whether we have
any knowledge about the ideal value of the indicator. Do we simply wish to
increase it or decrease it, is there optimal value, or a certain amount of change to
attain? For example, the number of prisons per settlement is a suggested variable
in the Japan initiative, but it is not clear if a higher or a lower per settlement
density is more preferable. In case of average years spent in education there may
not be a single optimal value. Can there be a point where additional years become
counterproductive? Or, ideally, how long should we aspire to prolong free time?
If closeness to family is measured by the number of non-immediate family
members who live in the same settlement, what should we consider optimal?
All these types of questions have to be considered if we plan to draw conclusions
about the values or the dynamics of the data. Strategic planning of actions should
have clear target values so that proper arrangements can be made and the effect
of policies can be accurately evaluated.

5 Conclusions

The first section of this paper describes the multidimensional approach of how well-
being can be measured and highlights some dilemmas and challenges regarding
its measurement. The subsequent sections aim to contribute to the development of
such indicators in two ways. Firstly, the paper indicates supreme dimensions to be
included in any well-being measure through the detailed analysis and comparison
of ten well-being indicators from across the world. Secondly, a comprehensive list
of evaluation criteria is established in order to aid the selection process of variables
when a well-being measurement framework is motivated by predefined goals.

In conclusion, we propose that the development process of any well-being
indicator should prioritize its objectives over the evaluation criteria that are to be
considered throughout each step of the process.
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The Relationship Between Household
Assets and Choice to Work: Evidence
From Japanese Official Microdata

Shinsuke Ito and Takahisa Dejima

Abstract This research uses individual data from Japan’s National Survey of
Family Income and Expenditure to examine the impact of residential area and real
estate prices on employment, i.e. individuals’ choice to work. The results show a
significant negative impact of real assets on employment. This result indicates a the-
oretical possibility that an accumulation of household assets induces non-working.
This research also finds that the influence of real assets on employment is different
depending on the area. In the Kanto, Kitakyushu, and Fukuoka metropolitan areas
there is a negative influence of real assets on employment. This result reflects the
differences in real estate and land prices in these areas, and suggests that if there is
the negative effect of real assets on employment in metropolitan areas, tax benefits
on land and housing could have an adverse effect on the labor market in these areas.

1 Introduction

The availability of non-labor income including asset income and labor income from
other household members can reduce household members’ willingness to work. In
general, when non-labor income increases, the demand for leisure increases due to
the income effect, and as a result labor supply decreases. Existing empirical research
about housing and labor supply includes (Fortin 1995; Johnson 2014); (Yoshikawa
and Ohtake 1989). Ito and Dejima (2016) examined the influence of asset and rental
income on the employment behavior of youths using anonymized microdata from
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Fig. 1 Non-labor income (I) and labor supply (h)

Japan’s National Survey of Family Income and Expenditure from the years of 1989,
1994, 1999, and 2004. However, this anonymized microdata did not contain detailed
information on household assets, which limited this research’s ability to perform a
detailed analysis of employment and household assets. The present research utilizes
original data from Japan’s National Survey of Family Income and Expenditure
(which contains information on household attributes including income, expenditure,
and household assets), and based on this more detailed data examines the impact of
household assets (including financial assets and real estate) on individuals’ choice
to work.

Figure 1 illustrates the relationship between non-labor income and labor supply
using the constraint that labor supply (h) is the subtraction of leisure (L) from
available hours (T). From a microeconomic perspective, leisure is a normal good
so as non-labor income increases, demand for leisure increases, and work time
decreases. This suggests that the income effect influences the supply of labor.

2 Data and Descriptive Statistics

In this research, original microdata from Japan’s National Survey of Family Income
and Expenditure from the year of 2009 was used. Sample size of the survey is
about 50,000 households excluding one-person households, and the survey covers
items such as monthly household accounts, household assets, and individual and
household attributes including employment information. The survey is conducted
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Table 1 Descriptive statistics

Variables Average Standard deviation Minimum Maximum N

Working status 0.967 0.179 0.000 1.000 23970

Home ownership 0.736 0.441 0.000 1.000 23970

Male 0.894 0.308 0.000 1.000 23970

Age 44.673 9.050 20.000 59.000 23970

Labor income of spouse of
head of household(ln)

92.683 157.780 0.000 1918.000 23970

Income from assets (In) 874.565 11280.888 0.000 572068.000 23970

Savings amount (ln) 1002.560 1359.921 0.000 28780.000 23970

Ordinary deposit(ln) 123.573 326.043 0.000 8810.000 23970

Fixed deposit(ln) 266.280 698.465 0.000 12628.000 23970

Life insurance(ln) 295.300 498.376 0.000 16316.000 23970

Money trust(ln) 5.820 74.237 0.000 3200.000 23970

Stocks(ln) 50.367 289.454 0.000 17800.000 23970

Bond(ln) 24.432 174.436 0.000 6000.000 23970

Risk asset ratio 0.031 0.104 0.000 1.000 23970

Liabilities amount(ln) 661.804 1095.981 0.000 50000.000 23970

Amount of residential and land
assets(ln)

1694.079 1776.266 0.000 15204.420 23970

Three persons 0.273 0.445 0.000 1.000 23970

Four persons 0.351 0.477 0.000 1.000 23970

Five persons and over 0.177 0.382 0.000 1.000 23970

Kanto metropolitan area 0.210 0.407 0.000 1.000 23970

Chukyo metropolitan area 0.065 0.246 0.000 1.000 23970

Kinki metropolitan area 0.137 0.343 0.000 1.000 23970

Kitakyushu-Fukuoka
metropolitan area

0.036 0.187 0.000 1.000 23970

every five years, and is based on a cross-sectional design, which limits the ability
to create panel data and conduct panel data analysis. The focus of this analysis is
on individuals between 20 and 59 years of age excluding corporate executives, self-
employed, workers in family businesses, and persons with a second job.

Table 1 presents the descriptive statistics for the variables used in this analysis.
Figures 2, 3, 4, and 5 show the histograms of the amount of residential and
land assets for the four metropolitan areas in Japan.1 The graphs show that the

1The four metropolitan areas used in this paper are Kanto metropolitan area (Tokyo and
surrounding prefectures), Chukyo metropolitan area (Nagoya and surrounding prefectures), Kinki
metropolitan area (Osaka and surrounding prefectures), and Kitakyushu–Fukuoka metropolitan
area. These four metropolitan areas were selected for this research due to their concentration of
economic activity and significantly higher land prices.
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Fig. 2 Histogram of household assets for four metropolitan areas in Japan: Kanto Metropolitan
area (Tokyo and surrounding prefectures)

distribution of residential and land assets is skewed, with the distribution in the
Kanto metropolitan area (Tokyo and surrounding prefectures) having a longer tail
compared to the other areas. This suggests that there are more individuals with
extensive real estate ownership in the Kanto area.

3 Methodology

Binary logit regression analysis was used to establish the impact of household
income, household assets, and individual and household attributes on household
members’ employment status. Two logit regression models were created. The first
model is a model on individuals’ choice to work and household assets (including
the ownership of risky assets). The key variables used as independent variables in
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Fig. 3 Histogram of household assets for four metropolitan areas in Japan: Chukyo metropolitan
area (Nagoya and surrounding prefectures)

Model 1 were home ownership, gender,2 age, labor income of spouse of head of
household, income from assets, total savings, risk asset ratio,3 amount of residential
and land assets, total liabilities, number of household members, and category of
metropolitan area.4

The second model is a model on individuals’ choice to work and detailed
household assets. Key variables used as independent variables in Model 2 were
home ownership, gender, age, labor income of spouse of head of household, income
from assets, financial assets (ordinary deposits, fixed deposits, life insurance, money
trusts, stocks, bonds), amount of residential and land assets, total liabilities, number
of household members, category of metropolitan area, and others.

2In Japan, labor supply differs significantly according to gender. Therefore, it was necessary to
introduce gender as one of the controlled variables to the two logit regression models.
3While there are several definitions of risky assets (Japanese government bonds are usually not
included in risky assets), in this research, risk asset ratio were defined as the ratio of stock and
money trust holdings to total savings, and corporate and other bonds were included.
4In this research, the top four metropolitan areas were selected based on population size. For Model
1, the dummy variable for each of the four metropolitan areas was used.
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Fig. 4 Histogram of household assets for four metropolitan areas in Japan: Kinki metropolitan
area (Osaka and surrounding prefectures)

There are outliers specific to household assets which can cause bias. To control
this issue, average plus 3 sigma and average minus 3 sigma were set as thresholds
for outliers and records outside these thresholds were deleted in both Model 1 and
Model 2.

4 Key Results

Tables 2, 3, 4, 5, 6, and 7 contain the results of the binary logit regression analysis for
Model 1 and Model 2 using 2009 data. Results are separated by gender. The results
show that in Model 1, the coefficient of risk asset ratio is significantly negative
for individuals’ employment. This indicates that the result is consistent with the
household theory of economics. Results also show that in Model 2, the coefficient
of stocks and bonds is not significant for individual employment. This result is likely
a measurement error due to subdivision of variables for household assets. Results
also show that the coefficient of total household liabilities is significantly positive
for individual employment in both Model 1 and Model 2. This indicates that the
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Fig. 5 Histogram of household assets for four metropolitan areas in Japan: Kitakyushu–Fukuoka
metropolitan area

lifetime budget constraint is close to zero, which results in a negative income effect
as stipulated by microeconomic theory. The coefficient of income from assets is
significantly negative for individual employment in both Model 1 and Model 2.
This suggests that individuals who hold significant amounts of risky assets such as
stocks are more likely to choose not to work.

The coefficient of residential and land assets is significantly positive for employ-
ment. This indicates that a positive income effect under budget constraint results in
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Table 2 Results of binary logit regression analysis for model 1, 2009

Standard Significance

Coefficient error level

Home ownership <No >

Home ownership 0.331 0.246

Gender <Female>

Male 1.713 0.087 ***

Age 0.059 0.044

Square of age −0.001 0.000 **

Labor income of spouse of head of household (ln) 0.181 0.021 ***

Income from assets (ln) −0.041 0.018 **

Savings amount (ln) 0.080 0.018 ***

Risk asset ratio −0.565 0.328 *

Liabilities amount (ln) 0.087 0.015 ***

The amount of residential and land assets (ln) −0.079 0.034 **

Dummy of number of household members<Two persons>

Three persons 0.143 0.090

Four persons 0.706 0.117 ***

Five persons and over 0.633 0.149 ***

Located in largest metropolitan area<cities other than four largest metropolitan areas>

Kanto metropolitan area −0.248 0.099 **

Chukyo metropolitan area 0.462 0.218 **

Kinki metropolitan area −0.418 0.106 ***

Kitakyushu-Fukuoka metropolitan area −0.165 0.191

Constant 1.202 0.956

Pseudo R2 (Cox and Snell) 0.054

LR χ2 5663.255

−21nL 1322.709

N 23970

Note: Reference group in <brackets>
*10% significance level; **5% significance level; ***1% significance level

more leisure time and less work. For women, the coefficient of real estate assets as
non-labor income is significantly negative for employment, and a household size
of 5+ has a negative effect on employment. This suggests that female heads of
household who live with parents and siblings and own real estate are more likely
to choose not to work.

Among both men and women, the coefficient of life insurance (amount) is
significantly positive for individual’s choice to work. A possible reason is reverse
causality, i.e. the possibility that working persons tend to take out higher life
insurance. The coefficients of the dummy variables of the Kanto metropolitan area
in Model 1 and Model 2 are significantly negative for employment. A possible
explanation is that land values tend to be more stable in the Kanto metropolitan
area.
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Table 3 Results of binary logit regression analysis (men) for Model 1, 2009

Standard Significance

Coefficient error level

Home ownership <No>

Home ownership −0.257 0.372

Age 0.112 0.066 *

Square of age −0.002 0.001 ***

Labor income of spouse of head of household (ln) 0.159 0.023 ***

Income from assets (ln) −0.090 0.020 ***

Savings amount (ln) 0.119 0.024 ***

Risk asset ratio −0.505 0.462

Liabilities amount (ln) 0.155 0.021 ***

The amount of residential and land assets (ln) 0.043 0.051

Dummy of number of household members<Two persons>

Three persons 0.534 0.128 ***

Four persons 0.978 0.150 ***

Five persons and over 1.131 0.198 ***

Located in largest metropolitan area<cities other than four largest metropolitan area>

Kanto metropolitan area 0.040 0.140

Chukyo metropolitan area 0.868 0.328 ***

Kinki metropolitan area −0.206 0.150

Kitakyushu-Fukuoka metropolitan area 0.397 0.331

Constant 1.748 1.441

Pseudo R2 (Cox and Snell) 0.025

LRχ2 3283.049

−21nL 550.645

N 21425

Note: Reference group in <brackets>
*10% significance level; ***1% significance level

Tables 8 and 9 contain the results of the binary logit regression analysis
for income from assets and amount of residential and land assets for Model 1
for the four metropolitan areas in 2009. In the Kanto and Kitakyushu–Fukuoka
metropolitan areas, the coefficients of residential and land assets are significantly
negative for individuals’ choice to work. This indicates the possibility that the more
stable real estate values in these areas have a negative effect on individual’s choice to
work. Furthermore, for male heads of households living in the Kanto metropolitan
area, the coefficient of income from assets is significantly negative for individuals’
choice to work. This is likely due to the larger number of high net-worth individuals
in the Kanto metropolitan area (which includes Tokyo) compared to other areas.
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Table 4 Results of binary logit regression analysis (women) for Model 1, 2009

Standard Significance

Coefficient error level

Home ownership <No>

Home ownership −0.257 0.372

Age 0.112 0.066 *

Square of age −0.002 0.001 ***

Labor income of spouse of head of household (ln) 0.159 0.023 ***

Income from assets (ln) −0.090 0.020 ***

Savings amount (ln) 0.119 0.024 ***

Risk asset ratio −0.505 0.462

Liabilities amount (ln) 0.155 0.021 ***

The amount of residential and land assets (ln) 0.043 0.051

Dummy of number of household members<Two persons>

Three persons 0.534 0.128 ***

Four persons 0.978 0.150 ***

Five persons and over 1.131 0.198 ***

Located in largest metropolitan area<cities other than four largest metropolitan areas>

Kanto metropolitan area 0.040 0.140

Chukyo metropolitan area 0.868 0.328 ***

Kinki metropolitan area −0.206 0.150

Kitakyushu-Fukuoka metropolitan area 0.397 0.331

Constant 1.748 1.441

Pseudo R2 (Cox and Snell) 0.025

LRχ2 3283.049

−21nL 550.645

N 21425

Note: Reference group in <brackets>
*10% significance level; ***1% significance level

We would like to mention two qualifications for the results of this analysis.
First, land and housing prices are estimates calculated using official microdata
that reflect the official land prices in three closest locations. Therefore, there is a
possibility that the price of real estate assets used in this research fails to reflect the
specific characteristics of owned land and housing. Second, there are gender-based
differences when it comes to housing. Male heads of households tend to purchase
real estate via housing loans, while female heads of household tend to own real
estate without debt. This could explain the gender-based differences in the results.
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Table 5 Results of binary logit regression analysis for Model 2 and 2009

Standard Significance

Coefficient error level

Home ownership <No >

Home ownership 0.307 0.248

Gender <Female>

Male 1.747 0.087 ***

Age 0.050 0.044

Square of age −0.001 0.000 **

Labor income of spouse of head of household (ln) 0.179 0.021 ***

Income from assets (ln) −0.036 0.018 **

Ordinary deposit (ln) −0.020 0.016

Fixed deposit (ln) 0.013 0.014

Life insurance (ln) 0.077 0.015 ***

Money trust (ln) −0.065 0.044

Stocks (ln) −0.022 0.020

Bond (ln) −0.024 0.027

Liabilities amount (ln) 0.082 0.015 ***

The amount of residential and land assets (ln) −0.069 0.034 **

Dummy of number of household members<Two persons>

Three persons 0.131 0.090

Four persons 0.680 0.117 ***

Five persons and over 0.585 0.149 ***

Located in largest metropolitan area<cities other than four largest metropolitan areas>

Kanto metropolitan area −0.248 0.099 **

Chukyo metropolitan area 0.462 0.218 **

Kinki metropolitan area −0.418 0.106 ***

Kitakyushu-Fukuoka metropolitan area −0.165 0.191

Constant 1.202 0.956

Pseudo R (Cox and Snell) 0.054

LRχ2 5663.255

−21nL 1322.709

N 23970

Note: Reference group in <brackets>
**5% significance level; ***1% significance level
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Table 6 Results of binary logit regression analysis (men) for Model 2 and 2009

Standard Significance

Coefficient error level

Home ownership<No>

Home ownership −0.281 0.376

Age 0.104 0.066

Square of age −0.002 0.001

Labor income of spouse of head of household (ln) 0.155 0.023 ***

Income from assets (ln) −0.086 0.021

Ordinary deposit (ln) −0.021 0.021

Fixed deposit (ln) 0.028 0.019

Life insurance (ln) 0.092 0.020 ***

Money trust (ln) −0.077 0.056

Stocks (ln) 0.007 0.028

Bond (ln) −0.018 0.035

Liabilities amount (ln) 0.152 0.022 ***

The amount of residential and land assets (ln) 0.051 0.051

Dummy of number of household members<Two persons>

Three persons 0.509 0.128 ***

Four persons 0.944 0.150 ***

Five persons and over 1.055 0.198 ***

Located in largest metropolitan area<cities other than four largest metropolitan areas>

K.anto metropolitan area 0.079 0.140

Chukyo metropolitan area 0.887 0.328 ***

Kinki metropolitan area −0.186 0.150

Kitakyushu-Fukuoka metropolitan area 0.376 0.331

Constant 2.372 1.463

Pseudo R2 (Cox and Snell) 0.026

LRχ2 3276.802

−21nL 556.893

N 21425

Note: Reference group in <brackets>
***1% significance level
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Table 7 Results of binary logit regression analysis (women) for Model 2 and 2009

Standard Significance

Coefficient error level

Home ownership <No>

Home ownership 1.031 0.366

Age −0.022 0.063

Square of age 0.000 0.001

Labor income of spouse of head of household (ln) 0.458 0.092 ***

Income from assets (ln) 0.053 0.034

Ordinary deposit (ln) −0.014 0.024

Fixed deposit (ln) −0.011 0.021

Life insurance (ln) 0.068 0.022 ***

Money trust (ln) −0.075 0.071

Stocks (ln) −0.074 0.032 **

Bond (ln) −0.010 0.042

Liabilities amount (ln) −0.018 0.021

The amount of residential and land assets (ln) −0.185 0.050 ***

Dummy of number of household members<Two persons>

Three persons −0.107 0.127

Four persons 0.139 0.182

Five persons and over −0.475 0.232 **

Located in largest metropolitan area<cities other than four largest metropolitan areas>

K.anto metropolitan area −0.596 0.145 ***

Chukyo metropolitan area −0.015 0.303

Kinki metropolitan area −0.575 0.153 ***

Kitakyushu-Fukuoka metropolitan area −0.602 0.243 **

Constant 2.777 1.358 **

P seudo R2 (Cox and Snell) 0.050

LRχ2 2127.699

−21nL 132.638

N 2545

Note: Reference group in <brackets>
**5% significance level; ***1% significance level

Table 8 Result of binary logit regression analysis for income from assets for Model 1 (four
metropolitan areas, 2009)

Coefficient Significance level

Kanto metropolitan area −0.134 **

Kanto metropolitan area for men 0.055

Kanto metropolitan area for women −0.268 ***

Chukyo metropolitan area 0.272

Kinki metropolitan area −0.041

Kitakyusyu-Fukuoka metropolitan area −0.321 **

**5% significance level; ***1% significance level
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Table 9 Result of binary logit regression analysis for amount of residential and land assets and
for Model 1 (four Metropolitan areas, 2009)

Coefficient Significance level

Kanto metropolitan area −0.060 ***

Kanto metropolitan area for men −0.121

Kanto metropolitan area for women 0.102

Chukyo metropolitan area 0.061

Kinki metropolitan area −0.031

Kitakyusyu-Fukuoka metropolitan area −0.077

***1% significance level

5 Conclusion

There is a significant negative impact of ownership of risky assets on individuals’
employment. This indicates the possibility that an accumulation of risky assets that
generate non-labor income can contribute to individuals’ decisions not to work.
Furthermore, the influence of residential and land assets on employment differs
depending on geographic area. In the Kanto and Kitakyushu/Fukuoka metropolitan
areas there is a negative influence of residential and land asset ownership on
employment. This result possibly reflects the more stable real estate and land prices
in these areas, and suggests that if there really is a negative effect of residential
and land asset ownership on employment in metropolitan areas, tax benefits on real
estate ownership could have an adverse effect on the labor supply in these areas.

The qualifications indicated in the above section present an important topic in
themselves, and further work is required to address these tasks.

References

Fortin, N.M.:. Allocation inflexibilities, female labor supply, and housing assets accumulation: are
women working to pay the mortgage? J. Labor Econ. 13(3), 524–557 (1995)

Ito, S., Dejima, T.: Influence of non-labor income on youth unemployment in Japan: are youths in
households with larger budgets less likely to work. J. Econ. 57(1–2), 1–22 (2016)

Johnson, W.R.: House prices and female labor force participation. J. Urban Econ. 82, 1–11 (2014)
Yoshikawa, H., Ohtake, F.: An analysis of female labor supply: housing demand and the saving

rate in Japan. Eur. Econ. Rev. 33(5), 997–1023 (1989)



Visualization and Spatial Statistical
Analysis for Vietnam Household Living
Standard Survey

Takafumi Kubota

Abstract In this study, the data of Vietnam Household Living Standard Survey in
2006 (VHLSS2006) were used as microdata level data to find out some relations
among characteristics, medical cares, and work styles in Vietnam. VHLSS2006
were aggregated by province level to a spatial data set to find out spatial char-
acteristics and to apply spatial statistical models. The R package shinydashboard
was applied to present the data interactively as dashboards for representative
values, tables, and maps. In spatial statistical analysis, the focus was on working
variables such as working rate, employment rate, self-employed in agriculture or
non-agriculture rate in each province. To detect spatial dependence the Moran’s
I Statistics were applies these working related objective variables and maps of
Vietnam. The shape files of Vietnam in GADM database of Global Administrative
Areas were used to calculate neighborhood information of provinces in Vietnam
and to draw Choropleth map. Conditional autoregressive model was applied to
explain spatial dependences by provinces and characteristics of the relation between
working status and characteristics such as gender, age, education, and medical cares.

1 Introduction

In this study, the data of Vietnam Household Living Standard Survey in 2006
(hereinafter referred to as VHLSS2006 by the first letter of words plus year
of the survey) were used as microlevel data to find out some relations among
characteristics, medical cares, and work styles in Vietnam. Vietnam has achieved
economic growth with the Doi Moi policy. However, regional education and health

T. Kubota (�)
Tama University, Tokyo, Japan
e-mail: kubota@tama.ac.jp

© Springer Nature Singapore Pte Ltd. 2020
T. Imaizumi et al. (eds.), Advanced Studies in Classification and Data Science,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-981-15-3311-2_36

459

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3311-2_36&domain=pdf
mailto:kubota@tama.ac.jp
https://doi.org/10.1007/978-981-15-3311-2_36


460 T. Kubota

problems remain unsolved. Therefore, modeling and visualization are carried out to
obtain analytical results that provide evidence, in particular, for enforcing regional
education and health policies. The method examined the candidate of the hot spot.
VHLSS2006 were aggregated by province level to a spatial data set to find out
spatial characteristics and to apply spatial statistical models.

The R package shinydashboard was applied to present the data interactively as
dashboards for representative values, tables, and maps. In spatial statistical analysis,
the focus was on household living survey such as income, education, and health
expenditure in each province. To detect spatial dependence the Moran’s I Statistics
were applied these working related objective variables and maps of Vietnam. The
shape files of Vietnam in GADM database of Global Administrative Areas were
used to calculate neighborhood information of provinces in Vietnam and to draw
Choropleth map.

Ordinary least squares regression (OLS) model and conditional autoregressive
(CAR) model were applied to explain not only explanatory variables but also
spatial dependences by provinces and characteristics of the relation between income
and expenditures such as education and health. This paper showed a comparative
study of the results of ordinary least squares regression model and conditional
autoregressive model of VHLSS2006.

2 Data

In this study, household summary file TTCHUNG of VHLSS2006 was used for
analysis. The data file TTCHUNG is the household-level summary data, which
derived from data files. In this study, following variables are selected to apply OLS
and CAR models.

• Response variable

– income: income per capita per month (thousand dong)

• Explanatory variables

– ttnt: urban/rural (1: urban, 2: rural)
– hsize: house hold size
– edu: education expenditure per month (thousand dong)
– hea: total of health expenditure per month (thousand dong)

TTCHUNG was grouped by province and transformed to ttc2 (hereinafter
referred to as ttc2 by the first three letters of TTCHUNG for version 2). In this
data, province Ha Tay located in south west of Ha Noi was merged with Ha Noi
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Table 1 Summary of ttc2 Variable Mean sd Min Max

Income 681 231 323 1651

hsize 4.31 0.46 3.30 5.65

edu 1321 590 426 3318

hea 1342 503 397 2271

Fig. 1 Choropleth maps of income, hsize, edu, and hea (from left to right in this figure) of ttc2

municipality. Table 1 shows summary of ttc2 including mean, standard deviation,
minimum and maximum values of variables.

Figure 1 shows histograms of income, hsize, edu, and hea of ttc2. From the
histograms, income, edu, and hea have long tails to the right.

For drawing map and calculate contiguity matrices, shape file of GADM database
of Global Administrative Areas (Hijmans 2017) in Vietnam was used. Figure 2
shows choropleth maps of income, hsize, edu, and hea of ttc2. Income (income)
is high for large cities such as Hanoi in the north and Ho Chi Minh in the south, but
low in other areas such as the northwest, north-central, and south-central regions.
However, the near to large cities, the higher the expenditure values are. Education
expenditure (edu) and health expenditure (hea) have the same tendency as income,
but house hold size (hsize) shows that the tendency of ups and downs is reversed.
From the choropleth maps, the spatial characteristics between hsize and other
variables are different. Therefore, spatial dependences were checked by Moran’s
I statistics.
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Fig. 2 Histograms of income (top left), hsize (top right), edu (bottom left), and hea (bottom right)
of ttc2

3 Data Analysis

In this section, ordinary least squares regression (OLS) model and conditional
autoregressive (CAR) model were applied to ttc2. Moran’s I statistics were also
calculated to compare spatial dependencies. Then, the results of OLS model and
CAR models were compared.

3.1 OLS

First of all, OLS model was applied to ttc2, as following regression equation:

income = ttnt+ hsize + edu+ hea. (1)
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Table 2 Result of OLS Coefficient Std.error t .value p.value

(Intercept) 2444 351 7.0 <.001

ttnt −808 130 −6.2 <.001

hsize −140 34 −4.2 <.001

edu 0.05 0.03 1.4 0.153

hea 0.15 0.03 4.4 <.001

Table 2 shows the results of OLS model. From the result, coefficient of education
expenditure was not effective to explain income while other variables were effective.
Adjusted R squared value of the result was 0.77.

Root mean squared error (RMSE) which measures the average magnitude of the
error. It is the square root of the average of squared differences between prediction
(ŷ) and actual observation (yi) as follows:

RMSE =
√√√√1

n

n∑

i=1

(ŷi − yi)2. (2)

In this result, the RMSE value is 13.5.
Figure 3 shows dash boards of the results of OLS model. From the results,

there was high (positive) residual province (Ha Noi) and were other low (negative)
residual provinces. However, almost all fitted values have small residuals.

3.2 Moran’s I Statistics

To check spatial dependences, Moran’s I statistics were calculated. Table 3 shows
the result of Moran’s I statistics and p-values of income, edu, and hea. From the
results, every variables have global dependence. Then, local Moran’s I statistics are
also calculated. Figures 4, 5, and 6 show local Moran’s I statistics vs actual values
of income, edu, and hea, respectively.

From these results, there are spatial dependence in income, edu, and hea. The
first quadrant which has high actual values and high local Moran’s I corresponds
to candidate of hotspots. From these figures Ho Chi Minh and Binh Doung are the
candidate of hotspots of income, while Dong Nai, Ba Ria—Vung Tau, Ho Chi Minh,
and Da Nang are the candidate of hotspots of edu, and Ho Chi Minh, Dong Nai, and
Binh Duong are the candidate of hotspots of hea. There candidates were different
provinces while only Ho Chi Minh was appeared in all variables.
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Fig. 3 Dash board of the result; actual vs fitted values (top left), residuals vs fitted (top right),
residuals vs row order (middle left), normal Q-Q plot (middle right), histogram of residuals (bottom
left), and residuals vs normal density (bottom right)

Table 3 Global Moran’s I
statistics of income, edu, and
hea

Variable Global Moran’s I p-value

Income 0.575 <0.01

edu 0.538 <0.01

hea 0.541 <0.01
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Fig. 4 Standardized income vs local Moran’s I

Therefore, it was found that Ho Chi Minh City has high actual values for both
income and health expenditures and education expenditures, but it is not high for
education achievements compared with the surroundings. Also, Dong Nai did not
have high actual value or Moran I for Imcome, but it also turned out that health
expenditure and education expenditure are high. On the other hand, Binh Duong
has high income but low Education expectations.
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Fig. 5 Standardized edu vs local Moran’s I

3.3 CAR

Then, CAR model which the spatial dependence parameter rho be fixed rather than
being estimated in the model (CAR model 1) was applied to ttc2. S.CARleroux
(Leroux et al. 2000) was applied to the data. Table 3 shows the results. In the results,
Geweke.diag shows the diagonostics of Geweke (1992). Figure 7 shows the result
of CAR model 1, and the result of the RMSE value is 14.2.
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Fig. 6 Standardized hea vs local Moran’s I

Then, CAR model which the spatial dependence parameter rho be also changed
being estimated in the model (CAR model 2) was applied to ttc2. Table 4 shows the
results. Figure 8 shows the result of CAR model 2, and the result of the RMSE value
is 14.3.
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Fig. 7 The results of CAR model 1; histogram of residuals (left) and actual vs predicted values of
income (right)

Table 4 Result of CAR model1

Median 2.5% 95.5% n.sample Percent accept n.effective Geweke.diag

(Intercept) 342 −508 1229 3000 100 3160 −1.0

ttnt −135 −514 230 3000 100 3000 1.0

hsize −22 −145 108 3000 100 3000 0.2

edu 0.03 −0.07 0.13 3000 100 3000 −0.4

hea 0.04 −0.08 0.15 3000 100 3000 0.4

nu2 366,000 244,000 571,000 3000 100 3000 −1.0

tau2 342 −508 1229 3000 100 3160 −1.0

rho 1 1 1 NA NA NA NA

Fig. 8 The results of CAR model 2; histogram of residuals (left) and actual vs predicted values of
income (right)
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Table 5 Result of CAR model1

Median 2.5 percent 95.5 percent n.sample Percent accept n.effective Geweke.diag

(Intercept) 351 −574 1275 3000 100 3160 0.3

ttnt −139 −517 230 3000 100 3000 0.1

hsize −22 −148 104 3000 100 3000 0.2

edu 0.03 −0.07 0.13 3000 100 3000 0.0

hea 0.04 −0.08 0.16 3000 100 2729.4 −2.3

nu2 368,000 245,000 561,000 3000 100 3000 −1.7

tau2 342 −508 1229 3000 100 3160 −1.0

rho 0.009 0.002 0.100 3000 100 555 −1.2

4 Summary and Future Studies

From the results, OSL was better result which mean small RMSE than CAR model
1 or CAR model 2. Between CAR model 1 and 2, the model CAR model 1 was
better. For Future studies, it will be checked the convergence of edu in CAR model
2. Also the relation between high R squared and global Moran’s I, to find out the
reason why not using CAR is better results, as shown in Table 5.
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Changes in the Gendered Division
of Labor and Women’s Economic
Contributions Within Japanese Couples

Miki Nakai

Abstract Despite the continuing rise in Japanese women’s rates of participation
in the economy, gender division of labor has been accepted as “normal” and still
strong. The aim of this paper is to examine whether and how the determinants
of married women’s labor force participation have changed. Based upon national
sample in 1985, 1995, 2005, and 2015, we analyze change/stability of the factors
that differentiate dual-income couples from husband sole provider couples and how
these associations have changed over time. Results show that dual-income couples
have increased but it is not at a constant rate: it increased at a slow pace until around
2005, and then increased dramatically recently. The results also show that women’s
own human capital has not been a determinant of labor participation for married
women until recently. Husband’s low income have a significant positive effect
on labor force participation of married women, suggesting that high occupational
resources of husband drive wife out of the labor market, which has been found in
conservative and Mediterranean welfare regimes.

1 Introduction

1.1 Background

A clear division of paid and unpaid work along gender lines in households is found
in every country of the world, but a continuing trend towards dual-earner families,
where both husband and wife are the family breadwinners, can be detected in recent
years in many advanced industrial societies. The percentage of male breadwinner
families steadily decreases and it may reflect a rise in the numbers of more gender-
equal couples.
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However, despite the continuing rise in women’s participation in the economy
over the period of industrialization and beyond in Japan as well as many Western
societies, gender division of labor has been still accepted as “normal” and strong
in Japanese society. While the number of households with wives entirely dependent
on their spouses’ income has dramatically declined, most women in dual-earner
households still earn much less than their spouses, and the number of households in
which wives earn more than their husbands are very few.

As gender inequalities in the division of labor within households are closely
related to gender inequalities in society at large, particularly in the labor market,
understanding what determines the division of labor within couples is a key to
understanding other aspects of gender stratification. Many studies have argued that
women’s economic dependency on men is an important attribute of stratification
systems and essential force in the maintenance of gender inequality (e.g., Sorensen
and McLanahan 1987). In this paper, we examine what differentiates dual-income
couples from husband sole provider couples, and how these associations have
changed over the past three decades in Japan.

1.2 Hypotheses

It is widely acknowledged that the incentives and restrictions that affect women’s
employment are: (a) woman’s human resources, (b) economic need for household,
(c) availability of resources for balancing work and family, and (d) values (e.g.,
Oppenheimer 1982; Treas 1987). Do these relationships also apply to Japan?

Based on some previous studies in Table 1, hypothesis are as follows.

1.2.1 Human Resource Hypothesis

First, we hypothesize that the women’s education may have positive effects on
married women’s labor force participation. Substantial studies have shown that
women with higher educational resources have a higher participation rate in the
labor market in all the Western industrialized countries (e.g., Sweet 1973; Blossfeld
and Drobnič 2001). Highly educated women’s risk of employment exit tends to
be considerably lower and the re-entry rate is higher. In general, highly educated
women appear to combine work and family by reducing their working time
rather than by exiting from employment. Educational expansion and the resulting
improvement in women’s educational opportunities have led to increasing female
labor force participation, undermining social norms favoring the male breadwinner
households in many post-industrial societies. However, the effect of a woman’s
educational attainment on her employment has not been significant in Japan. It has
been pointed out that Japan is an anomaly, where women are highly educated but
typically barred from making full use of their education in economic and political
fields (e.g., Brinton 1993; Shirahase 2003; Nakai 2009).
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1.2.2 Supplement Household Income Hypothesis

Second, husband’s socio-economic status may have negative effects on married
women’s labor force participation. Married women may be more likely to enter
the labor market when their husbands’ income is low, so that their earnings can
supplement household income. According to some empirical research, a married
woman’s labor participation is negatively associated with her husband’s socio-
economic status (Nakai 2011).

However, it has been found that the impact of husbands’ resources on their
spouses’ employment differs according to the institutional context since around
the end of the twentieth century and these differences correspond to the welfare
state regimes (Esping-Andersen 1990, 1999; Sainsbury 1999; Blossfeld and Drobnič
2001; Stier and Mandel 2009; Hofacker et al. 2013). For example, in continental
conservative welfare states, the effect of husband’s socio-economic status on wife’s
labor force participation is negative: husbands’ high occupational resources sup-
press spouses’ participation in paid work, showing the traditional division of labor
within couples and increasing dependency of married women on their spouses over
the life course. On the other hand, in social democratic welfare states, the effect of
husband’s socio-economic status is positive, which means that men’s occupational
resources increase their spouses’ labor market activity. Positive effect implies
that economic resource at the household level facilitates a woman’s employment
also because it helps balancing work and family. More and more advanced post-
industrial economies see the positive effects of husband’s occupational resources on
their partner’s participation rates in recent year. Women married to well-educated
husbands as well as women with high-income partners are less likely to leave the
labor market than women with low-resource partners.

There are a wide variety of discussions on the characteristics of Japanese welfare
state as well as on East Asian welfare model (e.g., Goodman and Peng 1996;
Esping-Andersen 1997). In some classification, Japan’s welfare system has often
been classified as a sub-category of the conservative welfare states regime inclined
towards the liberal regime or referred to as a combination of key elements of both
the conservative and liberal welfare models (Esping-Andersen 1997, 1999). Japan
model is regarded to fall closer to conservative welfare states, especially Southern
Europe, in the sense that the welfare state is committed to traditional familialism.
It implies that the family and the local community are the natural and ideal loci
of welfare provision and the state’s role should be limited. If this framework can be
applied, there may be a negative effect of husband’s resources on wife’s participation
in paid work as some previous research showed (Blossfeld and Drobnič 2001). On
the other hand, turning to the role of market-provided welfare and very limited social
expenditures for social services, Esping-Andersen identifies Japan closer also to
the liberal welfare regime, which is associated with the dual-earner/market career
family model. Under welfare states similar to the liberal welfare regime, the effect of
husband’s resources on their wives’ employment transitions might be different from
that in countries belonging to the conservative and Mediterranean welfare states.
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1.2.3 Modernization Hypothesis

Thirdly, we also hypothesize that values and attitudes toward the family and gender
roles may affect women’s participation in labor market. Inglehart and Norris (2003)
argue that the twentieth century gave rise to profound changes in traditional sex
roles. But the force of this “rising tide” has varied among rich and poor societies.
They demonstrate that richer, post-industrial societies support the idea of gender
equality more than agrarian and industrial societies and intergenerational differences
in values are largest in post-industrial societies and relatively minor in agrarian
societies, suggesting that the former are undergoing intergenerational changes in
values. They also argue that cohort change in gender-role attitudes in post-industrial
societies is unidimensional, with newer cohorts consistently more egalitarian than
older cohorts. This “increasing egalitarianism in gender-role attitudes” is attributed
to modernization and generational replacement. Given that younger cohorts are
more egalitarian than older cohorts, it may lead to the rise in married women’s labor
force participation.

1.2.4 Cohort Hypothesis

Suppose a particular cohort experiences a change in labor market institutions
that significantly affects the employment opportunities for women, such as the
Equal Employment Opportunity Law (EEOL) or the Maternity Leave Act, and
thus, the employment patterns of that cohort. Then, certain cohort may possess
different gender norms, or more gender-egalitarian values, and tend to participate
in employment more than other birth cohorts (e.g., Elder 1975, 1994; Shorrocks
2016).

The life course perspective focuses on the interplay of human lives and historical
times. Especially in rapidly changing societies, differences in birth year expose indi-
viduals to different historical world, with their constraints and options. Individual
life courses may well reflect these different times.

2 Data and Methods

2.1 Data

Data for this study were obtained from the past three decades of four waves of
cross-sectional data: the 1985, 1995, and 2005 Social Stratification and Social
Mobility (SSM) surveys of Japanese society, and the 2015 Stratification and Social
Psychology (SSP) survey in Japan. All the surveys were conducted with similar
approach: face-to-face interviews with a special focus on social stratification and
inequality in contemporary Japan. All the surveys selected national representative
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respondents through multiple-stage sampling. The subjects of these surveys were
men and women, aged between 20 and 69 for the surveys in 1985, 1995, and 2005,
and between 20 and 64 for the 2015 SSP survey. Data were collected from 1248
men and 1405 women in 1985, 2490 men and 2867 women in 1995, 2660 men and
3082 women in 2005, and 1644 men and 1931 women in 2015. The response rates
were 67.9%, 66.0%, 44.1%, and 43.0% in 1985, 1995, 2005, and 2015, respectively.

To make data comparable across the four datasets, we limit our analysis to the
working-age couples: Specifically, those who are married and wives’ age is between
25 and 54, N = 9067 (994 in 1985, 3180 in 1995, 2862 in 2005, and 2031 in 2015).

2.2 Measurement of Variables

2.2.1 Dependent Variable

We focus on within-couple inequality in the family. We use a concept of wives’ con-
tribution to household income as an aspect which reflects within-couple inequality,
which is defined as: (a) income provision-role type and (b) wives’ contribution to
total household income. In this study, we analyze (a) income provision-role type as
a dependent variable.

Income provision-role type is measured based on whether a dominant provider
exists and identifies who she/he may be. We use a five-group classification: (1)
husband sole provider, (2) husband provides majority, (3) equal providers, (4) wife
provides majority, (5) wife sole provider (Raley et al. 2006). Husband sole provider
category consists of couples where only husband is employed. Husband provides
majority category consists of couples where husbands’ earnings represent 60%
or more of the combined total income of the husband and wife. Equal providers
category identifies couples where wife’s earnings represent somewhere from 40% to
60%, meaning that each partner contributes between 40 and 60% of total household
income. Wife provides majority category consists of couples where wives’ earnings
represent 60% or more of the combined total income of the husband and wife. Wife
sole provider category consists of couples where only wife is employed.1

We analyze which factors differentiate dual provider couples (three dual-income
groups) from husband sole provider couples.

1Wives’ contribution to total household income (b) is measured as the proportion of the sum of
wives’ income and husbands’ income that comes from the wife. This relates to measures used to
proxy of wives’ economic dependency on their spouses in some prior studies (e.g., Bianchi et al.
1999; Sorensen and McLanahan 1987).
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2.2.2 Independent Variables

To capture the effects of human resources of women, we include wife’s education.
Wife’s education is collapsed into four categories: (1) less than high school, (2) high
school graduate, (3) two-year college, and (4) four-year tertiary education or more.
Wife’s age is coded into six categories: (1) 25–29, (2) 30–34, (3) 35–39, (4) 40–44,
(5) 45–49, and (6) 50–54, where 30–34-year-old group is the reference category.
Wife’s birth cohort is coded into five categories: (1) 1931–1943, (2) 1944–1953, (3)
1954–1963, (4) 1964–1973, and (5) 1974–1995. The birth cohort group of 1931–
1943 were born before WWII. The birth cohort group of 1944–53 were born in early
postwar period and this group includes the first baby boomer generation. The group
who were born in 1954–1963 is a cohort who entered the labor market prior to the
Equal Employment Opportunity Law (EEOL) enforcement, whereas the group who
were born in 1964–1973 is a post-EEOL cohorts, those who were 22 or younger in
1986, when EEOL went into effect in Japan. The group who were born in the period
1974–1995 are the most recent cohort and often referred to as the second baby boom
generation and post-bubble who finished schooling in the recession period, when the
labor demand was weak.

Married couples division of labor within household may vary systematically also
with regards to household level characteristics. The household level explanatory
variables include age and the number of children within a household, husband’s
income, and the couples’ relative education. We create variables to indicate the
number of children and the presence of a preschooler. The four categories measuring
number of children are: (1) no, (2) one, (3) two, and (4) three or more children,
where no children is the reference category. Husband income level is measured by
income decile (ten groups) in each survey year. The couples’ relative education-level
variable measures whether wife has higher or lower education than her spouse and
has three categories: (1) husband and wife have equal educational attainment, (2)
wife has higher education than her spouse (hypogamy), and (3) husband has higher
education than his spouse (hypergamy), where equal educational attainment is the
reference category.

2.3 Method

Although the level of the original dependent variable is four ordinal categories
except wife sole provider category, we treat the response variable as dichotomous,
whether the married couple is dual provider or husband sole provider couple.
The focus here is on as to which factors are determinants for wives in playing
an important role by contributing to household income because not all research
has consistent findings with regard to the impact of various factors on women’s
participation until recently. We examine what differentiates dual-income couples,
which consist of three dual-income groups (where the husband provides the majority
of income, equal providers, and the wife provides the majority), from husband sole
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provider couples. This is very important since the traditional division of roles within
households where a man is the sole provider and a woman is the main care provider
for the family remains relatively unchanged despite the increasing rate of female
labor force participation in Japan. The effects of individual-level and household
level characteristics on the pattern of couple’s income provision role, or breadwinner
type, are analyzed using logistic regression analysis. Since we want to take account
of differences across birth cohorts with respect to the effect of wife’s education
on couples income provision type, assuming that associations of women’s human
capital with work increase over time, we add interaction terms to our models.

3 Results

3.1 Descriptive Statistics

We first examined how families are trying to allocate time to market work and
household production within couples. Table 2 shows how bread-winning patterns
among married couples have changed over the past three decades. Until 2015,
an overwhelming majority of couples were dual providers. The proportion of the
households with husbands as sole provider have declined from 42.8% in 1985 to
29% of the observations in 2015. However, compared to Western post-industrial
societies, excluding a couple of continental European countries such as Spain and
Italy, male breadwinner is still much higher (Harkness 2010). Moreover, equally
shared income provisioning portrayed only 14% in Japan even in 2015.

The table also shows how married women’s earnings contribution of household
income changed between 1985 and 2015. As expected, the percentage of earnings
that comes from wives has increased quite dramatically recently, but still roughly
only a quarter (25.6% and 23.1%) of family income in 2015.

Table 2 Trends in percent distribution of household types of couples and wife’s economic
contribution to household income: 1985–2015

1985 1995 2005 2015

Household type

Husband sole provider 42.8% 42.0% 41.3% 29.0%

Husband provides majority 46.8% 47.7% 44.7% 51.4%

Equal providers 8.9% 8.7% 11.2% 14.1%

Wife provides majority 1.6% 1.2% 1.9% 5.2%

Wife sole provider 0.0% 0.4% 0.9% 0.3%

Wife’s economic contribution

All age 14.0 15.1 18.6 25.6

Wife aged between 25–54 15.1 14.9 17.8 23.1
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3.2 Determinants of Wife’s Participation in Paid Work

Table 3 displays the results of a logistic regression estimating the likelihood of
being in paid employment for wives of married couples. It investigates whether
employment of married women is influenced by their own human capital, whether
household level factors have a significant influence, and whether the effects have
changed over time. Women’s human capital measured by their own education is not
a determinant of labor participation for married women in Japan. Even having a
college degree does not lead to women’s higher participation in the labor force.

Table 3 Logistic regression estimates for the likelihood that a couple is dual provider: 1985–2015

β S.E. Exp(β)

Age (ref: 30–34) 25–29 −0.156 0.126 0.865

35–39 0.117 0.100 1.124

40–44 0.222∗ 0.126 1.249

45–49 0.360∗∗ 0.149 1.434

50–54 0.040 0.179 1.041

Wife’s education (ref: high school) Less than high school 0.007 0.103 1.007

Two-year college 0.081 0.082 1.085

Four-year college 0.080 0.164 1.084

Couple’s relative education (ref: equal) Husband > wife −0.336∗∗∗ 0.067 0.714

Husband < wife 0.144 0.091 1.155

Husband’s income decile −0.117∗∗∗ 0.012 0.889

Number of children (ref: 0) 1 0.015 0.120 1.015

2 0.417∗∗∗ 0.111 1.517

3 or more 0.508∗∗∗ 0.122 1.662

Preschool children (ref: no) Yes −1.089∗∗∗ 0.088 0.337

Birth cohort (ref: 1954–1963) 1931–1943 −0.135 0.181 0.874

1944–1953 0.123 0.108 1.131

1964–1973 −0.106 0.108 0.900

1974–1995 0.118 0.184 1.125

Four-year college * Birth cohort 1931–1943 −0.390 0.519 0.677

1944–1953 −0.548∗∗ 0.272 0.578

1964–1973 0.529∗∗ 0.242 1.697

1974–1995 0.146 0.271 1.158

Survey year (ref: 1985) 1995 −0.414∗∗∗ 0.121 0.661

2005 0.065 0.174 1.067

2015 0.611∗∗∗ 0.234 1.842

Intercept 1.143∗∗∗ 0.172 3.136

Observations 9067

Nagelkerke (Pseudo) R2 0.140
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
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Having said that, a four-year college degree may have somewhat different
meaning by cohorts. Cohort itself does not make differences in the likelihood
of being dual provider household, but, according to the interaction term, highly
educated women born in the postwar period may have different gender-role attitudes
in terms of participation in paid work and division of labor within household across
birth cohorts. Women who were born between 1944 and 1953 may have relatively
stronger gendered division of household labor than other birth cohorts and their
economic participation tend to be inactive. Many of them got married and settled
down in the 1960s and 1970s, when Japan’s economy grew. Being housewife
symbolized middle-class status back then and many female baby boomers stayed
home as housewives. In contrast, highly educated women who were born between
1964 and 1973 tend to commit to their career than other cohorts. They experienced
a social context that was significantly different from that of the earlier period in
their youth, when economic growth stagnated after the oil shock in 1973. These
women came of age in the Bubble Era and entered the labor market as the Equal
Employment Opportunity Law was being implemented, which might lead the
college graduates to active participation in the labor force.

Age effects show a different pattern from Western countries. It is not reverse
U-shaped or hump-shaped pattern, which implies the highest employment level in
mid-career, or in their 30s, and lower probability for older age group. In Japan,
wives of older age group, or in their 40s, have higher probability of being in paid
work than those in their 30s.

Compared to the women’s own variables, household level and spouses’ variables
have significant effects. We find significant negative effects of husbands’ income
on wives’ labor force participation. This means that high occupational resources
of husband drive wife out of the labor market, which is the relationship known as
“Douglas-Arisawa effect,” which hypothesizes that the decision as to whether or not
a woman becomes a paid worker is influenced by her husband’s income; the lower
the husband’s income, the more the wife tends to choose paid work (Douglas 1934;
Arisawa 1956). It is sometimes claimed nowadays that the argument of negative
association between husband’s income and wife’s participation in paid work does
not hold true anymore. However, in reality, the results of the analysis show that
the relationship mentioned in the “Douglas-Arisawa effect” is still valid in Japan.
This relationship has been found in conservative and Mediterranean welfare states in
some previous research (Blossfeld and Drobnič 2001). Unlike in the case of Social
democratic welfare states, whose tax system promotes wives’ employment as taxes
are individual-based rather than household-based, the tax and pension policies in
Japan are geared toward discouraging wives to work.

Quite a few studies have investigated the associations between wives’ labor force
participation and income inequality of society level (e.g., Treas 1987; Breen and
Salazar 2010; Breen and Andersen 2012; Shin and Kong 2015). Past studies have
referred that wives’ earnings once decreased income inequality among households
in a society, but the increasing positive association between spouses’ earnings due to
educational assortative mating, which helps to maintain greater economic equality
within marriage on the one hand, contributes to growing earnings inequality among
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married couples in recent years (Schwartz 2010; Shin and Kong 2015). In Japan,
however, the traditional division of labor in the family has not changed a lot and
therefore wives’ earnings still help to reduce income inequality across married
couple families.

As for relative education level of a couple, wives with higher educational
attainment than their husbands are not necessarily more likely to participate in work,
but wives’ labor participation is restricted among couples where wives have lower
educational level than their husbands. This suggests that values related to household
context influence gendered arrangement for work and care in the household.
Educational hypergamous couples, in which women marry men of higher status
than themselves, may prefer more traditional marriage practices, with women being
mainly responsible for caring for children and housework, with men having bread-
winning role.

The presence of preschool children strongly negatively affects wife’s labor
participation. However, mothers’ participation increases as the number of child
increases. In Western European countries and the United States, there has been a
steadily increasing trend toward paid employment by married women, especially
among those with young children. On the other hand, the employment rate for
women with young children in Japan is currently one of the lowest among advanced
industrial countries (OECD 2016).

4 Conclusion and Discussion

To summarize, household level and partner variables have stronger influences,
whereas women’s own human capital has little influence on women being in paid
work, which would suggest a more traditional division of labor.

After all, unlike in the case of Western advanced societies, Japanese women
seem to adjust their working style primarily in response to household needs. These
findings are consistent with previous studies (Nakai 2009, 2011). In the Western
advanced societies, wife’s college degree pushes a couple toward dual providing, but
in Japan, women’s own education has not been a determinant of labor participation
for married women until recently.

Analyzing cohort differences more thoroughly in future research could enrich
theory and evidence about how introduction of policy package might affect employ-
ment of married women, especially mothers of preschool children, as well as
societal level of gender equality. Further research must explore the factors that
differentiate couples where the husband provides the majority of the couple’s
income from equal providers.
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Employment Structures vs. Educational
Capital in the European Union Regions

Elżbieta Sobczak and Beata Bal-Domańska

Abstract The study aims at answering the research question whether high level
of educational capital quality constitutes an important determinant of employment
structure in European regions NUTS 2. The research used the methods of multivari-
ate statistical analysis. Due to the growing significance of knowledge and innovation
the analysis covered employment structures in economy sectors identified based on
the intensity of knowledge (defined regarding manufacturing sector by expenditure
on research and development, and in case of services by the level of tertiary educated
persons) including high and medium high-technology manufacturing, mid-low
and low-technology manufacturing, knowledge-intensive services, less knowledge-
intensive services. The research covered the period 2008–2016.

1 Introduction

Now the significance of economy sectors, based on the implementation of knowl-
edge and innovation, keeps growing (Bishop 2008; Aslesen and Isaksen 2007).
Research studies focus on the role of workforce structure in economy sectors defined
as the relation of expenditure on R&D against added value of manufacturing sector
(Hatzichronoglou 1996).

A continuous increase in the importance of education for the development of
national and regional economies is observed (Oancea et al. 2017, The Role of
Universities .., 2014). Knowledge becomes the key resource stimulating economic
transformations. It is related to the growing importance of human capital. The long-
term regional development should be based on the increasing resources of tertiary
education population, developing innovative and creative potential of regions.

In order to assess the impact of educational capital quality on the spatial
concentration level of employment structure, it is necessary to define the set of
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geographical areas and the economic phenomenon (variable) in the cross-section
of employment structure in technological intensity sectors and variables related to
educational capital quality, the spatial distribution of which shall become the subject
of the conducted analysis.

The purpose of the study is to assess the relation between the level of educational
capital quality and the employment structure in technological intensity sectors. The
study covered 265 European Union regions (NUTS-2) in 2016. In addition, changes
in selected indicators of educational capital in the period of 2008–2016 were taken
into account.

2 The Background Information and Methodology of the
Research

Now the significance of economy sectors, based on the implementation of knowl-
edge and innovation, keeps growing (Bishop 2008; Aslesen and Isaksen 2007).
Research studies focus on the role of workforce structure in economy sectors defined
as the relation of expenditure on R&D against added value of manufacturing sector
(Hatzichronoglou 1996).

A continuous increase in the importance of education for the development of
national and regional economies is observed (Oancea et al. 2017, The role of
Universities .., 2014). Knowledge becomes the key resource stimulating economic
transformations. It is related to the growing importance of human capital. The long-
term regional development should be based on the increasing resources of tertiary
education population, developing innovative and creative potential of regions.

In order to assess the impact of educational capital quality on the spatial
concentration level of employment structure, it is necessary to define the set of
geographical areas and the economic phenomenon (variable) in the cross-section
of employment structure sectors and variables related to educational capital quality,
the spatial distribution of which shall become the subject of the conducted analysis.

Workforce structure constitutes the reference basis of conducted analyses, in
the cross-section of the following technological intensity sectors, prepared by
Eurostat and OECD: HMTM—high and medium high-technology manufacturing,
LTM—low and medium low-technology manufacturing, KIS—knowledge-intensive
services, LKIS—less knowledge-intensive services, OTH—other sectors (farming,
hunting, forestry, fishing, mining, production and supply of electricity, gas, water,
construction).

The identification of educational capital quality in the European Union regions
was conducted using the below presented indicators: EL—early leavers from
education and training aged 18–24 (%), LL—participation rate in education and
training (last 4 weeks) of people aged 25–64 (%), ETER—population with tertiary
education (levels 5–8) (%), SE—% scientists and engineers of active population.
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The study covered 265 European Union regions selected based on NUTS 2
(The Nomenclature of Territorial Units for Statistics) classification. Due to the
unavailability of statistical data the analysis did not cover 11 NUTS2 regions.

The statistical information, required for the empirical research, was obtained
based on Eurostat database. Time range of research covered the period 2008–
2016. Since 1 January 2008 the updated NACE classification (NACE Rev. 2) and
the definition of high-tech manufacturing and knowledge-intensive services have
changed.

The following research procedure was applied:

1. The identification of educational capital quality indicators.
2. The classification of the European NUTS 2 level regions with regard to employ-

ment sector structures in 2016.
3. The assessment of relationships occurring between employment sector structures

in 2016 and the level of educational capital quality in the years 2008–2016 in
NUTS 2 regions of the European Union Member States.

In order to classify regions according to employment sector structures in 2016
the following procedure was performed (Anderberg 1973; Hartigan 1975; Sneath
and Sokal 1973):

• the specification of diversification between studied regions using squared
Euclidean distance,

• hierarchical classification of regions into homogenous classes using Ward’s
method,

• the selection of optimal classification using classification quality indicator
suggested by Mojena,

• the presentation of classification results on a dendrogram and the diagram of
distance integration in relation to integration stages,

• the presentation of the obtained classes of regions’ composition and their
characteristics by applying basic descriptive parameters.

3 Empirical Analysis Results

Figure 1 illustrates the hierarchical classification results of the analysed regions’
employment structure for 2016 using spanning trees and integration distance
diagrams with regard to classification stages. Mojena indicator points to optimal
classification for k in the range 2.75–3.50. On their basis a variant division of 265
regions into four classes, representing relatively homogenous sector structure of
employment was suggested.

Figure 2 presents spatial classification results of the EU regions employment
structure for 2016.

Composition, number and profile of regional classes for optimal division in 2016
was presented in Table 1.
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Fig. 1 Dendrogram of connections, integration distances and classification stages using Ward
method for NUTS2 level regions in 2016. Source: authors’ compilation based on Eurostat data
by applying STATISTICA 13.1 PL statistical package

Fig. 2 Spatial classification results of the EU regions employment structure in 2016. Source:
authors’ compilation based on Eurostat data applying ArcGIS and EuroGeographics for admin-
istrative boundaries (map)
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Table 1 Classification results of the European regions using Ward’s method with regard to sector
structure of employment in 2016

Class Specific nature Regions Descriptive Sectors

no. of classes no. parameters HMTM LTM KIS LKIS OTH

Regions presenting x 2.6 11.3 26.0 26.4 33.8

1 low level of smart 16 Me 2.5 11.1 27.8 25.7 31.3

smart specialization V 79.4 32.0 22.0 17.3 24.9

Service x 2.8 8.7 34.4 39.0 15.1

2 regions 43 Me 2.6 9.4 34.3 37.1 15.1

(LKIS and KIS) V 80.9 35.9 10.7 15.6 22.2

Regions x 4.3 7.4 46.0 30.4 12.0

3 specializing 135 Me 4.1 7.2 45.5 30.5 11.4

in KIS V 44.3 37.5 11.7 10.9 29.1

where: x—arithmetic mean; Me—median; V —variation coefficient (in %)
Source: authors’ compilation based on Eurostat data using STATISTICA 13.1 PL statistical
package

Fig. 3 Average share of employment in particular economy sectors for classes of regions distin-
guished in 2016. Source: authors’ compilation based on Eurostat data base applying STATISTICA
13.1 PL statistical package

Figure 3 illustrates mean values of employment share in particular economy
sectors for the distinguished classes of regions.

The largest class 4 covers 135 European regions characterized by highly devel-
oped specialization in knowledge-intensive services. It includes regions featuring
definitely the highest share of employment in knowledge-intensive services sector
(approx. 46% on average). This class covers all Swedish, Finnish, British, Irish,
French, Dutch, Danish and Belgian regions, a dozen or so German regions and also
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Luxemburg, Malta, Estonia and individual regions from the other European Union
countries (the total of 23 regions from the European Union Member States). This
class does not list any Croatian or Slovak regions, nor Lithuania, Latvia or Cyprus.

Class 3 is the next most numerous one as it covers 71 industrial regions. The
regions included in this class are characterized by the highest employment share
in both high and medium high-technology sector (approx. 9.6% on average) and in
low and medium low-technology sector (approx. 14.4% on average). This class lists
regions from 14 European Union countries, including 8 countries from the latest
accession (excluding Lithuania, Latvia, Estonia, Malta and Cyprus) and also many
German regions.

The second class covers service oriented regions characterized by the domination
of employment in less knowledge-intensive services (on average 39% of employ-
ment) and in knowledge-intensive services (on average 34.4% of total employment).
This class predominantly includes Spanish, Italian, Greek, Portuguese regions as
well as Lithuania and Latvia (the total of 43 regions).

The first class, covering 16 regions and characterized by low level of smart
specialization, turned out to be the least numerous. It covered the regions featuring
definitely the highest share of employment in the so-called other sectors (approx.
33.8% on average) and definitely the lowest share of employment in knowledge-
intensive services (26%), less knowledge-intensive services (26.4%) and also in
high and medium high-technology manufacturing (2.6%). This class listed 7 Greek,
5 Romanian and 4 Polish regions.

In each of the identified classes the highest diversification was characteristic for
the share of employment in manufacturing sectors, both high and medium high-
technology and low and medium low-technology sectors.

The next step of the analysis is the assessment of relationships occurring between
employment sector structures in 2016 and the level of educational capital quality
in 2008–2016. Figure 4 presents median values of educational capital quality
indicators for the distinguished classes of regions.

The analysis of information presented on Fig. 4 results in the following conclu-
sions. Class 4 made up of regions specializing in KIS is characterized by definitely
the highest median values of LL variables among all identified classes in the entire
analysed period—participation rate in education and training (4 weeks) of people
aged 25–64 (%), ETER—population with tertiary education (levels 5–8) (%) and
SE—scientists and engineers in % of active population.

The regions characterized by the low level of smart specialization, included in
the first class, present, in turn, definitely the lowest level of the listed indicators
of educational capital quality. In the second class, covering service oriented
regions, with the majority of less knowledge-intensive services, both specialists and
engineers have low employment share, just like in the first class. The variable—
employment rate of young people aged 15–34 not in education and training takes
similarly low values. In both discussed classes, however, the following indicators
take the highest values of EL—early leavers from education and training aged 18–
24. This indicator takes the lowest values in the third and the fourth class covering
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Fig. 4 Median values of educational capital quality indicators for the distinguished classes of EU
NUTS 2 regions. Source: authors’ estimations and compilation based on Eurostat database
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Table 2 Significant correlations between educational capital quality indicators and the share of
employment in technological intensity sectors in 2016

Class Specific nature Regions Indicators Sectors

no. of classes no./r* HMTM LTM KIS LKIS OTH

Regions representing EL −0.76 0.65

1 low level of 16/0.49 LL 0.73

smart ETER 0.85 −0.69

specialization SE 0.61

Service EL −0.31 0.31

2 regions 43/0.30 LL 0.40 −0.43

(LKIS and KIS) ETER

SE 0.37 0.36 −0.31 −0.32

Industrial EL 0.27

3 regions 71/0.23 LL 0.24 −0.27 0.54 −0.66

(including ETER −0.39 0.48 −0.29

HMTM) SE 0.28 −0.47 0.45 −0.33

Regions EL −0.23 0.32

3 specializing 135/0.169 LL 0.29 −0.40

in ETER −0.31 −0.61 0.72 −0.39

KIS SE −0.20 −0.64 0.66 −0.43

where: r*—the critical value of correlation coefficient for significance level α = 0.05
Source: authors’ compilation based on Eurostat data

regions specializing in the development of knowledge-intensive services and in high
and medium high-technology manufacturing.

Table 2 presents the statistically significant values of correlation coefficients
between the educational capital indicators and the share of employment in tech-
nological intensity sectors in 2016 in the identified classes of regions.

Predominantly, the educational capital presented a statistically significant cor-
relation against the knowledge-intensive services sectors. However, the strength
of the relationship varied between the classes of regions distinguished by tech-
nological intensity. Employment in the knowledge-intensive services sector was
characterized by the strongest correlation in the first class presenting low level
of smart specialization with the level of education (ETER) and the tendency of
employees towards lifelong learning (LL), and in the fourth class specializing in
KIS with educational level (ETER) and knowledge capital resources in the form
of specialists and engineers of active population (SE). It shows that for most
of the identified classes of regions, the development of KIS sector, regardless
of its importance in the region, is associated with a relatively higher share of
tertiary education population. Only in case of the second class, covering regions
specializing in both high and low education level services, the statistically low or
insignificant correlation of educational capital with employment in the knowledge-
intensive sector was recorded. This observation is confirmed by the negative value of
correlation coefficient between the share of employment in KIS sector and the share
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of early school leavers (EL), which was statistically significant, however, negative
in two classes (class 1 and 4).

The development of LKIS sector was not clearly linked to any indicator of
educational capital. The observed correlations show only a low, positive relationship
with the early school leavers (classes 2, 3 and 4), and a negative, low correlation with
specialists and engineers of active population (class 2) and the participation rate in
education and training (last 4 weeks) of people aged 25–64 (class 4).

Similar conclusions, indicating both low and negative (or the absence of) corre-
lation with educational capital can be attributed to LTM sector. An unfavourable
correlation between the level of low-technology sector development in industry
and education capital can be observed among industrial regions (including HMTM)
covered by class 3 and the regions specializing in KIS included in class 4. Higher
share of employment in industry resulted in average (correlation coefficient in class
3: 0.39–0.47 and class 4: above 0.6), negative correlation of tertiary education
population share and specialists and engineers share in the region (SE).

In case of high and medium technology sector (HMTM) a low or average positive
correlation was identified with the tendency towards lifelong learning (LL) (classes
2 and 3) and the share of specialists and engineers in active population in a region
(SE) (classes 1–3). Class 4 was characterized by a low, negative correlation with
two measures of educational capital, tertiary education (ETER) and the share of
specialists and engineers in active population in a region (SE).

In 2016 the lest favourable sector of economy, identified in terms of technological
intensity was the sector employing relatively large numbers of population in enter-
prises outside high, medium and low-technology and knowledge-intensive sectors
(OTH sector). The vast majority of correlations identified in OTH sector were
negative, indicating that the share of employment in this sector was associated with
the lower level of educational capital. The highest (over 0.6) negative correlation
of employment and education in this sector was identified in class 1 (ETER) and
in class 3 with the tendency to participate in lifelong learning (LL). At the same
time, higher share of employment in OTH sector, in case of class 1 regions covering
the regions presenting low level of smart specialization, can be correlated with the
higher early school leaving tendency (EL).

4 Conclusions

The obtained research results facilitate defining the specific nature of regional
groups identified with regard to sector structure of employment in the EU regions,
as well as the assessment of relationships occurring between the selected indicators
of educational capital quality and the typology of employment structure. The
conducted analysis shows that the share of specialists and engineers among the
professionally active population, the share of population with tertiary education and
lifelong learning stimulate the development of employment structures characterized
by smart specialization, thus the development of high and medium high-technology
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manufacturing and also knowledge-intensive services, acting as an incentive for
socio-economic development of regions and national economies in the modern
world.

The structure of employment characterized by low level of smart specialization,
with the majority of employment in such sectors as farming, hunting, forestry,
fishing, mining, production and supply of electricity, gas, water, construction and
also in the sector of less knowledge-intensive services result in high shares of early
leavers from education and training aged 18–24.

The carried out correlation analysis shows the existing relationship between
educational capital and the development of knowledge-intensive services sector.
However, the majority of considered correlations between educational capital and
the level of economic sectors’ development, identified in terms of technological
intensity, adopted values below 0.5.

In most classes of regions, the higher share of employment in KIS was accom-
panied by the higher share of tertiary education population, higher percentage of
specialists and engineers and higher tendency towards improving qualifications
(LL), along with the lower percentage of early school leavers. LTM, LKIS and OTH
sectors proved to be particularly unfavourable for educational capital.
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The IPUMS Approach to Harmonizing
the World’s Population Census Data

Matthew Sobek

Abstract IPUMS integrates census microdata from around the world into one
consistent database, harmonizing variable codes across countries over a 60 year
period. The variables in the files provided by National Statistical Offices utilize
a wide variety of classification schemes. To enable comparative research requires
coping with this empirical reality of pre-classified microdata. The aim is to impose
order while minimizing loss of detail. This paper describes the general principles
IPUMS follows in the harmonization process. It discusses the challenge of applying
international standards to demographic data produced over a long period of time by
dozens of statistical offices. The preferred strategy involves the use of composite
codes in which leading digits for a variable apply generally across countries and
trailing digits retain details not universally available. That approach is not always
viable, however, and the paper describes a number of other strategies to cope with
the variety of challenges posed by international population data harmonization.

1 Introduction

IPUMS is the world’s largest collection of population microdata available for
research and education. The project integrates census data from 85 countries into
one consistent database. The signature feature of IPUMS is to harmonize variables
across countries and over a 60 year period, so the same code has the same meaning
in all times and places. The aim is to facilitate comparative research by reducing the
cognitive and logistical burden on researchers, enabling them to focus on analysis.

The anonymized microdata files provided to IPUMS by National Statistical
Offices arrive coded into a wide variety of classification schemes dating from when
they were originally processed in the different countries. Most variables simply
report the categories that were listed as response options on the particular census
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questionnaire from which they were derived. There is no standardization across
countries and little consistency within countries over time. Some countries adhere
to international classifications when such standards exist, while others modify or
ignore them. To enable comparative research requires coping with this empirical
reality of pre-classified microdata.

This paper begins with a brief description of IPUMS and the concept of
harmonization. This is followed by a discussion of data standardization and the
default IPUMS approach to variable harmonization: using a multi-digit coding
structure to impose a common classification scheme across countries while retaining
all the original category detail. The balance of the paper describes situations where
alternative harmonization approaches are needed because of unresolvable incompat-
ibilities in the original classification schemes or deep conceptual differences among
census questions.

2 About IPUMS

IPUMS is composed of census microdata: each record is a person, and all of
their individual characteristics are known. Microdata allow researchers to cre-
ate tabulations never envisioned by the collectors of the data, and they enable
sophisticated multivariate modeling. IPUMS currently includes data for 672 million
individuals recorded in over 300 censuses taken since 1960 (Ruggles et al. 2015).
Most countries provide multiple censuses, enabling study of change over time both
nationally and internationally. IPUMS data are samples, typically comprising 1–
10% of the national population. Prospective users must apply for access, and over
14,000 researchers have been registered.

A web dissemination system allows users to browse the contents of the database
and construct custom data extracts that pool data from multiple countries and time
periods into a single file. The user downloads the file—typically containing some
millions of records and twenty to thirty variables—to their desktop for analysis.
Through the web system, researchers have access to detailed documentation for
each variable, including comparability discussions, codes, frequencies, and other
information (Sobek et al. 2011). The website is accessible at https://international.
ipums.org.

A critical characteristic of microdata lies in the categorical detail it retains at
the individual level. It is this detail that makes it feasible to harmonize the data
across countries and over time. The tabulated data that are the traditional product
of each census often cannot be meaningfully harmonized cross-nationally because
of decisions built into their construction. With IPUMS, researchers can devise
custom tabulations using the full detail of the microdata while imposing consistent
population universes across samples. Microdata will also support the kinds of
multivariate analyses conducted by most academic and policy researchers. The data
are cross-sections in time; it is not possible to link people across censuses.

https://international.ipums.org
https://international.ipums.org
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The IPUMS samples incorporate most of the detail from the original census
questionnaires. All censuses have basic demographic information such as age,
sex, and marital status. Nearly as universal are socioeconomic variables, such
as education, employment status, and occupation. There is considerable topical
variation beyond these, but questions on migration, ethnicity, disability, and fertility
are also broadly asked (Sobek 2016). Most censuses, particularly in the developing
world, have information about the dwelling as well, such as construction materials,
plumbing, utilities, and household assets.

3 Harmonization Overview

IPUMS harmonizes variables across the entire database. There are three elements to
variable harmonization: applying consistent codes across samples, devising labels
for those codes, and collating integrated variable descriptions that speak to issues
not sufficiently conveyed by codes and labels.

The central harmonization challenge is to equate codes that have the same
meaning for a variable that is common across samples. This is fundamentally a
metadata issue. One must understand the meaning of the codes, which is conveyed
by their labels, by the coding structures, and by the deeper context of the census
questionnaire text and enumerator instructions. Each of those elements poses
challenges. The labels provided with census files are often shorthand for more
complex concepts or combinations of items. They may have been created ad hoc
during processing, and in most cases they have been translated out of their original
language into English at some cost to their precise meaning. Coding schemes
often have structure, where the meaning of a particular category can only be
understood in the broader context of the classification. This is especially true for
residual categories, such as “Other relatives,” whose meaning is defined by the
other categories that are enumerated in the classification. Finally, much meaning
is embedded in how the census question was worded and in the instructions given to
the census enumerators regarding the question. For example, some countries restrict
the status of being “married” to only legal marriages, while others make allowance
for “common law,” custom, or other variations. Those distinctions are often not
reflected in the value labels and may only be discoverable from the questionnaire or
instructions.

Population data harmonization ultimately depends on informed human judgment.
Computers can help greatly with the logistics, but they can provide only limited
leverage equating the meanings of international census data, which depend so much
on context. IPUMS has nevertheless written a great deal of software to assist
with the harmonization process. In most cases, researchers manipulate metadata to
standardize and harmonize the data, with the software being driven by the metadata.
A description of that process follows below.

The census data provided to IPUMS come in many formats with varying doc-
umentation in many languages. The categorical variables in recent censuses often
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reflect the influence of international standards and recommendations, but countries
may choose to modify or ignore them. The older data are less regularized in every
respect. Harmonizing data from such disparate source material is a complicated
process, and we break it down into a series of discrete steps to make it manageable
and efficient. To the extent possible, we strive for an industrial as opposed to a craft
model of production.

4 Data Standardization

Before data processing can commence, one must understand the data structure.
We require basic metadata to interpret the files: the relationship between data
records, the linking keys, names and locations of variables, and labels for categorical
variables. These metadata must be translated into English, as necessary, before we
begin.

IPUMS metadata development begins with the creation of a data dictionary for
each dataset. An IPUMS data dictionary is much like a codebook, but it contains
more information and in a more structured format suited to machine processing.
IPUMS software is designed to read this metadata structure. Table 1 shows a small
part of a data dictionary. It records each source variable’s name, location in the
data file, labels for variables and values, frequencies for each value, universe of

Table 1 Data dictionary

Var Column Width Variable label Universe Value Value label Freq

SEX 129 1 Sex All persons

1 Male 1,516,951

2 Female 1,595,079

MAR 130 1 Marital status All persons

1 Married 1,324,684

2 Widowed 171,370

3 Divorced 277,068

4 Separated 45,470

5 Never married or
under age 15

1,294,438

SCH 132 1 School enrollment Persons age 3+

1 No, not in last 3
months

2,240,086

2 Yes, public school
or public college

637,353

3 Yes, private school 138,062

Blank N/A(less than 3
years old)

97,529
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respondents, and any other fields needed to fully document the data or control data
processing, such as indicating string fields or implied decimal places. Some of these
fields may not be immediately known, but are added later during processing and
diagnostic analysis.

The first stage of processing is to convert the source datasets into a common
format. We turn all datasets into fixed-format ASCII files with a hierarchical
structure: each household record is followed by multiple person records representing
its members. We receive data in many formats, which might require merging
separate household and person files, converting out of native SPSS or Stata format,
reorganizing files with complex geographic hierarchies, or other manipulations.
Custom programming is often required at this stage, because unique situations
commonly arise and errors may be uncovered. In the process of regularizing the data
structures we also create some common technical variables useful for our system.
As we modify the data, any changes to variables or record layout are recorded in the
data dictionary, which evolves to stay in sync with the data file. Once formatting is
completed, the data is in a form understood by the rest of our data transformation,
diagnostic, and web software.

The final part of variable standardization involves connecting the source variables
via metadata with their associated text in the census questionnaire and instructions.
This information is necessary to fully understand the variable and is crucial during
harmonization. The task is to convert pdfs and other static documentation into
usable, machine-actionable metadata. To this end, all census questionnaires and
instructions are translated into English and converted into a custom XML format.
Having systematized this material, it can be compiled on demand using software,
for both internal use and in the web dissemination system.

5 Variable Harmonization

At the highest level, harmonization requires determining which variables are
conceptually the same across datasets (Esteve and Sobek 2003). Beyond variable
names and labels, such determinations may require referring to codes, value labels,
text of census questions, category frequencies, or other metadata. This is sometimes
a judgment call for the harmonizer, who must ask whether combining variables
with differing shades of meaning is likely to mislead researchers trying to interpret
the data. Even if the concepts appear equivalent, an additional issue concerns the
fundamental compatibility of the classifications. For example, continuous variables
may be coded into incompatible value ranges, or different censuses may group
response items in overlapping ways that defy harmonization.

The signature activity of data integration is to harmonize variable codes and
labels across data samples. Our primary device for achieving this is a “translation
table” like the one for Marital Status depicted in Table 2. The leftmost columns
contain the harmonized output values and their labels. Each column on the right side
documents every value that exists in one of the input datasets being harmonized: in
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Table 2 Translation table (marital status)

Harmonized data Input data

Code Label Bangladesh 2011 Mexico 1970 Kenya 1999

100 Single 1=Unmarried 8=Single 1=Never married

200 Married/in union 2 = Married

210 Married, formally

211 Civil 2 = Married, civil

212 Religious 3 = Married, religious

213 Civil and religious 1 = Marr., civil, & relig

214 Monogamous 2 = Monogamous

215 Polygamous 3 = Polygamous

220 Consensual union 4 = Consensual union

300 Divorced or separated 4 = Divorced/separ

310 Separated 7 = Separated 6 = Separated

320 Divorced 6 = Divorced 5 = Divorced

400 Widowed 3 = Widowed 5 = Widowed 4 = Widowed

this case census samples from three developing countries: Bangladesh, Mexico, and
Kenya. Note that the full translation table for this IPUMS variable contains over 300
samples. Each row in the translation table contains items that are conceptually the
same and that thus receive the same codes in the output. The work is performed by a
researcher using the tools we have developed specifically for this process. In broad
strokes, the process is as follows: a researcher identifies the source variables, a pro-
gram directly inserts the input values into the translation table from the appropriate
data dictionaries, and a researcher then aligns the codes and assigns output codes
and labels (the “harmonized data” columns on the left). Thus, the original codes “1:
Unmarried,” “8: Single,” and “1: Never married” are all aligned and will be recoded
to the internationally harmonized IPUMS output code “100: Single.” This sort of
semantic integration is intellectual labor that no computer program can perform. It
requires a holistic view of the universe of codes for each sample and consideration
of the underlying questionnaire text, especially for some of the more challenging.
Our harmonization of variables is designed to meet two goals: (1) retain all the
detail provided in the original samples and (2) provide a truly integrated database,
in which identical categories in different samples always receive identical codes. We
employ several strategies to achieve these competing goals. In cases where original
variables are compatible and recoding is straightforward, we write documentation
noting any subtle distinctions between samples. For some variables, it is impossible
to construct a single uniform classification without losing information from samples
that are detail-rich. In these cases, we construct composite coding schemes. The first
one or two digits of the code provide information available across all samples. The
next one or two digits provide additional information available in a broad subset of
samples. Finally, trailing digits provide detail only rarely available.
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The classification scheme for marital status in Table 2 illustrates the composite-
coding approach. In this example, the first digit of marital status has four categories
consistently available in all samples: (1) single, (2) married/in union, (3) divorced
or separated, and (4) widowed. The distinction between divorced and separated
is not maintained in all samples, so these categories are combined at the fully
comparable first digit. At the second digit, we distinguish divorced and separated
persons in the samples with that information, as well as formal marriages and
consensual unions. The third and final digit differentiates among types of marriages
(civil, religious, polygamous) available for select countries only. The one-digit and
multi-digit versions of the composite variables can be accessed as their own distinct
variables in the IPUMS database. For many researchers, the single-digit version
is sufficiently detailed and offers the assurance that most comparability issues are
resolved.

We refer extensively to the questionnaire text and instructions to inform the
integration process. If the actual question wording for a variable indicates a
significant conceptual difference between samples, we create a separate variable
to minimize the likelihood of user error.

Our approach to variable harmonization demonstrates an underlying principle
in our integration methods. Our entire system represents what might be termed
a metadata-centric approach, in which the research staff manipulates relatively
simple but highly structured documents that drive the data processing and web
software. From these documents we generate a unique XML markup that identifies
all elements necessary to guide the recoding and documentation of variables
and to associate each variable with its relevant enumeration materials. The data,
documentation, and dissemination systems are all driven by the same metadata,
which ensures that they always remain synchronized.

The translation tables exemplify this metadata approach to data management and
dissemination. We do not write recode statements in code, except in exceptional
circumstances. We write software to read our metadata. Simply moving an item
from one cell to another in the translation table accomplishes the recode. The
benefits are significant: a researcher can readily interpret the coding decisions while
seeing all the associated labels with their codes and frequencies. If a new code is
needed to handle some variation introduced by a sample, the researcher simply
adds a row in the table and aligns the appropriate input codes to it. The translation
tables also help with sustainability: reorganizing the codes to accommodate a new
sample is quite easy compared to editing a mass of impenetrable logical assignment
statements. Thus our system is far less error-prone and is much more adaptable
than what could be achieved in a statistical package or simplistic approach to data
processing. IPUMS is a living project, and we can never know the full universe
of labels and coding structures that will need to be incorporated into the existing
harmonized variables in future. The metadata-driven translation tables provide a
practical solution to this challenge.

The custom IPUMS data conversion program reads the translation tables to
produce the integrated output data. There are, of course, some instances where
translation tables cannot accommodate the logic required to recode a variable,
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and variable-level programming is required; for example, for recoding continuous
numeric variables like income into categories or combining multiple input variables.
The data conversion program has the capacity to manipulate the data in any way
required.

6 Harmonized Documentation

Variable harmonization involves more than harmonizing codes. New documentation
must be written for each integrated variable and made accessible to users. Because
integrated variables have time and space dimensions, a key aspect of the documen-
tation is to highlight any comparability issues that arise across samples. One area of
focus is to indicate for users wherever changes in question wording may potentially
cause subtle differences in meaning, even where the codes and labels look otherwise
compatible. Changes in the universe of people who were asked the question are
another common source of comparability issues. In these cases the primary aim of
the description text is to direct the user’s attention to the collated questionnaire text
or universe statements for the variable. Our goal is to empower the researcher, who
must ultimately decide if the issues that remain after harmonization are relevant to
their analysis.

Because variable documentation is so critical for the proper use of harmonized
data, the IPUMS web dissemination system is an integral component of our
approach. There is no avoiding the reality that harmonized data are simply more
complex than discrete datasets. Users need better tools than pdf files and labels to
understand and properly use the data. The IPUMS system lets them filter only the
samples of interest and browse variables in an information-rich environment. One
cannot force researchers to avail themselves of the potential of the web system to
inform their work, but we strive to make it as easy as possible. Figure 1 shows the
Marital Status variable page in the web dissemination system. The series of tabs
allow the user to explore all the metadata associated with the harmonized variable
from one viewing pane.

7 Harmonization Challenges

The Marital Status example above exemplifies our approach to harmonization, but
situations arise in the global census data that require alternative strategies. The
remainder of this paper describes some of those scenarios and how we address them.

When we harmonize a variable we refer to any international standards that
might exist for that topic. We particularly find useful the United Nations Principles
and Recommendations for Population and Housing Censuses, which influences
how many countries choose to ask certain questions (United Nations 2007).
Unfortunately, many countries ignore this advice, and others appear to adopt it only
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loosely. But any standards are welcome. For our purposes, the UN principles also
provide guidance about the salient features around which a harmonized variable
might be organized. Some more complex census items, like occupation and industry,
have well established international classifications used by a subset of countries every
decade. Over the years, however, even those classifications have evolved, so there is
never a time-invariant system for our purposes.

IPUMS greatly appreciates the application of standards in census questions and
classification, but in the final analysis we must deal with the empirical reality of
the data we are given. It is a truism that the least detailed classification among the
input variables dictates the overall coding scheme of the harmonized variable. You
can often recode more detailed variables to match simpler classifications, but one
cannot add detail to variables that do not have it. In practice, this means the first
digit of most harmonized variables is governed by the simplest classifications. But
applying pure logic to harmonization can sometimes lead to variables that are hard
to understand and use. Perhaps a sample(s) must be left out of the variable, or a
category must be coded in a way that requires some caveat in the documentation.

Literacy Some variables require virtually no recoding to harmonize categories.
Literacy and School Attendance are simple binary variables in nearly all countries,
and there is little to do other than align the “no” and the “yes” responses. Despite
their simplicity, however, there are definitional differences that cannot be conveyed
via category labels. For example, some censuses define literacy as the ability to read
and write a small paragraph, some use a threshold of years of schooling, and other
censuses impose no objective standard. Whether such differences are important for a
particular analysis is a question for the researcher. The only practical way to indicate
such nuance is via the variable’s comparability discussion and the feature to compile
the questionnaire text.

Employment Employment Status offers a similar challenge, but with a more
concrete definitional difference. The variable is amenable to composite coding such
as we employ for Marital Status: the first digit indicates employed, unemployed,

Fig. 1 Harmonized variable page in web system: marital status
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and inactive persons, and trailing digits retain detailed categories whose availability
varies across samples. But underlying the coding structure are differences in the
reference period between countries. Different censuses assess employment status at
the moment of the census, over a period of a week, or as an average over a longer
time span.

For some issues, like seasonal variations, the reference period can be important.
The variable documentation must carry this information. The alternative is to create
a set of parallel variables for the differing reference periods, but that would impose
different costs on users.

Disability Disability Status poses a more difficult challenge and example where
an emerging world classification standard suggests an evolving harmonization
approach. Like literacy, disability is essentially a set of one or more binary variables
(blindness, mobility impairment, etc.). But there are clearly cultural and census
instruction differences at work within the data. Many censuses provide instructions
regarding what constitutes a disability, such as how to interpret loss of one eye or
the need for a hearing aid; but other censuses provide little or no guidance. At some
point, responses presumably depend on cultural norms. Even within countries where
there are no discernable changes in question wording, the incidence of disability in a
population can vary notably from one census to the next. In short, full comparability
of disability statistics is difficult to attain under any circumstances.

To further complicate matters, there was a shift in the early twenty-first century
toward adoption of the U.N. Washington Group set of questions on disability
(Madans et al. 2011). The new questions are intended to provide tightly comparable
data across countries, aiming to identify functional limitations that produce social
exclusion. Many countries in the 2010 census round have adopted the new question
wording, which employs the terminology of “some” or “a lot” of “difficulty”
doing the particular activity. The creation of a world standard is laudable and
should produce better and more comparable statistics among adopting countries.
But equating degree of difficulty with older censuses is difficult, even within a
single country. Statistical analysis suggests a disjuncture occurs when the new
questions are imposed, which can yield much higher disability rates. In IPUMS, our
approach has been to combine disability variables, interpreting “a lot” of difficulty
as most comparable to the traditional questions. We include strong language in the
variable comparability discussion warning researchers to be careful. However, as the
Washington Group adherents have become more numerous, and as we have learned
more about the issue, we now think we should create a distinct set of disability
variables that adhere to the new approach. This would emphasize their difference
from older samples and countries still using traditional questions, and it would
highlight the high degree of comparability among the set of countries using the
new standard.

Dwellings Housing variables pose some of the more difficult harmonization
challenges. Dwelling materials for floors, walls, and roofs can be highly localized,
with terminology varying by language. Material types can be grouped together in
ways that straddle groupings in other countries, defying prospects for strict logically
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nesting. For floors, a few major materials contain much of the variation: wood,
concrete, stone, brick. Some terms, like “tile,” are ambiguous. It is also not always
clear where an unlisted material might be combined with others in the source
data, given the limitations of the labels and number of categories available on the
questionnaire.

Despite these issues, researchers would surely benefit from being able to manage
a single variable with a lot of variation as opposed to many individual variables.
The IPUMS approach in these cases might be termed partial harmonization. We
concluded that the most useful distinction for most users—and which is easily
achievable in terms of consistent classification—is to make the first digit distinguish
only between unfinished (dirt) floors and finished floors. That binary distinction at
the first digit captures key variation in terms of sanitation and socioeconomic status.
The types of finished floors are grouped together as best as possible, but we do not
use the second digit to suggest there is any structure to the 35 categories of finished
floors. Thus, users have the data for all countries in one variable and access to all
the original labels, with minimal modification. Table 3 shows a snippet of the Floor
variable codes page in the IPUMS dissemination system—with each of the columns
on the right representing a census, and the “X”s indicating the availability of the
category for each sample. For analyses that require distinctions beyond finished–
unfinished, the burden is on the user to group the codes as necessary. We take a
similar approach with walls, roofs, and cooking fuel, roughly grouping categories
and leaving the full original category labels in place. One might call this “nominal”
harmonization, in that categories with the same label are assigned the same code,
but their full unspoken contents may differ somewhat even within those categories.

Dwelling water supply poses the challenge of dueling concepts among the source
variables. The various censuses are oriented to a number of differing considerations:
exclusive access to the water supply, piped water into the dwelling versus outside it,
public piped water, and the ultimate source of the water (e.g., lake, river, well). The
key distinction IPUMS harmonizes around is access to piped water, and secondarily
whether distinctions can be made regarding exclusive use and the location of the
spout on the property. The codes page for Water Supply is shown in Table 4.

It was not possible within a single variable to accommodate all the concepts in
water supply. And it is not indicated in most datasets when “piped” indicates clean
water. In future, we intend to create another variable on the ultimate source of the
water, for those samples that offer that detail, and perhaps we will be able to identify
“clean” water in samples that will support that distinction.

Complex Variables IPUMS takes a different approach with key education and
work variables: we coerce them into a classification intended to roughly follow
international standards. The shoe-horning of categories into major groups can be
uneven, and much detail in the original samples is sacrificed. The product is a
simple, fairly consistent variable, but with a degree of noise. For the variables
discussed above, we largely concede to the empirical reality of the categories we
are presented with, and we fashion our harmonized classification in reaction to
that, with some consideration of existing census standards and recommendations.
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With work and education we are much more aggressive. We are motivated to do so
because few censuses provide income information; thus, education and occupation
are the key socioeconomic status indicators typically available. They are critical
control variables for many kinds of analyses. For education, we identify primary,
secondary, and tertiary level completion. We roughly aim to identify people with 6
to 8, 11 to 12, or 15 to 16 years of education. The organization is broadly reflective
of the ISCED 1997 classification (United Nations 1997). Table 5 presents the 1-
digit and 3-digit versions of Educational Attainment while displaying case-counts
for each sample.

The internationally harmonized work and education variables lose much detail
and are sometimes an imperfect fit for the national systems. This can be problematic
where education is a key explanatory variable in a researcher’s analysis. In
recognition of education’s importance, we create a separate harmonized variable for
each country that is true to its specific education system. No attempt is made to apply
a standard, only to harmonize around the classifications the country provides. This
is harder than it sounds, as most countries have undergone changes or even complete
reorganizations of their systems over the decades covered by IPUMS. Each country
is therefore its own harmonization puzzle writ small, often requiring a good deal of
research. Not surprisingly, educational attainment is one of the subjects upon which
users most often provide feedback or identify errors.

For occupation, we collapse the typical 100–300 categories in the original
samples into a 9-category variable intended to mimic the major groupings in the
1988 ISCO standard as closely as possible (International Labour Office 2012). We
do something similar in mapping industry using ISIC as a general guide (United
Nations 2002). Due to its importance, we take an additional step with occupation.
The ISCO occupation classification is used by many countries, and it can provide
fully comparable detailed occupation data for all the countries that subscribe to it.
Historically, these were more often developing countries, but in recent censuses
developed countries are using it as well. ISCO has undergone several iterations. We
make harmonized variables for the critical mass of samples providing 3-digit detail
in both the ISCO-1968 and ISCO-1988 classifications, which are available for 27
and 57 samples, respectively.

For occupation and industry, we also make the full original classifications
available through single cross-national variables that do not actually harmonize the
codes. Thus, for the OCC (Occupation) variable, the codes for one sample mean
entirely different things from another. The data are all organized into one place for
user convenience, but there are no value labels with the data (they are available
online).

Geography Geography poses a unique set of issues for harmonization. Most
countries have undergone changes in their administrative units over the past several
decades, through merging, splitting, or moving a boundary. The goal of IPUMS is to
harmonize subnational units spatially, so a province or district has the same spatial
footprint in all time periods. This requires GIS boundary files, and IPUMS has
created them from paper maps in all cases where digital versions were not available.
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The process of harmonization requires overlaying each census’s boundaries on each
other and combining units as necessary to create entities that contain all the changes
for an area within them. A researcher using these harmonized geographies knows
they are holding space constant as they examine the attributes of the people and
dwellings within those spaces. Spatial harmonization is essentially a least-common-
denominator approach: if two units are combined in one census, they are combined
in all of them. Detail is sacrificed to the goal of comparability during harmonization,
but IPUMS also provides the unaltered original geography for each census.

8 Summary

In the final analysis, harmonization involves cost–benefit analysis. The goal is to
make comparative research easier to conduct without obscuring the complications
and thereby encouraging errors. Part of the job involves predicting how researchers
are likely to use the data. Harmonizers must therefore have some subject matter
expertise to strategize solutions effectively. But researchers are endlessly inventive,
and a multi-purpose database will inevitably be used in ways that we cannot
anticipate. Thus, a degree of conservatism is warranted while providing enough
documentation to allow users to exercise informed judgment. Because of the
inherent limitations of harmonization, IPUMS also makes the unharmonized source
variables available to users, ensuring all original detail is retained.

An unfortunate reality of internationally harmonized data is the burden it places
on the user. Both variable availability and the categories within those variables differ
across samples. Using the most generalized versions of compositely coded variables
resolves many comparative issues, but certain definitional or population universe
issues can still persist. And the composite-coding approach is not applicable to all
variables. In sum, researchers are obligated to pay more attention to the metadata
than they may be accustomed to, and it tends to be more complex. An ongoing
challenge of our web dissemination system is to find better ways to convey the
most important information without overwhelming users with details until they need
them.

IPUMS is committed to harmonizing without losing information, but we see
a role for least-common-denominator variables and intend to develop them in the
future. These will only offer categories that are fully comparable across all samples,
and they will apply the most restrictive universe of people who answered the
question among the available samples. In essence, the least detailed sample and the
sample with the most restrictive universe will dictate the nature of these simplified
harmonized variables. The main impetus from our perspective is the utility of such
variables in our online tabulator, but we also expect many users who download
data will employ these highly comparable simplified variables as controls in their
models.

From our perspective, international population data harmonization is a puzzle
whose subtleties are mostly amenable to human problem-solving rather than
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automation. But automation helps, and there is always more scope for it. At some
point the costs outweigh the benefits, but the balance will continue to shift in
future as machine learning and other data science tools improve. We have already
developed many utility programs that take advantage of semantic and coding
similarities among data collections that are more coherent than the international
censuses. For the foreseeable future, however, population microdata harmonization
is bound to retain a significant component of human judgment.
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A Supervised Multiclass Classifier
as an Autocoding System for the Family
Income and Expenditure Survey

Yukako Toko, Kazumi Wada, Seigo Yui, and Mika Sato-Ilic

Abstract Coding is a task that classifies an object to a corresponding code (or
class). This is often required for survey data processing in the field of official
statistics. Since the governmental survey has large number of objects and codes
(or classes), and the release time of the survey result has to be strictly observed, the
autocoding system is a key solution for improving data processing. For this autocod-
ing system, mainly two types of methodologies have been developed. One is the use
of the supervised classification methods including machine learning techniques and
the other is rule-based methods. For the supervised classification method, we have
developed a supervised multiclass classifier using machine learning which has the
advantages of simplicity and practical calculation time. In this paper, we present an
application of the proposed method for the Family Income and Expenditure Survey
in Japan with a comparison of the accuracy and the efficiency of the rule-based
method.

1 Introduction

In the field of official statistics, there are some types of answer columns for
statistical survey questionnaires such as a column selected as a choice between
two alternatives, a column selected as a choice among multiple alternatives, and
a free filling column. In survey data processing, survey items answered as a choice
between two or multiple alternatives can be processed easily. For example, as the
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survey item “sex” is generally answered as the choice between two alternatives in
a statistical survey; thus obtaining the total number of male and female respondents
is simple.

However, survey items answered as free descriptions, such as occupation,
industry, and various items related to family income and expenditure are difficult
for summarizing data, since the data will be represented as textual descriptions and
those descriptions have a wide variety. Therefore, in order to summarize this type
of data for producing statistical tables, these descriptions are needed to translate
into a given classification code. This task of translating a textual description into a
corresponding classification code is referred to as “coding” in the field of official
statistics.

Traditionally, the coding was done manually in which humans engaged in the
coding task with their specialized knowledge of the classification. However, manual
coding needs a certain amount of expert human resources and the national statistics
offices are strongly required to release quickly the results of statistical surveys.

Therefore, recently, with the improvement of computer technology, the studies
of the autocoding system have been developed in the field of official statistics. For
example, Hacking and Willenborg (2012) illustrated coding tasks for governmental
surveys in Netherland including their study of an autocoding system. Methods for
automated occupation coding which are mostly based on statistical learning have
been proposed by Gweon et al. (2017). The National Statistics Center of Japan
(NSTAC) was also launched an initial study that focused autocoding system in
1992 (Yui 2017) as a rule-based method, and after it, a multiclass classifier using
simple machine learning algorithm has been developed (Shimono et al. 2018; Toko
et al. 2017). The algorithm is simple and this causes strong advantages for the
governmental survey data, such as adaptability for big data classification with a
large number of codes (or classes).

This paper is organized as follows: A general explanation of autocoding systems
is given in Sect. 2, the proposed autocoding system using machine learning is
presented in Sect. 3. The experiments and the results of the autocoding system using
machine learning with comparisons of a rule-based autocoding system are described
in Sect. 4, and conclusions and suggestion for future work are presented in Sect. 5.

2 Autocoding Systems

Autocoding systems provide an object (or a textual description) the most promising
classification code automatically, and such systems can be divided into two types of
systems: one is a system employing rule-based algorithm and the other is a system
employing machine learning algorithm. Both of these systems have advantages and
disadvantages, respectively.

A rule-based autocoding system assigns a classification code using manually
prepared if-then classification rules. Here, experts create rule dictionary by utilizing
their classification knowledge. A rule-based autocoding system matches each rule
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to a text description and assigns the corresponding classification code. The greatest
advantage of a rule-based autocoding system is that it works without a training
dataset. In addition, it is easy to interpret the output from the system because
classification rules are maintained manually. Meanwhile, the disadvantage of a rule-
based autocoding system is the significant maintenance cost of the classification
rules by experts. Furthermore, in order to obtain the high accuracy of the classifica-
tion, generally the number of the rules have to be increased, then the maintenance
cost is accumulated and the system itself becomes more complicated. This causes
instability of the solution of the system.

On the other hand, a machine learning autocoding system finds latent patterns
(i.e., classification rules) in data automatically and assigns classification codes
according to those patterns. The greatest advantage of machine learning autocoding
systems is their low maintenance cost. As the system creates coding rules automat-
ically according to the latent structure of given data, maintaining huge numbers of
rules is easy. In addition, the system can find hidden patterns that experts may not be
able to identify. However, this system requires a sufficiently sized training dataset
for learning and this is a core issue for obtaining satisfactory classification accuracy
as the result. Basically, as the number of classification codes increase, the required
size of the training dataset will also increase.

3 Autocoding System Using Simple Classifier Based on
Machine Learning

The proposed autocoding system has been developed for the Family Income and
Expenditure Survey in Japan. This monthly survey is conducted by the Statistics
Bureau of Japan. Approximately 9000 selected households are required to keep
daily accounts of all transactions related to their income and expenditure in
Japanese. The experts of the survey classification have sorted a variety of entries
that contain orthographical variance and local dialects into approximately 600 labels
for survey data processing. The proposed autocoding system (Shimono et al. 2018;
Toko et al. 2017) comprises of training and evaluation processes. In the training
process, the system performs feature extraction and tabulates the extracted features
along with the given classification codes into a feature frequency table (see Table 1).
In the present study, the object is a short textual description. We employed the word-
level N-gram model for feature extraction. We performed the following processes:
Firstly, tokenizing each description by a morphological analyzer. We used MeCab
(Kudo et al. 2004), which is a dictionary-attached morphological analyzer, to divide
text descriptions into constituent words. Secondly, we took word-level N-grams
(N = 1, 2, 3 . . . ) from the word sequences of text descriptions. In the present paper,
we take 1-grams (any word), 2-grams (any sequence of two consecutive words), and
the whole-word sequence as features.
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Table 1 Feature frequency
table

Classes

1 2 3 . . . k . . . K

Features f1 n11 n12 n13 . . . n1k . . . n1K

f2 n21 n22 n23 . . . n2k . . . n2K

f3 n31 n32 n33 . . . n3k . . . n3K

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

fj nj1 nj2 nj3 . . . njk . . . njK

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

fJ nJ 1 nJ 2 nJ 3 . . . nJ k . . . nJK

For example, suppose an object of the textual description consists of two words
as “A” and “B.” In this case, the features are set as “A,” “B,” and “A B.” For all of the
objects in the training dataset, we create the features f1, · · · , fJ shown in Table 1.
According to the supervised classification, the frequency of j -th feature to k-th code
(or class), njk (j = 1, · · · , J, k = 1, · · · ,K), is calculated by using the training
dataset, where the number of codes (or classes) is K .

Let multinomial classes C take values in { 1, . . . ,K }, and let F = (F1, . . . , FJ )

be a J-dimensional random variable whose elements take values 0 or 1, which,
respectively indicate the absence or presence of a particular feature. Then, as each
feature is assumed to be conditionally independent of any other features given C, the
conditional probability of the features of F given class C can be written as follows:

P(Fj = fj , j = 1, . . . , J |C = k) =
J∏

j=1

P(Fj = fj |C = k)

=
J∏

j=1

p
fj

jk(1 − pjk)
1−fj , (1)

where pjk = p(Fj = 1|C = k) for k = 1, . . . ,K .
Then, let nk be the number of objects in the training dataset in a class k, and let

njk be the number of objects in the training dataset in a class k with fj = 1. The
maximum likelihood estimate of pjk can be written as:

p̂jk = njk

nk

. (2)

We add α to the denominator and β to the numerator in order to prevent p̂jk from
being equal to 0 or 1:

p̂jk = njk + β

nk + α
. (3)
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Then, under the assumption that P(C = k) = pk , the posterior probability P(C =
k|Fj = fj , j = 1, . . . , J ) is proportional to

pk

J∏

j=1

p
fj

jk(1 − pjk)
1−fj . (4)

Under βjk = log
pjk

1−pjk
, the posterior probabilities have been described as

follows:

P(C = k|Fj = fj , j = 1, . . . , J ) = exp(
∑J

j=1 fjβjk)
∑K

l=1 exp(
∑J

j=1 fjβjl)
, (5)

when prior probabilities pk ∝ {∏J
j=1 (1 − pjk)}−1 for k = 1, . . . ,K (Taguchi

1997).
In previous studies (Shimono et al. 2018; Toko et al. 2017), we have simplified

the process of assigning classes. First, we considered the following:

arg max
k

P (C = k|Fj = fj , j = 1, . . . , J ) ∝ arg max
k

∏

{j |fj=1}

pjk

1 − pjk

. (6)

From (2), (3), and (6), it can be seen that the maximum probability P(C = k|Fj =
fj , j = 1, . . . , J ) when fj = 1 over K classes is influenced by only the amount of
njk . Therefore, we have defined new p̃jk as follows:

p̃jk = njk + β

nj + α
, nj =

K∑

k=1

njk, (7)

where we set heuristically α = −0.111111 and β = −0.444444 in the present
study.

4 Experiments and Results

4.1 Setting

We prepared the dataset of the Family Income and Expenditure Survey in Japan for
performance evaluation. We used approximately 5.4 million objects (approximately
163 MB of data) as a training dataset because a certain volume of data is required
owning to the number of requisite classes. Furthermore, since each class contains a
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variety of text descriptions, including orthographical variance and local dialects, we
needed to use as much data as we could prepare to cover those descriptions.

Meanwhile, we used approximately 43,300 objects for an evaluation dataset
because only that number of objects was adjusted for the comparison with the rule-
based autocoding system. Each object of this dataset has one text (or one word)
in Japanese, the corresponding classification code from approximately 600 kinds
of codes, and subsidiary information such as an amount of income, an amount of
expenditure, a payment option (cash, credit card, or loan), and a quantity of the
purchase including its unit.

Although the target objects are short textual descriptions, we use income and
expenditure data separately to improve classification accuracy, because there are
several textual descriptions which are the same name but different meanings in
income and expenditure. For example, a description “public pension” can be
considered to have two meanings: a pension receipt and a payment to pension
fund, also a description “savings” can be considered two meanings: deposits and
withdrawal. Similarly, we also need to distinguish between payments by credit
card and payments by other methods. Because some objects are assigned different
classification code according to payment option. In this case, we put a particular
symbol to each feature in the feature set whose information of payment option
indicated “payment by credit card.”

4.2 Results

The proposed autocoding system assigned a classification code to each object of
the evaluation dataset. We also applied the same data to the rule-based autocoding
system to compare the classification accuracy.

The rule-based autocoding system (Yui 2017) was applied to 2014 survey of the
National Survey of Family Income and Expenditure whose survey items are similar
to the Family Income and Expenditure Survey. The experts in our office have put
the knowledge of this experience for developing a rule-based autocoding system for
the Family Income and Expenditure Survey. This rule-based autocoding system has
approximately 15,000 rules that are prepared and maintained manually. The system
includes the following steps for coding process:

(Step 1) If the inputted text description is matched a classification rule which has
clear corresponding codes, then the code (or class) is assigned based on the rule-
based dictionary definitions.

(Step 2) If the remained inputted text description is matched a classification rule
which corresponds to multiple codes, then the code (or class) is assigned based
on the additional information which is the amount of income or expenditure.

Table 2 shows the comparison of the classification efficiency and accuracy
between the autocoding system using simple classifier based on machine learning
and the rule-based system. In Table 2, “Coverage,” “Accuracy,” and “Efficiency” are
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Table 2 Comparison of classification efficiency and accuracy

The number The number The number
of total of assigned of matched
objects objects objects Coverage Accuracy Efficiency

Autocoding
system used
machine learning

42,820 42,595 39,204 99.5% 92.0% 91.6%

Rule-based
autocoding system

42,820 30,274 30,225 70.7% 99.8% 70.6%

defined as follows:

Coverage (%) = The number of assigned objects

The number of total inputted objects
× 100,

Accuracy (%) = The number of matched objects

The number of assigned objects
× 100,

Efficiency (%) = The number of matched objects

The number of total inputted objects
× 100,

where, the number of total inputted objects is the number of total objects in the
evaluation dataset. The number of assigned objects means the number of objects in
which the system can assign classification codes for these objects, but it may include
the number of uncorrected classification. The number of matched objects shows the
number of objects that the system gives correct classification codes.

From Table 2, it can be seen that the value of “efficiency” which shows how
much correctly assigned objects exist out of the inputted total number of objects
for the autocoding system based on machine learning is much better than the value
of “efficiency” for the rule-based system, although the value of “accuracy” of the
autocoding system based on machine learning is lower than the value of “accuracy”
of the rule-based system. This is caused by the high coverage for the autocoding
system based on machine learning when compared with the rule-based system.

In fact, Fig. 1 shows values of the following Mj for the income data which
consists of 57,477 features and 37 codes (or classes).

Mj =
37∑

k=1

p̃2
jk, j = 1, . . . , 57,477, (8)

where p̃jk is shown in (7) when α = β = 0. Note that Fig. 1 was plotted after
sorting the values of Mj into ascending order. From the definition of p̃jk shown in
(7), p̃jk satisfies the following conditions when α = β = 0:

p̃jk ∈ [0, 1],
37∑

k=1

p̃jk = 1, j = 1, . . . , 57,477.
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Fig. 1 Values of Mj for the income data

Therefore, Mj satisfies the following:

1

37
≤ Mj ≤ 1, j = 1, . . . , 57,477.

The value of Mj shows status of classification of j -th feature for 37 codes (or
classes). The clearer classification of each feature has a larger value of Mj . From
Fig. 1, we can see that most of the features are clearly classified to the codes.

We also compare classification efficiency and accuracy by sector. Table 3 shows
an overview of the evaluation dataset by sector. As seen in the table, there are
distribution biases between each sector because the frequency of transactions differs
by sector.

Table 4 shows the result of classification efficiency and accuracy by sector for
the proposed autocoding system based on machine learning and Table 5 is the result
of the classification efficiency and accuracy for the rule-based autocoding system.
From the comparison of the results between Tables 4 and 5, values of “efficiency”
used proposed autocoding system based on machine learning were better than the
values of the rule-based coding system. Moreover, the coverage of each sector
was stable with high ratio in the proposed system used machine learning, whereas
the accuracy differed by sector. For example, the system was particularly good at
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Table 3 Evaluation dataset by sector

Sector names Sector codes The number of evaluated objects

Income A 290

Receipts other than income B 592

Foods C 28,889

Housing D 59

Fuel, light, and water charges E 368

Furniture and household utensils F 1359

Clothing and footwear G 437

Medical care H 924

Transportation and communication I 937

Education J 41

Culture and recreation K 1259

Other consumption expenditures L 1210

Non-consumption expenditures M 287

Disbursements other than expenditures N 678

Others O 5490

Table 4 Classification efficiency and accuracy by sector for autocoding system used machine
learning

Sector The number of The number of The number of
codes total objects assigned objects matched objects Coverage Accuracy Efficiency

A 290 287 212 99.0% 73.9% 73.1%

B 592 591 584 99.8% 98.8% 98.6%

C 28,889 28,737 26,354 99.5% 91.7% 91.2%

D 59 59 40 100.0% 67.8% 67.8%

E 368 368 363 100.0% 98.6% 98.6%

F 1359 1341 1155 98.7% 86.1% 85.0%

G 437 435 293 99.5% 67.4% 67.0%

H 924 919 857 99.5% 93.3% 92.7%

I 937 934 897 99.7% 96.0% 95.7%

J 41 41 19 100.0% 46.3% 46.3%

K 1259 1244 1066 98.8% 85.7% 84.7%

L 1210 1190 1029 98.3% 86.5% 85.0%

M 287 287 272 100.0% 94.8% 94.8%

N 678 675 639 99.6% 94.7% 94.2%

O 5490 5487 5424 99.9% 98.9% 98.8%

assigning correct codes for sector codes B, E, and O; however, it was not good
at assigning correct codes for sector codes A, G, and J. The primary reason for
which the system was not good at assigning correct codes in this case because it
learned an insufficient amount of information for autocoding. In order to assign
correct codes to those data, the system will be required to learn family information,
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Table 5 Classification efficiency and accuracy by sector for rule-based autocoding system

Sector The number of The number of The number of
codes total objects assigned objects matched objects Coverage Accuracy Efficiency

A 290 64 60 22.1% 93.8% 20.7%

B 592 569 569 96.1% 100.0% 96.1%

C 28,889 20,403 20,368 70.6% 99.8% 70.5%

D 59 3 3 5.1% 100.0% 5.1%

E 368 348 346 94.6% 99.4% 94.0%

F 1359 648 646 47.7% 99.7% 47.5%

G 437 84 84 19.2% 100.0% 19.2%

H 924 567 566 61.4% 99.8% 61.3%

I 937 547 546 58.4% 99.8% 58.3%

J 41 1 1 2.4% 100.0% 2.4%

K 1259 600 600 47.7% 100.0% 47.7%

L 1210 533 532 44.0% 99.8% 44.0%

M 287 166 165 57.8% 99.4% 57.5%

N 678 458 455 67.6% 99.3% 67.1%

O 5490 5284 5284 96.2% 100.0% 96.2%

such as household structure, type of dwelling (i.e., rents for dwelling public or rents
for dwelling private), and type of school (public or private).

On the other hand, for the rule-based autocoding system, the coverage of nearly
half of the sectors was less than 50%, and the accuracy of most sectors was more
than 99%. In addition, the accuracy of each sector was stable with high accuracy,
whereas the coverage differed by sector. For example, the system assigned codes
for a large portion of data for sector codes B, E, and O; however, it assigned codes
for a small portion on data in sector code J. It is curious that both the proposed and
rule-based systems were particularly good at assigning codes with high accuracy
for a large portion of data for sector codes B, E, and O. Although sectors where
both accuracy and coverage were extremely high were the same in both systems,
the tendency of the other sectors appears to differ.

We also applied the autocoding system using machine learning to data that the
rule-based autocoding system could not classify. Table 6 shows the result of the
classification efficiency and accuracy by sector. In this table, each efficiency and
accuracy value was less than that of the proposed system used machine learning
shown in Table 4. However, we found that the proposed system assigned correct
codes at a certain accuracy for a large portion of data that the rule-based system
could not classify.
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Table 6 Classification efficiency and accuracy of the proposed classifier using machine learning
according to each sector for data the rule-based system left unclassified

Sector The number of The number of The number of
codes total objects assigned objects matched objects Coverage Accuracy Efficiency

A 226 223 152 98.7% 68.2% 67.3%

B 23 22 15 95.7% 68.2% 65.2%

C 8486 8354 6247 98.4% 74.8% 73.6%

D 56 56 37 100.0% 66.1% 66.1%

E 20 20 17 100.0% 85.0% 85.0%

F 711 695 520 97.7% 74.8% 73.1%

G 353 351 212 99.4% 60.4% 60.1%

H 357 352 297 98.6% 84.4% 83.2%

I 390 387 351 99.2% 90.7% 90.0%

J 40 40 19 100.0% 47.5% 47.5%

K 659 644 474 97.7% 73.6% 71.9%

L 677 657 502 97.0% 76.4% 74.2%

M 121 121 107 100.0% 88.4% 88.4%

N 220 219 188 99.5% 85.8% 85.5%

O 206 203 141 98.5% 69.5% 68.4%

5 Conclusions

For the Family Income and Expenditure Survey in Japan, this paper presents an
application of autocoding method using simple machine learning technique with a
comparison of the efficiency and the accuracy of a rule-based method. From this
comparison, it can be seen that the autocoding system using machine learning and
the rule-based autocoding system have unique advantages, respectively. The rule-
based system can assign classification codes at extremely high accuracy; however,
it yields a certain volume of unclassified data. Also, the proposed system based on
machine learning can assign classification codes for a large portion of the dataset;
however, the accuracy is not equivalent to the accuracy of manual coding, although
the efficiency which shows the ratio of the number of correctly classified objects out
of the number of total inputted objects is satisfactory higher than the value of the
ratio of the rule-based autocoding system.

From this viewpoint, it may be worthwhile to develop the hybrid system (Yui
2017) to improve the effectiveness of coding tasks. And this may work for not only
the Family Income and Expenditure Survey but other statistical surveys in the field
of official statistics.

For future studies, the proposed classifier yields different accuracy results
according to each sector, and the primary reason for this is that there is a certain
volume of data that requires more information than it learned to assign a correct
code. In order to improve classification accuracy of such data without compromising
the simplicity of the system structure, we are considering that assigning unified
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codes for those data in the proposed classifier and processing them in another
process using the respective household information to break down those unified
codes. Applying our autocoding system to other coding tasks of governmental
surveys is also one future study. In addition, the detailed investigation for the lower
value’s features in Fig. 1 and the use of values of Mj shown in (8) for the reliability
of classification of each feature is a topic for future study.
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