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Abstract

Biphasic calcium phosphate bioceramics con-
sist of an intimate mixture of hydroxyapatite 
(HA) and beta-tricalcium phosphate (β-TCP) 
in varying ratios. Due to their biocompatibil-
ity, osteoconductivity, and safety in in  vitro, 
in vivo, and clinical models, they have become 
promising bone substitute biomaterials and 
are recommended for use as alternatives for or 
as additives in bone tissue regeneration in var-
ious orthopedic and dental applications. Many 
studies have demonstrated the potential uses 
of BCP bioceramics as scaffolds for tissue 
engineering. Here, we highlight the recent 
advances in the uses of BCP bioceramics and 
functionalized BCPs for bone tissue 
regeneration.
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12.1	 �Introduction

Bone tissue regeneration is a complex and well-
orchestrated process of biological events of bone 
induction and conduction to optimize skeletal 
repair and restore skeletal function [1]. Currently, 
autografts and allografts are commonly performed 
and are considered as the gold standard for bone 
replacement surgery. However, their clinical 
applications are still challenging due to several 
disadvantages, such as the limited supply of donor 
bone graft, a secondary trauma for autograft, and 
the immune reactions against the allograft [2].

Synthetic or natural bioceramics with proper-
ties similar to native bone have been developed as 
alternatives to autografts or allografts for bone 
replacement. The most common bioceramics are 
calcium phosphate (CaP)-based biomaterials, 
including hydroxyapatite (HA), α- and 
β-tricalcium phosphates (α-TCP, β-TCP), octa-
calcium phosphate (OCP), amorphous calcium 
phosphate (ACP), and biphasic calcium phos-
phates (BCP) [3, 4]. Due to their biocompatibil-
ity, safety, availability, low morbidity, and 
cost-effectiveness over autografts and allografts, 

S. E. Kim 
Department of Orthopedic Surgery and Rare Diseases 
Institute, Korea University Medical College, Korea 
University Guro Hospital, Seoul, Republic of Korea
e-mail: sekim10@korea.ac.kr 

K. Park (*) 
Department of Systems Biotechnology, Chung-Ang 
University,  
Anseong-si, Gyeonggi-do, Republic of Korea
e-mail: kspark1223@cau.ac.kr

12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3262-7_12&domain=pdf
https://doi.org/10.1007/978-981-15-3262-7_12#ESM
mailto:sekim10@korea.ac.kr
mailto:kspark1223@cau.ac.kr


178

these CaP bioceramics are commonly used for 
medical and dental applications, such as treat-
ment of bone defects and fracture, joint 
replacement, dental implants, and periodontal 
therapy [5].

BCPs consist of a more stable hydroxyapatite 
[HA, Ca10(PO4)6(OH)2] and a more soluble beta-
tricalcium phosphate [β-TCP, Ca3(PO4)2] in differ-
ent proportions. Among the CaP biomaterials, 
BCPs have significant advantages over other CaP 
materials. Variations in the HA/β-TCP ratio can 
modulate their bioactivity and balance between 
resorption and solubilization which guarantees the 
stability of the biomaterials while promoting bone 
ingrowth [6]. However, their inherent brittleness is 
not suitable in load-bearing bone applications [7]. 
Despite their brittleness, depending on the ratio of 
HA and β-TCP, various BCP ceramics can be 
obtained for the application to large bone defects 
as well as customized pieces [8]. Additionally, 
owing to their suitable degradation rates and 
chemical similarity to the mineral phase of the 
bone, they have common clinical applications in 
the fields of dental and orthopedic surgery [6, 9, 
10]. Previous studies have shown that BCP-based 
materials have osteoconductive properties in a 
specific HA/β-TCP ratio, leading to enhanced 
osteoblast proliferation and osteogenic differentia-
tion [11–14]. In addition to osteoconductivity, 
BCP-based materials have osteoinductivity, that is, 
the property of graft materials in which it induces 
de novo bone formation with biomimetic sub-
stances such as bone morphogenic proteins 
(BMPs). Indeed, recent study suggested that the 
optimization of the material characteristics can 
endow biomaterials with osteoinductive ability 
[15]. Indeed, the researchers showed that BCP 
(30% HA and 70% β-TCP) promoted much greater 
expression of BMP-2 and showed higher osteoin-
ductivity in  vivo than BCP (70% HA and 30% 
β-TCP), pure β-TCP, and HA [15]. However, 
BCP-based scaffolds still have a limitation toward 
new bone formation due to their lack of intrinsic 
osteoinductivity.

To enlarge the application of BCPs in bone tis-
sue regeneration, many researches have focused 
on the development of the functionalized BCP 
scaffolds by combining with various polymers 

and adding bioactive factors. In this chapter, we 
describe the characteristics of BCPs and mar-
keted BCP products. Also, we review the latest 
advances in the study of various functionalized 
BCPs for enhancing bone tissue regeneration.

12.2	 �Characteristics of BCPs

BCPs are composed of two phases such as a more 
stable HA and a more soluble β-TCP in different 
ratios. As a first phase, HA is ideal material for 
bone substitute and is commonly used because of 
its similarity to the mineral phase of the bone and 
better mechanical properties. However, the biore-
sorption of a more stable HA is slower than other 
CaP such as TCP. These non-resorbable and bio-
inert properties of HA lead to incomplete remod-
eling of the bone [16]. Thus, HA is usually 
combined with other bioresorbable bone phases 
at an appropriate ratio because its bioresorption 
rates can be controlled by the HA/TCP ratio. As a 
second phase, β-TCP is generally selected 
because it has a higher chemical stability and bio-
degradation rate [17]. The composite BCP ceram-
ics, comprising a mixture of HA with good 
osteoconductivity and β-TCP with high resorp-
tion, proved to be highly biocompatible with 
good osteoconductive properties in specific ratios 
of HA/β-TCP [11, 18]. By manipulating the 
HA/β-TCP composition ratios, it is possible to 
optimize the biodegradation rate of BCPs [19]. 
Therefore, biodegradation kinetics of BCPs 
depends on the types of chemical phases (HA/β-
TCP) and their percentage ratios, where the 
higher the TCP ratio, the higher is the biodegra-
dation of the BCPs. The biodegradation process 
of BCPs is also influenced by several other fac-
tors. For instance, a lower porosity and surface 
area or a higher crystallinity and larger particle 
sizes exhibited a slower biodegradation rate [6, 
20]. Importantly, the higher biodegradation of 
BCPs facilitates an increase of calcium (Ca2+) 
and phosphate (HPO4

2−, PO4
3−) ion concentration 

in the vicinity of the bone cells. This results in 
osteogenic differentiation and the subsequent 
mineralization of extracellular matrix (ECM) in 
the newly generated bone [21–23].
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12.3	 �Marketed BCP Products

Due to these characteristics, many BCP bone 
substitute products, with suitable composition 
ratios of HA and TCP, are commercially avail-
able for various orthopedic and maxillofacial 
applications, as summarized in a previous review 
article [6]. Some of the marketed BCP products 
are as follows. For alternative autogenous bone 
grafts, Graftys BCP® (Latin American Solutions 
(LAS), Brazil) has been marked in several forms 
such as granules, sticks, cylinders, and wedges. 
This product is a micro-, meso-, and macro-
porous two-phase CaP ceramic consisting of 
60% HA and 40% β-TCP, which facilitates long-
term volume stability by decelerating the overall 
resorption capabilities and promoting a more 
stable and uniform bone growth [24]. Bicera™ 
(60% HA and 40% β-TCP, Wiltrom Co., Ltd.) 
shows good biocompatibility in vivo without side 
effects such as abnormal inflammation at implan-
tation sites. Although complete absorption and 
replacement were not observed after 6 months of 
implantation, new bone regeneration was seen to 
occur effectively on the surface of the periphery 
in the specimens with the use of Bicera™. 
Another synthetic BCP, OSOPIA (>90% TCP 
and <10% HA), is manufactured by NextGen 
Biomaterials (London, UK) and is much closer to 
biologically derived bone grafts than the standard 
synthetic materials [25]. OSOPIA features higher 
bone ingrowth rates than BCP grafts and a more 
controlled cellular-induced resorption pattern 
compared to standard TCP materials [26].

Based on these results, most studies have 
reported that, regardless of the HA/β-TCP ratio, 
BCP scaffolds generally enhance the rate and 
quality of bone tissue regeneration compared to 
empty control groups. In this regard, the various 
types of BCP bioceramics are considered as the 
best materials for bone tissue regeneration 
because they possess the inorganic phase of the 
bone ECM with mineral composition similar to 
that of natural bone. It has been reported that only 
BCPs with HA/β-TCP ratios of 65/35, 60/40, and 
50/50 have been successfully applied in human 
clinical trials [27–29]. For an example, Artzi 
et al. reported that the combination of BCP (50% 

HA and 50% β-TCP) with particulate autogenous 
bone chips in a 1 to 1 ratio showed osteoconduc-
tive properties and promoted newly formed bone 
[27]. More recently, clinical trials have been 
studied to compare the new bone formation of 
two BCPs (B1, 60.28% HA and 39.72% β-TCP; 
B2, 78.21% HA and 21.79% β-TCP) and 
BoneCeramic (61% HA and 39% β-TCP) in fresh 
dental sockets after 6 months [30]. In this study, 
the B1 group showed the greatest amount of 
newly formed bone compared to other groups 
after 6 months. Although BCPs have shown bio-
compatibility, osteoconductivity, and new bone 
formation, currently, there is no general agree-
ment on an ideal HA/β-TCP ratio for BCPs in 
clinical applications. Therefore, various HA/β-
TCP ratios have been evaluated by researchers to 
determine the best ratio for optimum bone 
regeneration.

12.4	 �Injectable BCPs/Polymer 
Scaffolds

Porous scaffolds provide the structural support 
for cell adhesion, proliferation, and differentia-
tion. They have been used as substrates for pro-
moting new bone formation at the defect through 
surgical procedures [31, 32]. From a clinical per-
spective, injectable scaffold systems are one of 
the best options for bone tissue regeneration of 
irregular-shaped bone defects.

Porous microspheres have been used as vehi-
cles for sustained drug or protein delivery due to 
their inherently small size, small volume, large 
surface area, and high drug loading efficiency 
[33]. Recently, Song and coworkers developed an 
injectable BCP (60% HA and 40% β-TCP)/
porous microsphere scaffold system through the 
surface immobilization of BCP nanoparticles 
modified with heparin on porous poly(lactic-co-
glycolic acid) (PLGA) microspheres modified 
with positively charged L-lysine via electrostatic 
interactions [34]. Although this system showed 
enhanced ALP activity, calcium deposition, and 
expression of osteogenic differentiation genes 
(i.e., osteocalcin and osteopontin), only in vitro 
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results of this study were not enough to demon-
strate its enhanced osteogenesis effects.

Poly(methyl methacrylate) (PMMA) bone 
cement has been used in bone defects caused by 
osteoporosis due to its excellent mechanical 
properties [35, 36]. However, its bioinertness and 
non-degradation have limited its extensive appli-
cation in bone regeneration. To enhance its bio-
logical activity, HA could be incorporated into 
PMMA bone cement [37]. Although the formula-
tion of HA/PMMA bone cement has some advan-
tages, such as the excellent mechanical properties 
and injectability, it still has some limitations due 
to the slow biodegradation of HA in vivo, conse-
quently leading to a weakening of the interfacial 
integration between host bone tissue and cement 
[38]. Recently, Quan et al. fabricated a series of 
bioactive BCP (40%)/PMMA bone cements con-
taining different BCP contents (up to 40%) to 
achieve an adjustable resorption rate and to accel-
erate osteogenesis in vivo [39]. The increase of 
β-TCP content (30%, 50%, and 70% of β-TCP 
per BCP contents) in BCP/PMMA cements 
induced more mineralization and was seen to 
promote cell adhesion, proliferation, and differ-
entiation of rat bone marrow mesenchymal stem 
cells (rBMSCs) and osteogenesis. Furthermore, 
micro-computed tomography and histological 
studies have demonstrated that the growth rate of 
new bone was accelerated by increasing the 
β-TCP content in such BCP/PMMA cements.

Multichannel BCP granule (MCG, 60% HA 
and 40% β-TCP) is also an appropriate bone graft 
material due to its unique morphology, optimal 
porosity with interconnected pores, good 
mechanical strength, biocompatibility, osteocon-
ductivity, and biodegradability [40]. Additionally, 
its porous structure is much like the osteon of a 
natural bone and allows bone cells to attach, 
migrate, and proliferate in the defect site [41, 42]. 
However, its low weight and repellant nature 
make it difficult to handle them in clinical appli-
cations. To solve this problem, MCGs are mixed 
with a material that can hold them by its cohesive 
force and induce bone formation at the defect 
site. As one of the main ECM components, hyal-
uronic acid (HA) has been previously evaluated 
in conjunction with CaP granules for improving 

injectability and stimulating bone regeneration 
due to its non-toxicity, non-immunogenicity, vis-
cosity, and good biodegradability, as well as for 
its wound healing and drug delivery capabilities 
[43–46]. Recently, the addition of HA to MCG 
(0.7 mm, 60% HA and 40% β-TCP) resulted in 
injectable granules and allowed for their easy 
handling during the implantation [47]. Without a 
significant change in porosity, the injectable HA/
MCG exhibited greater cell viability and prolif-
eration in vitro, as well as better in vivo bone tis-
sue growth at critical sized defects after 4 weeks 
of implantation compared to MCG alone.

Calcium phosphate cement (CPC) with bio-
compatibility and osteoconductivity is consid-
ered as the most promising injectable filler 
material due to its identical composition to the 
mineral part of the bone [48]. However, the lack 
of interconnected porosity and inadequate pore 
size distribution in CPC cements may adversely 
affect bone growth. To improve biocompatibility, 
CPC has been incorporated with sucrose granules 
and/or different amounts of NaHCO3 and 
Na2HPO4 to achieve the desired size distribution 
and interconnected pores [49]. Additionally, to 
promote cell adhesion and differentiation through 
specific interactions with ligands and adhered 
cells, collagen has been adsorbed onto the sur-
face of these bioceramics because it is a major 
component of bone ECM [50–52]. Moreover, to 
further accelerate tissue regeneration, a potent 
osteoinductive growth factor, such as bone mor-
phogenetic protein-2 (BMP-2), is also incorpo-
rated into bioceramics [53]. Recently, Lee et al. 
developed an advanced injectable CPC bone 
cement system by incorporating 15% of the func-
tionalized MCGs (60% HA and 40% β-TCP) 
with collagen coating and BMP-2 loaded into 
CPC to enhance bone tissue regeneration [40]. 
The incorporation of the functionalized MCGs 
into CPC achieved a sustained BMP-2 release for 
1 month, as well as implant degradation behavior, 
resulting in boosted bone tissue growth as com-
pared to CPC matrix alone, in a rabbit femur head 
defect model after 2 and 4  weeks of 
implantation.
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12.5	 �Functionalized BCPs 
with Bioactive Molecules

12.5.1	 �Functionalized BCPs 
for the Delivery 
of Osteoinductive Growth 
Factors

As described above, BCP-based scaffolds have 
gained attention in the fields of dental and orthope-
dic surgery due to their excellent biocompatibility 
and biodegradability. However, BCP-based scaf-
folds alone are not sufficient to stimulate adequate 
revascularization, cellular reconstitution, or osteo-
genesis. Many researchers have tried to incorporate 
bioceramics into polymer scaffolds to improve bio-
activity [54], but due to the lack of bioactive signal-
ing molecules, bare BCP or bare BCP/polymer 
scaffold systems are not effective in promoting cell 
proliferation, osteogenic differentiation, and tissue 
regeneration. In particular, BCPs/polymer compos-
ite scaffolds do not have appropriate pore structures 
and interconnectivity for cell accommodation [55]. 
Therefore, a combination of an appropriate scaf-
fold and bioactive molecules has been suggested 
which play an extensive role in the stimulation of 
cell growth, migration, differentiation, and angio-
genesis [56–58].

Among the osteoinductive factors, BMP-2 has 
been widely used in bone tissue engineering 
because of its superior osteoinductive activity, 
which stimulates the gene expression of osteo-
genic markers such as osteocalcin, osteopontin, 
bone sialoprotein, and alkaline phosphatase dur-
ing osteoblast differentiation in vitro [59, 60]. To 
enhance bone tissue regeneration in vivo, several 
growth factors containing BCP ceramics were 
evaluated in animal models. Cho et al. found that 
BMP-2-loaded BCP (20% HA and 80% β-TCP) 
effectively induced new bone formation in the rat 
calvarial defect model [61]. Although new bone 
formation in 10 μg and 20 μg BMP-2/BCP groups 
was seen to be greater at 8 weeks than at 2 weeks, 
a statistically significant difference depending on 
the BMP-2 dose was not observed. On the other 
hand, bone replacement via alloplast needs to be 
accompanied by ample vascularization since it is 
one of the most important prerequisites for bone 

healing [62]. Recently, Arisan and coworkers 
showed that vascular endothelial growth factor 
(VEGF)-incorporated BCP (60% HA and 40% 
β-TCP) alloplast enhanced early-term new bone 
formation in femoral defect models [63]. 
However, although VEGF seemed to significantly 
contribute to recovery and osteogenesis in the 
early stages of bone defect healing, the new bone 
of the VEGF/BCP alloplast did not show a statis-
tically significant difference compared to that of 
bare BCP alloplast. Based on these results, it was 
evident that the simple mixing and incorporation 
of growth factors into BCP ceramics may not sig-
nificantly improve new bone formation in vivo. It 
may be possible that the growth factors were not 
released to the defect in a sustained manner due to 
the short retention of growth factors in vivo. When 
they are loaded into BCP scaffolds by soaking, all 
of growth factors are rapidly released at once and 
disappear completely within 2  days of scaffold 
implantation [64]. Due to the short in vivo half-
life of growth factors such as BMP-2, clinicians 
tried using a large dose of BMP-2. However, a 
high loading amount of BMP-2 onto a defect site 
may cause side effects like bone overgrowth and 
may also illicit an immune response [65].

To overcome these limitations, gradually 
degradable scaffolds with a sustained release of 
bioactive molecules are necessary to reduce the 
dose for clinical applications as well as to induce 
successful bone formation. By simply mixing 
BCP nanoparticles with heparin-alendronate 
(Hep-ALN), Kim and Park modified the surface of 
the BCPs (60% HA and 40% β-TCP) through the 
intense interactions between the phosphate groups 
of ALN and the calcium ions of BCP [66]. This 
modification prevents the BCPs from forming 
large particles due to the repulsion of negatively 
charged heparin molecules. Additionally, Hep-
ALN/BCPs extended the release profile of osteo-
inductive BMP-2 up to 30  days in a sustained 
manner, as a result of the strong electrostatic inter-
actions between Hep and BMP-2. This sustained 
release of BMP-2 from BCPs promoted the in vitro 
osteogenic differentiation of human adipose-
derived stem cells (hADSCs) and the in vivo bone 
tissue regeneration in a rat calvarial defect model. 
This proposed simple bio-functionalization tech-
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nique is applicable to CaP-based bioceramics and 
has potential in bone tissue engineering via the 
effective and sustained delivery of osteoinductive 
growth factors. As another example, Lee et  al. 
recently developed a new 3D scaffold system with 
the sustained release of dual growth factors such as 
BMP-2 and VEGF [67], since dual delivery of 
BMP-2 and VEGF exhibited a better and more 
efficient bone regeneration than that of single 
growth factor delivery [68, 69]. The new 3D scaf-
fold system (BNBV) was prepared by loading a 
sponge BCP (25% of nano-sized BCP powder) 
scaffold with 0.5% nano-cellulose (NC) contain-
ing BMP-2 and VEGF. This system resulted in the 
sustained release of the dual growth factors over a 
period of 30  days. This sustained release of the 
BNBV system better induced the cell attachment, 
proliferation, and differentiation of the rat bone 
marrow mesenchymal stem cells (rBMSCs) as 
compared to scaffold systems loaded with single 
growth factor. The use of cellulose in scaffolds, 
with its high density of hydroxyl groups, facili-
tates the immobilization of cell adhesive proteins 
[70]. BNBV scaffolds showed a higher amount of 
bone formation than BCP scaffolds, suggesting 
that the released dual growth factors from scaf-
folds resulted in accelerated bone healing mecha-
nism. In particular, an increase in vasculature of 
the newly deposited bone and connective tissue 
inside the pores demonstrated the angiogenic 
effect of the released VEGF. As a chemoattractant, 
VEGF promoted differentiation of osteoblasts and 
thereby promoted BMP-2-induced bone formation 
[71, 72]. Therefore, stem cell-loaded BNBV scaf-
folds increased the extent of bone and vessel for-
mation in the orthotopic site at 4 weeks.

Healing of bone defects is based on various 
biological cascade processes such as the recruit-
ment and activation of cell lineages, regulation by 
molecular mediators (i.e., chemokines, growth 
factors, and cytokines), and cooperation in a cas-
cade of events to fill the gap of bone fractures [73]. 
Considering the complicated bone healing cascade 
depends on a wide range of growth factors, it has 
been suggested that incorporation of various 
growth factors would be a more rational approach 
compared to using a specific growth factor for 
bone tissue engineering [74]. For more efficient 

bone repair, platelet-rich plasma (PRP) is a prom-
ising alternative approach because it contains vari-
ous growth factors, including platelet-derived 
growth factor (PDGF), transforming growth 
factor-β (TGF-β), epidermal growth factor (EGF), 
insulin growth factor (IGF), and VEGF [75, 76]. 
Although PRP can be used alone, the combination 
of PRP with scaffolds containing polymers has 
and ceramics has been suggested to enhance bone 
healing process. Previous studies have reported 
that the combination of PRP with various biomate-
rials and cell sources showed positive effects on 
bone regeneration [77] and led to improved osteo-
genesis in ADSCs [78]. Recently, Chen et  al. 
developed the thermo-gelling hydrogel scaffold by 
incorporating PRP and BCPs (60% HA and 40% 
β-TCP) in the thermo-gelling hydrogel, hyaluronic 
acid-g-chitosan-g-poly(N-isopropylacrylamide) 
(HA-CPN) [79]. This thermo-gelling HA-CPN/
PRP/BCP hydrogel scaffold exhibited highly effi-
cient cell proliferation and enhanced osteogenic 
differentiation. In vitro results revealed that PRP/
BCP boosts osteoblastic differentiation and ECM 
mineralization of ADSCs in a HA-CPN scaffold. 
Additionally, in vivo CT and histological analyses 
confirmed that ADSCs and HA-CPN/PRP/BCP 
system showed successful bone formation in a 
rabbit calvarial defect model. Taken together, 
combining osteoinductive PRP and osteoconduc-
tive BCP with a HA-CPN hydrogel system could 
promote the osteogenesis of ADSCs for bone tis-
sue engineering.

12.5.2	 �Functionalized BCPs 
for the Delivery of Small 
Molecular Drugs

As mentioned previously, osteoinductive growth 
factors have been incorporated in appropriate 
BCP scaffolds to render scaffolds with good 
osteoinductivity. However, the most commonly 
used osteoinductive proteins, including BMPs 
and TGF-β, can readily lose their bioactivity dur-
ing the preparation of these scaffolds [80]. To 
minimize denaturation and to maintain their bio-
activity, growth factors are usually incorporated 
into BCP scaffolds by physical adsorption. 
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However, the initial burst release of physically 
adsorbed growth factors is inevitable and cannot 
be retained in vivo at the implantation site for a 
long period [81]. Alternatively, osteoinductive 
small molecular drugs have drawn much atten-
tion for incorporation in scaffolds for bone tissue 
engineering due to their relatively high stability 
even in tough chemical environments [82].

Alendronate (ALN) can effectively inhibit bone 
resorption and induce osteogenic differentiation of 
osteoblasts, BMSCs, and ADSCs [83–85]. 
However, due to its high hydrophilic property, its 
oral bioavailability is only about 0.9%–1.8% [86]. 
Many researchers have tried to find appropriate 
delivery carriers that can provide an osteoconduc-
tive matrix for implantation at the bone repair sites 
[87, 88]. Song et al. prepared BCP (60% HA and 
40% β-TCP) scaffolds that maintained ALN con-
centrations at the repair site long enough to allow 
the bone-forming cells to migrate to the defect site, 
proliferate, and differentiate in response to ALN 
[89]. This ALN/BCP scaffold significantly 
enhanced osteogenesis and mineralization in vitro, 
and the locally delivered ALN might affect the 
remodeling of newly regenerated bone in vivo, thus 
promoting osteogenesis in a rat tibia defect model.

Dexamethasone (DEX) is one of the low-
molecular weight osteoinductive factors for bone 
tissue regeneration [82]. DEX and HA nanoparti-
cles were hybridized with gelatin and poly(L-
lactide) (PLLA) to construct a HA/DEX/PLLA/
gelatin composite scaffold by the electrospinning 
technique [90]. However, the problem of initial 
burst release and a short release period of DEX 
still needed to be solved. Recently, composite 
scaffold systems of collagen and DEX-loaded 
BCP nanoparticles were prepared for a sustained 
release of DEX, together with the calcium and 
phosphorous ions [91]. DEX-loaded BCP nanopar-
ticles were homogenously distributed on the walls 
of the collagen scaffolds, enhancing the mechani-
cal properties and roughness of the scaffolds. The 
sustained and prolonged release of DEX from the 
scaffolds was achieved for up to 35  days. This 
scaffold system, with good biocompatibility, 
enhanced the osteogenic differentiation of human 
BMSCs in vitro depending on the concentration of 
DEX, by increasing ALP activity and gene expres-

sion of ALP, runt-related transcription factor-2 
(RUNX2), bone sialoprotein 2 (IBSP), and BMP-2 
both in vitro and in vivo. Furthermore, the scaffold 
increased the concentration of collagen I and 
osteocalcin in the in vivo environment.

12.5.3	 �Functionalized BCPs 
for Immunomodulation

Osseointegration is a direct contact between bone 
and the implanted biomaterials. During the osseo-
integration process, inflammation and immune 
reactions can be observed at the implanted sites 
[92, 93]. Although TGF-β1 plays many important 
roles in regeneration processes, it is mostly related 
to the increased production of fibrotic tissue [94, 
95]. Therefore, recent studies suggested that the 
inhibition of TGF-β1 is an alternative strategy for 
enhancing osseointegration around medical 
implants by preventing several fibrotic reactions 
[96–98]. Among TGF-β1 inhibitors, it has been 
known that P144 (TGF-β1 inhibitor peptide) 
blocks the binding of TGF-β1 with its receptor 
[99–101]. Previous results showed that P144-
biofunctionalized CP-Ti surfaces reduced fibrotic 
differentiation and increased osteoblastic differen-
tiation [96]. Also, the inhibiting TGF-β1 can pre-
vent the formation of fibrotic tissues or induce 
osseointegration around the implanted biomateri-
als [97, 98]. In a recent study, Gil group demon-
strated that P144-biofunctionalized BCPs (60% 
HA and 40% β-TCP) in the hemimandibles of 
beagle dogs after tooth extraction maintained a 
stable membranous bone formation and showed 
the constant presence of vascular structures in the 
alveolar space compared to bare BCPs [102]. 
These results suggested that immunomodulation 
using TGF-β1 inhibitor peptide can be an alterna-
tive strategy for enhancing osseointegration of the 
implanted biomaterials.

12.6	 �Conclusion

In summary, due to the excellent biocompatibil-
ity, biodegradability, bioactivity, safety, and cost-
effectiveness over autografts and allografts, BCP 

12  Recent Advances of Biphasic Calcium Phosphate Bioceramics for Bone Tissue Regeneration



184

scaffolds ranging from nanoparticles to granules 
are very attractive biomaterials with preclinical 
and clinical applications for bone tissue engi-
neering. Although BCP scaffolds have good 
osteoconductivity, bare BCP scaffolds alone are 
not enough to significantly improve osteogenic 
differentiation in vitro and new bone formation 
in vivo. As summarized in Table 12.1, to achieve 
more effective bone tissue regeneration, osteoin-
ductive molecules, including growth factors or 
small molecular drugs, have been combined with 
BCP scaffolds or BCP/hydrogel polymer sys-
tems. By combining these bioactive molecules 
with BCPs or BCP/hydrogel polymer scaffolds, 
their initial burst release and short retention time 
in vitro and in vivo could be overcome, thereby 
promoting cell proliferation, osteogenic differen-
tiation, and new bone tissue regeneration. 
However, efforts are still required to find the opti-
mal BCP-based scaffolds with the most effective 
clinical outcomes.
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