
Chapter 16
Stress Distribution in an Infinite Plate
with Circular Hole by Modified Body
Force Method

Shrikrishna Badiger and D. S. Ramakrishna

Abstract Stress distribution in an infinite plate with circular hole subjected to uni-
form tension is determined by employing a modified body force method. In this
method, the problem of a plate with a hole under uniform tension is considered as a
plate with an imaginary hole. The boundary of the imaginary hole is divided into a
number of divisions. At the mid-point of each division, concentrated forces known
as body forces are applied. The magnitudes of these body forces are computed from
complex potential functions, and stress at an arbitrary point is obtained by the summa-
tion of stresses due to these body forces applied at the mid-point of each division and
stresses due to applied load. Results obtained from the modified body force method
show trends in line with theoretical results. However, more accurate results can be
obtained by using better estimate of body forces which satisfy boundary conditions
at the circular hole. Setting Poisson’s ratio ν = 0 has little effect on the computed
stress distribution.

Keywords Body force method · Boundary force method · Stress concentration

16.1 Introduction

The solution to the problem of stress distribution in an infinite plate with circular
hole subjected to uniaxial loading was first obtained by Kirsch [1]. The details of the
analytical solution are found in Timoshenko [2] and Wang [3]. Complex variables
approach was first introduced into plane elastic problems in 1909 by Kolosov [4, 5],
which was further utilised in solving various problems in elastostatics by Muskhel-
ishvili [6] and others. With improvements in computer performance, numerical tech-
niques like finite element method (FEM) and boundary element method (BEM)
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became popular methods of solving various engineering problems. However, FEM
andBEMhave the limitation of increased computing cost and accuracy when discon-
tinuities like holes and cracks are present in the material. Body force method (BFM)
originally proposed byNisitani [7, 8] is a boundary type technique for stress analysis.
The software program named BFM2D, developed by Nisitani [8] and based on BFM
is reported to provide accurate results even with coarse mesh. More recently, Man-
junath and Ramakrishna have applied BFM and solved various problems including
Flamant and Melan problem [9–11].

16.2 Body Force Method

Body force method is a boundary type technique based on the principle of super-
position. For a plate with circular hole subjected to uniform tension as shown in
Fig. 16.1a, the circular hole is considered as imaginary hole, which is divided into a
number of divisions (imaginary hole is divided into four divisions in Fig. 16.1b), at
the mid-point of each division, body forces ρxi , ρyi are applied in x- and y-directions,
the magnitudes of which are unknown to begin with. Applying equilibrium condition
to each division in x- and y-directions due to the body forces and external applied
load, we obtain a set of linear equations which can be expressed in the form, Ax = b
where A is influence coefficient matrix obtained from Kelvin’s problem (point load
in an infinite plane) where unit loads are applied in x- and y-directions, x is the
unknown body force vector and b is a vector consisting of forces on each division
in x- and y-directions due to external applied load. The stress at an arbitrary point
P(x, y) (Fig. 16.1a) is obtained by the summation of stresses at point P(x, y) due
to body forces ρxi , ρyi and stresses due to the applied uniform load as shown in
Fig. 16.1b.

(a) (b)

Fig. 16.1 Plate with a circular hole subjected to uniform tension and its equivalence in BFM
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16.3 Modified Body Force Method

Body forces ρxi , ρyi can also be computed from complex potential functions which
describe the given loading and boundary conditions. The complex potential functions
for an infinite plate subjected to uniform tensile stress in x-direction are well known
[10]. In this study, body forces are obtained from complex potential function given
by Honein [10]. These body forces are applied at the mid-point of each division. The
stress at an arbitrary point P(x, y) is obtained by the summation of stresses due to
the computed body forces and stresses due to the applied load.

Stresses are related to complex potential functions ϕ(z) and ψ(z) [2, 3, 5, 6] by
the following relations:

σx + σy = 2
(
ϕ′(z) + ϕ′(z)

) = 4�{
ϕ′(z)

}
(16.1)

σy − σx + 2iτxy = 2
(
z̄ϕ′′(z) + ψ ′(z)

)
(16.2)

Forces acting on an arc from A to B are related to complex potential functions by
the following relations [12]:

Px + Py = −i
[
ϕ(z) + z · ϕ′(z) + ψ(z)

]B
A (16.3)

Complex potential functions for an infinite plate subjected to uniform tensile stress
in x-direction are as follows [10]:

ϕ(z) = z

4
· σ∞

x (16.4)

ψ(z) = − z

2
· σ∞

x (16.5)

Complex potential functions ϕ(z) and ψ(z) from Eqs. (16.4) and (16.5) when
substituted in Eqs. (16.1) and (16.2), the following stresses are obtained:

σx = σ∞
x (16.6)

σy = 0 (16.7)

τxy = 0 (16.8)

Equations (16.6), (16.7) and (16.8) accurately describe the state of stress at
arbitrary point P(x, y) in an infinite plate without any discontinuity.

Complex potential functions from Eqs. (16.4) and (16.5) when substituted in
Eq. (16.3), the following forces are obtained:
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Table 16.1 Body force values for four divisions of the imaginary circle

Body forces Px1 Py1 Px2 Py2 Px3 Py3 Px4 Py4

Numerical values 500 0 −500 0 −500 0 500 0

Px = σ∞
x · [yB − yA] (16.9)

Py = 0 (16.10)

Body forces are computed for an infinite plate with unit thickness having a circular
hole of 5mm radius subjected to uniform tensile stress of 100MPa. Table 16.1 shows
numeric values of the body forces obtained from Eqs. (16.9) and (16.10), for four
divisions of the imaginary circle.

16.4 Theoretical Results

In an infinite plane with thickness h, the stress in polar coordinates at an arbitrary
point z = x+i · y due to concentrated load Px +i ·Py acting at location z = x0+i · y0
is reproduced from Wang [13].

σr = − (3 + ν)

4πh

(
Px cos θ + Py sin θ

r

)
(16.11)

σθ = (1 − ν)

4πh

(
Px cos θ + Py sin θ

r

)
(16.12)

τrθ = (1 − ν)

4πh

(
Px sin θ − Py cos θ

r

)
(16.13)

Stress at arbitrary point P(x, y) is obtained by summing stresses (Eqs. 16.11–
16.13) due to body forces obtained for Eqs. (16.9) and (16.10) and stresses due to
applied load.

The expression for stresses in polar coordinates for an infinite plate with circular
hole (Fig. 16.1a) is available in Timoshenko [12]. These equations are reproduced
here from [12].

σr = σ∞
x

2

(
1 − a2

r2

)
+ σ∞

x

2

(
1 + 3a4

r4
− 4a2

r2

)
cos 2θ (16.14)

σθ = σ∞
x

2

(
1 + a2

r2

)
− σ∞

x

2

(
1 + 3a4

r4

)
cos 2θ (16.15)
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τrθ = −σ∞
x

2

(
1 − 3a4

r4
+ 2a2

r2

)
sin 2θ (16.16)

16.5 Numerical Results

A plate with unit thickness having a circular hole of 5 mm radius is considered with
an applied uniform tensile stress of 100 MPa. The radial, hoop and shear stresses
along radial direction at angles 0°, 45° and 90° are computed using body force
Eqs. (16.9) and (16.10) (legend BFM) and are compared with analytical results
(Eqs. 16.14–16.16).

Figures 16.2, 16.3 and 16.4 show stresses along 0° radial line. Radial and hoop
stresses show trends in line with the theoretical results.

Figures 16.5, 16.6 and 16.7 show stresses along 45° radial line. Radial, hoop and
shear stresses show trends in line with the theoretical results. However, it is observed
that the magnitudes of these stresses in the proximity of the circular hole deviate
from theoretical values.

Figures 16.8, 16.9 and 16.10 show stresses along 90° radial line. Radial and hoop
stresses show trends in line with the theoretical results.

Fig. 16.2 Radial stress (σr ) along radial line making 0° with x-axis, and circle is divided into 1024
divisions
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Fig. 16.3 Hoop stress (σθ ) along radial line making 0° with x-axis, and circle is divided into 1024
divisions

Fig. 16.4 Shear stress (τrθ ) along radial line making 0° with x-axis, and circle is divided into 1024
divisions
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Fig. 16.5 Radial stress (σr ) along radial line making 45° with x-axis, and circle is divided into
1024 divisions

Fig. 16.6 Hoop stress (σθ ) along radial line making 45° with x-axis, and circle is divided into 1024
divisions



170 S. Badiger and D. S. Ramakrishna

Fig. 16.7 Shear stress (τrθ ) along radial line making 45° with x-axis, and circle is divided into
1024 divisions

Fig. 16.8 Radial stress (σr ) along radial line making 90° with x-axis, and circle is divided into
1024 divisions
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Fig. 16.9 Hoop stress (σθ ) along radial line making 90° with x-axis, and circle is divided into 1024
divisions

Fig. 16.10 Shear stress (τrθ ) along radial line making 90° with x-axis, and circle is divided into
1024 divisions

Figures 16.11, 16.12 and 16.13 show radial, hoop and shear stresses along 0°
radial line. Here, circle is divided into 1024 divisions, with Poisson’s ratio (a) ν =
0, (b) ν = 0.32. It is observed that taking Poisson’s ratio as zero has little effect on
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Fig. 16.11 Radial stress along radial linemaking0°with x-axis, circle is divided into 1024divisions,
a ν = 0, b ν = 0.32

Fig. 16.12 Hoop stress along radial linemaking 0°with x-axis, circle is divided into 1024 divisions,
a ν = 0, b ν = 0.32

Fig. 16.13 Shear stress along radial linemaking 0°with x-axis, circle is divided into 1024 divisions,
a ν = 0, b ν = 0.32
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the radial and shear stresses. With nonzero Poisson’s ratio, hoop stress shows little
improvement in its trend towards theoretical results.

16.6 Conclusion

In this study, stress distribution is obtained by summation of stresses due to body
forces derived from complex potential functions for a plate with uniform load in
x-direction and stresses due to applied load (modified body force method). Results
obtained from this method show trends in line with theoretical solution. However,
numerical values obtained deviate from the theoretical solution. One of the possible
reasons for this deviation in numerical values is that the boundary of the imaginary
circle being stress-freemay not be completely satisfied. Better results can be obtained
when accurate estimates of the body forces on the boundary of the imaginary circle
are made. Alternately, body forces obtained from a set of linear equations Ax = b
(body force method) can be used to obtain the stress distribution.

Modified body force method may be useful in the instances where theoretical
results are unavailable and this method can give values of stresses approaching actual
stresses.

As suggested by Nisitani [14], it is acceptable to take Poisson’s ratio ν = 0 since
the marginal improvement in computed stresses is observed when nonzero Poisson’s
ratio is used.
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