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1 Introduction

The study in the field of optical character recognition can be traced back to mid-
1940s and has ever since gaining the attention of various industries and sectors.
Optical character recognition has been highly used in banks, post offices, libraries,
and publishing houses. The main challenge in OCR is handwritten character recog-
nition. The research on handwritten character recognition began in the late 1960s,
and at that time, only the handwritten numeric characters were addressed by the
system [1]. Over the years, the technological approach for solving this problem has
developed, thus improving the accuracy of the system [2]. Handwritten OCR for the
English language which comes under the Latin script has almost developed into a
full-fledged system. The research on handwritten OCR for Devanagari script is very
limited compared to Latin script. Devanagari script includes languages like Hindi,
Marathi, and Nepali. The most widely used Devanagari script language is Hindi with
over 500 million people using this language [3].

In Devanagari script, there are 13 vowels and 36 consonants as shown in Fig. 1.
There are 14 modifiers in Devanagari, out of which 11 are of vowels and 3 are of
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Fig. 1 Devanagari characters

‘rakars.’ These modifiers are combined with the consonants to form a modified char-
acter (the character with a modifier). Apart from vowels, consonants, and modified
characters, we also have compound characters. Compound characters are formed
by combining two or more simple characters. The compound characters are more
complex in structure than the simple characters. There are 10 digits in Devanagari
script. Devanagari is written from left to right, and there is no concept of upper-
case/lowercase. Figure 2 shows a word in Devanagari script. Every character in
Devanagari consists of a line above it which is called as the ‘Shirorekha.’ A charac-
ter in Devanagari is divided into four sections, namely the top section, main section,
side section, and the bottom section. The top section is the above the Shirorekha
which consist of some modifier which is known as the upper modifier; the main
section consists of the main character; the side section and the bottom section also

Fig. 2 Devanagari word
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consist of some modifier which is known as the side modifier and the lower modifier,
respectively [2].

The use of multilayer perceptron network is considered as a milestone in the
field of handwritten character recognition but it needs a good feature extractor to
extract relevant features, in which the multilayer perceptron can work to classify the
character [4]. A better approach to this is to use a deep neural network. Convolutional
neural network (CNN) is one of the classes of deep neural network. It does not
require a feature extractor. It has an inbuilt feature extractor that works directly on
the image and extracts the best feature from it for the classification [4]. In CNN,
the classification accuracy increases as we increase the number of layers in the
network; but at one point, above which if we increase the number of layers, the
accuracy will start to saturate and eventually degrade. This is caused due to the
vanishing gradient problem so it seems like the shallower network performs better
than the deeper network. This problem is called the degradation problem [5]. Residual
network (ResNet) was introduced to solve this problem. In ResNet, we have shortcut
connections. Shortcut connections are those connections that skip one ormore layers.
The shortcut connections simply perform identity mapping, and their outputs are
added to the outputs of the stacked layers [6].

In this paper, we have used residual network for Devanagari handwritten char-
acter recognition and showed through experiment how much the accuracy of the
classification increases by using ResNet compared to the current state-of-the-art
method.

The paper is organized into four sections. Section 1 gives an introduction to the
paper. Section 2 deals with the work related to Devanagari handwritten character
recognition. Section 3 contains the details about residual network which is the pro-
posed approach in the paper. Experiments and results comparing the residual network
with the current state-of-the-art method are shown in Sect. 4.

2 Related Work

In this section, we have summarized various techniques andmethods used inDevana-
gari handwritten character recognition over the years which have given good results
and performances.

2.1 Support Vector Machine (SVM)

Support vector machine is a supervised machine learning classification algorithm
whichwhen providedwith labeled training data outputs a hyperplane that categorizes
the new data into different classes. In two-dimensional space, this hyperplane is
defined as a line dividing a plane into two parts, wherein each class lays on either
side [7]. SVM requires an explicit feature extractor which extracts the features from
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an image and produces a feature vector which is used by the SVM classifier. The
paper [8] has used SVM as a classifier with Zernike moment as a feature extractor.
It achieved an accuracy of 98.37% using their own database consisting of 9600
characters.

2.2 Artificial Neural Network (ANN)

Artificial neural network is a collection of nodes called as artificial neurons which
resembles the neurons in the human brain. These neurons are connected to each
other. ANN consists of three layers: the input, intermediate hidden layer, and the
output layer. Each connection in the network has a weight associated with it. These
connectionweights are updated until the network is able to perform the task forwhich
it is trained using a method called backpropagation [9]. ANN requires an explicit
feature extractor like HOG, Zernike moment.

In HOG feature extractor, the distribution of directions of the gradient is used as
a feature. The gradient is useful because the gradient value is high at the edges and
corners. In HOG, the image is divided into cells where in each cell we calculate the
magnitude and direction of gradients. Histogram of each cell is calculated based on
the magnitude and direction of the gradient. A specific group of cells is combined
into blocks in which normalization is performed. After normalization, values in the
block are combined to form a single feature vector [10]. The features extracted by
the extractor are applied to any classifier like ANN and SVM for the classification.
The paper [10] has implemented HOG as a feature extractor along with ANN as
a classifier. It achieved an accuracy of 82.66% using the ISI handwritten character
database with input image of size 32 × 32.

2.3 Bidirectional Long Short-Term Memory (BLSTM)-Based
Recognition

BLSTM is used in RNN. Unlike ANN and CNN, RNN is not a feedforward neural
network in which the data flow in one direction from input to output one layer at
a time. In RNN, the output of the layer is added to the next input and fed back to
the same layer. In LSTM, the node in RNN is replaced by an LSTM cell which has
the ability to remember or forget previous contexts by using several gates. Similarly,
BLSTM is bidirectional LSTM in which the learning sequence is in forward as well
as backward direction [11]. BLSTM is a classifier so it needs a feature extractor to
provide feature vector as input to it. BLSTM can be used with CNN as well as HOG-
based feature descriptor which is proposed in the paper [10]. It has achieved accuracy
of 94.56% and 79.54 with CNN and HOG as a feature extractor, respectively. It used
ISI handwritten character database with input image of size 32 × 32.
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2.4 Convolutional Neural Network (CNN)

Convolutional neural network is a class of deep neural network, which takes an input
image, assigns importance to various aspects in the image and be able to differentiate
one from the other. CNN does not require an explicit feature extractor. In CNN, the
first operation performed is the convolutional operation which is performed by the
convolutional layer. In this layer, it has different feature detector/filter/kernel to detect
features from the image by performing the convolutional operation. Thus, the output
of this layer is different feature maps for each feature detector. Then it uses an
activation function like ReLU to maintain the nonlinearity in the image. Next step is
max pooling to make the model flexible enough to find the feature from the image
even in an improper condition of the image. Then it performs flattening to make the
feature in single vector form. At the last, it creates a full connection layer (ANN) for
the classification of the image [12]. The paper [4] has proposed the use of CNN for
Devanagari handwritten character recognition. It achieved an accuracy of 98.47%
using the Devanagari handwritten character dataset with input image of size 32 ×
32.

3 Proposed Approach

In this section, we have given details of residual network which is the method we
have used for Devanagari handwritten character recognition.

3.1 Residual Network (ResNet)

Over the years, deep convolutional neural networks have made a series of break-
throughs in the field of image recognition and classification. Networks are going
deeper to solve more complex tasks but due to the problem like vanishing gradient,
if we have a sufficiently deeper network, it may not be able to learn even the simpler
problems. If we keep increasing the layers of a model, at one point the accuracy will
start to saturate and eventually degrade. This is called as the degradation problem
[5].

He et al. [13] first demonstrated the depth problem and proposed a remarkable
solution which has since allowed the training of over 2000 layers with increasing
accuracy. Residual network consists of residual blocks. Figure 3 shows the structure
of the residual block. In Fig. 3, we can see some layers using skip connection.
Consider a neural network, which has x as input and approximates H(x). Let us
denote the difference between these as R(x) whose equation is given below

R(x) = H(x)− x (3.1.1)



142 M. Mhapsekar et al.

Fig. 3 ResNet block

R(x) is a residual function. If one hypothesizes that multiple nonlinear layers can
asymptotically approximate complicated functions, then it is equivalent to hypothe-
size that they can asymptotically approximate the residual functions. We can see that
the layers in the residual block are trying to learn the residual function R(x). From
this, we get an equation.

F(x) = H(x)− x (3.1.2)

So the original function becomes F(x)+ x which are evident in Fig. 3. Because of
these skip connections, we can propagate larger gradients to initial layers and these
layers also could learn as fast as the final layers, giving us the ability to train deeper
networks, solving the problem of vanishing gradient [6, 9].

4 Experiments and Results

In this section, we compared the current state-of-the-art method for Devanagari
handwritten character recognition which is the convolutional neural network with
the proposed method of residual network. We have obtained results corresponding
to the various architectures of ResNet and CNN which are described in detail below.

4.1 Dataset

The dataset used for the experiment is Devanagari handwritten character dataset
(DHCD) which is the work of Acharya [4]. The dataset contains 92,000 images of
handwritten Devanagari characters. The dataset comprises 46 classes out of which
36 are alphabets and 10 are numbers. There are total of 2000 sample images of each
character. Each character image is of size 32 by 32 pixels where 28 by 28 pixels is
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character body which is padded by 2 pixels on all four sides. The dataset is divided
into 80% train images, i.e., 73,600 images and 20% test images, i.e., 18,400 images.

4.2 Convolutional Neural Network (CNN)

For CNN, we have experimented two architectures having a depth of four layers and
eight layers whose details are given below:

CNN with Four Layers
The CNN architecture consists of four layers consisting of two convolutional lay-
ers, two fully connected layers. The architecture is shown in Fig. 4. The input to
convolutional layer is a 32 × 32 grayscale image. The convolutional layer uses a 5
× 5 overlapping kernel producing 16 feature maps of size 28 × 28. The activation
function used in this layer is ‘ReLU.’ Each feature map has a different set of weights.
All the units in a feature map share the same set of weights and so they are activated
by the same features at different locations. The convolutional layer is followed by
the subsampling layer. Subsampling layer reduces the resolution of the feature map
from convolutional layer by max pooling the features covered by a 2× 2 filter. This
step is important because the position of the feature may vary from image to image;
therefore, themodel must learn the relative position of the feature instead of the abso-
lute position. The feature map produced by the subsampling layer is of size 14× 14
which is then applied to the second convolutional layer. The second convolutional
layer also uses a 5 × 5 kernel which gives 32 feature maps of size 10 × 10 which is
then applied to the second subsampling layer which is the same as the first one. The
output of the second sampling layer consists of feature maps of size 5 × 5 which
are flattened to 800 neurons and applied to the 1000-way fully connected layer using
‘ReLU’ activation function with a dropout of 0.4. The last output layer consists of 46
nodes which represent the 46 output classes. It uses the ‘Softmax’ activation func-
tion. The fully connected layer is the traditional feedforward network. The model is
trained using ‘Adadelta’ optimizer with default learning rate.

CNN with Eight Layers
We have extended the above model up to eight layers consisting of five convolutional
layers and three fully connected layers to increase the depth of the CNN architecture.

Fig. 4 4-layer CNN architecture
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Fig. 5 8-layer CNN architecture

The architecture is shown in Fig. 5. The input to the first convolutional layer is a 32
× 32 grayscale image. This first layer uses a 3 × 3 overlapping kernel that outputs
4 feature maps each of size 30 × 30. The activation function used in this layer is
‘ReLU.’ The convolutional layer is followed by the subsampling layer of filter size 2
× 2 that reduces the resolution of the feature map from convolutional layer by max
pooling the features. The subsampling layer outputs feature maps of size 15 × 15
which are applied to the second convolutional layer. The second convolutional layer
also uses the 3 × 3 kernel which gives 12 feature maps of size 13 × 13.

The output of the second convolutional layer is directly applied as an input to
the third convolutional layer having a kernel of size 1 × 1 where the number of
feature map is 8 of size equal to the input, i.e., 13 × 13. Sometimes referred as
one-by-one convolutional layer or network in network, this layer increases the depth
of the architecture to generate deeper network without simply stacking layers. The
second subsampling layer which is similar to the first one takes input from the third
convolutional layer and produces featuremaps of size 6× 6. The output of the second
sampling layer is passed to the fourth convolutional layer that uses a 3× 3 kernel and
outputs 16 feature maps each of size 5 × 5. Similar to the third convolutional layer,
the fifth convolutional layer uses a kernel of size 1 × 1 and has 10 feature maps.
The output of the fifth convolutional layer is applied to the third subsampling layer
with a filter size of 2× 2 which is flattened to 40 neurons. The flattened neurons are
applied to the first 2000-way fully connected layer using ‘ReLU’ activation function
with a dropout of 0.5. The second 1000-way fully connected layer also uses ‘ReLU’
activation function with a dropout of 0.5. The last output layer consists of 46 nodes
which represent the 46 output classes. It uses the ‘Softmax’ activation function. The
model is trained using ‘Adadelta’ optimizer with default learning rate.

The final accuracy of the model consisting of four layers obtained after training
for 5 epochs is 98.79%, and for the model consisting of eight layers, we obtained a
final accuracy of 96.42%. Figure 6 shows the results. So increasing the layers of the
CNN model leads to a decline in accuracy which is caused due to the problem of
vanishing gradient.
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Fig. 6 4-layer CNN versus 8-layer CNN

4.3 Residual Network (ResNet)

For ResNet, we have experimented two architectures, namely ResNet 34 and ResNet
50, which consist of 34 and 50 layers, respectively. The architecture detail is given
below:

ResNet 34
ResNet 34 has a depth of 34 layers. The architecture is described in Table 1. Like
everyResNet, ResNet 34 also consists of a common convolutional layer and a pooling
step which are followed by four convolutional layer groups having similar behavior.
Each convolutional layer group uses a kernel of size 3 × 3 and has fixed number
of feature maps which are 64, 128, 256, 512, respectively. The first group consists
of 3 pairs of convolution. The second group consists of 4 pairs of convolution. The
third group consists of 6 pairs of convolution, and the final group consists of 3
pairs of convolution. At the last, we have a 1000-way fully connected layer using
‘Softmax’ activation function before which we have an average pooling layer. The
first convolution of each group uses a stride of 2 because of which the size of the
feature map reduces by half. Various other parameters are set to default parameters
of standard ResNet 34 [6].

ResNet 50
ResNet 50 has a depth of 50 layers. The architecture is described in Table 1. Like
everyResNet, ResNet 34 also consists of a common convolutional layer and a pooling
step which are followed by four convolutional layer groups having similar behavior.
Each convolutional layer group consists of some triples having kernel size as 1.3
and 1, respectively. The first group consists of 3 triples of convolution. The second
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Table 1 ResNet 34 and ResNet 50 architecture

Layer name Output size 34-layer ResNet 50-layer ResNet

Convolutional layer 1 112 × 112 7 × 7, 64, stride 2

Convolutional layer 2 56 × 56 3 × 3, max pool, stride 2[
3× 3, 64

3× 3, 64

]
× 2

⎡
⎢⎢⎣

1× 1, 64

3× 3, 64

1× 1, 256

⎤
⎥⎥⎦ × 2

Convolutional layer 3 28 × 28
[
3× 3, 128

3× 3, 128

]
× 2

⎡
⎢⎢⎣
1× 1, 128

3× 3, 128

1× 1, 512

⎤
⎥⎥⎦ × 2

Convolutional layer 4 14 × 14
[
3× 3, 256

3× 3, 256

]
× 2

⎡
⎢⎢⎣

1× 1, 256

3× 3, 256

1× 1, 1024

⎤
⎥⎥⎦ × 2

Convolutional layer 5 7 × 7
[
3× 3, 512

3× 3, 512

]
× 2

⎡
⎢⎢⎣

1× 1, 512

3× 3, 512

1× 1, 2048

⎤
⎥⎥⎦ × 2

1 × 1 Average pool, 1000-d fully connected
Activation function: Softmax

*Here convolutional layers are represented as filter size, number of feature maps, stride (optional)

group consists of 4 triples of convolution. The third group consists of 6 triples of
convolution, and the final group consists of 3 triples of convolution. Number of
feature maps in each convolution is shown in Table 1. The average pooling and the
fully connected layer are the same as ResNet 34. Various other parameters are set to
default parameters of standard ResNet 50 [6].

The final accuracy for ResNet 34 obtained after training for 5 epochs is 98.73%,
and for ResNet, we obtained a final accuracy of 99.35%. Figure 7 shows the results.
So increasing the layers of the ResNet model increases the accuracy, thus solving
the problem of vanishing gradient.

4.4 Result Summary

Table 2 gives the summary of experiments performed on different network architec-
tures.
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Fig. 7 ResNet34 versus ResNet50

Table 2 Experimental summary

Architecture 4-layer CNN 8-layer CNN ResNet 34 ResNet 50

Accuracy (in %) 98.79 96.42 98.73 99.35

5 Conclusion

The comprehensive study of residual network for Devanagari handwritten charac-
ter recognition and its comparison with the current state-of-the-art architecture of
convolutional neural network (CNN) is the first of its kind. The proposed implemen-
tation using ResNet architecture obtained the highest accuracy of 99.35% which is
significantly higher than the current state-of-the-art architecture of CNN. The highest
result was obtained using ResNet 50 architecture. The proposed approach of using
residual network can be the beginning of the use of the deeper network in Devanagari
handwritten character recognition problem.
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