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Foreword

Microbes are ubiquitous in nature. The vast microbial diversity has been found to
associate with the plant systems. The plant-microbe interactions are the key strategy
to colonize and establish in a variety of diverse habitats. Microbes are associated in
three ways with any plant systems in the form of epiphyte, endophyte, and rhizo-
sphere, which are collectively termed as plant microbiomes. Plant microbiomes
play an important role in the growth and development of plants and in the health of
soil. Plant microbiomes with plant growth-promoting (PGP) attributes have emerged
as an important and promising tool for sustainable agriculture. PGP microbes pro-
mote plant growth directly or indirectly by releasing plant growth regulators; solu-
bilization of phosphorus, potassium, and zinc; biological nitrogen fixation; or
producing siderophores, ammonia, HCN, and other secondary metabolites which
are antagonistic against pathogenic microbes. These PGP microbes could be used as
biofertilizers/bioinoculants in place of chemical fertilizers for sustainable agricul-
ture. This book encompasses current knowledge of plant microbiomes and their
potential biotechnological applications for plant growth, crop yield, and soil health
for sustainable agriculture. It will be highly useful to the faculty, researchers, and
students associated with microbiology, biotechnology, agriculture, molecular biol-
ogy, environmental biology, and related subjects.

This book, Advances in Plant Microbiome and Sustainable Agriculture:
Functional Annotation and Future Challenges, is a very timely publication provid-
ing state-of-the-art information in the area of agricultural and microbial biotechnol-
ogy focusing on plant microbiomes and their plant growth-promoting attributes for
plant growth and soil fertility for sustainable agriculture. It comprises 11 chapters.
In Chap. 1, Patel and Goswami describe the biodiversity of phosphorus-solubilizing
and phosphorus-mobilizing microbes, mechanisms, and their applications in agri-
culture. In Chap. 2, Khati et al. highlight the biodiversity of potassium-solubilizing
microbes and their functional impact on plant growth for sustainable agriculture. In
Chap. 3, Jatav et al. describe the biodiversity of zinc-solubilizing microbes and their
applications in agriculture as tool for cereal biofortification for micronutrients.
Chapter 4 by Verma et al. Highlights the microbial ACC deaminase-producing
microbes and their role in the mitigation of different abiotic stress. In Chap. 5,
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Yachana Jha describes the biodiversity of phytohormone-producing microbes and
their role in plant growth promotion and adaptation under stress conditions, while
Enespa et al., in Chap. 6, deal with the mechanisms of plant growth promotion by
microbes and their functional annotation in mitigation of abiotic stress. In Chap. 7,
Challa et al. highlight the recent advancements in microbes from hypersaline envi-
ronments and their role in mitigation of salt stress in plants. In Chap. 8, Meena and
his colleagues describe in detail the alleviation of cold stresses in plants by psychro-
trophic microbes. Jain et al. highlight the recent trends and future challenges of
microbe-mediated mitigation of drought stress in plants in Chap. 9. Mondal et al.
explain the future perspective in agriculture by microbial consortium with multi-
functional plant growth-promoting attributes in Chap. 10. Finally, in Chap. 11,
Gunaswetha et al. describe the roles of cyanobacteria as biofertilizers, their current
research, commercial aspects, and future challenges.

Overall, Dr. Ajar Nath Yadav, his editorial team, and scientists from different
countries carried out great efforts to compile this book as a unique and up-to-date
source on plant microbiomes for students, researchers, teachers, and academicians.
I am sure the readers will find this book highly useful and interesting during their
pursuit on plant microbiomes.

Dr. H. S. Dhaliwal is presently the Vice Chancellor of
Eternal University, Baru Sahib, Himachal Pradesh,
India. He completed his PhD in Genetics from the
University of California, Riverside, USA (1975). He
has 50 years of research, teaching, and administrative
experience in various capacities. He is also a Professor
of Biotechnology at Eternal University, Baru Sahib,
from 2011 to date. He had worked as Professor of
Biotechnology at IIT, Roorkee (2003-2011); Founder
Director of Biotechnology Centre, Punjab Agricultural
University, Ludhiana (1992-2003); Visiting Professor,
Department of Plant Pathology, Kansas State
University, Kansas, USA, (1989); Senior Research
Fellow, CIMMYT, Mexico, (1987); Senior Scientist
and Wheat Breeder-cum-Director, PAU Regional
Research Station, Gurdaspur (1979-1990); Research
Fellow FMI, Basel, Switzerland (1976-1979); and
D.F. Jones Postdoctoral Fellow, University of
California, Riverside, USA (1975-1976). He was
elected as Fellow of the National Academy of
Agricultural Sciences, India (1992). He has many
national and international awards such as Cash Award
from the Federation of Indian Chambers of Commerce
and Industry (FICCI) in 1985 and Pesticide India
Award from Mycology and Plant Pathology Society of
India in 1988. He has to his credit more than 300
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publications including 250 research papers, 12
reviews, 15 chapters contributed to books, 105
abstracts and papers presented in meetings and confer-
ences, 18 popular articles, and a number of project
report/books/bulletins/manuals. His important
research contributions are the identification of a new
species of wild diploid wheat Triticumu urartu; gath-
ering of evidences to implicate if as one of the parents
of polyploid wheat; being the Team Leader in the
development of seven wheat varieties, namely, PBW
54, PBW 120, PBW 138, PBW 175, PBW 222, PBW
226, and PBW 299, approved for cultivation in Punjab
and North Western Plain Zone of India; molecular
marker-assisted pyramiding of bacterial blight resis-
tance genes Xa5, Xa21, and xal3 and the green revolu-
tion semidwarfing gene sdl in Dehraduni basmati
and development of elite wheat lines biofortified for
grain iron and zinc through wide hybridization with
related non-progenitor wild Aegilops species and
molecular breeding. Dr.Dhaliwal made a significant
contribution to the development of life and epidemiol-
ogy cycle of Tilletia indica fungus, the causal organ-
ism of Karnal bunt disease of wheat, and development
of Karnal bunt-tolerant wheat cultivars. He has been
the Member/Chairperson of several task forces and
committees in the Department of Biotechnology,
Ministry of Science and Technology, Government of
India, New Delhi, and ICAR, New Delhi. Currently,
he is a Member of an expert committee of DBT for
DBT-UDSC  Partnership Centre on  Genetic
Manipulation of Crop Plants at UDSC, New Delhi
(2016 onwards), SAC of NABI (DBT), and RAC of

ITAB, Ranchi, ICAR.
'x_)L[r Mo’é‘uté

H. S. Dhaliwal

Baru Sahib, Himachal Pradesh, India



Preface

Microbes are ubiquitous in nature. The vast microbial diversity has been found to
associate with the plant systems. The plant-microbe interactions are the key strategy
to colonize and establish in a variety of diverse habitats. Plant microbiomes play an
important role in the growth and development of plants and in the health of soil.
These microbiomes with plant growth-promoting (PGP) attributes have emerged as
an important and promising tool for sustainable agriculture. PGP microbes promote
plant growth directly or indirectly by releasing plant growth regulators; solubiliza-
tion of phosphorus, potassium, and zinc; biological nitrogen fixation; or producing
siderophores, ammonia, HCN, and other secondary metabolites which are antago-
nistic against pathogenic microbes. These PGP microbes could be used as biofertil-
izers/bioinoculants in place of chemical fertilizers for sustainable agriculture. The
present book, Advances in Plant Microbiome and Sustainable Agriculture:
Functional Annotation and Future Challenges, covers biodiversity of plant micro-
biomes and their functional attributes for plant growth promotion under the natural
as well as the abiotic stress environmental conditions. It will be immensely useful
to biological sciences, especially to microbiologists, microbial biotechnologists,
biochemists, researchers, and scientists of microbial and plant biotechnology, as
well as to the faculty, researchers, and students associated with microbiology, bio-
technology, agriculture, molecular biology, environmental biology, and related sub-
jects. We are honored that the leading scientists who have extensive, in-depth
experience and expertise in plant-microbe interaction and microbial biotechnology
took the time and effort to develop these outstanding chapters. Each chapter is writ-
ten by internationally recognized researchers/scientists, providing readers an up-to-
date and detailed account of the microbial biotechnology and innumerable
agricultural applications of plant microbiomes.

Sirmour, Himachal Pradesh, India Ajar Nath Yadav
Isfahan, Iran Ali Asghar Rastegari
Mau, Uttar Pradesh, India Neelam Yadav

Sirmour, Himachal Pradesh, India Divjot Kour
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Chapter 1

Phosphorus Solubilization

and Mobilization: Mechanisms, Current
Developments, and Future Challenge

Dhavalkumar Patel and Dweipayan Goswami

Abstract Plants require nutrients for their proper growth and development. After
nitrogen phosphate is the second significant element required for plants. Phosphorus
is commonly found in form of polyprotic phosphoric acid (H;PO,); however, phos-
phorus intake is naturally in the form of H,PO~*. The complete phosphorus conver-
sion movements are mineralization and immobilization, weathering, and
precipitation besides adsorption and desorption. Organic phosphate is liberated in
soil environment by three groups of enzymes, while inorganic phosphate mineral-
ization is achieved by microbial species. The solubilization of phosphate can be
elaborated by acid production theory and proton and enzyme theory. The bioformu-
lations of potent phosphorus-solubilizing microbes are used to stimulate the acces-
sibility of phosphate to plant roots. Once potent strain is screened, the metabolic
flux of that strain can be improvised, and more bioformulations can be prepared.
Several phosphate-solubilizing microbial strains have already been commercialized
as formulated products and sold as biofertilizer. However, the use of the biofertilizer
is still insufficient. Despite of extensive research in past few decades, a cooperation
of basic and applied approaches is still required to reveal hidden potentials of phos-
phate solubilizers which may not have documented until now.

Keywords Phosphate solubilization - Phosphate mobilization - Microbial strains -
Bioformulations - Biofertilizer
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1.1 Introduction

Microbes are involved in vital functions of the soil and interact with plant roots and
aerial parts of plants making several endophytic and non-endophytic associations.
Nutrients acquisition by roots from soil is accomplished by the exchange of cations,
in which root hairs propel hydrogen ions (H*) keen on the surrounding environment
passing through the proton pumps (Puga et al. 2015). Hydrogen ions which are
formed causes shift in cations that are bonded to soil particles which are anionic in
nature and makes the accessibility of the cations that can be easily taken up by the
roots. Stomata in the leaves open and absorb carbon dioxide and in return exorcize
oxygen. Here carbon dioxide serves as the source of carbon that is required in pho-
tosynthesis (Sakimoto et al. 2017). Nitrogen is a chief component of several vital
plant constituents. After nitrogen, phosphate is the second significant element
required for plants (Razaq et al. 2017).

Identical to nitrogen, phosphorus is tangled with many dynamic plant processes.
In the interior of plant, phosphate is bonded chiefly as an essential factor of the
nucleic acids, i.e., deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), in
addition to an integral of fatty phospholipids, which are significant in development
of membrane and for its functioning (Van-Berkum and Bohlool 1980). Both inor-
ganic and organic forms of phosphate are freely translocated inside the plant. The
transfer of energy, i.e., adenosine triphosphate (ATP), in the plant cell is critically
reliant on phosphorus. Overall with living individual, phosphorus is an element of
the ATP, which is of an immediate routine in all metabolisms that impose energy by
the cells (Meyrat and Von-Ballmoos 2019). Activity of various enzymes can be
modified by phosphorus, i.e., by phosphorylation, and it can also be secondhand for
cell signaling. Phosphorus is intense at the most vigorously emergent points of a
plant and stockpiled within seeds in expectancy of their germination (Roy and Saha
2018; Yadav et al. 2018).

Phosphorus is utmost present in the form of polyprotic phosphoric acid (H;PO,)
from the soil; nevertheless, phosphorus is utilized most readily in H,PO™ form.
Phosphorus is not accessible to crops in adequate amount from the soils since it’s
discharging is very slow from insoluble phosphates; besides, it is rapidly fixed yet
again (Khan et al. 2019; Kaur et al. 2020; Singh et al. 2020). Under utmost environ-
mental circumstances, phosphate is the element which confines the growth as of this
compression and owing to its supplementary requirement by plants and microor-
ganisms. Plants’ phosphur requirement can be intensified by mutualism with mycor-
rhiza (Yang et al. 2018). Penetrating reddening in leaves (owing to lack of
chlorophyll) or green coloration in plant are the characterized symptoms of phos-
phorus deficiency. In extreme conditions the leaves become denatured and illus-
trated as dead leaves. Sporadically, the leaves possibly will seem purple due to an
accretion of anthocyanin. Mature leaves will demonstrate the primary signs of defi-
ciency as phosphorus are mobile nutrient (Criado et al. 2017).
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Phosphorus deficit can yield symptoms analogous to those of nitrogen deficit;
however, as renowned by Russel, “Phosphate deficiency diverges from nitrogen
deficiency in being tremendously problematic to identify, in addition crops can be
misery from life-threatening starvation deprived of there being any apparent signs
that lack of phosphate is the source” (Carstensen et al. 2018, 2019).

1.2 Sources of Phosphate in Soil

Phosphorus occurs in various diverse forms in soil. Aimed at applied purposes, it
can be grouped into four overall forms: (1) inorganic phosphorus, the only form
which is available to plant; besides three other forms that are not available to plant
are (2) organic phosphorus, (3) adsorbed phosphorus, and (4) mineral phosphorus
(Zemunik et al. 2015: Nottingham et al. 2015). Figure 1.1 displays all phosphorus
forms as they flow in soil. The overall phosphorus conversion progressions are min-
eralization along with immobilization, weathering, and precipitation besides adsorp-
tion as well as desorption. Weathering, desorption, and mineralization augments
plant accessible phosphorus. Immobilization, adsorption, and precipitation decline
plant accessible phosphorus (Menezes-Blackburn et al. 2017; Yadav 2017; Yadav
et al. 2020).

Manure  Fertilizer Crop-Residue  Runoff

Soil

ayeydn doxp

Adsorbed P Adsorption
(Inorganic) Desorption

Immobilization Microbial P
—

Mineralization (Organic)

1

Precipitation
Suuapeap

Mineral P

Fig. 1.1 Display the elementary phosphorus cycle in soil
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1.2.1 Mineralization and Immobilization

Microbial alteration of organic phosphorus to the ionic forms, H,PO,~ or HPO, 2, is
known as mineralization (Kour et al. 2019a). Phosphorus forms which are plant
accessible are identified as orthophosphates. Immobilization ensues when these
phyto-accessible phosphorus forms are expended by microbes, whirling the phos-
phorus to the organic phosphorus forms that are not accessible to plants. The bacte-
riological phosphorus will turn out to be accessible over spell as the microbes perish
(Yadav et al. 2015). Upholding soil organic stuff intensities is an imperative in phos-
phorus managing. This progression diminishes the necessity for fertilizer practice
plus the peril of runoff in addition leaching may be the outcome from supplemen-
tary phosphorus (Bhatti et al. 2017; Kour et al. 2020b; Rana et al. 2020b).

1.2.2 Weathering and Precipitation

Farm soils indeed comprise phosphorus minerals that are weathered in excess of
extensive eras of interval and deliberately make accessible to the plants. Phosphorus
can turn out to be inaccessible over precipitation, that take place if plant accessible
inorganic phosphorus retorts with dissolved iron, aluminum, manganese (in lower
pH soils), or calcium (in higher pH soils) to formulate phosphate minerals (Stockdale
et al. 2016).

1.2.3 Adsorption and Desorption

The biochemical binding of plant accessible phosphorus to soil particles is called
adsorption, which later become inaccessible to plants while desorption is the proc-
lamation of adsorbed phosphorus as of its bounded form into the soil environment
(Fink et al. 2016). Adsorption (or “fixing”) happens rapidly although desorption is
generally a sluggish progression. Adsorption fluctuates commencing precipitation
as adsorption is a reversible chemical requisite of phosphorus to the particles of soil
whereas precipitation take in an additional perpetual alteration in the chemical
assets of the phosphorus as it is detached from the soil environment. Soils that con-
tains high amount of aluminum and/or iron are likely to adsorb extra phosphorus
than normal soils (Moran-Salazar et al. 2016). Phosphorus is available in most plant
accessible form as soon as the pH of soil gets little acidic. When the pH gets high,
phosphorus is precipitated with calcium. As the pH gets low, phosphorus inclines to
be sobbed to iron and aluminum amalgams in to the surrounding. All soil contains
a supreme quantity of phosphorus which can be adsorbed. Phosphorus can also be
lost to the surroundings over leaching and/or runoff upsurge with phosphorus inun-
dation level. Precise fertilizer settlement can decline phosphorus desorption or
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adsorption effects by abating phosphorus interaction with soil plus segregating
phosphorus into a minor zone (Lynch et al. 2017).

1.2.4 Leaching

The elimination of dissolved phosphorus from soil by perpendicular water crusade is
known as leaching. Leaching is an apprehension in comparatively great phosphorus
soils (neighboring or at phosphorus permeation), exclusively wherever privileged
flow or uninterrupted influences by tile plumbing be existent (Madiba et al. 2016).

1.2.5 Runoff

Runoff, the foremost reason of phosphorus forfeiture from farms soil. Water trans-
mits away soil-bound particulate phosphorus in battered dregs, over and above dis-
solved phosphorus from fertilizers and pragmatic manure. Wearing away of soil
control practices decline the phosphorus losses by means of decelerating water flow
over the surface of soil besides cumulative infiltration (Lippmann and
Schlesinger 2017).

1.3 Process of Solubilization

1.3.1 Organic Phosphate Solubilization

Organic phosphate solubilization is often known as organic phosphorus mineraliza-
tion; also it ensues in soil surrounding at the outflow of animals and plant leftovers
that hold huge sum of compounds which contain organic phosphorus. The putrefac-
tion of organic substance in soil environment is processed by the exploit of abundant
saprophytes that yield the proclamation of radical orthophosphate from the struc-
tural carbon molecule (Liste 2003). The organophosphates be able to correspond-
ingly grieve a course of mineralization once fatalities by biodegradation. The
mineralization of phosphorus (organic) by microbes is strappingly inclined by sur-
rounding strictures; in actual fact, sensible alkalinity string pulls organic phospho-
rus mineralization. Degradability of the organic phosphorous amalgams be
contingent principally on the physicochemical and biochemical assets of their
molecular structure, e.g., phospholipids, sugar phosphates, and nucleic acids are
straight forwardly fragmented; nevertheless polyphosphates, phosphonates, and
phytic acid are disintegrated extra sluggishly (Turner et al. 2006: Kruse et al. 2015;
Yadav 2019).
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Phosphorus possibly could be unconfined from organic amalgams in soil envi-
ronment by mainly three groups of enzymes: first is nonspecific phosphatases that
accomplish dephosphorylation of phospho-ester phosphor anhydride bonds in
organic stuff, second is phytases that precisely cause phosphorus discharge from
phytic acid, and finally phosphonatases and C-P lyases, enzymes that achieve car-
bon—phosphorus cleavage in organophosphonates (Gong et al. 2018; Lusk et al.
2017; Kour et al. 2020c; Rastegari et al. 2020a). The chief commotion apparently
resembles to the reactions of phytases and acid phosphatases for instance their sub-
strates predominant presence in the soil (Zhang et al. 2018).

1.3.2 Inorganic Phosphate Mineralization

Quite a few data reports have recommended the capability of diverse microbial spe-
cies to solubilize insoluble inorganic phosphate amalgams, for example, dicalcium
phosphate, tricalcium phosphate, rock phosphate, and hydroxyapatite. About 65%
of entirely arable farm soils have alkaline pH, so that maximum mineral phosphorus
is in the formula of low-slung soluble calcium phosphates (CaPs) (Purushotham
et al. 2017). Microbes indispensably assimilate phosphorus by means of membrane
transport; consequently suspension of CaPs to Pi (H,PO,) is well-thought-out cru-
cial to the overall phosphorus cycle. Assessment of trials from these soils through-
out the ecosphere has revealed that, usually, the direct oxidation pathway delivers
the biochemical root for extremely effective solubilization of phosphate in Gram-
negative bacteria through dissemination of the robust organic acids formed in the
periplasm into the head-to-head soil environment (Kahlon 2016).

Consequently, the quinoprotein glucose dehydrogenase (PQQGDH) possibly
will reveal a crucial part in nutritional ecophysiology of soil microflora mainly bac-
teria. MPS bacteria possibly will be rummage-sale for industrial down processing of
rock phosphate minerals (a replaced fluorapatite) otherwise even intended for
straight inoculation as a “biofertilizer” in the soils equivalent to bacteria used for
nitrogen fixation. Mutually the ecological and agronomic characteristics of the
direct oxidation interceded MPS trait (Ganeshamurthy et al. 2015). The bacterial
genera reported to solubilize inorganic phosphate are Pseudomonas, Rhizobium,
Burkholderia, Bacillus, Achromobacter, Agrobacterium, Micrococcus, Erwinia,
and Flavobacterium (Kudoyarova et al. 2017; Verma et al. 2019; Yadav et al. 2017a).

1.3.3 Acid Production Theory

Bestowing to current theory, the progression by PSM of phosphate solubilization is
owing to the release of organic acids that is convoyed by the lowering the pH (i.e.,
acidification) of the environment. The study of culture filtrates obtained of PSMs
has revealed the occurrence of a few of organic acids such as glyoxalic, malic,
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succinic, tartaric, fumaric, oxalic, alpha-keto butyric, citric, and 2-ketogluconic in
addition to gluconic acid (Kumar et al. 2016: Hamim et al. 2019)

The volume and nature of the organic acid forms speckles with the microbes. The
organic acids unconfined in the culture scum retort by means of the insoluble phos-
phate. The quantity of soluble phosphate unconfined hinge on the asset and form of
acid. Moreover, aliphatic acids are tending to be extra operative in phosphorus solu-
bilization compared to citric acids and phenolic acids (Menezes-Blackburn et al.
2016). Fumaric acid has the chief phosphorus-solubilizing aptitude. Dibasic and
tribasic acids are also supplementary active than monobasic acids in phosphorus
solubilization. Existence of dibasic acids and tribasic acids exhibit an ancillary
effect that give an impression owing to capability of these acids to form unionized
connotation amalgams with calcium in so doing removes calcium from the environ-
ment and cumulative soluble phosphate meditation (Edelson et al. 2016).

Organic acids subsidize to the dropping of environment pH as these acids detach
in a pH hooked one equipoise, keen on their corresponding anions and protons.
Organic acids shield environment pH besides will linger to separate as protons
expended by the suspension reaction (Meers et al. 2008; Verma et al. 2017).
Correspondingly, microbes frequently disseminate organic acids by means of anions.
Above and beyond organic acids, the inorganic acids for instance sulfuric acid and
nitric acid are also formed by Thiobacillus through the oxidation of inorganic com-
pounds of sulfur and nitrogenous by the nitrifying bacteria that retort with calcium
phosphate in addition alter them into resolvable forms (Kumar et al. 2019; Rajawat
et al. 2020; Sahu et al. 2018). In Gram-negative bacteria, the most competent min-
eral phosphate solubilization (MPS) phenotype grades from extracellular oxidation
of glucose to gluconic acid through the enzyme quinoprotein glucose dehydroge-
nase. The subsequent pH alteration and decline potential are believed to be account-
able for the suspension of phosphate in the microbial medium (Bharti et al. 2017).

Glucose dehydrogenase (GDH) enzyme carries the gluconic acid biosynthesis
with the help of cofactor, i.e., pyrroloquinoline quinone (PQQ). Erwinia herbicola
is well known for mineral phosphate solubilization, and a gene was cloned by
Goldstein and Liu (1987). The manifestation of this gene permitted the yield of
gluconic acid; besides mineral phosphate solubilization commotion in E.coli HB101
was also studied (Yu et al. 2019). Gluconic acid is one of the prime organic acids
which are produced through Pseudomonas sp., Pseudomonas cepacia, Erwinia her-
bicola and Rhizobium leguminosarum, Rhizobium meliloti, and Bacillus firmus
yield perceptible sum of 2-ketogluconic acid (El-Badry et al. 2016; Kour et al.
2020d; Rana et al. 2020c; Unden et al. 2017). Khanghahi et al. (2018) testified
microbial solubilization for insoluble zinc oxide in addition to zinc phosphate, arbi-
trated by 2-ketogluconic and gluconic acid produced. Additional organic acids, such
as isovaleric, lactic, isobutyric, glycolic, acetic, oxalic, succinic, and malonic acids,
are also produced by various phosphate-solubilizing bacteria (Kaur et al. 2016;
Rawat et al. 2018).

Goebel and Krieg reported that A. lipoferum or else A. brasilense when cultivated
on fructose (a mutual source of carbon) gluconic acid was not bent all through the
growth of and was only formed during development of glucose. Valdehuesa et al.
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(2018) testified that gluconic acid can be produced by A. brasilense when it is full-
grown on fructose (in vitro) and modified with glucose which serves as an inducer
to produce gluconic acid and possesses phosphate-solubilizing aptitude (in vitro).

For the formation of gluconic acid, glucose serves as the precursor which has
been recommended for phosphate solubilization by these strains is arbitrated by
gluconic acid or else glucose metabolism. Phosphate solubilization is achieved by
heralded exposure of gluconic acid to the environment, possibly even low-slung
amount of the acid (even underneath the for HPLC detection) in progress to dissolve
parsimoniously soluble phosphate. On contrary, ingesting of the gluconic acid by
increasing cells could similarly take place. In A. brasilense, after incubation for 48 h
there is a drop in the amount of soluble phosphate and that can be enlightened as
auto ingesting of soluble phosphate by rising of bacterial inhabitants (Sabalpara and
Mahatma 2019).

The concluding may consequence from gluconic acid production with NH*
uptake that possibly will release protons to the environment. In the quicker cultiva-
tion of A. brasilense strains, possibly the cells cast off supplementary NO=* after the
incubation period is over, thereby liberating OH™, that gives justification for the rise
in pHv (48 h later). The metabolic machinery of gluconic acid formation remains
unrevealed (Madhaiyan et al. 2013)

The phosphate-solubilizing aptitude was considerably higher of gluconic acid as
related to 2-ketogluconic acid in the dregs of CC-Al74 strain culture. The course of
chelation and acidification by 2-ketogluconic acid and gluconic acid thaws trical-
cium phosphate (TCP) in medium containing culture. The chelation characteristics
of gluconic acid empower it towards formulating insoluble composite. Insoluble
metal possibly will be solubilized via protons, through Ca*™ delivering phosphates
(Lin et al. 2006: Joshi et al. 2014). Protons are driven to the exterior environment by
several membrane associated pumps that arrange ionic gradients intended for the
procurement of nutrients. Furthermore, organic acids give rise to protons which are
released and also possess an organic acid anion that are generally accomplished of
forming an intricate with metal cation (Fasim et al. 2002).

The yielding of gluconic acid or citric acid also the extrusion of H* up shot as of
membrane transport mechanisms is described as probable progression for disband-
ing rock phosphate from aluminum phosphate, hydroxyapatite, and iron phosphate
by Penicillium rugulosum (Walia et al. 2017). These progressions are inclined by
the springs of the phosphate, carbon, and nitrogen. If nitrate is the solitary nitrogen
source for production of citric acid, then the consequential volume of phosphate
dissolution is augmented. Since citric acid is not solitary one to be involved in the
phosphate dissolutions but then again in iron dissolution along with other metals as
of minerals, the method of nitrate accretion in soils possibly will show an impera-
tive part for the rock weathering all together (Giiler et al. 2017). The type of acid
and its nature production is mostly reliant on the source of carbon available. Overall,
oxalic acid, citric acid, and gluconic acid are biotite, phyllosilicates, and feldspar
stout-solubilizing agents (Kour et al. 2020a; Rana et al. 2020a; Sindhu et al. 2016).
Some PSMs (phosphate-solubilizing microorganisms) that produce different acids
are précised in Table 1.1.
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Table 1.1 Organic acid productions by different phosphate-solubilizing microorganisms

Phosphate-solubilizing

microorganisms Organic acid production

Acetobacter sp. Gluconic acid

Aspergillus flavus Gluconic, fumaric, succinic, acetic, oxalic, citric

Penicillium sp. and Aspergillus | Gluconic acid

niger

Burkholderia cepacia Gluconic acid

Burkholderia sp.,

Serratia sp., Ralstonia sp., Gluconic acid

Pantoea sp.

Citrobacter sp. Gluconic acid

Enterobacter sp. Gluconic, succinic, acetic, glutamic, oxaloacetic, pyruvic,
malic, fumaric, alpha-ketoglutaric

Escherichia freundii Lactic acid

Penicillium bilaii Citric and oxalic acid

Penicillium regulosum Citric and gluconic acid

Pseudomonas aeruginosa Gluconic acid and 2-ketogluconic acid

Pseudomonas putida Gluconic acid and 2-ketogluconic acid

Pseudomonas fluorescens Citric acid and gluconic acid

Pseudomonas striata Tartaric and citric acid

Rhizobium leguminosarum 2-ketogluconic acid

Serratia marcescens Gluconic acid

Sinorhizobium meliloti Malic, succinic and fumaric

Stenotrophomonas maltophilia | Gluconic acid

1.3.4 Proton and Enzyme Theory

Enzymes of esterase type are identified to be tangled in delivering phosphorus com-
mencing organic phosphatic amalgams. PSMs are similarly identified to yield phos-
phatase enzyme accompanied by acids that roots the solubilization of phosphate in
marine environs (Eida et al. 2017). Din et al. (2019) conveyed that four proficient
phosphates-solubilizing microbes, Penicillium simplicissimum, Aspergillus niger,
Penicillium aurantiogriseum, and Pseudomonas sp., and out of these four strains
only A. niger possibly yield organic acids. Two utmost plausible elucidations for
this are as below.

Solubilization deprived of production of acid is owing to the discharge of protons
supplementing respiration otherwise ammonium assimilation (Kishore et al. 2015:
Hajiboland 2018). Superfluous solubilization take place with ammonium salts than
by nitrate salts as per the accessibility of nitrogen source in the medium (Lowrey
et al. 2016: Kashyap et al. 2017). Above and beyond these two mechanisms, the
assembly of chelating elements CO, H,S, siderophores, mineral acids, and biologi-
cally active phytohormone like gibberellins, indole acetic acids, and cytokinins is as
well associated with solubilization of phosphate. Chelation implicates the
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development of at least two coordinate bonds among an anionic and/or polar mol-
ecule with cations, occasioning in a ring structure moiety. Organic acids (mainly
anions), using oxygen that contain carboxyl and hydroxyl groups, devour the capa-
bility to form firm complexes thru cations such as Fe**, Fe?*, Ca**, and AI** which
are frequently bound to phosphate in feebly forms (Adusei-Gyamfi et al. 2019).

Phosphate dissolution in soil environment is an actually a vital process for plant’s
overall growth and development. More than a few researches have revealed that the
phosphate intake by plants can be evidently amplified by mycorrhizal fungi (Zhang
et al. 2019) or inoculation of soil with species are proficient in free phosphate solu-
bilizing, for instance, P. bilaii (Mukherjee 2017).

1.4 Phosphate Solubilization Bioformulation

Soil microbes are associated in a series of practices that distress phosphate transfor-
mation besides addition thus stimulates the successive accessibility of phosphate to
roots of plant as free-living PSM permanently exist in soils. The inhabitants of inor-
ganic PSM are every so often little, less than even 10> CFU (colony forming unit)
per gram of soil as detected in Northern Spain’s soil (Meena et al. 2016). In soils of
four Quebec, the number of PSM are aorund 26-46% of total micro flour (Mpanga
et al. 2019). As observed with soil microbes other than PSM, the amount of them are
more significant in the rhizosphere soil compared to non-rhizosphere soil (Field
et al. 2019). However, inoculation data intended to refining phosphate in plants
nutrition comprises bacteria as well as fungi and is obtainable commercially in
Western Canada as per the phosphate inoculant JumpStart (Philom Bios, Saskatoon,
Sask.). They are traded for canola, mustard, wheat, and other legumes that comprise
Penicillium bilaii bacterial strain (http://www.philombios.ca/).

Biofertilizers improve the nutrient superiority in the soil. The foremost bases of
biofertilizers are bacteria, fungi, as well as blue-green algae (cyanobacteria). Plants
have several associations with those microbes (Rastegari et al. 2020b; Singh and
Yadav 2020). Afterward contribution by chemical fertilizers through the preceding
ten decades, farmers were pleased with the amplified harvest from the agriculture.
Nevertheless, gradually chemical fertilizers underway demonstrate their unfriendly
paraphernalia such as contaminating water basins, leaching out, terminating normal
flora and fauna which include approachable organisms, creating vulnerability for
crops to the occurrence of diseases, tumbling the fertility of soil, and thus triggering
irretrievable impairment to the ecosystem (Kour et al. 2019b; Sohail et al. 2019).

The principle behind phosphate-solubilizing bioformulation is that microbes
owe countless capabilities that could be oppressed for healthier agriculture per-
forms. Some benefit in brawl diseases, while others have the aptitude to reduce soil
multifaceted compounds into meeker forms that are employed by crops for their
overall growth and development. They are tremendously advantageous in elevating
the soil by fabricating organic nutrients into the soil. To transform insoluble phos-
phates to available form to the plants, resembling orthophosphate, is an imperative
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attribute for a PGPB for accumulative yields of plant (Rodriguez et al. 2006).
Microbes devising the capacity to dissolve substantial sum of phosphates is fre-
quent. They are even now used as marketable biofertilizers for enhancements of
agricultural soil. The practice of microbial harvests has positive recompenses over
conservative chemicals as they are measured harmless than various chemicals that
are in routine now; they don’t get accrue in the food-chain; the marked organisms
rarely progress resistance as it stands when chemical proxies are used; and biofertil-
izing proxies are carelessly injurious to ecological progressions or the environs
(Nayak et al. 2017: Kumar and Yaashikaa 2018).

1.5 Metabolic Flux of Phosphate Solubilizers

Utmost phosphate-solubilizing bacteria (PSB), discharge phosphate from frugally
soluble mineral phosphates (counting the Pseudomonas spp.) through creating in
elevation of gluconic acid as of glucose that is available extracellularly, in reaction
which is metabolized thru periplasmic glucose dehydrogenase, a crucial constituent
of glucose catabolism of pseudomonads. Buch et al. (2008) explored the alterations
in the glucose breakdown of gluconic acid yielding PSB pseudomonads and low
gluconic acid yielding/non-PSB strains; more than a few parameters affecting to
growth and glucose use under phosphate adequate and phosphate scarce environ-
ments were scrutinized for the PSB isolate Pseudomonas aeruginosa P4 (yielding
46 mM gluconic acid and liberating 437 mM phosphate) besides non-PSB P. fluore-
scens 13525. Their consequences showed fascinating variances in glucose channel-
ing to gluconate and promote catabolic end products like acetate and pyruvate
regarding phosphate grade for both the strains. Nevertheless, P. aeruginosa P4 (PSB
strain), to one side from demonstrating healthier growth under equally little and
more attentiveness of inorganic phosphorous, fluctuated from P. fluorescens 13525 in
its capability to hoard gluconate under phosphate-solubilizing conditions.

These amendments in cultivation, glucose consumption along with acid excre-
tion, were revealed to be interrelated with enzyme activities of glucose-6-phosphate
dehydrogenase, glucose dehydrogenase, and pyruvate carboxylase. The aptitude to
move glucose to a direct oxidative pathway beneath phosphate deficit is ventured to
trigger the discrepancy gluconic acid-mediated phosphate-solubilizing capability
detected among pseudomonads. Both their Pseudomonas strains premeditated
diverged in the phosphorylative towards the direct oxidative pathway the minute
phosphate were restrictive. On the other hand, the direct oxidative pathway prepon-
derated in both of the strains under phosphate constraint surroundings. Such research
elucidates the metabolic tractability associated to gluconic acid excretion in
phosphate-solubilizing pseudomonads that may perhaps enable metabolic engineer-
ing tactics for improving the phosphate-solubilizing flux of Pseudomonas strains
(Stark et al. 2015).
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1.6 Commercialization, Future Scope, and Limitation

Several phosphate-solubilizing microbial strains are commercially offered in for-
mulated products that are cast off as biofertilizers (Goswami et al. 2016). Fungal
phosphate solubilizers are generally set as fine particles formulation, coarse powder
in addition fluid-bed pellets by means of using binder, i.e., dextrin. Alginate gel are
used in formulating fungal and bacterial bioformulations (Miller et al. 2016; Yadav
et al. 2017b, c¢). Formulation of the Gram-positive bacteria (sporulating) is by desic-
cation as they are impervious to high temperature castoff in the process. Gram-
positive microbes hold heat-resistant spores which are browbeaten to frame steady
and parched powder products (Elisashvili et al. 2018). Substitute to solid bioformu-
lation (powdered) is the microbial suspension in oil, where the aim is to eliminate
oxygen that averts respiration (Goswami et al. 2016). Accumulation of silica gel to
oil bioformulation improves the shelf life such as it is testified to mutate conidia
(Arora et al. 2017).

Despite several Gram-negative bacterial strains such as Pseudomonas that are
known to own competent phosphate-solubilizing aptitude, they are problematic to
formulate for the reason that they don’t bear spores, their bioformulations have brief
shelf life, and besides the bacteria are straight forwardly slain as soon as the formu-
lations are dehydrated (Molina-Santiago et al. 2018). Commercialization of
phosphate-solubilizing bioformulation is at a flourishing state, and quite a few
industries are commercializing fungal and bacterial stains as biofertilizers; some
examples are represented here like bioformulation of Fusarium oxysporum is com-
mercialized by Biofox that is functioning in contrast to Fusarium moniliforme
(www.biofox.com). Bacterial bioformulation of Pseudomonas aureofaciens com-
mercialized by Ecosoil that is functioning in contradiction of anthracnose, dollar
spot, Pythium aphanidermatum and Microdochium patch (pink snow mold) (www.
ecosoil.com). Streptomyces griseoviridis strain K61 has been commercially formu-
lated by AgBio which is branded to constrain Fusarium spp., Alternaria brassicic-
ola, Botrytis spp., Phomopsis spp., Pythium spp., and Phytophthora spp. that is the
source of seed rot, root rot, stem rot, and wane ailment of vegetable and ornamental
crops (http://www.agbio-inc.com). Biofertilizer encompassing spores of Bacillus
licheniformis SB3086 produced by novozymes act as phosphate solubilizer; besides
it is also effective against dollar spot sickness in plants.

Commercial Coniothyrium minitans bioformulation by BIOVED, Ltd., Hungary,
is operational in conquering Sclerotinia minor and Sclerotinia sclerotiorum that are
phytopathogen-stainting cucumber, capsicum, tomato, lettuce, and ornamental
flowers. Commercial biocontrol “EcoGuard,” promoted as a concerted suspension
of Bacillus licheniformis SB3086 spores has been establish active as a natural inhib-
itor of a variability of agronomically significant fungal ailments predominantly
anthracnose and dollar spot (https://www.harrells.com/uploads/products/labels/
ecogua.pdf). Other phosphate-solubilizing bioformulation products are concise in
Table 1.2.
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https://www.harrells.com/uploads/products/labels/ecogua.pdf
https://www.harrells.com/uploads/products/labels/ecogua.pdf
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Table 1.2 List of commercially available phosphate-solubilizing bioformulation inoculants

of India

Trade name

Microbes

Suitable for

Gmax Phosphomax,
KisanPSB, Astha PSB

Bacillus megaterium,
Pseudomonas striata

All crops

Gmax Tricon, SKS TV

Trichoderma viride

All season all crops

Gmax FYTON, Astha

Pseudomonas fluorescens

Tomatoes, chili, cut flowers, orchards,

PF, SKSPF vineyards ornamentals, potato,
cucumbers, and eggplant
GmaxSugarmax Gluconacetobacter Sugar-containing plants like sugarcane

diazotrophicus

and sweet sorghum and not suitable
for other crops

UPAJ-K, Eco-Potash Bacillus mucilaginosus All crops

UPAJ- Z, BioZinc, Bacillus spp., Pseudomonas | All crops

zinc-cure spp., Xanthomonas spp.

AgriVAM, bio e rich Glomus sp. All crops

Novozymes Bacillus licheniformis All crops

Ecosoil Pseudomonas aureofaciens Cucumber, tomato, wheat, and barley
Anubhav liquid Bacillus coagulans All crops

bioformulation

SKS VL Verticillium lecanii All crops

1.7 Conclusion and Future Prospective

Notwithstanding the midpoint of curiosity for many research centers, agricultural
departments, and industrial producer, the practice of biofertilizer is inadequate.
Their production faces the encounter of airing and formulation development for the
optimal outcome. On the customer’s side, farmers are not even gratified with the
erratic eminence of biofertilizers leading to a dearth of acceptance. Inclusive the
unfortunate performance of biofertilizers can be attributed to unproductive produc-
tion by assortment of strains which are prone to contrary environmental situations,
methods used for sterilization, carriers, fermentation, and contamination of the clos-
ing product owing to poor packing and transportation amenities and last but not the
least to the nonexistence of information handover to the farm producers about the
precise way of biofertilizer applications. The worldwide acceptance of biofertilizers
necessitates lessening of these gaps among their production and application, and
only then the extension of their market can be accomplished.

Regardless of such extensive research concluded the over the decades a lot of
additional exertion, mutually basic and applied, leftover to be completed to reveal
some unseen capabilities of phosphate solubilizers which possibly would have not
been recognized yet. Concentrating commercial souk of phosphate solubilizers as
biofertilizers, a lot of rigid work is still to be carried out as numerous potential phos-
phate solubilizers have been exposed by researchers and they haven’t up till now
commercialized resourcefully. For the most part, it can be alleged that researchers
have implicit the elementary mechanics of phosphate solubilization and their action;
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still more comprehensive research is to be supported to better realize how plant and
microbes intermingle, and on commercial scale, a lot of determination is still oblig-
atory to brand phosphate solubilizers an effectual auxiliary to chemical phosphate
fertilizers.
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