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The Normal Thymus

Alexander Marx

The thymus is a primary lympoid organ. It consists of epi-
thelial cells, hematopoietic cells and mesenchymal cells 
and generates T cells from immature, bone marrow-derived 
precursors. Through selection processes, the T cells 
become functional and largely tolerant toward self-anti-
gens and are of key importance for adaptive immune 
responses. Thymic failure, particularly if congenital, pre-
disposes to life- threatening infections, neoplasia, and 
autoimmune diseases [1].

1.1  Embryology

The endoderm of the third pharyngeal pouches on both sides 
of the neck gives rise to “thymic epithelial cells” (TECs). 
From week 6 of gestation onward, the solid epithelial thymus 
anlage is present. By week 7, the common thymic/parathy-
roid primordia are established. The thymic components of 
the primordia descent along the carotid artery and behind the 
lower pole of the thyroid to the pre-cardiac region where 
they fuse [2].

From week 8 onward, the differentiation of cortical and 
medullary TECs (mTECs, cTECs) begins. By week 16, cor-
tical and medullary compartments are established.

The developmentally indispensable thymic capsule and 
septae originate from neural crest-derived mesenchymal 
cells from week 7 onward [3, 4]. The earliest T cell precur-
sors are present at week 8 [2]. T cell maturation and the gen-

eration of three-dimensional thymic lobes depend on 
interactions between NOTCH1 and DLL4 on T cells and 
TECs, respectively. Early Hassall corpuscles can be recog-
nized by week 12 [5]. Mature T cells leave the thymus 
between week 14 and 16. The transcription factor FOXN1 is 
indispensable for the development of the thymus throughout 
embryonal and adult life [2]. Its defective expression elicits 
the nude phenotype and immunodeficiency in mice and 
humans [6, 7].

1.2  Normal and Ectopic Location 
of the Thymus

The normal position of the thymus is the anterosuperior 
mediastinum between the upper end of the sternum, the 
level of the fourth costal cartilage, the upper part of the 
pericardium and the pre-tracheal fascia, and the dorsal 
plain of the upper part of the sternum, costal cartilages, and 
intercostal muscles [8]. The lateral boundaries may extend 
beyond the phrenic nerves. Ectopic extensions comprise 
the cervical region up to the base of the skull, the mandi-
bles and salivary glands, the middle and posterior medias-
tinum, and the intrapericardial and pleural spaces. The 
frequency of ectopic thoracic and cervical thymic tissue 
depends on the type of workup. On the microscopic level, 
frequencies amount to 20–50% [9, 10] but only to 1% in 
routine autopsies [11].
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1.3  Macroscopy

The thymus is composed of two lobes. Their fibrous capsules 
stick together in the midline. Two upper and two lower 
“horns” can usually be recognized (Fig. 1.1). In children and 
adolescents, the cut section of the thymus resembles the cut 
surface of a lymph node. During the course of involution (see 
below) it becomes more and more yellow and is barely 
detectable in the elderly. The average thymus weight is about 
15 g at birth (range 5–25 g), reaches a maximum of around 
40 g (20–50 g) at 10–15 years of age, and declines thereafter, 
reaching 10–15 g (range 5–30 g) by age 60 [12].

1.4  Histology

Thymic lobes are composed of many lobules. During 
childhood, each lobule shows a central medullary com-
partment that is completely surrounded by an outer cor-
tical layer. From adolescence onward, the architecture 
gets progressively disturbed, and medullary areas more 
and more abut on mediastinal fat (Fig.  1.2). In a strict 
sense, the third thymic compartment, the perivascular 
space (PVS), is an extrathymic space between the con-
tinuous basal membrane of the outermost TECs of thy-
mic lobes and the basal membrane of the vessels that 
enter and leave the thymus along the septae (Fig.  1.3). 
Hematopoietic cells that enter or leave the thymus must 
cross the PVS to egress from or enter into blood vessels, 
respectively [13]. In the thymic capsule, interlobular 
septae, and medulla, efferent lymphatic vessels can be 
found [14].

Epithelial Cells Cortical and medullary TECs (cTECs 
and mTECs) show different histological features: The 
stellate- shaped cTECs are quite easily detectable due to 
their large, round nuclei with conspicuous nucleoli, 
while mTECs are hard to identify among the lympho-
cytes due to their small, oval nuclei with inconspicuous 
nucleoli (Fig.  1.4a–d). The distinction of cTECs from 
mTECs can be achieved by immunohistochemistry, 
using antibodies, e.g., to the cortex- specific proteasome 
subunit, Beta5t, and mTEC-restricted proteins such as 
CD40, Claudin-4, and the tolerance- inducing autoim-
mune regulator, AIRE [15–17] (Table  1.1; Fig.  1.5). 
AIRE-positive mTECs can develop toward Hassall 
corpuscles (HC) on downregulation of AIRE.  HC are 
onion- shaped accumulations of concentrically arranged 
squamoid epithelial cells that can show keratohyalin 
granules, lose their nuclei toward their cornified cen-
ters, and may become calcified or cystic (Fig.  1.6). In 
contrast to other TECs, HC express cytokeratin 10 and 
involucrin and fail to express HLA-DR and DP [18]. 
Since T cell maturation is necessary for HC develop-
ment, they are lacking in thymuses from patients with T 
cell developmental defects (historically called “thymic 
dysplasia”). During aging the number of HC declines 
[19]. HC have immune tolerogenic functions through 
shedding of autoantigens and their impact on the devel-
opment of regulatory T cells [20].

Fig. 1.1 Juvenile thymus following the removal of mediastinal fat with 
conspicuous upper and lower horns
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Fig. 1.2 Histology of thymuses in relation to age. (a) Thymus of a 
1-year-old child: distinct lobular architecture with well-developed cor-
tical areas (C) that completely envelope a medullary region (M); many 
small Hassall corpuscles (HC) and absence of interlobular fat are typi-
cal. (b) Thymus of a 30-year-old adult with increase of interlobular fat 

and medullary areas directly abutting on adipocytes (arrows). (c) 
Thymus of a 50-year-old adult with further loss of lymphoepithelial 
parenchyma and more severe distortion of the cortico-medullary archi-
tecture. (d) Thymus of a 70-year-old adult with near defect of cortical 
areas and paucity of lymphocytes within epithelial strands (HE, a–d)
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Fig. 1.3 Perivascular spaces (PVS) as highlighted by keratin 19 immu-
nohistochemistry in a normal thymus. (a) Light-staining PVS are 
epithelial- free spaces reaching from the perithymic fat and along the 
septae to the cortico-medullary junction (white arrows); the PVS are 
filled with lymphocytes, the majority of which are mature T cells (C, 
cortex; M, medulla; HC, Hassall corpuscle). (b) Sharp delineation 

between an epithelial-free PVS (arrow) and cortex (C) and medulla (M) 
through a continuous layer of thymic epithelial cells; the disruption of 
the layer around PVSs is a typical sequela of lymphofollicular hyper-
plasia in myasthenia gravis. (c) Small capillary vessel (red arrows) 
within a PVS (immunoperoxidase, Keratin 19, a–c)
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Fig. 1.4 Cytological features of normal cortical and medullary thymic 
epithelial cells (cTEC, mTECs). (a) cTECs with medium-sized to large 
vesicular nuclei with conspicuous nucleoli (arrows). (b) Barely visible 
mTECs (arrows) outside a Hassall corpuscle (HC) with small- to 

medium-sized nuclei and inconspicuous nucleoli. (c) Nuclei of cTEC 
highlighted by P40 staining. (d) Significantly smaller nuclei of mTEC 
outside HC highlighted by P40 immunohistochemistry (HE, a, b; 
immunoperoxidase, c, d)
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Table 1.1 Markers differentially expressed in the thymic cortex and 
medulla [31]

Cortical markers Beta5t
PRSS16
Cathepsin V
TdT∗

Medullary markers CK10
CD40
Claudin-4
AIRE
Involucrin
Desmin, titin, myogenin∗∗
CD20, CD23∗∗∗

∗on immature T cells, ∗∗in myoid cells, ∗∗∗on thymic B cells

c d

HC

Fig. 1.4 (continued)
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Fig. 1.5 Compartment-specific and largely unspecific epithelial mark-
ers in the normal thymus. (a) Expression of the thymus-specific protea-
some subunit Beta5t exclusively in thymic epithelial cells of the cortex 
(C). HC, Hassall corpuscle. (b) Nuclear expression of the autoimmune 
regulator (AIRE) exclusively in a subset of medullary thymic epithelial 

cells. (c) Expression of keratin 19 in virtually all cortical and medullary 
epithelial cells and epithelial cells surrounding perivascular spaces (∗). 
(d) P40 expression in the nuclei of almost all cortical and medullary 
epithelial cells (immunoperoxidase, a–d)
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T Cells (Thymocytes) On immunohistochemistry, the cor-
tex appears completely occupied by immature TdT+ thymo-
cytes almost all of which co-express CD1a, CD99, CD3, 
CD4, CD5, and CD8 and are negative for CD10 and CD34 
(so-called CD4/CD8 double-positive (DP) thymocytes) with 
a Ki67 index >90% (Fig. 1.7a, b). By contrast, the minor, 
CD34+ subset, CD10+ CD1a− subcapsular subset, and the 
CD4+CD8−CD3− immature single-positive (iSP) thymo-
cyte subset can only be detected by flow cytometry [21]. In 
the medulla, almost all cells show a TdT-negative phenotype 
and a low Ki67 index and belong either to the 
CD3+CD4+CD8− or CD3+CD4−CD8+ so-called “single- 
positive” (SP) T cell subsets. Cortical and medullary thymo-
cytes share expression of CD3 and CD5, with particularly 
strong CD5 expression in the medulla (Fig. 1.7c, d).

B cells normally occur only in the medulla. The majority is 
round, while a minority is “asteroid shaped” (i.e., dendritic) 
if stained for CD20 [22]. The B cell content of medullary 
areas is highly variable, but B cells are always present. The 
“asteroid subset” shows a characteristic CD20+CD23+ 
CD21− profile (Fig.  1.8). Thymic B cells can originate 
through immigration from extrathymic mature B cell sources 
(e.g., lymph nodes) or through intrathymic development from 
immature precursors [23, 24]. Thymic B cells are HLA-DR+ 
and involved in T cell tolerance through negative T cell selec-
tion and the induction of regulatory T cells [24, 25].

Macrophages and Dendritic Cells Macrophages occur in 
the cortex and medulla, while dendritic cells (DCs) are 
largely restricted to the medulla with a major focus on the 
cortico-medullary junction. Macrophages are important for 
the removal of dying thymocytes during T cell selection [18, 
26] and are CD68+ and/or CD163+ (Fig. 1.9a). The small 
and round subset is strongly HLA-DR+, while the large, 

HC

HC

HC

a

b

Fig. 1.6 Hassall corpuscle (HC) (a) HC with regressive changes and 
apoptotic cells in the medulla; inset, HC composed of vital, epidermoid 
cells with blue keratohyalin bodies; (b) HC with cystic enlargement 
containing debris; inset, typical expression of keratin 10  in the outer 
epithelial layers of a HC (HE, a, b; immunoperoxidase, keratin 10, 
inset)
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Fig. 1.5 (continued)
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Fig. 1.7 T cells in the normal thymus. (a) Restriction of immature, 
TdT-positive T cells to the cortex (C) with labelling of virtually all lym-
phoid cells. (b) High Ki67 index (>90%) of cortical thymocytes as 
compared to few Ki67-positive cells in the medulla (M). (c) CD3 

expression on immature and mature T cells in both compartments.  
(d) Particularly strong expression of CD5 on T cells in the medulla (M) 
(immunoperoxidase, a–d)
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Fig. 1.8 B cells in the normal thymus. (a) Mainly round CD20+ B 
cells in the thymic medulla (M) with apparent “spillover” of single B 
cells into the cortex (arrows). (b) The “asteroid” B cell subset that is 
generally blurred by the overwhelming majority of round B cells on 

CD20 immunohistochemistry can be highlighted by CD23 stains; 
CD23+ B cells must be distinguished from CD23+ follicular dendritic 
cells that form networks in thymic follicular hyperplasia (immunoper-
oxidase, a, b)
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stellate-shaped “starry sky macrophages” mainly of the cor-
tex may contain apoptotic thymocytes and are HLA-DRlow 
[27]. DCs can arise from intrathymic precursors or enter the 
thymus as mature DCs from outside [28]. They are strongly 
HLA-DR+ and promote negative T cell selection and the 
induction of regulatory T cells [20]. Conventional DCs 
express CD11c (Fig. 1.9b) and may be AIRE+ [29], while 
the rare plasmacytoid DCs express CD123.

 Myoid Cells Thymic myoid cells (TMCs) are fetal-type 
striated muscle cells of unknown origin in the medulla [30]. 
They express contractile proteins, including titin [31]. When 
stained for desmin, they resemble round, immature myo-
blasts or elongated myotubes (Fig. 1.10). Because they are 
non-innervated cells, TMCs express fetal and adult skeletal 

muscle-type nicotinic acetylcholine receptors that likely play 
a role in the pathogenesis of myasthenia gravis [32, 33]. The 
normal function of TMCs is unclear, but it has been specu-
lated that they release autoantigens and, thereby, endow DCs 
with the potential to induce muscle-specific T cell tolerance 
through negative selection [34].

1.5  Thymic Function

The thymus has three key functions: i) to recruit hematopoi-
etic precursor cells from the blood into the thymus and drive 
their multistep maturation and expansion (Fig. 1.11) [21, 35], 
leading to a diverse repertoire of α/βT cells that can recognize 
millions of antigenic peptides if they are presented by anti-
gen-presenting cells (APCs) on class I and II major histocom-
patibility (MHC) molecules (“positive selection”); ii) to 
eliminate from the functional T cells the subset of autoreac-
tive T cells (“negative selection”) through the action of 
mTECs, DCs, and thymic B cells mainly in the medulla [29, 
36, 37]; and iii) to generate immunosuppressive CD4+CD25+ 
FOXP3+ regulatory T cells (Tregs) that are indispensable for 
keeping autoreactive T cells in check that inevitably escape 
from negative selection and reach the peripheral immune sys-
tem [38]. An essential factor for negative selection is the tran-
scriptional “autoimmune regulator,” AIRE, that drives the 
expression of thousands of self-antigens in a subset of mTECs 
and endows them with the capacity to kill T cells if they show 
high affinity for MHC-presented self-peptides [39]. The thy-
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Fig. 1.9 Macrophages and dendritic cells in the normal thymus. (a) 
Occurrence of CD68-positive macrophages throughout the thymus, 
including a Hassall corpuscle (HC); greatest frequency in the cortex 
(C); CD163-positive macrophages show a similar distribution and 
abundance (not shown). (b) CD11c-positive dendritic cells are largely 
restricted to the medulla, including the cortico-medullary junction; 
minor “spillover” CD11c-positive cells to the cortex (C)

HC

Fig. 1.10 Thymic myoid cells (TMCs) in the normal thymus: occur-
rence of desmin-positive TMCs exclusively in the medulla (here abut-
ting on fat cells, right upper part); round, rhabdomyoblast-like TMCs 
(white arrows) and more elongated, myotube-like TMCs (black arrows) 
with vague cross-striations are present in the vicinity of a Hassall cor-
puscle (HC) (immunoperoxidase, desmin)
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mus is also important for the generation of γ/δ T cells [40] 
and NKT cells [41].

1.6  Thymic Involution

Thymic involution denotes the physiological, age-related, 
and gradual replacement of functional thymic tissue by fat 
(see above Figs. 1.1–1.3). Morphometry showed that involu-
tion starts in the first year of life and continues thereafter, 
leaving about 5% of thymic parenchyma by the age of 60 
[19] . In a broader sense, involution includes thymic atrophy 
(“accidental involution”) that happens through various 
“stressors” such as pregnancy, infection/inflammation, mal-
nutrition, and cancer. Factors involved in thymic atrophy are 
corticosteroids, sex hormones, IFN-α, adipocyte-derived 
factors (e.g., LIF), TNF-α, IL6, and growth factors [42, 43]. 
Mechanisms that are operative in relation to age are declin-
ing levels of FOXN1, decreasing proliferative activity of 
TECs with age, exhaustion of TEC progenitor cells, and the 
declining capacity of cTECs to induce T lineage commit-
ment through NOTCH1 signaling and of mTECs to induce 
tolerance through expression of self-antigen [44].

These age-related changes lead to a gradual accumulation 
of senescent T cells and—most likely—to an increased risk 
of infections and cancer with increasing age [45]. On the 
other hand, the relative resistance of senescent T cells to 
regulatory signals and propensity to generate increased 

amounts of IFN-γ increase the risk for inflammatory tissue 
reactions and autoimmunity [46].
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