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Preface

This book addresses the updates about the plant-associated microbiomes and their 
contemporary uses. To satisfy the food demands of the global population, advanced 
technology-based research is needed that can extract the information from the plant 
metabolism and microbial gene pools up to the complexity. Modern biotechnologi-
cal tools can unlock the limitations of agricultural practices. However, the applica-
tion of these tools is not well-equipped. Eco-friendly agriculture using microbial 
inoculants had positive influences on soil/plant health. Exploring the plant- 
associated microbial niches, especially endophytes, epiphytes, and soil microbes 
and how they are benefitting each other, can open new insights to develop sustain-
able agriculture practices by using consortia of microbes as plant helpers that 
recover the imbalanced agriculture systems and manage pathogenic diseases.

This book inculcates the gap between soil and plant helper microbiomes and 
their importance in the intensification of sustainable agriculture. New insights of 
phytobiome are explored in various chapters on a variety of interrelated aspects of 
the fascinating areas like plant microbial interaction, integrated pest management, 
soil fertility intensification, sustainable crop production, and disease management. 
This book is also entitled to yield a plethora of information about how beneficial 
plant microbiomes are currently being utilized for smart farming practices. To 
resolve the global food problem without harming the soil and environment health, 
this book covers valuable information regarding the significance of microbes in the 
amelioration of plant and soil health. Application of advanced molecular tools in 
plant disease diagnosis and pathogen isolation has also been discussed in order to 
advance the crops and human health. Some chapters have also been written to pres-
ent the latest information related to phytobiomes and their range as far as their util-
ity is concerned. Information on plant health promoter, endophytes as microbial 
elicitors, fly ash and plant health, zinc solubilizers, and their role in ecosystem engi-
neering towards sustainable agriculture have also been presented.

This book is intended for everyone who is directly or indirectly involved in agri-
culture, bioinformatics, and all disciplines related to microbial biotechnology. 
These include academicians, scientists, and researchers at universities, institutes, 
industries, and government organizations who want to understand microbial link-
ages in a shorter time. This book also contains essential information that will help 
the nonspecialist readers to understand progressive research. We are confident that 
the current edition will be a milestone as chapters having updated information are 
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anticipated to be published in Phytobiomes: Current Insights and Future Vistas. The 
views conveyed by the expert/authors in their respective chapters are based on their 
vast experience in the plant-microbe interaction and associated research areas. We 
thank all the contributors to this book, and we are obliged for their valuable 
contributions.

Rishon LeZion, Israel Manoj Kumar Solanki
Karnal, Haryana, India Prem Lal Kashyap
Hazaribag, Jharkhand, India Baby Kumari  
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1Phytobiomes: Role in Nutrient 
Stewardship and Soil Health

Madhumonti Saha, Abhijit Sarkar, Trisha Roy, 
Siddhartha Shankar Biswas, and Asit Mandal

Abstract
The enormous potential of the phytobiome for better plant growth and productiv-
ity is an essential tool for sustainable agronomic practices for eco-friendly culti-
vation processes. However, microbes in relation to plants, environment, omics, 
and their interactions are still to be clearly explored. Current predictive formulae 
like niche origin, ecological traits, evolution, genetics or heterosis, and resource 
trades are not mutually exclusive. This chapter mainly emphasizes on phytobi-
ome related to soil fertility, nutrient cycling, plant growth, and soil health. Plant- 
associated phytobiome such as rhizospheric and phyllospheric played a 
significant role in the enhancement of plant growth and yield. These organisms 
form multifarious networks that are established and regulated through nutrient 
cycling, competition, antagonism, and chemical communication mediated by a 
diverse array of signaling molecules. The integration of knowledge of signaling 
mechanisms with that of phytobiome members and their networks will lead to a 
new understanding of the fate and significance of these signals at the ecosystem 
level. Such an understanding could lead to new biological, chemical, and breed-
ing strategies to improve crop health and productivity. Soil organic matter (SOM) 
is a heterogeneous mixture of materials that range in the stage of decomposition 
from fresh plant residues to highly decomposed material known as humus. SOM 
is made of organic compounds that are highly enriched in carbon. Though half of 
the global population depends on fertilizer N, atmospheric N fixation by rhizo-
spheric microbes is essential for plant productivity in low N soils. Many plants 
form symbiotic associations between their roots and specialized fungi in the soil 
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known as mycorrhizae; the roots provide the fungi energy in the form of carbon, 
while the fungi provide the plant with often-limiting nutrients such as phospho-
rus. Besides, some soil microbiomes play a crucial role in the solubilizing stable 
form of potassium and micronutrients by releasing some metabolites which act 
as chelating agents. We explain recent information and cracks in these areas 
using phytobiomes.

Keywords
Phytobiome · Soil fertility · Nutrient cycling · Soil organic matter · Soil health

1.1  Introduction

Developing countries like India need to produce a double quantity of foods to feed 
the population of the nation as well as the global crowds, whereas population growth 
touches 1.1% or 83 million annually. Feeding is not only mean full stomachs, but it 
mainly focused on nutritional security. The overall impact of rising demand for food 
production will depend on improved productivity via high-yielding varieties and 
sustainable use of bioenergy (FAO 2017), whereas these higher yields of agricul-
tural crops are vigorously influenced by regular nutrient accessibility and higher 
soil quality for promoting plant growth. Hence, there is an excellent chance of 
input-output imbalance, meticulous use of chemicals, organic matter depletion, 
removal of nutrients, and massive exhaustion of soil system through the anthropo-
genic activity for sustainable food production (Godfray et al. 2010). A sustainable 
food production system, which delivers both adequate nutrition and appropriate 
energy to people in the society, also improves the natural environment inter- 
generationally. To maximize the sustainability of production, we require a good 
strategic plan, which would help to acquire knowledge regarding components that 
may establish and sustain a healthy, productive agroecosystem. Integration and 
incorporation of this information into the present crop production system may fur-
ther increase the total coverage of existing farmlands (mostly rehabilitated from 
degraded and marginal lands). Hence, to achieve the food and nutritional security 
with limited increased lands, we should first concentrate the interactions among the 
components of phytobiomes.

The word “phytobiome” comprises phyto (plants) and biome (ecological area), 
which are very specific for plants and their surroundings. It includes plant interac-
tion biology with sounding environments and living and nonliving objects (Leach 
et  al. 2017). Living entities include microorganisms, macroorganisms, and other 
plants and animals, and nonliving entities include soil, air, and climate. Simply, we 
can explain phytobiome as a conjoint venture of the rhizosphere, phyllosphere, bio-
sphere, spermosphere, hyphasphere/mycorrhizosphere, and detritusphere (Nelson 
2004; Frey-Klett et al. 2007; Vorholt 2012; Hacquard et al. 2015; Leach et al. 2017). 
Thus it is easy to say that phytobiome includes all entities that have a direct and 
indirect influence on plants and vice versa (Beans 2017). Phytobiome extends 
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beyond the plant microbiome and unites facets including crop improvement and 
production, weather data modeling and forecasting, pest pollinators and pathogens, 
and data generation along with dissemination (Fig.  1.1). Moreover, phytobiome 
considers animals, pests, physical environment, management, and other pillars of 
sustainable agroecosystem that boost our scientific understandings and analytical 
aspects about plant microbiome also leveraging the computational power of “omics” 
(Young and Kinkel 2017). Spanning from fundamental to applied research aspects, 
researcher associated with phytobiome cover the areas of biotechnology, genetics- 
breeding, seed technology, agronomy, soil fertility and fertilizers, microbiology, 
plant pathology, nematology, entomology, meteorology, crop physiology, econom-
ics, statistics, extension, and more branches of agriculture (Fig.  1.1, Young and 

Fig. 1.1 Phytobiome components and their interrelationship with different branches of agricul-
ture. (Conceptualized and modified from Phytobiomes: A Roadmap for Research and Translation 
2016; Young and Kinkel 2017)

1 Phytobiomes: Role in Nutrient Stewardship and Soil Health
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Kinkel 2017). However, composition, characteristics, and functions of healthy phy-
tobiome, principally soil-plant-microbe interaction, are yet to be understood 
entirely.

1.2  Plant-Soil-Microbe Interactions in a Typical Phytobiome

In a typical phytobiome, phyllosphere gets more affected from the discontinuity of 
weather abnormalities (diurnal cycle), leaf surface, plant metabolism, environmen-
tal conditions (rain, wind, direct sunlight, and UV radiation), and nutrient availabil-
ity (oligotrophic) than the rhizosphere (Leveau and Lindow 2001; Miller et al. 2001; 
Remus-Emsermann et al. 2012). Phyllosphere is a partial environment as compared 
to rhizosphere (Vorholt 2012). Though phyllosphere is also an essential aspect in the 
phytobiome study, nutrient cycling and soil health are controlled by the rhizosphere. 
Accordingly, we would like to concentrate on rhizosphere and rhizospheric engi-
neering associated with plant nutrition and soil health. Discussion on soil-plant- 
microbe interaction in the rhizosphere can provide information regarding the 
influence of phytobiome on soil health, soil fertility, nutrient dynamics, as well as 
crop productivity. This rhizosphere is mainly crammed with plant roots having a 
significant impact on microbial composition and diversity as well as their activities 
(Andersen and Winding 2004; de Vries and Shade 2013). These organisms consti-
tuted with macrofauna like earthworms, ant, and termite; mesofauna like collembo-
lan and acari; microfauna like nematodes and protists; macroflora like plant roots; 
and microflora like bacteria, fungi, actinomycetes, and algae (Coyne 1999; Mendes 
et al. 2013; Sarkar et al. 2017a). The further rhizosphere is differentiated into the 
endorhizosphere (mucoid layer coated root) and ectorhizosphere (rhizosphere soil).

The community of soil microbes is so diverse than any other group of organisms 
that we are still able to explore very little diversity of genetic resources. Starting 
from decomposition, mineralization, or immobilization and subsequent humifica-
tion in soil system up to plant growth and the functions of diversified microbial 
communities are affected mainly by management practices (Kennedy and Stubbs 
2006). Nevertheless, soil respiration, microbial population, biomass, and enzymatic 
activities are significantly influenced by soil properties like pH, redox potential 
(Eh), clay mineralogy, soil organic matter content, and other nutrient levels 
(Sessitsch et al. 2001). In the humid subtropical mountainous ecosystems of India, 
urease activity was higher in the grassland ecosystem, whereas microbial popula-
tion, dehydrogenase activity, and nutrient status were higher at Sacred Orchard 
(Arunachalam et al. 1999). While focused on soil structure, literature demonstrated 
that microbial biomass was the utmost concerted in silt and clay-sized soil particles, 
especially in silt and clay particle-associated micropores (5–30 mm) (Hassink et al. 
1993a; van Gestel et al. 1996; Kandeler et al. 2000). Additionally, invertase, urease, 
and alkaline phosphatase activities were reported to be highest in the silty and 
clayey type of soil. Xylanase activity, which is considered to be the indicator of 
fungal activity (Kandeler et  al. 2000), was found to be higher in sand particles 
(Stemmer et al. 1998a, b; Kandeler et al. 1999; Kirchmann and Gerzabek 1999). 

M. Saha et al.



5

Though the population of fungi is much lower in grassland soil and arable fields, but 
its crucial role in the initial fragmentation of soil organic matter could not be ignored 
(Brussaard et al. 1990; Hassink et al. 1993b). Nutrient cycling and interconnectivity 
of the atmosphere, lithosphere, biosphere, pedosphere, hydrosphere, and anthro-
sphere in a typical phytobiome are represented in Fig. 1.2.

1.3  Beneficial Rhizospheric Microbes and Phytobiome

Rhizospheric microbes have an immense potential in sustainable, cutting-edge crop 
production. Furthermore, beneficial rhizospheric microbes (BRMs) are obligatory 
in biogeochemical nutrient cycles that drive soil fertility and crop productivity for 
the span of decades (Sarkar et al. 2017a). In general, these BRMs enhance the soil 
and plant productivity by means of (a) secreting hormones and other regulatory 
growth chemicals, (b) acquisition and bioavailable felicitation of essential nutrient 
elements, (c) inhibition of pathogens through biocontrol agent production, and (d) 
abiotic stress tolerance (Yang et al. 2009).

Fig. 1.2 Nutrient cycling and interconnectivity of the atmosphere, lithosphere, biosphere, pedo-
sphere, hydrosphere, and anthrosphere in a typical phytobiome
1photosynthesis; 2respiration; 3gaseous exchange; 4deposition; 5weathering; 6decomposition; 7ero-
sion; 8infiltration; 9percolation; 1leaching; 11capillary rise; 12manual application; red dashed arrow, 
immobilization; red solid arrow, mineralization

1 Phytobiomes: Role in Nutrient Stewardship and Soil Health
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A better understanding of environmental stress and its bio-modulation has also 
been possible with PBRMs (Schrey and Tarkka 2008; Ryan et al. 2009). Symbiotic 
association of rice and arbuscular mycorrhizae shrinks the drought stress effects by 
producing an antioxidative response and photosynthetic efficiency (Ruiz-Sanchez 
et al. 2010). Even though PBRMs and other rhizospheric microbes are insignificant 
in size, their population and activity are so significant that they are also considered 
as “dinner in the dark: illuminating drivers of soil organic matter decomposition” 
(van der Waals and de Boer 2017).

Rhizospheric and non-rhizospheric microbes interact with each other either syn-
ergistically or antagonistically and are possible to change microbial community 
structure through differential soil, plant growth stages, feeding behavior on other 
taxa, acidity, reducing prey abundance, etc. (de Vries and Shade 2013; Leach et al. 
2017). Preferential feeding like predation of gram-negative bacteria by protozoa 
(Andersen and Winding 2004) and predation over harmful bacteria by nematode 
may change the bacterial community. Interestingly, some Pseudomonas sp. could 
be able to prevent protozoan predation by producing antibiotics. The microbial col-
laborations and their network are recognized and synchronized but sometimes pas-
sive, through the fabrication and sensitivity of somatic and biochemical signals 
(Leach et al. 2017).

1.4  Phytobiome and Nutrient Stewardship in Soil

Though plants exclusively utilize inorganic forms of nutrients, soil organic matter 
(SOM) plays the “key to soil fertility” and nutrient dynamics in every soil systems, 
because SOM is the source for almost every essential plant nutrients. The content of 
SOM is considered as the indicator soil quality, microbial activity, and buffering 
capacity of the soil. Correspondingly, SOM could also be regarded as a critical ele-
ment of phytobiome. Along with SOM dynamics, soil structure and nutrient cycling 
in the soil are greatly influenced by microbial processes, which are frequently 
affected by management (Kennedy and Stubbs 2006).

1.4.1  C-Cycle and Phytobiome

Natural and agricultural-based soils are the significant source and sink for the dynamic 
flow of atmospheric CO2 as a result of the soil microbe-derived respiratory flux of 
CO2. Hence, concentrations of atmospheric CO2 are more sensitive to minute changes 
in the soil carbon cycle. Higher plants utilized atmospheric CO2 for photosynthesis, 
whereas microbes play the key role to maintain the source-sink relationship of SOC 
by altering the mechanisms involved in plant symbionts, detritivores, and phytopatho-
gens. Moreover, preserve soil C by their death cells and plant roots (Amato and Ladd 
1992; Lal 2004; King 2011). It has been reported that land use and management sys-
tem influence soil ecosystems with the proliferation of microbial diversity which 
favor sequestration of C in soil (Singh et  al. 2010). So, here we will discuss 
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microorganisms responsible in the global carbon cycle as well as climate change. This 
detail is required to maintain practical management of the soil- plant continuum to 
nourish the microbes for stimulating soil carbon storage in agricultural soil.

1.4.1.1  Endurance of Soil Organic Matter and Its 
Microbial Decomposition

The input of organic matter into the soil system is followed by two ways: (a) aboveg-
round plant litter, crop residue, and organic manure including soluble organic car-
bon which penetrate into the soil with irrigation water and rainfall and (b) 
belowground roots and its rhizodeposition. Rhizodepositions often consist of sim-
ple organic compounds like carbohydrates, amino acids, organic acids, alcohols, 
etc. Perhaps with time rhizodeposition becomes humidified, which contains com-
plex compounds like cellulose, hemicellulose, lignin, etc. (Wallenstein and 
Weintraub 2008). Mycorrhizal fungi play a vigorous role in the denaturation of the 
humified polymer. This mycorrhizal symbiosis seems to be found in approx. 85% of 
all plant communities usually in herbaceous crop (Smith and Read 2008). An exper-
imental study shows that fungal partners are satisfied with the shifting of 20% 
(Nakano-Hylander and Olsson 2007) or even 30% (Drigo et al. 2010) of total assim-
ilated carbon by plants having intense effects on rhizodeposition. A fraction of the 
plant carbon that is moved to the mycelia is rapidly respired back to the atmosphere, 
which results in a crack in the soil carbon cycle.

A large portion of biomass is decomposed by heterotrophic microbial respiration 
causing loss of soil C. In addition, a small amount of the original C is reserved in the 
soil through the formation of stable organic carbon (Reynaldo et  al. 2012) that 
results in increased SOC stocks through C sequestration over time. The main micro-
bial modulators for soil C storage are fungi and bacteria. The fungal/bacterial ratio 
is closely related with C sequestration potential in soils with more massive fungal 
abundance being correlated with higher C stock. Greater storage of C in fungal- 
dominated soils can be endorsed to improved C use efficiency, more extended pro-
tection of C in living biomass, and recalcitrant portion resulting in longer resident 
time of C. Nevertheless, these observations are only relative, and it is still ques-
tioned whether fungal communities support soil C storage or whether soil with 
higher organic C favors soil fungi. Moreover, it can also be debated that fungi can 
negatively affect C storage due to their higher efficacy to decay recalcitrant litter 
(Cheng et al. 2012).

1.4.1.2  Microbial Functions in Soil Carbon Cycle Subsequent 
Climate Change

Responses of climate change through carbon cycle are tangled because of microbial 
aids, their individual effects, and collaborations with other factors (Bardgett et al. 
2008; Singh et al. 2010). A simple example of response to global warming is micro-
bial activity, organic carbon decomposition, and CO2 release, which may be has-
tened in response to an increase in temperature (Davidson and Janssens 2006). This 
is further established by field observations that confirmed the positive correlation 
between higher respiration rates and elevated temperature regimes. Besides, a sign 

1 Phytobiomes: Role in Nutrient Stewardship and Soil Health
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of secondary positive feedback to raise CO2 is a result of the photosynthetic produc-
tion of carbon fertilization, whereas increased atmospheric CO2 accelerates photo-
synthesis (Bond-Lamberty and Thomson 2010) and the release of root exudates; 
consequently more labile carbon will be available for microbial decomposition and 
respiration. Readily available exudates after increased root deposition may “prime” 
the turnover of a passive pool of SOM that otherwise would not be subject to decom-
position (Koyama et al. 2018). This difficulty is intensified by the diversity of soil 
ecosystems across the globe, which varies in their function due to their differences 
in forming factors including climate, organisms, relief, parent material, and time. 
Main interests on microbial activity in carbon cycle have been raised in peaty and 
frozen soils, where climatic conditions are not predicted for the addition or conser-
vation of organic material, which may not be in favor of future climate, eventually 
in the release of sufficient quantities of CO2 to the atmosphere (Srivastava et  al. 
2017). Further research in this area is very crucial if we can calculate the impacts 
and feedbacks between climate change and microbial function.

1.4.1.3  Microbial Growth Dynamics and Energy Balance
Chemotrophic soil microbes fix soil C and N by synthesizing new biomass (Sokatch 
1969; Dawson 1974). The energy balance and consequent thermodynamics equa-
tions are listed subsequently (adapted from Chen et al. 2003):

 �X Gr Gs� �� �  (1.1)

where ΔGr is the energy released during respiration, ΔGs is the energy carrier (e.g., 
ATP) required to synthesized biomass, ε is the coefficient of energy transfer from 
ATP, and X is the balanced ratio of ΔGr (ATP used) and ΔGs (microorganisms 
involved).

Stoichiometric yield coefficient (Y, biomass formed the unit amount of C or inor-
ganic ingredients consumed (Dawson 1974; Chen et  al. 2003)) is calculated as 
follows:

 

Y
X

�
�� �
�

� 1  
(1.2)

where α is the biomass (mg) formed from unit kcal energy consumption and β is the 
mass of organic and inorganic substances (mg) used to produce unit kcal energy:

 � max � Yk  (1.3)

 
k

Y
�
� max  

(1.4)

where γmax is the maximum specific microbial growth rate (h−1 mg−1 biomass) and 
k is the maximum specific substance utilization rate (mg mg−1 biomass h−1) when 
ignoring microbial decay or maintenance. The rate of respiration, i.e., energy- 
yielding reactions, is constant and varying between 0.5 and 2.0 mg−1 biomass h−1 in 
many heterotrophs, autotrophs, aerobes, and anaerobes.
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From this declaration, the maximum specific substance utilization rate (k) and 
the maximum specific microbial growth rate (γmax) are expressed as Eqs. 1.5 and 
1.6, respectively:

 
k

X

X
�

�� � �� �� 0 5 2 0 1. .
 (1.5)

 
�

�
max

. .
�

�� �0 5 2 0

X  (1.6)

From Eq. 1.6, it is clear that both energy sources and microorganisms determine 
the maximum specific microbial growth rate (γmax). Thus, microbial growth in soil 
is dependent upon the types and diversity of microbes, and SOM content is described 
by Monod’s equation (Sokatch 1969; Dawson 1974; Chen et al. 2003):

 

� ��
�� �

max
S

Ks S  
(1.7)

where S represents limiting nutrient (mg g−1), γ represents the specific growth rate 
(h−1 mg−1 biomass), and Ks is the half-velocity constant (Michaelis-Menten con-
stant). Ks reproduces the affinity of the microorganisms for the growth-limiting 
nutrient and governs how quick the specific growth rate can reach the maximum 
rate and for efficient microbial work (Ks should be kept as small as possible). 
The Contois equation designates heterotrophic microbial growth; Eqs. 1.8 and 1.9 
represent the dynamics of SOM depletion and biomass formation:

 

dA

dt

SA

Ks S
kdA�

�
�

� max
 

(1.8)

 

dS

dt Y

SA

Ks S
kdA� �

�
��

��
�
��

1 � max
 

(1.9)

where A is the biomass (mg g−1) and kd is the specific microbial decay rate (h−1 mg−1 
biomass). Complete understanding of the terrestrial microbial association and par-
ticular processes that govern the degree and fate of C dynamics will increase the 
prospect of successful management of the terrestrial ecosystem for increasing the 
stable C reservoir.

1.4.2  N Cycle and Phytobiome

Nitrogen (N) is an essential nutrient required by plants for their growth and metabo-
lism. The rate of N inputs in the agricultural system has doubled during the last 
century, potentially affecting both terrestrial and aquatic ecosystems. Even after 
excess application, it is often misplaced through volatilization, denitrification, or 
leaching and causes to limit its availability in most of the cultivated soils.

1 Phytobiomes: Role in Nutrient Stewardship and Soil Health
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1.4.2.1  Nitrogen Fixation and Transformations
Although N abundantly exists in the atmosphere, the diatomic (N2) molecule is a 
comparative inert. Thus, N fixation by reducing the inert N2 molecule into NH3 is 
a complex process with the expense of an enormous amount of energy (Postgate 
1982). Soil N stock and its variation depend on N transformation based on micro-
bial dynamics and environmental conditions. The N transformation is mainly con-
trolled by soil and residue C/N ratio (Chen et al. 2003). Other than C/N ratio, soil 
texture, pH, fertilizer quantity, crop rotation, soil and air temperature, soil mois-
ture, and rainfall are some of the controlling factors of N transformation and stock 
variations (Nave et  al. 2009; Schipper and Sparling 2011). The diazotrophic 
microbes, which belong to the prokaryotic groups, fix atmospheric N2 with their 
normal metabolic process (Galloway et al. 2008). Some of these microbes are free-
living in the soil like Cyanobacteria, Proteobacteria, Archaea, and Firmicutes 
(Reed et al. 2011). Other organisms, including Azotobacter and Azoarcus genera, 
are also present at equivalent densities in the rhizosphere and non-rhizosphere soil. 
Bacterial genera like Herbaspirillum and Azospirillum colonize only in the higher 
plants’ rhizosphere (Mrkovacki and Milic 2001). On the other hand, some symbi-
onts like Rhizobia are capable of infecting the root and form root nodules. 
Interestingly, this symbiosis has often limited to legumes. Thus, N fixation related 
to Rhizobium sp. has become a more exciting issue for researchers to unveil these 
complex environmental phenomena. A higher impact on primary productivity and 
economic feasibility is also one of the pillars for a sustainable agricultural 
ecosystem.

Bacterial N fixation is a complex microbial process, where enzyme complex 
called nitrogenase (dinitrogenase reductase and dinitrogenase metal cofactor) takes 
part in the electron transport chain: the former enzyme serves as an electron donor, 
and the latter (substrate reduction component) accepts the energy of the electron to 
convert N2 to NH3. To generate one mole of NH3, 16 moles of adenosine triphos-
phate (ATP) is required, which are obtained from the oxidation of organic mole-
cules. The N cycle and its processes are dynamic and simultaneously proceed to 
maintain equilibrium to nature. A diverse pool of nitrogenous compounds including 
organics (proteins, urea, amines, etc.) and inorganics (NH4

+ and NO3
−) in soil along 

with gaseous forms like NO and NH3 in troposphere determines N dynamics and 
bioavailability to the plants. Other than this, nitrification that is controlled by nitri-
fying bacteria includes nitrifiers (oxidizing ammonia to nitrite) and nitratifiers (oxi-
dizing nitrite to nitrate). There are five common species of nitrifiers, Nitrosomonas 
europaea, Nitrospira briensis, Nitrosococcus nitrous, Nitrosococcus oceani, and 
Nitrosolobus multiformis, and three nitrifiers, Nitrobacter winogradskyi, Nitrospina 
gracilis, and Nitrococcus mobilis. Denitrifying microorganisms include Thiobacillus 
denitrificans and Micrococcus denitrificans and some species of Serratia, 
Pseudomonas, and Achromobacter (Delgado and Follett 2002).

1.4.2.2  N in Soil and Its Mineralization
Being the most extensively limiting plant nutrient in agriculture, fertilizer N is the 
main depending material for half of the global population for their daily 
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hand-to- mouth activities. Total N content varies from 0.02% to 0.44% across the 
globe, the tropical country like India lacks SOM, causing consequently low soil N 
in surface soil layers. In India the total N content of surface soil ranges from 0.02% 
to 0.13%  (Motsara 2002). Whether in the forest cover or the agricultural fields, 
crop- covered soils result in 10–20 times higher soil N content than the open fallow 
lands. Excessive cultivation leads to disintegration and decomposition of SOM, 
which leads to a decrease in N content in soils. Studies have shown that up to 3.5% 
of organic N in soil is mineralized annually. Even this rate of mineralization can 
take care of the normal growth of plants, except under sandy soils with inferior 
organic N; also crop demand of N is more than the mineralization rate (Chen et al. 
2003). In a sandy loam soil, a 50% combination of sewage sludge and fertilizer 
could be one of the possible and best alternatives to curb fertilizer N and enhance N 
use efficiency (Biswas et al. 2017). As of advances in technology, the N stable iso-
tope (15N) technique has been widely used as a measuring tool in ecological studies 
of N cycling. This because of 15N natural abundance values (δ15N) of soil samples 
is the net result of many biogeochemical processes that can cause 15N refinement 
(Frank et al. 2000; Ghosh et al. 2018).

1.4.3  Phosphorus Nutrition and Phytobiome

Phosphorus (P) is one of the major nutrients essential to sustain all forms of life and 
is indispensable for the functioning of virtually every living cell on this planet. It is 
essential for energy metabolism and the principal component of adenosine diphos-
phate (ADP) and adenosine triphosphate (ATP). It is an important constituent of the 
genetic components deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), and 
plays an important role in almost all metabolic processes in plants. An adequate 
amount of P is essential for root development, growth, and maturity of all the crop 
plants. It is second only to nitrogen (N) in terms of its limiting nature to plant 
growth, in almost all arable soils across the globe.

1.4.3.1  Phytobiomes and P Nutrition in Plants
The complex chemistry of P and its widespread deficiency in the world soils have 
driven the plant community to develop and adopt several strategies to improve the 
acquisition of P from marginally P-deficient soils. Changes in the root configura-
tion, morphology, and distribution (de Souza et al. 2016), production of different 
organic compounds by the roots which helps in dissolution of inorganic P com-
pounds in soil, and alliance of the plant roots with beneficial microorganisms in the 
rhizosphere (Zhou et al. 1992; Hasan 1996; Sharma et al. 2007) are some of the 
unique strategies adopted by the plants to strive over P-deficient situations. It is 
estimated that the amount of P fixed in world soils would be able to sustain crop 
production for the next 100  years if properly mined using available techniques 
(Goldstein et al. 1993).

1 Phytobiomes: Role in Nutrient Stewardship and Soil Health



12

1.4.3.2  Microbiome and P Nutrition in Plants
The phosphate-solubilizing microorganisms (PSMs) are essential for P nutrition of 
plants, and in the soil, the population of phosphate-solubilizing bacteria is higher by 
2–50-fold compared to fungi. However, the fungal isolates in both solid and liquid 
culture media exhibited higher P-solubilization capacity compared to bacteria (Gaur 
et al. 1973; Banik and Dey 1982; Kucey 1983; Harrison 1987; Kucey et al. 1989). 
Of the various P compounds present in the soil, the Ca-P is more readily solubilized 
by the PSMs, while very few are reported to solubilize the Fe and Al-P which are 
the major compounds in acid soils like alfisols (Fig. 1.3). The PSMs are very effec-
tive in insolubilization of rock phosphates (RP) which are generally Ca-apatites and 
increase the P availability to crops when applied along with rock phosphates in soil. 
Currently, different species of bacteria such as Azotobacter chroococcum, Bacillus 
subtilis, Bacillus cereus, Bacillus megaterium, Arthrobacter ilicis, Escherichia coli, 
Pantoea agglomerans, Pseudomonas putida, Pseudomonas aeruginosa, 
Enterobacter aerogenes, Microbacterium laevaniformans, and Micrococcus luteus 
have been identified as effective P solubilizers (Kumar et al. 2014).

The microbial association thus plays a significant role in P nutrition particularly 
in the low P soils, and often the level of soil P determines the nature of microbes that 
get associated with plant roots (Gomes et al. 2018). Different maize genotypes with 
variable P acquisition capacity had a different association with microorganisms, and 
the P levels in the soil primarily guided this. The slow-growing microorganisms 
were more abundant in soil with low P levels, while the fast-growing 

Fig. 1.3 Different fractions of soil P based on sources and chemical properties
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microorganisms were predominant in the soils with high P levels (Gomes et  al. 
2018). In general, several bacterial species like the Pseudomonas, Enterobacter, 
Azotobacter, Burkholderia, Rhizobium, etc. are associated with P-solubilization and 
promote plant growth (Oliveira et al. 2009; Glick 2015; de Souza et al. 2016; Alori 
et al. 2017). However, the population of phosphate-solubilizing organisms was not 
affected by the level of P in soils (Browne et al. 2009; Gomes et al. 2018; Robbins 
et al. 2018).

Besides the P-solubilizing bacteria, the arbuscular mycorrhizal fungi (AMF) 
play an essential role in the P nutrition of plants. The hypha of the AMF acts as an 
extension to the plant roots and helps in exploring more soil volume, increasing the 
P availability to plants, and acting as an unhindered pathway for translocation of P 
(Schweiger and Jakobsen 1999). However, the soil P level is again critical, which 
regulates the abundance of AMF association with plant roots. Low soil P level 
increases the AMF association with plant roots, while P fertilization harms the AMF 
establishment. The AMF colonization in maize reduced from 29.2% to 13.7% when 
the soil P concentration was raised from 15 ppm to 70 ppm (Gosling et al. 2013). 
The plant species is an essential factor determining the association of AMF, and it is 
higher for crops like maize, cotton, pigeon pea, sunflower, mung bean, and sorghum 
while lower for oats, wheat, barley, etc. (Seymour 2009).

Sometimes even the non-P-solubilizing microbes play an essential role in P 
nutrition. These organisms take up sparingly soluble P compounds from the soil 
with the help of high-affinity P transporters, which becomes available to plants upon 
the death of the microbes (Gyaneshwar et  al. 2002). The extremely insoluble P 
compounds are also cycled and become available for plant nutrition. Escherichia 
coli, a non-P solubilizer helps in the P nutrition of plants (Wanner 1996). Under 
P-limiting situations, the P transporters in Rhizobium are activated, resulting in 
higher accumulation of P and enhanced alkaline phosphatase activity (Al-Niemi 
et al. 1997).

1.4.3.3  Rhizosphere Engineering and P Nutrition
Root-induced changes in the rhizosphere also help in P acquisition and improve the 
P availability to plants (Hinsinger 2001). The plant root secretes a large number of 
substances that alter either the soil pH or chelating substances which are capable of 
releasing P from sparingly soluble P compounds. The secretion of organic acid mol-
ecules like citrate, oxalate, etc. also helps in P release through ligand exchange and 
increases P availability to plants (Shen et  al. 2011). The plant roots also secrete 
enzymes like phosphatase or phytase, which can mobilize the organic P from the 
soil and make it phyto-available (Neumann and Romheld 2002; Zhang et al. 2010). 
Some of the new hypotheses are postulated based on the PSM-inspired chemistry by 
deriving polymer-coated P fertilizers to enhance PUE (Sarkar et al. 2017b; Sarkar 
et  al. 2018). Also, nano-formulation of natural resources like phosphate rock 
increases the specific surface area that helped in better microbial activity and further 
improved PUE with or without organic acids (Roy et al. 2015, 2018a, b).
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1.4.4  K-Bioavailability and Phytobiome

For achieving sustainable crop productivity, nutrients are the necessary inputs, and 
potassium is one of them. The flaws between depletion and the use of K fertilizers 
in agriculture are flaring day by day. So, it is relative to know the potassium dynam-
ics in soil corresponding with potassium needed for the crops which offer balanced 
nutrition and retain its status in soils. Addressing this nutrient inequity and deficien-
cies, increased manufacture of potassium fertilizer is necessary for India and other 
developing countries. In these situations, it is required to prosper natural mineral 
sources of K to replace costly fertilizers. Although these minerals are not readily 
soluble, the combination of potassium minerals with a potassium-solubilizing 
microorganism (KSM) would be a better and available knowledge to increase bio-
availability of K from K-bearing minerals, which could help in maintaining the 
ecological balance and sustaining agricultural production and environmental qual-
ity. Now, the question is how these soil organisms solubilize K.  The processes 
involved in K solubilization are listed and described in the following (Fig. 1.4).

1.4.4.1  K-Solubilizing Microbial Species
Soil presents a variety of microbiomes including bacteria and fungi which boost the 
solubility of K minerals through the production of organic synthetics including che-
lating agents, exudates, extracellular enzymes, metabolic by-products, and both 
simple and compound organic acids (Meena et al. 2014; Saha et al. 2016a, b). These 
enzymes and organic metabolites triggered the biotic weathering of K-bearing rocks 

Fig. 1.4 Mechanisms of K solubilization in a typical phytobiome. (Conceptualized and modified 
from Meena et al. 2014; Saha et al. 2016a, b)
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and minerals. Especially rhizobacteria produce 2-keto-L-gluconic acid which binds 
Ca and acts as a strong weathering factor for underlying rocks. Otherwise, soil 
microorganisms respire and produce CO2 that reacts with water and forms carbonic 
acid. This carbonic acid contributes to chemical weathering by dissolving CaCO3 
and K minerals through dissolution reactions.

Negatively charged soil particles adsorb maximum cationic nutrients like K and 
retard bioavailability. However, acidification of soil by the soil microbiomes assists 
in ion exchange processes. In this way, K is released into the soil solution and 
becomes readily available to the plants. Similar charge species are also involved in 
ion exchange when their presence is higher in the soil solution. For example, when 
Ca2+ is present in excess in the soil solution, it can exchange two K+ ions from the 
soil adsorption sites and contributes to desorption and K solubilization. These ions 
also transfer K, which is trapped in the interlayer spaces of the minerals to some 
extent. Certain bacteria produce mucilage like extracellular polysaccharides (ESP) 
which form a wrapper around the bacterial cell, attack the clay minerals chelating 
with silicon, and consequently release K from that structure.

Fungi are also considered as a biological weathering referee of rocks, minerals, 
and building blocks. Ectomycorrhizal hearting networks and the arbuscular struc-
ture of non-ectomycorrhizal trees, embedded in biofilms, conduct nutrients to the 
host. Here, biofilms assist in stimulating the weathering of minerals and thereby 
increasing uptake of nutrients to the plant. Some rock-decaying fungi can ooze out 
organic ions having low molecular weight, which forms a microscopic tunnel in the 
vicinity of exudates at hyphal tips within the minerals which enhances the weather-
ing rates in that soil.

This is supported by numerous studies, whereas a wide variety of bacteria like 
B. mucilaginous, B. edaphicus, B. circulans, Burkholderia, Acidithiobacillus ferro-
oxidans, Paenibacillus spp., and Pseudomonas spp. have been demonstrated to 
solubilize K from K-containing minerals in the soils (Liu et al. 2012; Meena et al. 
2014). Zhang and Kong (2014) isolated and identified that strains of Pantoea agglo-
merans, Agrobacterium tumefaciens, Microbacterium foliorum, Myroides odo-
ratimimus, Burkholderia cepacia, Enterobacter aerogenes, E. cloacae, and 
E. asburiae remain effective in K solubilization in both solid and liquid media. 
Several other studies also validated the significant role of plant growth-promoting 
rhizobacteria (PGPR) in K solubilization and its mobilization in the plant root sys-
tems (Kumar and Singh 2001; Kukreja et al. 2004; El-Fattah et al. 2013).

1.4.5  S Cycle and Phytobiome

Sulfur (S) containing amino acids (cysteine, cystine, and methionine) is present in 
almost all the proteins, which makes it indispensable to more or less all living 
organisms. These amino acids may be present as free or in combined states. S cycle 
includes the transformation of S from organic to inorganic or inorganic to organic 
form and oxidized state to reduced state or reduced to oxidized state. These pro-
cesses are mediated by various microorganisms, especially bacteria (Schoenau and 
Malhi 2008).
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1.4.5.1  Mineralization and Immobilization of Sulfur
Sulfur mineralization is the conversion of plant-unavailable organically bound 
forms of sulfur (organic sulfates and carbon-bonded sulfur) to the plant-available 
inorganic forms of S (sulfate, SO4

2−) in soil. Whereas immobilization is exactly the 
opposite process, where inorganic S is assimilated by living organisms (microbes) 
and converted to the organic forms, that plant cannot absorb. In unfertilized soil S 
mineralization is the dominant source of S, in S pool for plants throughout the year 
(Bettany et al. 1979). The main factor which decides whether an organic S source 
will be mineralized or immobilized is the C/S ratio. When the C/S ratio is less than 
200:1, net mineralization occurs, and organic S contributes to plant-available pool 
of S; in case the C/S ratio of the organic matter exceeds 400:1, net S immobilization 
occurs, and plant-available S is converted to organic S (Schoenau and Davis 2006). 
Organic S consists of (1) organic sulfate (S and C are not directly bonded like thio-
glucosides, sulfate esters, and sulfamates; here S is bonded to C via oxygen or 
nitrogen) and (2) carbon-bonded sulfur (here S is directly bonded to C like sulfonic 
acids, sulfur-containing amino acids in proteins). Organic sulfates cover 30–70% of 
the total soil organic S. S-containing amino acids and organic sulfates are the labile 
forms of organic S; they mineralize very easily by extracellular enzyme arylsulfa-
tases (Tabatabai and Bremner 1970). Through organic mineralization, S is converted 
to sulfate (SO4

−2) and thiosulfate (S2O3
−2) which are absorbable by plants. Humus 

soil has a C/S ratio nearly 100:1. Thus decomposition of it results in net mineraliza-
tion (Roberts et al. 1989).

1.4.5.2  Microbial Oxidation and Reduction of S
Soils where reduced forms of S (such as sulfides, elemental sulfur) are present, in 
those places microbial oxidation of reduced inorganic S is an important process. 
Through oxidation, reduced (–2, 0) forms of S (S2−, S0) are converted to higher oxi-
dation states (+6) like sulfate (SO4

2−). Both autotrophic and heterotrophic microor-
ganisms perform microbial oxidation, including species of Thiobacillus (autotroph); 
heterotrophic bacteria like Bacillus, Arthrobacter, and Pseudomonas; and some 
fungi (Lawrence and Germida 1988). In some cases, heterotrophic sulfur oxidizers 
may dominate, especially in the rhizosphere (Grayston and Germida 1990). S oxi-
dation is an acidifying process. It can be depicted by the following equation where 
elemental S, a reduced form of S, is oxidized to sulfuric acid:

 2 3 2 20
2 2 2 4S O H O H SO� � �  

As a result of flooding, reduced aeration and high oxygen consumption produce 
reducing conditions, where redox potential decreases and drives the microbial con-
version of sulfates to sulfide after other electron acceptors including oxygen and 
nitrate are depleted. This is termed as dissimilatory sulfate reduction, which is per-
formed by the species of Desulfovibrio and Desulfotomaculum bacteria. Hydrogen 
sulfide gas is retained in the soil by reaction with iron to form an iron sulfide min-
eral, depicted in the following equation:

 
SO H S g Fe FeS mineral4 2� � � � � � �  
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These sulfides may be oxidized back to sulfates if the soil becomes aerobic again 
(Schoenau and Malhi 2008).

1.4.6  Trace Metals and Phytobiome

The huge quantity of effluents generated from households and industries is continu-
ously contaminating the land, river, pond, as well as groundwater aquifers (Saha 
et al. 2017a). Subsequent contamination of the human food chain from a significant 
amount of metals and pollutants is accumulated in soil following crop accumula-
tion. As metals like iron (F)e, manganese (Mn), zinc (Zn), copper (Cu), and nickel 
(Ni) are essential for plant growth (Hapke 1991; Lenka et  al. 2016; Saha et  al. 
2017b), apart their required quantity is significantly lesser than the N, P, and 
K. Thus, these metals along with other beneficial and harmful cationic metals are 
often defined as trace metals, whereas the term “heavy metal” is a cumulative term 
that includes both metals and metalloids having an atomic number of more than 20 
(Ca) or atomic density more than 5 g cc−1 which also cause toxicity at very trace 
concentration. Moreover, trace metals like chromium (Cr), cadmium (Cd), cobalt 
(Co), selenium (Se), mercury (Hg), lead (Pb), and arsenic (As) are responsible for 
different types of malfunction or even death due to toxicity in plants as well as ani-
mals and adversely affect the soil system. However, the levels of toxicity are deter-
mined by the combination of different factors like soil pH, conductivity, and other 
ionic activities in soil solution and particular metal species (type) and concentration 
present in ecosystems (Tchounwou et al. 2012; Saha et al. 2017c). Metal toxicity 
induced poor plant growth, retarded carbohydrate and protein metabolism, 
obstructed growth hormone formations and enzyme activities, and simultaneously 
insisted reduced biological diversity in the rhizosphere and non-rhizospheric soils 
(Singh et al. 2011).

1.4.6.1  Conducive Soil Condition for Trace Metal Toxicity
Certain conditions induce trace metal toxicity for crops and humans. These trace 
element toxicities occur in the following (Bucher and Schenk 2000; Broadley et al. 
2007; Aref 2011):

 (a) Superfluous application of untreated sewage sludge, municipal waste, tannery 
and distillery effluents, coal combustion ashes, etc.

 (b) Light-textured soil with low pH and having impeded subsurface soil layer with 
very low hydraulic conductivity

 (c) Mineral soil having deficient soil organic matter
 (d) Intensive raw minerals (e.g., waste mica, rock phosphate, pyrite, etc.) and fertil-

izer application
 (e) Irrigation with polluted groundwater
 (f) Type and concentration of trace metals in the environment

Heavy-trace metals are distributed over the solid phase, liquid phase, and also the 
gaseous phase, and their partitioning influenced and depends on complexation with 
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ligands, ion exchange, adsorption-dissolution-precipitation reaction, and oxidation- 
reduction reaction (Vlek et  al. 1974; Singh and Saha 1997; Rattan et  al. 2008). 
These interacting properties are the controlling factors of trace metal solubility, 
mobility, and bioavailability in soil and water systems. Other than mechanical and 
chemical processes, microbial inoculation has the potentiality to reduce the metal 
toxicity by either decomposition or immobilizing the metals from the soil (Abou- 
Shanab et al. 2003; Seshadri et al. 2015).

1.4.6.2  Trace Metals’ Crop Response and Phytoremediation
Negative interaction of cationic trace metals induces other trace metal deficiencies 
in plant tissues. Khan and Khan (2010) reported that Fe and Zn uptake was reduced 
from the excess application of Ni and developed chlorosis symptoms on leaves. 
Other reports also indicated that Cd toxicity induces poor Cr uptake (Dotaniya et al. 
2017); and Zn toxicity induces Fe and Mn deficiency in plant tissues (Sivasankar 
et al. 2012). Correspondingly, specific metal toxicity also affects the dynamics of 
nutrient mineralization and nutrient release kinetics and results in poor plant growth; 
plants appeared brushy (Singh et al. 2016). Trace metals’ (heavy metal) toxicity also 
retard soil enzymatic activity by replacing the native essential metals from binding 
sites (Bruins et al. 2000). For example, excess concentrations of Cd2+, Ag2+, and 
Hg2+ in the soil-solution exchange phase are likely to bind with SH groups of some 
sensitive enzymes, which retard the activity of the enzyme (Nies 1999). Thus, 
increasing the use of wastewater, municipal wastes, industrial effluents, and coal 
combustion ashes triggers the toxic trace metal concentration in soil, which further 
accelerates the metal accumulation in ecological habitats (Rajkumar et al. 2012). 
Apart from this, higher Cr concentration was reported in plant roots compared to 
shoot, because metal excluder plants can store an excessive amount of Cr in root cell 
vacuole (Oliveira 2012; Nematshahi et al. 2012). Contrastingly, untreated sewage 
sludge application enhances crop yield, soil nutrient content, organic C content, and 
soil biological activities (Roy et  al. 2019). Integrated approach (treated organic 
waste and inorganic fertilizers) is the best-recommended method for sustainable 
soil management and crop production. Neither the excess of essential nutrients nor 
other trace elements are beneficial for the plant-soil-microbe system, because spe-
cific element toxicity damages the DNA structure of soil enzymes and disturbs the 
normal functionality in the environment (Bruins et al. 2000).

1.4.6.3  Siderophore and Phytosiderophore Engineering and Trace 
Metal Chemistry

Due to certain unwanted and challenging environmental conditions, the release rate 
of plant root exudates enhances the rhizosphere. These exudates help both ways by 
accelerating essential nutrient elements and inhibiting toxic elements (Marschner 
1995). During Fe and Zn deficiency, graminaceous plants like barley, wheat, etc. 
exude phytosiderophores. While these exudates are produced from soil microbes, 
other higher plants are termed as siderophores. Siderophore and phytosiderophore 
are hexadentate non-proteinous amino acids, which act as a ligand and coordinate 
with Fe3+, Zn2+, or Mn2+ by the carboxylic and amino groups (Romheld 1991). In the 
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rhizosphere, metal chelation is not specific for Fe3+. Subsequently, phytosidero-
phores can transport a wide range of metals like Zn, Cu, Mn, Cd, and Ni (Awad and 
Romheld 2000). The diurnal variation of phytosiderophore release is also specific 
with plants and parts of plant roots. Generally, maximum phytosiderophore release 
and microbial activity are observed near the apical root zones due to localized 
microbial degradation and distribution of phytosiderophore (Marschner et al. 1986; 
Romheld 1991). The rate of phytosiderophore (PS) release differs among interspe-
cies, plant to plant, and depends on daytime, sunshine hours, light intensity, and 
micronutrient status (Cakmak et al. 1994). However, this correlation with phytosid-
erophore quantity is not always consistent. Siderophores and phytosiderophores 
associated with metal chemistry and metal bioavailability in the soil are listed in 
Table 1.1. In contrast with Zn-PS and Mn-PS, the preferential uptake of Fe-PS is 
more prominent, which is mainly regulated by soil Fe nutritional status. The affinity 
of mugineic acids (MA) for heavy metal cations decreases in the order of Cu2+ > Fe3+ 
> > Zn2+ > > Mn2+ (Dotaniya et al. 2014). Fe-PS and Zn-PS complex uptake rate 
corresponds to ~100 and ten times higher than that of free Fe and Zn. Thus, PS 
production and subsequent uptake are regulated by the transporters of the YS1/YSL 
protein family, which is induced by Fe deficiency (Meda et  al. 2007). Due to 
increased nutrient availability, this process is also considered as a lifesaving mecha-
nism for plants.

1.5  Phytobiome: An Early Indicator of Soil Health

Typically, soil health is defined as “a state of dynamic equilibrium between flora and 
fauna and their surrounding soil environment in which all the metabolic activities of 
the former proceed optimally without any hindrance, stress or impedance from the 
letter” (Goswami and Rattan 1992). Simultaneously the soil quality, which is analo-
gous to soil health, is often used in the scientific literature, as scientist prefers soil 
quality. Soil quality is defined as “the capacity of soil to function within the ecosystem 
and land-use boundaries, to sustain biological productivity, maintain environmental 
quality, and sustain plant, animal, and human health” (Doran and Parkin 1994). On the 
other hand, soil health is generally dealt with by the producers (e.g., farmers). There 
are few conceptual differences between soil quality and soil health, where the former 
considers soil usefulness for a particular purpose for a long time scale and the latter 
considers the state of soil for a particular time (Larson and Pierce 1991).

Healthy soils are very crucial for the reliability of global ecosystems to stay inte-
gral or to recuperate from biotic and abiotic stresses as well as anthropogenic 
exploitation with agriculture (Ellert et al. 1997). In soil, phytobiome has the capac-
ity to provide an integrated standard tool for soil health and quality, which cannot be 
obtained from physical or chemical analyses of soil. Microbiomes quickly acclima-
tize to environmental conditions as they have close relations with their surroundings 
due to their higher surface-to-volume ratio and respond rapidly to changes. Hence, 
the potentiality of these biomes can be adapted as an excellent indicator of soil 
health assessment. In some cases, alterations in microbial populations and activity 
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before detecting changes in soil rather than physical and chemical properties thus 
provide an early signal of soil improvement or an early indication of soil degrada-
tion (Pankhurst et al. 1995). The turnover rate of microbial biomass is much faster 
(1–5  years) than the total soil organic matter turnover (Carter et  al. 1999). 
Phytobiomic indicators of soil health involve various sets of microbial dimensions 
due to the multifunctional characteristics of microbial groups in the terrestrial eco-
system. Some indicators of soil health are as follows:

 1. Biodiversity: genetic diversity, functional diversity, structural diversity
 2. Carbon cycling: soil respiration, organic matter decomposition, soil enzymes, 

methane oxidation
 3. Nitrogen cycling: N-mineralization, nitrification, denitrification, N-fixation
 4. Soil biomass: microbial biomass, protozoan biomass

Table 1.1 Siderophores and phytosiderophores associated with metal chemistry and metal bio-
availability in soil

Plants and microorganisms
Siderophore and phytosiderophore 
production

Plants Graminaceous family Phytosiderophores:
mugineic acid (MA), deoxymugineic acid 
(DMA), epoxy-mugineic acid (EMA), 
hydroxy-mugineic acid (HMA)

Microorganisms Siderophores:
Bacteria Bacillus Schizokinen, bacillibactin, ferrioxamines

Nocardia, Arthrobacter Ferrioxamines
Escherichia coli Enterobactin
Staphylococcus Staphyloferrin
Erwinia chrysanthemi Chrysobactin, achromobactin
Mycobacterium tuberculosis Mycobactin
Pseudomonas sp. Pyoverdines
Bordetella sp. Alcaligin
Azotobacter, agrobacterium Catecholate

Arbuscular 
mycorrhizae

Cenococcum geophilum, 
Wilcoxinarehmii

Ferricrocin

Glomus etunicatum, G. 
mosseae, unidentified Glomus 
sp.

Glomuferrin

Fungi Rhizopus Rhizopherin
Ustilagosphaerogena Desferriferrichrome
Fusarium roseum Fusarinines, malonichrome, 

triacetylfusarinines
Neurospora crassa Ferricrocin
Aspergillus fumigants, 
Penicillium bilaiae

Pistillarin

Aspergillus ochraceus Ferrichrome

Adopted and modified from Matzanke et al. (1988), Hider and Kong (2010), Dotaniya et al. (2014), 
Winkelmann (2017), Sarkar et al. (2017a, b), Hussein and Joo (2017)
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 5. Microbial activity: bacterial DNA synthesis, bacterial protein synthesis, RNA 
measurements, bacteriophages

 6. Bioavailability: biosensor bacteria, plasmid-containing bacteria, antibiotic- 
resistant bacteria, catabolic genes

In addition to the influence on nutrient cycling, microbiomes also affect the 
physical properties of soil by producing extracellular polysaccharides and other cel-
lular trashes that help in maintaining soil structure. As these biochemicals function 
as chelating agents, they stabilize soil aggregates and affect water retention capac-
ity, crusting, erodibility, infiltration rate, as well as susceptibility to compaction.

1.6  Future Outlook

Attempts are to be made to enhance the food, feed, and fiber production worldwide 
by exploring each and individual component of phytobiome and in between inter-
actions. Due to increased food demand and high-intensity agriculture, integration 
and optimization of phytobiome-based pieces of knowledge, resources, and site- 
and condition-specific solutions become one of the most treasured materials for 
sustainable agriculture and soil health. Further, an advanced association of scien-
tific society to explore this concept is a much important future aspect of phytobi-
ome studies.

1.7  Conclusions

This chapter is an effort to enlighten the idea of phytobiome and its role in nutrient 
regulation, maintaining soil quality. The modern principles of different utilizations 
of this phytobiome have been characterized to excerpt a high prospect of their func-
tionality and applicability for sustainable agriculture. So, these phytobiomes are 
evolved as plant growth-promoting microbiomes, which are important for keeping 
good soil health, better soil conditions, and persistent agricultural productivity. 
These biomes do not become alive independently but make interconnected coordi-
nation with the environment. All are engaged in the nutrient cycle of the terrestrial 
ecosystem by weathering and solubilizing complex and stable nutrient sources. The 
contest of this section is to develop new approaches for addressing the nutrient use 
efficiency as well as directed plant parts (within metabolomes of rhizospheric 
groups) to assist a significant change in the level of perception. The ultimate aid 
from this section will be the information about modification of the soil-plant system 
to support microbial chemistry or their effects on soil physico-chemical properties 
that are most important in promoting nutrient acquisition in plants across the diver-
sified global agricultural condition. These provide an effective substitute for 
advanced crop production.
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Abstract
A phytobiome is influenced by its many members, which includes plants, soils, 
microbes, animals (insects), and the constantly fluctuating environment. Plant- 
microbe interactions represent one of the most impactful relationships inside a 
phytobiome and may have a beneficial, harmful, or neutral effect on one another. 
This chapter provides a comprehensive analysis of the complex network of signal 
exchange between microbes and plant in a phytobiome, via the quorum- sensing 
circuit with a special focus on N-acyl homoserine lactones (AHLs) signaling. 
Incorporating the current understanding of this plant-microbe dynamic by tracing 
their signals is one of the major tools to customize a sustainable phytobiome. There 
are still many gaps to cover such as understanding a system-level communication 
of the phytobiome and the molecular nitty-gritty of signal transport within plants 
and molecular pathways coordinating plant physiological changes. Future advances 
would depend on the collaborative effort of interdisciplinary scientist groups 
backed by advance “omic” techniques to link all the biotic and abiotic components 
and understand the synchronized dynamic of a phytobiome.
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2.1  Introduction

Given the ever-increasing food demand and energy crisis in the world today, increas-
ing biomass yields for greater food supply and low-cost, low-maintenance energy 
crop production without the use of harmful synthetic agrochemicals is the need of 
the hour. In recent years, there has been a paradigm shift in the understanding of the 
nature of plant-associated community, from the perspective that a plant is strongly 
interconnected with different biotic factors such as plants, animals, and microorgan-
isms and abiotic factors like soil, light, and water and that sustainable improvement 
in agro-productivity and agro-quality would require a system-level approach, taking 
into account all the optimum biotic and abiotic set of influences on a plant (Leach 
et al. 2017). Phytobiome is defined as the totality of a plant, its physical environ-
ment, and the entire population of microorganism in, on, and around the plant. The 
composition of biotic community associated with the plant depends on the host 
genotype, local niche, or the plant compartment (spermosphere, endosphere, rhizo-
sphere, phyllosphere) and environment such as soil type (Hacquard et  al. 2015; 
Leach et al. 2017). For example, phyllosphere, the aerial plant part, experiences a 
highly fluctuating environment and nutrient availability and hosts a more distinct 
microbiome as compared to a more environmentally stable rhizosphere (Remus- 
Emsermann et al. 2012).

Chemical communication plays a major role in the growth, development, and 
evolution of plants (Witzany 2006). For example, plants release volatile compounds 
to invite insects to help them spread their pollen for reproduction (Baldwin 2010). 
A good understanding of the integrity and the basic administration in a phytobiome 
would help to design strategies toward sustainable agriculture and environmental 
preservation. This would require a sound understanding of the communication 
among the various members of a phytobiome. However, since signals can be quite 
often co-opted, modified, or even destroyed by another member of the community, 
there is the need for a system-level analysis of communication within the phytobi-
ome (Leach et al. 2017).

Microbes represent the largest biotic component of a phytobiome, which also 
exist in the closest proximity, that is, on, around, and inside of a plant. Plants and 
microbes have co-evolved over time, interacting both in symbiosis and pathogene-
sis, and so has the communication signaling network between the two kingdoms 
(De-la-Peña and Loyola-Vargas 2014). The microbial world communicates via sig-
naling molecules based on the population size-driven phenomenon of quorum sens-
ing (QS) (Fuqua and Winans 1994). Bacterial QS machinery consists of an 
autoinducer, its cognate receptor protein, and a synthase gene for signal synthesis. 
QS-controlled bacterial phenotypes include bioluminescence, biofilm formation, 
motility, conjugation, sporulation, production of antibiotics, and the expression of 
virulence factors (Williams 2007). Disruption of the QS system or quorum quench-
ing (QQ) takes place by (1) signal degradation by enzymes and physical agents, (2) 
inhibition of signal synthesis, and (3) receptor blocking (Uroz et al. 2009). Given 
this myriad of roles of QS in both pathogenic and symbiotic interaction, QS and QQ 
find multiple applications in agriculture and medicine (Grandclément et al. 2015).
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Common bacterial QS signal molecules, such as N-acyl homoserine lactones 
(AHLs), diffusible signal factors (DSF), and signaling peptides, are among the best- 
studied communication signals in the phytobiome (Leach et  al. 2017). AHLs pro-
duced by Gram-negative bacteria are the most reported autoinducer signal molecules. 
AHLs can be defined by the length of their acyl chain, with short-chain (C4-C6), 
medium-chain (C6-C10), and long-chain (C10-C16) AHLs. AHLs are produced by both 
pathogenic bacteria and plant growth-promoting rhizobacteria (PGPR). Table  2.1 

Table 2.1 Different QS signaling molecules and their effect on plants along with the probable 
mechanism of action

QS molecule Producers

Probable 
mechanism 
of action Effect on plant References

N-Acyl 
homoserine 
lactones (AHLs)

Gram-negative 
bacteria

LuxR 
receptor/G- -
protein 
signaling
Induction of 
salicylic acid 
and 
oxylipin- 
dependent 
pathways

Seed germination and 
plant development 
(C6HSL)
Root elongation 
(3OC6HSL, 
3OC8HSL)
Primary root growth, 
lateral root formation, 
and root hair 
development

Moshynets 
et al. (2019)
Jin et al. 
(2012)
Ortíz-Castro 
et al. (2008)

Increased defense and 
systemic resistance 
against fungal 
pathogens
“Priming” for 
induced resistance 
and rapid and robust 
response to abiotic 
stresses (C12HSL, 
OC14HSL)

Schuhegger 
et al. (2006)
Schenk et al. 
(2014) and 
Schenk and 
Schikora 
(2015)

Aryl HSLs Rhodopseudomonas 
palustris, 
Bradyrhizobium

RpaR, BraR Not known Schaefer 
et al. (2008) 
and Ahlgren 
et al. (2011)

Diffusible signal 
factor (DSF)

Stenotrophomonas 
maltophilia, 
Xanthomonas, 
Burkholderia 
cenocepacia, 
Pseudomonas 
aeruginosa

RpcF/RpfG 
two- 
component 
system

Promotes seed 
germination and plant 
growth, enhanced 
biocontrol, elicit 
innate immunity in 
plants

Alavi et al. 
(2013) and 
Venturi and 
Keel (2016)

Cyclodipeptides/
diketopiperazines

Pseudomonas 
aeruginosa

Auxin signal 
mimics

Promote plant 
growth, lateral root 
development

Ortiz-Castro 
et al. (2011)

Autoinducing 
peptides (AIPs)

Gram-positive 
bacteria

Not known Monnet et al. 
(2016)
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provides a list of QS signal molecules reported for their effect on plants and possible 
mechanism of action. Many reports have shown that plants can detect and respond to 
AHLs, and the responses differ based on the acyl chain length and substitution of the 
AHL molecule and the plant species-AHL combination (Mathesius et  al. 2003; 
Schuhegger et al. 2006; Schikora et al. 2011; Schenk et al. 2014). This chapter sum-
marizes the current knowledge of (a) how AHL signaling in a phytobiome impacts 
plants, b) how plants manipulate AHL signals to their advantage, c) the basic dynamic 
of the plant-microbe signal exchange, and finally d) how this knowledge can be incor-
porated in the bigger scheme of creating a healthier phytobiome.

2.2  Plant Senses and Responds to AHL

The first report on the impact of bacterial AHLs on plant physiology was a differen-
tial proteome analysis of M. truncatula roots, studying their response to the expo-
sure of 3OC12-HSL and 3OC16:1-HSL, in nanomolar (nM) concentrations (Mathesius 
et al. 2003). This work revealed complex functional responses to AHL application 
in the plant, with significant changes in the expression of over 150 proteins. The 
proteins detected were associated with defense, stress responses, energetic and met-
abolic activities, transcriptional regulation, protein processing, cytoskeletal activi-
ties, and plant hormone responses. In another proteomic study done on the responses 
of A. thaliana seedlings to 3OC8-HSL treatment (Miao et  al. 2012), 53 proteins 
showed alteration in expression pattern, and 34 of these proteins were recognized to 
be associated with energy and carbohydrate metabolism, protein synthesis, plant 
defense, signal transduction, cytoskeleton remodeling, etc. The chloroplast was 
observed to be the most sensitive intracellular organelle to 3OC8-HSL treatment. 
Such findings strongly suggest that plant displayed extensive functional responses 
to bacterial AHLs that might be important for inter-kingdom interactions. In a recent 
proteomic study on the effect of exogenous AHLs on Arabidopsis thaliana seed-
lings under salinity stress, AHL application was found to impart salt tolerance and 
growth, and it might involve 97 proteins associated with defense/stress/detoxifica-
tion, photosynthesis, protein metabolism, signal transduction, transcription, cell 
wall biogenesis, energy metabolisms, etc. (Ding et al. 2016).

2.3  AHL Impact on Plant Root Growth and Architecture

Mathesius and coworkers (2003) reported the activation of auxin-inducible GH3 
promoter upon AHL application, from their proteomic analysis of M. truncatula 
roots post AHL treatment. In a later study, von Rad et al. (2008) also reported C6- 
HSL- induced changes in the expression of several plant hormone-related genes, 
resulting in a higher expression of auxin and lower cytokinin concentrations. 
Moreover, they observed a significant increase in primary root growth in the pres-
ence of short-chain AHLs (C4-C6HSL) at 1 nM and a concentration above 10 micro-
molar (μΜ), respectively, in A. thaliana, whereas the long-chain C10-HSL remained 
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neutral. The authors attributed this different plant response to the different acyl 
chain length of AHLs to the difference in their hydrophobicity. Long-chain AHLs 
with higher hydrophobicity are not transported from root to the shoot, and their 
accumulation in the root makes them toxic, thereby inhibiting the growth of root 
tissue. Since auxin induces root growth, the change in auxin/cytokinin ratio upon 
AHL treatment might be a potential mechanism behind short-chain AHL-induced 
root growth (von Rad et al. 2008).

Modification of overall root architecture of A. thaliana on exposure to μΜ con-
centration of long-chain AHLs, especially C10-HSL, has been observed as a result of 
inhibition of primary root growth and promotion of lateral root and root hair growth 
(Ortíz-Castro et  al. 2008). This change in root morphology was associated with 
alterations in cell division and differentiation in the primary root meristem. Although 
auxin-treated Arabidopsis seedlings show similar changes in root morphology, C10- 
HSL action was independent of the auxin-regulated process. Enhanced lateral root 
and root hair growth could increase the absorptive capacity of the plant and also 
provide a larger surface area for bacterial colonization. These findings suggest the 
advantage of long-chain AHL-producing rhizobacteria to form a symbiotic associa-
tion with the plant host.

Short-chain C6-HSL has been shown (Schenk et al. 2012) to increase the shoot 
biomass and cause primary root elongation in Arabidopsis, with eventual decrease 
and loss of activity with an increase in acyl chain length (Fig. 2.1). Liu et al. (2012) 
demonstrated promotion of primary root growth in Arabidopsis by AHLs with mod-
ification at the C3 position of their branched chain, 3OC6-HSL and 3OC8-HSL treat-
ment, in a concentration-dependent manner similar to C3 unsubstituted C6-HSL. On 
the other hand, long-chain AHLs, C12-HSL, and C14-HSL, promoted lateral root 

Fig. 2.1 AHL influences plant root growth and morphology in Arabidopsis. Changes varied based 
on AHL acyl chain length. Short-chain AHLs (C6-HSL, C8-HSL) causes the growth of primary 
root, whereas long-chain AHL (C10-HSL) causes the growth of lateral root and root hair (von Rad 
et al. 2008; Bai et al. 2012; Liu et al. 2012)
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growth and inhibited root elongation, suggesting separate signaling pathways for 
the long- and short-chain AHLs (Liu et al. 2012).

A different model plant, mung bean, was studied by Bai et al. (2012) for AHL 
treatment response. They found enhanced auxin-mediated adventitious root forma-
tion post AHL treatment. AHLs with C3 modification, particularly 3OC10-HSL, 
showed higher activity than their unmodified analogs such as C8-HSL, C10-HSL, 
and C12-HSL. This preference for specific AHL structures may be the result of spa-
tial specificity, required by some plant proteins (Bai et al. 2012). In contrast to these 
reports, there was no significant effect on the growth of yam and barley plants when 
exposed to C6-HSL, C8-HSL, and C10-HSL (Götz-Rösch et al. 2015). These findings 
strongly suggest that different plants respond differently to AHLs, which may be a 
result of variations in AHL signaling cascades (Götz-Rösch et al. 2015). Figure cre-
ated using BioRender.

2.4  AHL as Plant Strengthener

Plants possess a wide range of defenses that get activated in response to various 
stress, pathogens, and parasites (Gimenez et al. 2018). Induced resistance in plants 
is an important defense mechanism where defenses are preconditioned by prior 
infection or treatment resulting in resistance (or tolerance) against future infection 
(Vallad and Goodman 2004). The prior attack acts as a warning signal, preparing the 
plant for a stronger defense. The sensibilization mechanism, before an attack, called 
the priming phase, can be induced by a diverse range of low-molecular-weight 
metabolites and natural compounds, including AHLs (Mauch-Mani et al. 2017).

Tomato plants get primed via SA- and ethylene-dependent defense genes, upon 
exposure to AHL-producing rhizobacteria, Serratia liquefaciens MG1, and 
Pseudomonas putida IsoF, against the fungal pathogen Alternaria alternata 
(Schuhegger et al. 2006). A similar AHL-mediated antifungal activity that involved 
on SA- and ethylene-related defense reactions was reported in cucumber (Cucumis 
sativus) by Serratia plymuthica HRO-C48 against the damping-off disease caused 
by Pythium aphanidermatum, as well as in bean and tomato plants against the gray 
mold fungus Botrytis cinerea infection (Pang et al. 2009).

Among long-chain AHLs, 3-oxo-C14-HSL conferred systemic resistance in 
monocotyledonous (barley), and dicotyledonous plant (Arabidopsis) plants toward 
biotrophic and hemibiotrophic fungus, but not against necrotrophic fungal patho-
gens (Schikora et al. 2011). This resistance is associated with an increased expres-
sion of mitogen-activated protein kinases, AtMPK3, and AtMPK6, which 
consequently increases the expression of defense-related transcription factors, 
WRKY22 and WRKR29, and the Pathogenesis-Related1 gene (PR1). However, 
3-oxo-C14-HSL did not show any impact on root and shoot growth as reported for 
long-chain AHLs (von Rad et  al. 2008). A similar effect of 3-oxo-C14-HSL 
imparting systemic resistance was reported by Zarkani et al. (2013) in A. thali-
ana when inoculated with Sinorhizobium meliloti strains producing oxo-C14-HSL. 
They observed that neither 3-oxo-C14-HSL-negative S. meliloti nor 
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3-oxo-C8-HSL-positive Rhizobium etli produced a similar effect. These findings 
revealed that the resistance induced by AHLs does not necessarily require a host-
symbiont relationship to start with, as A. thaliana is not a symbiotic or nodule-
forming plant.

Schenk et al. (2014) reported the priming effect of AHL on exposure to oxo-C14- 
HSL leading to increased deposition of lignin, phenolic compounds, and callose on 
the cell wall, reinforcing the cell wall to increase resistance to pathogens. A second 
possible mechanism of resistance by oxo-C14-HSL could be the enhanced stomatal 
closure observed due to AHL-induced accumulation of cis-12-oxo-phytodienoic acid 
(OPDA) and salicylic acid (SA) in plant leaves. Stomatal closure is an important part 
of innate immunity. Another interesting mechanism of resistance by AHL- induced 
priming is the elevated level of hypersensitive response (HR) after infection. Barley 
primed with S. meliloti expR+ AHL showed accumulation of reactive oxygen species 
(ROS) and increased expression of Peroxidase7 as an HR, following infection with 
Blumeria graminis (Hernández Reyes et al. 2014). Given these various mechanisms 
of resistance induced by AHL priming, AHL-induced resistance seems to differ from 
the systemic acquired and the induced systemic resistances, providing new insight 
into inter-kingdom communication (Schenk et  al. 2014). Moshynets et  al. (2019) 
used C6-HSL as a seed primer for winter wheat (Triticum aestivum L.), which was 
found to improve germination levels significantly, biomass at filtering stage, crop 
structure, and productivity at maturity of the crop. Thus, AHLs could find application 
in improving growth and productivity of cereal crops.

2.5  Effect of AHL on Symbiosis and Nitrogen Cycle

Many strains of nodulating rhizobia such as Rhizobium leguminosarum bv. viciae, 
R. leguminosarum, S. meliloti Rm41, and A. tumefaciens are associated with quo-
rum sensing gene regulation systems (Gonzalez and Marketon 2003). The process 
of legume-host symbiosis is a complex interplay of communication between various 
signal molecules that includes flavonoids from root exudates that attract the rhizo-
bia, exopolysaccharides for bacterial attachment, Nod factors for initiation of root 
cell division to form the infection threads, and AHLs. Once bacteria reach the host, 
a further process of symbiosis depends on reaching a threshold cell density, coordi-
nated by the QS regulatory system (Gonzalez and Marketon 2003; Sanchez- 
Contreras et al. 2007; Downie 2010).

A few QS regulatory systems directly linked to symbiosis are discussed here. 
Association of root nodule formation with an unidentified AHL was initially 
reported in Rhizobium leguminosarum by Gray et  al. (1996). Rosemeyer et  al. 
(1998) identified luxI- and luxR-homologous genes, raiI, and raiR in Rhizobium etli 
CNPAF512 and found raiI to have a restrictive effect on the number of nodules in 
the host plant Phaseolus vulgaris without affecting the nitrogen-fixing capacity per 
nodule. On the other hand, the second quorum sensing locus, cinI, and cinR in 
Rhizobium etli CNPAF512 was essential for nodule bacteroid differentiation and 
involved in symbiotic nitrogen fixation (Daniels et al. 2002). However, the same 
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genes showed varying implications in different Rhizobium strains. Mutation of cinR 
and cinI in R. leguminosarum had little or no effect on the growth of the bacterium 
and in the symbiosis with peas (Edwards et al. 2009).

QS-deficient mutants of Mesorhizobium huakuii showed an inability to form root 
nodules (Gao et al. 2006). MrtI-MrtR pair was identified as LuxI-LuxR homologs in 
M. tianshanense and played an indispensable role in root hair adherence and nodu-
lation on the host plant Glycyrrhiza uralensis; QS-deficient mutants showed the 
absence of nodulation (Zheng et al. 2006; Cao et al. 2009). Increase in several nod-
ules was observed in M. truncatula after treatment with 1 μM 3-oxo-C14-HSL with 
no effect on lateral root number (Veliz-Vallejos et al. 2014). Study on ExpR/Sin QS 
system in Sinorhizobium meliloti by Gurich and González (2009) revealed that QS 
stays active during all the growth phases till symbiosis is established, after which 
the bacteroids’ metabolic functions focus on nitrogen fixation.

Besides nitrogen fixation, nitrogen mineralization is also responsible for provid-
ing plants the utilizable form of nitrogen, where microbes enzymatically break 
down the organic nitrogen sources such as chitin, to the simpler inorganic form of 
nitrogen such as ammonia. DeAngelis et al. (2008) studied the link between QS and 
extracellular enzyme activity of 533 bacterial isolates, dominated byα-proteobacterial 
isolates such as Agrobacterium rhizogenes, Inquilinus ginsengisoli, and Burkholderia 
sp. in the rhizosphere of Avena and observed compromised chitinase or protease 
activity in all but one isolates upon disruption of QS. This strongly suggests that QS 
plays an important role in the regulation of exoenzyme production by bacteria in 
soil, and thus targeting QS for disease control should also take into account the 
resultant risk of disturbing soil nitrogen cycle.

2.6  AHL-Induced Plant Diseases

Phytopathogenic bacteria employ QS regulatory system to control virulence and 
may carry one or more QS regulons. The most well-characterized bacterial signal 
molecules involved in plant pathogenesis include AHLs, DSF, and 3-hydroxy pal-
mitic acid methyl ester or methyl 3-hydroxypalmitate (Sibanda et al. 2016).

The LuxR homologs aviR, avsR, and avsI in Agrobacterium vitis are required for 
causing necrosis in grapes and hypersensitive-like response on tobacco (Zheng et al. 
2003; Hao et al. 2005; Hao and Burr 2006). Ferluga et al. (2007) reported a LuxR 
family-type regulator, OryR, in Xanthomonas oryzae pv. oryzae (Xoo), essential for 
virulence in rice, and it required macerated rice for activity. The plant pathogen, 
Pantoea ananatis SK-1 depends on the quorum sensing system for the biosynthesis 
of extracellular polymeric substances (EPS), biofilm formation and causes center 
rot disease in onion (Morohoshi et al. 2007).

Liu et al. (2008) demonstrated a greater role for QS in pathogenesis as a “master 
regulator,” controlling other regulatory systems that further coordinate to control 
virulence genes. The study monitored the progression of soft rot in potato caused by 
P. atrosepticum using virulence factors and plant cell wall-degrading enzymes 
(PCWDEs) under the control of the QS system. Differential transcription of up to 
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26% of the P. atrosepticum genome was observed in a QS mutant. They also identi-
fied many novel components of the QS regulon namely type I, II secretion systems 
associated with secretion of PCWDE; type III secretion system and coronafacoyl- 
amide conjugates for manipulation of plant defenses; T6SS (Type VI secretion sys-
tem) and VirS, a novel potential regulator essential for complete virulence.

It is interesting how some plant pathogens exploit changes in plant chemicals to 
mount an optimal attack. This is a common phenomenon among plant pathogens 
carrying the “orphan or the solo” LuxR homologs, which do not possess a cognate 
LuxI homolog (Subramoni and Venturi 2009). LuxR solos occur in both AHL- 
producing and AHL-nonproducing bacteria, allowing them to respond to signals 
from other bacteria or eukaryotes. These LuxR solos may act as important interspe-
cies and inter-kingdom signals (Ferluga and Venturi 2009; Subramoni and Venturi 
2009). For example, OryR protein of Xanthomonas oryzae pv. oryzae, solubilized in 
the presence of rice extract, however became insoluble in the presence  different 
AHLs. This indicates the presence of a molecule in rice extract that might interact 
with and stabilize OryR (Ferluga et al. 2007) and that this molecule could be closely 
related to AHLs, as OryR possesses an AHL-binding motif.

Similarly, XccR, the LuxI homolog in Xanthomonas campestris pv. campestris, 
causes infection in cabbage. XccR associates with an unknown plant factor and 
binds to a lux-box present in the promoter of the proline aminopeptidase (pip) viru-
lence gene (Zhang et  al. 2012). It is probable that OryR, XccR solos, and their 
plant partner participate in inter-kingdom signaling, and identification of the plant 
compounds would set novel insights into inter-kingdom signaling (Subramoni and 
Venturi 2009).

2.7  AHL Uptake in Plant and Possible Signaling Pathways 
for Plant Response to AHL

There are a few reports addressing this basic question of whether AHLs coordinate 
with other signals upon perception by plant or are taken up by plants by some physi-
cal mechanism (Schikora et al. 2016). Götz and coworkers (2007) tested the uptake 
of radiolabeled C6-HSL, C8-HSL, and C10-HSL in barley (Hordeum vulgare L.) and 
yam (Pachyrhizus erosus L.). Ultra-performance liquid chromatography (UPLC) 
and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) 
analysis revealed short AHLs, only C6-HSL, and C8-HSL, transported from roots 
into barley shoots and C6-HSL in case of yam shoots. A. thaliana also transported 
C6-HSL from root to leaves in a time-dependent manner, while C10-HSL remained 
accumulated in root region (von Rad et al. 2008). Similarly, it was observed that the 
long-chain AHLs, oxo-C14-HSL, were not taken up within the Arabidopsis plant.

Moreover, it showed no effect on root growth, whereas short-chain AHL C6-HSL 
got systemically translocated from root to shoot and affected growth-promoting 
effect (Schikora et al. 2011). A possible reason behind the difference in uptake 
of AHLs might be the reduced motility with an increase in acyl chain length or 
higher hydrophobicity of longer AHLs (von Rad et al. 2008; Schikora et al. 2011). 
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However, Sieper et al. (2014) reported systemic transport of C8-HSL and C10-HSL 
into the barley shoots with a molecular analysis of the process backed by autoradi-
ography analysis, sensor strain assays, and monoclonal antibodies. They suggested 
a probable active or semi-active process of translocation of AHLs with the involve-
ment of ATP-binding cassette (ABC) transporters based on the inhibition of AHL 
uptake in the presence of orthovanadate, an inhibitor of ABC transporters. All these 
reports point toward different signaling pathways and receptors for different AHLs. 
Götz- Rösch et  al. (2015) observed a distinct pattern of selected detoxification 
enzymes activity in barley and yam plants, upon C6-, C8-, and C10-HSL treatment. 
The activities of glutathione S-transferase and ROS scavenging enzymes were 
mostly tissue specific. C6-HSL was readily transported into all barley plant parts 
without degradation with the most prominent influence on the leaf-located enzymes.

On the other hand, the yam plant showed no such change in detoxification enzyme 
activity, which might be a result of the absence of AHL-transport machinery toward 
the shoot in yam bean. In both the plants, C10-HSL was almost broken down com-
pletely before it entered the shoot in its initial form. Interestingly, the metabolization 
was faster in yam plant than in barley, which may be related to the fact that symbiotic 
yam beans are naturally exposed to AHL (Götz-Rösch et al. 2015).

Other studies have aimed at deciphering the molecular mechanisms behind the 
plant-AHL interactions, such as AHL perception mechanism in plant and signal trans-
duction pathways involved (Jin et al. 2012; Song et al. 2011; Liu et al. 2012; Zhao et al. 
2016). G-protein signaling is considered one of the most conserved signaling pathways 
in plants and is associated with the transduction of many extracellular signals. It is 
involved in many physiological functions in plants like stomatal opening (Urano and 
Jones 2013), phytochrome-dependent cell death (Zhang et al. 2012), stress signaling 
(Tuteja and Sopory 2008), response to plant hormones, and agronomical traits like 
nitrogen fixation, seed size, and number (Pandey et al. 2019). In typical G-protein sig-
naling, the G-protein complex comprised of Gα, Gβ, and Gγ subunits remains inactive 
with GDP bound to the Gα subunit. In animals, the G-proteins get activated via a mem-
brane protein called G-protein-coupled receptor (GPCR) upon binding with a ligand, 
leading to the exchange of GTP with GDP and the dissociation of GTP-Gα from the 
Gβγ subunit. The free Gα and Gβγ subunits further initiate different intracellular sig-
naling pathways (Tuteja 2009). However, in plants, the G-protein signaling is reported 
to be independent of GPCR, and the plant G-proteins release GDP spontaneously and 
thus are self-activating (Urano and Jones 2013). Although some authors  think this 
hypothesis is supported by genetic and physiological findings, it is still not clear 
whether the hypothesis applies to all G-proteins in all plant species (Pandey et  al. 
2019). Song et al. (2011) hypothesized that AHLs in plants is received by GPCRs, 
which activate the G-protein α subunit and Ca2+ channels to allow Ca2+ influx. C4-HSL 
treatment on A. thaliana roots was shown to cause a transient rise in cytosolic Ca2+ as 
a result of influx from the extracellular matrix. The authors suggest Ca2+ signaling 
might help plant cells to sense QS signals. However, considering the possibility of the 
absence of GPCR, AHL might also interact directly with intracellular receptors without 
the help of transmembrane proteins (Jin et al. 2012; Song et al. 2011).

Many G-protein-coupled receptors (GPCRs) have been reported to mediate 
AHL-induced root elongation in A. thaliana. Expression of GPCRs, Cand2, Cand7 
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(Jin et al. 2012), GCR1, and GCR2 (Bian et al. 2011) increased in A. thaliana root 
in response to 1 μΜ 3OC6-HSL and 10 μΜ 3OC8-HSL treatment. GPA1 was also 
added to this list of GPCRs affecting 3OC6-HSL and 3OC8-HSL action on root 
growth in A. thaliana in a concentration-dependent manner (Liu et  al. 2012). 
Involvement of H2O2 and NO-dependent cGMP signaling pathways behind this 
AHL-induced auxin-dependent lateral root formation has also been proposed (Bai 
et al. 2012). A recent report on 3OC6-HSL enhancing root elongation involves the 
transcriptional factor AtMYB44 in A. thaliana (Zhao et al. 2016).

2.8  Plant Interference with QS Signals

Not only do plants respond to AHL and QS systems in various ways, from reaping 
symbiotic benefits to enhancing disease resistance, they also evolve strategies to 
interfere with the microbial signaling systems for their advantage, by producing 
signal mimics, certain plant metabolites, and signal-degrading enzymes (Fig. 2.2).

2.8.1  Plant Interferes with QS via AHL Mimics

AHL mimic compounds are reported to be produced by many plants to create con-
fusion in microbial communication (Bauer and Mathesius 2004). Halogenated fura-
nones from Delisea pulchra, a marine red alga, were reported to have strong 

Fig. 2.2 Schematic presentation of how plants resist and manipulate QS signaling to their advan-
tage. Figure created using BioRender
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inhibitory effects against AHL-controlled phenotypes in Serratia liquefaciens, 
Escherichia coli, and Proteus mirabilis models (Givskov et al. 1996; Gram et al. 
1996). Later, the structural similarity of furanones to AHLs was confirmed along-
side their possible mode of action of displacing AHLs competitively from the AHL 
LuxR receptor (Manefield et al. 1999). Further clarity into the mechanism of fura-
nones came from the finding that halogenated furanones destabilized LuxR protein, 
accelerating its degradation (Manefield et al. 2002).

The leaves and stem of rice plants produce AHL mimics, which could activate 
three different bacterial AHL biosensors and were very sensitive to the AiiA lac-
tonase. Given the highly specific nature of lactonases, these rice compounds may be 
another AHL or a compound of close structure (Degrassi et al. 2007). Teplitski et al. 
(2000) reported the presence of AHL mimics in pea seedling exudates using various 
AHL reporter strains, C. violaceum CV026, P. aureofaciens 30-84I, and S. liquefa-
ciens MG44. Activity analysis of different HPLC fractions revealed the presence of 
both inhibitory and stimulatory substances in pea plant. AHL mimic activity was 
also shown by seedlings of other plant species, rice, soybean, tomato, crown vetch, 
and Medicago truncatula, suggesting AHL mimic synthesis is a common response 
among higher plants (Helman and Chernin 2015). Gao et al. (2003) reported around 
15 to 20 separable unidentified QS mimic compounds in M. truncatula young seed-
ling, capable of specifically stimulating or inhibiting responses in QS reporter bac-
teria, Vibrio harveyi BB170, Pseudomonas putida pAS-C8, C. violaceum CV026, 
and E. coli strains JM109, p(SB401), p(SB536), and p(SB1075). However, the pre-
cise chemical structure of these QS mimics in pea, rice, and M. truncatula is not yet 
known, except for the possibility of a structure close to that of AHLs. It is also sug-
gested that such mimic compounds might be degradation products of bacterial 
AHLs as the result of the action of plant AHL-degrading enzymes such as lac-
tonases (Mathesius and Watt 2010). Pérez-Montaño et  al. (2013) reported AHL 
mimic molecules produced by Oryza sativa (rice) and P. vulgaris (bean) plants that 
specifically interfere with the QS-regulated biofilm formation of two plant- 
associated bacteria, Sinorhizobium fredii SMH12 and Pantoea ananatis AMG501. 
These mimic compounds are considered non-AHL-type mimics as they lack a lac-
tone ring typical of AHLs. Seed and root exudates of Arachis hypogaea L. (peanut) 
contain unidentified long-chain AHL-like mimics and short inhibitory chain AHL-
like compounds, which are tools for manipulating the bacterial behavior in the rhi-
zosphere (Nievas et al. 2017).

2.8.2  Plant Metabolites and Enzymatic Interference of QS

Many plant secondary metabolites interfere directly and indirectly with bacterial 
QS. Keshavan et al. (2005) coined the term quorum sensing-interfering (QSI) com-
pounds for the second group of plant signals that do not resemble AHLs. They 
observed inhibition of violacein production in C. violaceum CV026 by Alfalfa seed 
and seedling exudates without affecting cell growth, indicating interference of 
QS. Structural characterization of a molecule purified from the exudates revealed it 

P. D. Philem et al.



41

as L-canavanine, an arginine analog. The Alfalfa seed exudates also inhibited the 
synthesis of exopolysaccharide EPS II, QS-regulated phenotype, required for estab-
lishing symbiosis in S. meliloti, the natural symbiont of Alfalfa. A similar effect was 
demonstrated by synthetic L-canavanine, which did not affect protein synthesis or 
synthesis of AHL in S. meliloti. A possible mechanism of action may be the incor-
poration of L-canavanine in place of L-arginine in the QS regulator protein, thus 
impairing protein folding. Alternatively, some bacteria such as Streptococcus faeca-
lis can degrade L-canavanine to homoserine (Kalyankar et al. 1958), which if con-
verted to AHL mimic scan also contribute to the QS inhibition property of 
L-canavanine.

Salicylic acid (SA) produced by plants downregulates the virulence genes and 
activates the quorum degradation system, attKLM operon in Agrobacterium, which 
includes the attM gene encoding a lactonase (Yuan et al. 2007). Thus, SA might act 
as a powerful plant defense signal acting against Agrobacterium and other QS bacte-
ria in the phytobiome. A similar interference with QS mechanism was observed 
when plant phenolic acids, cinnamic acid (CA), and SA inhibited expression of QS 
regulator gene; QS regulated virulence genes and reduced AHL level in Pectobacterium 
aroidearum and P. carotovorum (Joshi et al. 2016). Cinnamaldehyde is a naturally 
occurring compound in the bark of cinnamon trees and widely used in food indus-
tries. Niu et al. (2006) reported inhibition of 3-hydroxy-C4-HSL- and 3OC6-HSL-
mediated QS by very low concentrations of synthetic cinnamaldehyde. p-Coumaric 
acid, a natural phenolic compound produced by plants, showed both stimulatory and 
inhibitory effects on QS in a concentration- and strain-dependent manner, whereas 
garlic extract inhibited QS receptors LuxR, AhyR, and TraR, which become toxic at 
higher concentrations (Bodini et al. 2009). It is interesting that coumaric and cin-
namic acids have also been implicated in the synthesis of aryl HSL signals in certain 
nodulating rhizobacteria (Schaefer et al. 2008; Ahlgren et al. 2011).

The vitamin riboflavin and its derivative, lumichrome, are synthesized by bacte-
ria such as B. subtilis, E. coli, Photobacterium phosphoreum, and Actinobacillus 
pleuropneumoniae (Vitreschak et al. 2002), a majority of plants (Roje 2007), and 
algae like Chlamydomonas (Palacios et al. 2014). Riboflavin and lumichrome puri-
fied from the green alga Chlamydomonas reinhardtii can bind to and activate the 
AHL receptor LasR and thus interfere with bacterial QS (Rajamani et al. 2008). 
Change in response to riboflavin and lumichrome after mutation of LasR residues 
required for AHL binding indicated a similar binding site for all the three signals. 
These molecules may have a larger and complex role, given the fact that they are 
produced by plants, bacteria, and algae (Mathesius and Watt 2010).

Medicinal plants also contribute a vast repertoire of secondary metabolites with 
anti-QS effects. Curcumin, the phenolic bioactive compound of Curcuma longa 
(turmeric), is a popular example. It can attenuate Pseudomonas aeruginosa (PAO1) 
virulence by interfering with AHL production, biofilm formation, and inhibiting 
elastase and protease activity (Rudrappa and Bais 2008). It is associated with reduc-
tion in biofilm formation by uropathogens, E. coli, Proteus mirabilis, P. aeruginosa, 
and Serratia marcescens that cause persistent urinary tract infection via 
QS-dependent virulence mechanisms (Packiavathy et  al. 2014). Some eminent 
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examples of medicinal plants with anti QS activity include Terminalia chebula, 
Ocimum sanctum, Amphipterygium adstringens, and Centella asiatica (Bouyahya 
et al. 2017). The primary bioactive compounds present in these medicinal plants are 
polyphenols, terpenoids, flavonoids, quinines, tannins, anthocyanins, polyamines, 
cytokinins, and polysaccharides (Bouyahya et al. 2017).

Many plant volatiles such as essential oils (EO) and their components compounds 
also act as a signal and affect bacterial QS (Ahmad et al. 2015). Eucalyptus globulus 
and E. radiate essential oils contain eucalyptol and limonene as the main bioactive 
component, respectively, which inhibited violacein pigment of the reporter strain 
C. violaceum CV026 without changing cell growth parameters, indicating anti-
quorum sensing activity (Luís et al. 2016). A similar effect was seen in EOs from 
different species of Piper (Olivero et al. 2011). Khan et al. (2009) reported the anti-QS 
property of an unknown component of clove oil, whereas eugenol, the main constitu-
ent of clove oil, could not inhibit QS activity, indicating the anti-QS property of other 
minor components of the oil such as α-caryophyllene and β-caryophyllene. Citrus 
reticulate EOs also showed inhibition of biofilm formation and AHL production 
(Luciardi et al. 2016). Thymus vulgare EO inhibited the expression of the AHL-related 
flagella gene flgA required for initial bacterial attachment for biofilm formation by the 
foodborne pathogen P. fluorescens KM121 strain (Myszka et al. 2016).

The significance of the AHL-based signaling systems is reflected in the abun-
dance of quorum quenching activities in plants and animals, which have the role of 
destroying the signaling activity of bacterial pathogens (Schikora et al. 2016). Plants 
can interfere with bacterial QS by producing enzymes as well. Delalande et  al. 
(2005) reported rapid disappearance of AHLs from the root region of germinating 
Lotus plants, and a possible enzymatic mechanism is suspected. AHLs are reported 
to alter Arabidopsis postembryonic root development  (Ortíz-Castro et  al. 2008). 
Fatty acid amide hydrolase expressed by Arabidopsis could degrade AHLs, as evi-
dent from the increased resistance to AHLs in overexpressing mutants, and AHLs 
induced susceptibility to developmental changes in fatty acid amide hydrolase 
mutant (Ortíz-Castro et al. 2008).

2.9  Role of Endophyte in a Phytobiome

Endophytes are microbes that symbiotically live whole or at least a part of their life 
cycle within a living plant without showing any signs of infection. However, com-
monly known endophytes are mostly considered commensals and do not affect host 
plant functioning, while less common are either mutualistic with beneficial effects 
or antagonistic as latent pathogens (Hardoim et al. 2015). The beneficial effects of 
an endophyte include the promotion of plant growth, health, and contribution to 
host defense response against a pathogen and abiotic stresses (Khare et al. 2018). 
One of the most notable properties of endophytes is their ability to either synthesize 
or induce a host plant to synthesize metabolites that promote plant growth and help 
them adapt better to the environment (Varma et al. 2017). Thus, they promise eco- 
friendly sources of useful bioactive compounds such as antibiotics and anticancer 
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drugs (Hardoim et  al. 2015). Moreover, endophytic make up of edible plants 
becomes a concern as it is known that some plant-friendly endophytes could be 
potential human pathogens (van Overbeek et al. 2014).

Although it is accepted that the interaction of endophyte and its host plant may 
be multidimensional (Khare et al. 2018), many fundamental questions remain to be 
answered. How do plants recruit endophytes (Kandel et al. 2017)? How does the 
endophyte survive the first line of defense of the host plant? How do they influence 
host gene expression and how different members of the endophyte community 
interact and influence one another?

There are a few reports on QS activity among endophytes and about its influence on 
the host plant. Hudson et al. (2010) isolated and identified several culturable endo-
phytic strains from stem tissue of sugarcane and from xylem fluids of grapevine. Five 
of six sugarcanes and fourteen of fifteen grapes with identified endophytes showed a 
significant response in at least one AHL-dependent biosensor. AHL lactonase activity 
has been reported in endophytic population isolated from potato tuber peel (Ha et al. 
2018) and Pterocarpus santalinus (Rajesh and Rai 2014). Two AHL-based quorum 
sensing systems, SplIR and SpsIR, have been reported from endophytic Serratia sp. 
strain G3 (Liu et al. 2011). While similar to the free-living strain of Serratia HRO-
C48,  antifungal activity, indole-3-acetic acid and exoenzyme production in the G3 
strain are regulated by QS, however, QS control of swimming motility and biofilm 
formation was a strain-specific phenotype, reflecting a lifestyle driven by the evolution 
of the QS systems in free-living and endophytic strains. Jiang et al. (2014) reported 
production of 3OC8-HSL by Pantoea agglomerans YS19, an endophytic diazotrophic 
bacterium isolated from rice, and revealed the importance of 3OC8-HSL in promoting 
bacterial growth and also in the formation of a multicellular aggregate structure called 
symplasmata, which is a characteristic of the bacterium.

Pseudomonas sp. strain GM79, an endophyte isolated from cottonwood (Populus 
deltoides), possesses an orphan OryR homolog PipR, which was shown to require 
an unknown signal derived from the cottonwood leaf macerates instead of an AHL 
(Schaefer et al. 2016). The signal was later identified as a chemical derived from 
ethanolamine activity (Coutinho et al. 2018). Similar roles of plant signals for acti-
vation of different solo/orphan Lux R homologs have been reported in many other 
free-living bacteria (Ferluga et al. 2007; Ferluga and Venturi 2009; Subramoni and 
Venturi 2009). Thus, the current understanding of endophytes signifies their 
immense potential and advantage in improving the quality of a phytobiome. At the 
same time, the need for a deeper understanding of the physiology of endophytes is 
also obvious, given the limited number of reports and a nonsystemic approach of 
study used so far (Hardoim et al. 2015).

2.10  Conclusion and Forthcoming Prospects

Managing the phytobiome may offer an important biotechnological area for improv-
ing agricultural yield and quality with a minimum participation of harmful agro-
chemicals. Phytobiome studies may provide more precise insights into the 
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mechanisms and consequences of disease (and resistance) and identify microbial 
indicators of disease (and resistance) progress. In the field, it can be assumed that 
communication signals are exposed to many interfering and mimic signals from the 
neighbors, and hence a system-level understanding of phytobiome is the appropriate 
approach for successful application of this understanding.

One of the pivotal points of control to bring desired traits in a phytobiome is the 
manipulation of the interspecies and intraspecies communication between plants 
and microbes, either by introducing selected beneficial microbes as microbial bio-
fertilizers and biopesticides or by genetic engineering of plants and microbes. A 
known plasmid pME6863 carrying a lactonase coding gene aiiA from Bacillus sp. 
A24 to Pseudomonas fluorescens P3 exhibited the ability to degrade AHLs and 
significantly reduced soft potato rot caused by Erwinia carotovora and crown gall 
of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. 
A24. Tobacco and potato plants transformed with AHL lactonase from Bacillus sp. 
showed enhanced resistance to E. carotovora infection.

The use of advanced “omic” technologies, such as metabolomics and proteomics, 
allows a more reliable analysis of phytobiome interactions in unprecedented detail 
and provides insights into the resistance mechanisms that consider both simultane-
ous attacks of various pathogens and the interplay with beneficial microbes. In this 
context, the metagenomic study of unculturable microorganisms would also provide 
an indispensable solution to this whole complex equation in a phytobiome. 
Moreover, a multidisciplinary analysis should be incorporated by collaborative dis-
cussions among different disciplines such as biologists, ecologists, plant patholo-
gists and agricultural entomologists. It should be soon possible to provide a systemic 
picture of how and to what extent plants can shape their own detrimental or benefi-
cial community.
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Abstract
Soil and plant root are known as the microbial reservoir, and these microbes are 
found broadly in the plant rhizosphere and tissues. Phytobiome generally exists 
as epiphytic, endophytic, and rhizospheric that undertakes a critical role in plant 
development. These microbiomes may shape networks, to stabilize the function 
among different kinds of plant-associated factors to propagate or transmit in a 
different part of the plant. Microbial networks linked with plant health give cru-
cial beneficial insights to look upon. The present section covers the features of 
such microbial networks that build the phytobiome. The chapter highlights their 
ability to better uptake nutrients or plant growth regulators in a stressed environ-
ment and further extends an evolution of studies depicting the supporting com-
ponents that shape the phylogenetic and plant-related networks. The chapter 
advocates the possibility to understand the techniques by which plants select and 
connect with their microbiomes and affect plant improvement and well-being, 
thereby laying the foundation of novel microbiome-driven systems to the 
advancement of sustainable agriculture. The microbiome is unpredictably 
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engaged with plant well-being providing extra qualities to the plant. To  understand 
the guideline of plant characteristic articulation, henceforth plant execution, and 
how this impacts the biological systemic network, it is required to get well versed 
with phytobiome and its usefulness. In the present section, the significance of the 
phytobiome to plant genomics is tended to describe the phytobiome in assembly 
to the environment of the outline with attention on natural surroundings happen-
ing subterranean at the plant-soil between face, where the center is around the 
job of exudates as currency in this framework.

Keywords
Microbial communities · Rhizosphere · Endophytes · Phyllosphere

3.1  Introduction

Nature allows the coexistence of healthy and asymptomatic plants with diverse 
microbes such as archaea, bacteria, fungi, and protists where a complex microbial 
consortium is formed to impact plant growth and productivity (Vorholt 2012; 
Kumari et al. 2019; Solanki et al. 2019). Phytobiome has either neutral or helpful 
roles in the plants’ fitness (Mendes et  al. 2013). The useful impacts on plants 
include disease suppression (Ritpitakphong et al. 2016; Solanki et al. 2012), plant 
immunization (Van der Ent et al. 2009), induction of systemic resistance (Zamioudis 
et al. 2015), increased nutrient acquisition (Van der Heijden et al. 2016), increased 
tolerance to abiotic stresses (Rolli et  al. 2015; Wang et  al. 2018), adaptation to 
environmental variations (Haney et al. 2015), or enhancement of the mycorrhizal 
colonization (Garbaye 1994). Microorganisms can also target agricultural produc-
tivity by providing nutrient availability/acquisition (Kavamura et al. 2013). Lack 
of precise methodologies has led to limited access to nonculturable microbial 
groups, and thus, most of the work relies on single microbial groups associated 
with plants (Andreote et al. 2009). Mycorrhizal association with a plant (Chagnon 
et al. 2013) and microbial diazotrophs (Raymond et al. 2004) are the few examples 
that need to be explored in-depth. Nevertheless, an inclusive map of this system 
laid stress on the interactions happening between diverse groups of microbes, per-
mitting the term “microbiome.” Joshua Lederberg coined the term “microbiome” 
for the first time and described it to be the “ecological community of commensal 
microorganisms, symbionts or pathogens that occupy a space in our body” 
(Lederberg and McCray 2001). New terminology for “microbiome” was suggested 
by Boon et al. (2014) that relates to host-associated genes in a defined surrounding, 
thereby bypassing the abundance of the microbial community of low significance. 
Plant-associated microbial groups work in multidimensional ways as host plant 
delivers unique metabolic adeptness to attract beneficial microbial niches that can 
have a positive (mutualistic), neutral (communalistic), or deleterious (pathogenic) 
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effect on plant health (Thrall et al. 2007). Microbes are the main component of 
plant functional traits such as soil formation, organic matter decomposition, nutri-
ent mobilization, and improvement in plant productivity (deBello et  al. 2010). 
Rhizospheric prokaryotes are known as plant helpers due to their beneficial activi-
ties such as nitrogen (N2) fixation (Martinez-Romero 2006), solubilization of 
insoluble minerals, and stimulation of phytohormones (Hardoim et  al. 2008). 
Genome duplication (polyploidization) is defined as macroevolutionary events of 
host that can change microbiome structure. The phytobiome exerts influences on 
plant trait expression through upstream and downstream regulation of nutritional 
uptake, thus supervising plant’s performance. To unlock the subtleties inside the 
ecosystem, and the regulation of plant trait expression, impacts of the microbiome 
are needed to be observed. Bernedsen et al. (2012) reported that plant microbiome 
interface aligned as “microbe-soil-microbe-plant-microbe interface” rather than 
the “soil-microbe-plant interface.” Plant genome is itself a complex system, and 
microbial interaction is coined as the plant’s “second genome” because it extends 
the plants’ genetic compendium extensively.

This chapter also contains a detailed description of beneficial phytobiome inter-
actions. Three microbial groups (bacteria, fungi, and protists) that abundantly origi-
nate on plant tissues are deliberated, and diverse mechanisms used to cooperate and 
compete in planta are defined. Nevertheless, the activity of microbiomes is a new 
systematic approach that is required to understand the multidimensional actions of 
microbial communities (Bashiardes et  al. 2018). To some degree, microbiome 
applications would include an emphasis on enlightening basic components that can 
improve crop production such as management of plant nutrients, soil health, and 
environmental safety (Syed Ab Rahman et al. 2018).

3.2  Soil Microbiome Characterization

Phytobiomes are discrete that comprise unfavorable pathogens, potential endo-
phytes, and helpful symbionts (Rosenblueth and Martínez-Romero 2006; Wang 
et  al. 2017; Malviya et  al. 2019). Be that as it may, traditionally, the microbial 
assorted variety was assessed by segregating and refined on various supplement 
media and development conditions. Microbial metabolism fulfills the nutritional 
and regulatory prerequisites of plants (Lugtenberg and Kamilova 2009). These 
healthful necessities, for the most part, incorporate nitrogen, phosphorous, and iron. 
Moreover, these elements also control plant growth by stimulating the production of 
plant growth regulators. Screening of the most suitable bacteria would require 
culture- based methods (Taulé et al. 2012). On a routine basis, the procedures nor-
mally contain an agar plate assay or a broth medium to multiply the microbes. These 
assays also help in locating genetic components of microbes. However, these proto-
cols failed to explore the microbial diversity of nonculturable microbiota.

For investigating the entire microbiome, the very first effort is initiated with 
sequencing of a conserved gene region such as the 16S rRNA gene that is widely 
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applied for microbial identification (Mullis et al. 1987). To contemplate and com-
prehend the microbiome in a brief span, thorough upgrades have been accomplished 
by this technique, thereby yielding metagenomics. These techniques incorporate 
beginning with the entire metagenome examining, trailed by refinement, partition, 
and sequencing and lastly information investigation and elucidation. Particularly, 
the sequencing innovation is experiencing fast improvement, as it gives wide and 
top to bottom perspectives on metagenomics, and now it is extensively named as 
high-throughput sequencing (HTS) or cutting-edge sequencing technology. HTS 
methods incorporate the utilization of the AB SOLiD System (Life Technologies), 
the HiSeq 2000 (Illumina), and the 454 Genome Sequencer (Roche Diagnostics) 
(Yergeau et al. 2014). Besides, other propelled methods, for example, DNA/RNA- 
SIP and DNA arrays (PhyloChip and practical quality exhibits), likewise have pro-
spective highlights in the examination of microbiomes, mostly their useful parts 
(Uhlik et al. 2013). At present, there is a change from metagenomics to metatran-
scriptomics, as the latter helps in understanding the numerous microbial functions 
and structure (Turner et al. 2013).

In the metatranscriptomics approach, complementary DNA analysis aligned 
with quantitative reverse transcription-PCR and RNA-SIP explored the microbial 
functionality associated with the soil and rhizosphere (Uhlik et al. 2013). RNA-
SIP significantly is used to crack the complexity in interactions especially between 
root- derived carbon and microbiome so as to provide sequence as first and second 
utilizers of carbon within the microbiome. This method is dissimilar to DNA-SIP 
because it provides higher amounts of labeling and does not rely on cell multipli-
cation. Challenges coming with these cutting-edge innovations include choosing 
either mRNA or rRNA alone and accomplishing more extensive inclusion of envi-
ronmental RNA pool that gives naturally vital information through the sequenc-
ing. Peiffer et al. (2013) demonstrated noteworthy community contrasts among 27 
maize innate lines (a genetic variant of a single species) with a normal enhanced 
population in the maize rhizosphere. Metaproteomics, on the other hand, has a 
different approach as it focuses on the dynamic function of the phytobiome and 
extracts samples of metaproteome and performs peptide fingerprinting by mass 
spectrometry (Kolmeder and de Vos 2014; Lakshmanan et  al. 2014). Using 
metagenomic and metaproteomic (existing and future) information is an essential 
process-driven methodology and should be supplemented by different strategies 
to decide the diversity and functional relatedness of the rhizospheric microbiome 
(Keiblinger et al. 2012).

Molecular methods (molecular fingerprinting) and plate count anomaly 
(culture- dependent methods) demonstrate the entire bacteria community struc-
ture (Amann et al. 1995). Therefore, both approaches are utilized, for thoughtful 
knowledge of separate classification and communication with host plants. Dini-
Andreote and van Elsas (2013) have, however, stressed the present need for a 
change in outlook from HTS (or comprehensive endeavors) to investigations of 
basic studies.
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3.3  Structural and Compositional Factors 
in Plant- Associated Microbial Network

3.3.1  Plant-Associated Bacterial and Archaeal Microbiomes

Plant-associated bacterial population detected on plants does not look arbitrary; 
relatively numerous components participate in controlling the structure of microbi-
omes such as soil type (Lundberg et al. 2012), plant compartment (Leff et al. 2015), 
host genotype/species (Tkacz et al. 2015), plant invulnerable framework (Horton 
et al. 2014), plant attribute variety/developmental stage (Donn et al. 2015), and resi-
dence time/season (Shi et  al. 2015). Hacquard et  al. (2015) described that 
Proteobacteria, Actinobacteria, and Bacteroidetes are the major bacterial phyla that 
exist in both substrata such as above- and belowground plant tissues, and they influ-
ence the plant metabolism. Broad cover among root- and leaf-related network indi-
viduals has been portrayed at OTU (operational taxonomic unit) level determination 
in different plants such as Arabidopsis thaliana, wild mustard, grapevine, and agave 
(Wagner et  al. 2016), and microbiota reconstitution experiments with germ-free 
A. thaliana approved that root- and leaf-related bacterial networks have reciprocal 
relocation. Regardless of the conspicuous elementary uniformities saw between 
A. thaliana leaf- and root-related bacterial networks, it is observed that related 
microbiota individuals are particular and adjusted to their separate related plant 
organs (Bai et al. 2015). Among all phytobiomes, the nonpathogenic segregation of 
archaea has been depicted. The plant endophytic archaeal taxa of the phyla 
Thaumarchaeota, Crenarchaeota, and Euryarchaeota have plant-associated func-
tional significance (Müller et al. 2015).

3.3.2  The Fungal Microbiota of Plants

Ascomycota and Basidiomycota are two noteworthy phyla that colonize both above- 
and belowground plant tissues (Hardoim et al. 2015). In roots, even though arbus-
cular (Glomeromycota phylum) and ectomycorrhizal growths have been for the 
most part contemplated, ongoing network profiling information demonstrates that 
other endophytic organisms too make up for root microbiota (Toju et al. 2013). The 
structure of fungal communities on plants relies upon different kinds of soil, plant 
parts, plant genotypes, or seasons (Coince et al. 2014) and is subjected to stochastic 
variations (Wang et  al. 2013) and reacts distinctively to ecological elements 
(Thomson et al. 2015). Thus, mostly dispersal restriction and atmosphere clarify the 
worldwide biogeographic conveyance of growths and have been recommended to 
compel contagious dispersal, supporting high endemism in parasitic populaces 
(Talbot et al. 2014). Steady with that, the synchronous examination of both conta-
gious and bacterial networks related to plants recommended a more prominent sig-
nificance of biogeography for organizing parasitic networks contrasted with 
bacterial networks (Hacquard. 2016). Regardless of using molecular markers such 
as 16S rRNA and ITS, their loci need to be elucidated (Peay et al. 2016).
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Recently, Yunshi et  al. (2018) quantified the prokaryotic and fungal groups 
within the phyllosphere and rhizosphere of six spruce (Picea spp.) tree species 
through illumine amplicon sequencing. In brief, this microbial quantification exper-
iment is performed in a common garden, and linkages among phenotypic characters 
of their plant hosts and bacterial/archaeal and fungal community are analyzed. 
Correlation results among plant microbiome and different phenotypic characters of 
host plants (such as leaf morphology, water content, water storage ability, dry bio-
mass, nitrogen, etc.) which suggests that plant genotype played a significant role to 
shape its microbiota by improving plant phenotypes. 

3.3.3  Plant-Associated Protists: The Outcasted Fraction 
of the Plant Microbiota

Protists are a vital constituent of the soil microbiome, and method progresses now 
extended to our thoughts of the real taxonomic and efficient diversity of soil protists. 
The Stramenopiles-Alveolata-Rhizaria (SAR) group is known as a large group of 
plant-associated protists (Ruggiero et al. 2015) and especially those having a place 
with the Oomycota (Stramenopiles) and Cercozoa (Rhizaria) lineage. Inside 
Oomycota, a couple of individuals having a place with the genera Peronospora, 
Phytophthora, Pythium (and other wool buildup genera), or Albugo frequently exist 
in the plant roots or leaves (Agler et al. 2016). Root colonization by oomycetes (i.e., 
Pythium oligandrum) provides positive benefits to the host (Van Buyten and Hofte 
2013). Even though plant tissue-associated oomycete network profiling stays scanty, 
an exceptionally low decent variety is demonstrated with individuals from the 
Pythiaceae family being the most spoken about to be present on plant tissues (Sapp 
et al. 2018). Inside Cercozoa, one of the prevailing protistan bunches in biological 
systems, network profiling information uncovered a surprisingly high diversity in 
plant roots and leaves (Ploch et al. 2016), also giving a piece of strong evidence that 
indicates the plant stress tolerance and metabolic behavioral changes governed by 
special community structure. Thus, Oomycota and Cercozoa individuals are signifi-
cantly important for holobiont wellness. Recent reports concluded that plant 
microbe linkages are outlined well under the evolutionary measure and it helps to 
unlock the complex interactions of plant and microbes in more depth, and plant- 
microbe or plant bacterial interaction is new as compared to the bacterial and other 
kingdom interactions (Lücking et al. 2009; Hassani et al. 2018).

3.4  Microbial Currency: Exudates

Plants and microbes release certain chemicals called exudates, which help them to 
communicate with each other and to accelerate the disease tolerance against biotic 
and abiotic factors, stabilize the plant and microbial growth during nutrient scarcity, 
and remediate the toxic elements. Microbes utilized exudates as a food source, par-
ticularly carbon and other acids. This section discussed the two-way interaction of 
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plant and microbial exudate that is influenced by plant and microbial metabolism. 
Huang et al. (2014) reported the significance of plant root exudates to regulate the 
microbial structure in the plant rhizosphere that is influenced by plant variety, 
growth stages, disease-suppressive soils, root exudate composition, and plant hor-
mone signaling. Plant-microbe interaction is a complex system that is mediated by 
numerous compounds, and these compounds are released under specific conditions. 
These compounds play an indispensable role to shape the microbial community and 
unified the microbes and their functions up to species level. For example, legumes 
and rhizobia symbiosis is  signaled by flavonoids, plant mycorrhizal association 
is  stimulated by strigolactones, malic acid regulates the quorum sensing (QS) of 
plant microbial helpers and major chemoattractants of microbes such as sugars and 
amino acids attract the beneficial microbial niches toward the plant roots to protect 
the plant against the multiple stresses. However, various protein molecules are 
released from the root in the rhizosphere that are less explored to understand their 
mechanism in plant fitness. Besides, root exudates played intermediate role in sev-
eral other interactions such as plant attract the nematodes, and these nematodes are 
the vectors of rhizobia that enhanced the nodulation of root to fix the nitrogen, plant 
nodulation efficiency enhanced by the interaction of rhizobia with PGPR and arbus-
cular mycorrhiza (Huang et al. 2014). A multitude of rhizospheric interactions is 
mediated by root exudates, which are depicted in Fig. 3.1.

Fig. 3.1 The complex plant microbe system of rhizosphere that is mediated by plant root exu-
dates. Root exudates improve plant health status directly and indirectly as well
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3.4.1  Plant Uptake and Release

Plant exudate components and assembly are specific to plant species and incorpo-
rate high-molecular-weight particles (e.g., sugar molecules, proteins, and fatty acid) 
and low-molecular-weight signaling molecules (e.g., natural compounds, metabo-
lites, and amino acids) (Badri and Vivanco 2009). Jaeger et al. (1999) reported that 
plant root exudate contains sugar molecules and amino acids that help bacteria and 
other microbes to attract toward the plant root. Exudates assist numerous jobs such 
as stimulate the antagonism, allelopathic particles, and pathogen/herbivore safe-
guards. A large number of these exudates likewise fill in as a vitality hotspot for the 
microbiome; prokaryotes can use plant exudates as nutrient sources. For instance, 
grass Sorghum halepense excretes the exudate sorgoleone from root hairs having 
allelopathic properties (Kagan et al. 2003) which can be used as microbial nutrients 
(Gimsing et al. 2009). The different elements of plant exudate repeat the signifi-
cance it fills in as numerous monetary forms of the phytobiome.

Roots participate in taking up the nutrients and signaling molecules from the 
rhizosphere while at the same time saving these supplements and concoction signal-
ing molecules into this equivalent space required for evoking defense reactions. 
Terpenoids, flavonoids, and isoflavonoids contain a large number of the plant’s anti-
microbial barriers. Isoprenoids being the most diverse primary metabolite is required 
to control cellular processes such as photosynthesis (as phytopigments) and seed 
growth stimulation (as gibberellic and abscisic acids), and allelopathic molecules 
also protect the plants from the pathogens (Hardoim et al. 2008).

3.4.2  Microbial Uptake/Release

Nitrogen fixation requires a constant need for rhizobium-legume symbiosis inside 
the biosphere. The ability of this methodology to enhance agricultural yield has 
produced attention in knowledge to manipulate this process for better use. A num-
ber of the study approaches were procured inside the examiner of rhizobia, and the 
precise knowledge collected from these numerous tools is used to focus on the 
genome- and systems-level procedures (diCenzo et al. 2019). Exudates are essential 
methods for correspondence within the environment for the microbial network. The 
uptake of exudates such as sugars, organic, and amino acids has been a noteworthy 
focal point of many years of research in a microbial environment utilizing different 
estimations of respiration or carbon substrate use measures, for example, those uti-
lizing ECO MicroPlates™ (Biolog®). Microbial community behaves according to 
expanded or diminished centralizations of promptly accessible supplements that 
require insignificant vitality to absorb. Moreno et al. (2009) reported that a PGPB 
Pseudomonas putida KT2440 utilized amino acids and sugar that is concluded by 
the identification of proteins that regulate the amino acid and sugar uptake. The 
microbiome of rhizosphere has a perplexing task in nutrient cycling and includes a 
horde of nutrient transformations in soils. Microorganisms act as a catalyst for 
chemical changes in the soil during biogeochemical cycling. These changes plant 
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supplement (N and P) uptake, soluble metal (Ca2+, Mg2+, K+, and Na+) uptake, and 
micronutrient uptake (Zn2+, Fe2/3+, Cu+, and Mn2+) (Stevenson and Cole. 1999).

Nitrogen-fixing prokaryotes played a vital role to fix nitrogen gas (N2) into 
ammonia (NH3), and this method helps the plants. Howard and Rees (1996) 
reported that physiological and genetic drivers N2-fixing prokaryotes have a highly 
conserved protein complex that is nitrogenase, and it is used to assess the abun-
dance of N2-fixers in diverse ecological zones (Zehr et al. 2003). Specific bacterial 
metabolites worked as important plant hormones, for example, indole-3-acidic cor-
rosive (IAA) engaged with managing plant hormone flagging (e.g., 
1-aminocyclopropane- 1-carboxylate (ACC) deaminase). These hormone flagging 
particles can advance plant development.

When wheat is inoculated with rhizosphere bacteria expressing ACC deaminase 
activity, expanded root improvement, and consequently expanded nutrient uptake, 
has been recorded (Shaharoona et al. 2008; Honma and Shimomura. 1978). ACC 
deaminase-producing bacteria manage the ethylene production in the plant, in this 
manner limiting effects of different ecological anxieties, which typically trigger 
expanded ethylene generation (Hardoim et al. 2008). Microbial exudates involve a 
significant part of antimicrobial and antifungal compounds. Several prokaryotic and 
eukaryotic microorganisms are able to secrete or discharge antimicrobial sub-
stances, but among all very few are cultivable (Piel 2011); due to this to understand 
the complex functions of these substances, metatranscriptomics and metabolomics 
tools need to be applied. It is found that 35% of Escherichia coli strains produce the 
antimicrobial compound known as calcium. The discoveries bolster the theory that 
antimicrobial cooperations inside microbial networks serve to look after diversity; 
this thought was created utilizing recreation models (Czaran et al. 2002).

Notwithstanding oozing antimicrobials that encourage plant resistance, microor-
ganisms additionally release low-molecular-weight compounds to the plants, and 
plant sensors identify the microbes as a pathogen or beneficial and then trigger the 
reaction (Boller and He 2009). In this way, microbial metabolites can act straight-
forwardly on different microorganisms inside the microbiome in suppressive com-
ponents or can act specifically on the plant to revitalize secure reactions, regularly 
activating plant exudation. As modern biotechnological tools improve our knowl-
edge to measure these microbial metabolites in the soil matrix, multiple functions of 
the same microbiological substances are discovered.

3.5  Ecological Considerations for Utilizing Plant’s Benefits 
in the Farmer’s Field

An effective microbial inoculant needs to attack the pathogens and survive in varying 
abiotic conditions, also to set up good cooperation with the host that incorporates 
molecular passivity with the plant resistant framework. All through the developing 
season, microbial network experiences progression in both over the ground and 
subterranean (Edwards et  al. 2015; (Copeland et  al. 2015) portions of the plant. 
Along these lines, regardless of whether PGP inoculants colonize the plant at first, 
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their constancy after some time isn’t ensured. Estimating the determination of bac-
terial inoculants in the soil presents technical difficulties, as the inoculant should be 
distinguished from a complex network. Strategies such as culture-based count uti-
lizing re-separation of antibiotic-resistant inoculants or culture- autonomous estima-
tion of relative bounty of the inoculant’s 16S rRNA quality in the soil, by means of 
DGGE (Schreiter et al. 2014), amplicon sequencing (Haney et al. 2015), or metage-
nomic sequencing (Krober et  al. 2014), are used to determine the persistence of 
microbes.

Ecological components impacting root exudate organization and amount include 
raised dimensions of CO2, dry season, and nutrient deprivation (especially nitrogen 
and phosphorus). Increased carbon allocated in roots is observed in CO2-fertilization 
experiments, resulting in shifts in exudate composition and concentration that dif-
fer with plant species (Cheng and Gershenson 2007). These species-explicit effects 
can result in increased yield, in no net profitability increment, or can be unfavorable 
to plant development and generation. For example, positive biomass reactions in rye 
and clover to CO2 preparation were observed, while maize demonstrated no net bio-
mass advantage (Phillips et al. 2006). Be that as it may, maize showed expanded 
exudation of a few amino acids under CO2 treatment. These discoveries are not 
amazing thinking about that the C4 photosynthetic pathway encourages development 
under elevated amounts of CO2; in any case, the effects of expanded arrival of amino 
acids into the rhizosphere by the C4 grass (maize) may assume a job in a large num-
ber of criticisms between different plants and organisms (Klironomos 2002).

3.5.1  Impact on Plant Functions

Plants participate in nutrient exchange and exudate correspondence depending on 
the molecule and energy required for the plant (alone or through help from the 
microbiome) to acquire or release exudate currency. An active transport system 
using ATP-restricting tape transporter participates in root exudation creation and 
fixation (Badri et al. 2009). Low-molecular-weight particles such as amino acids 
can be discharged through membrane diffusion or through protein channels (Badri 
and Vivanco 2009).

Plants utilize those microbes which can communicate with increased levels of 
N-acyl-L-homoserine lactones. AHL-degrading enzymes in the presence of a 
pathogen subsequently suppress gene expression of pathogens (Reading and 
Sperandio 2006). Plants in the same manner also help in AHL degradation inside 
the microbiome (Teplitski et al. 2000). Fluorescent pseudomonads which are fun-
damental to the rhizosphere of the different clusters of the plant are used to deliver 
the antimicrobials 2,4-diacetyl phloroglucinol (2,4-DAPG) and phenazine (Phz) 
derivatives (Mavrodi et al. 2011). These antimicrobials are of wide range and act 
against a number of plant pathogens that are contagious leading to their suppres-
sion (Raaijmakers et al. 2009). 2,4-DAPG and Phz derivatives are evident in the 
rhizosphere and are associated with the suppression of disease in wheat called as 
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take-all in wheat. These plant hormones administrate the plant performance and its 
marking abilities to adjust to exudate profiles and enhance the plant’s immunity 
(Doornbos et al. 2012).

Most of the microorganisms are capable of producing and controlling the major-
ity of plant hormones (Friesen et al. 2011), thereby modifying plant physiological 
pathways. In plant rhizospheres, 80% of bacterial taxa accounts for IAA production 
(Loper and Schroth 1986). In plants, root development is accelerated with a low 
concentration of IAA (Glick 1999), while its high concentration represses plant’s 
development, hence making plants prone to pathogen’s attack (Sarwar and Kremer 
1995). An example of this is seen in Sorghum halepense; microbes of the invasive 
grass secrete high concentrations of IAA in contrast to other prokaryotes that secrete 
lower levels of IAA (Rout et al. 2013). Environmental stress and plant phenology 
drive the changes in plants that need to increase or decrease the hormones. PGPB 
are competent cells having multiple genes required for plant-microbial association 
(Hardoim et al. 2008). Yield expansion, organic methodologies, intercropping, and 
other cultural practices are utilized for possible farming production. New strategies 
are formulated to modulate the plant microbiome in an ideal course (Fig.  3.1). 
Distinctive microbiota is induced by diverse agro-management in viticulture (natu-
ral, biodynamic, or biodynamic with green compost) (Longa et  al. 2017). It is 
observed that in an integrated management system, soil has diminished bacterial 
species richness as compared to organic management, even though microbial com-
position was similar to organically and biodynamically managed soils (Hendgen 
et al. 2018).

3.5.2  Impact on Bacterial Functions

Microbiome present in the rhizosphere possesses varied phenotypic expressions 
due to root exudates. Inhabitant microflora of plants perform different functions 
such as chemotaxis, stress tolerance (Amador et al. 2010), polychlorinated biphe-
nyl degradation (Toussaint et al. 2012), modulation of genes involved in compe-
tence and sporulation (Mader et al. 2002), and biofilm formation on plant roots 
(Rudrappa et al. 2008). Plant exudates such as terpenoids, flavonoids, and isoflavo-
noids protect and control the internal structure of plants and outward surface of 
roots from microbial inhabitant (Hardoim et al. 2008). Microbiome symbionts can 
be epiphytes or endophytes, which survive for a short growth period and may 
encompass not only the pathogens but plant growth-promoting microbes using a 
mechanism of hormone signaling. Organic farming impacts the community com-
position on soil and roots of winter wheat (Hartman et al. 2018). The structure of 
bacterial communities is taken care of by tillage. Root bacteria respond to manage-
ment types, whereas fungal communities respond to both. Different agricultural 
practices are parameters in affecting the microbial structure with differences in 
soil, roots, bacteria, and fungi and hence bringing around 10% of the variation in 
microbial communities.
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3.6  Formation of Biofilm

Microbial communities act as a unit and secrete polymeric substances to produce a 
network known as biofilms (Stoodley et al. 2002). Microbes, when present in a bio-
film as consortia, are highly protected from their competitor, antimicrobial agents, 
enzyme degradation, and acquisition of new genes through horizontal gene transfer 
(Van Acker et al. 2014; Nadell et al. 2009; Zhang et al. 2014). Enterobacter spp., a 
root-occupying bacterial endophyte, when forming a biofilm, inhibits the entry of 
root-colonizing pathogen Fusarium graminearum (Mousa et al. 2016). Bacteria com-
monly produce biofilms on fungi, but it is rarely seen on the hyphae of ascomycete 
fungi. An example of this is seen in Pseudomonas fluorescens BBc6 which formulates 
biofilm on the hyphal region of the ectomycorrhiza Laccaría bicolor specifically at its 
root tip, thereby establishing ectomycorrhizal beneficial symbiosis and promoting 
bacterial biofilm on fungal host surfaces (Guennoc et al. 2017).

3.7  Molecular Communications

The mechanism of quorum sensing is used by microbes to sense their counterparts. 
Gram-negative microorganism secretes signaling molecule N-acyl-l-homoserine 
lactone (AHL) to screen out their populace densities (Eberl 1999). Regulation and 
secretion of signaling molecules are evident in Saccharomyces cerevisiae and 
Candida albicans (human fungal pathogens) that secrete farnesol to control fila-
mentation (Oh et al. 2001), constrain biofilm formation, and activate oxidative stress 
responses or drug efflux (Sharma and Prasad 2011). Quorum sensing mechanisms 
are not defined thoroughly for plant-associated fungi. Signaling compounds such as 
volatile organic compounds (VOCs), oxalic acid, trehalose, glucose, or thiamine 
accelerate fungal bacterial associations (Schmidt et al. 2016).

3.8  Ecology of the Microbiome

The plant microbiome is localized in three different regions, namely, rhizosphere, 
endosphere, and phyllosphere (Hirsch and Mauchline 2012). Rhizosphere presents 
a microbial community in requirement with plant metabolism; endosphere presents 
those microorganisms which interact with host closely and inhabit inner part of 
plant tissues asymptomatically (Hardoim et al. 2008); phyllosphere, on the contrary, 
is composed of those microbes which inhabit plant surfaces (Lambais et al. 2006). 
Irrespective of different plant habitats, specific microbes are present in all, also 
known as “keystone” species which interact with other microbes within the net-
works and affect the microbial structure (Bakker et al. (2014).

Rhizosphere and endosphere account for root microbiome that was key for the 
advancement of land plants and underlay crucial ecosystem processes. It is reported 
that nearly 30 angiosperm species affect root bacterial diversity and composition 
(Fitzpatrick et  al. 2018). A competitive interaction gets affected when there is a 
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similarity in root microbiomes between hosts among plant species. Climatic param-
eters such as drought affect the root microbiome composition, by elevating the 
Actinobacteria population. In the endosphere, Streptomyces are associated with 
host drought tolerance influencing drought response crosswise over host plant spe-
cies bringing host-specific changes.

3.8.1  Rhizosphere and Rhizoplane

Plant health is influenced by the rhizosphere using next-generation and third- 
generation technologies (Hiltner 1904). Rhizospheric soil shows a significant differ-
ence in contrast to bulk soil due to abiotic and biotic stresses impacted by the 
atmosphere. Properties such as higher water holding capacity, expanded nutrient 
availability, and diverse microbial biomass mark its importance than bulk soil 
(Schade and Hobbie 2005). Spatiotemporal movements are observed in the rhizo-
sphere microbiome (Kaplan et  al. 2013); however, it is still to affirm how much 
abiotic stresses impact the microbiomes. Protection from a wide range of pathogens 
both aboveground and belowground is provided by microbiomes. For example, 
induction of systemic resistance (ISR) is initiated where jasmonic acid-inducible 
genes are secreted in leaves (Pineda et al. 2010).

3.8.2  Epiphytes and Endophytes

The epiphyte and endophyte microbial communities in root involve the acknowl-
edgment and selection of those microbiomes that establish a homeostatic associa-
tion with the plant. Technologies such as metabolomics and metatranscriptomics are 
used to observe microbial members that colonize in adherent (epiphytic) or internal 
(endophytic) parts of plants. Microbes colonize the outside root surfaces. For 
instance, secondary metabolite root exudates were released due to an ISR response 
in maize that appoints PGPB P. putida, based on chemotaxis inclinations (Neal et al. 
2012). Plant chemical exudate is secreted, and valuable PGPB is selected in a plant- 
mediated reaction as observed in tomato, where natural acids are the major chemo-
tactic operator (De Weert et al. 2002), while in rice, amino acids serve the purpose 
(Bacilio-Jimenez et al. 2003). Root microbes that laid distinctive qualities such as 
that code for the sort IV pilus and twitching motility (Bohm et al. 2007), isoflavo-
noid efflux siphon (Palumbo et al. 1998), and DNA improvements influence colony 
aggregation (Dekkers et al. 1998).

Endophytes are inhabitant to both wild and domesticated crops including intru-
sive species (Compant et  al. 2008; Rout and Chrzanowski 2009). Biotechnology 
and agriculture ensure to utilize plant developing qualities of microbiomes as seen 
in phosphate-solubilizing Bacillus strains, where apart from secreting protein ACC 
deaminase, these also show plant development advancements (Baig et  al. 2012). 
Thus, a microbiome serves a double attribute working together with mycorrhizal 
parasites to improve plant development advancement (Zaidi and Khan 2005).
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Plant phenology correlates with endophyte microbiome composition shifts (van 
Overbeek and van Elsas 2008) which further depends upon colonization and similar-
ity (Hardoim et al. 2008). This collaboration inclines more toward mutualism than 
parasitism. Most of known plant endophytes and epiphytes are horizontally transmit-
ted (Friesen et  al. 2011). This empowers host-to-host exchange of endosymbionts 
without the association of plant sexual reproduction. Endophytes also show vertical 
transmission depending upon host wellness and present more host benefits than hori-
zontal transmission (Clay and Schardl 2002; Sachs et al. 2004). But the environmental 
hypothesis proposes that the presence of an accessible host allows for horizontally 
transmitted life forms. It is observed that horizontally transmitted endophytes were 
positively related to plant thickness reliance, while vertically transmitted endophytes 
did not demonstrate this pattern (Rudgers et al. 2009).

3.8.3  Phyllosphere Region

Phyllosphere is regarded as a third segment of the plant microbiome that colonizes 
the outside region of the external area of plant tissues specifically when describing 
the leaf surface (Vorholt 2012). The microbiomes in the phyllosphere perform nitro-
gen fixation, securing plants against attacking pathogens and biosynthesizing phy-
tohormones (Kishore et al. 2005). These can be beneficial in carbon sequestration 
(Bulgarelli et  al. 2013), and they can also participate in sustainable agricultural 
practices. Fungi (filamentous and yeasts), bacteria, and algae make phyllosphere 
network, and at lower frequencies, protozoa and nematodes are seen (Lindow and 
Brandl 2003). The bacterial population is the most abundant group of microorgan-
isms present in the phyllosphere at numbers ranging from 105 to 107 cells for each 
cm2 (Andrews and Harris 2000). These microbes can thrive in harsh environmental 
conditions such as limited availability of nutrients and variable conditions of humid-
ity, UV radiation, pH, and temperature (Andrews and Harris 2000). The phyllo-
sphere community is created with the help of various hotspots as air, soil, and water 
(Bulgarelli et al. 2013). Agricultural plants also show specificity to phyllosphere 
microbiomes as seen in beans, cucumber, grasses, lettuce, and maize (Rastogi et al. 
2012). Plant genotype plays a significant effect on the composition of phyllosphere 
microbiomes (Bokulich et al. 2014). The microbial population shows intraspecific 
variations in its composition which are due to nutritional heterogeneity observed in 
regions on the leaf surface where heterogeneous carbon sources such as glucose, 
fructose, and sucrose are utilized near the stomata and surface appendages (Vorholt 
2012). At times, this heterogeneity is observed when microbial cells aggregate to 
form a biofilm and hence defending themselves from unfavorable conditions 
(Lindow and Brandl 2003).

Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes are major phyla 
that account for the microbial community in the phyllosphere region (Vorholt 2012). 
Hence, this core is accepted to be made out of individuals exhibiting a co-develop-
mental history with plant species, with the host physiology being complementary to 
the features found inside the microbial cells. Microbes such as protists largely act as 
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predators on the bacterial community (Flues et al. 2017). Environmental conditions 
such as low nutrients, high UV, changing temperature, and humidity help in select-
ing consistent biological traits and low functional diversity at the community level 
for phyllosphere microbiomes as observed in next- generation sequencing (Lambais 
et al. 2017). The phyllosphere is dominated by oxygen-consuming organohetero-
trophs, and metabolic diversity exists with regard to utilizable carbon compounds.

3.9  Competitive Interactions Among Plant 
Microbiota Members

Plant microbiomes show competitive behavior with closely or distantly related 
microbiota and affect microbial structure, its stability, and homeostasis.

3.9.1  Resource Competition

Microorganisms utilize limited resources and therefore compete indirectly with 
other microbes. For example, using advanced techniques, microorganisms seques-
trate iron using the emission of siderophores, thereby affecting the growth of the 
opponent microbes present in their niche (Little et al. 2008). When advantageous 
Pseudomonas spp. secrete iron-chelating molecules, it suppresses the disease 
caused by fungal pathogens indicating that nutrient sequestration is a trait of bio-
control agents to outpower pathogens (Mercado-Blanco and Bakker 2007). In 
tomato plants, resource competition is said to be an essential factor connecting the 
bacterial network and pathogen attack on plants (Wei et al. 2015). In resource com-
petition, individual microbes in a group share resources, but the ones who use the 
resources in an uncooperative can evade paying the price of cooperation while reap-
ing the benefits of utilizing the resource, thereby increasing their fitness (Riehl and 
Frederickson 2016) and bringing the situation of distress to the commons. Nitrogen- 
deficient soil could harbor plants with rhizosphere having microbes that can capture 
nutrients for their usage. For instance, actively growing roots could signal for 
microorganisms that are capable of producing extracellular enzymes releasing 
nitrogen bound in soil organic matter (Lemanceau et al. 2017). In prokaryotes, min-
eralization processes are density-dependent and need a quorum of producers to suf-
ficiently enter key nutrients in the soil. Such producers are taxonomically diverse 
microbiota that can biosynthetically produce the specific enzymes which are 
secreted into the soil. In this scenario, selection in the rhizosphere could favor 
microhabitats to promote coordinated group behaviors that enhance plant access to 
nitrogen or phosphorus upon cell turnover, while the microorganisms benefit from 
having an abundant supply of carbon and other nutrients from plant roots (Fig. 3.1). 
Phosphorous is also made available to plants using microbial taxa which could 
mobilize phosphorus in the soil via the production of extracellular compounds 
(Alori et al. 2017). Iron is an important plant nutrient which can be obtained through 
the production of siderophores (Radzki et al. 2013).

3 Plant Microbiomes: Understanding the Aboveground Benefits



66

3.9.2  Contact-Dependent Competition

Plant microbiome participates in direct antagonistic cooperations interceded by the 
bacterial type VI secretion framework, a molecular weapon used by certain micro-
scopic organisms (generally Proteobacteria) to convey effectors/toxins into both 
eukaryotic and prokaryotic cells (Records 2011). A few examples of contact- 
dependent competition are discussed as in the case of the plant pathogen 
Agrobacterium tumefaciens that utilizes a puncturing type VI secretion system to 
convey DNase effectors upon contact with a bacterial competitor in vitro and on the 
leaves of Nicotiana benthamiana. Moreover, the bacterial kind III secretion system 
can also be used in Burkholderia rhizoxinica, which uses this mechanism to control 
the productivity of its beneficial interaction with the contagious host, Rhizopus 
microspores. Physical parameters bring a change in plant-associated microbes. Soil 
condition (organic matter, nitrogen, and moisture content) identification helps in 
changing the macrophage activation potential of Echinacea purpurea and determin-
ing these changes in activity that relates to the shifts (Haron et al. 2019). Increasing 
soil organic matter in the root extracts of E. purpurea may increase the macrophage 
activation. Bacterial communities also differed significantly between root materials 
having varying levels of organic matter. The activity of E. purpurea roots is changed 
by the soil’s organic matter level. Use of bacterial preparation (e.g., probiotics) is 
reported to impact human health; similarly, Echinacea too shows therapeutic effects 
and is impacted by development conditions that change its related bacterial com-
munity (Haron et al. 2019).

3.9.3  Antimicrobial Compound Secretion

Various plant-related microorganisms appeared to emit chemical compounds that 
stifle the development of microbial rivals (Raaijmakers and Mazzola 2012). 
Filamentous eukaryotes are outstanding in delivering a large number of antifungal 
activity of secondary metabolites that have a low molecular weight spotted against 
phylogenetically distinct organisms (e.g., acetylgliotoxin and hyalodendrin) 
(Coleman et al. 2011). The secondary metabolites so obtained become activated in 
co-culture and remained inactive in pure culture. Netzker et al. (2015) indicate their 
specific role in competitive interactions. Antagonistic collaborations among micro-
scopic organisms have been reported to be imperative in the organizing of soil-, 
coral-, or plant-related bacterial networks (Maida et al. 2016).

Strikingly, the investigation of adversarial collaborations among bacterial segre-
gates from the rhizosphere, the roots, and the phyllosphere of the healing plant 
Echinacea purpurea proposes that plant-related microorganisms compete against 
one another through the discharge of antimicrobials (Maida et al. 2016). The micro-
biome related to plants has a robust influence on their strength and yield. The bacte-
rial pathogen, Candidatus Liberibacter asiaticus (Las), causes Huanglongbing 
(HLB) disease and lives inside the phloem of citrus plants, including the root 
system. It has been proposed that Las negatively affects citrus microbiome. At the 
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same time, the natural microbial flora of citrus also impacts the association between 
Las and citrus (Riera et  al. 2017), i.e., two bacteria closely related to Las 
Agrobacterium tumefaciens and Sinorhizobium meliloti were found. Among them, 
Burkholderia metallica strain A53 and Burkholderia territorii strain A63 are within 
the β-proteobacteria class, whereas Pseudomonas granadensis strain 100 and 
Pseudomonas geniculata strain 95 are within the γ-proteobacteria class. It was 
observed that four bacterial strains Burkholderia territorii A63, Burkholderia 
metallica A53, Pseudomonas geniculate 95, and Bacillus pumilus 104 showed 
antagonistic action against the pathogen Phytophthora nicotianae (citrus root) on 
the basis of dual culture assays. Some of the antimicrobial-producing strains, 
Burkholderia metallica A53 and Burkholderia territorii stress A63, from a manda-
rin rhizosphere, belong to the Burkholderia cepacia complex (BCC) and its agricul-
tural applications are restricted because of its high risk to human health (Depoorter 
et al. 2016). It remains to be determined whether Burkholderia metallica strain A53 
and Burkholderia territorii strain A63 can cause human diseases. Both Burkholderia 
metallica A53 and Burkholderia territorii strain A63 can modulate citrus immune 
system beneath greenhouse situations while applied as a soil drench. Additionally, 
the Burkholderiaceae family changed into determined to be key taxa within the 
citrus microbiome of healthy trees in comparison to that of HLB-symptomatic trees 
in the discipline (Zhang et al. 2017).

3.9.4  Predation

Bacterial mycophagy comprises of microscopic organisms’ capacity to effectively 
develop at the expense of living contagious hyphae (De Boer et  al. 2004). 
Mycophagous microbes colonize saprotrophic rhizosphere parasites and feed as 
auxiliary consumers on root-determined carbon (Rudnick et al. 2015). Some oomy-
cetal species of family Trichoderma or Pythium can parasite or irritate other growths 
or oomycetes and can be utilized as biocontrol operators (Benitez et al. 2004). Root- 
related bacteria can prey on other microscopic organisms as described for 
Bdellovibrio spp. Protist predation on microscopic organisms is also well studied, 
and recent microbiota reconstitution tests in microcosm demonstrate a reasonable 
impact of Cercomonads (Rhizaria: Cercozoa) on the structure and the capacity of 
the leaf microbiota (Flues et al. 2017). Their results show that Alphaproteobacteria 
and Betaproteobacteria are less impervious to grazing and that predation rebuilds 
the bacterial system in leaves and impacts bacterial metabolic center capacities. 
Microbial assortment related to aphid inhabitants was characterized at species and 
intraspecies scales using a methodological structure (Guyomar et al. 2018). Utilizing 
this approach, on metagenomics read sets, high genomic diversity in different sym-
biont taxa can be uncovered in both between and within their hosts. The complete 
functional diversity related with host and microbiota was the first time it can be 
accessed using metatranscriptomics datasets which also helps in isolating the tran-
scriptome of each member of the holobiont (Meng et al. 2018).
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3.9.5  Genetic Management of Valuable 
Plant-Microbe Interactions

Host hereditary qualities add to plant microbiome assembly. Plants identify micro-
organisms through pattern recognition pattern that binds to the microbe-associated 
molecular pattern (MAMPs), setting off a basal barrier adequate to stop the devel-
opment of most pathogenic organisms (Böhm et  al. 2014). Plants can probably 
separate pathogens from nonpathogens and react by opposing microbial develop-
ment, overlooking it, or effectively supporting it on or inside plant tissues. The 
transcriptional reaction of Arabidopsis leaves varies when vaccinated with various 
nonpathogenic individuals from its regular microbiota (Böhm et al. 2014). While 
Methylobacterium extorquens actuates no transcriptional reaction, Sphingomonas 
melonis initiates the defense-related genes that somewhat cover with those activated 
by the pathogen Pseudomonas syringae DC3000. This characterizes a mechanism 
of plant defense priming (Martinez-Medina et al. 2016) driven by the plant micro-
biome. The reaction example to nonpathogenic microorganisms can vary both 
crosswise over plant species (Ofek-Lalzar et al. 2014) and crosswise over promo-
tions inside a single species (Haney et al. 2015). While some Arabidopsis acces-
sions are colonized by and build up a valuable association with Pseudomonas 
fluorescens, different promotions effectively restrain the development of similar 
strains in their foundations. Given the basic capacity of defense phytohormones in 
the invulnerable plant framework, it is not astonishing that the plant microbiome 
organization is impacted by defense phytohormone flagging. Tests by a set of 
mutants with transformed protection phytohormone synthesis and notion stated that 
salicylic acid and salicylic acid-mediated events have an effect on the root microbi-
ome composition at multiple taxonomic levels (Lebeis et al. 2015). The plant micro-
biome structure changes upon infection (Agler et al. 2016). Antifungal characteristics 
are enhanced in barley following infection with Fusarium graminearum, conceiv-
ably using changes in exudate arrangement (Dudenhöffer et al. 2016). An investiga-
tion of tomato plants tested with the pathogen Ralstonia solanacearum uncovered 
that the root exudation profile changed upon pathogen infection, expanding the dis-
charge of phenolic mixes. Plant protection systems additionally sway different driv-
ers of plant – organism cooperations, similar to plant sustenance (Hacquard et al. 
2015). Present-day molecular methodologies are likewise being connected to under-
standing nitrogen-fixing symbioses in non-nodulating plants. Utilization of double 
host-organism transcriptomics depicted that the limit of a nitrogen-fixing 
Burkholderia strain to frame microaerobic biofilms on sugarcane roots is shown to 
have diminished motility and immunogenicity, trailed by metabolic adjustment to 
the sugar-rich plant condition. The plant does not enact an invulnerable reaction but, 
however, changes its root morphology and supplies the bacterium with photosyn-
thates (Paungfoo-Lonhienne et al. 2016), a reaction pattern that is undifferentiated 
from the procedure of infection by BNF in legumes (Cao et al. 2017). These exam-
ples endorse that the coordination of defense and nutrition is crucial to driving 
microbiome characteristics.
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3.10  Implication of the Soil Microbiome on Sustainable 
Agriculture and Food Security

Conveying sustenance security, the way toward expanding nourishment creation, 
and improving nourishment quality to support populace development without trad-
ing off ecological well-being have been known as a worldwide green revolution 
(Gupta 2012). Sustainable agriculture improvement is expected to relieve these 
issues. A definitive objective of economical agribusiness, as per the US National 
Research Council, is to create cultivating frameworks that are gainful, beneficial, 
vitality saving, and environmentally solid, preserving natural materials, and that 
guarantee nourishment well-being and quality. This can be achieved by substituting 
risky agrochemicals (chemical fertilizers and pesticides) with environmentally 
friendly beneficial microorganisms, which could improve the sustenance of yields 
and animals and furthermore present protection from biotic (pathogens and pests) 
and abiotic (pollution and climatic change) stresses. The potential microbial segre-
gates are detailed utilizing different natural and inorganic bearers through either 
solid or liquid fermentation technologies (outlined in Table 3.1).

Table 3.1 Marketable products of plant growth-promoting rhizobacteria in plant health and dis-
ease management (Lakshmanan et al. 2014)

Bioagent Trade name/formulation
Agrobacterium radiobacter strain K1026 Nogall
A. radiobacter strain K84 Galltrol, Diegall
Azospirillum brasilense/Azotobacter 
chroococcum

Gmax Nitromax

A. brasilense Azo-Green
B. subtilis MB1600 BaciGold, HiStick N/T, Subtilex
B. subtilis strain FZB24 Rhizo-Plus, Serenade, Rhapsody, Taegro, 

Tae-Technical
Bacillus chlororaphis 63-28 AtEze
Bacillus cereus BPO1 Pix plus
Bacillus pumilus GB 34 Concentrate; YieldShield
B. pumilus QST2808 Sonata ASO, Ballard
B. subtilis GB03 Companion, System 3, Kodiak, Kodiak HB, Epic
Bacillus amyloliquefaciens GB99 Quantum 4000
Bacillus licheniformis SB3086 EcoGuard, Green Releaf
Burkholderia cepacia Blue Circle, Deny, Intercept
P. fluorescens A506 BlightBan A506, Conquer, Victus
Pseudomonas syringae ESC-100 Bio-Save 10, 11, 100, 110,1000, and 10 LP
Pseudomonas chlororaphis Cedomon
Pseudomonas cepacia Intercept
Streptomyces griseovirdis K61 Mycostop
B. subtilis + B. amyloliquefaciens Bio Yield
Pseudomonas spp. + Azospirillum spp. BioJet
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Further improvement of microbial confines, and the plan procedure is required 
through broad research to present them in sustainable agricultural practices. 
Applications of microbial consortia are described in Table 3.2. Aside from the appli-
cation of individual organisms, distinguishing sound and practically diverse micro-
biomes and their application for improving harvest yield poses another big challenge 
to meet.

3.11  Conclusions

Several illustrations depict the significance of understanding the multitude of plant 
microbiome relations that pay to plant versatility in a specified environment. 
Acknowledgment of the plant microbiome as a coordinated part of the plant genome 
develops the environmental idea of “feedback.” Disproportional accumulation of 
microbiome parasites (communicated as pathogenic impacts) prompts negative 
feedback, whereas the disproportional combination of microbiome mutualists stim-
ulates positive  feedback. An enhanced information about these interactions and 
how changes in biodiversity affect ecosystem functions (plant yield, biogeochemi-
cal pools, and fluxes) may be a vital feature for explaining plant microbiome boom 
and gene expression forms. Fast microbial generation time and the prevalence of 
horizontal gene transfer give probable systems to the improvement of localized 
genetic differences, or ecotypes, to emerge because of the impacts of local plant 
species and networks. As the plant-microbiome interaction unfolds, a new emerg-
ing  methodology incorporates the study  of microbial biology, microbiomes, and 
transcriptomes into plant genetics. The vast diversity documented in the rhizosphere 
microbiome is  linked with the useful genes responsible for important nutrient 
changes, similar to those involved in N2-fixation. The age of expansive confine 
accumulations and the investigation of engineered microbial networks in the mix 
with plant genetic properties will enable us to connect this hole and to direct reduc-
tionist, theory-driven tests in progressively complex environmental settings up to 
handle field tests. These developments can convert our expertise of plant-microbe 
interactions in nature and agriculture and could make contributions extensively to 
the next green revolution. The key player(s) regarding microbiome structure have 
not been recognized. As needs are, there is a major break in the identification of the 
molecular segments associated with the collaboration among the host plant and the 
microbial populace. Also, these ongoing microbiome examinations attempted only 
to distinguish its structure and multifaceted nature instead of to decide how these 
microbial gatherings are adjusting the plant phenome, which is basic to investigate 
its usage. Likewise, there would be a cross talk using signal transduction among 
aboveground and belowground plant tissues that can be modified by an outer biotic 
or abiotic stress impacting the rhizospheric microbiome.
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Abstract
Plant mycobiome studies are one of the leading burning aspects of the twenty- 
first century for ecological management and sustainable agricultural. A plant- 
associated fungal community plays an important role in maintaining ecological 
fitness by cycling organic matter and channeling nutrients across the trophic lev-
els. Several reports highlighted the need for plant mycobiome studies for better 
disease management, ecological practices, and the use of eco-friendly methods 
for crop production. In this context, plant mycobiome revealed the effect of the 
fungal community on the composition of other microbial communities associ-
ated with the plant, plant growth, and plant responses against the pathogens. 
Fungal biodiversity, functionality, and associative interaction with other microbi-
ome organisms and plants are revealed by high-throughput sequencing methods 
that broaden our view on understanding the fungal importance to plants. The 
present chapter discussed the modern tools and techniques utilized to study fun-
gal diversity and community structure by the use of different kinds of OMICS 
approaches such as ITS rDNA gene or specific functional gene sequencing, tran-
scriptomics, proteomics, and metabolomics. Here, the chapter focused on the 
current research, development of new techniques and approaches that can pro-
vide an integrative insight of the role of fungal communities in the plant 
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 microbiome. Plant mycobiome and their diversity are important to predict plant 
growth and survival against the pathogen and multitrophic interactions between 
the organisms to identify their functional cores in regard to plant health and fore-
cast which fungal community is likely to affect plant fitness and produce useful 
secondary metabolites.

Keywords
Mycobiome · Sequencing technique · Plant pathogen · Biofertilizer

4.1  Introduction

The plant mycobiome represents the plant-associated fungal community that have 
multiple functional roles, in response to plant, ecological management, and environ-
mental indications (Finzi et al. 2011; Pagano et al. 2017). The plant-associated fun-
gal community is most commonly associated with both terrestrial and aquatic 
ecosystems by continuous degradation of organic matter and cycling nutrients across 
the trophic levels of the food web (Delgado-Baquerizo et al. 2013; Toju et al. 2018). 
These communities are cosmopolitan in different ecological habitats, such as natural 
soils, decaying wood, and plant material, living plants (endophytes), water- related 
environments, etc. (Rai et al. 2019; Hardoim et al. 2015). Most of these fungal spe-
cies are saprophytes, and they are capable to decompose complex polymers such as 
cellulose, chitin, and lignin by different hydrolytic enzymes (Benitez et al. 2004; 
Anil and Lakshmi 2010; Błaszczyk et al. 2014). Several factors, like plant host, plant 
density, environmental conditions, nutrient availability, and interactions with other 
external microbiomes (e.g., soil fungi and bacteria), are contributed to maintaining 
the plant mycobiome composition (Bahram et al. 2015; Nilsson et al. 2018).

The plant mycobiome is usually comprised of five main functional groups of 
fungal communities, viz., saprotrophic, pathogenic, epiphytic, endophytic, and 
mycorrhizal fungi (ectomycorrhizal fungi, arbuscular mycorrhizal fungi, ericoid 
mycorrhizal fungi, and orchid mycorrhizal fungi) (Porras-Alfaro and Bayman 2011; 
Beckers et al. 2016). The plant-associated fungal community is participating in min-
eral conduction, carbon distribution, water acquisition, tolerance to abiotic and biotic 
stresses, and interplant competition (Bucher et al. 2009; Druzhinina et al. 2011; Cai 
et al. 2013). They applied different mechanisms, such as parasitism, stimulation of 
plant growth, competition for nutrients, cross-protection, microbial compound pro-
duction, and induction of systemic resistance against abiotic and biotic stresses in 
plant mycobiome to maintain ecological fitness and fungal diversity (Kubicek et al. 
2011; Porras-Alfaro and Bayman 2011; Hardoim et al. 2015; Cai et al. 2015).

Several reports highlighted the increasing interest of plant mycobiome studies to 
explore hidden mechanisms and reshape the rhizospheric microbiome for biofertil-
ization, which stimulates plant growth, protection from stress, parasitism, antibio-
sis, induced plant systemic resistance, and rhizoremediation (Ikeda et al. 2010; Hu 
et  al. 2018). The mycobiome research will draw new insights into plant fungi 
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interaction that can help to understand the complex networking and ecological func-
tion of fungi. In this context, molecular identification revealed the cultivable and 
uncultivable fungal communities of mycobiome that gives information about myco-
biome diversity, structure, compositions, and signaling mechanism between the host 
plant and associated microbiome (Bayman 2006; Chacon et al. 2007; Tellenbach 
et  al. 2010). However, due to limited knowledge of plant-associated mycobiome 
composition, diversity, and functionality, these subjects need to explore up to depth. 
The modern molecular approaches such as high-throughput sequencing methods 
and omics techniques (epigenomics, genomics, transcriptomics, proteomics, and 
metabolomics) are utilized to identify the function of fungal communities with plant 
and soil as well as with other microbes in different habitats (Bálint et al. 2016; Gohl 
et al. 2016; Kchouk et al. 2017; Castle et al. 2018).

This chapter focuses on plant mycobiome compartments (rhizosphere, phyllo-
sphere, and endosphere) and interactions between plants and microorganisms with 
major emphasis on fungal fractions of the microbiome within each compartment. 
The chapter discussed the significant application of plant mycobiomes to improve 
plant health and how artificially engineered mycobiome can help the crop to improve 
productivity. This study provides a summary of recent and cutting-edge techniques 
that can help to classify the fungal communities, their biodiversities, and plant- 
associated functions.

4.2  Plant-Associated Microbial Communities

The soil-inhabiting fungal communities play a vital role in plant health manage-
ment. They suppress plant diseases through physiological restrictions of pathogen 
establishment in plant tissues (Mendes et al. 2011; Mukherjee et al. 2012; Classen 
et al. 2015) and help to convey resistance to the system against “invaders” (Pérez- 
Jaramillo et al. 2018). Several additional factors have been recognized to mycobi-
ome in close association with plants such as ability to provide nutrient mobilization, 
like phosphorus solubilization and nitrogen fixation, their support in nutrient uptake 
from the soil, suppression of abiotic and biotic stresses, host health, and ecological 
fitness (Molla et  al. 2012; Oros and Naár 2017). The plant-associated microbial 
communities usually comprise five main functional groups of fungal communities, 
saprotrophic, pathogenic, epiphytic, endophytic, and mycorrhizal, which performs 
different functions in ecological balancing (Mendes et al. 2013). The major studied 
compartments of plant-associated microbial communities are established microbial 
cells and perform distinct functions, called rhizosphere, phyllosphere, and endo-
sphere (Herrera et al. 2010; Porras-Alfaro and Bayman 2011).

4.2.1  Rhizosphere Fungal Microbiome Communities

Lorenz Hiltner coined the term rhizosphere in 1904 (Curl and Truelove 1986), 
which refers to the bulk of soil surrounding the plant roots. Rhizosphere provides 
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opportunities to organisms to competitively colonize plant roots by secreting root 
exudates, which are active carbon compounds, and uptake of mobile nutrients and 
water (Hartmann et al. 2008; Singh and Sharma 2012). The biodiversity and com-
munity structure of fungal communities are maintained by the coevolutionary pro-
cess of rhizosphere and plant roots which perform a significant role in soil biological 
processes, soil carbon sequestration, and nutrient channelization through decom-
posed matter cycling in natural systems (Hinsinger et al. 2009; Lambers et al. 2009). 
The plant rhizosphere system generally enhanced the biomass and soil microorgan-
ism’s activities by releasing root exudates, which respond with chemotaxis and 
grow faster (Hartmann et al. 2009). The rhizosphere microbial community compo-
sition and diversity are affected by plant growth, as root exudates change during the 
plant’s life cycle and seasonal environment responses (Baetz and Martinoia 2014).

The rhizospheric fungal communities are closely interconnected to plant health, 
fitness, and growth, decaying plant residues, providing nutrients by cycling miner-
als, and facilitating their roles in antagonizing pathogens (Ehrmann and Ritz 2014). 
The beneficial fungal microbes include mycorrhizal fungi (Zhang et  al. 2018; 
Turrini et al. 2018), Trichoderma strains (Kotasthane et al. 2015; Li et al. 2015), 
Penicillium sp. (Babu et al. 2015), and other endophytic fungi like Fusarium sp., 
Colletotrichum sp., Cladosporium sp., and Dendrobium moniliforme (Chadha et al. 
2015; Shah et al. 2019) which are an indispensable component of agroecosystems. 
In response to microbial activities, plants fundamentally control rhizospheric fungi 
through the production of carbon and its derivative compounds and bioactive metab-
olites (Ellouze et al. 2014). Several examples are elucidating the role of fungal com-
munities, as biocontrol, activity against pathogenic microorganisms (Kowalchuk 
and Veen 2004, Chapelle et al. 2016). Trichoderma is a hyper-diverse genus of rhi-
zospheric fungal community that gained importance due to their antagonistic capa-
bility to plant pathogen by employing different mechanisms of parasitism, 
stimulation of plant growth, competition for nutrients, and induction of systemic 
resistance against abiotic and biotic stresses (Rai et al. 2016). These fungal com-
munities positively influence plant productivity and protect the plants from oxida-
tive stress by synthesizing antioxidant enzymes (peroxidase, catalase, superoxide) 
and nonenzymatic antioxidants (glutathione, ascorbate, and α-tocopherol). In 
another context, certain rhizospheric fungal communities can also negatively influ-
ence plant productivity by causing disease, for example, Fusarium species, 
Verticillium spp., and Macrophomina spp., which affects many crops (Tetali et al. 
2015). Most studies have focused on rhizospheric bacterial communities. However, 
very less information is known about the interaction of fungal communities in the 
plant rhizosphere. Recently developed molecular techniques, metagenomics, tran-
scriptomics, proteomics, and next-generation sequencing studies showed coloniza-
tion of plant roots by fungal communities that establish information about the 
changes in expression of plant genes in response to stress, biomolecule synthesis, 
photorespiration, photosynthesis, and carbohydrate metabolism.
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4.2.2  The Phyllosphere Fungal Microbiome Communities

The phyllosphere microbiome is associated with a diverse group of microorgan-
isms, such as viruses, bacteria, algae, yeasts, filamentous fungi, protozoa, and nem-
atodes (Lindow and Brandl 2003; Porras-Alfaro and Bayman 2011). Bacteria are 
the most dominant and abundant microorganisms in the phyllosphere community 
(Lindow and Brandl 2003; Vorholt 2012), while fungi are comparatively less abun-
dant. The structure of phyllospheric communities is governed by immigration, sur-
vival, growth of the microbial colony, and leaf physicochemical properties (Gomes 
et al. 2018; Yao et al. 2019). The phyllosphere niche has a high significance in sus-
tainable agriculture and an environmental process that provides confirmation for 
interactions of phyllospheric microbial communities that affect the health of the 
natural plant and the quality and productivity of agricultural crops (Boddy et  al. 
2008). Filamentous fungi largely occurring as dormant spores in phyllospheric fun-
gal communities rather than active mycelia and population size range between 102 
and 108 colony-forming unit/gram of leaf (Andrews and Harris 2000; de Jager et al. 
2001). The most abundant fungal communities found on leaves are considered 
Cladosporium, Alternaria, Penicillium, Acremonium, Mucor, and Aspergillus 
(Inácio et al. 2002; Porras-Alfaro and Bayman 2011). Filamentous fungi appear to 
occur ubiquitously as endophytes, and their diversity is particularly observed in 
long-lived tropical leaves. Fungal endophytes are the second most abundant phyl-
lospheric fungal communities that protect against pathogens and increase abiotic 
tolerance (Arnold et al. 2000, 2003; Schweitzer et al. 2006). The diversity of cul-
tured yeasts appears as the genera Cryptococcus, Sporobolomyces, and Rhodotorula, 
either singly or with multiple species in the phyllosphere (Inácio et  al. 2002; 
Glushakova and Chernov 2004). To explore the phyllospheric fungal species, cul-
ture-dependent approaches are applied over 340 genetically distinct taxa of two 
tropical forests, but still, culture-independent approaches have not yet been reported 
to characterize fungal diversity.

4.2.3  Endosphere Fungal Microbiome Communities

Although less than 100,000 fungal species have been described as an indispensable 
role of endophytes encompasses a large, hidden component of fungal biodiversity 
(Arnold 2007; Rodriguez et al. 2009), the dominating classes of fungal endophyte 
communities included Sordariomycetes, Dothideomycetes, Eurotiomycetes, 
Leotiomycetes, and Pezizomycetes (Jumpponen and Jones 2009; Atugala and 
Deshappriya 2015) which are associated with grasses and many woody plant tissues 
and roots (Alberton et  al. 2010; Bhagobaty and Joshi 2012). Endophytic fungal 
communities are important components of plant microbiomes that live within plant 
tissues without causing disease symptoms. Fungal endophytes reside symbiotically 
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inside the plant tissue or interact with other microbial groups that colonize in the 
plant tissues, e.g., mycorrhizal fungi, pathogens, epiphytes, and saprotrophs (Porras- 
Alfaro and Bayman 2011). Some fungal endophytes play an important role in plant 
growth, resistance to abiotic and biotic stresses, and disease in the plant by produc-
ing useful, antagonistic, and signaling molecules (Gao et al. 2010; Khan et al. 2011; 
Gautam et  al. 2013). Endophytes have a significant effect on the plant fitness, 
growth, and development by modulating different pathways of plant-like phytohor-
mone (Khan et al. 2012, 2015), antimicrobial compound (Prabukumar et al. 2015), 
and secondary metabolites (brefelcin A, mevinolin, 2-(3,4-dihydroxyphenyl) etha-
nol, cytochalasins, polyketides, terpenoids, flavonoids, and steroids) producing 
pathway (Guo et al. 2008; Balbi and Devoto 2008; Aramsirirujiwet et al. 2016).

Because most of the important root endophytes are not culturable, that’s why 
molecular techniques have been important for identification (Roe et al. 2010;) and 
confirmed that many of these endophytes coexist with other functional groups in the 
microbiome. Rapid advances in DNA and RNA sequencing technologies and com-
parative genomics, transcriptomics, and proteomics approach now facilitate us to 
study fungal communities in an integrative way, including exploring the taxonomic 
and phylogenetic profiles of fungal communities in the rhizosphere. In this sequence, 
their functional and ecological attributes put forward an open discussion about the 
role of fungal endophytes in the plant microbiome composition, structure, and their 
diversity, important for plant growth and survival and interactions with another 
plant-associated microbiome.

4.3  Manipulation of the Plant Microbiome Toward 
Improved Plant Health

The rhizosphere, phyllosphere, and endosphere microorganisms both directly and 
indirectly influence the composition, structure, diversity, and productivity of natural 
plant communities (Mendes et al. 2018). Microbial species richness provides infor-
mation about the plant diversity and productivity (Sharma et al. 2015). On purpose 
manipulation of the plant microbiome may be an alternative way to advance the 
agriculture sustainability (Bai et  al. 2015). This would be done by manipulating 
rhizosphere, phyllosphere, and endosphere microorganisms with useful traits.

The recent advancement in rhizosphere engineering, manipulation of the rhizo-
spheric microbiome, can aid in the management of soil health and ecological stabil-
ity (Broberg et al. 2018). The diversity of microorganisms in the soil is increased 
through crop rotation that promotes high flexibility to plant pathogens (Hwang et al. 
2009). The application of certain microorganisms or the introduction of inoculants 
is one of the emerging strategies for plant microbiome manipulation, and through 
this approach, a beneficial community effectively replaces the plant pathogenic 
microbes. The co-inoculation of several beneficial strains, including endophytes, 
reduces the time of niche (Compant et al. 2010).
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Manipulation of the phyllosphere microbiome can provide a new strategy for 
enhancing plant growth and health. Falk et al. (1995) suggested that the severity of 
powdery mildew infections caused by Uncinula necator on grapevines was reduced 
by releasing the conidia of the mycoparasite fungus Ampelomyces quisqualis. The 
literature describes several success stories of the use of Trichoderma spp. in myco-
biome engineering for biotic stress management (Błaszczyk et al. 2014) and to com-
bat with abiotic stresses by multiple beneficial effects on plant growth and stress 
tolerance (Singh and Sharma 2012; Chepsergon et al. 2014). Perazzolli et al. (2014) 
showed that the naturally occurring microbiomes of grapevine leaves could reduce 
signs of powdery mildew on controlled conditions. A number of reports indicated 
that growth-promoting and stress-managing fungal communities are applied in rhi-
zosphere, as in the form of liquid and solid formulations to produce active and via-
ble conidia of fungal strains, which are comparatively more tolerant to adverse 
conditions and provide crop growth in terms of root expansion and nutrient uptake 
(Waghunde et al. 2016).

4.4  Modern Molecular Tools to Study Plant Mycobiome

The traditional techniques used to identify plant mycobiome relied upon cultural 
and morphological based approaches. These methods are often time-consuming, 
laborious, and species-dependent, require extensive knowledge of classical taxon-
omy, and have the inability to accurately quantify the pathogen (Goud and 
Termorshuizen 2003). For this reason, the availability of fast, sensitive, and accurate 
methods is required for detection and identification purpose. These limitations have 
led to the development of different molecular approaches with improved accuracy 
and reliability. A variety of molecular methods have been used to detect, identify, 
and quantify plant pathogenic fungi. Here, we discuss the modern molecular tools 
and technique to study plant mycobiome, their applicability, and their implementa-
tion (Table 4.1).

Still, most of the studies on plant mycobiome are based on a culturable technique 
that involved first isolation of organisms into pure culture and then identification of 
them, but majority of uncultivable organism is overlooked due to their not or slow- 
growing properties in cultural media. To overcome this constraint, several tech-
niques were developed, viz., direct amplification of DNA from the surface-sterilized 
plant material and identification of fungal species, multilocus barcode approaches, 
and next-generation sequencing studies that investigated fungal communities and 
overall fungal diversity in plant mycobiome. To fingerprint, the most dominant fun-
gal species at different taxonomic levels usually applied denaturing gradient gel 
electrophoresis (DGGE) or single-strand conformation polymorphism (SSCP). 
Quantifying fungal biomass in plant tissues can be achieved by real-time PCR tech-
niques that greatly depend on the type of fungus as well as cell size, number, and 
type and require extensive calibration for each species using pure cultures 
(Tellenbach et  al. 2010). Next-generation sequencing technologies and systems 
biology allow simultaneous extension and examination of all members of microbial 
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Table 4.1 Different molecular tools used in plant mycobiome study

Method
Plant mycobiome 
organisms

Purpose of the 
study References

Conventional PCR Sclerotium rolfsii, 
Colletotrichum capsici

Diversity analysis 
by using ITS region

Torres-Calzada et al. 
(2011) and Jeeva 
et al. (2010)

Cooperational-PCR 
(Co-PCR)

Grapevine fungi Sensitive and 
specific detection 
of microorganism

Martos et al. (2011)

PCR-DGGE Phytophthora species Detection of 
multiple species

Rytkönen et al. 
(2011)

Real-time PCR Colletotrichum 
acutatum, Fusarium 
oxysporum f. sp. 
ciceris, Discula 
destructiva, F. poae, 
Pythium vexans

Quantification of a 
minimal amount of 
pathogenic 
microorganisms

Samuelian et al. 
(2011), Jiménez- 
Fernández et al. 
(2011), Zhang, N. 
et al. (2011), Kulik 
et al. (2011), and 
Tewoldemedhin 
et al. (2011)

Restriction fragment 
length polymorphism 
(RFLP)

Pythium myriotylum Differentiation of 
pathogenic and 
nonpathogenic 
strains

Gómez-Alpizar 
et al. (2011)

Nested-PCR Numerous fungi Used for detection 
and/or 
characterization

Hong et al. (2010); 
Aroca and Raposo 
(2007), and Grote 
et al. (2002)

Multiplex PCR Podosphaera xanthii, 
Golovinomyces 
cichoracearum, and 
Phytophthora lateralis

Detection and 
differentiation

Guglielmo et al. 
(2007) and Chen 
et al. (2008)

Reverse transcription 
(RT)-PCR

Mycosphaerella 
graminicola, 
Oidiumneo lycopersici

Detection of viable 
populations

Guo et al. (2005) 
and Matsuda et al. 
(2005)

In situ PCR Blumeria graminis Identification and 
diversity analysis

Bindslev et al. 
(2002)

PCR-ELISA Didymella bryoniae, 
Phoma species, 
Phytophthora, and 
Pythium

Detection and 
differentiation at 
species level

Somai et al. (2002) 
and Bailey et al. 
(2002)

Magnetic capture 
hybridization (MCH) 
PCR

Nectria galligena Detection at 
species level

Langrell and 
Barbara (2001)

Isothermal 
amplification methods

Fusarium 
graminearum, 
Phytophthora 
ramorum, and P. 
kernoviae

Rapid detection 
and diversity 
analysis

Abd-Elsalam et al. 
(2011) and 
Tomlinson et al. 
(2007, 2010)

(continued)
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Table 4.1 (continued)

Method
Plant mycobiome 
organisms

Purpose of the 
study References

Random amplified 
polymorphic DNA 
(RAPD)

Fusarium spp. and 
Elsinoë spp.

Genetic diversity 
analysis

Arici and Koc 
(2010), Lievens 
et al. (2007); Hyun 
et al. (2009), and 
Hiremani and 
Dubey (2019)

Amplified fragment 
length 
polymorphism(AFLP)

Cladosporium fulvum, 
Pyrenopeziza brassicae, 
Aspergillus 
carbonarius, A. 
ochraceus, 
Colletotrichum 
gossypii, C. Gossypii 
var. Cephalosporioides

Differentiate fungal 
isolates at several 
taxonomic levels

Schmidt et al. 
(2004) and Silvar 
et al. (2005)

Microsatellites Ascochyta rabiei, 
Ceratocystis fimbriata, 
Macrophomina 
phaseolina, Puccinia 
graminis, P. triticina, 
Sclerotinia subarctica, 
S. sclerotiorum, and 
Magnaporthe grisea

Genetic diversity of 
plant pathogenic 
fungi within 
species and genetic 
map construction

Jana et al. (2005), 
Bayraktar et al. 
(2007), Szabo 
(2007), Szabo and 
Kolmer (2007), 
Winton et al. (2007), 
and Zheng et al. 
(2008)

DNA arrays Fusarium species and 
Penicillium species

Differentiation of 
toxin-producing 
and nonproducing 
species. Cox I 
high-density 
oligonucleotide 
microarray 
identification

Nicolaisen et al. 
(2005) and Chen 
et al. (2009)

Micro RNA (miRNAs) Fusarium head blight 
(FHB) on wheat

Genomic study of 
wheat

Kharbikar et al. 
(2019)

 Induced mutagenesis Phytophthora 
nicotianae

Identification of 
Phytophthora 
blight-resistant 
mutants

Kumari et al. (2019)

DNA barcoding. Fusarium proliferatum Identification at the 
species level

Nayyar et al. (2018)

Transcriptome analysis Phytophthora capsici, 
P. infestans

To assess the 
change in mRNA 
levels for selected 
genes and 
pathogenic 
variability

Kandel (2014) and 
Muthuswamy et al. 
(2018)
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communities and their interactions by using “omics approaches” (metagenomics, 
transcriptomics, proteomics, and metabolomics).

The discovery of emerging molecular technology helps to gather the informa-
tion about the uncultivable fungal species, but nutritional modes and ecological 
associations of that fungal taxa are still challenging for the researchers (Tedersoo 
and Nilsson 2016). As DNA sequencing technologies progressed from sequencing 
single specimens to parallel Sanger sequencing in the early 2000s, it brought inspi-
ration to researchers to reveal the unseen mycobiota and their diversity, structure, 
functioning, and significance. Sanger and Maxam-Gilbert sequencing technologies 
were considered as first-generation (the 1990s), most common sequencing tech-
nologies used by researchers because of its high efficiency and low radioactivity 
until the emergence of a new era of sequencing technologies opening new perspec-
tives for genome exploration and analysis (Pareek et  al. 2011). The second- 
generation sequencing methods were developed in the 2000s and marked the 
beginning of high-throughput sequencing (HTS) which were characterized by the 
need to prepare amplified sequencing banks before starting the sequencing of 
amplified DNA clones to analyzed the hidden fungal communities (Vezzi 2012; 
Qiang- long et al. 2014). The second-generation sequencing included pyrosequenc-
ing, Illumina sequencing, Ion Torrent semiconductor sequencing, and SOLiD 
(Supported Oligonucleotide Ligation and Detection) sequencing (Kchouk et  al. 
2017). NGS technologies continue to improve, and the number of sequencers 
increases these last years. However, the third-generation sequencing performs at 
the level of single molecules and produce higher read lengths than the earlier gen-
erations that overcome the problem of the necessity to create the amplification 
libraries. Also, third- generation sequencing can produce long reads of several kilo-
bases for the resolution of the assembly problem and repetitive regions of complex 
genomes which is useful in metabarcoding and community analysis of mycobiome 
(Song et al. 2015; Rhoads and Au 2015; Nilsson et al. 2018). This chapter briefly 
discusses the application of different HTS, which elucidate the study of fungal 
community associations related to taxonomic profiling of fungal communities 
and their mycobiome structure, function, signaling mechanism, and ecosystem 
functioning.

4.5  Major Applications of Plant Mycobiome

Recently, plant-associated fungal communities have been taken a greater interest as 
bioinoculant to enhance plant growth in different kinds of biotic and abiotic stresses. 
Thus the rhizospheric engineering involves the development of new strategies to 
reshape the rhizospheric microbiome for biofertilization and induces root growth 
stimulation, antibiosis, induced plant systemic resistance, and parasitism.

These microorganisms follow several mechanisms to support plant growth which 
include the production of phytohormones and the mobilization of organic matter 
and minerals, like carbon, nitrogen, phosphorus, and iron (Tkacz and Poole 2015). 
The mechanisms of suppression of pathogens demonstrate several direct 
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interactions with plant pathogens, as well as indirect interaction, which include 
stimulation of the plant immune system or systemic resistance (Lugtenberg and 
Kamilova 2009).

4.5.1  Plant Growth Promotion

Plant-associated fungal community structure and metabolism are altered during 
development and environmental changes, as the nutrients are provided in the microbi-
ome by the plants. So in these consequences, secretion of the nutrients exuded by 
different plants, the specific fungal pathways responding to them, and the mechanisms 
by which plant-associated fungal community activates or repress the root colonization 
process in the response of exudate (Contreras-Cornejo et  al. 2016; Zeilinger et  al. 
2016). Fungal community interactions in plant microbiota likely play determinative 
roles in colonization of the host plant, plant growth promotion, nutrient uptake, micro-
biome succession over plant development, and the ability of mutualists to suppress 
pathogen growth (López-Bucio et al. 2015; Guler et al. 2016; You et al. 2016). Several 
researchers reported Trichoderma colonized plants to secrete different bioactive com-
pounds like auxins, ethylene, gibberellins, plant enzymes, antioxidants, etc. for sig-
naling molecule between mycobiome and compounds like phytoalexins and phenols 
that provide tolerance to abiotic stresses and enhance the branching capacity of the 
root system (Brotman et al. 2013; López- Bucio et al. 2015).

Application of plant growth-promoting fungi Trichoderma longibrachiatum T6 
enhances the tolerance of wheat to salt stress through the improvement of the anti-
oxidative defense system and gene expression (Zhang et al. 2016). The plant micro-
biota also influences the composition of plant secondary metabolites and the 
resulting development of different metabolites. Studies on the influence of the 
microbiome on the taste of strawberries (Zabetakis et al. 1999; Verginer et al. 2010) 
and the production of metabolites in medicinal plants (Köberl et al. 2013; Schmidt 
et al. 2014) have been reported. In a study on Arabidopsis thaliana, the rhizosphere 
microbiome could be linked to insect feeding behavior, which was most probably a 
result of microbiome-driven changes in the leaf metabolome (Badri et al. 2013). 
Peñuelas et al. (2014) showed that the removal of the floral microbiome of Sambucus 
nigra resulted in a reduced floral terpene emission, which plays an important role in 
pollination and consequently in fruit and seed production.

4.5.2  Disease Management

The plant microbiome is effectively involved in pathogen suppression, particularly 
the plant mycobiome that acts as a protective armor against phytopathogens (Weller 
et al. 2002). The various mechanisms are involved in direct interactions with phyto-
pathogens as well as indirect interactions via mechanisms of parasitism, competi-
tion for nutrients, and induction of systemic resistance against abiotic and biotic 
stresses (Lugtenberg and Kamilova 2009). The recent research has shown that the 
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plant mycobiome is involved not only in managing with biotic stress but also in 
protection against abiotic stress (Bragina et al. 2013). Several reports indicated that 
Trichoderma spp. have beneficial effects on plant growth and biotic stress manage-
ment in different horticulture crops like radish, cucumber, pepper, bottle gourd, 
periwinkle, bitter gourd, chrysanthemum, lettuce, and tomato (Donoso et al. 2008; 
Bae et al. 2009; Brotman et al. 2013; Contreras-Cornejo et al. 2016; Zeilinger et al. 
2016). Kotasthane et al. (2015) reported the antagonistic potential of Trichoderma 
spp. against Sclerotium rolfsii and Rhizoctonia solani and their plant growth promo-
tion response toward the growth of cucumber, bottle gourd, and bitter gourd. The 
ongoing research is an effort to elucidate the molecular basis of plant mycobiome to 
gather broad perspectives regarding their functioning and applicability for growth 
promotion and defense activation of the plant in disease management (Table 4.2).

4.6  Conclusion and Future Prospects

This review was undertaken to explore the current information on plant mycobiome 
management and focused on developing technologies to overcome the constraints 
related to mycobiome engineering. Recent advancement in molecular technologies 
and ongoing research have revealed the greater diversity and complexity of plant 
mycobiome rather than previously imagined, while an amalgamation of biochemi-
cal, molecular, and genetic approaches has led to new visions into the exact mecha-
nism of signal induction and transduction processes of secondary metabolites from 
fungal communities in plants and other organisms. The ongoing research, techno-
logical advancement in molecular biology, and high-throughput omics included 
genomics, transcriptomics, proteomics, and metabolomics that provide information 
to elucidate the role of the mycobiome gene that aids in improving plant perfor-
mance. Therefore, the better understanding of metagenomics, genetic sequence 
information of microbiome, obtained from next-generation sequencing data has 
substantial potential for the discovery of diversity and functional perspective of the 
sequenced genes of the microbiome-related organisms. Looking forward toward the 
potential of NGS data to demonstrate the functional diversity of mycobiome will 
require an elucidation of basic biology of fungi through traditional culturing 
approaches and sequencing of individual fungal genomes to demonstrate the evolu-
tionary studies in natural habitat. Here, this chapter reviews omics-based approaches 
that are driving forward the current understanding of plant-associated fungal gene 
functions and describes how these technologies have helped unravel key bacterial 
genes and pathways that mediate pathogenic, beneficial, and commensal host 
interactions.
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Table 4.2 Beneficial and pathogenic mycobiome association with different crops

Antagonist Pathogen
Counter 
mechanism Host plant References

Trichoderma 
hamatum and T. 
harzianum

Fusarium 
oxysporum f. sp. 
cepae

Induction of 
antifungal 
compounds

Onion Adèle et al. 
(2019)

Glomus sp. and 
Trichoderma sp.

Cryphonectria 
parasitica

Induction of 
secondary 
metabolites

Chestnut Murolo et al. 
(2019)

T. viride Macrophomina 
phaseolina

Antagonist 
mechanism by 
mycelial 
destruction

Mung bean Shahid and 
Khan (2019)

Trichoderma spp., 
T. 
brevicompactum, 
T. gamsii, and T. 
harzianum

F. oxysporum, 
Pythium spp., and 
Rhizoctonia solani 
(Kuhn.)

Production of 
the enzymatic 
machinery

Tomato Biam et al. 
(2019) and 
Bader et al. 
(2019)

Piriformospora 
indica

Fusarium spp. Induction of 
antimicrobial 
product, 
enzymatic 
mechanisms, 
and plant growth 
promotion

Sugarcane, 
potato, peas, 
maize, 
soybean

Aslam et al. 
(2019)

Trichoderma 
harzianum strain 
Th22

F. graminearum Activation of 
defense-related 
genes

Maize Saravanakumar 
et al. (2018)

T. harzianum, M. phaseolina, 
Fusarium 
oxysporum f. sp. 
cumini

Induction of 
secondary 
metabolites

Guar, moth 
bean, mung 
bean, and 
sesame

Mawar et al. 
(2019)

T. viride and 
Ampelomyces 
quisqualis

Oidium 
euonymi-japonici

Antagonistic 
mechanism by 
mycelial 
destruction and 
mycolytic 
enzyme 
production

Euonymus 
japonicus

Ahanger et al. 
(2018)

T. viride isolate 
NRCL T-01

F. solani Mycolytic 
enzyme 
production

Litchi Kumar et al. 
(2018)

T. harzianum M. phaseolina 
(Tassi) Goid

Induction of 
secondary 
metabolites

Mungbean Thombre and 
Kohire (2018)

(continued)
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Table 4.2 (continued)

Antagonist Pathogen
Counter 
mechanism Host plant References

Massarina 
igniaria, Periconia 
macrospinosa, 
Noosia bankssiae, 
Flavomyces 
fulophazii

– Plant growth 
promotion and 
phytohormone 
production

Oryza sativa Vergara et al. 
(2018)

Acremonium, 
Arthrinium, 
Botryotinia, 
Chaetomium, 
Dictyosporium, 
Humicola, 
Ilyonectria, 
Mucor, 
Myrothecium, 
Penicillium, 
Periconia, 
Thielavia

Alternaria panax, 
Fusarium 
oxysporum, 
Fusarium solani, 
Phoma herbarum, 
and 
Mycocentrospora 
acerina

Induction of 
antimicrobial 
product, 
enzymatic 
mechanisms, 
and plant growth 
promotion

Panax 
notoginseng

Zheng et al. 
(2017) and 
Nandhini et al. 
(2018)

T. harzianum F. graminearum Antagonistic 
activity by 
mycelial 
destruction and 
nutrient 
competition

Maize Saravanakumar 
et al. (2018)

Penicillium 
chrysogenum and 
P. crustosum

Staphylococcus 
aureus, 
Salmonella 
typhimurium, and 
Candida albicans

Induction of 
antimicrobial 
product, 
enzymatic 
mechanisms, 
and plant growth 
promotion

Teucrium 
polium

Hassan (2017)

T. harzianum F. oxysporum f. 
sp. gladioli and 
Meloidogyne 
incognita

Interaction and 
mycolytic 
enzyme 
production

Gladiolus Khan et al. 
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geniculata
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phytohormone 
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hysterophorus

Priyadharsini 
and 
Muthukumar 
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T. asperellum 
ZJSX5003

F. graminearum Antagonistic and 
biocontrol 
potential

Maize Li et al. (2016)

T. harzianum, T. 
viride, A. flavus, 
A. falcatum, and 
A. niger

Colletotrichum 
falcatum

Mycoparasitism 
and mycolytic 
enzyme 
production

Sugarcane Suresh and 
Nelson (2016)
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5Role of Soil Fauna: En Route 
to Ecosystem Services and Its Effect 
on Soil Health
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Abstract
Soils have an amazingly assorted network of soil fauna that contrast in their ver-
satile procedures, and consequently, in the capacities, they satisfy in soils. Soil 
fauna works as an extremely proficient means, which aids microorganisms in 
inhabiting and broadening their venture furthermore into the soil skylines. Lives 
of soil fauna as soil settlers, indicators, and architects have been underlined, but 
recent research and worldwide natural concerns are urging the scientific com-
munity to look further into the controls of soil fauna for sustainable management 
of soils in these turbulent times. Molecular data alone is insufficient for many 
investigations about soil fauna, and hence there is a need for sincere efforts in 
increasing expertise in the classical taxonomy of soil fauna. This specialization, 
along with data on the soil fauna’s biogeography, their relationship to over-the- 
ground problem areas, and land management schemes, will be acute for accept-
ing how soil fauna will communicate and react to numerous worldwide 
alterations. This chapter discusses the soil fauna on the soil grounds as well as 
below grounds, tight associations of abiotic factors with the soil biodiversity, 
their roles in ecosystem events and functions, and, finally, the arrangement of 
ecosystem benefits for human prosperity. A proper and researched thought about 
soil faunal species, their identities, geographic extents, and an understanding of 
their roles in soil and land management will help in giving balanced forecasts for 
the working of future biological communities that are under siege due to inevi-
table environmental climate change.
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5.1  Introduction

Soil speaks as a standout among the essential supplies of biodiversity. It reflects the 
environmental metabolism since all the biogeochemical procedures of distinctive 
biological systems are consolidated inside it. It is an intricate framework compris-
ing biotic and abiotic segments, which coordinates with the essential habitat and 
ensures biological activity and diversity, assisting ecosystem services (Robinson 
et al. 2013). Inside the composite assembly of soil, biotic and abiotic parts commu-
nicate in governing the natural debasement of materials and nutrient cycling 
(Morgado et al. 2018). Soil fauna or the biotic portion of the soil is an imperative 
store of biodiversity and assumes a basic role in several soil biological system 
capacities. Soil environmental conditions are degrading due to the increase in 
human activities, leading to a reduction in the abundance of plants and animal com-
munities responsible for a balanced environment (Morgado et al. 2018). The conse-
quence of this biodiversity loss is a counterfeit environment that needs steady 
human intervention and requires additional expenses, while regular ecosystems are 
optimally controlled by a group of plants and animals and a thorough supply of 
energy and nutrients—a form of control gradually vanishing with land-use change 
and industrial growth. As a result, agricultural practices that permit a mix of produc-
tion targets and ecologically amicable administrations work sustainably, ensuring 
healthy soil biodiversity, which is fundamental to preventing soil fauna networks 
from declining in agricultural lands and also helping us in understanding their role 
toward ecosystem services.

5.2  Structure of Soil Ecosystem

5.2.1  Soil Organization

Amid biological communities, soil stands as the focal organization, incorporating a 
huge number of geochemical and ecological capacities (Coleman and Whitman 
2005; Crawford et al. 2005; Wall et al. 2010, Delgado-Baquerizo et al. 2019). Soils’ 
position exists at the interface media (Fig. 5.1), located at the intersection of the four 
main life-supporting provinces: lithosphere, hydrosphere, atmosphere, and the bio-
sphere (living matter). This provides exceptionally dynamic and multiphasic char-
acter to the soil, where numerous estimated aggregates are connected and balanced 
out inside a perplexing lattice of solid, fluid, and gaseous parts communicating at 
different scales (Lal 2016; Parker 2010).
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Soil particles do not make a nonstop and conservative mass; instead, the soil 
volume is framed by pores, chambers, channels, and splits that give an appropriate 
domain to soil fauna and lead to the development of plant roots. This physical orga-
nization in soil additionally directs the motion of gases and fluids inside the soil 
making different land- or water-capable situations, heterogeneously loaded up with 
soil “solution” and mostly occupied with gases, which are critical for the soil fauna 
(Lavelle 2012). A wide variety of dissolved and suspended matter, including inor-
ganic and organic materials, contributes toward soil “solution” composition (Lavelle 
and Spain 2001). Soil components engaged on the solid stage diffuse to the fluid 
stage. In this manner, minerals and organic matter end up being accessible to the 
larger part of soil-living creatures and plants. Soil gaseous stage permits oxygen 
(O2) utilization and carbon dioxide (CO2) generation amid biological exercises. As 
the soil O2 gets used up, usually there is a trade-off between the soil and atmo-
spheric O2 with the help of a concentration gradient, with CO2 transition happening 
in reverse. Relative humidity of terrestrial ecosystems remains near saturation, 
which is indispensable to most soil fauna, for instance, in the case of springtails. 
Nematodes, on the other hand, can survive at different levels of relative humidity 
(Lavelle and Spain 2001)

Notwithstanding the huge predisposition toward the above-ground portion of the 
soil ecosystem, it is the below ground, the subterranean, where indispensable biodi-
versity focused on the pore spaces resides (Beare et al. 1995). Pore spaces have an 
expanded surface territory that makes a large number of active microenvironments 

Fig. 5.1 Pedosphere presenting biotic and abiotic interactions in the soil matrix (Modified from 
Fitzpatrick [1984] and Coleman and Crossley [1996])
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where neighborhood species are exposed to low, competitive exclusion, and concur-
rence is set between these neighborhood species through resource partitioning 
(Haynes 2014; Lavelle 1997). For instance, low water potential causes low pore 
connectivity, hence responsible for the increase in the bacterial abundance (Carson 
et al. 2010). Competition acts as organizing power for biota consensus in the soil, 
limited to finer scales, for instance, soil aggregates for microbial networks or the 
soil pore space and rhizospheric area for microfauna, where prospective contenders 
may utilize a similar space and accessible resources (MEA 2005).

5.2.2  Soil Biodiversity

On earth, soils are the most phylotype-rich environments (Giller 1996). No place in 
nature is plausible enough to discover such a large number of organisms as in soil 
ecosystems (Hågvar 1998). Unfortunately, despite the immense efforts by scientists 
in the past few years to portray and comprehend soil networks, the taxonomic short-
age for soil biodiversity is the biggest mysteries (Decaëns 2010) and little is known 
about the soil’s cryptic biodiversity (Bardgett and van der Putten 2014). In spite of 
this fact, one perspective as of now remains undisputable: soil biodiversity is obliga-
tory for an optimum level of soil functioning that eventually supports all soil-based 
ecosystems and goods (Barrios 2007). Subsequently, enriching the information 
about soil biodiversity is foremost to completely comprehend the fundamentals of 
soil health, adequately oversee soil-based environmental benefits, and foresee future 
patterns and situations for the recent period (Bardgett and van der Putten 2014).

Soil organisms are hyperdiverse and amazingly unpredictable and incorporate 
soil communities from all major scientific categorizations (Parker 2010; Wardle 
2006). They are typically arranged depending on their body size, whose variety 
inside soil networks traverses a few orders of size (Barrios 2007; Lavelle 2012; 
Parker 2010). A greater part of decent soil variety is created by microbiota or micro-
scopic organisms such as bacteria, archaea, and fungi; however, it includes an 
exceptional range of microfauna, mesofauna, macrofauna, and even megafauna 
(Bardgett 2002; Lavelle 2012; Orgiazzi et  al. 2016; Wurst et  al. 2012). Also, it 
incorporates a tremendous assortment of photosynthetic entities like lichens, bryo-
phytes, and vascular plants, and their root systems have significant roles in soil 
ecosystem organization (Orgiazzi et al. 2016). Soil microbiota contributes, for the 
most part, to decay forms, favoring carbon (C), nitrogen (N2), and other biogeo-
chemical cycling, yet also assume a vital role in defeating disease and in plant 
growth and development (Wurst et al. 2012). These life forms make vital coopera-
tive collaborations with plants, such as enhancing nutrient uptake (e.g., N2 fixation, 
phosphorus redistribution), as well as manage plant hormones (Wurst et al. 2012). 
Soil organic matter (SOM) is critical for the biological processes and supply of 
nutrients, in every variety of soils. Two to ten percent of the soil mass is SOM, 
which is essential for the comprehended function, including physical, chemical, and 
biological functions. SOM has been instigated in plants, which can be categorized 
into “living” and “dead” components during different stages of decomposition and 
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varies in age from fresh residues to those that are years old in the form of resistant 
organic matter. Carbon and other organic particles, such as hydrogen (H2), oxygen 
(O2), and little amounts of N2, phosphorous, sulfur, potassium, calcium (Ca), and 
magnesium (Mg), constitute SOM. Nearly 5–10% of below-ground SOM contains 
roots, fauna, and microorganism, that is, living, and this living pool of microbial 
components is referred to as microbial biomass, which is considered essential for 
decomposition of organic matter, nutrient cycling, chemical degradation, and stabi-
lization of soil (Ha et  al. 2008). During early plant development, phosphorus is 
required for cell growth. Soil phosphorous can be distributed into three pools, each 
varying in its accessibility to plants:

 1. Soil organic phosphorus bound to organic compounds
 2. Inorganic compounds (phosphorus joined with Ca, Mg, iron (Fe), aluminum 

(Al), or clay minerals)
 3. Natural and inorganic phosphorus compounds related to living cells

Soil phosphorus moves between each of these pools using mineralization (sepa-
rate of natural matter), immobilization, and redistribution of phosphorus between 
microorganisms, plants, and natural matter. Phosphorus is immobilized (made inac-
cessible to plants) when it is consolidated into the living microbial biomass. 
Redistribution of phosphorus happens when phosphorus is discharged from micro-
bial cells and moved into different phosphorus pools. Phosphorus mineralization and 
immobilization happen at the same time in soil. While mineralization of natural soil 
phosphorus to inorganic phosphorus expands the accessibility of phosphorus to 
plants and microorganisms, an extensive amount (between 15 and 80%) of soil phos-
phorus stays in natural structure and remains inaccessible to plants (Ha et al. 2008).

Soil microfauna incorporates organisms that are ≤100 μm (e.g., nematodes, pro-
tozoa, and rotifers) in size. Only one taxon, protozoa, is discovered completely 
inside this class (Ruggiero et al. 2015). Mainly, mites, nematodes, rotifers, tardi-
grades, and copepod scavengers fall inside this group (Kennedy and Gewin 1997). 
Soil microfauna feeds on microscopic organisms such as fungi and algae, yet they 
additionally represent predator and saprophytic gatherings too. Through their 
actions they manage: (1) nutrient cycling by enhancing the accessibility of nutrients 
to different species (e.g., excretion), (2) population and actions of microscopic 
organisms and fungi, and (3) scattering of pivotal rhizospheric microbiota (Wurst 
et  al. 2012). Their impacts on plants are likewise—when in direct contact with 
roots, they benefit from the root excretions and modify the plant’s defenses or hor-
mones. The role of plant roots in soil processes cannot be separated from the varied 
group of organisms, which flourish around them. These comprise parasites too, her-
bivores and predators, nematodes or worms as microbial grazers, and free-living 
microbes feeding on root exudates. Secondary metabolites produced by plants such 
as iridoid glycosides are present in root exudates. Other volatile organic compounds 
(VOCs) are also released by green leaves and above-ground roots that attract polli-
nators. Below-ground roots also release VOCs that dissuade soil-inhabiting 
herbivores.
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Likewise, plants are not just providers of litter for decomposers but rather they 
assume a functional job in pulling in valuable soil invertebrates. For instance, plants 
draw in entomopathogenic nematodes to kill the rhizospheric herbivores, giving 
innoculum to the rhizospheric bacterial population, aggravating the correspondence 
between destructive microorganisms, and furthermore, in adjusting rhizodeposition 
and root architecture. This eventually results in a better communication between soil 
fauna and plant roots (Briones 2018). All these synthetic signs discharged by the 
plants are coordinated in a way that profits their very own development and health.

Soil mesofauna ranges from 100 μm to 2 mm (gatherings include taxa like Acari, 
Collembola, Tardigrada, Protura, Diplura, and Enchytraeidae) in size. 
Microarthropods, for example, mites and springtails, are the fundamental organisms 
of this group. They could be classified into herbivores, bacterivores, or fungivores. 
At times, they can additionally gorge on higher trophic dimension life forms. They 
live near the air and water existing in soil and are thus exceptionally reliant on soil 
aeration and humidity. Soil mesofauna helps in nutrient cycling and management of 
pests and disease control by their preferential mode of feeding, acts as food for other 
soil organisms, and aids in soil fauna distribution (Wurst et al. 2012).

Soil macrofauna (>2 mm in size) is fundamentally in charge of litter comminu-
tion and redistribution, and predation on other soil-abiding organisms frequently 
called as “ecosystem engineers.” Macroarthropods (e.g., isopods, spiders, bugs) 
alongside annelids and gastropods are the fundamental congregations of soil macro-
fauna. These creatures are in charge of modifying the structure of their natural sur-
rounding by contributing to various soil capacities, like physical disintegration and 
transport of litter residues to lower layers of soil that eventually help in nutrient 
cycling by microfauna and microbes, water penetration (e.g., by burrowing prac-
tices), and pest and disease control (rich biodiversity and predation; Wurst et  al. 
2012). They have an immediate constructive outcome on plant development and 
yield, yet they could be the reason for some harmful impacts on crops.

Soil megafauna (soil fauna whose size surpasses 20 mm): Individuals from this 
group incorporate an extensive range of invertebrates (worms, snails, myriapods) 
and vertebrates (insectivores, terrestrial and aquatic rodents, and reptiles). Moles, 
voles, gophers, snakes, and burrowing owls are few examples of soil megafauna, 
which help in the breakdown of the complex substances in decomposing plants and 
animals so that living plants and other organisms can utilize them. This comprises 
soil organisms as promoters in biogeochemical cycles, with carbon (C) cycle being 
the most prominent followed by nitrogen (N2) and sulfur (S) cycles.

Soil life forms can be characterized additionally as per their usefulness, which 
makes a difference to explain about their environmental roles in soil systems. Turbé 
et al. (2010) recommended the utilization of three widely inclusive practical gather-
ings: chemical engineers, biological regulators, and ecosystem engineers (Fig. 5.2). 
Creatures directly participating in carbon and other biogeochemical cycles, includ-
ing nitrogen, phosphorus, and sulfur cycles, and helping in soil decomposition and 
transformation can be classified as the chemical engineers. Biological regulators are 
in charge of monitoring the changing aspects of soil inhabitants, thereby advancing 
the strength and constancy of soil biological systems (Fusaro et al. 2018). Ecosystem 
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engineers are in charge of maintaining the soil structure by advancing the formation 
of stable aggregates (unit of soil structure), the pore network construction, and the 
advancement of complex biostructures.

In spite of a long history of studies focusing on the enumeration of soil fauna 
(Menta 2012), it is still extremely hard to give precise biomass estimates for soil 
fauna. This is somewhat due to their inconsistency in time and space (Menta 2012) 
and also due to contrasts in the methodologies used for their inspection (Wall et al. 
2001). Also, most of the studies are from the temperate zones while other climactic/
ecological regions have been genuinely disregarded (Turbé et al. 2010).

5.3  Soil Fauna Organization in the Ecosystem

Soil fauna is viewed as an all-inclusive imperative part necessary for reusing organic 
matter, soil vitality, and nutrient cycling (Jeffery and Gardi 2010). In conjunction, 
they are the main players in supporting and managing environment services. Hence, 
soil biologists frequently organize soil fauna in terms of their broad functions 
divided into three categories: chemical engineers, biological regulators, and ecosys-
tem engineers (Fig. 5.2).

 1. Chemical Engineers: They are the key components of the soil food web. Bacteria 
and fungi make up the largest portion of this group and also include algae and 

Fig. 5.2 Classification of soil beneficiaries and their appropriate role in the maintenance of 
agroecosystem
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viruses (viruses could impact C cycling through viral shunt where, by bacterial 
cell lysis, they build up the concentration of labile C in the soil ecosystem that 
eventually serves toward increment in microbial generation and respiration in 
soils; refer to Williamson et al. [2017] and Trubl et al. [2018] for more details on 
this topic). These microscopic engineers help in the decomposition of organic 
material and transforming complex forms of carbon and nitrogen into CO2 and 
simpler nutrients (Coleman and Crossley 1996). For their survival and growth, 
they depend on optimum soil moisture, suitable atmospheric conditions, and 
pore spaces between soil particles. Significant quantities of organic matter and 
animal manure in soil environments certify their prevalence. Moreover, they are 
key parts of a soil food web or sustenance networks as their action ensures the 
growth of living organisms, commencing from plants to the animals that feed 
upon them, responsible for organic turnover. Rough evaluations of soil biodiver-
sity demonstrate a few thousand invertebrate species for every site and addition-
ally ambiguous levels of microbial and protozoan variety that contributes in each 
of the trophic level (Turbé et al. 2010).

 2. Biological Regulators: They are the diverse group of soil organisms that control 
the activities of the subordinate chemical engineers and form a vital link in the 
food web. Some act as plant pests and parasites, while others stimulate micro-
flora. Their movement around the soil assists fragmentation of organic material, 
providing more surface area and hence enhancing the availability of the nutrients 
to microbes. In this group, protists are the smallest organisms, which live in the 
water layer surrounding soil particles and control bacterial populations through 
feeding. Nematodes, microarthropods, and protists are the most abundant bio-
logical regulators.

 3. Ecosystem Engineers: Of major significance in the ecosystem, soil advance-
ment, and support are the alleged “ecosystem engineers,” as these species con-
trol, either straightforwardly or in a roundabout way, the accessibility of resources 
to other co-inhabitants of soil (Davies et al. 2019; Wright et al. 2002). These life 
forms physically change, keep up, and make new habitat for other life forms. 
Typically, there are two types of ecosystem engineers—firstly, the allogenic ones 
that modify the soil background by transforming living or nonliving things from 
one physical state to another, via mechanical or other means, and, secondly, the 
autogenic ones that change the soil background using their physical structures, 
that is, their existing and/or dead tissue (Byers et al. 2006; Lavelle and Spain 
2001; Wright et  al. 2002). A precedent of physical “ecosystem engineers” is 
plant roots that make substantial voids (spaces) in the soil through root rot (Byers 
et  al. 2006). Termites and earthworms assume a noteworthy role in moving, 
blending, and circulating air through the soil through their tunneling.

Soil fauna is a very important entity, and the greater part is exceedingly versatile, 
stretching from herbivores to omnivores and even include carnivores. Contingent 
upon the accessible nutrient supply, a good chunk of soil fauna can modify their 
feeding systems from a more noteworthy to a lesser degree with instances where 
numerous carnivorous species amid low food accessibility can head toward the 
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transformation and organic matter turnover (Brose and Scheu 2014). The coopera-
tion between soil fauna and ecosystem are various, and unpredictable, due to the 
huge diversity and prevalent shifts.

The level of connection amid soil fauna and the soil itself can vary significantly 
between taxa and is subjected to soil existence cycle (Wall et al. 2001). Specifically, 
in conjunction with their physical forms and the ecological roles, it is conceivable 
to arrange soil fauna into four fundamental gatherings: incidentally dormant geo-
philes, briefly dynamic geophiles, periodical geophiles, and geobionts (Fig. 5.3). It 
is noticed that this classification does not have any taxonomical importance, yet, 
rather, they are helpful after contemplating the existential procedures of soil 
invertebrates.

Incidentally, dormant geophiles are life forms residing in the soil for a certain 
period of their lifecycle, for example, during hibernation or while experiencing 
transformation, at a point when security from climatic forces is essential (Menta 
2012). Because of their relative dormancy, these life forms affect the natural capac-
ity of the soil, even though they can act as prey for different creatures in this critical 

Fig. 5.3 The primary four fundamental gatherings of soil invertebrates contingent upon their life 
techniques and how nearly they are connected with the soil
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time of their lifecycle. They spend time in the soil to let pass adverse atmospheric 
conditions, or for metamorphosis; for instance, caterpillars of butterfly families like 
Noctuidae, Geometridae, or Sphingidae bury themselves in the ground at the time 
of nymphosis. These incidentally dormant geophiles exert no mechanical force on 
soil (Menta 2012).

Briefly dynamic geophiles reside in the soil in a steady state for an extensive 
period of their life (i.e., for at least one or more developmental phases and rise out 
of the earth as an adult). A large portion of these creatures is insects, for example, 
Neuroptera, Diptera, Coleoptera, and Lepidoptera. Organisms with “pupal” phase 
in their life cycle assume a minor role in the soil amid this stage, while the “larval” 
phase is considerably more imperative for the soil ecology, particularly at times 
where populace thickness is high (Wall et al. 2001, 2008). Most larvae in the soil 
can go about as both detritivores and predators.

Periodical geophiles reside for a significant portion of their life in the dirt, for the 
most part as hatchlings; however, for the duration of their lives, they at times return 
to the dirt to perform different exercises, for example, chasing, egg laying, or to flee 
from threats. A few Coleoptera gatherings (e.g., carabides, scarabeids, cicindelids) 
pass their larval phase in the litter or the upper layers of mineral soil, and when they 
reach a mature stage, they utilize soil as a nourishment source, a shelter, and for 
different purposes (Wall et al. 2001, 2008).

Geobionts are living beings that exceptionally spend their entire lifecycle in soil 
and cannot leave this condition even for a limited period. They have characteristics 
that counteract survival outside of the soil environment either because they are defi-
cient in ways to secure themselves from desiccation or temperature changes, or are 
lacking the sensory organs essential to survive above the ground, for example, lack-
ing appendages, necessary for discovering nourishment above ground or for protec-
tion from predators. A few types of myriapods, isopods, Acari, mollusks, and the 
larger part of Collembola, Diplura, and Protura have a place with this gathering 
(Wall et al. 2001). These distinctive sorts of connections between soil life forms and 
the soil decide a separated level of weakness among different gatherings and as a 
result of any conceivable effect on soil condition. In case, if soil pollution happens 
due to some human interference, geobionts will be the most severely affected group 
as they cannot leave the dirt and must consume all their time on earth there.

5.3.1  Soil Networks

Soil organisms are the principal intermediates of soil working at various scales. The 
investigation of soil biodiversity began through surveying soil food networks as a 
feeding web between organisms—one of the major integrating features of soil com-
munities. Natural ecosystems contain numerous species that are associated with 
their feeding connections over various trophic levels to make a complex food web 
(Digel et  al. 2014). Consumer and producer interactions can be envisioned as a 
binding principle for food webs in different ecosystems with hierarchical 
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associations acting as a backbone (Brose and Scheu 2014; Digel et al. 2014; Fontaine 
et al. 2011). Figure 5.4 delineates the various hierarchical associations of the deter-
minants of soil forms (Beare et al. 1995).

The arrangement of elements influencing soil working is resolved at both spatial 
and temporal scales (Wu and Wang 2019). Different organisms, including higher 
plants and creatures, assume considerable roles in this regard.

The working of the soil framework is additionally controlled by:

• The deterioration rates of dead organic materials and the equalization between 
mineralization (which discharges nutrients accessible to plants and microorgan-
isms) and humification (which frames stores of soil organic matter or SOM and 
colloidal organic mixes)

• The level of synchronization of nutrient discharge with plant request
• The soil physical structure, which decides the rates and examples of gas trade, 

soil water movement into and through the soil, and disintegration rates
• The texture of the soil (percent of sand, silt, and clay), which impacts the action 

of soil life forms and henceforth the soil biological working

Soil food networks are created by two fundamental frameworks: one, herbiv-
ory based (“green” food networks) and the other detritus based (“brown” food 
networks; Briones 2014). In herbivory-based food networks, plant roots establish 
the fundamental basal reserve, grazed by plant-feeding nematodes and insects, 

Fig. 5.4 Soil network showing linkages between the different functional groups of soil fauna, 
along with their role in different soil biological functions
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which in turn are grazed by a predaceous network ranging within a few trophic 
levels (Parker 2010). The brown food network is composed of recalcitrant, nonliv-
ing organic materials, supported by the detritus pool. Two vitality channels have 
been distinguished inside brown food networks: (1) the bacterial vitality channel, 
with microorganisms as essential decomposers, and (2) the fungal vitality chan-
nel, where they are the decomposers (Ramsden and Kervalishvili 2008). This bac-
terial–fungal vitality channel idea by and large adopts a sensibly well-separated 
network of detritivores/microbivores (Coleman 1996). Moreover, expanding con-
firmations recommend that omnivory and feeding versatility is summed up inside 
soil food networks (Jordán 2009), not only at higher trophic levels but also inside 
detritivores/microbivores organizations (Gupta and Malik 1996). This entire sys-
tem, counting the distinctive vitality channels, is balanced out by a broad number 
of trophic and nontrophic collaborations at different spatial and temporal scales 
(Ramsden and Kervalishvili 2008). Interactions between networks happen at 
predator levels (Parker 2010), as well as among autotrophs and decomposers, 
either connected by uneven metabolic abilities (Giller 1996) or resource competi-
tion (Hågvar 1998; Scheu 2002). Nontrophic interactions, for example, the move-
ment of soil engineers, are additionally thought to advance assorted variety and 
decrease competitive interactions, thus contributing to balance soil food networks 
(Thompson et al. 2012).

5.3.2  Soil Health and Faunal Indicators

Soil health suggests the limit of soil to work as an indispensable living framework, 
a dynamic framework. It includes the knowledge of soil as a powerful living organ-
ism that works comprehensively relying on its condition or state. Soil health relies 
upon the joined impacts of three noteworthy connecting parts. These are the chemi-
cal, physical, and biological attributes of the soil (Cardoso et al. 2013). Soil health 
is upgraded by the management and land-utilization choices that consider the vari-
ous functions of soil. It is weakened by choices that look just on single capacities 
and momentary arrangements, for example, expanding yet not sustaining crop 
productivity.

Soil organisms apply a noteworthy power over many soil forms through their 
impacts on the deterioration of dead natural material, nutrient cycling, the change 
and transport of soil materials, and the development and support of soil structure 
(Griffiths et  al. 2018). Though occasionally not easily perceived, the biological 
activity of soils is to a great extent gathered in the topsoil, from a couple of centime-
ters to a depth of 30 cm. The living segment of SOM comprises of:

• Dissolved organic matter made up of soluble root exudates
• Particulate organic matter, including each of fresh residues and living organisms
• Humus content
• Resistant organic matter
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Dead organic matter is at first mostly devoured by macrofauna, comminuting and 
redistributing it into smaller sections. These partially degraded organic residues are 
then accessible to meso- and microfauna and microorganisms. Through its tunnel-
ing movement, soil macrofauna mixes organic matter profoundly into the soil and 
stimulates the movement of microorganisms. In this manner, soil organisms take an 
interest in a variety of procedures fundamental to the working ecosystems. For 
instance, they assume an imperative role in the cycling of SOM and nutrients in the 
soil, water purification, agrochemicals detoxification, and in the change of soil 
structure.

Among the capacities directed by soil organisms that help in maintaining the soil 
health are:

• Decay: separating litter, making hummus, and nutrient cycling
• Atmospheric N2 conversion into organic forms and reconverting organic N2 into 

gaseous N2

• Enzyme synthesis, hormones, vitamins, and other organic substances for plant 
growth and development

• Soil structure modification, influencing porosity, water transitions, and organic 
matter conveyance, and advancing further root development

• Overpowering as well as feeding on soil-borne plant pathogens and plant- 
parasitic nematodes

More significance has been accustomed to individuals from soil fauna as pointers 
of health. This aggregate includes the invertebrate network that lives absolutely or 
amid something like a period of the existing cycle in the soil (Cardoso et al. 2013; 
Coyle et al. 2017; Jordán 2009). They assume roles in organizing procedures of ter-
restrial ecosystems, the disintegration of plant residues, and setting up connections 
at various dimensions with microorganisms. Hence, they effectively participate in 
procedures that influence the soil properties and quality, and hence are great indica-
tors of changes in the soil (Lavelle and Spain 2001). For example, nematodes, the 
simplest metazoan, act as bioindicators of soil health. They demonstrate a high and 
varied sensitivity to pollutants, and because of their trophic diversity, nematode 
gatherings do reproduce not only their fate but also the state of the bacterial, fungal, 
and protozoan communities. Because of such characteristics, they are the poten-
tially remarkable bioindicators for soil disturbance and health (Bongers and van de 
Haar 1990).

A decent variety, biomass, abundance, and thickness of soil fauna have been 
utilized as indicators of natural or anthropogenic effects on terrestrial ecosystems 
since these are entirely associated with physical, chemical, and microbiological soil 
traits (Eggleton et al. 2005; Wardle et al. 2004), and these characteristics of the soil 
fauna are considered in any prudent methodology utilized for evaluation of the 
soil health.

Associations among plants and soil’s chemical engineers play a critical role in 
plant network advancement, assorting plant variety, biogeochemical cycling, and 
supporting general soil structure. Plant roots and microorganisms interact with one 
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another through molecular crosstalk, which is useful, impartial, and sometimes det-
rimental (Kardol et al. 2006). Plants influence the creation of their dirt network, and, 
consequently, the soil network influences the efficiency and arrangement of the 
plant network. There are two noteworthy pathways of soil input. One is immediate, 
using root herbivores, pathogens, and symbionts, and the second pathway is more 
roundabout, through the impact of the dirt decomposer subsystem on the supply of 
supplements (Miethling et al. 2000). In many biological communities, plant devel-
opment is constrained by the measure of nutrients discharged by microbes and para-
sites, such as ammonium (NH4

+), which rely mainly upon the microbial driven 
disintegration rate. Plants being nonmotile regularly face nutrient deficiencies in 
their environment, but they have measures to overcome this and obtain micronutri-
ents required for their development and growth. Plant–soil feedback (PSFs) is one 
such process in which they change the biotic and abiotic potentials of soil, in which 
they grow, which then alters the plant ability to grow in that soil in the future. 
Alteration in the measure of quality and quantities of organic substrates flowing into 
the soil as exudates and litter affects the substrate availability for the microorganism 
and, eventually, the macroorganisms residing in the soil. Soil invertebrates, along 
with micro-, meso-, and macrofauna, contribute to plant–soil feedback function, 
which can lead to the negative, positive, and neutral effects on plant growth. Plant 
invasion activities are influenced by the PSF, by their impacts on the plant growth. 
PSFs are mostly involved in the nutrient availability, litter decomposition transfer, 
soil pathogen accumulation, and interruptions in mutualistic associations in con-
junction with soil micro- and mesofaunal populations (Yang et al. 2018 and Zhang 
et al. 2019). In such similar ways, soil fauna can modulate the soil health that is 
directly or indirectly related to the associated plant health and can influence the 
plant invasions and plant network advancement in natural systems by chance, speed, 
and other different consequences.

5.4  Soil Fauna in Ecosystem Functions and Services

Understanding of how the fauna in soil networks reacts to natural change and how 
this impacts over-the-ground forms has progressed extensively in the last few 
decades (Albert et al. 2016; Bragazza et al. 2013; Cheeke et al. 2012; Wurst et al. 
2012). A prevalent loss of phylotypes is being observed because of the different 
management practices, anthropological disintegration, pollution, and widespread 
urbanization. These have resulting impacts on biological system capacity and eco-
system services, which end up as broadly perceived and identified with bigger con-
cerns such as a reduction in biodiversity, the transformation of habitable lands into 
deserts, and increased levels of greenhouse gases in the atmosphere (Koch et al. 
2013). An examination by Jeffery and Gardi (2010) showcased prospective suscep-
tibility of micro- and mesofaunal biodiversity and ecosystem services to ecological 
pressures, together with land management practice. Global trials and amalgama-
tions have kept on tending on the evaluation of the role of soil fauna in ecosystem 
processes and specifically have prompted expanded proof for their commitment to 
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C cycling. Worldwide tests from different geographical areas demonstrate that soil 
biota are the main controllers of deterioration rates at biome scale (Wall et al. 2008) 
and indicate that mainly the invertebrate populations in the soil fauna were in charge 
for approximately 27% normal improvement of litter decay crosswise over biome 
scales (GarcíaPalacios et al. 2013; Ma et al. 2019).

The network of organisms living in soil conveys out an extremely wide scope of 
biochemical and biophysical forms that directs the working of the soil itself and that 
can likewise influence the neighboring ecosystems (Maltby et al. 2017; Faber and 
Van Wensem 2012). Huge numbers of these capacities additionally give basic 
advantages to human society. The vast majority of these services are supporting 
services or services that are not specifically utilized by people in any case, which 
underlie the provisioning of every other service. These incorporate, for instance, 
nutrient cycling and soil arrangement. Furthermore, soil biodiversity is associated 
with all the fundamental regulatory services—to be specific, the regulation of atmo-
spheric configuration and temperature, water and air quality, pest and disease occur-
rence in agriculture and natural environments, and human infections. Soil life forms 
may likewise control or diminish ecological contamination. At last, soil life forms 
additionally add to provisioning services that straightforwardly benefit individuals; 
for instance, the genetic resource of soil microorganisms can be utilized for creating 
novel pharmaceuticals.

Each function adds directly or indirectly up to services. For example, nutrient 
cycling underlies crop production, while water transfer and storage is affected by 
soil engineering, and soil biodiversity offers a source of species that may add to pest 
control, the upgrading of new medicines, or decontamination (Ritz et  al. 2012). 
Different capacities exhibited by soil and soil biodiversity contribute, in a way, to 
human prosperity; for example, decomposition of soil organic matter, which adds to 
carbon storage and climate control.

Ecosystem services are characterized as the advantages that individuals get from 
nature, fundamental for natural wellbeing and human prosperity (MEA 2005). The 
Millennium Ecosystem Assessment (MA) and the Common International 
Classification of Ecosystem Services (CICES) classifies ecosystem services into: 
(1) provisioning, which incorporates the generation of products by biological sys-
tems (e.g., fibers, water, food, and energy); (2) regulating, which incorporates the 
support of a few procedures identified with climate, water and air quality, and pest 
and disease management; (3) supporting, vital for the execution of all remaining 
administrations, for example, soil arrangement, nutrient cycling, essential genera-
tion, and natural surroundings arrangement; and (4) cultural, which incorporates 
nonmaterial advantages like amusement, ecotourism, and social legacy.

The disintegration of the natural entities by soil fauna is pivotal for the working 
of a biological community in light of its significant role in giving biological com-
munity administrations for plant development and its essential efficiency (Brevik 
et al. 2019). A comprehensive list of various soil functions performed by soil fauna 
along with the ecosystem services can be found in Table 5.1.

Soil ecosystem services rely upon soil environmental organization (soil biotic 
and abiotic parts and the connections inside and among them) and soil environment 
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capacities (regular procedures happening in soil). In the case of soil, water, and air, 
air compartments are interdependent, and their quality and maintainability are reli-
ant on one another. Soil environment structure is in charge of the adjustments in 
individual life forms, and hence their role and capacity in soil modification and 
consequently in the biological community assembly. Soil biodiversity in this way 
manages soil structure and capacities (Morgado et al. 2018).

5.5  Conclusions and Future Studies

Earth environmentalists and soil modelers have generally depicted the occupants of 
soil as a black box named as “soil fauna” or “decomposers or detritivores,” recog-
nizing the fact that they reuse the stored dead material. The soil is a standout among 
the various living spaces on earth and contains a diverse collection of living organ-
isms; but, the opaqueness of this world has extremely constrained our comprehen-
sion of their functional commitments to soil forms and ecosystem flexibility. 
Conventional scientific categorization, given morphological and anatomical angles, 
is getting to be supplanted by molecular techniques (e.g., with marker gene-based 
methodologies). Nonetheless, this might be impracticable in numerous natural or 
ecological situations, and therefore the larger part of the present learning still con-
tributes little to our comprehension of their roles in ecosystem functioning.

The present chapter has investigated the reasons why soil fauna is considered for 
their inherent, useful, and functional qualities. Inherent reasons alone legitimize 
examination into these different and complex networks and their preservation 
through natural surroundings and suitable land management practices to address the 
issues for forthcoming generations. It is recommended that the significance of soil 
fauna remains an oddity in light of the fact that on one side broad research has dem-
onstrated that they have significant consequences for soil biophysical forms at the 
scales at which the organisms are active, and on the other side these impacts are 
once in a while obvious at plot, biological community, and ecosystem scales. Three 
components are proposed to clarify this mystery. Firstly, that in very differing net-
works the “signal” of specific soil fauna impacts is concealed by the “noise” from 
other biophysical occasions that add to similar properties and procedures (e.g., car-
bon and nitrogen mineralization, soil structure). Secondly, that numerous proce-
dures made by soil fauna have “sink” and “source” elements that can cancel the 
signal of these nearby impacts at bigger spatial scales. Thirdly, that at enormous 
temporal and spatial scales, biophysical parameters are utilized as rate determinants 
of biological system forms and the structure of above or subterranean networks is 
once in a while raised. However, there are conditions in which the environments are 
in transitional states, or in which natural occasions synchronize with activities of 
soil fauna when roles of soil fauna end up clear at the plot and environment level. 
Further examination into these procedures could define circumstances in which soil 
fauna are key determinants of biological system functions or ecosystem processes 
and increase acknowledgment of the soil fauna by different disciplines.
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Abstract
Worldwide, plant diseases have caused major economic losses in the agricultural 
industry. Food security is a major issue to the rising global population. Plant 
health monitoring and the early detection of pathogens are important in decreas-
ing the propagation of diseases and providing the best strategy. To reduce the 
damage caused by old and new pathogens, and to speed up the management and 
reduction of crop loss, a fast and reliable detection method in combination with 
decision support systems is essential. New tools and technologies were devel-
oped for both detection and diagnosis, often substituting old methods to make 
them quicker, more accurate, and precise. With the rising global population, 
there is need to boost crop production and protect the crop from seed to market. 
There is also need to use the latest technology for rapid and precise diagnosis of 
plant diseases to minimize losses for sustainable production. In addition to the 
traditional visual screening for symptoms, nucleic acid and serological-based 
tools will provide precise and rapid detection and diagnosis. Remote sensing 
technology, along with spectroscopy, will help in the capture of high spatializa-
tion of results, and can be very useful to identify primary infections quickly. 
Handheld antibody-based immuno-biosensor also helps the rapid detection of 
plant diseases. This chapter enlightens on the various recent technologies in plant 
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pathogen identification for sustainable and effective crop production, and the 
safeguard of the crop produce.

Keywords
Pathogen identification · Molecular diagnostics · PCR · Plant pathology · Plant 
diseases

6.1  Introduction

Due to increasing population and globalization, food security, and prevention of the 
spread of invasive pests/pathogens, accurate identification and diagnosis of plants 
are very important to protect available crop produce. Plant pathogens causes signifi-
cant losses in plant yield. Enormous economic losses due to wheat rusts and 
Fusarium head blight claimed US $5 and US $3 billion/year, respectively (Schumann 
and D’Arcy 2009). Precise, sensitive, and special diagnoses are necessary to man-
age plant diseases efficiently and economically. Identification of plant diseases have 
evolved from visual inspection to the use of high-profile serological tools such as 
the enzyme-linked immunosorbent assay (ELISA), and molecular methods like 
polymerase chain reaction (PCR). MLO-7 gene in the grapes against powdery mil-
dew disease, which ultimately increase the precision for the latest technologies such 
as CRISPR (clustered regularly interspaced short palindromic repeats) in plant dis-
ease studies, has become possible through the application of biotechnology and 
bioinformatics in plant pathology (Malnoy et al. 2016). Although progress has been 
made about all aspects of plant disease diagnosis, there is a need for increased sen-
sitivity and specificity of molecular studies for rapid detection and diagnosis. This 
chapter describes briefly the different techniques used for diagnosing plant diseases 
and their contribution to the current challenges for global food security.

6.1.1  Microbiome Diversity

The diversity of the plant microbes is defined as the number of microbe species 
present in the particular ecological area and relationship between them with their 
ecological, environmental conditions (Vos et al. 2016).

Nowadays, a different type of molecular methods was used in the detection of 
microbes present in the sample. Firstly we collect the sample and isolate the DNA/
RNA/protein/lipids and then follow the different methods, viz., PCR, qPCR, 
MALDI-TOF MS, electrospray, and ionization mass spectrometry, for the assess-
ment of diversity present in the sample (Table 6.1). Here, Table 6.1 discusses some 
molecular techniques for plant disease diagnosis.
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Table 6.1 List of different techniques involved in the detection of plant microbes with their 
advantages and disadvantages

Detection methods Merits Demerits References
Visual detection Simplest methods Lack of sensitivity 

in detecting that 
occur in low 
concentration, 
asymptomatic

Ali et al. 
(2019), 
Gomez et al. 
(2019) and 
Cooke and 
Cacciola 
(2007)

Polymerase 
chain 
reaction-based 
methods

Conventional 
PCR

Specific primer 
for particular 
species produces 
precise and rapid 
results

More costly and 
necessitate more 
labor

Milijasevic 
et al. (2006) 
and Walcott 
and Gitaitis 
(2000)

Portable rapid 
cycler
PCR

Identification of 
plant disease at 
on-site

Pricey and deficient 
in robustness

Love et al. 
(2012)

Nested PCR Utilization of two 
pairs of primers 
raises yield and 
accuracy of 
desired DNA 
amplification

More chances of 
contamination due 
to two times 
amplification 
reactions

Lee et al. 
(1997) and 
Bereswill 
et al. (1995)

Multiplex PCR Resources and 
time rescued by 
using the various 
set of primers in 
PCR reactions

Primer and probe 
interference 
reduces the 
sensitivity

Rico et al. 
(2003) and 
Fegan et al. 
(1998)

Reverse 
transcriptase 
PCR

It is more 
accurate than 
standard PCR 
and produces the 
quantitative data

Information about 
every test is 
difficult and 
involves costly 
materials and 
chemicals

Liu et al. 
(2019a, b)

Real-time qPCR No requirement 
of post- 
amplification 
reaction and it is 
an automated 
process

Pricey and difficult 
in owing to 
concurrent 
detection of 
thermocycling with 
fluorescence

Schaad et al. 
(2007) and 
Salm and 
Geider (2004)

Serial analysis of 
gene expression 
(SAGE)

Reference 
knowledge of the 
genome is not 
required

Accuracy of the tag 
sequences

Tarasov et al. 
(2007)

(continued)
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Table 6.1 (continued)

Detection methods Merits Demerits References
DNA/RNA 
probe-based 
methods

Northern blotting Identification of 
size of RNA

It applies to the 
very specific 
sample of the gene 
sequences

Yin et al. 
(2019) and 
Boccardo 
et al. (2019)

In situ 
hybridization

It required more 
supply of tissue

It is very complex 
to detect the target 
of sequences with 
low copies of DNA 
or RNA

Ellison et al. 
(2016) and 
Tanaka (2009)

Fluorescence in 
situ hybridization 
(FISH)

It can be used in 
nondividing cells

It is essential to 
identifying the 
target DNA 
sequences

Sidra et al. 
(2017) and 
Ratan et al. 
(2017)

Post- 
amplification 
technique

Microarray It is high- 
throughput tool 
and allows 
identification of 
various pathogens

It does not 
differentiate the 
living and 
non-living cells 
analysis

Osmani et al. 
(2019), 
Leborgne and 
Bouhidel 
(2014) and 
Sato et al. 
(2010)

Macroarray

Isothermal 
amplification- 
based methods

Loop-mediated 
isothermal 
amplification 
(LAMP)

Fast, accurate, 
and extremely 
specific

Primer formation is 
more careful 
binding only on the 
specific pathogen

Almasi et al. 
(2013)

Rolling circle 
amplification 
(RCA)

Simplicity, 
efficiency, 
tunability

– Gomez et al. 
(2014)

Nucleic acid 
sequence-based 
amplification 
(NASBA)

There is no need 
for expensive 
equipment, and 
also it is better 
than RT-PCR

Sample reaction 
temperature is 
42 °C, and it 
cannot be increased 
because it depends 
on enzymes

Gabrielle 
et al. (1993)

RNA-sequence 
based 
next-gen. 
sequencing

Specificity and 
sensitivity higher

It requires more 
costly tools and 
information for the 
data analysis

Dawei and 
Peng (2014) 
and de Jonge 
et al. (2012)

The RNA 
interference 
(RNAi)

It is potential to 
investigate 
thousands of 
genes 
concurrently

Diversity and 
incompleteness of 
knockdowns and 
latent in 
nonredundancy of 
chemicals

Machado 
et al. (2017)

(continued)
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6.2  Toolbox for Diagnosing Plant Pathogens

The knowledge of the physiological method of interaction is lacking for many years 
between host and pathogen for many systems of pathogens (Table 6.2). Recently, 
quantitative high-performance imaging methods have been developed to phenotype 
plant growth and development (Mutka and Bart 2015). The following methods help 
to study the changing physiology of plants due to pathogens that further help in the 
development of mechanisms for disease symptoms.

Table 6.1 (continued)

Detection methods Merits Demerits References
Spectroscopy MALDI-TOF 

MS
Much faster, 
rapid turnaround 
time

Difficulty in 
distinguishing 
some organisms 
that are closely 
related genetically

Bruker (2016)

Volatile 
compounds 
(GC-MS)

Highly indicative, 
accurate, high 
specificity

Capable of directly 
analyzing which 
are nonvolatile, 
polar, or thermally 
labile

Fang et al. 
(2014)

Antibody Quartz crystal 
microbalance 
immunosensors 
(QCMI)

Real-time 
analysis possible

Better sensitivity 
required

Huang et al. 
(2014) and 
Zan et al. 
(2012)

Agriculture 
nanobiosensors

Real-time 
analysis possible

Just beginning, 
trouble of 
reproducibility, and 
measurement errors

Etefagh et al. 
(2013) and 
Dubas and 
Pimpan 
(2008)

Tissue blot 
immunoassay 
(TBIA)

Quick and simple 
to use

Costly Chang et al. 
(2011)

ELISA It can manage a 
large amount of 
samples in the 
same time and 
produces more 
accurate results

Pre-enrichment is 
required for more 
surface antigens 
and more highly 
skilled manpower 
required

Kanakala and 
Kuria (2018)

Flow cytometry Concurrently 
identification and 
quantification of 
various pathogens 
in a consistent 
manner

More investment 
and very less 
information of this 
tools

Fang and 
Ramasamy 
(2015) and 
D’Hondt et al. 
(2011)

Quantum dots (QDs) High sensitivity, 
real-time analysis 
possible

Limits for 
detection, trouble 
of reproducibility, 
and measurement 
errors

Syed and 
Ahmad 
(2013) and 
Kumar et al. 
(2007)
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Table 6.2 List of important fungal, bacterial, and viral pathogens affecting crop plants with their 
diseases, host, and percentage of crop loss

S.no. Pathogen Disease Host Crop loss References
A Fungal
1 Fusarium 

oxysporum
Wilt 100 different 

hosts (mostly 
horticulture 
crops)

Nearly 80% Debbi et al. 
(2018)

2 Blumeria graminis Powdery 
mildews

Poaceae crops Up to 45 Zulak et al. 
(2018)

3 Botrytis cinerea Gray mold 200 crop hosts 
worldwide

50–100% Rupp et al. 
(2017)

4 Colletotrichum 
spp.

Anthracnose Economically 
important crops, 
especially fruits, 
vegetables, and 
ornamentals

Up to 100% Han et al. 
(2016)

5 Magnaporthe 
oryzae B.C. Couch

Blast disease Poaceae crops 
and their wild 
relatives

10–30% Yoshida 
et al. (2016)

6 Melampsora lini Rust Flax ~80% Nemri et al. 
(2014)

7 Fusarium 
graminearum

Head blight Wheat and barley Up to 70% Yang et al. 
(2013)

8 Mycosphaerella 
graminicola

Blotch Wheat 30–50% Simón et al. 
(2012)

9 Ustilago maydis Smut Corn <20% Dean et al. 
(2012)

10 Puccinia spp. Rust Ferns, 
gymnosperms to 
highly evolved 
families of 
dicotyledons and 
monocotyledons

>80% Dean et al. 
(2012)

B Bacterial
1 Agrobacterium 

tumefaciens
Crown gall 
tumor

140 species of 
eudicots

Considerable 
economic 
loss

Kerpen 
et al. (2019)

2 Xylella fastidiosa Pierce’s 
disease of 
grapevine 
(PD), citrus 
variegated 
chlorosis 
(CVC), and 
almond leaf 
scorch disease 
(ALSD)

Horticulture 
crops and 
especially grapes

Serious losses 
in grape 
production

Kyrkou 
et al. (2018)

(continued)
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Table 6.2 (continued)

S.no. Pathogen Disease Host Crop loss References
3 Erwinia 

amylovora
Fire blight Apple, pear, 

quince, 
blackberry, 
raspberry, and 
many wild and 
cultivated 
rosaceous 
ornamentals

Serious losses 
in pome 
production

Aćimović 
et al. (2015)

4 Xanthomonas 
axonopodis pv. 
manihotis

Cassava 
bacterial blight

Tubers 12–100% LÓpez and 
Bernal 
(2012)

5 Pseudomonas 
syringae pathovars

Blight, canker, 
brown spot, 
etc.

Mostly 
horticultural 
crops

40% Mansfield 
et al. (2012)

6 Pectobacterium 
carotovorum (and 
P. atrosepticum)

Soft rot, 
blackleg

Mostly potato Serious Nykyri et al. 
(2012)

7 Xanthomonas 
oryzae pv. oryzae

Bacterial leaf 
blight

Poaceae crops Up to 22.5% Soto- Suárez 
et al. (2010)

8 Ralstonia 
solanacearum

Bacterial wilt Very wide range 
of potential 
plants

25–75% Artal et al. 
(2012)

9 Xanthomonas 
campestris 
pathovars

Black rot 57 families of 
dicotyledons and 
mostly 
cruciferous crops

20–45% Hayward 
(1993)

C Virus
1 Tomato yellow 

leaf curl virus 
(TYLCV)

Leaf curl Wide host range 
(>800 plant 
species)

Up to 60% Ding et al. 
(2019)

2 Tomato spotted 
wilt virus (TSWV)

Spotted wilt Around 500 
species of crops

Up to 100% Gupta et al. 
(2018)

3 Brome mosaic 
virus (BMV)

Mosaic of 
grasses

Poaceae crops Up to 20% Ding et al. 
(2018)

4 Potato virus Y 
(PVY)

Necrotic 
lesions

Solanaceae 50–80% Hussain 
et al. (2016)

5 Cauliflower 
mosaic virus 
(CaMV)

Cauliflower 
mosaic virus

Brassicaceae 
family

25–59% loss Schoelz 
et al. (2015)

6 Cucumber mosaic 
virus (CMV)

Mosaic More than 40 
families

Up to 60% Phan et al. 
(2014)

7 Tobacco mosaic 
virus (TMV)

Necrotic local 
lesions

Many 
economically 
important crops

20–80% Scholthof 
et al. (2011)

8 Plum pox virus 
(PPV)

Plum pox Pome fruits 20–40% Cambra 
et al. (2006)

9 African cassava 
mosaic virus 
(ACMV)

Cassava 
mosaic disease

Tubers 30–100% Fargette 
et al. (1988)
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6.2.1  Visual Detection

One of the simplest methods for plant pathogen detection was a plant germplasm 
visual inspection and subsequent selection of healthy matter. Disease scaling based 
on visual symptoms is being acceptable with accuracy since the last 80  years 
(Martinelli et  al. 2015). Different methods can be used for the visual inspection 
including visible illumination, chlorophyll fluorescence imagery, infrared imaging, 
and electromagnetic spectrum imaging (Cooke and Cacciola 2007; Bock et  al. 
2010; Li et al. 2014a, b; Odilbekov et al. 2018). The environmental and biological 
factors have a strong influence on these methods. Traditional methods for measur-
ing the severity of the disease are not reliable for population estimating diseases 
lack standardization and procedural (Nilsson et al. 2011). In asymptomatic plants 
and less virulent pathogens, visual inspections may not be helpful; many hosts 
remain symptomatic (Mutka and Bart 2015; Ali et  al. 2019; Liu et  al. 2019a, b; 
Gomez et al. 2019).

6.2.2  Serology-Based Diagnostics

Phenotypic observation of plants with pathogenic symptoms would require exten-
sive experience in the diagnosis of plant diseases and isolation of the disease. But 
for all attempts, the exactness of the same cannot necessarily be the same. 
Furthermore, the detection of the pathogens in asymptomatic samples or seeds is 
very likely to be diagnosed properly. The precise identification and an adequate 
diagnosis procedure would contribute more promisingly to plant health manage-
ment. Through inventions of precise methods of detection, better management strat-
egies are developed, and then, the rapid detection tool, in particular, an onsite handy 
one, definitely helps to achieve management success. A handy detection kit for 
potato viruses has been developed recently, which growers can use easily in the field 
(Ansar and Singh 2016). No artificial cultivation of plant pathogens like viruses and 
obligate pathogens causing rusts and powdery mildew and downy mildew diseases 
was possible. To address this problem, there were developed serologic assays, which 
are also used to identify other plant pathogens (Caruso et  al. 2002). Serological 
pathogens of plants involve identifying disease based upon color-changing antibod-
ies of the assay. The antibodies consist of immunoglobulin (Ig) proteins produced 
within the animal body (mammalian), which in general include foreign proteins, 
complex carbon dioxide, multiple nucleotides, or lipopolysaccharides. As we know, 
each antigen binds to a particular antibody. The serological method most commonly 
used is ELISA (enzyme-linked immunosorbent assay) as previously developed for 
plant virus detection (Clark 1981).

6.2.2.1  Enzyme-Linked Immunosorbent Assay (ELISA)
ELISA is done with polystyrene plates capable of binding enzyme-substrate reac-
tion antibodies or proteins (Corning Life Science 2001; Luminex 2010). The 
enzyme-substrate response must be optimized in the timing and development 
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conditions to produce accurate and replicable results. ELISA is a popular test for the 
detection of plant pathogens present in plant resources and insect vectors (Clark and 
Adamas 1977; Naidua and Hughes 2001; Webster et al. 2004). Disease levels are 
observed on the bases of optical density in ELISA (Corning Life Science 2001; 
Webster et al. 2004). ELISA has benefits because it is more accurate; a big amount 
of tested materials can also be evaluated using a small number of antibodies to 
detect illnesses and a semiautomated process (Vemulapati et al. 2014; Naidua and 
Hughes 2001). Specific antibodies against the target pathogen have been developed 
(Torrance 1998). This technique is utilized for the identification of the various types 
of virus, i.e., Citrus tristeza virus (CTV), potato leaf roll virus (PLRV), potato virus 
X (PVX), and potato virus Y (PVY) (El-Araby et al. 2009; Sun et al. 2001). Since 
ELISA is a test based on antibody antigens, the availability of antibodies that react 
properly to the target agent is considered very important. ELISA often provides 
erroneous diagnostic because of false positive, which results primarily from unspe-
cific or cross-reactive reactions with certain sample factors (Kfir and Genthe 1993). 
Several strains with a clear different symptom may be responded to by the antibody 
used in ELISA due to the absence of great specific places to bind.

Consequently, much related to different types of virus are not properly distin-
guished by ELISA (Boonham et al. 2014). Different type of additives were includes 
in extraction buffer for increased in ELISA sensitivity (Fegla and Kawanna 2013). 
When compared to molecular methods, ELISA is generally less sensitive. For these 
reasons, the utilization of ELISA in the way of diagnosis appears to progressively 
fall down, even when ELISAs have been used in the most up-to-date diagnostic 
purposes.

6.2.2.2  Tissue Blot Immunoassay (TBIA)
Tissue Blot Immunoassay (TBIA)  is similar to the principle of ELISA in which 
antibodies are functional; TBIA has a similar consistency to ELISA to detect plant 
pathogen like that virus (Hančević et al. 2012). The main difference is that polysty-
rene plate is working as a platform for ELISA, while nitrocellulose and nylon mem-
branes are treated with TBIA; that’s why this assay is also known as TIBA or TBIA 
(Webster et al. 2004). Similar to ELISA, TBIA is also required for the particular 
antibody to find clear false positive and false negative. Therefore, TBIA has huge 
advantages over ELISA in different conditions such as time, money, sensitivity, and 
expediency of detection. In TIBA, we have detected a various number of viral dis-
eases in which some are here, i.e., bamboo mosaic virus (BoMV), bean yellow 
mosaic virus (BYMV), CTV, Cymbidium mosaic virus (CyMV), papaya ringspot 
virus (PRSV), sweet potato feathery mottle virus (SPFMV), and tomato spotted wilt 
virus (TSWV) (Bove et al. 1988; Eid et al. 2008; Hančević et al. 2012; Lin et al. 
1990; Makkouk and Kumari 2006; Shang et al. 2011; Webster et al. 2004).

6.2.2.3  Flow Cytometry (FCM)
Flow cytometry is a laser-based optical method. The technique is widely used in the 
fields of cell count, cell sorting, biomarker, and protein detection (O’Donnell et al. 
2013). Many samples can be processed simultaneously via electronic detection 
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devices, and the technique simultaneously measures many parameters (Fang and 
Ramasamy 2015). Flow cytometry is widely used to evaluate microorganisms in the 
processing of food in drinking and marine water. FCM is not currently widely used 
as an instrument for research and detection in plant pathology; however, it can be 
used to test the total DNA content in bacterial, oomycete, and fungal disease agents 
and check pathogen viability; FCM can be used in the field of plant pathology for 
multiplexed path detection (D’Hondt et al. 2011). Flow cytometer rating is highly 
precise and purifies little or complex populations, but some of them are not fast 
enough to achieve the desired results even for a high-speed rating, and it costs more 
than the alternatives such as radioimmunoassay and ELISA.

6.3  Molecular Methods

Molecular methods of diagnosis of diseases are one of the remarkable sciences that 
are fast-growing and have the potential to revolutionize numerous scientific research, 
innovations, healthcare, and agriculture disciplines.

6.4  Genomics-Driven Diagnostics

6.4.1  Conventional PCR

The innovation of PCR got an incredible boom in the field of plant pathology. This 
tool permits amplification of specific DNA sequences in lots of duplicates by utiliz-
ing specific primers (Cha and Thilly 1993). At first, PCR was very explicit for the 
detection of infections brought about by microscopic organisms, i.e., bacteria, 
fungi, and virus. Presently, this tool is broadly utilized for the detection of the patho-
gen from the infected plants (Fig. 6.1). Occasionally, efficiency is influenced by 
sampled inhibitors (Fang and Ramasamy 2015). To resolve this problem in plants, 
cetyltrimethylammonium bromide (CTAB) can be used to add particular treatments 
with different chemicals and enzymes. A few different techniques are available to 
decrease PCR inhibitor effects. In the case of DNA isolation through the phenol- 
chloroform method, as a substitute for ethanol precipitation and silica bed, recovery 
of DNA can be done by purification (Mancini et al. 2016). Also, it can detect plant 
pathogens; PCR technology requires first to start the DNA replication procedure 
that might decrease the convenient application for disease field sample technology. 
Sometimes a single pair of primer does not give accurate results so that its limiting 
effect is overcome by DNA samples and nested primers. (Compton 1991). The 
detection of P. granati was established using nested PCR (Yang et  al. 2017). 
Presumably, this methodology gives exceptionally explicit outcomes. However, it is 
a lot very expensive and required much effort (Sidra et al. 2017).
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6.4.2  Nested PCR

A high degree of specialty and sensitivity can be found using nested PCR (Sidra 
et al. 2017). For example, “Grote et al. (2002) reported that relative study on sensi-
tivity and specificity of phytophthora nicotianae using both simple and nested PCR” 
revealed that the nested PCR sensitivity is 1000 times the detection of a single 
PCR. In this procedure, primers can be utilized for the amplification of large DNA 
sequence through the two continuous cycles, the afterthat sequence of amplified 
product works act as a specific sequence for second times by the use of two internal 
primers. In nested PCR, tremendous risk of contamination is assessed even though, 
in separate tubes, two amplification cycles should be performed. There is, therefore, 
the probability of false adverse population outcomes, and heavy labor is a signifi-
cant defect (Rahman et al. 2013). Laboratories must take certain tough measures for 
the use of different instruments and space for each PCR cycle to conquer such bor-
ders (Trtkova and Raclavsky 2006). Two Phytophthora species P. palmivora and 
P. parasitica have been identified using this PCR (Tsai et  al. 2006). Likewise, 
P. cactorum was particularly identified in strawberry infected plants through utiliz-
ing this technique (Bhat and Browne 2010), as well as rapid detection of 
Cylindrocladium scoparium on eucalyptus (Qiao et al. 2016). For the identification 
of Candidates Liberibacter asiaticus attached with citrus Huanglongbing (Hong 

Fig. 6.1 PCR-based method for identification of microbes
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et al. 2019), another report says that nested PCR can be used for detection of Lyme 
disease spirochete, Borrelia burgdorferi, in ticks (Wills et al. 2018).

6.4.3  Multiplex PCR

This method is utilized to demonstrate in less period as well as less money by utiliz-
ing few sets of preliminaries for a similar response to permits synchronous recogni-
tion of various focused on successions of DNA (Hyun et al. 2017). The method has 
such extraordinary significance of enormity in plant disease when crops are con-
taminated with many pathogens. Distinctive parts are clearly to target pathogenic 
parasites where at the same time enhanced and identified based on their molecular 
weight on agarose gel electrophoresis. DNA combining accuracy was unequivo-
cally influenced by amplicon measure. To maintain a strategic distance from this 
entanglement, groundworks must be structured cautiously along with the compara-
tive center and strengthening (Dasmahapatra and Mallet 2006). At present, lock 
tests (padlock primers) are utilized for the detection of pathogenic growths. This 
system has been utilized to the concurrent ID of parasitic pathogens, for example, 
F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, that key illness in joined 
cacti (Cho et al. 2016). Detection of various citrus disease-causing viruses in Jeju 
Island (Hyun et al. 2017), multiplex reverse transcription PCR assay for simultane-
ous detection of six main RNA viruses in tomato plants (Wu et al. 2018).

6.4.4  Portable PCR Systems

Fast PCR can manufacture a fully mobile configuration that will not just facilitate 
plant pathologists to carry out great efficiency with consistent experiment testing, 
but it might be significantly similar to downstream methods, i.e., those mandating in 
situ genomics detection tools. Palm PCR, manufactured in Korea by Ahram 
Biosystems, is easy to use, accurate, and high-competence thermal cycler (Love 
et  al. 2012). Although it’s small in size, this control tool provides tremendously 
well-defined and rapid amplification for different types of DNA materials (Monis 
and Giglio 2006). The amplification of the DNA to a sufficient amount is less than 
25 minutes for the optimal detection in the agarose gel electrophoresis. The trans-
ferable way provides a greatly efficient easy-to-handle way for the learner and expe-
rienced academician to perform a different type of PCR tests. Koo et  al. (2013) 
reported the successful identification of the six diverse fungal and bacterial plant 
pathogens in the sample.

Twista quantitative and portable real-time fluorometer are personalized tools 
produced to examine reactions to recombinase polymerase amplification (RPA) 
comparable with a different type of detection systems and the latest technology in 
DNA identifications, very high speed, easy to carry, and user-friendly with super 
quality. Twista RPA fluorometer provides urgently rapid diagnosis, enabling 
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appropriate on-time therapy compared to usual microbiological test requiring at 
the minimum an hour and molecular assays typically requiring consolidated tools 
(Surrette et al. 2018).

6.4.5  Real-Time Polymerase Chain Reaction (RT-PCR)

Real-time PCR invention has developed more amount of modification in its proto-
col. A portion of maximum changes has extended the utility and detection quality of 
this PCR in numerous natural as well as therapeutic fields (Tang et al. 1997). These 
tools are insufficient to differentiate the living and dead parasites. PCR cannot dif-
ferentiate between dead and living parasites. The DNA can be obtained from the 
liver and circulating DNA from other cells or bodies. The addition of a PCR test 
aimed at Leishmania-specific mRNA in a householder gene should make a differ-
ence between living and dead parasites (Bretagne et al. 2001). The development of 
RT-PCR overpowers this limitation. Contamination in mRNA is present in the dead 
cell; therefore, RT-PCR can detect the presence of mRNA in the cell (Capote et al. 
2012). In this regard, RNA is conversely deciphered into cDNA by irregular ground-
works and real-time compound and after that intensified by various PCR methods. 
In this way, RT-PCR is utilized to recognize and analyze the RNA-containing (ret-
roviruses) contaminations. The finding of RNA-containing infections can help 
make or check the practicality of antimicrobial inoculations or treatment. For exam-
ple, it can be utilized for evaluation of Fusarium graminearum growths to reason 
Fusarium early curse sickness within grains, for example, wheat, grain, and oat 
(Brown et al. 2011). Cryphonectria parasitica can be detected early using RT-PCR 
(Chandelier et al. 2019). Concurrently, it can detect the various pathogens of potato 
(Nikitin et al. 2018).

Recently, quantitative real-time PCR is a technique which affects microbial ecol-
ogy greatly. The qPCR is a very sensitive technique to quantify the microbial popu-
lation within the ecological sample (Trung et al. 2011). In short, qPCR amplified the 
specific sequence of nucleic acids and also calculates the sample amount of 
DNA.  The fluorescent marker (SYBR Green)  present at the end of the reaction 
detected by the PCR instrument. SYBR Green I and high-resolution melt dyes (LC 
Green, EvaGreen, BEBO, and SYTO9) can link between the dsDNA and emit the 
fluorescence at 494 to 521 nm wavelength.

Similarly, another way used in the qPCR analysis, i.e., TaqMan probes, works on 
a third oligonucleotide during annealing. The probe is made up of two molecules: 
(1) reporter and (2) quencher. When these two come together, then they repress the 
fluorescence of reporter in the reaction of DNA amplification. Also it generates the 
signal intensity with the amount of target DNA amplification. Detection of the 
pathogen such as Phytophthora infestans from the potato (Hassain et al. 2014; Li 
et al. 2014a, b; Clement et al. 2013) and Verticillium dahliae, Colletotrichum acuta-
tum, and C. gloeosporioides from the strawberry (Bilodeau et  al. 2012; Garrido 
et al. 2009) is through qPCR.
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6.4.6  Serial Analysis of Gene Expression (SAGE)

Sequential examination for quality articulation was thorough based on grouping 
strategy for the quantitative quality articulation data that permits recognizable proof 
in numerous transcripts (Moreno 2003). SAGE is based on sequencing data of 15 bp 
or more nucleotides and comparability of successions beside accessibility of 
genome groupings to locate the relating communicated qualities (Velculescu 1995). 
It can utilize two examples that are bound and signed with the different preliminar-
ies, and it’s intensified. At that point, concatemers are shaped by the sticky finishes 
through the expulsion of groundwork. In sequencing of the cloned vector using the 
computational investigation, SAGE has a few downsides. In the first place, it needs 
mRNA in an extensive amount. Second, now and then the 15 bp tag isn’t sufficient 
to explicitly recognize the quality of birthplaces with the more mind-boggling 
genomes. Thomas et al. (2002) reported that in the profiling of transcript of mildew 
pathogen Blumeria graminis in barley, SAGE is used, and another scientist also 
reported that gene expression of Nicotiana tabacum in Rhizoctonia solani is through 
SAGE (Portieles et al. 2017).

6.4.7  Sequencing-Independent Methods

The probe of DNA/RNA strategies is utilized to analyze plant infections caused by 
the microorganisms, for example, fungi with extraordinary sensitivity and speed 
(Sidra et al. 2017). This innovation is considered as the spine to a large portion of 
the present information. In these techniques, the probe shall be used without its 
amplification for the testing of nucleic acid. Samples are the shortest single-stranded 
DNA sequence that is named with chemiluminescent molecules or radio isotopes, 
for example, 32P, 33P, and 35S (Sidra et al. 2017). For instance, engineered zinc finger 
proteins do not require targeted amplification for the detection of specific pathogen 
DNA (Kim and Kim 2016). It is utilized for the recognition of similar sequencing 
present on specific DNA. In traditional techniques, DNA probes is utilized for the 
most part as an option to PCR for the recognizable proof of microorganisms such as 
fungi. Be that as it may, in ongoing techniques, these are for the most part utilized 
related to PCR (McCartney et al. 2003; Khater et al. 2019). Engineered zinc finger 
proteins and pathogen targeted DNA immobilized on a chip of polymer (Ha et al. 
2018; Guixia et al. 2019).

6.4.8  Northern Blotting or Northern Blot

This technique is also called as RNA smear technology and is generally used for the 
exchange of RNA onto a bearer for the recognizable proof of pathogenic growths 
utilizing the quality articulation (Zimmers-Koniaris 2001). The northern blot is 
equivalent to the southern smear apart from RNA material is utilized rather than 
DNA (Qi and Yang 2002). Right off the bat, the RNA from each tissue ought to be 
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purged be inspected the statement of the quality of intrigue. RNA molecule was 
separated on the agarose gel electrophoresis. In this gel, litter molecule moves faster 
than a higher molecule; in this way, higher molecules present well as compared with 
the litter molecule (Kim et al. 2010). Hence every RNA molecule keeps its position 
regarding every single another particle (Berg 2007). The way is present to do a 
radioactive test to hybridize its related grouping molecule. After that, the channel is 
put for autoradiography to build up the film. At last, a band ought to show up on it, 
if both tests have hybridized a section of RNA atom on the channel. To start with, 
the situation of groups at smudge gives RNA approximation, but a measure of RNA 
is known; then they will give a guess to coding limit of transcripts as well as the 
extent of protein to which it recognized. Right from the beginning, the danger 
mRNA corruption amid electrophoresis is the primary impediment in the smudging 
system. Besides, recognition with numerous tests is hazardous. The affectability of 
the northern smudging strategy is low contrasted with RT-PCR. Magnaporthe gri-
sea was perceived in rice plants through utilizing ongoing PCR and northern blot 
technique (Qi and Yang 2002). Agrobacterium-infiltrated place can be detected with 
the presence of more amount of GFP mRNA and siRNA through northern blot tech-
niques (Yin et al. 2019; Boccardo et al. 2019).

6.4.9  In Situ Hybridization

In 1969, exploration of nucleic acids by in situ hybridization was first revealed (Gall 
and Pardue 1969). In situ hybridization is likewise called the hybridization histo-
chemistry. It gives precious data to recognizing and listing the parasites. In these 
method, the ssRNA test is utilized known as riboprobes and 35S. It has an extraor-
dinary closeness to northern blotting. These two methods rely upon hybridization of 
marked tests of DNA/RNA to the comparative groupings of mRNA molecule. These 
strategies vary in the utilization of beginning material. On account for northern 
smudge, the part of tissue digest is utilized as beginning material, while in situ 
hybridization histological area is utilized. Notwithstanding utilizing the immediate 
hybridization, the recognizable pieces of proof utilizing signal hybridization are 
most productively acquired after the organism’s development or its natural intensi-
fication (Jensen 2014).

The preferred primary standpoint of this innovation is the most extreme utiliza-
tion of tissue, for example, clinical biopsies and refined cells. Several unique hybrid-
izations can be done in a similar tissue. Tissue libraries can be arranged by putting 
away in cooler for future use. There are various techniques for performing in-situ 
hybridization, for instance, testing with counterfeit oligonucleotides copy of DNA 
and RNA. These strategies give the most powerless and efficient outcomes. Tests 
may be named according to radioactive or nonradioactive nucleotides; after these 
tests, 35S riboprobes are a very delicate strategy for the ID of mRNA (Hayden et al. 
2002). ISH was used to locate specific chromosome DNA sequences using 
radioisotope- labeled samples (Gall and Pardue 1971; Zeller et al. 2001). It was later 
used for detection of viral particles and mRNA high copy in cultivated cells and 
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sectional tissue, so that gene expression patterns could then be located (Brahic and 
Haase 1978; Zeller et al. 2001). It is used for pathogen visualization in host plant 
tissue, using ISH technology (Tanaka 2009).

In situ hybridization has a few entanglements. Right off the bat, radiolabel tests 
are in all respects expensive and risky materials. It must be dealt with, transported, 
and discarded in all respects cautiously. A drawback of utilizing in situ hybridiza-
tion procedure is the trouble in distinguishing focuses on with contains a low copy 
of DNA and RNA molecules (Qian and Lloyd 2003). It can be used for identifica-
tion of various parasites, i.e., Blastomyces dermatitidis, Coccidioides immitis, 
Cryptococcus neoformans, Histoplasma capsulatum, and Sporothrix schenckii 
(Hayden et al. 2001). This type of hybridization can be used to imagine the diffi-
culty in plant tissue of the rust organism, as well as it can be utilized for confinement 
region that is present in plant partition in rust fungi (Ellison et al. 2016).

6.4.10  Fluorescence In Situ Hybridization (FISH)

Because of the disadvantage of radiolabeled probe-based hybridization, the FISH 
technique has emerged, which is used for the speedy characterization of microorgan-
ism such as fungi (Sidra et al. 2017). This technology offers superior speed, resolu-
tion, and security and smoothens the way for simultaneous and quantitative 
phylogenetic analysis of multiple targets (Tsui et al. 2011). Besides this, FISH is also 
an essential type to identify break down in the spatial association of fungal networks.

Specific DNA sequence on chromosomes is detected using this cytogenetic tech-
nique (Ratan et al. 2017). The fluorescent probe is used in FISH which single binds 
those parts of the chromosomes, which shows a higher quantity of similarity. 
Fluorescent samples are established throughout the sample length by an enzymatic 
fuse of altered fluorophore base (Baschien et al. 2001). Conventional systems for 
detection of microorganism necessitates that cells should be effectively isolating 
(Ainsworth et al. 2006). However, for non-diving cells, FISH can be used, making 
it a highly resourceful technique. It is possible to recognize non-dividing cells by 
their low fluorescence intensity level. It is possible to use a different type of sam-
ples, for instance, an allele-specific sample, a centromeric repeat sample, and an 
entire chromosome sample. Many of them have various implementations. In FISH 
probe, preparing ready procedure is confounded because it is important to tailor 
probe to recognize the particular sequence of DNA (Volpi and Bridger 2008).

6.4.11  Microarray

A microarray is a technique that is used simultaneously to detect the expression of 
thousands of genes. It is a microscopic slide that is printed in defined positions with 
thousands of tiny spots with each spot referring to the known DNA sequence or gene, 
and these slides are known as DNA chips. It is used to detect potato viruses, cucurbit-
infecting tobamoviruses, and grapevine viruses (Bystricka et  al. 2003; Lee et  al. 
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2003; Nicolaisen 2011). It is not quite the same as the above method in this point of 
view because it gives expression estimations of characterized genes of the set 
(Eshaque and Dixon 2006). Within a small surface area, thousands of DNA probes 
are displayed on a matrix that consists of glass chip or nylon filters in this technology. 
Sample position is called spot on the chip (Robinson et al. 2000). On the support 
matrix, these probes are immobilized, and focused cDNAs are useful as a hybridiza-
tion chip. The Quantification encircled cDNA quantification is quantified using 
radio-labeled probes only after that signal is generated by hybridizing the probe to 
the focused mRNA that the specific software can identify and integrate. The Keen 
Software gives gene expression trend for every natural living sample (Russo et al. 
2003). The microarray can detect a very large range of fungal cell. In the microarray 
techniques, large-scale DNA sequencing is not used. Even though this method can 
detect any changes in gene expression, noteworthy issues are noted. Initially, micro-
array required a lot of mRNA.  Besides, this investigation is constrained by the 
expense and right to use (Singh and Kumar 2013). Because of the abundant error 
steps in microarray technique, it is minimized by the repetition of the experiments. 
Microarrays are referred to as critical testing because it requires physical cell trouble 
to gain accesses to its patterns of gene expression; it is remembered that false data 
can be generated by the mRNA degradation (Singh and Kumar 2013). This technique 
can detect bacteria, viruses, parasites, fungi, viroids, and phytoplasmas (Hadidi and 
Barba 2006). Postnikova and Nemchinov (2012) used microarray- based analysis for 
the comparative study of the various viruses in Arabidopsis. Leborgne and Bouhidel 
(2014) studied plant-microbe interaction using microarray. Osmani et al. (2019) used 
microarray analysis to detect responses of various viruses of potato.

6.4.12  Macroarray

It is also known as the hybridization of the DNA array or the plot of the reverse dot. 
It utilizes the feasibility of DNA amplification while radioisotopes are not required 
(Singh and Kumar 2013). In a growing number of labs around the world, macroar-
ray is a quick molecular technique for the diagnostic of greenhouse plants (Le Floch 
et al. 2007; Lievens et al. 2003), ginseng (Punja et al. 2007), and potatoes (Fessehaie 
et al. 2003). It’s working according to concurrent amplification of the linked species 
by the PCR. Also, in one hybridization reaction, it simultaneously analyzes several 
amplified sequence. It is a technique that is more sensitive and sophisticated than 
other PCR (Taoufik et al. 2004). In this evaluation amplification of PCR is joined 
with hybridization that builds affectability up to thousand folds or higher than PCR 
only technique, and it has a quick rotation time 1–2 days in contrast with radioactive 
culture techniques that involve 2 months for their conclusion (Taoufik et al. 2004). 
In this technique, the inward probe is considered to separate the variety. These 
probes are attached to the hold of the nylon membrane. By ultraviolet cross-linking, 
oligos are eternally bound to the membrane. The amplified PCR products are firstly 
hybridized and then spotted on the strips where species-specific interaction takes 
place (Tsui et  al. 2011; Leinberger et  al. 2005). To identify the species level of 
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Mycobacterium, the combination of the PCR and microarray technique is used 
(Leinberger et  al. 2005). It is also used to detect Alternaria alternata, Fusarium 
solani, Candida albicans, Aspergillus fumigates, and Cladosporium herbarum 
(Sato et al. 2010) and identification of fungal as well as oomycete of the pathogen 
that causes the illness in solanaceous plants (Zhang et al. 2008).

6.4.13  Loop-Mediated Isothermal Amplification (LAMP)

LAMP has a vigorous and new approach for amplifying nucleic acid as a substitute 
for PCR. LAMP amplified specific nucleic acid with high specificity under the iso-
thermal situation. It never requires PCR to produce changes in temperature but 
requires a single Tm for amplification of DNA molecule (Tsui et al. 2011). This tech-
nique is also based on auto-cycling and strand dislocations. LAMP utilizes poly-
merase of Bst DNA and two sets of internal and external primers. This reaction works 
at 650C for an hour while being put on either a dry or water bath, and after that, SYBR 
Green can be used for the detection of the amplified product. The end product of the 
LAMP has numerous reverse repeat with several loops which show cauliflower-like 
structure. LAMP is ten times greater exact and accurate than standard PCR (Ren et al. 
2009). In LAMP, thermal changes are not needed; as compared with PCR, LAMP 
reaction requires only one tube (Fakruddin 2011). The sensitivity of LAMP reaction 
is affected by various factors, i.e., utilization of the DNA polymerase. This is signifi-
cant for LAMP effectiveness. For recognition and diagnosis, LAMP is useful but it 
cannot be utilized for cloning purposes. While, the major disadvantage of LAM is, 
it cannot used for the direct assessment different dyes, for example Mn2+ (dye), SYBR 
Green dye, hydroxyl naphthol blue dye etc. that cannot be distinguished among the 
required specific amplified product size and non specific product size, So, lead to false 
positives result. It can be resolved due to the utilization of molecular beacons (MBs) 
by producing the fluorescence signals while it combines with specific DNA sequences. 
Therefore, MBs can detect the amplified product. The LAMP finds a suitable situation 
for MBs (25–45 bp beacon length, 60–65 °C reaction temperature, and 0.6–1 pmol/μL 
beacon concentration) for the evaluation technique. An original MB-LAMP-based 
method has proven direct identification of the LAMP product. MBs are the nucleic 
acid fluorescent sample with hairpin structure. The structure of the hairpin left the 
fluorescence as quencher that is near to a fluorophore (Liu et al. 2017). LAMP detects 
Ascochyta rabiei fungi that cause Ascochyta blight disease in chickpeas. The contrast 
of standard PCR and LAMP not only reveals superior accuracy, sensitivity, and speci-
ficity to detect A. rabiei but also utilizes simple apparatus and takes less time to oper-
ate (Chen et  al. 2016). LAMP was successfully used to identify Paracoccidioides 
brasiliensis, a thermal-reliant dimorphic fungus (Endo et al. 2004). This method also 
detects the pathogenic fungus, i.e., Ochroconis gallopava (Tsui et al. 2011). The use 
of lamp technology has also efficiently diagnosed Penicillium marneffei (Sun et al. 
2010). Recently, LAMP is used to identify Ophiostoma clavatum, main blue stain 
fungus (Villari et al. 2013), Colletotrichum gloeosporioides (Wang et al. 2017), and 
whitefly Bemisia tabaci (Blaser et al. 2018).
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6.4.14  Sequencing of the Next Generation Based on RNA-Seq

RNA sequencing is a recently developed technique for deep sequencing. A huge 
populace of RNA are generally transformed into a library of cDNA with adapters 
that bind to single or both ends. After that, every sequence having with or without 
amplification is sequenced for obtaining minute sequence from one end as in single- 
end sequencing or both ends as in pair-end sequencing in a high-throughput way. 
Based on DNA, sequencing tools can be used for reads which are commonly up 
to  30,400  bp. Prepared library to observe how strongly the results of the RNA 
sequencing unveil that most of the unique RNA transcripts are identified in the step 
of preparation of the library. To build up an RNA sequence library, it is necessary to 
fragment RNA or DNA moreover to permit processing by sequencing of the next 
generation. In the real-time reaction, mRNA can be prepared using either oligo or 
random primers. The benefit for the utilization of oligonucleotide is the significant 
production of polyadenylated mRNA proportion of cDNA. Therefore most of the 
acquired sequence can be insightful (Mortazavi et al. 2008). The three very gener-
ally RNA-Seq technologies of next generation are SOLiD and Ion Torrent, which 
are produced by Life Technologies, and HiSeq by Illumina (Dawei and Peng 2014).

After that sequencing, we found the maximum reads that are either aligned with 
reference genome whose sequences are known or constructed with de novo sequence 
without genomics sequence to develop a transcriptional map consisting of both 
expression level of every gene and transcription structure. Although RNA sequenc-
ing data obtained  that can be used for alignment with the referred genome data, 
Annotator and Trinity assembler that assemble the RNA sequencing data without 
reference genome data using the assemble of adjacent identification of shorts reads. 
These methods enable new transcripts to be discovered and numerical transcript to 
be detected fairly. They are allowing more efficient use of the RNA sequencing to 
detect transcripts and classify the transcriptome in a nonmodel organism (GrabHerr 
et  al. 2011). The Magnaporthe oryzae fungus is detected using this technology, 
which induces rice blast disease (Soanes et al. 2012). Verticillium dahliae fungus in 
tomatoes that induces vascular wilt disease is also identified using this technique (de 
Jonge et al. 2012). RNA sequencing would be used to detect pathogens in plants. 
The prospective suitability of mRNA sequencing data to recognize nucleotide diver-
gences can disclose fungal pathogenicity genes of the plant in their protein-coding 
transcriptome that is mutant. The technique allows us to diagnose plant disease 
using RNA measurements (Metzker 2009).

6.4.15  Lateral Flow Microarrays

Nucleic acid is rapidly detected using lateral flow microarrays (LFM) based on 
hybridization technique with colorimetric signals that can be easily visualized 
(Carter and Cary 2007). LFM based on lateral flow nitrocellulose membrane chro-
matography, hybridized in very less time, have detection limits and might decrease 
the requirement for high-price lab tools. Skill is dependent for accessibility of 
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useful and reliable biomarkers of host and pathogen revealed by transcriptomics 
perspective (Martinelli et al. 2012a, 2013a). While we can use metabolomics for the 
detection of primary and secondary metabolites; it can be utilized as a biochemical 
marker for a variety of pathogenic diseases (Rizzini et al. 2010; Tosetti et al. 2012; 
Martinelli et al. 2012b, 2013b, 2014; Ibanez et al. 2014). Early pathogenic infec-
tions like Huanglongbing disease in citrus can be identified by an included omics 
approach (Dandekar et  al. 2010). More highly synergistic proteins are necessary 
markers for plant health status, i.e., heat shock protein (HSP) or dehydrins, upregu-
lated by various ecological ways (Natali et al. 2007).

6.5  Remote Sensing (RS)-Based Diagnostics

Spectroscopy is one of the main useful RS methods, including sensors such as VIS, 
NIR, SWIR, and imaging or nonimaging. Due to their possibility as a functioning 
instrument, elasticity, efficacy, and cost-effectiveness, these tools hold exciting 
promise for crop disease monitoring. Below are discussed the most applicable and 
recent developments in spectroscopy depending on techniques.

6.5.1  Nonimaging Spectroscopy

It is based on the natural things of leaf pigments, chemical factor, properties, and 
structural characteristics (Jacquemoud and Ustin 2001). Laboratory or field- collected 
leaf spectra determined spectral area of visibility for identification of diseases, i.e., 
leaf gall disease in sugarcane through remote sensing (Purcell et al. 2009), powdery 
mildew disease in wheat (Graeff et al. 2006), curl mite (Stilwell et al. 2013), yellow 
leaf virus in sugarcane (Grisham et al. 2010), also yellow rust in wheat during winter 
(Zhang et al. 2014), and grapevine viruses in grapes (Naidu et al. 2009). Yuan et al. 
(2014) experimented with the separation of winter contamination from pathogens, 
insects such as wheat aphids, and virus, i.e., yellow rust and powdery mildew. Methods 
for early identification of disease are of faithful interest (Malthus and Madeira 1993; 
Delalieux et al. 2007; Rumpf et al. 2010), while their actual use is incoherent across 
crops for crop management. Studies available are crop definite, and results cannot be 
comprehensive with comparable accuracy to other crops and places. When Huang 
et al. (2012) compared both, firstly canopy scale detection of leaf and severity deter-
mination of rice leaf folder disease, the best concurrence of recognition rates using 
VIS and NIR reflection by linear regression method and the NIR plateau has a very 
high negative correlation (737–1000 nm) and severity of infestation.

Many authors are working with radiometry to determine the harshness of the 
damage of crop (Nutter 1989). Yang et  al. (2007) reported that rice plants are 
infested with brown plant hopper and leaf folder. Mirik et al. (2006) studied spoil 
from green bugs to winter wheat, Chen et al. (2008) Accessed loss of cotton from 
Verticillium wilt and studied leafhopper disease from Prabhakar et al. (2011). Also 
utilized for fruit value evaluation was spectroscopy, often connected with additional 
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resources, i.e., e-nose data; booming integration of remote sensing depends on the 
way with VOC analysis (Costa et al. 2007).

6.5.2  Imaging Spectroscopy

Hyperspectral imaging tools have recently been integrated to evaluate and observe 
plant illness. Lab experiments detect various diseases, i.e., head blight disease in 
wheat, a fungal disease with Fusarium (Bauriegel et al. 2011), sugar beet disease 
(Mahlein et al. 2012) on leaves, rust, and powdery mildew (Mahlein et al. 2013). 
Diverse infections and its stage of maturity are of particular interest for effective 
intervention (Mahlein et al. 2012). This report utilized a wide range of statistical 
instruments for image investigation, such as linear regression, principal component 
analysis (PCA), spectral angle mapper (SAM), and support vector machine (SVM) 
categorization with elevated accuracy of detection of disease. However, these trials 
concentrated on one or a few plants with little probability of generalization. On the 
basis of field survey of wheat plant yellow rust disease (Bravo et al.) and attempts to 
distinguished among wheat disease and abiotic stress (Moshou et  al. 2004), 
Reynolds et  al. (2012) and Huang et  al. (2007) used the hyperspectral field and 
aerial information for evaluating the seriousness of Rhizoctonia crown and root rot 
disease in sugar beet and yellow wheat rust, respectively. Airborne hyperspectral 
data is best suited for farm and regional-scale remote sensing (RS) applications.

6.6  Protein-Based Diagnostics

6.6.1  MALDI-TOF MS

Bacterial product isolates were subcultured on LB agar media (Thermo Fisher 
Scientific, UK) and incubated at 37 °C for a 24–48 h and recognized with a Bruker 
MALDI biotyper system (microflex LT, Bruker) as directed by the manufacturer. 
The calibration of the mass spectrometer was performed by an automatic calibration 
operation with Bruker bacterial test standard (BTS), which is a modification of 
E. coli BH5α, spiked using two extra enzymes to allow calibration with 4–17 kDa 
mass ranges. After 6x40 laser shots have been implemented, a sum spectrum is 
automatically acquired from separate locations on BTS control. The minimum 
amount of peaks reverted to seven after the calibration phase (Fig. 6.2).

Using a sterile toothpick, an individual colony from a new culture of each isolate 
was selected and smeared on the specified places on normal MALDI target plate, 
and the drying plates were put on RT (25 °C) for 5 min after loading the sample. 1 μl 
HCCA matrix (saturated solution of α-cyano-40hydroxycinnamic acid in 50% ace-
tonitrile and 2.5% trifluoroacetic acid) was put on the top of a spot not more than 
10 min of drying the samples. Before loading plate into a mass spectrometer, sam-
ple was air-dried again for 5 min. Every bacterial colony has been screened in dupli-
cate. MALDI Biotyper Real-time Classification (MBT-RTC) software (Bruker) 
acquired data set. It compares unknown peak from the reference database (MBT 
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Compass 4.1, Bruker) as well as used statistical algorithm to produce a log score 
ranging from 0.000 to 3.000. The classification score was considered to be suitable 
for species-level recognition  (>=2.000 confident species identification), although 
recognition of the genus level (1.700–1.999 confident genus identification), 
below <1.700 no reliable identification (Bruker 2016).

Bacterial proteins were obtained by the process of ethanol/formic acid extraction 
outlined by the manufacturer for isolates, which could not be identified directly by 
transfer of colonies to the MALDI target plates. A bacteria-packed loop was briefly 
moved and resuspended with a 10 μl inoculation loop in 0.3 mL of deionized water 
and then added with 0.9 mL 100% ethanol, through blending and centrifugation at 
16,000 × g for 2 min. Bacterial pellets were shortly drained, blended sequentially 
with 70% formic acid and 50 μl acetonitrile with 50 μl (20 μl for tiny pellets), and 
centrifuged to 16,000 g for 2 min. 1 μl supernatant was put on the spot on a plate of 
MALDI, dried, and overlaid using 1 μl HCCA matrix solution; this can be detected 
using Bruker MALDI Biotyper System (Bruker 2011).

6.6.2  Quartz Crystal Microbalance Immunosensors (QCMI)

QCMI analysis is based on concurrent mass vibration and its frequency variations 
and extensively utilized to conclude little vacuum, gas, and liquid mass (Kurosawa 
et al. 2006; Mecea 2005, 2006). Transducer device has a mass sensitive, the immu-
nological mixture with QCM resultant in QCMI (Owen et al. 2007).

Fig. 6.2 MALDI-TOF method for the identification of the microbes from the infected plant
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Both the antigen and antibody compatibility reaction in a positive reaction affects 
the reduced frequency of quartz crystal oscillation. QCMI, which offers certain 
advantages, high accuracy, real-time output, portability, label-free entity, and low 
operating, manufacturing, and protection costs, is an attractive option to a conserva-
tive tool of analysis (Chen and Tang 2007; Lee and Chang 2005; Tang et al. 2006). 
The diagnostic signal is very less to identify specific material; sensitivity to identi-
fication can be bigger through the introduction of the signal enhancement step 
(Kurosawa et al. 2006). QCMI is highly sensitive to detection of pathogen sample 
with viruses (Bachelder et  al. 2005; Eun et  al. 2002; Kleo et  al. 2011; Lee and 
Chang 2005; Owen et  al. 2007; Su et  al. 2003; Uttenthaler et  al. 2001). Since a 
QCM detection tool is potable, and QCM covered with virus-specific antibodies to 
identify plant viruses has a finite life span, it may also be utilized for the identifica-
tion of plant viruses on-site (Becker and Cooper 2011; Eun et al. 2002). QCMI has 
been clearly detecting plant viruses, i.e., Cymbidium mosaic virus (CMV), TMV, 
turnip yellow mosaic virus (TYMV), Odontoglossum ringspot tobamovirus 
(ORSV), and maize chlorotic mottle virus (MCMV) (Dickert et al. 2004; Eun et al. 
2002; Huang et al. 2014; Zan et al. 2012).

6.7  Nanotechnology-Driven Diagnostic

6.7.1  Agriculture Nanosensors

The nano sensors are results in collective advances to biology and nanotechnology 
(Yang et al. 2008). These nanosensors have the ability for improved sensitivity and 
also increased sensitivity with those can hold the potential in sensors. Therefore 
they considerably decrease the reaction time to detect prospective illness challenges 
in plants (Small et al. 2001), and therefore they can contribute to improving effi-
ciency and food safety in agriculture. Hashimoto et al. (2008) developed the latest 
biosensor system that contains two types of biosensors for the speedy diagnosis of 
soilborne diseases. The system was built utilizing two different microbes in equal 
quantities, each being separately immobilized on an electrode. The optical proper-
ties of the silver nanoparticles can be differentiated or evaluated between sulphura-
tion ethyl herbicide and silver nano particles, taking into account the specific optical 
properties of silver nanoparticles (Dubas and Pimpan 2008). They found that silver 
nanoparticles in a solution are sensitive to improved herbicide concentration and 
induced a difference in nanoparticle color converted from yellow to orange and then 
finally giving the violet color. It is a useful identification of contamination in water 
bodies and the environment, like organic pollutants and microbial pathogens 
(Dubertret et  al. 2001). Combined with antibody molecules, fluorescent silica 
nanoparticles (FSNP) effectively identify plant pathogens like Xanthomonas axo-
nopodis pv. vesicatoria in tomatoes and peppers that cause bacterial spot disease 
(Yao et  al. 2009). Solgel and spray pyrolysis strategies were used to analyze 
nanoparticles and nanolayers of copper oxide (CuO). The detection of A. niger was 
conducted using both CuO nanoparticles and nanostructure layer biosensors 

6 An Insight into Current Trends of Pathogen Identification in Plants



150

(Etefagh et al. 2013). In contrast, silver nanoparticles (AgNPs) are frequently used 
in soil and water bodies to detect toxins and microbial pathogens. The utilization of 
nanosensors has enabled plant disease prediction and disease control in agriculture 
(Bogue 2008).

6.8  Other New Technologies

6.8.1  Quantum Dots (QDs)

QDs are nanoparticles with a semiconductor that fluoresce while it stimulates 
through a cause of excitation light. In addition, QDs are inorganic fluorophore with 
foremost advantages compared to conventional organic fluorophore (Alexa Fluor 
488, Alexa Fluor 514, BODIPY FL, carboxyrhodamine 6G, Cy 5.5, Cy 7, fluores-
cein, etc.) used as sign-on nucleic acids or visual proteins (Wang et al. 2006; Arya 
et al. 2005). Ferrari and Bergquist (2007) compared QDs and organic fluorophore 
for the detection of Cryptosporidium parasites. Different microbes make the semi-
conductor nonmaterials through mycosynthesis in single cell yeast (Dameron et al. 
1989) and are also used for Cadmium sulfide (CdS) biosynthesis; through, some 
reports reported its luminescent values. The fungus F. oxysporum produced QDs 
when combined with Cdcl2 and Secl4 at normal temperature (Kumar et al. 2007). A 
proficient myco-mediated synthesis of highly fluorescent CdTe QDs was accom-
plished by the F. oxysporum isolates when reacted with a combination of CdCl2 and 
TeCl2 at room temperature  (Jain 2003). Biosynthesized CdTe nanoparticles were 
described using electron microscopy and electron diffraction technique (Syed and 
Ahmad 2013).

The CdTe QD units were widely present in yeast cells, particularly in the cyto-
plasm and nucleus, while nothing was present in the cell membrane. The CdTe QD 
units are only spread into the cytoplasm of the yeast cells, and none in the cell mem-
brane are found. The organic semi-compatible crystals are formed by a core and a 
shell which enables the ligands to bind and thus the fluorescent marker to be attached 
to the pathogen. A biosensor, also known as quartz microbalance crystal biosensor, 
is the best example. It can vibrate under electrical stimulation, and a mass change 
with the connection of every compound to its surface can be detected by reducing 
the vibration rate. A modified shape and distributed resonant frequency of quartz 
and crystal biosensor significantly decrease when a nucleic acid sample is attached 
to the surface of a quartz crystal biosensor and instead subjected to a supplementary 
PCR product. The hybrid forms and significantly reduces the resonance frequency 
of QC biosensor even if a nucleic acid probe is inserted on the surface of a quartz 
crystal microbalance and subjected to existing PCR product. This scheme decreases 
the time needed for particular environmental pathogens in conjunction with quick 
PCR methods (Sharon et al. 2010).
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6.9  Conclusion

An alternative to traditional methods may be molecular methods such as PCR and 
qPCR as well as serological methods and flow cytometry. These methods are very 
sensitive and specific and take very little time, while simultaneously, it is necessary 
to optimize this method to fulfill the specificity and sensitivity requirements. 
Furthermore, standardized protocols are needed as a standard protocol for quaran-
tine purposes for the global acceptance of the method. The portable diagnostic 
instrument, nanoparticle-based, bio-barcoded DNA sensor, and QD have prospec-
tive utilization in numerous identifications of various plant pathogens and toxic 
fungi. It can serve as an analysis to establish identification of plant illness easily and 
it can be used to stop epidemics. These diagnostic kits depend on nanomaterials and 
not just enhance the speed of pathogen detection as well as increase diagnostic 
accuracy. These tools have experienced notable technological changes since their 
innovation, resulting in them remaining important characteristics of research meth-
ods devoted to exploring diversity and all of its microorganism variations. 
Microscopy is progressively augmented with molecular technologies to show data 
on relative species availability and existence of noncultural microbes in certain 
environmental fields. Researchers and business will expand and take up these tech-
niques as expenses are lowered in a manner comparable to desktop or cell phones. 
Harshness and robustness of specifications and precise attributes are key to the pro-
duction of any current diagnostic as well as detection of various technologies. 
Ideally, fresh tools should be resilient to detect distinct entities using air sampling 
devices merely by removing product such as primers, antibodies, and biosensors. 
Ultimately, the use of sophisticated but inexpensive diagnostic methods is expanded 
to automated mobile collecting instruments. Further, in the future automated col-
lecting instruments will also assist plant health inspection monitoring the develop-
ment of fresh pathogens. This could threaten both agricultural and environmental 
systems.
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Abstract
Soil and plant health are linked with each other, and both are badly affected by 
the excess application of inorganic fertilizers and pesticides. The negative impact 
of chemical fertilizers toward the environment forced the scientific community to 
find out an alternative strategy that can improve crop yield and quality in an eco- 
friendly manner. The modern agriculture system is well furnished with microbial 
inoculants and plant defense elicitors. However, the application of microbes to 
manage plant growth and fitness needs to improve. Microbial inoculants play an 
important role in soil mineralization, energy mobilization and channelization, 
and also nitrogen fixation. This chapter aims to review the microbial plant help-
ers and their interlinks toward plant and human health. Microbial inoculums 
improve crop quality and yield, plant and soil health, and profit to farmers and 
reduce pollution. Proper utilization of microbial inoculants could help to improve 
the economic condition of the farmers and the country.
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7.1  Introduction

Population growth and food demand both are expanding with time, and alleviation 
of fertile land and polluted natural resources place distinctive stress on current agri-
culture system (Lotze-Campen 2011). Moreover, increased demand for quality food 
without harming the environment and human health has become a global challenge 
for the farmers and agriculture researchers (Amundson et al. 2015). A smart agricul-
ture system needs to develop for the country—as the country’s economic growth is 
particularly based on agriculture—and this system can be helpful to solve the prob-
lem of malnutrition and hunger. The modern agriculture system needs to project 
well now to balance higher crop production and environmental safety. Global food 
demand might be increased by more than 9 billion in 2050 as the projected popula-
tion will be increased more than the present time (Cole et  al. 2018; Hunter 
et al. 2017).

Currently, eco-friendly farming is receiving attention globally because it offers 
the likelihood to organize our agricultural requirements with environmental and 
human concern (Amundson et al. 2015; Hunter et al. 2017; Morawicki and Díaz 
González 2018). This system accustoms a special farming technique whereby the 
environmental resources will be completely consumed without damaging the sub-
stratum that provides a healthy agricultural product. Agro-ecosystems are signifi-
cantly managed by microorganism populations and soil fauna that play a critical 
role in soil fertility. Microbes are the major gadgets of topsoil and plant that drive 
stability and productivity by the multiple microbial processes such as nutrient 
cycling, biodegradation, biostimulation, restoration, and disease management 
(Jacoby et al. 2017; Kumari et al. 2019).

Biofertilizers are often delineating as constituents that incorporate with living 
microorganisms that are within the rhizosphere, or inside or outside of the plant 
(Patil and Solanki 2016). These microbes stimulate plant growth through fixing 
nitrogen, improve nutrient uptake, and work as a growth promoter when applied 
to seed, plant surfaces, or soil (Muraleedharan et al. 2010; Kumari et al. 2019). 
Presently, researchers are interested in eco-friendly and safe farming practices 
(Harish et al. 2009a; Harish et al. 2009b; Kavino et al. 2010; Schütz et al. 2018), 
and most of the scientists have characterized rhizospheric and endospheric 
microbes that cause beneficial impact to the plant are mostly utilized as microbial 
inoculants (Glick 1995; Harish et al. 2009b; Gouda et al. 2018; Patil and Solanki 
2016). Phytobiome-associated microbes are synergistically interacting with plants 
and their community. These interactions regulate the microbiome structure, and it 
is not only influenced by the environmental factors where they reside but also 
have widespread effects of the host metabolism and the location of the host. For 
example, Grice and Segre (2012) proved that the composition of the human gut 
microbiome is directly linked with physiological and psychological health of 
the host.

Similarly, Chaparro et al. (2012) reported that the soil microbiomes are intercon-
nected with plant health. Therefore, due to the great influence of the microbiome on 
ecosystems, proper attention is needed to look out for the beneficial insights into 
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those different elements that contribute to plant soil health. Herein, this chapter 
presents the current insights of microbial linkages toward the soil and plant fitness 
and deliberations about the valuable microbes.

7.2  Effect of Micronutrients to Sustain Plant Growth

Many Asian countries are facing the problem of micronutrient deficiency, and to 
solve this problem they are utilizing chemical fertilizers or pesticides in an excess 
amount that is damaging the native beneficial soil activity that poses major con-
straints such as low or high pH, fewer minerals, less organic matter, contaminated 
water with high bicarbonate, drought, and salinity (Malakouti 2008; Fageria 2012). 
Deficiency of micronutrients, increases plant stress that destructively affects the 
crop yield and quality by causing hindrance to internal plant tissues such as xylem 
vessels, causing the spread of the pest and disease faster than a healthy plant, reduc-
ing the fertilizer use efficiency, and deactivating the phytosiderophores and phyto-
stimulation that helps plants grow. Malakouti (2008) proved that Calcareous soil has 
Zn deficiency that is responsible for the yield loss and other important micronutri-
ents such as Fe, B, Mn, Cu, and Mo that plays a significant role in the plant growth. 
Application of micronutrients can intensify grain yield up to 50% of durum wheat 
(Triticum durum L.), and mostly micronutrients are applied as a soil application, 
foliar spray, or seed treatment that improves the crop yield and quality, as well as 
macronutrient uptake efficiency (Malakouti 2008). The micronutrients play an 
essential role in crop production and quality that directly influences the crop and 
human health by providing sufficient nutrients (Table 7.1). Zohaib et  al. (2018) 
reported that application of micronutrient mepiquat chloride enhanced the cotton 
yield and nutritional quality under boron-deficient and adequate boron conditions 
by nutrient accumulation in the seed tissues. Recently, a study proved the positive 
interaction between potassium and nitrogen advising that higher application of K 
helped to alleviate ammonium stress although growth vigor enhanced during the 
application of nitrate nutrition that improved the nutrient uptake and enhanced the 
growth of wheat plants (Guo et al. 2019).

7.3  Microbial Linkage for Sustainable Agriculture 
and Environment

Poor coordination of energy conversion is directly linked with the low agricultural 
production that frequently gets affected by physiological factors such as pH, tem-
perature, and beneficial and pathogenic microbes (Souza et  al. 2015). Plant- 
associated microbes that exist in either soil or plant rhizosphere improve the plant 
growth and accelerate plant defense against the plant pathogens. Beneficial plant 
growth-promoting (PGP) microbes mostly produce the secondary metabolites and 
solubilize the minerals that play a significant role in the plant rhizosphere 
(Olanrewaju et al. 2017). These kinds of beneficial microbes have a primary effect 
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on the soil and plant quality (Kumari et al. 2019). Beneficial microbes promote the 
plant growth through two different kinds of mechanism such as indirect and direct. 
In indirect growth promotion, microbes inhibit plant pathogen by different ways 
such as by antagonism or mycoparasitism, while direct mechanism projected by 
microbes involves the nutrient solubilization that improves the plant nutrient uptake 
from the environment (Glick 1995; Kafle et al. 2019; Kashyap et al. 2019). Moreover, 
microbes possess an antibiosis character, that is, antagonism for food and space, 
which induces systemic resistance of plants against the pathogens (Verma et  al. 
2017b). Microbes regulate various growth parameters/yields of crop/fruit plants that 
have been listed in Table 7.2.

7.4  Potential Microbes Act As Biofertilizers

Microbial plant growth helpers enhance the plant growth attributes and crop yield 
considerably. Ribeiro et al. (2018) reported that endophytic Bacillus could solubi-
lize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA), and 
enhance the pearl millet plant biomass and nitrogen and phosphorus content of plant 
under a no-phosphorus-added condition. Bargaz et  al. (2018) reported that 

Table 7.1 Essential plant nutrient elements and their primary forms utilized by plants

S. No. Essential plant element Symbol Primary form
1. Non-mineral elements

Carbon C CO2 (g)
Hydrogen H H2O (l), H+

Oxygen O H2O (l), O2 (g)
2. Mineral elements
I Primary macronutrients

Nitrogen N NH4
+, NO3

−

Phosphorus P HPO4
2−, H2PO4

−

Potassium K K+

Calcium Ca Ca2
+

ii Secondary macronutrients
Magnesium Mg Mg2

+

Sulfur S SO4
2−

Iron Fe Fe3
+, Fe2

+

Manganese Mn Mn2
+

Zinc Zn Zn2
+

iii Micronutrients
Copper Cu Cu2

+

Boron B B(OH)3

Molybdenum Mo MoO4
2−

Chlorine Cl Cl−

Nickel Ni Ni2
+

Source: Parikh and James (2012)
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Table 7.2 Various crop diseases regulated by plant growth promoting microorganisms (PGPM) 
as biocontrol agents

S. No. Disease PGPM References
1. Cucumber mosaic 

virus (CMV; of genus 
Cucumovirus of 
tomato (Lycopersicon 
esculentum)

Bacillus pumilus strain 
SE34; Kluyvera 
cryocrescens strain IN114; 
Bacillus amyloliquefaciens 
strain IN937a; Bacillus 
subtilus strain IN937b

Rabie et al. (2017); Rendina 
et al. (2019); Wang et al. (2018); 
Zehnder et al. (2001)

2. Tomato mottle virus Bacillus amyloliquefaciens 
937a; B. subtilis 937b; B. 
pumilus SE34

Ambros et al. (2017); Gill et al. 
(2019); Gong (2018); Murphy 
et al. (2000)

3. Bacterial wilt disease 
in cucumber 
(Cucumis sativus)

Bacillus pumilus strain 
INR7 F

Park et al. (2013); Rojas et al. 
(2011); Zehnder et al. (2001)

4. Sheath blight disease 
and leaf folder insect 
in rice (Oryza sativa)

Pseudomonas fluorescens 
based bioformulation

Commare et al. (2002); Kumar 
et al. (2016); Seenivasan et al. 
(2012)

5. Blue mold disease of 
tobacco (Nicotiana)

Bacillus pumilus strain 
SE34

Sahoo et al. (2014); Wu et al. 
(2015); Zhang et al. (2002)

6. Downy mildew in 
pearl millet 
(Pennisetum 
glaucum)

Bacillus subtilis strain 
GBO3; Bacillus pumilus 
strain INR7; Bacillus 
pumilus strain T

Jogaiah et al. (2014); Mahatma 
et al. (2011); Raj et al. (2003)

7. CMV in cucumber Bacillus subtilis strain 
IN937a

Borriss (2011); Jetiyanon et al. 
(2003); Zhang et al. (2010)

8. Foliar diseases of 
tomato

Bacillus cereus strains 
B101R, B212R, and 
A068R

Koné et al. (2010); Silva et al. 
(2004); Zodape et al. (2011)

9. Blight of bell pepper 
(Capsicum annuum)

Bacillus strains BB11 and 
FH17

Díaz-Pérez (2014); Jiang et al. 
(2006); Oh et al. (2011)

10. Saline resistance in 
groundnut (Arachis 
hypogea)

Pseudomonas fluorescens Asif et al. (2011); 
Saravanakumar and  
Samiyappan (2007)

11. Maize (Zea mays) rot Burkholderia strains 
MBf21 and MBf15

Hernández-Rodríguez et al. 
(2008); Löffler et al. (2010)

12. Soil-borne pathogens 
of cucumber and 
pepper (Piper)

Bacillus subtilis ME488 Chung et al. (2008); Pliego et al. 
(2011)

13. Significantly reduce 
the Banana bunchy 
top virus (BBTV) 
incidence

P. fluorescens strain CHA0 
+ chitin bioformulations

Kavino et al. (2008); Niyongere 
et al. (2013)

14. Rice blast Bacillus sp.; Azospirillum 
strains SPS2, WBPS1, and 
Z2–7

Shan et al. (2013); Zakira 
(2009)

15. Rice sheath rot 
(Sarocladium oryzae)

Fluorescent Pseudomonas 
spp.

Hittalmani et al. (2016); 
Saravanakumar et al. (2009)

16. Blight of squash Bacillus strain Ji et al. (2012); Zhang et al. 
(2010)
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nitrogen- fixing and P-solubilizing/mobilizing microbes are an especial element of 
soil fertilization for improving crop productivity and fertilizer efficiency. Moreover, 
these groups of microbes possess multitrophic interaction that helps in plant mineral 
uptake. The plants that are inoculated with appropriate microbial strains have been 
found to be more proficient in acquiring nutrient in even nutrient-deficient condi-
tions (Ribeiro et  al. 2018). Several beneficial plant growth-promoting microbes 
used as biofertilizers are represented in Fig. 7.1.

7.4.1  Nitrogen Fixers

7.4.1.1  Rhizobium
Among all plant growth-promoting bacteria, Rhizobium bacteria are heterotrophic 
soil bacteria that are known to be the most prominent nitrogen fixers. Rhizobium 
fixes approximately 50–100 kg/ha nitrogen in the leguminous plants (Checcucci 
et al. 2017). It belongs to family Rhizobiaceae, for example, the well-known sym-
biotic bacteria of the legumes that are present in the nodules and fix the atmo-
spheric nitrogen for the plant. It is mostly detected from useful pulses, like black 
gram, red-gram, pea, chickpea, and lentils, and also isolated from oil-seed legumes 
like soybean and peanut, and some important forage crops like berseem and 

Fig. 7.1 Potential microbial linkage to improve agriculture and human health
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lucerne. Recently, Clúa et  al. (2018) discussed the importance of legume and 
Rhizobium strain compatibility that largely depends on the availability of compat-
ible strain for a particular legume. Moreover, rhizobia get signal molecules through 
the plant to infect the root tissue and colonize the nodule and depend on the plant 
growth stages and plant metabolism to get successful nodulation (Clúa et al. 2018; 
Zhao et al. 2018).The nodule is a bulb-like structure that acts as a nitrogen fixation 
factory (Geetha and Joshi 2013). It assists in converting atmospheric nitrogen by 
symbiosis with leguminous plants, and in certain cases also with the nonlegumi-
nous plants like Parasponia (Santi et al. 2013). Leguminous plants improved the 
Rhizobium population in the soil and to maintain the rhizobium population crop 
rotation and artificial inoculation methods used mostly that enhance the rate of 
nitrogen in the soil.

7.4.1.2  Azospirillum
After Rhizobium, Azospirillum (family Spirilaceae) is the next diazotrophs that is 
globally recommended as important nitrogen-fixing microbes, and it can fix about 
20–40 kg/ha nitrogen by biological nitrogen fixation (BNF) process in legumes and 
nonleguminous plants (Pankievicz et al. 2015; Zeffa et al. 2019). It is capable of 
improving plant growth by various ways like amino acids formation and release, 
improving root growth that helps plants to uptake more water and nutrient, and 
working as plant growth stimulant via biosynthesis of phytohormones such as 
indole-acetic acid, gibberellins, cytokinins, and different forms of polyamines 
(Pereg et al. 2016; Mehnaz 2015; Vejan et al. 2016). The Azospirillum forms sym-
biosis in several plants species mainly with the C4-dicarboxylic pathway of photo-
synthesis (Hatch and Slack pathway), because they mostly grow and fix nitrogen on 
salts of organic acids such as malic or aspartic acid (Arun 2007). Bashan and 
Levanony (1990) reported “Multiple Mechanism Theory” that mostly worked with 
the plant system, and it varied as per the host and growth stages (Bashan and de- 
Bashan 2010). Recently, Zeffa et  al. (2019) proved that Azospirillum brasilense 
Ab-V5 inoculated maize plants improved the biomass and yield under nitrogen defi-
cit condition. Thus, it is mainly endorsed for these cereal crops such as maize, sug-
arcane, sorghum, and pearl millet. Among all species of this genera, Azospirillum 
lipoferum and A. brasilense are extensively used as biofertilizer throughout the 
world (Zeffa et al. 2019).

7.4.1.3  Azotobacter
Azotobacter is a free-living aerobic soil bacteria that belongs to the family 
Azotobacteriaceae and is a known plant growth-promoting rhizobacteria (PGPR; 
Wani et al. 2016; Viscardi et al. 2016; Van Oosten et al. 2018). These bacteria play 
an eminent role in the BNF and fix an average of 20 kg N/ha per year. Azotobacter 
is easily colonized in the soil and plant tissues and improves the plant growth 
through the production of auxins, gibberellins, cytokinins, ammonia, vitamins, and 
beneficial metabolites that improve seed germination, provide protection to the 
plant root against pathogens, and work as growth stimulator of beneficial rhizo-
spheric microbiomes that improve the crop yield. It can secrete 1- aminocyclopropa
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ne- 1-carboxylate (ACC) deaminase enzyme that helps the plant to grow in extreme 
environments, which makes these bacteria most vital for the stress management of 
the plant (Kukreja et al. 2004; Van Oosten et al. 2018). However, the real mecha-
nism that exactly helps the plant is not fully understood. Azotobacter population is 
influenced or regulated by various factors of soil such as soil physicochemical (e.g., 
organic matter, pH, temperature, soil moisture) and microbiological properties. 
Major Azotobacter species are A. vinelandii, A. beijerinckii, A. insignis, and A. mac-
rocytogenes (Subba Roa 2001; Tippannavar and Reddy 1993), and most of the 
strains can restrict several plant pathogens such as Alternaria, Fusarium, and 
Helminthosporium. Higher abundance of Azotobacter has been reported from the 
rhizosphere of various crop plants such as rice, maize, sugarcane, bajra, vegetables, 
and plantation crops (Arun 2007; Wani et al. 2016; Viscardi et al. 2016; Van Oosten 
et al. 2018).

7.4.1.4  Blue-Green Algae (Cyanobacteria)
Photosynthetic prokaryotes that are mostly associated with both marine and fresh-
water environments and fix the environment nitrogen are known as blue-green algae 
(BGA). BGA are filamentous vegetative cell chains that are heterocyst, which are 
mostly symbiotically associated with different hosts such as fungi, liverworts, ferns, 
and flowering plants, but the most common symbiotic association has been found 
between a free-floating aquatic fern and rice paddy. BGA can fix 20–30 kg N/ha and 
are able to produce plant growth substances such as indole acetic acid, auxins, cyto-
kinins, gibberellic betaines, amino acids, vitamins, and polyamines (Ronga et al. 
2019). Several microalgae families such as Chlorophyceae, Trebouxiophyceae, 
Ulvophyceae, and Charophyceae are able to produce auxin and cytokinin that are 
utilized as plant growth stimulants (Stirk et al. 2013). Moreover, the major species 
of BGA available commercially are: Isochrysis spp., Chaetoceros spp., Chlorella 
spp., Arthrospira spp., and Dunaliella spp. (Priyadarshani and Rath 2012). 
Arthrospira spp. and Chlorella spp. are the most common BGA species that are 
cultivated and utilized commercially all over the world (Ronga et al. 2019). Several 
past reports underline a beneficial impact on plant nutrient uptake, biomass, and 
crop yields when BGA are applied as biofertilizers (Shaaban 2001a, b; Hall and 
Williams 2003), and due to these multiple characteristics, BGA could play a signifi-
cant role in sustainable agriculture practices.

7.4.1.5  Azolla
Genus Azolla contains several species of aquatic ferns also known as floating plants. 
They are native to the tropics, subtropics, and warm temperate regions of Africa, 
Asia, and America (Costa et  al. 2009). Azolla is habitually detected in different 
water resources such as stagnant waters, ponds, ditches, canals, or paddy fields. 
Azolla mats cover these water resources in a suitable condition. Generally, Azolla is 
associated with other free-floating plant species such as water lettuce (Pistia stra-
tiotes L.), watermeal (Wolffia Horkel ex Schleid), water caltrop (Trapa natans L.), 
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duckweed (Lemna minor L.), water purslane (Ludwigia palustris L.), knotweed 
(Polygonum arenastrum), and mud-rooting species such as hornwort (Ceratophyllum 
demersum L. [Kannaiyan and Kumar 2006; Mosha 2018]). Azolla is known as a 
potential source of organic manure and nitrogen source for the crops, particularly 
for rice. The dry biomass of Azolla contains 4–5% N and 0.2–0.4% wet biomass. 
Azolla biofertilizer is applied on rice crop as a nitrogen source; after application, it 
decomposes very fast and provides the available nitrogen to rice plants. Moreover, 
it also contains substantial quantities of P, K, S, Zn, Fe, Mb, and other micronutri-
ents (Mosha 2018). Azolla is recommended as a green manure that is incorporated 
to the rice field before showing. Azolla pinnata is most commonly used in India on 
a commercial scale. However, Azolla caroliniana, A. microphylla, A. filiculoides, 
and A. mexicana are also utilized for biomass production and used as biofertilizer.

7.5  Phosphate Solubilizers

Soil is a reservoir of numerous biochemical reactions performed by microbes to 
transport minerals from the soil to the plant. Microbes that are involved in the solu-
bilization of insoluble inorganic phosphate compounds, such as tricalcium phos-
phate, dicalcium phosphate, hydroxyapatite, and rock phosphate, into available 
phosphorus are known as phosphate (P) solubilizers. These microbes improve the 
microbial activity of soil and enhance plant growth (Alori et al. 2017; Raj 2014). 
Among all bacterial genera, Achromobacter, Aereobacter, Agrobacterium, Bacillus, 
Burkholderia, Flavobacterium, Erwinia, Microccocus, Pseudomonas, and 
Rhizobium are known as prominent P solubilizers and provide the available phos-
phorus to the plants (Rodríguez and Fraga 1999). Rhizosphere soil of plant mostly 
contains considerable amounts of P solubilizers that play an indispensable role in 
the P mineralization (Kasiamdari et  al. 2002). Phosphate-solubilizing bacteria 
(PSB) are aerobic and anaerobic strains that exist in the soil or plant, with a preva-
lence of aerobic strains in submerged soils. Pseudomonas and Bacillus are widely 
accepted as major P solubilizers, and they mobilize the insoluble P compounds by 
the production of organic acids that enhance the acidic nature of substratum (Chen 
et al. 2016). The organic and inorganic acids help to convert tricalcium phosphate to 
di- and monobasic phosphates so that plants can easily absorb the available 
P. Moreover, different microbes produce different kinds of organic acid to solubilize 
P. Tri- and dicarboxylic acids are able to solubilize P more effectively as compared 
to the monobasic and aromatic acids. Similarly, aliphatic acids have better ability to 
solubilize P as compared to phenolic, citric, and fumaric acids (Chen et al. 2016; 
Khan et al. 2010; Manzoor et al. 2017). Panhwar et al. (2011) assessed that Christmas 
Island Rock Phosphate application with a phosphate-solubilizing bacteria of 
Bacillus spp. improved P uptake and plant biomass in aerobic rice (Oryza sativa L.). 
Oteino et al. (2015) proved the ability of an endophytic Pseudomonas bacteria to 
solubilize P by releasing gluconic acid (GA) and stimulate the growth of Pisum 

7 Linkages of Microbial Plant Growth Promoters Toward Profitable Farming



172

sativum L. plants. Chen et al. (2016) reported that phosphate-solubilizing activity of 
Pseudomonas sp. PSB12 was associated with the release of organic acids, specially 
gluconic acid, formic acid, butyrate, and propanedioic acid, and it varied as per the 
different phosphate forms, and phenol could be used as the carbon source to dis-
solve insoluble phosphorus. Manzoor et al. (2017) revealed that the integrated use 
of P solubilizers with insoluble rock phosphate enhanced the P availability in soil 
pool and improved the maize plant growth significantly. Ahmad et al. (2018) con-
cluded that two P-solubilizer bacteria (Bacillus subtilis strain Q3 and Paenibacillus 
sp. strain Q6) could promote cotton growth under alkaline conditions by supplying 
P nutrients. Prakash and Arora (2019) discussed the importance of an integrated 
application of Tricalcium phosphate with P-solubilizer Bacillus sp. that could be 
used to increase menthol production and oil yield of Mentha arvensis.

7.6  Phosphate Absorbers

Phosphate is a major element of plant nutrients. Plant root associated symbiotic 
microbes play a significant role to absorb phosphate from the soil. These symbiotic 
fungal microbes are known as arbuscular mycorrhiza (AM; fungal roots) that basi-
cally colonize in two kinds of environment, host plant (inside the root, or in rhizoids 
or thalli) and in surrounding soil of the plant (Jansa and Gryndler 2010). Mycorrhizal 
hyphae helps to uptake plant nutrients such as phosphorus, zinc, copper, and sulfur. 
AM fungi enhance the plant phosphorus uptake by increasing the absorbing surface 
area of root that helps to mobilize available phosphorus. AM-associated plants dis-
play a greater volume of phosphorus invasion than the non-mycorrhizal controls. 
Yang et  al. (2012) assessed that rice + AM improved 70% phosphorus uptake. 
Moreover, colonized mycelia of vesicular-arbuscular mycorrhiza (VAM) protects 
the host root from the fungal pathogens and nematodes. Moreover, the fungal myce-
lia that colonize inside the host plant give a stable environment to the plant even in 
extreme conditions, through the extended root system that provides greater volume 
of water and nutrients to the host (Pavithra and Yapa 2018; Rask et al. 2019; Wang 
et al. 2017). VAM is ubiquitous and widely colonized in the plants that even exist in 
the arctic, temperate, and tropical regions, which shows the broad ecological range 
of this microbe and its ability to proliferate from aquatic to desert environments 
(Jansa et al. 2013; van der Heijden et al. 2015). However, only a few fungi have the 
ability to form a mycorrhizal association with the plant, for example, order Glomales 
of class Zygomycetes have 150 fungal species, and, among them, a small number of 
fungi are presumed to be mycorrhizal. Two genera, Glomus and Sclerocytis, are able 
to produce chlamydospores, whereas four genera can form zygospores: they are 
similar to Gigaspora, Scutellospora, Acaulospora, and Entrophospora (Maia et al. 
1994). Mycorrhizal fungi have a wide range of applications in the agriculture sys-
tem such as in seedling growth enhancement (van der Heijden and Horton 2009), 
decomposition of plant and crop residues (Lindahl et al. 2007), soil aggregation, 
and soil formation (Rillig and Mummey 2006).
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7.7  Potassium Solubilizers

Potassium (K) is recommended as the third most important macronutrient for plant 
fitness and is involved in several biochemical and physiological processes. Low 
level of soluble potassium (up to 90% exists as insoluble rocks and silicate miner-
als) in the soil impacts negatively on plant metabolism and plant development and 
grain quality; it plays a significant role in the synthesis of cells, proteins, enzymes, 
cellulose, starch, and vitamins in normal or in stress condition (Shahzad et al. 2019; 
Wakeel et al. 2017). Macronutrient K not only regulates nutrient by transportation 
and absorption but also modulates the plant defense system under abiotic and biotic 
stresses and thus improves the crop production and quality (Oosterhuis et al. 2013; 
Zahoor et al. 2017). Sheng and He (2006) reported that Nanjing feldspar and Suzhou 
illite are two potassium (K)-bearing minerals that are used with Bacillus edaphicus 
through soil application and bacterial inoculation, which enhances the K uptake 
significantly in plant components.

Verma et al. (2015a) described a gram-positive plant growth-promoting bacte-
rial strain Bacillus amyloliquefaciens that showed a significant level of K solubi-
lization in in-vitro and in-vivo conditions. Verma et al. (2016) reported that most 
of the bacilli-solubilized potassium, such as B. aerophilus, B. atrophaeus, 
B. cereus, B. circulans, B. horikoshii, B. licheniformis, B. megaterium, B. moja-
vensis, B. pumilus, Lysinibacillus sphaericus, Exiguobacterium antarcticum, 
Paenibacillus amylolyticus, P. dendritiformis, P. polymyxa, Planococcus citreus, 
and Planococcus salinarum. However, K-solubilizing bacteria may have been 
used in the amelioration of K-deficient soil in agriculture. The most important 
K-solubilizing microbes (KSM) Acidithiobacillus ferrooxidans, B. circulans, 
B. edaphicus, B. globisporus, B. mucilaginous, B. subtilis, Burkholderia cepacia, 
Enterobacter hormaechei, Paenibacillus kribensis, P. mucilaginous, and 
Pseudomonas putida are used as K solubilizers and solubilize K in an eco-friendly 
manner. Therefore, these efficient K-solubilizing microbes (KSM) should be 
applied for solubilization of a fixed form of K to an available form of K in the soils 
(Verma et al. 2017a).

7.8  Zinc Solubilizers

Zinc (Zn) is an essential element of soil and Zn deficiency is widely reported in 
Indian soils (>50%) that exhibit the critical level of 1.5 ppm of available zinc (Katyal 
et  al. 1994). The plant alone cannot absorb Zn from the soil, and hence farmers 
apply a huge amount of zinc sulfate (ZnSO4) as an external fertilizer application. 
However, external fertilizer application also does not work well because the plant 
utilizes a very low percentage (1–4%) of the total available Zn and 75% of the 
applied Zn is transformed into different mineral fractions (Goteti et al. 2013). Two 
core mechanisms are applied to fix Zn: one is cation exchange, which mostly oper-
ates in acidic soils, and the other operates in alkaline conditions, where fixation 
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occurs using chemisorption (chemisorption of zinc on calcium carbonate [CaCO3] 
forms a solid-solution of Zn by complexation of organic ligands; Alloway 2008). 
Microbe-based solubilization of Zn plays a significant role in the soil, and major 
bacterial inoculants that fix Zn are Bacillus subtilis, Thiobacillus thiooxidans, and 
Saccharomyces sp., Burkholderia sp., and Acinetobacter sp., and these microbial 
inoculants are used as biofertilizers (Azooz and Ahmad 2013; Vaid et  al. 2014). 
Mahdi et al. (2010) reported that Zn-solubilizing microbes are mostly applied in soils 
where native Zn is higher or in conjunction with insoluble cheaper zinc compounds 
like zinc oxide (ZnO), zinc carbonate (ZnCO3), and zinc sulfide (ZnS) instead of 
costly zinc sulfate  (ZnSO4)). Kamran et  al. (2017) reported that Zn-solubilizing 
microbes include Rhizobium sp. (LHRW1), while Enterobacter cloacae (PBS 2) 
improved Zn uptake in wheat plants and enhanced the root and shoot biomass. 
Dinesh et  al. (2018) concluded that Zn-solubilizing Bacillus megaterium ZnSB2 
strain played a significant role in Zn dissolution in soil, and it would allow reducing 
the utilization of inorganic Zn application rates. Gontia-Mishra et al. (2017) assessed 
that Zn-solubilizing bacteria such as Pseudomonas aeruginosa, Ralstonia picketti, 
Burkholderia cepacia, and Klebsiella pneumoniae improve the growth of rice seed-
lings and these bacteria could be used as Zn mobilizers for profitable farming.

7.9  Microbes Play a Role in Biofertilization

In the past several decades, chemical fertilizers have been applied as a source of 
major plant nutrients such as nitrogen, phosphorus, and potassium. These fertilizers 
improved the crop production but enhanced the farming cost and also polluted the 
natural resources that increased the environmental risks (Gong et al. 2011; Machado 
et al. 2017; Mullin et al. 2010; Vitousek et al. 2009). The plants themselves cannot 
utilize the insoluble forms of P and N2. Therefore, plant growth-promoting microbes 
that can fix N2 and solubilize the P are used as biofertilizers (Zahir et  al. 2004; 
Schütz et al. 2018; Zaidi and Khan 2006; Alori et al. 2017). These microbe-based 
biofertilizers are environment-friendly and less expensive as compared to the chem-
ical fertilizers. These biofertilizers improve the nutrient accumulation in the plant 
root by a different mechanism, such as mobilization, solubilization, and absorption, 
and enhance P uptake and N2-fixation. Moreover, biofertilizers also play a signifi-
cant role in the uptake of micronutrients like Fe, Cu, Zn, B, Mn, Co, and Mo (Bargaz 
et al. 2018). Several reports also concluded that mixed inoculation of N2-fixing and 
phosphate-solubilizing bacteria had provided more balanced nutrition to different 
agriculture crops such as sorghum, barley, black gram, soybean, and wheat (Abd- 
Alla et al. 2001; Alagawadi and Gaur 1992; Galal 2003; Tanwar et al. 2003)

Rhizobium is one of the prominent diazotrophs that is mostly used as a biofertil-
izer alone in India, but the use of Rhizobium in combination with phosphate- 
solubilizing bacteria (PSB) needs to be explored more extensively. Nevertheless, 
application of combined microbe inoculum to enhance the soil fertility is getting the 
attention of researchers (Basak and Biswas 2010; Dash et al. 2018; He et al. 2019; 
Kant et  al. 2016; Sharma et  al. 2019). Recent findings specified that combined 
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inoculation of plant growth-promoting rhizobacteria (PGPR) in arable soils 
enhanced the crop yield significantly (Harish et al. 2009a; Harish et al. 2009b). The 
PGPR strains Pseudomonas alcaligenes PsA15, Bacillus polymyxa BcP26, and 
Mycobacterium phlei MbP18 had positive impact on maize plant health and the 
uptake of N, P, and K in nutrient-deficient Calcisol soils (Egamberdiyeva 2007; 
Verma et  al. 2017a). These PGPRs have a strong ability to produce growth- 
promoting phytohormones and play a significant role in phosphate mobilization, 
production of siderophore and antibiotics, inhibition of plant ethylene synthesis, 
and induction of plant systemic resistances to pathogens that helps to enhance the 
crop yield (Cakmakçi et al. 2006; Han and Lee 2006; Kohler et al. 2006; Turan et al. 
2005; Zahir et al. 2004; Zaidi and Khan 2006). PGP endophytes also play a signifi-
cant role in plant growth regulation (Suman et al. 2016b). Rhizobium, Azotobacter, 
Azospirillum, Cyanobacteria, Azolla, Phosphate, and potassium-solubilizing micro-
organisms are the most applied microorganisms that are considered as beneficial for 
sustainable agriculture and used as biofertilizers. Silicate-solubilizing bacteria also 
help to promote plant growth and are available as liquid biofertilizers (Parewa et al. 
2014; Suman et al. 2016a; Verma et al. 2014a; Zhang and Kong 2014). Microbes 
and their beneficial association with crop plants are listed in Table 7.3.

7.10  Economic Development in Agriculture

Microbe-based biofertilizer development is accepted as a relevant approach to 
increase food production (Schütz et al. 2018). Global population pressure as well as 
climate change have become serious constraints for the economic growth of several 
countries and food security (Cole et al. 2018). Fundamentally, to improve the soil 
and plant health, two major strategies need to be followed: (1) extensive application 
of microbe-based biofertilizer, and (2) the manipulation of naturally existing micro-
bial populations (Patil and Solanki 2016; Schütz et al. 2018). Mostly, PGPRs that 
are grown as either saprophytic or endophytic symbionts are protagonists of applied 
microbial biotechnology in agriculture (Backer et al. 2018). Especially, microbial 
formulation, quality control, and modes of application of microbial inoculants are 
getting the attention of researchers (Singh et al. 2014; Velivelli et al. 2014). Several 
mechanisms underlying the plant–microbe interactions in the rhizosphere and plant 
still need to be explored in depth. Researchers are facing difficulties, mostly regard-
ing how to utilize the large microbial structure, especially unculturable microbes, to 
boost the soil and plant health. Secondary, a plethora of culture-independent molec-
ular techniques is becoming accessible and is presently being applied either to inter-
pret the hidden networks of microorganisms inhabiting soil and rhizosphere 
microenvironments or to outline the molecular bases of the plant–microbiome inter-
actions (Patil and Solanki 2016). Multitrophic factors, including nutrient deficits, 
salt, low water, air contamination, diseases, and pests, cause negative impacts on the 
functionality/productivity of agricultural products and plant systems (Fig. 7.2).

Agriculture plays an indispensable role in the Indian economy, and biofertilizers 
are essential to improve crop yield in an eco-friendly manner (Kesavan and 
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Table 7.3 Microbial linkage promoting various types of growth in plants to improve crop yield

S. No.
Types of growth 
promotion in plants Microbial inoculants References

1. Growth enhancement of 
canola and lettuce

Rhizobium leguminosarum García-Fraile et al. 
(2012); Noel et al. 
(1996); Singh (2013)

2. Early developments of 
canola seedlings

Pseudomonas putida G 12-2 Glick et al. (1997); 
Hwang et al. (2011); 
Zhang et al. (2015)

3. Growth enhancement of 
wheat and maize plants

Azospirillum brasilense and 
Azospirillum irakense strains

Couillerot et al. (2013); 
Dobbelaere et al. 
(2002); Fukami et al. 
(2016)

4. Growth enhancement of 
pearl millet

Pseudomonas fluorescens 
strain

Fukami et al. (2016); 
Karnwal (2012); Raj 
et al. (2003)

5. Growth stimulation of 
tomato plant

Pseudomonas putida strain Gravel et al. (2007); 
Mariutto et al. (2011); 
Pastor et al. (2014)

6. Growth and productivity 
enhancement of canola

Azotobacter and Azospirillum 
strains

Naderifar and 
Daneshian (2012); 
Naseri et al. (2013); 
Yasari and Patwardhan 
(2007)

7. Enhanced uptake of N, P, 
and K by maize crop in 
nutrient-deficient 
Calcisol soil

Pseudomonas alcaligenes 
PsA15; Bacillus polymyxa 
BcP26; Mycobacterium phlei 
MbP18

Egamberdiyeva (2007); 
Saharan and Nehra 
(2011); Shrivastava and 
Kumar (2015)

8. Growth and yield 
enhancement of chick 
pea (Cicer arietinum)

Pseudomonas, Azotobacter, 
and Azospirillum strains

Joseph et al. (2012); 
Rokhzadi et al. (2008); 
Rokhzadi and Toashih 
(2011)

9. Improvement in the yield 
and phosphorus uptake in 
wheat

R. leguminosarum (Thal-8/
SK8); Pseudomonas sp. strain 
54RB

Afzal and Bano (2008); 
Mehboob et al. (2012); 
Shaikh et al. (2016)

10. Improvement in seed 
germination, seedling 
growth, and yield of 
maize

P. putida strains R-168 and 
DSM-291; P. fluorescens 
strains R-98 and DSM-50090; 
A. brasilense DSM-1691; 
Azospirillum lipoferum 
DSM-1690

Gholami et al. (2009); 
Karunakaran et al. 
(2013); Shen et al. 
(2010)

11. Improvement in seed 
germination, growth 
parameters of maize 
seedling in greenhouse, 
and also grain yield of 
field-grown maize

P. putida strain R-168 Gholami et al. (2009); 
Noumavo et al. (2013); 
Singh et al. (2011)

(continued)
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Table 7.3 (continued)

S. No.
Types of growth 
promotion in plants Microbial inoculants References

12. Increase in growth, leaf 
nutrient contents, and 
yield of banana cv. 
Virupakshi (Musa spp. 
AAB) plants

P. fluorescens strain R-93; P. 
fluorescens DSM 50090; P. 
putida DSM291; A. lipoferum 
DSM 1691; A. brasilense SM 
1690; P. fluorescens strains 
CHA0 and Pf1

Kavino et al. (2010); 
Patil (2013); Selvarajan 
and Balasubramanian 
(2014)

13. Improvement in seed 
germination, growth 
parameters of wheat 
seedling in pots, and also 
grain yield of field-grown 
wheat

Bacillus amyloliquefaciens 
IARI-HHS2-30

Verma (2013, 2015, 
2016); Verma et al. 
(2014a, b, 2016)

Fig. 7.2 Microbes and their role in the intensification of sustainable agriculture
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Swaminathan 2008). Out of India’s total geographical area (329 million hectares), 
about 114 million hectares are under farming (Raghuwanshi 2012). To gain better 
yield, farmers vaccinate the soil with fertilizers. These fertilizers belong to two 
classes. They are either inorganic chemical or organic biofertilizers. Increasingly 
high inputs of chemical fertilizers during the last 150 years have not only negatively 
influenced the fertility of the soil but also polluted the water sources. Soil fertility 
degraded significantly, and polluted resources have also posed severe health and 
environmental hazards (Schütz et al. 2018).

In contrast, microbe-based biofertilizers not only give a better yield, but are also 
harmless to the ecosystem (Patil and Solanki 2016). Biofertilizer-based organic 
farming methods would help solve these concerns and boost the ecosystem (Shukla 
et al. 2016). In the present time, organic biofertilizer market has reached around 
US$ 30 billion globally and with an excellent growth rate (8%). Approximately, 22 
million hectares of agricultural land is now cultivated organically by the use of 
microbe-based fertilizers. However, organic farming represents less than 1% of the 
world’s conventional agricultural production and about 9% of the total agricultural 
area (Verma et al. 2014b). To have an environmentally safe technology, microbial 
product-based agriculture system needs to be used efficiently.

7.11  Microbial Engineering Gets Better Agriculture 
and Human Health

A microbial structure is composed of and influenced by host location and environ-
mental factors that generate undesirable phenotypes in the hosts. The disturbance of 
microbiome negatively affects the associated ecosystems that cause diseases and 
disorders in the host. Microbiome engineering can be used to modify or restore the 
microbial community to improve the plant and human health. Foo et al. (2017) dis-
cussed the vitality of microbiome engineering toward agriculture prospects and 
human health. Plant microbiome can be planned with known microbial inoculants 
with desired functions to get significant production in an eco-friendly manner. 
Santhanam et al. (2015) reported an example of artificially developed microbiome 
by using five root-associated bacteria that significantly reduced the sudden-wilt dis-
ease in Nicotiana attenuata.

Additionally, Glick (2012) assessed co-inoculation of rhizobacteria had shown 
higher growth and yield in various crops as compared to the single microbes. Soil 
microbiome engineering is usually flourished by hiring different agricultural prac-
tices such as intercropping, crop rotation, and tillage (Fageria 2012; Solanki et al. 
2017, 2019). Application of green organic manure, farmyard manure, is also one of 
the important agriculture practices that enhance the soil microbiomes significantly 
(Chaparro et al. 2012; Abebe and Deressa 2017). All these agricultural practices 
targeted to modify the soil microbial diversity, mineral cycles, and biological activ-
ity, and these significantly helps to reduce the off-farm inputs, for example, chemi-
cal fertilizers and herbicides.
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In the present scenario, microbial engineering is most extensively utilized to 
modify the human microbiome to improve immunity and disease resistance. 
Advanced biotechnological tools help to manipulate human microbiome to treat 
diseases such as diabetes and cancer; modified microbiota influence the host metab-
olism that helps to regulate diseases (Grice and Segre 2012). Meat industry badly 
suffered from antibiotic-resistant bacteria, and it has become the most common 
problem for livestock farming. Thus, microbiome alteration of livestock by using 
feed enzymes, prebiotics, and probiotics is a suitable alternative as compared to the 
overdose of antibiotics that also negatively affect human health. To promote gut 
health in swine and poultry, feed enzymes like phytase, amylase, non-starch poly-
saccharide (NSP)-degrading enzymes (e.g., xylanase, β-glucanase, and 
β-mannanase), proteases, and lysozyme are used that enhance the substrate diges-
tion, improve the production of prebiotics from dietary NSPs, and reduce the antinu-
tritive factors (Archna et al. 2015; Kiarie et al. 2013; Verma et al. 2015b).

7.12  Conclusion and Future Prospects

During the past several decades, microbial research has made significant progress in 
sustainable agriculture. Subsequently, advanced microbiological tools offer to use 
microbial engineering to alter microbiota of human and plant to improve health and 
increase production. However, plant microbiome and different environmental stress 
need to be explored to reveal a unique signaling network among microbes that help 
the plant to survive. Characterization of these signaling molecules can help to design 
advanced biotechnological strategies that unlock the plant adaptation mechanisms. 
Similarly, soil health can be flourished by using the crosstalk of soil microbes. 
Moreover, different microbial tools and agriculture technologies are being estab-
lished, providing deeper insights into the plant/soil microbiomes, and these tools 
widely help to accelerate the microbial engineering efforts. With nonstop hard work 
in understanding and manipulating microbes, the microbial link will be a main-
stream approach for refining human health and agriculture output.
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Abstract
Wheat microbiome harbors a diverse array of microbial communities and play a 
vital role in maintaining wheat physiology as well assist in offering protection 
from biotic and abiotic stresses. Several research findings indicated that wheat 
microbiome encompasses predominantly fungi, bacteria, viruses, actinomycetes, 
cyanobacteria, protozoa, archaea, etc. which performed myriads of advantageous 
activities including bio-management of crop pathogens, abiotic stress ameliora-
tion, as well as plant growth promotion under adverse conditions. In this chapter, 
attempts have been made to provide comprehensive and up-to-date insights on 
wheat microbiome research with major emphasis on emerging microbiome- 
based sustainable solutions for profitable and quality wheat production under 
every changing climate.

Keywords
Abiotic stress · Bio-antagonist · Microbiome · PGPR · Wheat

8.1  Introduction

Wheat (Triticum aestivum) is the largest cultivated crop in the world occupying an 
area of 222.35 million hectares with an estimated production of 753.89 million tons 
in 2016–2017 (Jasrotia et al. 2018). It is a staple food in more than 40 countries and 
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finds a significant share of about 35% in the consumption basket of millions across 
the world. It is estimated that global population depends on wheat for 85% and 
82%, respectively, for calories and protein (Chaves et al. 2013). Moreover, wheat 
meets up 21% of the world’s food demand and is grown on 200 M ha of farmland 
globally (Tsvetanov et al. 2016). By 2050, the world will have the challenge to meet 
the food demand of an estimated population of 9.6 billions. Feeding for growing 
population at the era of climate change requires the use of optimized, reliable and 
existing resources which have less impact on the environment (Busby et al. 2017). 
Now research topics mainly highlighted on the issue of not only quantity but also 
quality of food product with minimal uses of existing earth resources. Under devel-
oping countries like India, which has self-sufficiency in wheat production, there is a 
need to give emphasis on quality wheat production by understanding plant microbi-
ome and its interactions with environment and stress regimes.

Moreover, the future global climate scenarios predicted an increase in the occur-
rence of exceptionally hot days, together with an increase in average global tem-
peratures and its implications on global food production. Asseng et  al. (2015) 
reported that the global wheat production is influenced by the increase of tempera-
ture and becomes more variable over space and time. In Indian perspective, tem-
perature changes in the last 30  years had a bigger impact on national wheat 
production, where over 90% of wheat is irrigated (Singh and Mustard 2012), than 
changes in precipitation (Lobell et al. 2011). One of the most important cropping 
patterns in South Asia is rice-wheat cropping system, facing immense pressure 
because of heat stress and degraded soil health due to high cropping intensity and 
tillage for growing rice and over-exploitation of the natural resources (Joshi et al. 
2007). The most affected locations of South Asia are eastern Gangetic plains, cen-
tral and peninsular India and Bangladesh. Besides, a substantial proportion of culti-
vated land under wheat in South Asia is salt affected. The salt-affected land under 
wheat in India is 4.5 m ha, whereas 6.0 m ha in Pakistan amongst the other South 
Asian countries (Singh and Chatrath 2001). Although soil reclamation and provi-
sion of proper drainage may be more effective solution, it does not seem possible in 
the near future due to huge acreage affected by salt. Another constraint is deficiency 
of macro-nutrients like zinc, sulphur, iron, manganese and boron which are being 
observed in some pockets of northern India, Bangladesh and Nepal due to imbal-
anced fertilization, overmining of essential plant nutrients and burning of crop resi-
dues (Chatrath 2004). Water is also becoming scarce as the water table is going 
down due to overmining of groundwater in intensive rice-wheat cultivation and 
comparatively less water recharge from monsoon rains.

Amongst the biotic stresses, rusts continue to be the major threat (Khan et al. 
2017; Savadi et al. 2018; Singh et al. 2006; Kumar et al. 2019; Kashyap et al. 2019). 
Out of three rusts prevalent in Indian subcontinent, leaf rust is the major disease 
which affects almost whole of India, parts of Bangladesh and Nepal. Spot blotch 
caused by Bipolaris sorokiniana (Sacc.) Shoem is also considered an important 
disease in the eastern part of South Asia (Joshi et al. 2007; Devi et al. 2018). In addi-
tion, other diseases, viz. Karnal bunt, powdery mildew and wheat blast also affect 
wheat crop to some extent (Singh 2017; Kashyap et  al. 2011, 2018, 2019; 
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Nallathambi et al. 2019; Kumar et al. 2020). The use of microbiomes increases crop 
productivity, reduces the cost of cultivation and sustains the health of soil as well as 
environment. Use of microbiome in wheat cultivation has the ability to change the 
entire scenario of the current agricultural and food security.

The plant microbiome is a key determinant of plant health and productivity and 
has received substantial attention in recent years. There is an expanded version of 
the tree of life dominated by bacterial diversification due to their ability to per-
form lateral gene transfer across disparate phylogenetic groups (Mcdonald and 
Currie 2017; Hug et  al. 2016). Recent advance researches in high-throughput 
sequencing technique and the increasing number of microbial culture libraries, 
they can quickly proliferate and have high mutation rates (Kibota and Lynch 
1996; Boe et  al. 2000; Denamur and Matic 2006). Individual microbes of the 
same species could potentially bear different genetic endowments and thus func-
tional characteristics (Sergaki et al. 2018). Amplicon sequencing has been invalu-
able in determining general patterns of microbial diversity within the plant 
microbiome (Bulgarelli et  al. 2012; Lundberg et  al. 2012; Peiffer et  al. 2013; 
Tkacz et al. 2015).

However, use of microbiome on wheat is very limited. Most of the previous 
studies mostly based on identifying microbes in the root’s rhizosphere (Hartmann 
et al. 2014; Mahoney et al. 2017; Ofek et al. 2013; Yin et al. 2017) and limited 
research work is  focused on aboveground organs (Granzow et  al. 2017; Huang 
et al. 2016; Karlsson et al. 2017). To our knowledge, till date no detailed published 
works are available on entire wheat microbiome, including both above- and below-
ground plant organs, mode of actions, how they work under stress conditions and 
what are the easy and fast way of identification with high-throughput sequencing 
techniques. Here we classify the microbiome in a detailed way and also use full-
ness of those microbiomes especially for wheat crop. But still microbial communi-
ties were dependent on type of plant organ, growth stages of the plant, environmental 
conditions, acceptability amongst the farmers and community composition, 
etc.  and therefore need to be  checked before their successful intervention and 
execution.

8.2  Plant Microbiome: Concept and Definitions

Microbes are associated with majority of living species and are omnipresent in 
nature. However, majority of them are noticed in harsh environments. The microbial 
diversity consists of various types of microbes such as archaea, bacteria, cyanobac-
teria, fungi and protozoa (Vessey 2003; Verma and Suman 2018). The plant micro-
biomes include rhizospheric, endophytic and epiphytic microbes which help in 
plant growth and in adaptation even in extreme environments. In our planet, research-
ers have recorded the presence of microbiomes amongst 1.7 million living species 
and noticed that 1–10% bacterial species are present amongst 5000 species of pro-
karyotes (Federhen 2014; Moore 2014). The microbiomes are useful in industry and 
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medical processes too in addition to agriculture, and they act as abundant reservoirs 
of bioresources. Thus in keeping good soil health, enhancing productivity and 
improving the growth of plants, these plant microbiomes play vital role and are 
found helpful in providing a sustainable biosphere.

The following definitions are found for plant microbiome in literature.

 1. Bulgarelli and Schlaeppi (2015) have defined microbiota or microbiome as a set 
of genomes of the microorganisms in some habitat.

 2. Several researchers have defined that microbial communities are the ones associ-
ated with any plant that can live, thrive and interact with various tissues such as 
roots, shoots, leaves, flowers and seeds (Turner et al. 2013; Haney and Ausubel 
2015; Mueller and Sachs 2015; Haney et al. 2015; Nelson 2018). It is also found 
in literature that microbiome includes all the microbes of a community.

8.3  Wheat Microbiomes: Concept and Types

The wheat microbiome is mainly composed of various kinds of organisms such 
as archaea, protozoa, bacteria, fungi and virus (Mueller and Sachs 2015). 
Research done on the microorganisms so far found that they are present in healthy 
crops, and their findings are limited to species of wild Triticum and of wheat 
(Marshall et al. 1999).

It is a well known fact that nematodes, ants, moles and several fungi and bacteria 
take common shelter in soil. They play an essential role in protecting the plant from 
potential plant pathogens and also in improving plant growth, health, and produc-
tion (Berg et al. 2014; Haney et al. 2015). There is a closer association between 
plants and microbial communities and normally found at phyllosphere (above the 
ground), in rhizosphere (below the ground especially on roots and surrounding area 
of roots) and in endophytes (inside the root intercellular spaces) (Hirsch and 
Mauchline 2014). Relationship of plants with microbes is beneficial in improving 
disease resistance, in increasing stress tolerance levels and also in nutrient uptake. 
It is not always beneficial; rather, sometimes interactions of plants with microbes 
may be harmful too. This is dependent on kinds of bacteria involved, their charac-
teristics and finally the ways of interactions.

Mainly, the interactions between plants and microbes are classified as rhizo-
spheric, endophytic and epiphytic (as shown in Fig.  8.1). Wheat plants interact 
mostly with either common microbes or niche-specific microbes (Fig. 8.2). Common 
microbes are Arthrobacter nicotianae, Bacillus amyloliquefaciens, B. sphaericus, 
B. subtilis, Paenibacillus amylolyticus, P. polymyxa, Micrococcus luteus, 
Pseudomonas aeruginosa and P. azotoformans, and most predominant species were 
reported from various parts of the plant such as phyllosphere, rhizosphere and inter-
nal tissues (Bhattacharyya and Jha 2012; Verma  and Suman 2018). Further, the 
wheat bacterial microbiomes belong to different taxonomic positions of phyla, namely, 
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Gemmatimonadetes 
(Verma and Suman 2018). Some novel microbiomes like acidophiles, alkaliphiles, 
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halophiles, psychrophiles, thermophiles and xerophiles are also found in wheat 
(Narula et al. 2006). According to Verma and Suman (2018), bacterial microbiomes, 
viz. Actinobacteria (12%), Bacteroidetes (7%), Firmicutes (32) and Proteobacteria 
(49%), which occupy a major portion, and three classes of bacteria, namely, 
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Fig. 8.1 Assemblage of microbes in and around wheat plant
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Fig. 8.2 Relative distribution amongst different microbes isolated from phyllospheric, endophytic 
and rhizospheric sample of wheat
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Alphaproteobacteria (6%), Betaproteobacteria (8%) and Gammaproteobacteria 
(35%) are present in wheat.

8.3.1  Endophytes

Wilson (1995) and Brader et al. (2014) observed that the bacteria or fungi during 
their life cycle attack the plant tissues. This invasion causes infections in plant tis-
sues which are not apparent to the naked eye. However, these infections do not 
cause any symptoms of disease. Endophytic microbiomes get into plants through 
wounds and root hairs to benefit plants by colonizing them and preventing effects of 
pathogenic organisms. They may systematically colonize the plants (Compant et al. 
2010; Kushwaha et al. 2020a). Requisite chemicals are produced by them to prevent 
the growth of plant pathogenic competitor organisms. Bacterial endophytes help 
plants in their growth  (Kushwaha et  al. 2019, 2020b). Carroll (1988) has done 
research on endophyte associations and shown that they enhance the survival 
chances against fungal pathogens.

The specific endophytic species are Achromobacter piechaudii, A. xylosoxidans, 
Delftia lacustris, D. acidovorans, Acinetobacter lwoffii, Ochrobactrum interme-
dium, Pantoea dispersa, P. eucalypti, Staphylococcus epidermis, Pseudomonas 
monteilii and Variovorax soli and Serratia (Liu et al. 2010; Hallmann et al. 1997). 
Carroll (1988) has observed that host benefits is a common phenomenon related with 
fungal endophytes. 

Endophytic fungi are used as genetic vectors and as abundant source of second-
ary metabolites (Fisher et al. 1986; Stierle et al. 1993; Strobel and Daisy 2003). 
Further they act as biological control agents (Clay 1989; Bacon 1990; Schardl 
et al. 1991; Dorworth and Callan 1996). Hence, biotechnological interest is shown 
very much on endophytic fungi (Murray et al. 1992). It is also studied that fungal 
endophytes cause water loss in leaves. Some kinds of fungal endophytes help 
plants to survive in drought conditions and extreme temperature climates (El-Daim 
et al. 2014; Naveed et al. 2014; Khalafallah and Abo-Ghalia 2008). Thus, focused 
research has been done on it in general and on grass endophytes in particular 
(Farooq et al. 2009).

Direct antagonism of microbial pathogens is one way that endophytic bacterial 
strains fuel plant growth. As biocontrol agents, endophytes induce resistance in 
plants to disease-causing organisms and allow plant to be healthy (Pleban et  al. 
1995). Figure  8.3 described the isolation of host-associated endophyte and their 
vital function.

The anti-microbial property of endophytic microbes generates secondary metab-
olites, and thus they act against pathogenic microbes (Tan and Zou 2001). There are 
many bioactive compounds different from endophytes, and such compounds belong 
to classes like alkaloids, flavones, peptides, phenols, quinines, steroids and terpe-
noids (Yu et al. 2010).
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8.3.2  Epiphytic Microbiomes

Synergy between plant and bacteria is due to the presence of epiphytic microbes on 
phyllosphere. Microorganisms found on leaf surfaces are identified as extremo-
philes due to their capacity to survive even at high temperature (40–55 °C). Further 
they tolerate ultraviolet radiation during the day and even cool temperature (5–10 °C) 
during the night (Kushwaha et al. 2020b). The association between the microorgan-
isms in the phyllosphere influences the plant growth in natural habitat and the pro-
ductivity of agricultural and horticultural crops for human consumption.

The aerial parts of plants are normally exposed to air and dust. This helps typical 
microbiomes to get attached to the surface. Hence, survival and proliferation of the 
phyllospheric microbiomes on leaves depend on the leaf diffuses or exudates. 
Amino acids, glucose, fructose and sucrose are some nutrient factors found in the 
leaf exudates. Hence, the plant growth is accomplished by the essential process like 
nitrogen fixation (Iniguez et al. 2004; Venieraki et al. 2011).

In the phyllosphere of wheat, researchers have observed the presence of microbes, 
viz., Achromobacter, Corynebacterium, Agrobacterium, Haemophilus, Alcaligenes, 
Arthrobacter, Bacillus, Azotobacter, Enterobacter, Lysinibacillus, Micrococcus, 
Brevundimonas, Paenibacillus, Methylobacterium, Micromonospora, Pseudomonas, 
Micrococcus, Streptomyces, Stenotrophomonas, Pantoea and Psychrobacter 
(Sharma et al. 2011a, b; Verma et al. 2016).
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Production of bioactive compounds, tolerance to biotic and abiotic stress, 
immune response, agronomic applications, nutrient acquisition, ecosystem produc-
tivity and management, physiology and metabolism, plant protection against patho-
gen are some of the benefits happen due to phyllosphere microbiota and responsible 
for improved plant growth (Roat and Saraf 2017) (Fig. 8.4).

8.3.3  Rhizospheric Microbiome

The microbiomes in rhizosphere predominantly gained importance due to attraction 
of different types of root exudate substrates, and this zone is considered a hotspot 
for microbial survival and its diversity compared to other plant parts (Arkhipova 
et al. 2005; Kuzmina and Melentev 2003). The rhizospheric microbiomes also play 
a vital role in growth of the plant. They are closely attached between roots and soils 
and help the plants in nutrient uptake. However, rhizospheric microbiome is 
greatly affected by several factors like soil types, pH values, soil moisture and pres-
ence of micronutrients in soil etc. (Ahemad and Kibret 2014; Khalid et al. 2004).

Rhizospheric microbes live in soil near roots, and due to gradient of root close-
ness they utilize metabolites from the surrounding roots as carbon and nitrogen 
sources and they inhabit spaces between cortical cells, they colonize rhizoplane and 
also they live in the specialized root structures like root nodules. Specific species of 
the rhizospheric are Pseudomonas extremorientalis, P. rhizosphaerae, Arthrobacter 
nicotinovorans, Azotobacter tropicalis, Bacillus atrophaeus, B. horikoshii, B. moja-
vensis, B. siamensis, B. thuringiensis, Enterobacter asburiae, Exiguobacterium 
acetylicum, Serratia marcescens, Planomicrobium okeanokoites, Rhodobacter cap-
sulatus and Rhodobacter sphaeroides (Hassan and Bano 2015; Zahir et al. 2003).
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Plant growth development

Production of bioactive 
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Plant defense activationAgronomic application

Nutrient absorptionEcosystem productivity 
and management
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Fig. 8.4 Function of phyllosphere microbiota
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Different genera related to the wheat rhizospheric microbiomes are Arthrobacter, 
Alcaligenes, Acinetobacter, Azospirillum, Methylobacterium, Bacillus, 
Burkholderia, Erwinia, Flavobacterium, Enterobacter, Lysinibacillus, 
Paenibacillus, Rhizobium, Serratia and Pseudomonas (Khalid et al. 2004; Verma and 
Suman 2018).

8.4  Wheat Microbiome Detection and Diagnosis

Both culturable and un-culturable techniques have been employed to wheat- 
associated microbes to study diversity of their association with wheat crops and also 
to know their distribution (Fig.  8.5). Particularly, surface sterilization and serial 
dilution techniques are used to isolate wheat endophytic and rhizospheric microbes 
(Forchetti et al. 2007; Suman et al. 2016a, b). The epiphytic microbes are isolated 
with the imprinting method and, alternatively, serial dilution, and then pour or 
spread plate methods are used in sequence to isolate the same (Akbari et al. 2007; 
Yadav et  al. 2015a, b; Suman et  al. 2016a, b). For isolation and enumeration of 
wheat microbiomes (eubacteria, archaea, fungi), the following specific methods are 
employed along with specific medium.

The specific medium for isolation of heterotrophic microbes is nutrient agar; for 
Pseudomonads isolation, King’s B agar medium is used. Arthrobacter is isolated by 
growing it in trypticase soy agar media; soil extract agar is used for the isolation of 
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soil-specific microbes. Bacillus and Bacillus-derived genera can be isolated by T3A 
with heat treatment methods. Any chemically defined and complex medium is used 
for the isolation of archaea. Rose Bengal media and potato dextrose agar is used for 
isolation of fungi (Forchetti et al. 2007; Verma and Suman 2018).

Microbiome samples can be assessed either through community DNA extraction 
or community RNA extraction. Community DNA extraction is sequenced through 
PCR amplification (16S–18S rRNA, ITS, cpn60) or amplicon sequencing and 
metagenome sequencing through which species, number, abundance and its compo-
sition are analysed; and the function of the community is assessed, respectively. 
Community RNA, protein and metabolite extraction can be done through meta- 
transcriptome sequencing, meta-proteome analysis and metabolome analysis from 
which the activity of the community is known (Liu et al. 2014).

8.5  Role of Wheat Microbiomes

The wheat microbiomes stimulate plant growth, soil health and fertility (Canbolat 
et al. 2006; Singh et al. 2007; Khan et al. 2007). Further, diverse abiotic stresses are 
ameliorated directly through the following: N2 fixation, production of siderophore 
and phytohormones (auxin, cytokinin and gibberellins) and solubilization of potas-
sium, phosphorus and zinc (Sachdev et al. 2009; Kumar et al. 2001; Zaidi and Khan. 
2005; Kudoyarova et al. 2014; Rroco et al. 2003). The same stresses are ameliorated 
indirectly through the following: production of ammonia, hydrogen cyanide, iron- 
chelating compounds, hydrolytic enzymes, antibiotics and antagonistic molecules 
for suppression of soilborne pathogens (Jankiewicz 2006; Scavino and Pedraza 
2013; Upadhyay et al. 2012).

Plant growth-promoting microbes produce phytohormones or plant growth regu-
lators (Glick 2015) for better growth of the plants. Phytohormones are metabolites 
derived from bacteria such as Azotobacter, Bacillus, Azospirillum and Pseudomonas 
which show benefits such as promotion and spread of root development; with these 
benefits, roots of the plants increase their ability to uptake water and nutrients from 
soil in an efficient manner (Mehnaz 2015).

Nitrogen-fixing microbe Azospirillum brasilense produces small amount of phy-
tohormones like gibberellins, indole-3-acetic acid (IAA) and substances like cyto-
kinin. PGP microbial strains like Azospirillum, Pseudomonas and Bacillus produce 
phytohormone like auxin which modulates shoot elongation and similar plant phys-
iological processes and further promotes root development in plants (Verma et al. 
2016). IAA and related compounds are also present, and these are demonstrated in 
many diazotrophs such as Acetobacter diazotrophicus, Azospirillum, Azotobacter, 
Paenibacillus and Polymyxa sp. (Timmusk et al. 2014; Aarab et al. 2015).

Plants produce soluble organic compounds such as chelators and phytosidero-
phores which help to bind iron (Fe3+) and are made available in solution (Sarode 
et al. 2009; Rroco et al. 2003). Further, chelators’ produced ferrous ion (Fe3+) is 
reduced to ferric ion (Fe2+) and absorbed immediately on the root surface. 
Phytosiderophores are low molecular weight and are ferric ion-specific ligands. 
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Thus, by production and discharge of phytosiderophore, PGPR are able to prevent 
the proliferation of phytopathogens which in turn facilitates plant growth (Mehnaz 
2015; Sarode et al. 2013; Solanki et al. 2014; Jog et al. 2014).

8.6  Plant Growth-Promoting Bacteria (PGPB)

Plant growth-promoting substances such as rhizospheric or endophytic bacte-
ria show beneficial effects in plant growth (Santoyo et al. 2016; Kushwaha 
et al. 2020b). Plant growth-promoting substances extend over plant roots and 
the soil in vicinity and show direct or indirect effect on plants (Glick 2012; 
Santoyo et al. 2012, Gupta et al. 2015).

The elements such as nitrogen, phosphorus and iron are available by plant 
growth-promoting bacteria, which are very much needed for plant growth and 
development (Calvo et al. 2014) (Fig. 8.6). Further, PGPB modulates level of hor-
mones in the production of phytohormones like auxins, cytokinins and gibberellins 
(Yadav et  al. 2017a, b). PGPB are also able to reduce the levels of the ethylene 
phytohormone by synthesizing an enzyme, 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase, that slices the ACC compound. ACC is a precursor compound of 
ethylene in higher plants (Glick et al. 1998; Yadav et al. 2016).
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After plant pathogen infection, PGPB decreases plant damage by indirect mech-
anism and thus promotes plant growth (Fig. 8.7). This is being demonstrated because 
of the inhibition of the pathogens which is induced by PGPB (Santoyo et al. 2012, 
2016). Generally, the mechanisms are synthesis and release of antibiotics (such as 
2,4-diacetylphloroglucinol); bacteriocins; chitinases; lipopeptides like iturin A, 
bacillomycin D and mycosubtilin; proteases; siderophores; and volatile organic 
compounds (Santoyo et al. 2012; Glick 2012) (Table 8.1).

As already stated earlier, wheat microbiomes (phyllospheric, endophytic and rhi-
zospheric) such as Azotobacter, Achromobacter, Alcaligenes, Azospirillum, 
Enterobacter, Herbaspirillum, Methanospirillum, Klebsiella, Pantoea, 
Burkholderia, Bacillus, Paenibacillus, Lysinibacillus, Methylobacterium, 
Pseudomonas, Rhodosporidium, Serratia, Staphylococcus, Penicillium, 
Streptomyces and Thermomonospora are isolated and characterized for plant growth 
promotion (Cakmakci et al. 2017).

8.7  Phosphate Solubilization and Mineralization

Phosphorus is an important plant major nutrient which follows nitrogen. 
Microorganisms undergo a sequence of processes that transform soil phosphorus 
(P), and thus they are considered as integral part of soil phosphorous cycle. But, 
application of huge amount of soluble inorganic phosphate into soil is fixing it as 
insoluble phosphate, and hence they become unavailable to the plants (Yadav et al. 
2015a, b; Sharma et al. 2011a, b).

Soil microbes have the capacity to change insoluble forms to soluble forms 
which are desired by plants for absorption. This is done by producing organic acids 
such as acetic acid, lactic acid, glycolic acid, formic acid, propionic acid, succinic 
acid and fumaric acid. Plants absorb only inorganic P so that bacteria take action to 
hydrolyse the organic P compounds with the help of the phosphatase enzyme that 
originates from their roots (Yadav et  al. 2015a, b). This enzyme also helps in 
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Table 8.1 Microbes from different wheat niche involved in plant growth regulation

Wheat microbe
Source and its application towards 
plant References

Bacillus, Azospirillum, 
Azotobacter

Rhizosphere
Nutrient and water uptake from soil

Verma and Suman (2018)

Azospirillum brasilense
Klebsiella pneumoniae

Nitrogen-fixing microbe
Gibberellin and IAA production

El-Razek and El-Sheshtawy 
(2013)

Pseudomonas, 
Azospirillum, Bacillus

PGPB
Cytokinin production

Verma and Suman (2018)

Paenibacillus, 
Polymyxa, Acetobacter

Diazotrophs
IAA and related compounds

Timmusk et al. (2014) and 
Aarab et al. (2015)

Pseudomonas sps. Rhizosphere
Phosphorous solubilization, 
siderophore, IAA, DAPG

Roesti et al. (2006)

Providencia sp. PW5 Rhizosphere
HCN, IAA, P solubilization, Zn 
solubilization

Rana et al. (2012)

Acinetobacter 
calcoaceticus

Rhizosphere
P solubilization, siderophore, IAA

Prashant et al. (2009)

Pseudomonas putida Produces several types of antibiotics, 
siderophores and slight quantity of 
hydrogen cyanide (HCN)

Flaishman et al. (1996)

Azotobacter 
chroococcum
Pantoea agglomerans

Gibberellic acid (GA)
IAA

Narula et al. (2006)

Azorhizobium 
caulinodans

N fixation Sabry et al. (1997)

Bacillus sp. (AW1)
Providencia sp. (AW5)
Brevundimonas 
diminuta (AW7)

P solubilization, N2 fixation, ACC 
deaminase, siderophore, ammonia, 
HCN

Rana et al. (2011)

Bacillus thuringiensis
Azotobacter 
chroococcum
Paenibacillus 
ehimensis
Pseudomonas 
pseudoalcaligenes

Higher heavy metal resistance
Siderophore, indole acetic acid, HCN, 
P solubilization

Kumar et al. (2015)

Pseudomonas spp. IAA, P solubilization, rhamnolipids, 
siderophores

Mishra et al. (2009)

Bacillus sp. Indole-3-acetic acid
Antioxidant defence system
SOD shoots and roots
Shoot POD and CAT

Wang et al. (2013)

Pseudomonas 
denitrificans
Pseudomonas rathonis
Azotobacter 
chroococcum
Pantoea agglomerans

Gibberellic acid (GA), IAA, and auxin Narula et al. (2006) and 
Egamberdiyeva and Höflich 
(2003)
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mineralization of organic phosphorous compounds. Through production of organic 
acids, chelation and exchange reactions process, the phosphorous-solubilizing bac-
teria convert insoluble inorganic P to a form available to plants (Yadav et al. 2015a, 
b). Mostly in soils, one can find a range of percentage of required amount of phy-
tates which are organic P forms roughly 10–50% of phosphorous, and phytases 
should be mineralized to make ready supply of P to the plants (Singh et al. 2014). 
Reports showed that P solubilization is positive during their study on Alcaligenes 
sp., Providencia sp., Bacillus sp. and Brevundimonas (Verma and Suman 2018). 
Role of PGP microbes is very much observed in producing phosphatase, β-gluconase, 
dehydrogenase and antibiotics. Phosphate and other nutrient solubilization improved 
soil structure with stabilized soil aggregates (Verma and Suman 2018).

8.8  Biological Nitrogen Fixation

Through biological nitrogen fixation, 60% of available nitrogen on this earth is fixed 
(Verma et al. 2010). This fixation is alternative to chemical fertilizers and hence an 
economically beneficial and environmentally friendly alternative (Islam et al. 2002, 
Venieraki et al. 2011). The above-said process of nitrogen fixation is done by nif 
genes, i.e. coded form of the nitrogenase enzyme. In the case of nitrogen-poor soils, 
Azospirillum sp. is isolated, and it is diazotroph for nitrogen fixation (Hegazi et al. 
1998; Verma and Suman 2018). Members of these bacterial genera have the ability 
in fixing atmospheric nitrogen. Symbiotic N2-fixing Rhizobium and others like 
Azospirillum are some microbial groups which fix nitrogen by colonization of root 
zones. Actinomycetes in non-leguminous trees and free living N2 fixers as blue green 
algae, Bacillus, Acetobacter, Klebsiella, Azotobacter and Pseudomonas are also 
helping nitrogen fixation (Prasanna et al. 2012).

8.9  Biological Control

To prevent the proliferation of plant pathogens, a variety of antibiotics are identified 
and are having compounds such as amphisin, 2,4-diacetylphloroglucinol (DAPG), 
phenazine, oomycin A, pyoluteorin, tensin, pyrrolnitrin, tropolone, cyclic lipopep-
tides produced by Pseudomonads and oligomycin A, kanosamine, zwittermicin A 
and xanthobaccin produced by Bacillus, Streptomyces and Stenotrophomonas sp. 
(Verma and Suman 2018).

Many bacterial genera such as Agrobacterium (Hammami et  al. 2009), 
Arthrobacter (Banerjee et  al. 2010), Azotobacter (Kannan and Sureender 2009), 
Bradyrhizobium (Akhtar et  al. 2010; Mishra et  al. 2009), Bacillus, Enterobacter 
(Wang et al. 2012; Solanki et al. 2012; Kushwaha et al. 2019; Singh et al. 2014), 
Burkholderia (Santiago et al. 2014) and Pseudomonas (Solanki et al. 2015; Goswami 
et al. 2013) have shown their potential in biocontrol under in vitro and in vivo condi-
tions, and they are able to resist soilborne fungal pathogens (Table 8.2).
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Table 8.2 Microbes involved in biological control

Microbiome genera Antagonist against References
Bacillus, Enterobacter sps. Rusts of wheat Wang et al. (2012) and Li 

et al. (2013)
Verticillium lecanii, Erwinia 
herbicola, Pseudomonas aurantiaca

Alien (1982), Srivastava 
(1985), Kempf and Wolf 
(1989), and Wang (2011)

Verticillium lecanii + Paecilomyces 
fumosoroseus, Beauveria bassiana

Hall (1981)

Pseudomonas putida Flaishman et al. (1996) 
and Peng et al. (2014)

Trichoderma harzianum, 
Streptomyces viridosporus, Bacillus 
subtilis, Saccharomyces cerevisiae

Eldoksch et al. (2001), 
Kalappanavar et al. (2008) 
and El-Sharkawy et al. 
(2015)

Combined application of arbuscular 
mycorrhizal fungi and Azospirillum 
amazonense

Ghoneem et al. (2015)

T. harzianum Tan spot, spot blotch and 
Helminthosporium leaf 
blight, Fusarium head 
blight of wheat and 
septoria blotch

Perelló et al. (1997), 
Monte (2001), Hossain 
et al. (2015), and 
Mahmoud (2016)

B. subtilis NJ-18 Sharp eye spot Peng et al. (2014)
Combined application of yeasts like 
Rhodosporidium kratochvilovae 
strain UM350, Cryptococcus 
laurentii strain UM108 and 
Aureobasidium pullulans strain 
LS30

Powdery mildew of wheat Curtis et al. (2012)

Bacillus subtilis strain E1R-j Fusarium head blight 
disease of wheat and 
powdery mildew of wheat

Gao et al. (2015) and 
Mahmoud (2016)

Bacillus subtilis BTS 3, B. 
amyloliquefaciens BTS 4, 
Staphylococcus saprophyticus BTS 
5 and B. amyloliquefaciens 
BTLK6A

Wheat blast and black 
point complex of wheat

Surovy et al. (2017) and 
El-Gremi et al. (2017)

B. subtilis D1/2 (DAOM 231163) 
and B. subtilis RC 218, 
Brevibacillus sp. RC 263, Bacillus 
amyloliquefaciens

Fusarium head blight of 
wheat; take all disease of 
wheat

Chan et al. (2003), 
Nasraoui et al. (2007), 
Crane et al. (2014), 
Palazzini et al. (2016) and 
Liu et al. (2009)

Lysobacter enzymogenes strain C3 Fusarium head blight of 
wheat

Jochum et al. (2006)
Cryptococcus, Brevibacillus sp. RC 
263

Schisler et al. (2002, 
2006, 2014)

Clonostachys rosea strain ACM941 
(CLO-1) FHB

Xue et al. (2014)

(continued)
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Bacillus amyloliquefaciens is understood for lipopeptide and polyketide produc-
tion for biological management and plant growth promotion activity against soil-
borne pathogens. Some bacteria also are capable of producing volatile compound 
referred to as hydrogen cyanide (HCN) for biocontrol of black root rot of tobacco, 
caused by Thielaviopsis basicola; also reported is the production of DAPG and 
HCN by Pseudomonas contributing to the biological management of bacterial can-
ker of tomato (Sacherer et al. 1994; Lanteigne et al. 2012).

Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus 
by altering histone acetylation (Chen et  al. 2018). The molecular mechanisms 
between Pseudomonas piscium bacterium isolated from the wheat head microbi-
ome and the plant pathogenic fungus Fusarium graminearum have revealed that a 
compound secreted by the bacteria (phenazine-1-carboxamide) directly affects the 
activity of fungal protein FgGcn5, which is a histone acetyltransferase of the 

Table 8.2 (continued)

Microbiome genera Antagonist against References
Pseudomonas fluorescens (strains 
MKB 158 and MKB 249) and P. 
frederiksbergensis (strain 202)

Karnal bunt of wheat Khan and Doohan (2009) 
and Vajpayee et al. (2015)

Aureobasidium pullulans Wachowska and 
Głowacka (2014)

Trichoderma viride, T. harzianum 
and Gliocladium deliquescens

Sharma and Basandrai 
(2000)

Trichoderma pseudokoningii, T. 
lignorum, T. koningii, G. 
deliquescens and G. virens, 
Azotobacter chroococcum

Amer et al. (2000)

Trichoderma viride, Gliocladium 
deliquescence, T. harzianum, 
Pseudomonas fluorescence and 
Bacillus subtilis

Loose smut of wheat and 
black point complex of 
wheat

Agarwal and Nagarajan 
(1992), Singh and 
Maheshwari (2001), 
Monaco et al. (2004) and 
El-Meleigi et al. (2007)

Bacillus megaterium B5, B. 
amyloliquefaciens B28, T. 
harzianum T37 and Epicoccum sp. 
E52

Black point complex of 
wheat

El-Meleigi et al. (2007)

Streptomyces, Bacillus, 
Pseudomonas fluorescens, P. putida, 
Pseudomonas chlororaphis MA 
342, Gliocladium and Trichoderma 
harzianum

Common bunt disease of 
wheat

Borgen and Davanlou 
(2000), McManus et al. 
(1993) and Kollmorgen 
and Jones 1975

Phialophora radicicola var. 
radicicola

Take all disease of wheat Wong and Southwell 
(1980), Wong et al. (1996) 
and Mathre et al. (1998)

Trichoderma koningii, T. harzianum, 
T. viride

Simon and 
Sivasithamparam (1989) 
and Zafari et al. (2008)

Pandoraea apista (S18 and S19) and 
Cylindrocarpon destructans S22

Rhizoctonia root rot 
disease of wheat

Barnett et al. (2017)
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Spt- Ada- Gcn5-acetyltransferase (SAGA) complex which led to deregulation of his-
tone acetylation in F. graminearum and subsequently suppression of fungal growth 
and virulence and biosynthesis of mycotoxin. Thus, it has been proven that an 
antagonistic bacterium can inhibit growth and virulence of a plant pathogenic fun-
gus by manipulating fungal histone regulation (Chen et al. 2018).

According to Liu et al. (2017), effects of jasmonic acid signalling on the wheat 
microbiome differ between body sites. The influence of jasmonic acid (JA) on the 
diversity and function of wheat microbiome and whether there is any specificity of 
the influence with respect to plant part were determined. By exogenous application 
of methyl jasmonate, JA pathway was activated and was confirmed by significant 
increases in the abundance of JA signalling-related gene transcripts. Phylogenetic 
marker gene sequencing revealed that JA signalling reduced the diversity and 
changed the composition of root endophytic, but the composition of shoot endo-
phytic or rhizospheric bacterial communities was unchanged. But the total enzy-
matic activity and substrate utilization profiles of rhizosphere bacterial communities 
were not affected by JA signalling. Therefore, the conclusion drawn after this study 
was that JA signalling on the wheat microbiome is specific to individual plant parts.

8.10  Wheat Microbiome Under Different Stress Conditions 
and Advance Research

Till date, the status of wheat microbiome research is at budding stage. However the 
research in the following aspects has provided insights, and the work presented here 
provided a way forward to study fundamental microbiome research with the aim of 
better understanding of identification of potentially beneficial microbes, their 
dynamics and their role in reducing the pathogen pressure and improving plant 
yield. To successfully reach the goals in the microbial research, the composition of 
plant-associated community that can fulfil the required need in plant disease man-
agement and in sustainable management has to be determined.

8.10.1  Performance of Microbiome Under Nutrient Stress Status

Very recently Page et  al. (2019) described the microbiome profiling of Triticum 
aestivum under nitrogen- and phosphorus-starved situations. As wheat farming con-
sumes approximately 20% of the worldwide production of inorganic N and P fertil-
izers and keeping in view the fact that plants have natural partnerships with microbes 
that can enhance their nitrogen (N) and/or phosphorus (P) acquisition, it is essntial 
to evaluate the association between wheat and its microbes in boosting N/P avail-
ability. They have tested whether N/P-starved Triticum aestivum showed microbi-
ome profiles that are similarly different from those of N/P-amended plants in their 
own bulk soils. The conclusions drawn that six N/P starvation and plant specific 
microbial communities that may represent the attraction of microbes towards T. 
aestivum when it experiences N/P starvation. However, additional research will be 
needed to validate this interpretation under different climatic conditions. But the 
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work done helps to keep a step forward. Identification of the potential T. aestivum 
partners give us a target list for subsequent relationship-assessing  microbioata 
for boosting yields of the crop and therefore need to be standardized in farmers field 
with common package of practices. Microbiome enhances N and P uptake  and 
experimently proved by Panwar and Singh (2000). A. chroococcum and P. agglom-
erans like microbe not only enhance P and K uptake but also increase plant growth 
and plant dry matter (Narula et al. 2007, Islam et al. 2002). Application of biofertil-
izers also reported to enhance the accumulation of nutrient in wheat crop by differ-
ent scientists (Khan and Zaidi 2007; Abbasi and Yousra 2012). Not only 
macronutrient, but microbiomes also provide positive impact on the availability of 
essential micronutrients of wheat (Jog et al. 2014; Mishra et al. 2011; Yasin et al. 
2015).

8.10.2  Performance of Microbiome Under Drought Condition

In the introduction, it is already mentioned that areas in South Asian countries are 
suffering from drought. Here microbiomes could be a good supplement to over-
come this stress as they counteract with damage due to water stress. Rhizosphere 
biology mainly influences on the productivity of plants (Watt et  al. 2006; 
Richardson et al. 2009 and Berendsen et al. 2012). Plant growth-promoting (PGP) 
strains of Azospirillum and Herbaspirillum have been reported to colonize 
Brachypodium roots and enhance growth of some Brachypodium genotypes under 
low or no nitrogen conditions (Amaral et al. 2016). Another group of scientists 
also used the PGP strain Bacillus subtilis B26 to increase Brachypodium biomass 
and improve plant drought resistance (Gagne et al. 2015). Also some microbiome 
provided a better water status in osmotic stress condition on wheat plant 
(Chakraborty et al. 2013; Pereyra et al. 2012). Artificial inoculation of Azospirillum 
brasilense sp. 245-primed wheat seed can sustain under water stress condition by 
increasing the apoplastic water function in both shoot and root compared to non-
inoculated wheat plant (Creus et al. 2004).

8.10.3  Performance of Microbiome Under Stress Cultivation 
System

Nowadays governments are gearing towards conservation agriculture. So another 
selection criteria for microbiome that they can survive under stress cultural prac-
tices or minimal management approaches. A long-term field experiment demon-
strates the influence of tillage on the bacterial potential to produce soil 
structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides 
(Cania et al. 2019). The non-metric multidimensional scaling (NMDS) ordination 
plot showed a difference between the composition of bacterial families from the 
deepest sampled soil layer and the uppermost soil layers. It was revealed that there 
is no clear separation of the tillage treatments like the effects of tillage, depth and 
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their interaction on the general microbial community structure. Even salicylic acid 
signalling in wheat microbiome also depends on soil type and on strategic tillage 
(Liu et al. 2016).

Another study by Hartman et al. (2018) revealed that cropping practices manipu-
late abundance patterns of root and soil microbiome members. The soil and wheat 
root microbiomes under conventional and organic managements with different till-
age intensities were conducted to analyse the effects of management type and tillage 
on microbial communities  as well as their infulence on various  ecosystem pro-
cesses and regulations. The study revelaed that the microbial communities play an 
important roles in nutrient cycling via decomposition of organic matter, and trans-
formation and fixation of soil nutrients like nitrogen and phosphorus. It was revealed 
that there was pronounced influence of cropping patterns on microbial community 
composition which were specific for the respective microbiomes. In roots, manage-
ment type was the important factor for bacteria when compared with fungi, and this 
is generally determined by changes in tillage intensity. There were many taxonomi-
cally diverse cropping-sensitive microbes, in which their response practices are spe-
cific. Cropping practices may allow manipulation of influential community members 
in which members co-occurring with many other microbes in the community. 
Understanding the patterns of cropping-sensitive microbe abundance helps in devel-
oping microbiota management strategies for smart farming.

Even the soil microbiomes perform better in non-suppressive soil than suppres-
sive soil (Hayden et al. 2018). The comparative metatranscriptomic approach was 
applied to assess the taxonomic and functional characteristics of the rhizosphere 
microbiome of wheat plants grown in adjacent fields which are suppressive and 
non-suppressive to the plant pathogen R. solani AG8. Soils collected prior to sowing 
showed similar inoculum levels of the pathogen R. solani AG8 in both the suppres-
sive and non-suppressive fields, as determined by quantitative PCR. The inoculum 
was observed in both fields throughout the cropping season, in particular during the 
initial 8  weeks of crop growth. The inoculum potential was more in the non- 
suppressive soils compared to that in the suppressive soils, resulting in significantly 
higher R. solani AG8 DNA in the non-suppressive soils, and the disease index was 
higher in non-suppressive soil compared to suppressive soils.

The status of wheat microbiome under different management strategies and 
potentiality of endophytes in disease protection were studied by Gdanetz and Trail 
(2017) in detail. They analysed the fungal and bacterial communities of leaves, 
stems and roots of wheat throughout the growing season across growth stage and 
four crop management strategies like organic, low input, no till and conventional 
using 16S and fungal internal transcribed spacer region gene amplicon sequencing, 
and endophytes were isolated from plants and are tested for antagonistic activity 
against wheat pathogen Fusarium graminearum, and also antagonistic strains were 
assessed for plant protective activity in seedling assays. But contrary to the expecta-
tions based on the previous studies on different management strategies, manage-
ment strategy does not show a strong influence on the plant microbial 
communities.
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A meta-analysis was done to determine whether plant domestication affects the 
composition of the root-associated microbiome (Jaramillo et al. 2018). The signifi-
cant and consistent differences in the abundance of Bacteroidetes, Actinobacteria 
and Proteobacteria for different plant species were observed. The higher relative 
abundance of different bacterial families on the roots of wild relatives of the differ-
ent plant species was observed. For conducting this study, it is emphasized that the 
same computational pipeline was used by adopting a rarefaction of the operational 
taxonomic unit (OTU) table to the same sequencing depth and also found similar 
differences between the prokaryotic composition of the rhizosphere microbiome of 
wild and domesticated plant species with a significantly higher abundance of 
Bacteroidetes in the roots of wild plant relatives. However, the reasons behind the 
relative abundance of Bacteroidetes in the root and rhizosphere compartments of 
wild relatives of various crop plant species are yet unknown. Therefore, their prev-
alence in the root compartments of wild plant species may be a phylogenetic signal 
associated with the presence of complex biopolymers in the root exudates 
(Table 8.3).

8.10.4  Role of Microbiome to Trigger Flowering

Sometimes microbiomes have strong influence on the crop physiology like timing 
of flowering (Lu et al. 2018). The rhizosphere microbial communities can modulate 
the timing of flowering of Arabidopsis thaliana. The abundance of rhizosphere 
microorganisms and prolonged nitrogen bioavailability by nitrification, delayed 
flowering by converting tryptophan to the indole acetic acid (IAA), thus downregu-
lating genes that trigger flowering, and stimulating plant growth. Lu et al. (2018) also 
observed a novel metabolic network in which soil microbiota influenced plant flow-
ering time, thus providing a water font on the key role of soil microbiota on plant 
functioning and thus helping to mitigate the effects of climate change and environ-
mental stress on plants using microbiomes.

8.11  Future Prospectives and Conclusion

Over the last 150 years, plant pathologists only dealt with individual microbes that 
have adapted to specific niches on their hosts. Now we need to think more to per-
form high-throughput sequencing of these niches to explore microbial communities 
that can affect disease outcomes. A fundamental understanding of the plant micro-
biome is necessary for their successful execution amongst the farmers.

The rhizospheric microbiomes are regulated by root exudates, selection of plant 
genotype and adoption of environment. So, plant microbiome must be a part of 
future breeding programmes so that next-generation plant genotypes have enhanced 
ability to interact with beneficial microbes either of natural soil microbiota or of 
microbial inoculants. Worldwide many wheat cultivars that are biofortified, for 
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example, rich in iron, rich in zinc, rich in anthocyanin, etc., are already released 
and also popular. In this scenario not only the microbial but also the host part of the 
interactions need to take more attentions, since the associated microbiome is 
emerging as a fundamental trait for controlling plant biotic and abiotic stress and 
optimizing plant growth promotion (Bulgarelli et al. 2013; Sclaeppi and Bulgerelli 
2015). In the case of managing pathogen burden, the combined deployment of 
beneficial services of the plant microbiome (agricultural probiotics) and innate 
immune functions (resistance genes) is expected to deliver durable and sustainable 
protection from disease (Dangl et al. 2013). Identification of the genetic compo-
nents of the host-microbiome control will be key factor for its ultimate inclusion 
into breeding programs.

Developing the next-generation agricultural tools and practices will be depen-
dent on integration of all covariates present in agro-ecosystem. Under a specific 
agro-climatic condition, the performance of native soil microbiome and inoculated 
microbiome sometime interact with one or both with individual plant species and 

Table 8.3 Microbes involved in amelioration of various stresses

Wheat microbes Stress References
Azospirillum lipoferum Drought Naveed et al. (2014)
Bacillus thuringiensis Heavy metal Kumar et al. (2015)
Bacillus safensis, Ochrobactrum 
pseudogregnonense

Drought Chakraborty et al. 
(2013)

Bacillus sp. Cold stress Sezen et al. (2016)
Bacillus aerophilus, Lysinibacillus sphaericus Acid and 

alkalinity stress
Verma et al. (2016)

Azospirillum brasilense INTA Az-39 wheat roots Drought Diaz-Zorita and 
Fernández-Canigia 
(2009)

Bacillus amyloliquefaciens and Azospirillum 
brasilense

Temperature Abd-Alla et al. (2013)

Pseudomonas fluorescens, Pantoea agglomerans, 
Mycobacterium sp.

Egamberdiyeva and 
Höflich (2003)

Pseudomonas fluorescens 153, 169, Pseudomonas 
putida 108

Salinity

Achromobacter xylosoxidans, Serratia marcescens Barra et al. (2014)
Pseudomonas putida N21, Pseudomonas 
aeruginosa N39 and Serratia proteamaculans M35

Zahir et al. (2009)

Azospirillum sp. Nabti et al. (2010)
Pseudomonas putida, Pseudomonas 
extremorientalis, Pseudomonas chlororaphis and 
Pseudomonas aurantiaca

Abbaspoor et al. 
(2009)

Bacillus thuringiensis, Azotobacter chroococcum, 
Paenibacillus ehimensis, Pseudomonas 
pseudoalcaligenes

Heavy metal Kumar et al. (2015)

Bacillus megaterium M3, Bacillus subtilis 
OSU142, Azospirillum brasilense Sp245, 
Raoultella terrigena

Cold Turan et al. (2012)
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genotype, and this interaction drastickly  influence the  performance of the crop. 
Hence, we can exploit the use of plant microbiome at work and next-generation 
agriculture in reality to solve the aforesaid multivariate equations.

The ultimate goals of the researchers for the fate of the farmers are to minimize 
the use of fertilizers, protect plants from chemicals as well as reduce the cost of 
cultivation in the era of sustainable agriculture. But to reach this goal, we need to 
know the fundamental relationships between microbes and microbes and wheat 
plants and microbes and how much longer this relation may work under changing 
climatic conditions. Knowledge gain from this chapter will help to understand the 
selection criteria of microbes for alternative use of microbiomes as fertilizers, bio-
control agent, growth promoters and in efficenet  soil nutrient cycling. But need 
more depth of researches for long duration under different cropping systems  to 
translate microbiome concept in agriculture. Cropping practice and microbiome 
engineering would help only in sustainable agriculture system. Due to intensive 
cultivation, soil just become empty of nutrients  and the  physical and biological 
health of the existing soil hamphered badly. The microbiome is a fundamental part 
of basic processes such as plant development or growth of essential organs such as 
the root and for improved acquisition of nutrients and water; the mentioned capa-
bilities make the microbiome an important component for the plant to carry out 
physiological functions. Analysis of metagenome and comparison with plant- 
associated communities will lead to novel phylogenetic and functional insight. The 
application of microbial inoculants to the field presents one of the several conceiv-
able next-generation agricultural tools or practices.
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Abstract
Insect pests with high population level are inimical and cause enormous damage 
to agricultural crops and economy as well as decrease the food security for the 
growing human population. For controlling insect pests, the use of entomopatho-
genic fungi (EPF) is very much useful, and it was developed as eco-friendly 
mycopesticide that is useful in the regulation of insect pests. These entomopatho-
genic fungi have a unique mode of infection on different orders of insects. 
Recently, it was investigated that in addition to insect pest control, these entomo-
pathogenic fungi also act as endophytes and biocontrol agents of plant pathogens 
and promote plant growth as rhizosphere fungi. Numerous environmental abiotic 
and biotic factors are recognized to inhibit or enhance the fungal efficacy against 
the insect pathogens. Advanced research in the genome biology of pathogenic 
insect fungi has shown that genetic features of these organisms are developed for 
fungal adaptation with various host insects. The efforts toward genetic engineer-
ing of entomopathogens, the knowledge of its virulence and tolerance to adverse 
conditions will potentiate cost-effective applications of mycoinsecticides for pest 
control in the agricultural fields. The studies suggest that the exploitation of eco-
logical, genetic and functional diversity of these fungi increases our potential for 
integrated pest management. Consideration of the insect microbiome in fungal 
insect pathology represents a new frontier which may contribute in deciphering 
the obscure pathological aspects of the biology of entomopathogenic fungi and 
its ecology. Taking these into account, in the present chapter, we highlight the 
importance, classification, mode of action, factors affecting its virulence effi-
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cacy, the role of genetic engineering in strain improvement, and ground level of 
entomopathogenic fungi for integrated pest management (IPM), and plant growth 
promotion with commercial available entomopathogenic products is critically 
discussed.

Keywords
Entomopathogenic fungi · Genetic engineering · Insect pests · Integrated pest 
management · Virulence

9.1  Introduction

Due to the dependency of the market at a global scale to agricultural merchandise, 
leading-edge technology in agriculture is increasingly used that is required to 
develop new agricultural practices and has potential to alleviate the adverse negative 
effects on the ecosystem and consequently results in the production of valuable safe 
products for human consumption. However, there is a major constraint in increasing 
agricultural production yield due to loss caused by insect pests, plant diseases, 
weeds, etc. (Oerke et al. 1994). In evolutionary agricultural practices, pest problems 
are unavoidable and arise largely due to simplified agroecosystems and additionally 
because of the creation of less stable natural ecosystems. It is investigated that insect 
pests such as locusts, grasshoppers, termites, and cattle ticks have caused huge eco-
nomic and agricultural production losses, that is, about 40%, in many parts of the 
world (Thacker 2002; Chandler et  al. 2011). Although the use of pesticides has 
increased marginally, crop losses have remained relatively stable (Oerke 2006). 
Various industrialized nations are trying to shift their strategy to using transgenic 
plants that express particular traits like resistance to insects, fungi, or viruses for 
pest management. Several agrochemicals pesticides are still being used by farmers 
for the control of insect pests and diseases in their agricultural practices. They have 
been responsible for maintaining and increasing the quality and quantity of food 
and fiber worldwide. The extensive use has resulted to adverse effect on nontarget 
organisms, deposition on edible food crops, groundwater pollution, and resistance 
of insects against the chemicals, and negative effect on human health has forced 
scientists to focus on the development of alternative environmentally safe strategies 
that are cost-effective and reliable. Integrated pest management (IPM) is a compre-
hensive approach to crop production (Chandler et al. 2011). This is a shift from the 
traditional individual pest-centered strategies that relied heavily on chemical pesti-
cides to a more holistic approach of viewing the entire crop production system as a 
whole and managing rather than eradicating the pests. In line with this point, several 
microbial agents have been developed to manage insect pests. Entomopathogenic 
fungal biological plant protection plays a key role in the program of sustainable pest 
management. For integrated pest management, ready-made use of entomopatho-
genic fungus as biocontrol agents to control the insect density and increase the crop 
yield has several benefits compared with conventional insecticides. These 
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encompass low expenses, high performance, safety for beneficial organisms, reduc-
tion of residues within the environment, and accelerated biodiversity (Asi et  al. 
2013; Gul et  al. 2014). Entomopathogenic fungus has been known as important 
inhibitory factor of plant bugs for more than a century and is continuously used in 
pest biocontrol management throughout the world (Jaber and Enkerli 2017). 
Entomopathogenic fungi fill an extremely important niche and are well suited for 
development as microbial biopesticides for control of the harmful insect pests.

Almost all orders of insects are susceptible to fungal sicknesses. Entomopathogenic 
fungi are potential eco-friendly biocontrol agents especially because of their exces-
sive reproductive abilities, goal-specific activity, minimal impacts on beneficial and 
other nontarget organisms, brief era time, and resting stage or saprobic phase—gen-
erating competencies which can make sure their survival for an extended time when 
no host is present (Mudgal et al. 2013). Entomopathogenic fungi can be found in a 
wide range of environmental conditions (including arid to tropical settings, terres-
trial to aquatic habitats, and arctic to temperate climates), possess potential to colo-
nize a wide variety of plant species, and infect a broad array of insects (Meyling 
et al. 2012; Mantzoukas et al. 2015). Researchers have stated that approximately a 
thousand species of fungi are identified as causal agents of disease in arthropods 
(Goettel et al. 2010; Vega et al. 2012). The majority of entomopathogenic fungi used 
for biological control of insects and mites are in the orders Hypocreales and 
Entomophthorales. Most of the biological control fungi produced commercially are 
included in Hypocreales. Various other fungi such as Metarhizium spp., Beauveria 
bassiana, Lecanicillium spp., and Isaria fumosorosea are being used against a large 
number of pests in different variety of crops. About 170 fungal formulations from at 
least 12 species of fungi have been developed (Faria and Wraight 2007). It is 
believed that there are about more than 750 species of fungi that have been identi-
fied to cause various infections in insects. Most of the entomopathogenic strains or 
species are obligate pathogens that show specific ecomorphological adaptations of 
their host’s life cycles, such as the production of infective spores that are produced 
on insect cadavers during the night. These fungi often cause natural epizootics in 
insect and mite populations. Natural epizootics of entomophthoralean fungi are 
being used as a natural form of pest control. Pioneering work of Inglis et al. (2001) 
conducted with Beauveria bassiana (Balsamo) and Vuilleminia (Ascomycota: 
Hypocreales), as entomopathogenic endophytes and ubiquitous soilborne fungus 
and one of the most commercialized fungal biopesticides, reveals that they infect 
>700 insect species. A number of recent studies reveal that entomopathogenic fungi, 
often entirely taken into consideration as insect pathogens, play extra roles in nature, 
such as endophytism, plant disease antagonism, plant growth promotion, rhizo-
sphere colonization, and management of various abiotic stresses (Vidal and Jaber 
2015). Moreover, most studies investigating the interactions among plants and 
endophytic entomopathogens have up to now centered on the advantages of such 
interactions to the host plant through multiplied tolerance and resistance to biotic 
elements including pests and illnesses (Lopez and Sword 2015). Due to low viru-
lence and inconsistencies of their performance within various field environmental 
stresses, currently, fungal pathogens have a small market share and small chances of 
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killing insects in comparison to chemical insecticides (Fang et al. 2012). Low viru-
lence may be incorporated as an evolutionary balance between microorganisms, and 
their hosts may have adapted to the pathogen to avoid rapid killing even at high 
doses, in which cost-effective biocontrol will require genetic modification of the 
fungi (Gressel 2007). Genetic engineering is an effective green device to improve 
the efficacy of mycoinsecticides by enhancing their virulence and tolerance to envi-
ronmental stresses. Modern biotechnological tools that now enable genetic improve-
ment of entomopathogens for myco-biocontrol of fungi are now feasible. Molecular 
biology techniques, coupled with the cloning of genes to express insect proteins and 
insecticidal proteins/peptides from insect pathogens, will create more effective 
strains for pest management. Further research is desirable under variable environ-
mental conditions to monitor the environmental fate of recombinant fungal strains. 
Comparative genomics has facilitated the identification of fungal fitness character-
istics and the selective forces acting on them to enhance our knowledge of why and 
how entomopathogenic fungi interact with insects and other additive components of 
their environment. So far, there may be plenty of extra-genomic facts on ascomy-
cete insect pathogens, as sequences are available from Metarhizium strains, 
Beauveria bassiana, Cordyceps militaris, Ophiocordyceps sinensis (anamorph, 
Hirsutella sinensis), Ophiocordyceps unilateralis, Tolypocladium inflatum, and 
Hirsutella thompsonii (Zheng et al. 2011; Xiao et al. 2012; Bushley et al. 2013; 
Pattemore et al. 2014; de Bekker et al. 2015; Agrawal et al. 2015). Molecular studies 
provided valuable information on the phylogenetic relationships with various other 
fungi. Hence, sequence data can, therefore, provide crucial information on how 
these organisms reproduce and persist in different environments (Wang and St. 
Leger 2014). It is important to understand the ecology of fungal entomopathogens. 
Further, it is reported that various entomopathogenic fungi play important roles in 
nature, such as endophytes, useful rhizosphere associates, antagonists of plant 
pathogens, and possibly even plant growth promoters. A growing quantity of 
research has currently established the ability of several entomopathogenic fungi 
after endophytic establishment to promote plant growth (Sasan and Bidochka 2012; 
Lopez and Sword 2015). Increased plant growth, mediated through colonization by 
fungal endophytes, is the outcome in the suppression of numerous abiotic and biotic 
stresses, consisting of plant diseases (Kuldau and Bacon 2008). Hence, it is an 
urgent need to review and understand how entomopathogenic fungi solely act as 
biopesticides and also promote plant growth. Keeping the above facts, we are trying 
to summarize the recent information regarding the role of entomopathogenic fungi 
in biocontrol and plant growth promotion. Additionally, the factors affecting the 
activities of entomopathogenic fungi are also being discussed.

9.2  Classification and Type of Entomopathogenic Fungus

In eukaryotes, the kingdom Fungi is a major group with approximately 700 
described entomopathogenic fungi species (Roberts and Humber 1981) which rep-
resent <1% of the total fungal species (McLaughlin et al. 2009). Entomopathogenic 
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fungi are found in three main groups (Entomophthoromycota, Blastocladiomycota, 
and Microsporidia) and 12 different classes in six phyla of fungi. These pathogenic 
fungi are found in the divisions Ascomycota, Zygomycota, Deuteromycota, 
Oomycota, and Chytridiomycota (Humber 1997). Many of the potential entomo-
pathogenic fungi genera known so far belong to either the order Entomophthorales 
in the Zygomycota or the class Hyphomycetes in Deuteromycota (Jaber and Enkerli 
2017). The detailed descriptions of the classification are illustrated in Table 9.1. 
Among the different phyla and orders, the species that belong to genus Metarhizium, 
Beauveria, Nomuraea, Verticillium, and Hirsutella of different environmental habi-
tats are most prominently agriculturally important entomopathogenic fungus which 
is commercially used successfully in the field level. The detail of this genus is illus-
trated in Table 9.2 and Fig. 9.1.

9.3  Entomopathogenic Fungus Infection

Entomopathogenic fungi have a unique mode of infection. The infection on differ-
ent orders of insects (Lepidoptera, Coleoptera, Diptera, Hymenoptera, Homoptera) 
becomes started when insects come into contact with entomopathogenic fungal 
spores. The life cycle of insect pathogenic fungi starts with the spore germination 
on the cuticle of the host (Fig. 9.2). Attachment can be passive in spores that are 
covered with a sticky or slimy substance (e.g., Lecanicillium spp., Entomophthorales 
spp., and Hirsutella spp.). Adhesive processes involve physical, chemical, and enzy-
matic interactions. Different hydrolytic and detoxifying enzymes like protease, chi-
tinase, lipase, catalyzes, cytochrome P450, and their secondary metabolite are 
generated during final insect adaptive responses. Two adhesion genes, namely, 
Mad1 and Mad2  in M. anisopliae, have been characterized (Wang and St. Leger 
2007). Under favorable environmental condition such as optimum temperature, 
humidity, nutritional and chemical cue, and cuticular secreted material of the host, 
spore’s germination occurs (Tanada and Kaya 1993). Through penetration hook, the 
germinating spores produce germ tubes which enzymatically and physically pene-
trate the cuticle and into the thinner softer part of the insect’s body by sensory pores 
or wounds (Gabarty et al. 2014). Samuels and Paterson (1995) reported that a vari-
ety of cuticle-degrading proteases are produced by both insects and entomopatho-
genic fungi. An extensive range of proteases have been recognized, consisting of 
trypsin, chymotrypsin, esterase, collagenase, and chymoelastase (Sanchez-Perez 
et al. 2014). Once inside the body, the fungus spore starts multiplying by taking 
internal nutrient material of the insects, which create nutrient deficiency and disrup-
tion of biological functions, produce toxic compounds, invade insect’s tissues, block 
the vessels, and ultimately cause host death (Goettel et al. 2000). After the insect 
host is killed and all nutrition has been consumed, hyphae grow out of the cadaver, 
particularly at the margins of the intersegmental regions, and produce resting or 
infective spores that promote the spread of the fungus. Finally, they must be trans-
mitted to new hosts (Boomsma et  al. 2014). Entomopathogenic fungi such as 
Beauveria, Metarhizium Hirsutella, Paecilomyces, Isaria, Lecanicillium, and 
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Table 9.1 Classification of the entomopathogenic fungus

Phylum Order Description Genus/species Infected insect host

Oomycota Lagenidiales,

Leptomitales

Cellulose in their 

coenocytic hyphae 

(without chitin) 

and they have 

biflagellate 

zoospores, 

reproduced by a 

thick-walled 

oospore, at the 

cellular level; they 

possess 

mitochondria with 

tubular cristae

Lagenidium giganteum, 

Leptolegnia chapmanii

Mosquitoes, crabs, and 

other aquatic 

crustaceans, arthropods

Chytridiomycota Blastocladiales, 

Chytridiales, 

Blastocladiales

Coenocytic 

hyphae; chitin is a 

major constituent 

of cell wall, and 

zoospores are with 

a single flagellum

Coelomomyces, 

Myriophagus, 

Coelomycidium, 

Myriophagus 

(Chytridiales), 

Coelomycidium 

(Blastocladiales)

Hemipterans and 

dipterans, mosquitoes 

and flies

Zygomycota Entomophthorales Mycelium is 

multicellular, 

nonseptate 

gametangia that 

after fusion form 

zygospores

Batkoa apiculata, 

Batkoa major, 

Entomophaga grylli, 

Entomophaga 

calopteri, 

Entomophaga 

maimaiga, Pandora 

neoaphidis, Pandora 

delphacis, Pandora 

blunckii, Pandora 

bullata, Zoophthora 

radicans, Conidiobolus 

thromboids, Neozygites 

parvispora

Aphids, hemipterans, 

flies, lepidopterans, 

grasshopper, gypsy 

moth larvae, homoptera, 

lepidoptera, diptera, 

leafhoppers, psyllids, 

leaf rollers, clover leaf 

weevil

Ascomycota and 

Deuteromycota

Hypocreales Septate mycelia, 

ascospores (sexual 

spores) formed in 

the fruiting body 

called ascus, 

haploid

Aspergillus, 

Metarhizium, 

Hirsutella, Beauveria, 

Aschersonia, 

Culicinomyces, 

Lecanicillium, 

Paecilomyces, 

Tolypocladium, etc.

Lepidoptera, 

hymenoptera (wasps), 

whitefly, pine caterpillar, 

potato Beetle, corn 

borer, coding moth, 

grasshoppers, chinch 

bug, boll weevil, cowpea 

curculio, pecan weevil, 

mosquitoes, lygus bug, 

granary weevil, brown 

plant hopper, termites, 

spider mite, fire ants, 

European cockchafer, 

sugarcane borer, brown 

planthopper, citrus rust 

mite

(continued)
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Verticillium are known as commercially used and sold biopesticides in multiple 
formulations around the world (Anchez-Rodríguez et al. 2015; Lacey et al. 2015).

9.4  Enzymatic Virulence Mechanisms 
of the Entomopathogenic Fungus

Virulence can be defined as a process involved in insect death during pathogenesis 
(Mondal et al. 2016). The production of cuticle-degrading enzymes has been pro-
posed as an important attribute of the pathogenic fungi determining the virulence of 
the entomopathogenic fungi that cause insect death during pathogenesis (Samuels 
et  al. 2011). The insect cuticle is a highly heterogeneous structure that can vary 

Table 9.1 (continued)

Phylum Order Description Genus/species Infected insect host

Basidiomycota Septobasidiales, 

Atheliales

Produce sexual 

spores called 

basidiospores, 

formed outside the 

specialized 

reproductive cells 

called basidia. 

These spores are 

forcibly 

discharged by 

specialized 

structures

Unique traits for 

this group are 

clamp connections

Septobasidium and 

Uredinella, 

Fibularhizoctonia

Scale insects 

(Hemiptera, 

Diaspididae), termite 

eggs

Entomophthoromycota, Entomophthorales Somatic state 

consisting of a 

well- defined 

mycelium, 

coenocytic or 

septate

Protoplasts either 

hyphoid or 

amoeboid and 

changeable in 

shape; cystidia or 

rhizoids formed 

by some taxa

Conidiophores 

branched or 

unbranched. 

Primary spores 

true conidia, uni-, 

pluri-, or 

multinucleate

Pandora neoaphidis 

and Entomophthora 

planchoniana, 

Entomophaga 

maimaiga

Different aphid species, 

certain lepidopteran 

larvae
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Fig. 9.2 Life cycle or mode of action of entomopathogenic fungi against the insect pests

Fig. 9.1 Agriculturally important entomopathogenic fungi

A. Sharma et al.



239

greatly in composition and composed of wax, protein, and chitin associated with 
lipids and phenolic compounds; these represent a significant barrier to the invading 
fungus during the various life stages of a particular insect (Ortiz-Urquiza and 
Keyhani 2015. The entomopathogenic fungus can produce diverse enzymes like 
lipase, chitinase, and proteases as a virulence factor in response to different insects. 
During pathogenesis, degradation of the cuticular polymers in insect cell wall takes 
place due to these enzymes, which helps in penetrating the insect exoskeleton and 
getting nutrients for fungal growth; thus, they control insect pests and pathogens 
that attack productive crops and provide potential economic benefit to agribusi-
ness  (Petrisor and Stoian 2017). Most studies were focused on cuticle-degrading 
enzymes produced by entomopathogenic fungi and on extracellular activities of 
them (Charnley 2003; Ali et  al. 2009). Several studies have carried out the bio-
chemical characterization of cuticle-degrading enzymes such as chitinase, protease, 
and lipase, the key enzymes involved in the process of pathogenesis, and have been 
carried out to understand the host-pathogen interaction (Mondal et al. 2016; Cristina 
and Stoian 2017).

9.4.1  Proteases

Proteins and proteases that constitute the majority of insects’ cuticle are a large 
group of hydrolytic enzymes that break the peptide bonds of cuticle proteins into 
small peptides and amino acids.

Proteases (endopeptidase, aminopeptidase, carboxypeptidase) attack insect cuti-
cle before chitinases, because this masks cuticular chitin microfibers, followed by 
epicuticle that has been broken down through lipases. Entomopathogenic fungi pro-
duce a variety of endo- and exo-acting proteolytic enzymes in culture. Many of the 
proteases of entomopathogens are classified as collagenases or chymoelastases that 
show strong homology with the subtilisin family of proteases (Chrzanowska and 
Kolaczkowska 1998). The invading fungi produce great quantities of virulence indi-
cator subtilisin-like serine protease Pr1 and trypsin-like protease Pr2, which degrade 
the proteinaceous material. It was validated that protease Pr1’s extracellular involve-
ment in cuticular penetration is initialized by cuticular infection (Mustafa and Kaur 
2009). Pr1 and Pr2’s extracellular activities were determined in B. bassiana, 
M. anisopliae, Lecanicillium lecanii, Metarhizium flavoviride, and Nomuraea rileyi 
(Liu et al. 2007). Also, degradation by amino peptidases and exopeptidases of solu-
bilized proteins into amino acids is done to provide nutrients for entomopathogenic 
fungi (Mondal et al. 2016).

9.4.2  Lipase

Due to the great potential of lipases in commercial fields, studies on lipases, mainly 
of microbial origin, have increased in recent years. The epicuticle, the outer layer of 
the cuticle of the insect, is hydrophobic and acts as the first microbial attack barrier. 
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The main constituent of insect cuticles is a heterogeneous mixture of lipids, long- 
chain alkenes, esters, and fatty acids. Lipases are responsible for the hydrolysis of 
glycerol ester bonds, lipoproteins, and long-chain fatty acids found at the interior 
part of the insect integument (Mondal et al. 2016). Extracellular lipase activity is 
extra as compared to protease and chitinase; therefore, lipase can be taken into con-
sideration as a crucial enzyme in the metabolic activities of B. bassiana (Hegedus 
and Khachatourians 1988). Secretion of pathogenic fungal lipases that significantly 
penetrate the cuticle may be linked to invasion of an insect host and then ease of 
nutrient absorption from host’s nutrient source. The importance of lipases in the 
tegument penetration and breaking down process and defense mechanism in the 
insect has already been demonstrated (Silva et  al. 2010). In B. bassiana, the 
Bbcyp52x1 gene and MrCYP52 gene cluster from Metarhizium robertsii encoded 
the lipase activity with an enzymatic complex (Zhang et al. 2012). Microorganism’s 
lipase production varies not only from the source of the lipid but also from its con-
centration. In the initial stages of insect adhesion and penetration, the lipase secreted 
by entomopathogenic fungi was involved (Silva et  al. 2005). Also, Dhawan and 
Joshi (2017) showed that the B. bassiana MTCC 4495 strain was more virulent to 
third instar larvae of P. brassicae that exhibited the highest levels of lipolytic activ-
ity. Apart from the role of fungal lipase in insect morality, fungal lipase also cata-
lyzes numerous distinctive reactions which might be widely applied in more than 
one industry, which includes dairy and meals manufacture, leather-based and deter-
gent industries, and manufacturing of cosmetics and pharmaceuticals, and natural 
synthesis reactions, mainly reactions in nonaqueous media (Akoh et al. 2007).

9.4.3  Chitinase

Chitin is a combined polymer of b-1,4 N-acetyl glucosamine and a principal struc-
tural component of cell walls of entomopathogen and invertebrate exoskeletons 
(Seidl 2008). Chitinases hydrolyze the b-1,4 bonds of chitin polymer, producing a 
foremost N,N′-diacetylchitobiose. That is accomplished via the breakdown of 
N-acetyl glucosamine (GlcNAc) monomer by using chitobiose. They collaborate 
with proteases to degrade the insect’s cuticle (St Leger 1991) and are related with 
various stages of the life cycle of entomopathogenic fungi which includes germina-
tion, hyphal growth, morphogenesis, nutrition, and defense against competitors 
(Adams 2004). The genome of filamentous fungi consists of chitinases liable for 
diverse physiological functions along with (a) chitin degradation in the exoskele-
tons of arthropods used as nutrient assets; (b) remodeling of cell partitions at some 
stage in hyphae growth, branching, hyphae fusion, autolysis, and competence; and, 
(c) additionally, safety from different fungi placed within the equal ecological niche 
(Adams 2004; Yang et al. 2007). From M. anisopliae, the chit1 gene that encoded 
chitinase was first molecularly characterized (Bogo et al. 1998). Enzyme chitinases 
play a vital role in the process of insect cuticle degradation. Fungal virulence is 
often determined with the extracellular chitinases (Hegedus and Khachatourians 
1996). From the growth media of M. anisopliae, M. flavoviride, and B. bassiana 
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supplemented with insect cuticle, production of enzymes chitinolytic, N-acetyl-b-
D-glucosaminidase, and endochitinases was reported (St Leger 1991).

9.5  Factors Affecting Entomopathogenic Fungus Activity

Numerous environmental elements are recognized to inhibit fungal efficacy. The 
extensive version in the susceptibility to individual abiotic elements has been deter-
mined among and within fungal species and genera. Abiotic stresses together with 
ultraviolet (UV) radiation, humidity, high temperature, pH, and low water pastime 
result in inconsistent performances, restricting the effectiveness of the entomopatho-
genic fungi, delay pest mortality, and contribute to their constrained use in agricul-
tural manufacturing. Sunlight and ultraviolet (UV) rays are probably the most 
detrimental environmental factor that affects the viability of entomopathogenic fungi 
and can reduce the process of infection. Radiation harms entomopathogenic fungi 
performance (Fang et  al. 2012). UV radiation causes DNA damage through the 
induction of chemical base modification. It has also been found that UV-A radiation 
inactivates and delays the germination of certain fungi’s conidia (Braga et al. 2008), 
while the exposure of UV-B radiation damaged or killed the spores of many entomo-
pathogenic fungi (Goettel et al. 2001). A high temperature is another adverse factor 
in reducing the performance of the entomopathogenic fungi by reducing virulence 
and persistence in field conditions. It has been found that generally most of the ento-
mopathogenic fungi germinate, grow, and sporulated at optimal temperatures 
between 20 and 30 °C. Fluctuation in the temperature range may influence the ger-
mination, growth, and performance of the fungus (Goettel et al. 2000; de Crecy et al. 
2009). Further, for developmental stages of entomopathogenic fungi, high humidity 
is required. Low humidity has been implicated in failures of germination or field tri-
als, by timing the application of fungi when humidity levels are naturally higher; 
these low-moisture problems can be addressed. Similarly, soil moisture, organic mat-
ter in the soil, and pH also are essential in figuring out infection level. Rainfall also 
can cause speedy and full-size loss of inoculum. For instance, 15 min of mild rainfall 
in a simulator resulted in approximately 90% elimination of B. bassiana conidia 
from foliage (Inglis et  al. 2001). The diversity of entomopathogenic fungi varies 
according to the nutritional mode of insects from biotrophy to necrotrophy.

Apart from abiotic factors, a range of biotic factors such as the host stage of the 
pest, competitive microbial organisms, and antagonistic enzymes and compounds 
on the plant or host surface can also impose negative impact on the efficacy of ento-
mopathogenic fungus. Immature stages of the insects tend to be more sensitive to 
fungal infection than the mature stage (Brownbridge et al. 2010). Insect behavior 
also can reduce the effectiveness of a fungal infection. Some termites avoid coming 
in contact with infected individuals within the colony and thereby escape infection 
(Chouvenc et  al. 2008). The termite Coptotermes lacteus showed an avoidance 
response, walling off tunnels with M. anisopliae, thus protecting the colony from 
infection. Aphids and mites are sometimes able to escape infection by molting 
before the fungus enters the body (Alavo et al. 2002).
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9.6  Genetic Engineering to Improve Virulence of EFP

Due to low virulence and inconsistencies in their performance compared to the 
chemical insecticides, entomopathogenic fungus currently has a small market share 
(Fang et al. 2012). The inconsistencies in performance within the field are mainly 
due to the sensitivity to environmental stresses of entomopathogenic fungi (Lovett 
and St. Leger 2015). Barriers to the large-scale application of fungal biocontrol 
agents still exist due to their slow killing speed and environmental stability issues. 
With growing public concern about the continued use of synthetic chemical insecti-
cides and increasing public acceptance of genetically modified organisms, new 
types of genetically engineered biological insecticides offer a range of environmen-
tally pleasant alternatives for cost-effective insect pest control. Genetic engineering 
has been demonstrated to enable the virulence efficacy of mycoinsecticides to be 
substantially advanced by improving their tolerance to damaging environmental 
stress. To improve virulence, genetic engineering has focused on reducing both 
lethal conidial dosage and killing time. Virulence enhancement has been carried out 
by engineering fungi to express insect proteins and insecticidal peptides from insect 
predators and other insect pathogens or by overexpressing the pathogen’s genes. For 
genetic improvement in fungal virulence, the first trial was performed by engineer-
ing Metarhizium to overexpress the gene encoding the endogenous cuticle- degrading 
protease Pr1, and the resulting transformant took 25% less time to kill insects (Hu 
and St. Leger 2002). In another similar study in constitutive overproduction of chi-
tinase, CHIT1 improved virulence by 23% in B. bassiana (Fang et al. 2005). An 
insect-selective scorpion neurotoxin peptide gene (AaIT) was synthesized and used 
to transform M. anisopliae for targeted expression in insect hemolymph. The 
expression results of this gene decreased the killing time with the aid of 40% lethal 
spore dose in mosquitoes, caterpillars, and beetles by up to 22-fold (Pava-Ripoll 
et al. 2008). The current information of molecular mechanisms for B. bassiana and 
Metarhizium spp. pathogenesis has enabled many gene-related pathogenicity like 
Pr1A, Bbchit1, Mr-Npc2a, ATM1, Mr-Ste1, and BbBqrA responsible for subtilisin- 
like protease, chitinase, sterol carrier, trehalase, esterase, and benzoquinone oxido-
reductase, respectively, to be characterized, and these genes may be used as a 
genetic enhancement resource for entomopathogenic fungi. The virulence of 
B. bassiana was increased through the expression of endogenous insect genes, such 
as those for a diuretic hormone, neuropeptide, and serpin, to disrupt or inhibit nor-
mal hormone levels, electrophoretic behavior, or phenoloxidase activation in insects 
(Fan et al. 2012; Yang et al. 2012). The events of horizontal gene transfer (HGT) 
revealed that Metarhizium species, like other fungi, acquired various genes from 
bacteria and archaea and even arthropods, plants, and vertebrates (Zhao et al. 2014). 
By transferring the sterol carrier gene into B. bassiana, this evolutionary event was 
reproduced, lacking an endogenous Mr-NPC2a homologue, and enhances its patho-
genicity (Ortiz-Urquiza et al. 2013).
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9.6.1  Improve Virulence Against the Abiotic Stresses

Among the abiotic stresses, UV radiation, high temperature, and low water activity 
cause prominent damage to molecular and metabolic functions of the pathogenic 
fungus that results in inconsistent limiting performances in the field. The range of 
genes and metabolic pathway genes like trxA (thioredoxin), Try (tyrosinase), 
MrPhr1 (CPD photolyase), BbSOD1 (superoxide dismutase), HsPHR2 (CPD pho-
tolyase), and heat shock protein 25 (HSP25) have been found suitable for improving 
virulence in Metarhizium, Beauveria, and other insect pathogens against the abiotic 
stresses (Zhao et al. 2016). The engineering of Beauveria or Metarhizium to over-
express a DNA repair photolyase also increased fungal resistance to solar radiation 
(Fang and Leger 2012). Expression of thioredoxin (trxA) also improved the toler-
ance of B. bassiana against heat, UV-B irradiation, and oxidation (Ying and Feng 
2011). In another study, a look at genetically engineering B. bassiana with an exog-
enous tyrosinase gene expanded fungal production of melanins for stepped forward 
conidial tolerance to ultraviolet radiation and elevated virulence in opposition to 
diverse insects (Shang et al. 2012). The integration of a PKS gene cluster for mela-
nin biosynthesis from a plant pathogen to M. anisopliae enabled the fungus to resist 
UV irradiation and improved fungal virulence. To improve the virulence against 
high temperature, M. robertsii was genetically transformed to overexpress an 
endogenous heat shock proteins (HSPs)-encoding gene (Hsp25), and the results 
showed that mutant gene not only survived extreme temperatures but also showed 
resistance to oxidative stress and osmotic agents (Liao et al. 2014). Thus, genetic 
engineering is an effective way to improve fungal environmental stability and, 
therefore, the efficacy of field applications. Combining the available genomes of 
Bassiana and several Metarhizium species in the future, with robust genetic manip-
ulation technologies, will make it possible to characterize the full range of pathoge-
nicity and host-specific genes by which novel combinations of insect specificity and 
virulence will be created (Gao et al. 2011; Xu et al. 2014). Depending on the regula-
tions in different countries, developing these genetically modified strains will poten-
tiate the cost-effective application of mycoinsecticides for the control of different 
insect pests or disease vectors.

9.7  Entomopathogenic Fungi and Integrated Pest 
Management Strategies

For plant protection from harmful pests and insects, chemical insecticides are com-
monly used which impose a negative impact on the ecosystem and increase the 
resistance of insects to various chemical substances. Therefore, this issue forces to 
seek an alternative new effective eco-friendly approach of reducing outbreaks of 
insects or pests. In current years, more interest is paid to the opportunity of the 
usage of natural insect enemies, which include entomopathogenic fungi, in biologi-
cal control or inhibition of insect pests (Sahayaraj 2014). Entomopathogens may be 
a vital tool in IPM techniques in both natural and conventional manufacturing 
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systems. There are numerous examples of entomopathogen-based bio-insecticides 
that have performed a critical role in pests control. EPF has been extensively inves-
tigated for the biological control of pests as well as human and animal disease- 
causing arthropod vectors (Blanford et al. 2011; Paula et al. 2013; Nana et al. 2015). 
Entomopathogens may be used alone or in combination with chemicals, botanical 
pesticides, or other entomopathogens depending on the crop, pest, and environmen-
tal conditions.

The most prominent instance of EPF inoculation biological control is the use of 
Beauveria brongniartii against Melolontha melolontha, European cockchafer bee-
tles, that’s a critical pest of pastureland, orchards, and wooded area and trees in 
Central Europe. The fungal application can provide useful control levels for up to 
9 years (Keller et al. 1997). An IPM research in Californian strawberries validated 
the capacity function of entomopathogenic fungi for handling the western tarnished 
plant bug (Lygus hesperus) and other insect pests (Dara 2016). The combination of 
azadirachtin and B. bassiana reduced root aphid of rice and populations of honey-
suckle aphid by 62% in natural celery in California (Dara 2015). Development of 
formulations can greatly improve the activity and performance of entomopatho-
genic fungi. Since the 1960s, worldwide, among the 171 products, a considerable 
number of potential formulation have been developed of which 33.9% is from 
Metarhizium spp., 33.9% from Beauveria spp., 5.8% from Isaria fumosorosea, and 
4.1% from B. brongniartii, in which three-quarters are currently commercially 
available for the targeted Hemiptera, Coleoptera, Lepidoptera, Diptera, Orthoptera, 
and Acari pests. Some commercial formulations are illustrated in Table 9.2. These 
organic formulations used in augmentation, classic, and conservation biological 
control pose a minimum threat to useful organisms and hence are in all likelihood 
to be categorized as “low-danger” substances by authorities regulators.

Also, beneficial EPF is known to elicit induced systemic resistance (ISR), which 
emerged as another potential mechanism through which entire plant accelerates 
own defense system against a wide range of insects/pest pathogens (Pieterse et al. 
2014). Beauveria bassiana-inoculated plant showed significantly reduced bacterial 
blight disease on the leaves compared with the noninoculated control plants. 
Similarly, in another study, Lecanicillium-pre-inoculated cucumber plants signifi-
cantly induced systemic resistance against P. ultimum and powdery mildew S. fulig-
inea (Benhamou and Brodeur 2001; Hirano et  al. 2008). Later B. bassiana and 
Lecanicillium spp. colonization of date palm plants showed upregulation of defense- 
related proteins for alleviation against the plant biotic stress (Gómez-Vidal et al. 
2009). Hartley et al. (2015) and Khan et al. (2012) reported that fungal endophytes 
and M. anisopliae-inoculated plants secret isoflavonoid phytoalexin’s bioactive sec-
ondary metabolites which play a major role in the adaptation of plants to different 
adverse environmental condition. In a recent study, colonization of B. bassiana in 
tomato plants has shown a significant positive effect on terpenoid accumulation in 
tomato plants compared with arbuscular mycorrhizal fungus Rhizophagus intrara-
dices colonization (Shrivastava et al. 2015).

By enhancing plant growth, fungal entomopathogens can contribute to protect-
ing their host plant against disease pathogens. A developing variety of research has 
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recently proven the ability of several fungal entomopathogens to promote plant 
growth following endophytic establishment (Sasan and Bidochka 2012; Lopez and 
Sword 2015; Jaber and Enkerli 2016). Kuldau and Bacon (2008) reported that EPF- 
primed plants increased plant growth with suppression of various abiotic and biotic 
stresses. Jaber and Salem (2014) state that when plant is challenged with zucchini 
yellow mosaic virus (ZYMV), B. bassiana-inoculated plants not only reduced the 
severity of disease incidence but also significantly showed faster growth and devel-
opment in plants compared to control. The same has been demonstrated in 
M. robertsii- inoculated plants that reduced disease indices and enhanced plant 
growth upon challenge inoculums of F. solani, through the production of plant 
growth-promoting attributes like phytohormones or siderophores (Sasan and 
Bidochka 2013). This evidence is supported by the study of Khan et  al. (2012), 
where M. anisopliae significantly supports soybean plant’s health and growth 
through the production of phytohormones in inoculated plants. Furthermore, 
Sánchez-Rodríguez et  al. (2015) reported that entomopathogenic-fungi-induced 
plant growth promotion might be due to the increased uptake and transportation of 
nutrients (Behie and Bidochka 2014).

9.8  Conclusions, Future Opportunities, and Challenges

Due to increasing insect pest disease problems in agriculture and environmental 
concerns, myco-biocontrol of insects has been viewed as a substantial significant 
substitute for synthetic chemical pesticides and a key component of eco-friendly 
pest management. Understanding the ecological and environmental parameters 
associated with insect-pathogenic fungi is important in advancing our basic knowl-
edge about the evolution and maintenance of pathogenesis of these organisms as 
well as in field applications for biological control of insect pests. Entomopathogenic 
fungi are a unique and enormously specialized group of microbial agents that pos-
sess several desirable traits favoring their development as biopesticides. However, 
the majority of the commercially produced fungi are handiest based on a few spe-
cies of Metarhizium, Beauveria, Lecanicillium, Isaria, etc. In addition to regulatory 
issues relating to the premarket authorization of new active substances, the avail-
ability of entomopathogens bio-processed products is still restricted to certain crop 
pests. Indeed, a better understanding of the ecology of fungal entomopathogens 
would induce the development and uptake of more commercially available biopes-
ticides based on these fungi in mainstream farming. Furthermore, to encourage the 
extensive use of fungal entomopathogen-based biopesticides, there is a need for 
microbial products with activity against multiple pests in addition to their geneti-
cally modified insecticidal efficacy, improved delivery methods, and increased per-
sistence. Following these trends, as a result, researches and industrial interest on 
entomopathogenic fungi are required, and new discoveries with increased compat-
ibility, maximized efficacy, increasing investments, and expansion of entomopatho-
gens formulations for integrated pest management are expected in the near future.

9 Entomopathogenic Fungi: A Potential Source for Biological Control of Insect Pests



246

References

Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035
Agrawal Y, Khatri I, Subramanian S, Shenoy BD (2015) Genome sequence, comparative analysis, 

and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. 
Genome Biol Evol 7:916–930

Akoh CC, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J 
Agric Food Chem 55:8995–9005

Alavo TBC, Sermann H, Bochow H (2002) Virulence of strains of the entomopathogenic fungus 
Verticillium lecanii to aphids: strain improvement. Arch Phytopathol Plant Prot 34:379–398

Ali S, Huang Z, Ren S (2009) Biocontrol Sci Technol:523–535
Anchez-Rodríguez AR, Del Campillo MC, Quesada-Moraga E (2015) Beauveria bassiana: an 

entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous sub-
strates. Sci Hortic 197:193–202

Asi MR, Bashir MH, Afzal M, Zia K, Akram M (2013) Potential of entomopathogenic fungi 
for biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J Anim Plant Sci 
23(3):913–918

Behie SW, Bidochka MJ (2014) An additional branch of the soil nitrogen cycle: ubiquity of insect- 
derived nitrogen transfer to plants by endophytic insect pathogenic fungi. Appl Environ Microb 
80:1553–1560

Benhamou N, Brodeur J (2001) Pre-inoculation of Ri T-DNA transformed cucumber roots with 
the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum 
infection. Physiol Mol Plant Pathol 58:133–146

Blanford S, Shi WP, Christian R, Marden JH, Koekemoer LL, Brooke BD, Coetzee M, Read AF, 
Thomas MB (2011) Lethal and pre-lethal effects of a fungal biopesticide contribute to substan-
tial and rapid control of malaria vectors. PLoS One 6:e23591. https://doi.org/10.1371/journal.
pone.0023591

Bogo MR, Rota CA, Rota H, Pinto H Jr, Ocampos M, Correa CT, Vainstein MH, Schrank A (1998) 
A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: 
isolation and characterization of genomic and full- length cDNA. Curr Microbiol 37:221–225

Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J (2014) Evolutionary interaction networks of 
insect pathogenic fungi. Annu Rev Entomol 59:467–485

Braga-Neto R, Luiz~ao RCC, Magnusson WE, Zuquim G, Castilho VC (2008) Leaf litter fungi in 
a central Amazonian forest: the influence of rainfall, soil and topography on the distribution of 
fruiting bodies. Biodivers Conserv 17(11):2701–2712

Brownbridge M, Reay SD, Cummings NJ (2010) Association of entomopathogenic fungi with 
exotic bark beetles in New Zealand pine plantations. Mycopathologia 169(1):75–80

Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Spatafora JW (2013) The 
genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin 
biosynthetic gene cluster. PLoS Genet 9:e1003496

Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, 
regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 
366:1987–1998

Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot 
Res 40:242–321

Chouvenc T, Su NY, Elliott ML (2008) Interaction between the subterranean termite Reticulitermes 
flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae 
in foraging arenas. J Econ Entomol 101:885–893

Chrzanowska J, Kolaczkowska M (1998) Production of extracellular proteolytic enzymes by 
Beauveria bassiana. Acta Mycol 33(2):277–285

Cristina P, Stoian G (2017) The role of hydrolytic enzymes produced by entomopathogenic fungi 
in pathogenesis of insects. Rom J Plant Prot X

Dara SK (2015) Reporting the occurrence of rice root aphid and honeysuckle aphid and their man-
agement in organic celery. UCANR eJournal Strawberries and Vegetables, 21 August. http://
ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=18740

A. Sharma et al.

https://doi.org/10.1371/journal.pone.0023591
https://doi.org/10.1371/journal.pone.0023591
http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=18740
http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=18740


247

Dara SK (2016) IPM solutions for insect pests in California strawberries: efficacy of botanical, 
chemical, mechanical, and microbial options. CAPCA Advis 19(2):40–46

de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Hughes DP (2015) Gene 
expression during zombie ant biting behavior reflects the complexity underlying fungal para-
sitic behavioral manipulation. BMC Genomics 16:620

de Crecy E, Jaronski S, Lyons B, Lyons TJ, Keyhani NO (2009) Directed evolution of a filamen-
tous fungus for thermotolerance. BMC Biotechnol 9:74

Dhawan M, Joshi N (2017) Enzymatic comparison and mortality of Beauveria bassiana against 
cabbage caterpillar Pieris brassicae LINN. Braz J Microbiol 48:522–529

Fan Y, Pereira RM, Kilic E, Casella G, Keyhani NO (2012) Pyrokinin beta-neuropeptide affects 
necrophoretic behavior in fire ants (S. invicta), and expression of beta- NP in a mycoinsecticide 
increases its virulence. PLoS One 7:e26924

Fang W, St. Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes 
by photolyase transgenic entomopathogenic fungi. PLoS One 7:e43069

Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y et al (2005) Cloning of Beauveria bassiana chitinase 
gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 
71:363–370

Fang W, Azimzadeh P, St. Leger RJ (2012) Strain improvement of fungal insecticides for control-
ling insect pests and vector-borne diseases. Curr Opin Microbiol 15:232–238

Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list 
with worldwide coverage and international classification of formulation types. Biol Control 
43:237–256

Gabarty A, Salem HM, Fouda MA, Abas AA, Ibrahim AA (2014) Pathogenicity induced by the 
entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon 
(Hufn.). J Radiat Res Appl Sci 7:95–100

Gao Q, Jin K, Ying SH, Zhang Y, Xiao G et al (2011) Genome sequencing and comparative tran-
scriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M acridum. 
PLOS Genet 7:e1001264

Goettel MS, Inglis GD, Wraight SP (2000) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of 
techniques in invertebrate pathology. Kluwer Academic Publishers, Dordrecht, pp 255–282. 
7985055235

Goettel MS, Hajek AE, Siegel JP, Evans HC (2001) Safety of fungal biocontrol agents. In: Butt T, 
Jackson C, Magan N (eds) Fungi as biocontrol agents-progress, problems and potential. CABI 
Press, Wallingford, pp 347–375

Goettel MS, Eilenberg J, Glare TR (2010) Entomopathogenic fungi and their role in regulation of 
insect populations. In: Gilbert LI, Gill DS (eds) Insect control: biological and synthetic agents. 
Academic, San Diego, pp 387–431

Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV (2009) Proteomic analysis of date palm 
(Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. 
Electrophoresis 30:2996–3005

Gressel J (2007) Failsafe mechanisms for preventing gene flow and organism dispersal of enhanced 
microbial biocontrol agents. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol 
agent enhancement and management. Springer, Dordrecht

Gul HT, Saeed S, Khan FZA (2014) Entomopathogenic fungi as effective insect pest management 
tactic: a review. Appl Sci Bus Econ 1:10–18

Hartley SE, Eschen R, Horwood JM, Gange AC, Hill EM (2015) Infection by a foliar endophyte 
elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense. New 
Phytol 205:816–827

Hegedus DD, Khachatourians GG (1988) Production of an extracellular lipase by Beauveria bassi-
ana. Biotechnol Lett 10(9):637–642

Hegedus DD, Khachatourians GG (1996) Identification and differentiation of the entomopatho-
genic fungus Beauveria bassiana using polymerase chain reaction and single-strand conforma-
tion polymorphism analysis. J Invertebr Pathol 67:289–299

9 Entomopathogenic Fungi: A Potential Source for Biological Control of Insect Pests



248

 Hirano E, Koike M, Aiuchi D, Tani M (2008) Pre-inoculation of cucumber roots with Verticillium 
lecanii (Lecanicillium muscarium) induces resistance to powdery mildew. Res Bull Obihiro 
Univ 29:82–94

Hu G, St. Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium aniso-
pliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387

Humber RA (1997) Fungi: identification. In: Lacey LA (ed) Manual of techniques in insect pathol-
ogy. Academic, London, pp 153–185

Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing 
insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress prob-
lems and potential. CABI Publishing, Wallingford, pp 23–70

Inglis PW, Tigano MS (2006) Identification and taxonomy of some entomopathogenic Paecilomyces 
spp. (Ascomycota) isolates using rDNA-ITS sequences. Genet Mol Biol 29(1):132–136

Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia 
faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195

Jaber LR, Enkerli J (2017) Fungal entomopathogens as endophytes: can they promote plant 
growth? Biocontrol Sci Tech 27:28–41

Jaber LR, Salem NM (2014) Endophytic colonisation of squash by the fungal entomopathogen 
Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus 
in cucurbits. Biocontrol Sci Tech 24:1096–1109

Keller S, Schweizer C, Keller E, Brenner H (1997) Control of white grubs (Melolontha melolon-
tha L.) by treating adults with the fungus Beauveria brongniartii. Biocontrol Sci Technol 
7:105–116

Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, Ur Rehman S, Kim JG, 
Lee IJ (2012) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher 
growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494

Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of 
grasses to multiple stresses. Biol Control 46:57–71

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect 
pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://
doi.org/10.1016/j.jip.2015.07.009

Liao X, Lu HL, Fang W, St. Leger RJ (2014) Overexpression of a Metarhizium robertsii HSP25 
gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol 98:777–783

Liu SQ, Meng ZH, Yang JK, Fu YK, Zhang KQ (2007) Characterizing structural features of 
cuticle- degrading proteases form fungi by molecular modeling. BMC Struct Biol 7:33

Lopez DC, Sword GA (2015) The endophytic fungal entomopathogens Beauveria bassiana and 
Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and 
negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol Control 89:53–60

Lovett B, St Leger RJ (2015) Stress is the rule rather than the exception for Metarhizium. Curr 
Genet 61:253–261

Mantzoukas S, Chondrogiannis C, Grammatikopoulos G (2015) Effect of three endophytic ento-
mopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. 
Entomol Exp Appl 154:78–87

Mathew SO, Sandhu SS, Rajak RC (1998) Bioactivity of Nomuraea rileyi against Spilosoma obli-
qua: effect of dosage, temperature and relative humidity. J Indian Bot Soc 77:23–25

McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal 
tree of life. Trends Microbiol 17:488–497

Meyling NV, Schmidt NM, Eilenberg J (2012) Occurrence and diversity of fungal entomopatho-
gens in soils of low and high Arctic Greenland. Polar Biol 35:1439–1445

Mondal S, Baksi S, Koris A, Vatai G (2016) Journey of enzymes in entomopathogenic fungi. Pac 
Sci Rev 18:85–99

Mudgal S, De Toni A, Tostivint C, Hokkanen H, Chandler D (2013) Scientific support, literature 
review and data collection and analysis for risk assessment on microbial organisms used as 
active substance in plant protection products –lot 1 environmental risk

Mustafa U, Kaur G (2009) Extracellular enzyme production in Metarhizium anisopliae isolates. 
Folia Microbiol 54:499–504

A. Sharma et al.

https://doi.org/10.1016/j.jip.2015.07.009
https://doi.org/10.1016/j.jip.2015.07.009


249

Nana P, Nchu F, Ekesi S, Boga HI, Kamtchouing P, Maniania NK (2015) Efficacy of spot spray 
application of Metarhizium anisopliae formulated in emulsifiable extract of Calpurnia aurea 
in attracting and infecting adult Rhipicephalus appendiculatus ticks in semi-field experiments. 
J Pest Sci 88:613–619

Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43
Oerke EC, Dehne HW, Schoenbeck F, Weber A (1994) Crop production and crop protection: esti-

mated losses in major food and cash crops. Elsevier Science Publishers B.V, Amsterdam
Ortiz-Urquiza A, Keyhani NO (2015) Action on the surface: entomopathogenic fungi versus the 

insect cuticle. Insects 4:357–374
Ortiz-Urquiza A, Keyhani NO, Quesada-Moraga E (2013) Culture conditions affect virulence and 

production of insect toxic proteins in the entomopathogenic fungus Metarhizium anisopliae. 
Biocontrol Sci Tech. https://doi.org/10.1080/09583157.2013.822474

Pattemore JA, Hane JK, Williams AH, Wilson BA, Stodart BJ, Ash GJ (2014) The genome sequence 
of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium 
species. BMC Genomics 15:660

Paula AR, Carolino AT, Silva CP, Pereira CR, Samuels RI (2013) Testing fungus impregnated 
cloths for the control of adult Aedes aegypti under natural conditions. Parasit Vectors 6:1–6. 
https://doi.org/10.1186/1756-3305-6-256

Pava-Ripoll M, Posada FJ, Momen B, Wang C, St. Leger RJ (2008) Increased pathogenicity against 
coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium aniso-
pliae expressing the scorpion toxin (AaIT) gene. J Invertebr Pathol 99:220–226

Petrisor C, Stoian G (2017) The role of hydrolytic enzymes produced by entomopathogenic fungi 
in pathogenesis of insects. Rom J Plant Prot X

Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced 
systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:34

Reddy KRK, Kuamr PD, Reddy KRN (2013) Entomopathogenic fungi: a potential bioinsecticide. 
KAVAKA 41:23–32

Roberts DW, Humber RA (1981) Entomogenous fungi. In: Cole GT, Kendrick B (eds) Biology of 
conidial fungi. Academic, New York, pp 201–236

Sahayaraj K (ed) (2014) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 31–46
Samuels RI, Paterson IC (1995) Cuticle-degrading proteinase from insect moulting fluid and 

culture filtrates of entomopathogenic fungi. Comp Biochem Physiol B Biochem Mol Biol 
110:661–669

Samuels RI, Santos AV, Silva CP (2011) Enzymology of entomopathogenic fungi. In: Borgio JF 
et al (eds) Microbial insecticides -principles and applications. Nova Science Publishers, Inc, 
pp 71–92

Sanchez-Perez LC, Barranco-Floriab JE, Rodriguez-Navarro S, Cervantes-Mayagoitia JF, Ramos- 
Lopez MA (2014) Enzymes and entomopathogenic fungi: advances and insights. Adv Enzym 
Res 2:65–76

Sánchez-Rodríguez AR, del Campillo MC, Quesada-Moraga E (2015) Beauveria bassiana: an 
entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous sub-
strates. Sci Hortic 197:193–202

Sandhu SS, Vikrant P (2006) Evaluation of mosquito larvicidal toxins in the extra cellular metabo-
lites of two fungal genera Beauveria and Trichoderma. In: Bagyanarayana G, Bhadraiah B, 
Kunwar IK (eds) Emerging trends in mycology, plant pathology and microbial biotechnology. 
BS Publications, Hyderabad

Sandhu SS, Anil KS, Vikas B, Gunjan GPB, Anil Kumar Sundeep J, Sharma AK, Malhotra S (2012) 
Myco-biocontrol of insect pest factors involved mechanism, and regulation. J Pathog:1–10

Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) 
is also an endophyte that stimulates plant root development. Am J Bot 99:101–107

Sasan RK, Bidochka MJ (2013) Antagonism of the insect- pathogenic fungus Metarhizium rob-
ertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Can J Plant Pathol 
35:288–293

Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple 
physiological functions. Fungal Biol Rev 22:36–42

9 Entomopathogenic Fungi: A Potential Source for Biological Control of Insect Pests

https://doi.org/10.1080/09583157.2013.822474
https://doi.org/10.1186/1756-3305-6-256


250

Shang YF, Duan ZB et al (2012) Improving UV resistance and virulence of Beauveria bassiana 
by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109:105–109

Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Vu A, Köllner TG, Chen F (2015) 
Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in 
tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74

Silva W, Mitidieri S, Schrank A, Vainstein MH (2005) Production and extraction of an extra-
cellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 
40:321–326

Silva WOB, Santi L, Scharank A, Vainstein MH (2010) Metarhizium anisopliae lipolytic activity 
plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol 144:10–15

St Leger RJ (1991) A model to explain differentiation of appressoria by germlings of Metarhizium 
anisopliae. J Invertebr Pathol 57:299–310

Sujeetha A, Sahayaraj K (2014) Role of entomopathogenic fungus in pest management. In: Tanada 
Y, Kaya HK (eds) Insect pathology. Academic, New York. ISBN 0-12-683255-2

Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, San Diego. 666 pp002E
Thacker JRM (2002) An introduction to arthropod pest control. Cambridge University Press, 

Cambridge
Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. 

Mycologia 110(1):4–30
Vega FE, Meyling NV, Luangsa-Ard JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega 

FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, San Diego, pp 171–220
Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant- endophyte-herbivore 

interactions and prospects for use in biological control. Curr Sci 109:46–54
Wang CS, St. Leger RJ (2007) The MAD1 adhesion of Metarhizium anisopliae links adhesion 

with blastospore production and virulence to insects, and the MAD2 adhesion enables attach-
ment to plants. Eukaryot Cell 6:808–816

Wang CS, St. Leger RJ (2014) Genomics of entomopathogenic fungi. In: Martin F (ed) The eco-
logical genomics of fungi. Wiley, pp 243–260

Xiao GH, Ying S-H, Zheng Z, Wang ZL, Zhang S, Xie XQ, Feng MG (2012) Genomic perspec-
tives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

Xu C, Zhang X, Qian Y, Chen X, Liu R, Zeng G et al (2014) A high-throughput gene disruption 
methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS One 9:e107657

Yang J, Tian B, Liang L, Zhang KQ (2007) Extracellular enzymes and the pathogenesis of nema-
tophagous fungi. Appl Microbiol Biotechnol 75:21–31

Yang MM, Meng LL, Zang YA, Wang YZ, Qu LJ, Wang QH, Ding JY (2012) Baculoviruses and 
insect pest control in China. Afr J Microbiol Res 6:214–218

Ying SH, Feng MG (2011) Integration of Escherichia coli thioredoxin (trxA) into Beauveria bassi-
ana enhances the fungal tolerance to the stresses of oxidation, heat and UV-B irradiation. Biol 
Control 59:255–260

Zhang S, Wideman E, Bernard G, Lesot A, Pinot E, Pedrini N, Keyhani NO (2012) CYP52X1, 
representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and con-
tributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus 
Beauveria bassiana. J Biol Chem 28:13477–13486

Zhao H, Xu C, Lu HL, Chen X, St. Leger RJ, Fang W (2014) Host- to-pathogen gene transfer 
facilitated infection of insects by a pathogenic fungus. PLoS Pathog 10:e1004009

Zhao H, Lovettx B, Fang W (2016) Genetically engineering entomopathogenic fungi. Adv Genet 
94:137–163

Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S et al (2011) Genome sequence of the insect 
pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome 
Biol 12:R116

A. Sharma et al.



251© Springer Nature Singapore Pte Ltd. 2020
M. K. Solanki et al. (eds.), Phytobiomes: Current Insights and Future Vistas, 
https://doi.org/10.1007/978-981-15-3151-4_10

N. Musheer (*) · S. Ashraf · A. Choudhary · M. Kumar · S. Saeed 
Department of Plant Protection, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

10Role of Microbiotic Factors Against 
the Soil-Borne Phytopathogens

Nasreen Musheer, Shabbir Ashraf, Anam Choudhary, 
Manish Kumar, and Sabiha Saeed

Abstract
Phytopathogenic association with beneficial microbiotic factors influences rhi-
zospheric soil as well as plant growth parameters. Rhizospheric microbiotic fac-
tors check nutrients to supplement the lethal sensitivity against soilborne 
phytopathogens. All microbes besides harming plant growth are also able to 
reduce or check infection or disease caused by phytopathogens. Each microor-
ganism showed specific antagonistic mechanisms against specific phytopatho-
gens. This chapter discussed the importance of nematodes belonging to order 
Aphelenchida and Tylenchida which proved to be good management model 
organisms to inhibit or kill phytopathogens just like plant growth, promoting 
bacteria and fungi. Beneficial microbes protect plants from a greater extension of 
damage and induced plant vigor, growth, and development. Besides the benefi-
cial role of microbiotic factors interacting with plants against soilborne phyto-
pathogens present in soil ecology, it can  also helps to develop products for 
agricultural biotechnology, biofertilizers, plant strengtheners, phytostimulation, 
and biopesticides. This chapter appraises the importance of microbiota factors 
and their mechanisms against soilborne phytopathogens.
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10.1  Introduction

Soil ecosystem is full of microbiotic communities that help to improve plant sus-
tainability and control soilborne phytopathogens through different kinds of mecha-
nisms (Ahemad et al. 2009; Patil and Solanki 2016a, b; Solanki et al. 2016). Some 
of the beneficial effects observed are the following:

 1. Stimulates plant growth
 2. Increased nutrient mobilization through plant’s root from surrounding soils
 3. Induced plant growth regulators
 4. Activated defense system of plants against phytopathogenic infections
 5. Improved topsoil properties through bioremediation by sequestering soil pollut-

ants such as toxic heavy metal and xenobiotic residues

Beneficial plant–microbe interaction was found to be of great importance for both 
plant- and soil-ecosystem functions over plant breeding (Smith et al. 1999). Soil 
ecosystem association with rhizo-microbiotic factors helps to reduce plant patho-
genic disease stress over plants and promotes growth by enhancing nutrient uptake 
facilities (Thakore and Ehlers 2006; Solanki et al. 2019b). The improved soil eco-
system approach helps in the management of soilborne phytopathogens sustainably 
by increasing disease resistance, crop production, and quality (Ahemad et al. 2009; 
Solanki et al. 2012a, b; Singh et al. 2014). Trichoderma species were found to be 
used most widely as fungal biocontrol agents against many phytopathogens and 
played a significant role in bioremediation and soil restoration (Solanki et al. 2011, 
2018, 2019a; Rai et al. 2019). Under field conditions, Trichoderma spp. applied as 
conidia and mycelia biomass showed great stability and viability (Rosane et  al. 
2008). Several plant growth-promoting rhizobacteria (PGPR) flourished rhizo-
spheric soil and plant root and stimulate various mechanisms against soilborne 
pathogens to prevent plants from infection and diseases (Patil and Solanki 2016a; 
Kashyap et al. 2019; Kumari et al. 2019). It includes competitions, phytohormones, 
secondary active metabolites which increased nutrient solubilization and mobiliza-
tion, availability, and activation of physical, chemical, and active defense responses 
in the host against their antagonists (Hammerschmidt and Kuc 1995; Vessey 2003; 
Solanki et al. 2012a, b, 2014, 2015, 2017; Kumar et al. 2012; Wang et al. 2017). The 
present chapter enlightens the importance and role of microbiotic factors against 
soilborne pathogens causing various plant diseases and the definition of the micro-
biome, biocontrol agents (bacterial, fungal, and nematodes), soilborne phytopatho-
gens, and mode of action of biocontrol agents, mechanisms, and future approaches.

10.2  Microbiome

Microbiome or rhizosphere is the specific microenvironment that includes plant 
roots, soil niche, and plant microbes, viz., protozoans, filamentous fungi, viruses, 
bacteria, actinomycetes, and nematodes, which formed an association (Hiltner 
1904; Saunders et al. 2010). Microbes compete for water, nutrients, and space and 
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sometimes improve microbial attractiveness toward plant roots more than phyto-
pathogens (Cook and Baker 1983; Whipps 2001). Microbe colonization is estab-
lished generously in all plant-associated microenvironments, especially rhizospheric 
region and root (Malviya et al. 2019; Solanki et al. 2019b). Berg et al. (2006) per-
formed an in vitro assessment of plant-associated microbial isolates between 1% 
and 35% exhibited in antimicrobial properties. The narrow zone of soil around the 
plant’s root is rich in nutrients due to the secretion of a variety of chemical constitu-
ents by plants. Root exudates may contain some protein and sugars. It promotes 
bacteria growth around the nutrient-rich zone (Gray and Smith 2005). Therefore, 
rhizospheric microorganisms are responsible for increasing plant vigor in an envi-
ronmentally and eco-friendly manner (Leach et  al. 2017; Igiehon and Bbaloal 
2018). Solanki et al. (2018) assessed that tomato plant root extract played a signifi-
cant role in the antagonism of Bacillus, Streptomyces, and Trichoderma against 
Rhizoctonia solani in the soil microecosystem (Fig. 10.1.).

10.3  Soilborne Phytopathogens and Their Causes in Plants

Soil ecosystem is a sophisticated resident of microflora, and their effect may be 
neutral, positive, or negative toward plants (Thrall et al. 2007). Complex microbial 
interactions form between (1) soilborne pathogens and their host and (2) pathogens 
and soil health. Mostly plant microbiota known as “phytobiota” survive in or near 
the soil and affect plant vigor, for example, cotton seed association with Epicoccum 

Fig. 10.1 Different mechanisms of biocontrol that are involved in plant disease management
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nigrum or its exudate improves the seed germination and seedling growth against 
Pythium damping off and root rot (Hashem and Ali 2004; Nelson 2017). Moreover, 
soilborne diseases are often much influenced by soil conditions, even in the absence 
of their host. Well-known soil-borne pathogens, e.g., Phytophthora spp., Pythium 
spp., Rhizoctonia spp., Sclerotinia spp., Fusarium spp., etc., affect the number of 
important crops, including wheat, cotton, vegetables, and temperate fruits 
(Mihajlovic et al. 2017; Patil and Solanki 2016b; Thaware et al. 2017). These patho-
gen inoculums survive in soil as microsclerotia, sclerotia, chlamydospores, or 
oospores. World agriculture production is mostly affected by microbes and caused 
yield losses of approximately 20% and 40% (Oerke 2006; Wild and Gong 2010). 
Fusarium wilt pathogen was estimated to induced 50–75% yield loss in many crops 
(Tiwari et  al. 2018). Soilborne phytopathogens initiate specific symptoms when 
shown compatible association (Singh et al. 2019). Various symptoms are produced 
by pathogens on plants which included decaying and flaccid root, withering and 
drooping of plants, and flaccid, yellowing, stunting, bark cracking, twig or branch 
dieback, etc. (Horst 2001; Patil and Solanki 2016b) (Table 10.1 and Fig. 10.2).

Table 10.1 Soilborne pathogen association with host crop and caused yield loss

Host Pathogen
Yield 
loss References

Cereals (wheat 
barley, oats, rye, 
rice)

Heterodera avenae (cereal cyst 
nematode)

10% Ali et al. (2019)

Ginger Ralstonia solanacearum (bacterial 
wilt)

51.4–
51.9%

Guji et al. (2019)

Wheat Gaeumannomyces graminis var. 
tritici (take all disease of wheat)

2–92% Ramanauskienė 
et al. (2019)

Soybean Rhizoctonia solani 48–52% Chang et al. (2018)
Chickpea F. oxysporum f. sp. ciceri 34–

57.33%
Murali et al. (2018)

Lentil Fusarium oxysporum f. sp. lentis 
(wilt)

50% Tiwari et al. (2018)

Mung bean Fusarium oxysporum 80% Kelly (2017)
Tomato Root knot nematode (Meloidogyne 

spp.)
11–35% Manjunatha et al. 

(2017)
Tomato Fusarium oxysporum f. sp. 

lycopersici
10–50% Ghazalibiglar et al. 

(2016)
Brinjal Sclerotium rolfsii (foot and root rot) 30–50% Siddique et al. 

(2016)
Chickpea F. oxysporum f. sp. ciceri 48.29% Thaware et al. 

(2015)
Turmeric Pythium spp. 74.50% Anoop et al. (2017)

Fusarium spp. 30.51%
Rhizoctonia spp. 28.80%

Tomato Rhizoctonia solani 67–87% Solanki et al. 
(2012a, 2014)

Bean Fusarium decline disease 52% Saremi et al. (2011)
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10.4  Biocontrol Agents Mechanisms Employed Against 
Soilborne Phytopathogens

Biological control agents (BCA) are natural enemies that are used to control the 
activity of virus, bacteria, fungi, and protozoans (Saunders et al. 2010). Functional 
interaction or association between bioagents and pathogenic soil microorganisms 
led to reduced root infection by destroying various infection propagules such as 
conidia, chlamydospores, zoospores, mycelium, and egg mass (Beneduzi et  al. 
2012; Hassani et al. 2018). Therefore, the additive effect of antagonistic biocontrol 
agents was found to be more efficient in declining of multiple soilborne diseases 
(Mazzola and Freilich 2016). Biocontrol agents are a nonpathogenic and an envi-
ronmentally alternative safe method. Some bioagents show dominance over chemi-
cal for plant protection against their pathogens below or up to threshold level 
(Neshev 2008). However, commercialization of BCAs followed Central Insecticide 
Board (CIB) regulatory that provide registration and permit their commercial use 
after reviewing the submitted reports for registration. It is an important point about 
the bioagents that can reduce harmful effects of some pathogens below a certain 

Fig. 10.2 Rhizosphere shows the interaction between beneficial microbes (plant growth- 
promoting fungi (PGPF), plant growth-promoting rhizobacteria (PGPR), and arbuscular mycor-
rhiza (AM)) and protection of plant against the pathogens, and under the rhizosphere microbes 
perform several activities that played a significant role in disease management such as nutrient 
competition, mycoparasitism, siderophores, antibiotics, and phytohormones
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threshold with no substantial changes in soil microbiological balance, something 
that does not occur when chemicals are applied (Neshev 2008) (Fig.  10.3 and 
Table 10.2).

10.5  Biocontrol Agent’s Mechanisms and Their Mode 
of Application

Soil rhizosphere and the plant’ root exudates attracts a group of the mixed microbial 
community including Trichoderma spp., yeast, PGRP, nematodes, etc. (Druzhinina 
et al. 2011; Lombardi et al. 2018). Trichoderma is a free-living ubiquitous antago-
nistic filamentous fungi that is mostly found in soil ecosystem (Harman et al. 2004). 
It is capable of producing different antimicrobial compounds that help in plant 
growth promotion and defense management. Biocontrol agents have strong survival 
ability and high reproductive rate than phytopathogens (Singh et  al. 2016). 
Trichoderma shows bioefficacy against several fungal seeds or soilborne pathogenic 
fungi such as Fusarium, Pythium, Macrophomina, Verticillium, Rhizoctonia, etc. 
(Peteira et al. 2001; Smitha et al. 2014). Among various fungal bioagents, yeast is 
also found commonly in soil ecosystem with variable soil texture, composition, 
humidity, pH, and diverse climatic conditions (Yurkov 2018). Yeast was found in 
association with certain plant roots and exhibited as biostimulants against many 
soilborne pathogens, e.g., Arabidopsis thaliana, stimulate a defensive response 
against Botrytis cinerea and increase soil sporulation of arbuscular mycorrhiza 

Fig. 10.3 Rhizospheric soil association with plant, pathogen, and biocontrol agents
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Table 10.2 Biocontrol agents and their agro-products applied to different crops to protect against 
the pathogens

Biocontrol 
agents

Commercial 
name

Target 
organism Crop

Manufacturer 
company name References

Bacillus 
subtilis 
FZB24

Rhizo-Plus 
Rhizo-Plus 
Konz

Rhizoctonia, 
Fusarium, 
Verticillium 
and 
Streptomyces

Vegetables 
and 
ornamental 
plants

FZB 
Biotechnik, 
GmbH

Shukla 
et al. (2019)

Pseudomonas 
chlororaphis

Cedomon Soilborne 
pathogenic 
fungi

Barley and 
oat

BioAgri AB Shukla 
et al. (2019)

Burkholderia 
cepacia

Deny Soilborne 
pathogenic 
fungi

Vegetables Stine microbial 
products

Shukla 
et al. (2019)

Pseudomonas 
aureofaciens 
strain TX-1

Bio -jet, 
spotless

Rhizoctonia 
solani, 
Pythium

Vegetables 
and 
ornamentals 
in 
greenhouses

EcoSoil system Tsegaye 
et al. (2018)

Trichoderma 
viride

Trichostar Collar/root/
stem rot, wilt, 
damping off

Vegetables 
and pulses

Super Agro 
India,

Kumar and 
Sarma 
(2016)

T. harzianum Tricha Pythium rot, 
Rhizoctonia 
rot, Fusarium 
wilt, Botrytis 
rot, and 
Sclerotium, 
Sclerotinia, 
Ustilago

Food and 
ornamental 
crop

Balaji Crop 
Care Pvt. Ltd., 
India

Kumar and 
Sarma 
(2016)

P. fluorescens Greenmax Rhizoctonia 
solani, 
Pythium 
ultimum

Paddy, 
oilseed, 
pulses, and 
vegetables

GreenMax 
AgroTech, 
India

Kumar and 
Sarma 
(2016)

B. subtilis 
strain GB34

GB34 Rhizoctonia, 
Fusarium

Soybean Gustafon, USA Junaid 
et al. 
(2013)

B. subtilis 
strain GB 03

Kodiac, 
companion

Rhizoctonia, 
Aspergillus

Wheat, 
barley, peas

Growth 
products, USA

Junaid et al. 
(2013)

P. 
aureofaciens 
strain TX-1

Bio -jet, 
spotless

Rhizoctonia 
solani, 
Pythium

Vegetables 
and 
ornamentals 
greenhouses

EcoSoil system Junaid et al. 
(2013)

T. harzianum 
T-22

Root shield, 
plant shield

Soil-borne 
pathogens

Greenhouse 
nurseries

Bio works, 
USA

Junaid et al. 
(2013)

(continued)
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(Ferreira-Saab et al. 2018). Yarrowia lipolytica (yeast) is nonpathogenic and enables 
to clean the environment from oil spill contamination (Goncalves et al. 2014). Yeast 
helps in nitrogen, sulfur oxidation, and phosphorus solubilization near the growing 
plants. Oxidation and solubilization of macronutrients easily intake by plants that 
help to enhance the health and also protect from the soilborne pathogen infection 
(Fu et al. 2016; Alonso et al. 2008). El-Tarabily (2004) studied the sugar beet root 
rot caused by Rhizoctonia solani and documented that the disease is biologically 
controlled by using yeasts, like Rhodotorula glutinis, Trichosporon asahii, and 
Candida valida. El-Mehalawy et al. (2004) reported that various yeast species, e.g., 
Candida, Trichosporon, Rhodotorula, Saccharomyces, etc., establish antagonistic 
activity against soilborne fungal pathogens. These all were used either indepen-
dently or in combination to reduced late-wilt disease occurrence on maize and bean 
caused by Cephalosporium maydis. Kazachstania exigua, Saccharomyces cerevi-
siae, Clavispora, and Candida strains exhibited antimicrobial activity against 
Penicillium italicum (Perez et al. 2016). Beneficial fungal microbiota shows specific 
mechanism against target pathogens present in or near the soil and in or on the 
infected host. Several mechanisms are shown by fungal antagonist microbes such as 
competitions, antibiosis, mycoparasitism or hyperparasitism, lytic enzymes, hydro-
gen cyanide, defense response, and plant growth hormone (Zaidi and Singh 2013; 
Al-Naemi et al. 2016). Protists were found to enhance plant growth by increasing 
plant root’s nutrient absorption and maintaining the soil microbiomes by parasitiz-
ing soil bacteria, fungi, and other eukaryotic organisms (Geisen et al. 2018). Macias 
et  al. (2018) demonstrated that sucrose-mediated tomato root association with 
Trichoderma atroviride promotes growth and stimulates antagonistic biota against 
Phytophthora cinnamomi (Table 10.3).

Table 10.2 (continued)

Biocontrol 
agents

Commercial 
name

Target 
organism Crop

Manufacturer 
company name References

Gliocladium 
catenulatum 
strain JI446

Prima stop 
soil guard

Soilborne 
pathogens

Vegetables, 
herbs, spices

Kemira Agro 
Oy, Finland

Junaid et al. 
(2013)

B. pumilus 
GB34

Yield shield Soil-borne 
fungal 
pathogens

Legumes, 
cereals 
grains, 
soybean, 
cotton, 
peanuts

(Gustafson); 
Bayer Crop 
Science

Berg (2009)

P. syringae Bio-save Yeast and 
bacteria

Apple, pear, 
potato, 
lemon

JET Harvest, 
Longwood, FL, 
USA

Janisiewicz 
and 
Peterson 
(2004)

T. harzianum 
T-22

Trianum-P Pythium spp., 
Rhizoctonia 
spp., 
Fusarium 
spp., and 
Sclerotinia 
spp.

Vegetables, 
soft fruits, 
cereals, corn

Koppert Biological Systems 
partners with nature
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Table 10.3 Biocontrol agents producing secondary metabolites against pathogens

Biocontrol agents Target organisms Secondary metabolites References
Bacillus velezensis Soilborne 

phytopathogens
Lipopeptides (i.e., 
surfactin, 
bacillomycin-D, 
fengycin, and 
bacillibactin) and 
polyketides (i.e., 
macrolactin, bacillaene, 
and difficidin).

Rabbee et al. 
(2019)

Bacillus velezensis Ralstonia solanacearum 
and Fusarium 
oxysporum

Lipopeptide compounds 
(surfactin, iturin, and 
fengycin)

Cao et al. 
(2018)

Trichoderma harzianum Rhizoctonia solani Harzianic acid Manganiello 
et al. (2018)

Bacillus 
amyloliquefaciens

Fusarium graminearum Bacillomycin D Gu et al. 
(2017)

Trichoderma asperellum 
ZJSX5003

Fusarium graminearum 
(corn stalk rot of maize)

Cell wall-degrading 
enzymes (chitinase, 
protease b-glucanases, 
and peptaibols)

Li et al. 
(2016a, b)

Bacillus 
amyloliquefaciens 
SQR-9

Ralstonia solanacearum Volatile organic 
compounds (VOCs)

Raza et al. 
(2016)

Trichoderma harzianum Aspergillus flavus 2-Phenylethanol Chang et al. 
(2015)

Streptomyces 
vinaceusdrappus 
S5 MW2

Rhizoctonia root rot in 
tomato

Chitinase Yandigeri 
et al. (2015)

Streptomyces 
glauciniger

F. oxysporum Chitinase Awad et al. 
(2014)

Bacillus subtilis 
(B-CM191, B-CV235, 
B-CL-122)

Fusarium oxysporum f. 
sp. ciceri (wilt)

Indole acetic acid, 
siderophore, phosphate 
solubilization, and 
hydrolytic enzymes

Singh et al. 
(2014)

Pseudomonas 
fluorescens MPF47

Rhizoctonia root rot in 
tomato

Indole acetic acid, 
siderophore, phosphate 
solubilization, and 
hydrolytic enzymes

Solanki et al. 
(2014)

Arthrobacter agilis 
UMCV2

Botrytis cinerea and 
Phytophthora 
cinnamomi

Dimethyl 
hexadecylamine 
(antibiotics)

Velázquez-
Becerra et al. 
(2013)

Bacillus alvei NRC 14 Fusarium oxysporum Lytic enzymes Abdel-Aziz 
(2013)

Bacillus subtilis strain 
BS-99-H

Gaeumannomyces 
graminis var. tritici

Phenazines Recinosa 
et al. (2012)

(continued)
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10.5.1  Biocontrol Agent Produces Active Secondary Metabolites 
Against Phytopathogens

Biocontrol agents produce active secondary metabolites against several soilborne 
phytopathogens such as Botrytis cinerea and Rhizoctonia solani (Kloepper et  al. 
2004). Plant root exudates are the main attractants that induced signals and later 
recognized by beneficial microbes to increase microbial colonization. Beneficial 
microbes antagonized directly to the soilborne phytopathogens by some mecha-
nisms include (1) production of antibiotics, toxins, and cell wall-degrading enzymes 
such as chitinases and β-1,3-glucanase; (2) competition for establishment and sup-
plement of macronutrients and micronutrients, e.g., increase siderophore iron- 
chelating microbes that help in iron uptake of phytosystems; and (3) toxin production 

Table 10.3 (continued)

Biocontrol agents Target organisms Secondary metabolites References
Lysinibacillus fusiformis 
B-CM18

Growth inhibition of 
Fusarium oxysporum f. 
sp. ciceri, F. solani, F. 
oxysporum f. sp. 
Lycopersici, and 
Macrophomina 
phaseolina

Chitinase Singh et al. 
(2012)

Bacillus 
amyloliquefaciens 
MB101

Rhizoctonia root rot in 
tomato

Mycolytic enzyme 
production and plant 
defense activation

Solanki et al. 
(2012a, b)

Pseudomonas 
fluorescens F113

Soilborne 
phytopathogens

2, 4-Diacetyl 
phloroglucinol

Couillerot 
et al. (2011)

Trichoderma asperellum 
UTP-16

Growth inhibition of 
Fusarium spp.

Chitinase Praveen 
Kumar  et al. 
(2012)

Trichoderma/Hypocrea 
spp.

Rhizoctonia root rot in 
tomato

Hydrolytic enzymes Solanki et al. 
(2011)

Trichoderma spp. Botrytis cinerea, 
Rhizoctonia solani, 
Phytophthora 
citrophthora

Hydrolytic enzymes 
(β-1,6-Glucanases)

Druzhinina 
et al. (2011)

Bacillus subtilis strain 
BS-99-H

Botrytis cinerea and 
Rhizoctonia solani

Iturin A Lin et al. 
(2010)

Rhizobacteria Fusarium wilt Chitinase Siddiqui 
et al. (2009)

Bacillus licheniformis Gibberella saubinetii 
and Aspergillus niger

Chitinase Xiao et al. 
(2009)

Pseudomonas PGC2 Rhizoctonia solani and 
Phytophthora capsici

Chitinase, β-1,3- 
glucanase, protease, etc.

Arora et al. 
(2008)

Bacillus and 
Pseudomonas

Phytopathogens Chitinase Yu (2008)

Trichoderma viride Sclerotium rolfsii Antibiotic pyrone 
(Viridepyronone)

Evidente 
et al. (2003)
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degrades pathogenicity factors of pathogens (Thangavelu and Mustaffa 2012; Zaidi 
and Singh 2013; Hassani et al. 2018; Yandigeri et al. 2015). A recent study by Van 
Agtmaal et  al. (2018) shows confirmation about the microbial community of 
rhizosphere- induced natural volatile organic compounds that cause suppression of 
phytopathogens. Trichoderma spp. are found to produce various metabolites: (a) 
volatile antibiotics and toxins like trichothecene and a sesquiterpene, trichodermin, 
(b) hydrophilic compounds heptelidic acid or koningic acid, and (c) peptaibols 
(Musoni et al. 2015; Marik et al. 2018; Gebarowska et al. 2019).

10.5.1.1  Antibiosis
Many microbes produce and secrete a simple or multiple forms of toxic compounds 
with antimicrobial properties at low concentrations (Homma et al. 1989). Lanteigne 
et al. (2012) reported that Pseudomonas sp. produced HCN and DAPG antibiotics 
which help to suppress the infection of black root rot bacterial canker disease of 
tobacco caused by Thielaviopsis basicola and P. fluorescens; BL915 inhibited the 
tomato bacterial canker caused by Clavibacter michiganensis. Iturin-A is a lipopep-
tide poisonous antibiotic and can kill or inhibit the growth of numerous pathogens 
at low concentration (Meena and Kanwar 2015). Biosynthesis of antibiotics demon-
strated the antagonistic association between microbes and soilborne pathogens 
(Raaijmakers and Mazzola 2012; Schulz-Bohm et al. 2017). Coniothyrium minitans 
sclerotia are producing phenazines antibiotics attack on fungal hyphae of Pythium 
oligandrum (Thomashow et al. 1990; Perez et al. 2016). For instance, Sporothrix 
flocculosa and Sporothrix rugulosa liquid culture produced heptadecenoic and 
methyl-heptadecenoic acid antibiotics with antimycotic and antibacterial activity 
(Choudhury et al. 1994; Benyagoub et al. 1996). Both Botrytis sp. and Fusarium 
oxysporum sp. spore germination and biomass production were reduced in the pres-
ence of antibiotic produced by Salvia flocculosa (Hajlaoui et  al. 1994). In vitro 
studies showed that yeasts Saccharomyces and Zygosaccharomyces were found to 
inhibit the growth of soilborne fungal plant pathogens such as Rhizoctonia fragar-
iae, Sclerotinia sclerotiorum, and Macrophomina phaseolina due to the release of 
volatile antifungal constituents (Zakaria 2018).

10.5.1.2  Siderophores
Siderophores are iron carrier called iron-chelating compounds that are produced by 
rhizospheric microbes. Siderophore scavenging bound form of iron ions and solubi-
lize around the host plants that facilitate the growth and vital physiological func-
tions of plants, e.g., photosynthesis, respiration, translation, and transcription under 
stress conditions (Ahmed and Holmstrom 2014; Sah and Singh 2015). Fungal sid-
erophores like fusigen, fusarine A, and ferricrocin stop the availability of iron for 
various pathogenic microorganisms but for plants scavenging more iron in a solubi-
lized form that help to promote plant growth (Verma et al. 2011; Vinale et al. 2014). 
There are some reports which showed that most of the fungal species are also capa-
ble of producing iron-chelating siderophore under aerobic conditions except the 
Saccharomyces species (Andrey 2018). Fungi belonging to class zygomycetes pro-
duced hydroxamate-type (coprogens, fusigen, fusarine A, and ferricrocin) and 
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carboxylate- type (rhizoferrin) siderophores (Lehner et  al. 2013; Sah and Singh 
2015). Moreover, some yeast species, Candida sp. and Rhodotorula sp., produced 
siderophores named as rhodotorulic acid that have an inhibitory effect on spore 
germination of B. cinerea that caused gray mold disease on apple wound (Sansone 
et al. 2005). Yeast antimicrobial compounds were tested against the Corynespora 
cassiicola and Botrytis cinerea fungal pathogens of Theobroma cacao fruits 
(Ferreira-Saab 2018).

10.5.2  The Enzymatic Action of Biocontrol Agents 
Against Phytopathogens

Transgenic plants carry genes for endochitinase enzyme activity. In such type of 
plants, resistance develops against attacking fungal phytopathogens as well as envi-
ronmental stress (Smith and Osburn 2016; Toufiq et al. 2017). Trichoderma spp. and 
yeast species are capable of producing β-1,3-glucanase and chitinase enzymes that 
initiated lysis in the cell wall of pathogen and thus leads to cytoplasmic leakage and 
cause death (Srivastava et al. 2014). Yeast strains, e.g., Pichia sp., Rhodotorula sp., 
Cryptococcus sp., Aureobasidium sp., and Tilletiopsis sp., exhibited to produce 
β-1,3-glucanase enzyme against fungal test pathogens such as Botrytis cinerea, 
Penicillium expansum, Rhizoctonia stolonifer, Aspergillus niger, Sphaerotheca 
fuliginea, and Puccinia xanthii (El-Tarabily 2004; Hartmann et al. 2010). Chatterton 
and Punja (2009) stated that Clonostachys rosea f. sp. catenulate produced both 
chitinase and β-1,3-glucanase enzymes and showed a deterioration of mycelia of 
Fusarium and Pythium pathogens which caused root rot, stem rot, and damping-off 
diseases in cucumber plants. Aureobasidium pullulans 1WA1 stimulated secretion 
of both endo- and exo-β-1,3-glucanases in the presence of Botrytis cinerea which 
caused gray mold disease of grapevine (Bauermeister et al. 2015). Bacillus subtilis, 
Bacillus pumilus, Bacillus megaterium, and Agrobacterium radiobacter had showed 
antifungal activity by secreting chitinase, glucanase, and protease enzyme against 
citrus and blue mold incited by Penicillium digitatum (Mohammadi et al. 2017). 
Chitosan exhibited a suppressive effect on spore germination and hyphae growth of 
Fusarium oxysporum f. sp. radicis lycopersici and Verticillium dahliae (Palma-
Guerrero et al. 2008). Chitosan shows antifungal activity against pathogenic yeasts, 
e.g., Candida spp. and Cryptococcus spp. (Camacho et al. 2017; Garcia et al. 2018).

10.5.2.1  Detoxification of Pathogen Toxin
Detoxification is a mechanism that reduced the virulence of pathogenic toxins by 
binding with some amino acids (Aliashkevich et al. 2018). Both Alcaligenes denit-
rificans and P. dispersa help in detoxifying Xanthomonas albilineans’ virulent com-
pound albicidin (Basnayake and Birch 1995; Walker et al. 1988). Similarly, fusaric 
acid toxicity was neutralized by Burkholderia cepacia and Ralstonia solanacearum 
(Toyoda et al. 1988). T. viride, T. hamatum, and T. virens were produced compound 
gliotoxin against Rhizoctonia solani (Reino et  al. 2008). The yeast showed 
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antagonistic properties against pathogens by biosynthesis of toxins called mycotox-
ins (Hatoum et al. 2012).

10.5.2.2  Phytohormones
Phytohormones such as indole-3-acetic acid, ethylene, cytokinins, and gibberellins 
play an important role against biotic and abiotic stresses (Khan et al. 2011; Shabir 
et al. 2016; Xu et al. 2018; Li et al. 2016a, b, 2017). Contreras-Cornejo et al. (2009) 
reported that Trichoderma spp. play a key role for auxin phytohormones secretion 
to promote plant the growth and development. Aspergillus fumigatus was found to 
secrete gibberellins and regulate the production of other phytohormones like 
abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) (Khan et al. 2011). 
Cosme et al. (2016) observed that Piriformospora indica is a mycorrhizal fungus- 
induced gibberellin hormone against root herbivory and biotic stress. T. asperellum 
has increased the indole’s three acetic acid (IAA) content in maize plants and pro-
moted their growth by activating the plasma membrane H+-ATPase (Coria et al. 
2016). de Zelicourt et al. (2018) recently reported that ethylene hormone induced by 
endophyte Enterobacter sp. SA187 helped to improve the yield of alfalfa crops and 
growth Arabidopsis. Wang et al. (2018) reported that an endophytic Streptomyces 
chartreusis WZS021 has enhanced the phytohormones such as indole acetic acid, 
abscisic acid, and ethylene accumulation against drought stress in sugarcane plants.

10.5.3  Hyperparasitism Found in the Presence 
of Antagonistic Microbiota

Hyperparasitism is an interaction between specific microbes and target pathogens to 
either kill its propagules or suppress their growth and reproduction; it is also called 
parasitism. Trichoderma harzianum produced anthraquinone pachybasin that rec-
ognizes the host and increases the number of coils around Rhizoctonia solani (Lin 
et al. 2012). Some biocontrol fungi show predatory behavior in the production of 
enzymes that causes cell wall lysis of pathogens and helps to intake nutrient con-
tents of pathogens (Junaid et al. 2013). Trichoderma sp. feed on sclerotia of R. solani 
by producing chitinase (Abbas et al. 2017). Lettuce Sclerotinia diseases were effec-
tively controlled by using Coniothyrium minitans and Sporidesmium sclerotivorum 
(Jones et  al. 2004). Verticillium dahliae was mycoparasitized by T. harzianum 
in vitro (Ruano-Rosa et al. 2016). Trichoderma harzianum parasitized the fungal 
hyphal of Rhizoctonia solani, causing black scurf and canker potato under in vitro 
conditions (Brewer and Larkin 2005; Ibrahim 2017). Arbuscular mycorrhizal fungi 
(AMF) has showed a symbiotic association with Solanaceous crops and helped to 
improve the plant health and defense system against Potato virus Y (PVY) (Sikora 
et al. 2019).
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10.5.4  Competitions

Competition is a basic process that exhibited interconnections between nonpatho-
genic microorganisms and pathogens in rhizospheres (Brien 2017). Host plant hin-
ders root surface from being exposing to pathogens and drawing nutrients from 
rhizosphere quickly, thus they reproduce faster than soilborne pathogens. Yeast has 
special antagonistic ability to colonize root rapidly before root exposed to the 
pathogens, e.g., 6 days preinoculation with Candida valida and Trichosporon asa-
hii showed higher roots colonization after radicle emergence, while Rhodotorula 
glutinis pre-interaction colonization was initiated after 8  days. Although both 
pathogens and bioagents present in same rhizosphere but their association lead to 
competition (Duffy 2001). Abdallah et  al. (2015) reported that nine isolates of 
Aspergillus sp. had  showed antagonistic activity against Fusarium sambucinum 
(dry rot) and Phytophthora erythroseptica pink rot of potato tubers. Bacillus and 
Pseudomonas species are most commonly used as biocontrol agents against soil-
borne phytopathogens due to their strong compatibility with moist soil and high 
organic manure, e.g., Fusarium wilt of chickpea (Abed et al. 2016; Singh et al. 
2014). Bubici et  al. (2019) recently reported that the fusarium wilt of banana 
(FWB) caused by Fusarium oxysporum f. sp. cubense found to be managed by 
using Pseudomonas spp. up to 79% and Trichoderma spp. up to 70%. Mycophagous 
nematodes, for example, Aphelenchus, Filenchus, Tylenchus, and Iotonchium, have 
been found to feed on fungi and to be used as biocontrol agents for controlling 
phytopathogenic fungi (Tarique et  al. 2017). Lagerlof et  al. (2011) reported the 
Aphelenchoides spp. and A. avenae reduced the infection of R. solani inciting the 
damping-off disease in cauliflower seedlings. Aphelenchoides besseyi caused fun-
gal cell wall degradation by feeding on it (Wang et al. 2014). Cetintas et al. (2018) 
examined the plant growth- promoting rhizobacteria strains which significantly 
reduced the Meloidogyne incognita infection on tomatoes. Pseudomonas fluores-
cens and Rhizobium leguminosarum were  found to suppress the Meloidogyne 
javanica infection and enhanced growth of lentil, bean, chickpea, lentil, pea, and 
tomato (Saeedizadeh 2016; Tabatabaei and Saeedizadeh 2017). Xiang et al. (2017) 
demonstrated the antagonistic behavior of plant growth-promoting rhizobacteria 
(PGPR) by forming spore on Heterodera glycines cuticle in soybean. Rhizobium 
showed inhibitory effect on causing black rot disease of fava bean (Tamiru and 
Muleta 2018). Trichoderma citrinoviride (T33) and H. semiorbis (T15) used to 
control Fusarium wilt severity up to 19.77% under greenhouse condition 
(Al-Mekhlafi et al. 2019).

10.5.5  Biocontrol Agents Induced Host Resistance

Systemic acquired resistance (SAR) is facilitated by chemical compounds salicylic 
acid (SA) that led to produced pathogenesis-related proteins (PR protein) (Agrios 
2005). Induced systemic resistance called secondary mediated pathway, which 
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induced by signal compounds like jasmonic acid (JA) and ethylene secreted in the 
presence of antagonistic and non-pathogenic rhizomicrobes (Nie et al. 2017). PR 
proteins usually synthesize a variety of enzymes in host directly against the infec-
tion caused by invading pathogens via (1) lysing of invading host cells, (2) reinforc-
ing host boundaries to resist infections, and (3) host-induce localized cell death 
(Vallad Goodman 2004). Various Trichoderma spp. can produce several plant 
defense elicitors such as xylanases, swollenins, peptaibols, and cerato-platanins 
(Harman et al. 2004; Druzhinina et al. 2011; Saldajeno et al. 2014). Microbiota- 
containing fungi belonging to genus Trichoderma are found most effective to stimu-
late plant growth and eliminate plant pathogens by producing specific and 
nonspecific antibiotics (Bhattacharjee and Dey 2014; Gebarowska et  al. 2019). 
Beside these microorganisms showing antagonistic activity, they are also able to 
stimulate plants to defend themselves against phytopathogens by inducing systemic 
resistance (ISR) (Van Loon 2007). A nonpathogenic Fusarium solani can be used as 
a biological control agent by inducing defense response against pathogens (Vallad 
and Goodman 2004). Chitosan is a bioactive polymer found in fungal cell wall. 
Chitosan acts as an elicitor to stimulate defense reactions in plants against various 
soilborne pathogenic fungi, e.g., Penicillium digitatum, Macrophomina phaseolina, 
Fusarium solani, Fusarium fujikuroi, Fusarium. oxysporum f. sp. lycopersici, 
Fusarium oxysporum f. sp. cubense, Phomopsis asparagi, Colletotrichum gloeo-
sporioides, Rhizopus stolonifer, Sclerotium rolfsii, Rhizoctonia solani, Candida 
spp., and Cryptococcus spp. (Ali et al. 2010; Al-Hetar et al. 2011; Oliveira Junior 
et al. 2012; Bhattacharya 2013; Long et al. 2014; Kim et al. 2016; Camacho et al. 
2017; Garcia et al. 2018).

10.6  Mode of Application of Biocontrol Agents Against 
the Soilborne Phytopathogens

Pure and additive forms of biocontrol agents were used against soilborne phyto-
pathogens. Additive biocontrols and surfactants have increased the efficacy of bio-
control agents as much as with fungicides to control many pathogenic plant diseases, 
e.g., 10% PelGel (polyox-N-10) is a binder which is used to coat the seed with 
Trichoderma sp. and enhance their growth and bioefficacy against Pythium sp. (Lo 
et al. 1997). Biocontrol must be applied in an active form in plant or soil ecosystem 
present around plant roots at the time when conditions become favorable for patho-
genic disease cycle. The plant root surface is colonized rapidly by antagonistic 
microbes and unable to come in contact with pathogens infection. Therefore, the 
plant is protected via biofungicidal applications. Babeva and Belyanin (1966) 
reported that the culture filtrates of isolated nine yeast strain of Torulopsis sp. from 
cabbage rhizosphere were used to increase presoaked cabbage seed germination. 
Trichoderma species have some antimicrobial gene. Moreover, these genes can be 
isolated and cloned for commercial application on a large scale, as shown in 
Table 10.4.
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10.7  Plant Growth-Promoting Rhizobacteria

Gray and Smith (2005) classified plant growth-promoting rhizobacteria into two 
categories based on their presence outside and inside the contact region. These 
included (1) extracellular plant growth-promoting rhizobacteria (ePGPR) such as 
Agrobacterium, Azotobacter, Azospirillum, Azotobacter, Bacillus, Pseudomonas, 
Burkholderia, Caulobacter, Chromobacterium, Erwinia, Flavobacterium, 
Micrococcus, and Serratia and (2) intracellular plant growth-promoting rhizobacte-
ria (iPGPR) generally found inside cells of root nodule and belongs to family of 
Rhizobiaceae which includes Allorhizobium, Bradyrhizobium, Mesorhizobium, and 
Rhizobium, endophytes, and Frankia species. Rhizobium and Frankia species asso-
ciated symbiotically with higher plants and can fix atmospheric nitrogen 
(Bhattacharyya and Jha 2012). Deshmukh and Shinde (2016) reported that PGPRs 
had been proven as vital biocontrol agents available in the form of natural enemies 
to protect plants against various soilborne phytopathogens. Rhizobium formed a 

Table 10.4 The beneficial gene of biocontrol agents associated with antagonism of soilborne 
phytopathogens

Biocontrol agent
Gene code for the 
lytic enzyme Gene function against pathogen References

Pseudomonas spp. 
and Streptomyces 
spp.

NRPS (non- 
ribosomal 
peptide-synthetase)

NRPS induce antibiotic 
(vancomycin and gramicidin) 
and lipopeptide (surfactin, iturin 
A, and bacillomycin) production 
against Fusarium wilt of banana

Zhao et al. 
(2018)

Clonostachys 
rosea

prs6 (serine 
protease)

Protease parasitized the plant 
pathogenic fungi F. 
graminearum

Iqbal et al. 
(2018)

Trichoderma 
virens

Tv-cht1 33-kDa endochitinases 
mycoparasitized the R. solani

Abbas et al. 
(2017)

T. harzianum ChiB1 (chitinase) Chitinase catalyze the 
transglycosylase of Aspergillus 
fumigatus

Andres et al. 
(2017)

T. brevicompactum 
IBT40841

Tbtri5 
(trichodermin)

Trichodermin showed 
antimicrobial activity against 
Saccharomyces cerevisiae and 
Kluyveromyces marxianus

Tijerino et al. 
(2010)

T. virens Tv-ech1 
(endochitinase)

Endochitinase reduce the 
infection caused by A. alternata 
and R. solani in transgenic 
cotton plant

Emani et al. 
(2003) and 
Kumar et al. 
(2009)

T. harzianum chit36 (chitinase) Chitinase repress the Alternaria 
radicina and Botrytis cinerea in 
carrot and increase tolerance

Baranski et al. 
(2008)

T. atroviride ech42, nag70 
(chitinases) and 
gluc78 (β-1,3 
glucanase)

Chitinase and β-1,3 glucanase 
inhibit the growth of Rhizoctonia 
solani and Magnaporthe grisea 
in rice

Liu et al. 
(2004)
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symbiotic mutualistic relationship with leguminous plants. Rhizobium can be used 
considerably to improve the growth of legume plants through nitrogen fixation in 
nodules (Mus et al. 2016). PGRP is also used as biocontrol agents to induce host 
defense mechanism and suppress the disease produced by pathogen (Ahemad and 
Kibret 2014). Many antagonistic bacterial species, e.g., Pseudomonas fluorescens, 
P. putida, P. aerofaciens, Burkholderia cepacia, Bacillus subtilis, B.  Polymyxa, 
B. carries, Azotobacter chroococcum, Azospirillum lipoferum, have been found to 
suppress or control cotton rhizospheres diseases (Kloepper et  al. 2004; Heydari 
2007; Ahemad and Kibret 2014).

10.8  Plant Growth-Promoting Rhizobacteria

PGPR help to promote and enhance the plant vigor under diverse environmental 
condition by various mechanisms. PGPR can increase nutrient uptake (nitrogen, 
phosphorus, potassium, and essential mineral elements) (Bargaz et al. 2018). PGPR 
community showed the direct or indirect antimicrobial mechanism in rhizosphere 
niche and included (1) direct promotion of plant growth by increasing biofertilizer 
activity and (2) indirect growth stimulation by biopesticide activity.

10.9  Microbivorous Nematodes

Nematodes are elongated, vermiform threadlike organisms abundantly found in soil 
and have a great impact in the maintenance of soil biodiversity (Yeates and Bongers 
1999). Nematode appears as biocontrol agents showing a wide range of feeding 
types on the protoplasm of plants, fungal hyphae, bacterial cell contents, and proto-
zoans (Yeates et al. 1993). Nematodes establish by antagonistic mechanism, viz., 
parasitoids, predators, pathogens, competition for space, and nutrients, by sharing 
same space habit. Nematodes belong to order Aphelenchida (Aphelenchus, 
Aphelenchoides, Rhadinaphelenchus, and Bursaphelenchus), and some belong to 
order Tylenchida (Ditylenchus spp.) which are called fungivorous nematodes 
(Yeates et al. 1993). They play a critical role in controlling soilborne phytopatho-
genic microbial communities (Yeates 2003). Further studies on nematode 
Aphelenchus avenae significantly reduces plant pathogens like Fusarium monili-
forme, Pythium butler, and Fusarium oxysporum in soil (Gupta 1986; Okada 2006). 
Nematode feed on fungi, bacteria, diatoms, etc., Aphelenchoides hamatum, A. com-
posticola, and Ditylenchus, feed on the spores of pathogenic fungi Agaricus, 
Verticillium, Botrytis, mushroom fungi, etc., while Panagrolaimus and Poikilolaimus 
species feed on numerous bacteria (Muschiol and Traunspurger 2007). Preinoculation 
of Meloidogyne incognita was protective against the bean root rot fungus caused by 
Rhizoctonia solani due to the competition of nutrient and space. Wolfarth et  al. 
(2013) demonstrated that mutualistic interaction of fungivorous collembolans 
Folsomia candida and nematodes Aphelenchoides saprophilus was responsible for 
reducing mycotoxin deoxynivalenol released by Fusarium culmorum on infected 
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wheat straw remaining on the soil surface compared to treatment with Collembolans 
and nematodes being separated. Pochonia chlamydosporia mycoparasitized the 
eggs of Meloidogyne javanica by producing chitosan and proteolytic enzyme 
(Martinez et al. 2016; Escudero et al. 2015). Fungivorous or bacterivorous nema-
todes were associated with microbiomes due to the presence of soilborne pathogen 
by feeding on their body (Morris et al. 2016; Elhady et al. 2017). Nematodes associ-
ated with microbes reduced the severity of apple replant disease (ARD) (Kanfra 
et al. 2018). Strom et al. (2019) reported that soybean cyst nematode Heterodera 
glycines increased population caused change in soil microbial community and cor-
related with yield loss. Soybean cyst nematode density attracted the nematode- 
trapping fungi and reduced the crop loss.

10.10  Conclusions

Beneficial microbiotic factors improve soil life. Generally, soilborne phytopatho-
gens are the major constraint of the agriculture ecology and ecosystem by degrading 
soil fertility, causing human health hazard and groundwater contamination, and 
consequently disrupting the environment. Beneficial microorganisms present in 
microbiome system is promising aid and help to preserve soil fertility in a sustain-
able and eco-friendly manner. Moreover, various impacts of microbiotic factors 
have been discussed in this chapter. One of the most important mechanisms is com-
petition in which beneficial organisms feed on soilborne pathogen propagules and 
thus reduce disease-causing potential. Bioremediation potential of microbiota 
detoxify pollutants like heavy metals and agrochemicals as biopesticides. These all 
have potential to control soilborne phytopathogens, stimulating defense response to 
resist pathogen infection, increase plant growth promoting factors, and allow to 
withstand under adverse environmental conditions.

10.11  Future Approaches

Rhizosphere shows great importance for the plant growth as it is interrelated with 
biotic and abiotic factors of the environment. The rhizosphere is full of viable 
microbes; some show noxious behavior toward the plant, and some show the benefi-
cial effect that will cause to suppress many soilborne pathogen populations and help 
to stimulate defense response. Thus, beneficial phytomicrobiome overcomes the 
noxiousness of harmful microbes and promotes plant growth. Hence, natural micro-
organisms will offer the best safe pest management module and are the cheap source 
that we can easily get from the surrounding rhizosphere. Today farmers are more 
reliable on pesticides for disease management. Therefore, there is a need to manu-
facture large-scale important phytobeneficial biocontrol at minimum cost, is safe, 
has long shelf-life, and can easily be handled by farmers. Biocontrol agents applied 
as to coat the seed or too deep the seedling root in the biocontrol agent formulations 
before sowing. Biocontrol-treated planting material will help to improve the growth 
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and provide strong protections against both abiotic and biotic stress. The microbi-
ome is full of natural constituents that help to overcome the phytopathogenic poten-
tial by various mechanisms involved like mycoparasitism, competition, antibiosis, 
and self-defense system activation.
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Abstract
Zinc (Zn) is an essential and prime micronutrient needed in diminutive amount 
by agricultural crops for complete growth and development. It acts as an essen-
tial and key constituent of a variety of enzymatic reactions, carbohydrate metab-
olism, synthesis of proteins and auxin, and maintenance of cellular membrane 
veracity in plants. Zn is also an essential element in human diet as its deficiency 
affects normal development and functioning of nervous, immune, and skeletal 
systems. Crop plants and their consumable parts serve as major sources of Zn in 
human diet. Plants can uptake Zn as divalent cation, but a major portion of it 
exists in insoluble form in the soil and very little Zn becomes available to the 
plants. There are wide varieties of microbes which employ myriads of biological 
processes to make Zn available to plants from unavailable sources. These zinc- 
solubilizing microbes (ZSM) can be utilized as prospective alternatives to con-
ventional less-efficient fertilizer application for enhancing Zn availability in 
soils. Owing to the naturally available source of Zn in soil and high cost of syn-
thetic Zn fertilizers, the demand of ZSM is escalating with time. The injudicious 
application of chemical fertilizers can be minimized by using ZSM in crop pro-
duction that can lead to environmental and agricultural sustainability. At the 
global level, several researchers have recognized the importance of ZSM for crop 
growth, health, and development. The current article illustrates the role of ZSM 
in improving plant production in an economical, environment-friendly, and sus-
tainable manner. The mechanisms used by ZSM for Zn solubilization have been 
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explained. An attempt has been made to provide a comprehensive global over-
view of research initiatives made in the field of sustainable crop production 
through ZSM, and further opportunities and challenges for use of ZSM-based 
technology in agriculture have been discussed.

Keywords
Agriculture · Bacteria · Fungi · Microbes · Nutrients · Sustainability · Zinc

11.1  Introduction

Zinc (Zn) is an essential and prime micronutrient needed in small amounts 
(5–100  mg Kg−1) by agricultural crops for complete growth, development, and 
nutrition (Singh et  al. 2019; Khan et  al. 2019; Yuvaraj and Subramanian 2015; 
Tripathi et al. 2015; Broadley et al. 2007). In general, Zn deficiency in plants slows 
down the biological processes of photosynthesis and nitrogen metabolism, reduces 
complete growth and development of blossoms and fruits, diminishes the produc-
tion process of carbohydrates and phytohormones, hinders crop ripening duration, 
and ultimately reduces final plant yield and nutritional grain quality (Mandal and 
Das 2013; Sadeghzadeh 2013; Nielsen 2012; Alloway 2008; Alloway 2004). Several 
reports have indicated that at global scale approximately half of the land under agri-
culture cultivation is deficient in available Zn content and as a consequence resulted 
in a significant reduction in both nutritional quality as well as the potential yield of 
agriculturally important crops (Mumtaz et  al. 2017; Cakmak 2008; Welch and 
Graham 2004). Due to the inadequate quantity of Zn contents in the arable soil, Zn 
deficiency has been reported as one of the most prominent and insidious micronutri-
ent deficiencies in several parts of the globe including India, Bangladesh, and Nepal 
(Jasrotia et al. 2018). It is estimated that in India, approximately 48% area of arable 
land is Zn deficient (Singh 2009). Further, Venkatakrishnan et  al. (2003) have 
reported  that within a week exogenously applied water-soluble Zn fertilizers are 
rapidly converted to 96–99% of insoluble Zn forms, although Zn conversion rate to 
insoluble forms varied with soil type and soil physicochemical properties. To over-
come Zn deficiency, several approaches have been developed and evaluated. 
Zn-EDTA and zinc sulfate (ZnSO4) are the most commonly employed fertilizers in 
the agricultural fields (Doolette et al. 2018; Karak et al. 2005; White and Broadley 
2005), but their rapid transformation (within 7 days) into insoluble complex forms 
after application makes them uneconomical and environmentally unsafe (Rattan 
and Shukla 1991). Besides this, several other agronomic interventions (e.g., crop 
rotations and intercropping strategies), traditional crop breeding, and transgenic and 
genetic engineering have been exploited for boosting plant Zn uptake (Gunes et al. 
2007; Zuo and Zhang 2009; Gustin et al. 2009; Cakmak et al. 2010; Mhatre et al. 
2011; Tan et al. 2015). Unfortunately, these technologies are costly, laborious, and 
slower (Hussain et al. 2018). Therefore, it becomes utmost important to devise a 
strategy for enhancing availability of native soil Zn which is abundant but 
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unavailable to plants. In this context, biofortification of agricultural crops by 
employing zinc-solubilizing microbes (ZSM) is advocated as a novel strategy not 
only to fulfill the optimum requirement of micronutrient in food crops but also to 
enhance crop production on less fertile soils.

Recently, zinc solubilization by microbes (Fig. 11.1) has drawn significant atten-
tion in the agriculture sector. Microbial strains with such capabilities are generally 
termed as zinc-solubilizing microbes (ZSM). These microbes, either of fungal or 
bacterial nature, are reasonably supportive in augmentation of Zn availability in the 
soil and also play a crucial role in mobilizing Zn to the edible parts of the plants by 
enhancing Zn uptake capabilities of the plant. More importantly, these microbial 
strains have the capability to facilitate rapid solubilization of insoluble Zn com-
pounds [zinc sulfate (ZnS), zinc carbonate (ZnCO3), and zinc oxide (ZnO)] in soil 
by producing organic acids that confiscate the Zn2+ cations and alter the soil pH in 
close proximity of plant rhizosphere (Alexander 1997). Besides this, the anions also 
have the capability to augment Zn solubility by chelation phenomenon (Jones and 
Darrah 1994). Other mechanisms associated with Zn solubilization include effec-
tive production of siderophores, chelated ligands, proton, and oxidation-reduction 
systems on plant cell membranes (Saravanan et  al. 2011; Chang et  al. 2005; 
Wakatsuki 1995). Several microbes associated with different kinds of agricultural 
crops have been observed to boost growth and Zn contents of plants when applied 
exogenously (Table 11.1). Among them, prominent bacterial genera documented as 
potential Zn solubilizers include Agrobacterium, Azospirillum, Burkholderia, 
Bacillus, Gluconacetobacter, Enterobacter, Microbacterium, Rhizobium, Serratia, 
Pseudomonas, and Thiobacillus (Vidyashree et  al. 2018a, b; Jamali et  al. 2018; 
Khanghahi et  al. 2018; Khande et  al. 2017; Naz et  al. 2016; Pawar et  al. 2015; 
Hussain et al. 2015; Abaid-Ullah et al. 2015; Vaid et al. 2014; Ramesh et al. 2014; 
Deepak et al. 2013; Subramanian et al. 2009; Saravanan et al. 2007; Whiting et al. 

Fig. 11.1 Principal microbial genus associated with Zn-solubilization and uptake by plants

11 Zinc-Solubilizing Microbes for Sustainable Crop Production: Current…



284

Table 11.1 Effect of ZSM on crop growth, yield, and uptake

Crop(s) Microbes
Experimental 
condition(s) Effect on crops References

Maize Azotobacter, 
Azospirillum

Greenhouse Increase in Zn contents 
of grain

Biari et al. 
(2008)

Maize B. aryabhattai, B. 
subtilis, and Bacillus sp.

Growth 
chamber

Enhancement in the 
root length, root fresh 
biomass, and root dry

Mumtaz 
et al. (2017)

Maize Gluconacetobacter 
diazotrophicus

Pot Increase the available 
zinc content in the soil

Sarathambal 
et al. (2010)

Maize Enterobacter cloacae Pot assay Increase in dry weight 
and Zn uptake

Omara et al. 
(2016)

Maize Bacillus sp. Growth room Enhancement in growth 
and physiology of 
plants

Hussain 
et al. (2015)

Maize Pseudomonas sp. P29, 
Pseudomonas sp. P33, 
and Bacillus sp. B40

Pot assay Increase in total dry 
mass and uptake of Zn

Goteti et al. 
(2013)

Rice Sphingomonas sp., 
Enterobacter sp.

Greenhouse Increase in Zn 
bioavailability in 
rhizosphere soils and 
grain yields and Zn 
densities in grains

Wang et al. 
(2014)

Rice Acinetobacter sp. and 
Serratia sp.

Pot assay Increase in plant growth 
and root development

Othman 
et al. (2017)

Rice Burkholderia and 
Acinetobacter

Greenhouse Enhancement in the 
total Zn uptake and 
reduction in phytate

Vaid et al. 
(2014)

Rice A. lipoferum, 
Pseudomonas sp., 
Agrobacterium sp. 
(consortium)

Field Increase in growth, 
physiology, and yield

Tariq et al. 
(2007)

Rice A. lipoferum, 
Pseudomonas sp., 
Agrobacterium sp. 
(consortium)

Field Increase in growth, 
physiology, and yield

Hafeez et al. 
(2002)

Rice Pseudomonas 
aeruginosa, Ralstonia 
pickettii, Burkholderia 
cepacia, Klebsiella 
pneumonia

Pot Increment in shoot and 
root lengths as well as 
higher dry weights of 
root and shoot

Gontia- 
Mishra et al. 
(2017)

Rice Bacillus sp. AZ6 
(consortium with ZnO)

Pot Improved growth, 
physiology, and yield 
parameters of rice; 
improved the quality of 
rice grains and 
bioaccumulation of Zn 
in various parts of rice

Zeb et al. 
(2018)

(continued)
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2001; Fasim et  al. 2002). Similarly, fungal strains belonging to genera Absidia, 
Penicillium, Paxillus, Hymenoscyphus, Oidiodendron, Suillus, Emericella, 
Beauveria, and Trichoderma have been identified as promising zinc-solubilizing 
fungi (ZSF) (Pawar et al. 2015; Gadd 2007; Fomina et al. 2005a, b; Schöll et al. 
2006; Martino et al. 2003). Therefore, exploitation of these microbial inoculants for 
boosting available Zn content in the soil as well as its enhanced plant uptake could 
be one of the prospective options. Hence, this chapter provides a comprehensive 
global overview of research initiatives made in the field of sustainable crop cultiva-
tion through ZSM and brings forth the opportunities along with the challenges that 
exist for the use of ZSM-based technology in agriculture.

11.2  Role and Function of Zn in Plant

Zinc (Zn) is an essential element for plant growth and sustainable crop production, 
as the plants need all the essential nutrients in appropriate proportion for proper 
growth functions and optimum yield (Gupta et  al. 2016; Hafeez et  al. 2013; 
Sadeghzadeh 2013). Most importantly, in more than 1200 proteins, such as zinc- 
finger proteins, RNA polymerases, and DNA polymerases, existing inside the plant 
system, Zn works as a cofactor (Lucini and Bernardo 2015; Figueiredo et al. 2012; 

Table 11.1 (continued)

Crop(s) Microbes
Experimental 
condition(s) Effect on crops References

Soybean Bacillus firmus 
KHBD-6 and Bacillus 
amyloliquefaciens 
KHBAR-1

Microcosm Increase in the zinc 
concentration in 
soybean seeds

Sharma et al. 
(2012)

Soybean 
and 
wheat

Bacillus aryabhattai Microcosm Improved mobilization 
of zinc and its 
concentration in edible 
portion, yield of 
soybean and wheat

Ramesh 
et al. (2014)

Tomato Bacillus aryabhattai, 
Pseudomonas 
taiwanensis, Bacillus 
sp., Enterobacter 
oryzae, and Bacillus 
aerophilus

Pot assay Increase in growth, 
yield, and better quality 
parameters

Vidyashree 
et al. (2018a, 
b)

Wheat Pseudomonas fragi, 
Pantoea dispersa, 
Pantoea agglomerans, 
E. cloacae, and 
Rhizobium sp.

Pot assay Enhancements in total 
Zn uptake by plant

Kamran 
et al. (2017)

Wheat Providencia sp., 
Calothrix sp., and 
Anabaena sp.

Field Improvement in the 
nutritional quality of 
wheat grains, in terms 
of protein content

Rana et al. 
(2012)
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Lopez-Millan et  al. 2005). Further, it is required for the efficient functioning of 
carbohydrate and auxin metabolism in plants (Alloway 2008). Besides this, 
Zn-finger transcription factors also regulate the growth and development of leaf, 
flower, fruit, and fertilization (Epstein and Bloom 2005). Zn is also involved in the 
regulation of various plant physiological processes like repair processes of photo-
system (PS)-II complex during photo-inhibition, maintenance of carbon-dioxide 
concentration in the mesophyll, hormone secretion and mitogen-activated protein 
kinases (MAPK)-based signal transduction, etc. (Hansch and Mendel 2009; Lin 
et al. 2005; Bailey et al. 2002). It has been observed that in the majority of crop 
plants, Zn deficiency results in stunted stem growth, reduced leaf size, and chlorosis 
and also negatively influences the root development, water uptake and transport 
inside the plant, pollen formation, and grain yield (Hefferon 2019; Tavallali et al. 
2010; Alloway 2004). More specifically, in barley and wheat, a noteworthy decline 
in crop growth and yield has been observed in Zn-deficient soils (McDonald et al. 
2001). Moreover, Zn deficiency also diminishes the amount of Zn contents in con-
sumable parts of crops and resulted in poor nutritional quality of food (Costerousse 
et  al. 2018; Welch and Graham 2004). In the case of rice, Zn deficiency causes 
multiple deformations in rice seedlings. For instance, rice leaves develop brown 
blotches and streaks over leaves and result in stunted plant growth. Moreover, under 
severe conditions, death of plants may occur, while those plants that recuperate will 
show considerable hindrance in maturity and will lead to substantial grain yield loss 
(Hafeez et al. 2013).

11.3  Zinc-Solubilizing Microorganisms (ZSM)

11.3.1  Zinc-Solubilizing Fungi (ZSF)

Zinc solubilization is performed by a wide range of fungi. The significance of Zn in 
the fungal growth and nutrition was noticed for the first time in Aspergillus niger, 
which was unable to grow without Zn content (Raulin 1869). Strains belonging to 
Absidia cylindrospora, A. spinosa, A. glauca, Penicillium aurantiogriseum, P. brevi-
compactum, and P. simplicissimum efficiently solubilized ZnO and Zn3(PO4)2 forms 
of Zn present in the soil (Coles et  al. 2001). Among the mycorrhiza, Beauveria 
caledonica, Hymenoscyphus ericae, Oidiodendron maius, Paxillus involutus, Suillus 
bovinus, and S. luteus showed prospective role in the solubilization of insoluble Zn 
compounds (Fomina et al. 2005a, b; Schöll et al. 2006; Gadd 2007). Solubilization 
of Zn compounds of water-insoluble nature by O. maius isolated from heavy-metal- 
polluted locations has been reported by Martino et al. (2003). Anitha et al. (2015) 
identified Emericella rugulosa ZSF-2, Penicillium citrinum ZSF-5, Aspergillus can-
didus ZSF-7, A. terreus ZSF-9, and A. niger ZSF-16 as potent candidates for effi-
cient solubilization of three insoluble sources of zinc [ZnO, ZnCO3, and Zn(PO4)3]. 
In another similar study, Pawar et al. (2015) studied solubilization of insoluble zinc 
sources [ZnO, ZnCO3, and Zn3(PO4)2] by Trichoderma viride and T. harzianum and 
further confirmed their prospective utility as ZSF.
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11.3.2  Zinc-Solubilizing Bacteria (ZSB)

Bacteria is one of the most prospective alternatives that could assist plants in fulfill-
ing its optimum requirement of Zn by solubilizing complex Zn forms occurring in 
the soil. A wide range of bacterial species belonging to genera Acinetobacter, 
Bacillus, Burkholderia, Gluconacetobacter, Klebsiella, Microbacterium, Pantoea, 
Pseudomonas, Ralstonia, Serratia, and Thiobacillus have been reported to solubi-
lize Zn (Fig. 11.1). Hutchins and associates (1986) noticed that facultative thermo-
philic iron oxidizers, Thiobacillus thiooxidans and T. ferrooxidans, have the 
potential to solubilize Zn from complex sulfide ore (sphalerite) forms. Similarly, 
Simine et al. (1998) reported zinc phosphate solubilization potential of P. fluores-
cens isolated from a forest soil. They noticed production of high concentration of 
gluconic acid when P. fluorescens 3a was cultivated in a medium containing zinc 
phosphate. Similarly, ZnO solubilizing strains of Microbacterium saperdae, 
Enterobacter cancerogenus, and Pseudomonas monteilii were screened and identi-
fied in the Zn hyperaccumulating rhizosphere of Thlaspi caerulescens plant 
(Whiting et  al. 2001). Fasim et  al. (2002) reported solubilization of Zn salts by 
Pseudomonas aeruginosa CMG 823 derived from the ambient environment of a 
tannery. In their study, they noticed that the solubilization of zinc oxide by bacte-
rium occurred due to a rapid gain in the H+ concentration by brisk synthesis of 
2-ketogluconic acid. A similar conclusion was reached by Saravanan et al. (2007) in 
their studies where Gluconacetobacter diazotrophicus was identified as a potential 
agent for effective solubilization of insoluble Zn compounds. Hussain et al. (2015) 
revealed the ZnO solubilizing capabilities of Bacillus sp. AZ6 and Bacillus sp. AZ6 
strains. Othman et al. (2017) identified and established Acinetobacter sp. TM56 and 
Serratia sp. TM9 as prospective zinc solubilizer inoculants for rice growth promo-
tion. Recently, E. cloacae PBS 2, Pseudomonas fragi EPS 1, Pantoea dispersa EPS 
6, P. agglomerans EPS 13, and Rhizobium sp. LHRW1 were identified and classi-
fied as promising zinc solubilizers (Kamran et al. 2017). Similar studies of Khande 
et al. (2017) also identified B. anthracis, B. cereus, B. tequilensis, B. thuringiensis, 
and B. subtilis subsp. inaquasorum as promising ZSB for enhancing seed yield and 
Zn fortification in the seeds of soybean and wheat crops. Gontia-Mishra and associ-
ates (2017) identified Zn solubilizing capabilities of Burkholderia cepacia, 
Klebsiella pneumonia, P. aeruginosa, and Ralstonia pickettii. Similarly, B. aryab-
hattai S10, Bacillus sp. ZM20, Bacillus aryabhattai ZM31, and Bacillus subtilis 
ZM63 and these strains were ascertained as potential zinc-solubilizing candidates 
for biofortification in maize (Mumtaz et al. 2017).

11.3.3  Mechanism of Zn Solubilization by Microbes

The principal mechanisms of Zn solubilization by microbes include (i) acidifica-
tion, (ii) chelation, and (iii) chemical transformation. Majority of research articles 
documented that different kind of microbes including bacteria excrete diverse kinds 
of organic acids (Table 11.2) and extrude protons to reduce the rhizosphere pH (Wu 
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et al. 2006). Particularly, Bacillus and Pseudomonas have the capacity to generate 
organic acids which decrease the soil pH, thereby ensuring sufficient Zn availability 
to the plant (Saravanan et al. 2004). It has been observed that rhizobacteria produce 
gluconate or the derivatives of gluconic acids (e.g., 2-ketogluconic acid and 
5- ketogluconic acid) for Zn solubilization (Saravanan et al. 2011; Tariq et al. 2007). 
Hussain et al. (2004) reported that Bacillus sp. AZ6 has the capability to solubilize 
insoluble source of Zn by synthesizing various types of organic acids (e.g., gallic 
acid, caffeic acid, syringic acid, cinnamic acid, chlorogenic acid, and ferulic acid). 
All of the above-described mechanisms facilitate enhanced Zn availability in soil 
and its uptake by plants. Other indirect effects on plant growth have also been 
reported. For example, 5-ketogluconic acid synthesized by G. diazotrophicus stimu-
lated the Zn solubilization route, and the available Zn2+cations have been noticed to 
enhance the nematicidal activity of G. diazotrophicus against Meloidogyne incog-
nita in tomato (Saravanan et al. 2007).

In case of fungi, Martino et al. (2003) reported that mycorrhizal fungi produced 
organic acids to convert insoluble zinc phosphate [Zn3(PO4)2] and zinc oxide [ZnO] 
into water-soluble Zn. Similarly, Subramanian et  al. (2009) reported that 

Table 11.2 Organic acids produced by ZSM

ZSM(s) Organic acid References
Aspergillus terreus Gluconic acid Anitha et al. 

(2015)
Bacillus aryabhattai, Pseudomonas taiwanensis, 
and Bacillus sp.

Lactic acid, malonic 
acid, and citric acid

Vidyashree 
et al. (2018a, 
b)

Bacillus sp. Cinnamic acid, ferulic 
acid, caffeic acid, 
chlorogenic acid, 
syringic acid, and gallic 
acid

Hussain et al. 
(2004)

Gluconacetobacter diazotrophicus 5-ketogluconic acid Saravanan 
et al. (2007)

Pseudomonas aeruginosa 2-ketogluconic acid Fasim et al. 
(2002)

Pseudomonas fluorescens Gluconic acid and 
2-ketogluconic acid

Simine et al. 
(1998)

Pseudomonas sp. Acetic acid and 
gluconic acid

Jaivel et al. 
(2017)

Streptomyces cinnamonensis, Streptomyces scabiei, 
and Streptomyces netropsis

Formic acid, malonic 
acid, lactic acid, citric 
acid, and propionic acid

Poovarasan 
et al. (2015)

Pseudomonas chlororaphis strain 44, Pseudomonas 
moraviensis strain 106, Pseudomonas syringae 
strain 24, Stenotrophomonas rhizophila NZSB, 
Curtobacterium oceanosedimentum strain 81, 
Streptomyces narbonensis strain 68, Plantibacter 
flavus strain 5, and Plantibacter flavus strain 42

Gluconic acid, citric 
acid, fumaric acid, 
malic acid, 
2-oxoglutaric acid, and 
succinic acid

Costerousse 
et al. (2018)
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inoculation of arbuscular mycorrhizae reduced the pH of rhizospheric soil and facil-
itated quick release of Zn from mineral fractions. However, the level of rhizosphere 
pH sinking differed among microbes (Giri et al. 2005). Wu et al. (2006) recorded a 
significant decline of 0.47 units in pH, owing to the fact that bacterial inoculation 
helped in the release of organic acids and H+, which eventually led to the rapid Zn 
solubilization and in turn improved plant Zn uptake efficiency. Entomopathogenic 
strains of ectomycorrhizal fungi like Beauveria caledonica displayed excellent 
potential to solubilize chemical forms of Zn (e.g., zinc phosphate) in contrast to 
mineral forms (e.g., pyromorphite) by employing acidolysis and complexolyis 
mechanisms. Besides this, oxalic acid production has also been found related to Zn 
solubilization (Fomina et al. 2004). The role of the siderophores in Zn solubilization 
has been reported in the case of Fusarium solani (Hong et al. 2010).

Zinc chelation is another mechanism employed by E. cancerogenus, 
Microbacterium saperdae, and P. monteilii for enhancing Zn bioavailability and its 
uptake efficiency by plant roots (Whiting et al. 2001). Generally, bacterial metabo-
lites form complexes with Zn2+ and diminish their response within the soil system 
(Tarkalson et al. 1998). Subsequently, these newly formed Zn chelates travel toward 
the roots and liberate chelating ligands (Zn2+) at the root surface, making them inde-
pendent to chelate with other Zn2+ ions from the soil solution. In another indepen-
dent study, Tariq et  al. (2007) observed that a biofertilizer comprised of 
Agrobacterium sp. Ca-18, Azospirillum lipoferum JCM-1270, A. lipoferum ER-20, 
and Pseudomonas sp.96-51 helped to discharge fixed Zn quickly and also made it 
bioavailable to rice seedlings for a longer period by discharging Zn-EDTA as a 
chelating molecule. Plant inoculation with Penicillium bilaji has also been reported 
to improve Zn bioavailability to plants via chelating mechanisms (Kucey 1987). The 
results of a metal mobilization experiment performed by Li et al. (2010) demon-
strated that despite the presence of glucose in the growth medium, Burkholderia 
cepacia released oxalic, tartaric, formic, and acetic acids which facilitated Zn solu-
bilization. Recently, Costerousse et al. (2018) explained a range of Zn solubilizing 
processes adopted by bacteria presented in the wheat rhizosphere. They reported 
proton extrusion and organic acid synthesis by bacterial strains as the major mecha-
nisms linked with Zn solubilization. Further, they observed that in ZnO liquid solu-
bilization assays, Curtobacterium, Plantibacter, Pseudomonas, Stenotrophomonas, 
and Streptomyces triggered the rapid synthesis of organic acids, and as a conse-
quence medium acidification took place, which further assisted in effective ZnO 
solubilization in the presence of glucose. Interestingly, they observed that Zn solu-
bilization by Streptomyces and Curtobacterium occurred due to a rapid production 
of six and seven different organic acids, while other strains involve only gluconic, 
malonic, and oxalic acids for Zn solubilization. Similarly, Plantibacter strains per-
formed ZnO dissolution by proton extrusion via ammonia consumption in the 
absence of glucose. On the other hand, Curtobacterium strains employed complex-
ation processes by involving glutamic acid (Costerousse et al. 2018). Therefore, it is 
clearly evident that solubilization mechanisms vary among ZSM.
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11.4  Techniques for Identification and Determining 
Zinc- Solubilizing Capabilities of Microbes

Zinc-solubilizing microbes can be screened for their ability to solubilize Zn from 
mineral salts in agar medium [Glucose-10  g, (NH4)2SO4-1.0  g, KCl-0.2  g, 
K2HPO4-0.1 g, MgSO4-0.2 g, and H2O-1000 ml with pH 7.0]. Petri plates supple-
mented with either insoluble zinc oxide (ZnO) or zinc carbonate (ZnCO3) or zinc 
phosphate in the concentration of 0.1% have been commonly used. Spot inoculation 
with actively growing culture (5 μl) onto the medium and incubation at 25–28 °C for 
3–5 days has been found suitable. The appearance of transparent and clear zone 
reveals the zinc-solubilizing capability of spotted strain. The zone diameter is mea-
sured and zinc-solubilizing index (ZSI) is calculated using the following formula:

 ZSI Colony diameter Diameter of clear and transparent halo= + zzone colony diameter/  

Generally, atomic absorption spectrophotometer (AAS) is used to estimate the 
available Zn in the supernatant. In general, the microbial solubilization of Zn is 
strongly influenced by pH, oxygen, microbial strains used, and kind of Zn-bearing 
minerals, and therefore, optimal conditions for Zn solubilization by microbes need 
to be standardized for appropriate results.

11.5  Application of ZSM in Sustainable Crop Production

Several research reports highlighted that ZSM in soil health restoration and sustain-
able crop production is gaining significant importance day by day. Whiting et al. 
(2001) studied the efficiency of ZSB strains derived from the rhizosphere of Zn 
hyperaccumulating plant (Thlaspi caerulescens). In their study, they observed that 
ZSB enhanced the water-soluble Zn fraction in the soil as well as there was 22–67% 
increment in Zn content in shoots and roots when inoculations were performed in 
the rhizosphere of the germinating seeds of Thlaspi plants.

Sarathambal et al. (2010) demonstrated that the application of G. diazotrophicus 
with ZnO in maize showed better uptake of the nutrient, irrespective of soil types. 
Further, they noticed that G. diazotrophicus solubilized Zn better in unsterile 
Zn-deficient soil. Similarly, a pot experiment conducted by Goteti et  al. (2013) 
revealed the impact of seed treatment with zinc solubilizing, plant growth promot-
ing bacteria (P29, P33, and B40) on maize. They observed significant improvement 
in plant biomass as well as in mineral nutrient (N, K, Mn, and Zn) uptake when seed 
bacterization was performed with P29 strain @ 10 g kg−1 maize seed.

Vaid et al. (2014) reported that effects of individual or combined inoculation of 
rice plants with ZSB (Acinetobacter sp. SG2, Acinetobacter sp. SG3, and 
Burkholderia sp. SG1) resulted in significant increase in the number of panicles 
(13.3%), productive tillers per plant (15.1%), number of grains per panicle (12.8%), 
straw yield (12.4%), grain yield (17.0%), and mean dry matter yield per pot (12.9%), 
over the control. Further, they also noticed that bacterial inoculation enhanced the 
grain methionine concentration (38.8%) as well as total Zn uptake efficiency per pot 
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(52.5%). In a similar study, Shakeel and colleagues (2015) documented that inocu-
lation with Bacillus sp. provided effective Zn movement to rice grains and resulted 
in rice grain yield gain of 22–49% and 18–47% in the case of basmati-385 and super 
basmati rice varieties, respectively. Similarly, a significant gain in Zn accumulation 
in rice grains as well as an increase in seedling growth of rice as a result of inocula-
tion with endophytic strains of Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, 
Enterobacter sp. SaCS20, Sphingomonas sp. SaMR12, and Variovorax sp. SaNR1 
was obtained for Sedum alfredii plant by Wang et al. (2014). Further, they observed 
that inoculation with SaMR12 and SaCS20 under hydroponic conditions resulted in 
the elevation of Zn concentration by 73.6% and 83.4% in roots, respectively, and by 
44.4% and 51.1% in shoots, respectively. Similar results with endophytic inocula-
tion using SaMR12 and SaCS20 strains were observed in the case of polished rice. 
In the same study, a significant gain in grain yields and Zn concentrations have been 
observed in the case of brown rice (20.3% and 21.9%, respectively) and polished 
rice (13.7% and 11.2%), respectively. Moreover, inoculation with SaMR12 and 
SaCS20 resulted in the accumulation of 10.4% and 20.6% more DTPA-Zn in the 
rhizosphere soil of rice seedlings, respectively (Wang et al. 2014).

Ramesh et al. (2014) conducted a pot experiment with soil containing low levels 
of plant available Zn to reveal the effectiveness of seed inoculation with different 
Bacillus aryabhattai strains on Zn solubilization and plant growth promotion. They 
observed that B. aryabhattai inoculations resulted in the elevation of Zn concentra-
tion in wheat grains from 42 to 61  mg  kg−1, compared to control. They further 
explained that this elevation was due to the capability of the inoculated ZSB to 
convert insoluble Zn in the soil by producing organic acids and decrease in the pH 
(Ramesh et al. 2014). On parallel lines, Hussain and associates (2015) also noticed 
the significant increment in plant growth attributes, mainly fresh and dry biomass of 
roots, fresh and dry biomass of shoots, shoot length and root length, etc. as a result 
of the inoculation of ZSB (Bacillus sp. AZ6). Recent research findings of Mumtaz 
et al. (2017) also revealed that inoculation with Bacillus sp. ZM20, B. aryabhattai 
S10, B. aryabhattai ZM31, and B. subtilis ZM63 enhanced maize growth signifi-
cantly. They observed that all these isolates have excellent multifarious plant growth 
promoting attributes and able to colonize plant roots effectively and, therefore, 
could be utilized as a potential microbe-based eco-friendly alternative for enhanc-
ing the productivity as well as nutritional status of maize grains.

The improvement in crop growth and soil fertility of maize plants was observed 
when seedlings were inoculated with Enterobacter cloacae with ZnO (Omara et al. 
2016). However, the available Zn content was greater in non-sterile than in the ster-
ile soil conditions, which pointed to the fact that microorganisms other than E. cloa-
cae may also be involved in the solubilization of insoluble zinc sources. The research 
findings documented by Othman et  al. (2017) revealed the potential of ZSB 
(Acinetobacter sp. TM56) with zinc sulfate @ 0.2 mg L−1 for improving the various 
plant growth parameters as well as root development of rice. This bacterium had the 
capacity to solubilize a considerable fraction of insoluble form of Zn under field 
conditions.
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The enhanced content of Zn in the seeds of wheat and soybean crops with effec-
tive inoculations of B. cereus has been reported by Khande et  al. (2017). Under 
microcosm conditions, they observed that seed priming with the alone application 
of B. cereus BBU-5, B. cereus KMR-5, and B. cereus DBU-1 significantly enhanced 
Zn contents in both seed and straw of soybean. Similarly, wheat seed inoculation 
with B. cereus KMR-5, B. cereus KBY-5, B. cereus BHKD-6, and B. cereus DBU-1 
provided a high amount of Zn in both seed and straw in contrast to uninoculated 
control plants. They further explained that the inoculation of ZSB significantly 
declined phytic-P content in the seeds of soybean and, as a consequence, enhanced 
bioavailability of Zn in seeds. Similarly, in another experiment, Kamran et al. (2017) 
studied the effect of ZSB (E. cloacae PBS 2, P. dispersa EPS 6, P. fragi EPS1, 
P. agglomerans EPS 13, and Rhizobium sp. LHRW1) on the seedling growth, devel-
opment, and Zn uptake. They observed that one month after ZSB inoculation, high-
est shoot and root dry weight and shoot length were observed in seedlings inoculated 
with Rhizobium sp. LHRW1, whereas increased shoot and root length was noticed 
in E. cloacae PBS 2-inoculated plants. Maximum Zn concentration was recorded in 
shoots of E. cloacae PBS 2-inoculated plants and in roots of P. agglomerans EPS 
13-inoculated plants followed by sole zinc carbonate (ZnCO3) amended control. 
Interestingly, even after 3 months post ZSB inoculation, a significant elevation in 
shoot dry weights was detected in plants inoculated with P. dispersa EPS6, P. agglo-
merans EPS13, and E. cloacae PBS2. Significant increment in terms of root dry 
weight and maximum Zn content was obtained in the case of P. fragi EPS1- 
inoculated plants derived from the wheat rhizosphere. Interestingly, highest Zn con-
tent for roots was obtained in the control plants demonstrating the plant’s incapability 
to mobilize Zn from roots to grains (Kamran et al. 2017).

Gontia-Mishra and associates (2017) demonstrated that the inoculation of rice 
seedlings with ZSB (Klebsiella pneumonia Zn8, P. aeruginosa Zn2, and R. pickettii 
Zn3) resulted in a significant increase in plant biomass in contrast to only water- 
inoculated control seedlings. Additionally, they also reported that treatment of rice 
plants with individual strain or with bacterial consortium and grown in soils con-
taining an abundant source of an insoluble form of Zn or in Zn-deprived soils with 
added insoluble Zn compounds enhanced the plant Zn uptake efficiency.

Zeb et  al. (2018) demonstrated that compost enriched with Bacillus sp. AZ6 
inoculum and ZnO enhanced Zn availability and showed a positive effect on growth, 
physiology, and yield of rice, in comparison to ZnSO4. Further, they observed that 
Zn-enriched compost with Bacillus sp. AZ6 (Zn-EC60:40), in comparison to ZnSO4, 
significantly enhanced growth, physiology, and yield parameters of rice through a 
slow and steady release of Zn from ZnO. Additionally, the microbial inoculation 
also resulted in the bioaccumulation of Zn in various parts of rice as well as rice 
grain quality.

Based on the basic and applied research knowledge generated till date, it emerges 
that the application of ZSM can be a promising technique to solubilize the unavail-
able Zn reserves in the soil and facilitate easy Zn accessibility to the plants, result-
ing in enhanced plant growth with the minimum application of Zn fertilizers.
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11.6  Opportunities and Challenges

Zinc-solubilizing microbes (ZSM) could be an excellent option and practical tech-
nology to solubilize insoluble Zn into a soluble form; however, their application in 
the agricultural sector is still uncommon due to the following reservations:

 (i) Based on the information generated so far, ZSM have been less studied under 
field conditions with rare multilocation testing. Besides this, very limited 
information is available on the application methodology and delivery methods 
of ZSM under field conditions. As the results obtained under in vitro environ-
ments or under greenhouse conditions may divert from actual field conditions, 
therefore, special attention and emphasis should be made on testing under 
natural field conditions to evaluate the potential of ZSM-based technologies 
for sustainable crop production. Further research is needed to evaluate the 
influence of other plant growth promoting microbes (PGPM) such as IAA pro-
ducers, ACC deaminase producers, phosphate solubilizers, and N2 fixers on the 
availability of Zn in the soil. Additionally, further understanding of synergistic 
and antagonistic interactions between ZSM and other PGPM and determina-
tion of the optimal conditions for ZSM activity is also needed. Interaction 
between efficient plant species and ZSM would also be useful yet still unex-
plored. More specifically, understanding the plant-ZSM interaction specific 
mechanisms under environmental variables and controls needs to be outlined 
for potential crops. Additionally, the impact assessment of ZSM on different 
crops grown under the diverse agroecological conditions and geographical 
locations needs to be assessed. The role of ZSM in increased availability of 
other nutrients under the influence of soil pH variation and content of other 
nutrients (e.g., P, N, Fe, K, etc.) also needs to be studied in detail.

 (ii) Limited knowledge and awareness among the farmers regarding the applica-
tion and benefits of ZSM-based biofertilizers in crop production is one of the 
biggest hurdles for its practical field application. A major section of the farm-
ing community is unaware of the Zn biofertilizers and their merits and demer-
its in enhancing crop yields. Perhaps, they are also unaware of the negative 
impacts of continuous application of inorganic zinc fertilizers on the ecosys-
tem functions.

 (iii) At present, limited attention is given by the scientific community toward devel-
opment of Zn-based biofertilizer technologies. Specifically, deficiency in 
 technology with respect to carrier suitability and product formulations to 
enhance the shelf life of the Zn-based biofertilizer is one of the biggest 
challenges.

 (iv) Unavailability of suitable ZSM strains due to lack of their availability in cul-
ture collections or microbial banks is yet another hurdle.
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11.7  Conclusions

Zinc mobilization in soils and into plants using ZSM has emerged as an important 
tool to enhance Zn bioavailability. Judicious application of ZSM is remarkably an 
efficient, environmentally sound, and low-cost strategy to enhance Zn concentra-
tions in the edible parts of agricultural crops. Microbial inoculation has shown 
immense potential to enrich plants with Zn micronutrient, with and without fertil-
izer sources. Due to lots of ambiguities and dilemma in getting success in enriching 
seed grains with Zn by breeding or agronomic strategies, biofortification using ZSM 
should be considered as one of the best approaches with quick effects for short-term 
adoption. In the future, there is a need to strengthen microbial research programs on 
the development and field evaluations of ZSM-mediated biofortification methods at 
critical plant growth stages for enhancing Zn uptake efficiency and elevating Zn 
accrual in food grains. Studying the bioavailability of Zn inside grain, resulting 
from ZSM applications in single or consortium mode, will be an interesting aspect 
to investigate. Significant progress has been made in the ZSM-based Zn fortification 
of crops, and it has convincingly proven that micronutrition malnutrition can be 
effectively tackled with ZSM-based management of food crop systems.
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Abstract
The endophytes are microbial organisms inhabiting within the plant body either 
intercellularly or intracellularly. Earlier these endophytes were considered either as 
pathogenic or having no significant role in the plant’s physiology and metabolism, 
but with the advancement of research and technology, the critical roles played by 
them are emerging. These endophytes form a symbiotic relationship with their host 
where in exchange of nutrient and habitat, they provide the plant protection against 
various stresses both biotic and abiotic. They provide the protection or resistance 
through either direct mechanisms or indirectly by eliciting various pathways within 
their host plants against the stresses. The endophytes help the host plant to acclima-
tize under harsh conditions by eliciting the defense- related genes, which in response 
triggers the concerned pathways for the synthesis of secondary metabolites for plant 
defense. A better understanding of the mechanisms and the role of endophytes in 
stress management will help in designing defense strategies to cope with the stresses 
and to improve integrated strategies for stress management in agriculture. The chap-
ter thus explores the various mechanisms with the endophytes eliciting both biotic 
and abiotic defense responses in their host plants under stress conditions and their 
future application in agriculture and crop sciences.
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12.1  Introduction

The plants in their natural habitat face various biotic and abiotic stresses, which they 
successfully cope with through their internal defense mechanisms (Gimenez et al. 
2018; Mousavi et al. 2019). The cultivated or domesticated crops are more prone to 
damage compared to their wild relatives. With the ever-increasing food crisis and 
global target of achieving Sustainable Development Goals 2030 of zero hunger and 
for the conservation of nature, researchers are now looking for biological, safe alter-
natives for the management of various environmental stresses along with increasing 
the productivity of the crop plants without contaminating the environment with 
chemicals (Bengtsson et al. 2018). The microbial use has emerged as a key player 
in achieving these goals. Since the past few decades, our understanding of soil 
microflora has increased tremendously, and now the soil is considered as an equiva-
lent to a living entity (Barman et al. 2019; Harman and Uphoff 2019). These under-
standings and relevant research have paved a new pathway of sustainable organic 
agriculture practices. In recent times, the role of rhizospheric bacteria has been 
largely explored, and they have been widely used for acclimatization of both biotic 
and abiotic stresses in the crop plants (Timmusk et al. 2017). Studies carried out 
during the last decade have highlighted that the plants are ubiquitously inhabited by 
microbes, which live within the host plant without causing any disease symptoms 
(Bacon 2018; Marsberg et  al. 2017). These microbes are beneficial to their host 
plants and help them to cope with both biotic and abiotic stresses (Mishra et al. 
2018a; Rho et al. 2018).

12.1.1  Plant Endophytes

The microorganisms living intercellularly or intracellularly within the host plants 
are termed as plant endophytes. The endophytes are microorganisms that inhabit 
and colonize within the plant tissues and share a symbiotic relationship with its host 
plant and do not manifest any disease symptoms in them (Bacon 2018). They are 
ubiquitous in distribution belonging to a varied group of microorganisms ranging 
from bacteria and fungi, including actinomycetes (Rho et  al. 2018). Some com-
monly reported genera of bacterial and fungal plant endophytes include Bacillus 
sp., Colletotrichum sp., Phomopsis sp., etc. These microorganisms have been iso-
lated from all parts of plants including leaves, stems, and roots and even from the 
floral tissue (Strobel 2018; Frank et al. 2017; Nissinen et al. 2012). The plant endo-
phytes share a complex and multifaceted association with their host plants, where 
they have been reported to have a positive effect on their host. To adjust and to 
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survive within the host tissues, the microbes develop a mutualistic relationship 
where both the host and inhabitant are benefited (Jia et al. 2016; Wani et al. 2015).

These microbes not only help the plant to respond and acclimatize during the 
biotic and abiotic stresses, but they also help to ameliorate the stress through trig-
gering various pathways in the plant and regulating the responses (Mishra et  al. 
2018a; Pandey et al. 2018). They protect and prepare the host plants for pathogen 
attacks, environmental stress, and against herbivores as well. They have been 
reported to trigger secondary metabolite pathways in the plants, which leads to the 
production of various defense-related compounds in the host (Singh and Gaur 
2017). Several endophytes are themselves involved in the production of commer-
cially important secondary metabolites known to be produced by their host plants. 
For instance, the consortium-based application of Pseudomonas fluorescens and 
Bacillus amyloliquefaciens enhances the withanolide content in Withania somnifera 
under biotic stress condition (Mishra et al. 2018b), an endophyte, namely, Phoma 
medicaginis isolated from Taxus wallichiana var. mairei individually producing 
paclitaxel (Zaiyou et  al. 2017). These metabolites are also valuable for humans 
commercially. These features make the endophytes a desirable choice as a source of 
commercially or medicinally valuable compounds that are used as drugs.

Some endophytes act as a biocontrol agent owing to their antimicrobial or myco-
parasitic activities. The biocontrol activity is showing endophytes that either attack 
the pathogens directly through their antagonistic activity or indirectly through anti-
biosis by the production of various antimicrobial compounds like fengycin, iturin, 
etc. (Zouari et al. 2016; Brader et al. 2014). The endophytic microbes are known to 
produce various cellulosic and chitinolytic enzymes that degrade and disintegrate 
the cell wall of the pathogen (Naik 2019; Abdel-Rahim and Abo-Elyousr 2018) 
(Fig. 12.1).

12.1.2  Endophytic Microbes Interaction with Host Plants

The substantive evidence on plant-associated endophytes was found in the fossil-
ized plant tissues which revealed that endophyte–host interactions may have evolved 
from the time of very existence of higher plants on the planet (Strobel 2003), signi-
fying an essential part of plant evolution (Mendes et al. 2013; Philippot et al. 2013). 
In the past two decades, the researchers have made great efforts to assess the role of 
endophytes and their interaction with host plants. The ability of endophytes to colo-
nize in the internal plant tissues has made them very crucial for the commercial as 
well as societal agricultural practices. The close mutualistic association of endo-
phytes with the plant is an essential part of their existence or survival, and several 
advanced studies demonstrate that the host plants are dependent on the endophytes 
for several fundamental activities (Hardoim et al. 2015; Potshangbam et al. 2017). 
For instance, symbiotic relationship of rhizobia and the leguminous crop is the well-
studied endophytic association; the bacterial endosymbiont fulfills the scarcity of 
nitrogen, whereas the host ensures the favorable condition for endophyte (Santoyo 
et al. 2016).
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Furthermore, several endophytes can convert the complex form of minerals and 
macro- and micronutrients into simplex form and avail to the host plant for the 
growth and development (Ma et al. 2011; Gaiero et al. 2013). The observations of 
two decades have projected that the endophytes migrated from the rhizospheric or 
seed-born microbial communities, and molecular tools based on advanced findings 
have revealed that these microbes are highly versatile and possess several functional 
genes that govern the several novel beneficial applications to the host plant (Ali 
et al. 2014). For example, the highly anti-cancerous compound Taxol was synthe-
sized by endophytes of Taxus baccata (yew plant) which was not possible without 
endosymbiotic association (Somjaipeng et al. 2015). However, recognition of these 
specialized designated genes for the plant-microbe association is still the subject of 
investigation. To maintain the healthy symbiosis, endophytes maintain the optimum 
conditions for the host plant by protecting the host plants against several invaders, 
pre-immunizing against various biotic and abiotic stresses, and producing or induc-
ing the host plant for the synthesis of metabolites to promote the growth and yield 
(Singh and Gaur 2016, 2017; Mishra et al. 2018a, b).

Moreover, an overwhelming number of studies highlight the considerably pon-
derability of microbial association with plants in seed germination, seedlings vigor, 
cellular development, and nutrient availability, ameliorate the biotic and abiotic 

Fig. 12.1 Role of endophytes on plant growth promotion and stress management
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stress resistance ability of the plant, and improve the synthesis of therapeutically 
important secondary metabolites and their productivity (Naveed et  al. 2014; 
Forchetti et al. 2010; Khan et al. 2012). The perception of “plant symbionts” has 
re-modulated the conception of “plant microbiome,” and therefore the current era 
emphasizes to investigate the coevolution of plants and their symbionts at the differ-
ent environment and key factors and conditions, which govern the symbiosis 
between both partners (Turner et al. 2013). The upregulation of plant gene expres-
sion after the treatment of endophytes is one of the strongest evidence about the 
impact of endophytes on host plant (Mishra et al. 2018a, b; Berendsen et al. 2015). 
Furthermore, the modern technology-based studies, i.e., next-generation sequenc-
ing (NGS), metagenomics, metatranscriptomics, genome sequencing, and compara-
tive genomics, may facilitate the much deeper knowledge about the multidimensional 
interactions between endophytes and their plant hosts.

12.2  Different Modes of Plant-Microbe Interaction

Endosymbionts are considered as a “second genome of plants” because they are 
very closely associated with host plants and independently play a very crucial role 
to accomplish the several definite tasks assigned by the host. Instead of this, host 
plants ensure the favorable condition of associated microbes by providing the 
required carbon and nutrients to proliferate competitively in a complex interactive 
environment. These microbial interactions encompasses the complete host plants as 
well as specific organ or region, i.e., roots, shoots, flowers, seeds, and leaves or 
rhizospheric, epiphytic, and endophytic (Turner et al. 2013; Rout and Southworth 
2013; Wang et al. 2017; Malviya et al. 2019; Solanki et al. 2019). Other than this, 
the host plant also possesses an array of biological information that describes the 
association of endosymbionts including functional genes, transcripts, proteins, and 
several biologically active metabolites (Busby et al. 2017). Presently, several stud-
ies elaborated the significance of plant-associated microbiota on plant growth and 
development (Brussaard 2012). However, the highly focused investigation is still 
needed for the enumeration of potent plant-associated microflora.

Plants are closely associated with numerous range of microbiota both below and 
above the ground for their mutual benefits. This microbiome is characterized on the 
basis of their colonization and can be classified as rhizospheric (closely associated 
with the root), phyllospheric (associated with aerial part of the plant), and endo-
phytic (inside the plant tissues) at their natural habitats (Truyens et al. 2015; Bakker 
et al. 2014). Out of them, the plant possesses microflora which are organ-specific. 
These endosymbiotic microbial loads are highly inconsistent because of the varia-
tion in the genome, environment, climate, and plant development. Several condi-
tions, such as the activation of the innate immune system, can also be intervening in 
the modulation of the associated microbial load of the host plant.

To diagnose the impact of several factors on plant microbiomes, this chapter also 
summarizes the diversity of plant microbiome based on different compartments 
individually. These compartments are the major reservoir of plant microbiome and 
primarily known as rhizosphere, endosphere, and phyllosphere.
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12.2.1  Rhizosphere

Out of the several natural habitats, soil system is the great reservoir of microbial 
load and exhibited about 108–109 CFU per gram of the soil (Chaparro et al. 2014). 
The rhizosphere is the most dynamic region which is extremely affected by the plant 
secretomes such as root exudates, mucilages, sloughed cells, and rhizodeposition 
(Spence et al. 2014). Plants regularly secrete several bioactive secondary metabo-
lites as a rich source of carbohydrates, proteins, lipids, phenolic compounds, and 
organic acids, which can efficiently modulate the microbial dynamics (Andreote 
et al. 2014). Furthermore, the plant litters are also a good source of several organic 
molecules (i.e., amino acids, nucleic acids, and saccharides), cellulose, hemicellu-
loses, lignin, and polyphenolic compounds (Osono 2007, McGuire and Treseder 
2010, Talbot and Treseder 2012). The microbial load of the rhizospheric region is 
completely different from the normal soil communities because of the availability 
of root secretomes and plant secondary metabolites that refurbished the conditions 
and nutrient availability. Molecules represent the root secretomes that play an essen-
tial role in the quorum sensing and may be also able to instigate the metabolic activ-
ity of soil-inhabiting microbiomes (Vandenkoornhuyse et  al. 2015), even though 
few of them are secreted under special circumstances to magnetize the specific 
microbial community such as malic acid secreted by the plant to attract the Bacillus 
sp. (Rudrappa et al. 2008); rhizodeposition of plant litter especially lignin and other 
polyphenols mainly conserved the subkingdom Basidiomycota (Baldrian 2006). 
Furthermore, some plant secretomes also have growth-limiting abilities (Martiny 
2016). On the one hand, the higher abundance of microbiome significantly induces 
the microbial load in a per gram of soil and can reach up to the 1011, which can alter 
the environment of the rhizosphere. For example, deficiency of oxygen, as it is con-
tinuously utilized by the microbial biomass, can also lead to the alteration in the pH, 
the concentration of microbial enzymatic activity (Classen et  al. 2015), and the 
organic contents present in the rhizosphere. On the other hand, the higher abun-
dance of microbial diversity at the rhizosphere represents the higher genetic infor-
mation which might be useful to diagnose several unrevealed metabolic pathways. 
The modulation in microbial diversity also explores the unresolved consequence of 
lifestyle, genetic adaptability, interaction with other communities, coevolution, and 
existence with organisms in the similar climatic conditions (Philippot et al. 2010; 
Berendsen et al. 2012). The mutualistic association between plants and associated 
microorganisms can also lead to several genetic re-modulation, horizontal gene 
transformation (HGT), etc. It follows the selection of highly appropriate microbial 
community under the influence of native environmental factors, and consequently 
the host plant communicates through the sharing of genetic information and pos-
sesses novel metabolic adaptability. The mutualistic association with the plant could 
be accomplished because of the availability of huge microbial diversity at rhizo-
spheric as well as phyllospheric regions. Furthermore, the richness of highly trans-
mitted genetic materials such as viruses, plasmids, and genes at the rhizospheric 
region can also facilitate an opportunity to exchange several unrevealed information 
for the plant-microbe interaction.
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12.2.2  Phyllosphere

The phyllosphere can be considered as the second most primitive zone after the rhi-
zosphere for plant-microbe interaction as it is the aerial part of the plant including 
leaves where the intensity of microbial diversity was found to be higher (Vorholt 
2012; Copeland et al. 2015). Microbes associated at the phyllospheric region of the 
plant are also able to confer the health and wealth of the plant through the induction 
of mineralization of nutrients, biosynthesis of several phytohormones, and activation 
of the innate immune response of the host plants against several pathogenic invaders 
(Cappelletti et al. 2016). Carbon sequestration done by them is an important task 
which maintains the balance of the environment (Bulgarelli et al. 2013; Bringel and 
Couée 2015). Furthermore, they also perform the considerable role in the survival of 
plants under extreme conditions, i.e., nutrient-limiting conditions, high and low pH, 
unfavorable temperature, less humidity, UV, etc. (Whipps et al. 2008). Out of various 
microbes, bacterial communities are the most prominent colonizers at the phyllo-
spheric region, although they are drifted severally. Because of the close attachment 
with several environmental factors, the microbial load at the phyllosphere is fluctuat-
ing very drastically even in same species of plants, under similar environmental con-
dition, as well as at same developmental stage (Rastogi et al. 2013; Knief et al. 2012). 
Furthermore, the diversity of phyllospheric microflora also depends on the several 
key factors, i.e., leaf area, leaf secretome, the intensity of light and UV, airflow rate, 
moisture content, etc. For example, most of the pigments producing bacterial com-
munities efficiently colonize at phyllospheric region because of the ability of higher 
tolerance toward the UV radiations. The origin of microbes is the next most consider-
able factor that imprinted the great versatility in microbial diversity at the phyllo-
sphere. Other factors, especially air, wind, and water, are the important sources of 
microbial cells that are also able to alter the microbial dynamics at the phyllosphere 
(Bullgarelli et al. 2013). As due to the high airflow, several spore-forming microbes 
could colonize on the aerial part of the plant that is found far from the plant origin 
(Bullgarelli et al. 2013). Furthermore, the fluctuations in phytomicrobiome mostly 
rely on the available carbon substrates and nutrients on the aerial parts especially on 
the leaf surface including amino acids, glucose, xylose, volatiles, etc. (Lindow and 
Brandl 2003). Bacterial communities colonizing at the phyllosphere are also well 
studied for their biofilm formation to maintain the heterogeneity of the microbial 
population and for adherence under unfavorable circumstances. Among several bac-
terial communities, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes 
are the most common colonizers and contribute a decisive role which leads to the 
novel competency of the host plant (Redford et al. 2010; Vorholt 2012). Whereas, the 
consequence of the close associations and beneficiary assignments, the other 
microbes also acquire the several evolutionary pieces of evidence which describe the 
different modes of plant-microbe association in a time-dependent manner. Due to 
several constitutive and constructive applications, the knowledge about the longtime 
evolutionary relationship and association between the plant and microbiota will pos-
sibly open the new sights for the development of novel applications in the field of 
sustainable agricultural practices.
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12.2.3  Endosphere

Every plant presents on earth at different habitats having their specific endophytes, 
and it assumed that the presence of endophytes in the inner tissues of plants is neces-
sary for their existence (Rosenblueth and Martínez-Romero 2006). In summary, the 
host plants carry several closely associated endophytes at the same time under 
in vitro condition. However, the role of endophytes in plant growth promotion and 
molecular, biochemical, and physiological cross talk between the plant and endo-
phytes to perceive the mechanisms during symbiotic association is still a matter of 
concern. Some findings reveal that endophytes can promote growth as well as reduce 
the disease incidence in the host plant. For example, the endophytic actinomycetes, 
namely, Streptomyces diastaticus SP2, S. fradiae SP4, S. olivochromogenes SP5, 
S. collinus SP8, S. ossamyceticus SP10, and S. griseus SP12 of different medicinal 
plants, were efficiently able to enhance the productivity and reduce the disease inci-
dence by triggering the systemic resistance and mitigation of oxidative stress in 
Cicer arietinum against S. rolfsii (Singh and Gaur 2016, 2017). Endophytes isolated 
from sugarcane roots significantly enhance the level of amino acids (Ferrara et al. 
2012), while mutant endophytic strain suppresses the pathogenicity of Diatraea sac-
charalis by the production of CRY1 Ac7protein (Quecine et al. 2014). However, out 
of several attempts on endophytes individually, few reports are also advocated about 
the aptitude of different endophytic communities to govern more than one function 
simultaneously. For example, the consortium mode application of endophytic bacte-
rial isolates (Bacillus amyloliquefaciens and Pseudomonas fluorescens) is not only 
able to detoxify the excessive generation of ROS and RNS by the activation of 
defense-responsive genes and systemic resistance-related genes in Withania som-
nifera (L.) Dunal under Alternaria alternata stress (Mishra et  al. 2018a) but also 
modulates the expression level of intermediate genes of withanolide biosynthetic 
pathway (MEV and MEP pathway) under biotic stress condition (Mishra et al. 2018b).

Still, limited information subjected to endophytic diversity creates discrepancies to 
understand the ecology of plant-associated microbes. In search of the origin of endo-
phytes, several efforts are performed by researchers to track the path of GFP- tagged 
endophytes (Rouws et al. 2010; Compant et al. 2005; Germaine et al. 2004) or by 
GUS staining (James et al. 2002; Compant et al. 2005), and they advocated that endo-
phytes are migrated through the rhizospheric or rhizoplane regions mainly, whereas 
few of them are transmitted via seeds (Hallmann et al. 1997; Saikkonen et al. 1998; 
Mitter et al. 2013) and entered through the opening during the formation of root hairs 
or the emergence of lateral root. However, very few of them access in the plant via 
phyllosphere region and entered by stomatal openings, wounds, and hydathodes. 
Moreover, various microbes possess the ability to secrete several plant cell wall lytic 
enzymes, i.e., cellulases, xylanases, pectinases, endoglucanases, etc., which enable 
the bacterial entry in plant internal tissues. The origin of endophytes is useful to 
understand the direct association with the plant and its proliferation and enumeration 
inside the inert plant tissues. Recently, it was also studied that specific endophytic 
communities can cross talk with plants, and strategies followed for their survival are 
evidence that their genome organization facilitates the survival and transmission.
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Recently, few researchers have recognized that the endophytic microbes articu-
late the molecular signals through the horizontal and vertical transmissions. The 
majority of recognized plant endophytes is horizontally transmitted and produces a 
potential conflict of fitness where antagonistic coevolution of functional trait expres-
sion possibly arises between the plant and microbial symbionts (Wani et al. 2015). 
Vertically transmitted endophytes confer the increased host benefits over those hori-
zontally transmitted that are significantly dependent on plant density (van Overbeek 
and Saikkonen 2016). Furthermore, several studies on the effect of habitat and envi-
ronmental factors on genetic variation of microbes are noticed that microbes living 
freely in the water, soil, and air will require an array of genes to develop resistance 
against adverse environmental stresses, having larger genetic information, whereas 
microbes residing in irrevocable conditions, i.e., endosymbiotic condition, severally 
required less molecular adaptation, having comparatively small genome size 
(Andreote et al. 2012). Similarly, Mitter et al. (2013) revealed a great genetic drift 
in the diversity of endophytes, and they concluded that the endophytes are a group 
of different microbial communities which migrated from different habitats. Those 
which originate from variable ecosystems have a larger genome size, whereas the 
rest of them which originate from stable environments contained smaller 
genome size.

Out of the plant-microbe interaction, for the interpretation of endophytes as a 
phytoendobiome is still needed much deeper knowledge. However, many research-
ers noticed that in spite of host fitness-based genetic information, endosymbionts 
also possesses several clusters of functional genes that significantly evolved in the 
establishment, persistence, and proliferation of the host plant (Bulgarelli et al. 2012; 
Lundberg et al. 2012). Furthermore, it should also be noted that although the rich-
ness of endophytes mostly relies on the population dynamics of rhizospheric micro-
biota, few groups of microbial communities, i.e., Actinobacteria and Proteobacteria, 
immanently maintained their presence as an endophyte which annunciates about the 
specific selection-based criteria of the plant. The role of plant innate immunity, 
including recognition of microbe-associated molecular patterns (MAMPs), is the 
possible reason behind the microbial selection.

12.3  Cross Talk Between the Plant and Endophytes 
During Interaction

There are several crucial steps involved for a successful colonization of endosymbi-
ont during plant-microbe interaction including the entry of endophyte in the inner 
tissue of the plant, the recognition of the plant, and finally the cross talk through the 
signaling molecules between the host plant and endophytes plants for colonization 
(Rosenblueth and Martínez-Romero 2006; Compant et al. 2010; Brader et al. 2014). 
Plant secretomes (exudates are very rich with water and nutrients and work as bio-
molecules) are facilitating the movement of the entire variant microflora toward the 
rhizospheric or phyllospheric region. And after that, host plant designates a few of 
the beneficial microbes as endophytes and allows to colonize and proliferate inside 
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the plant tissue for growth and development. Flavonoids are the fascinating che-
moattractants that perform a decisive role in the plant-endophyte interaction, includ-
ing various plant secretomes as biomolecules. Flavonoids are well known for the 
accomplishment of meaningful association with legumes by rhizobia (Arora and 
Mishra 2016). Furthermore, flavonoids are also involved in the compatible associa-
tion of non-rhizobial endophytes with the host plant, and these metabolites also 
affect the colonization of Serratia sp. EDA2 and Azorhizobium caulinodans 
ORS571 in the root of rice and wheat (Webster et al. 1998; Balachandar et al. 2006). 
Lipo-chitooligosaccharides (LCO) are reported as Nod factors, inducing the com-
mon symbiotic pathway (CSP) in arbuscular mycorrhizal associations as well as 
rhizobia-legume associations (Gough and Cullimore, 2011). As per the recent study, 
a beneficial plant endophyte Mucor sp. is associated with Arabidopsis thaliana 
because of the secretion of strigolactone (Rozpądek et al. 2018). Moreover, strigo-
lactone also triggers the biosynthesis and secretion of chitin oligomers that induce 
the signaling pathways for the symbiotic association between the plant and endo-
symbiont (López-Ráez et al. 2017). Moreover, a superfamily of plant cell wall pro-
teins, i.e., arabinogalactan (ABO) glycosylated members of the hydroxyproline-rich 
glycoprotein (HRGP), works as a receptor and signaling molecules participants to 
accomplish the symbiotic association during plant-microbe interaction (Nguema- 
Ona et al. 2013). Furthermore, some other basic plant biostimulants such as sugars, 
amino acids, organic acids, phenolic compounds, and other secondary metabolites 
provide the signal to endophytes for the mutualistic association (Chagas et al. 2017). 
However, the strategies followed by the plant to distinguish the plant beneficially 
and plant pathogenic microbes are still a matter of investigation. However, several 
studies favor the role of plant innate immune system in the identification of plant 
growth-promoting microorganisms and their colonization in inert plant tissues 
(Fesel and Zuccaro 2016). The current evidence on plant gene expression suggests 
that endophytes perform an essential role in the expression level of plant genes 
(Mishra et al. 2018b; Singh and Gaur 2017). However, the stimulation of defense- 
related signaling molecules such as ethylene (ET)/jasmonic acid (JA)/salicylic acid 
(SA) against different stresses relies on the defense strategies of plant endophytes 
(Singh and Gaur 2017). In the recent investigation, Mishra et al. (2018a) revealed 
that the consortium of bacterial endophytes, namely, B. amyloliquefaciens and 
P. fluorescens, suppresses the pathogenicity of Alternaria alternata in W. somnifera 
by the induction of SA and JA signaling-mediated induced systemic resistance 
(ISR) (Fig. 12.2). Furthermore, it also modulates the expression level of intermedi-
ate genes of MVA and MEP pathways (Mishra et al. 2018b). In contrast to the above 
findings, several plant defense-related genes were downregulated during the coloni-
zation of rhizobia and arbuscular mycorrhizal fungi (AMF) (Fouad et  al. 2014; 
Benhiba et al. 2015; Sarkar et al. 2016). However, the stimulation of plant signaling 
molecules (SA/JA/ET) after the colonization of plant mutualistic partners controls 
the overwhelming actions of microbes (Plett and Martin 2018). It was also observed 
that several hormone pathways related to miRNA transcripts were induced for the 
proper colonization of endophytes (Formey et al. 2014). For example, the host plant 
adjourns the GA signaling pathway and induces the expression level of 
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miRNA – E4D3Z3Y01BW0TQ, to avoid the repressive action against mutualistic 
associations of AMF with the plant (Wu et al. 2016). The delay in the expression of 
plant defense-related genes might play a crucial role in the establishment of a mutu-
alistic association with endophytes (Plett and Martin 2018). Several advanced tech-
niques such as genomics- and metagenomics-based findings imprinted the novel 
insights subjected to the behavior of endophytes during the colonization in the 
endophytic regions of the plant. As per the findings of Hardoim et al. (2015), the 
genes involved in catabolic activities in endophytes are much more dominant during 
the invasion of phytopathogens as compared to the anabolic pathway-related genes 
(higher copy number in the genome) which are having multifunctional roles. The 
genes, namely, nitrogenase and ribulose bisphosphate carboxylase/oxygenase 
(RuBisCO) in combination, work as an indicator for endophytes for symbiotic 
nitrogen fixation-based association (Karpinets et al. 2014). The lateral gene trans-
formation also performs a crucial role in acquiring several key features for the colo-
nization of endophytes (Tisserant et al. 2013). For instance, several plant beneficiary 
bacterial endophytes possess the gene mannitol dehydrogenase through lateral gene 
transformation that not only significantly suppresses the proliferation of fungal phy-
topathogens but also provides an opportunity to colonize inside the plant (Wu et al. 
2011). The existence and positions of several other genes designated for specific 

Fig. 12.2 Induced systemic resistance (ISR) in plants
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applications such as amino acid synthesis, iron transportation, hemolysin, and hem-
agglutinin also provide clues regarding the plant-microbe interaction as well as 
modulation in host and endophytes lifestyles (Taghavi et al. 2010; Xu et al. 2016; 
Shidore et al. 2010). Besides, the recent soil and plant metagenomics studies reveal 
that endophytes also depend on the host plants for several activities. Therefore, they 
reduce their genome size during evolution as a result of adaptation (Sessitsch et al. 
2012; Brewer et al. 2016; Hottes et al. 2013). On the other hand, the species- and 
genotypic-based variations of the host also modulate the diversity of endophytes 
(Rodríguez-Blanco et al. 2015; Ding and Melcher 2016). Few endophytes modify 
themselves as per the response of the local environment (biotic and abiotic stresses), 
developmental stage, and genetic variation of the host (Bacon et  al. 2008). For 
instance, an asymptomatic endophyte Ramularia collo-cygni can reside inside the 
host plant during the developmental stage; however, at the growing stage, it modu-
lates itself as a necrotrophic pathogen (Walters et  al. 2008). In the same way, 
Fusarium verticillioides is able to proliferate as an endophyte or pathogen in maize 
plant (Oren et al. 2003). However, key factors behind the transition of endophytes 
to phytopathogen are not much studied. Therefore, for better understanding, several 
advanced tools and techniques based on comparative analyses are needed that can 
provide novel insights about the specific circumstances which transform the endo-
phyte into a pathogen.

The exact mechanism followed by the microbes to reside inside the plant tissue is 
still a case of an investigation. However, few studies demonstrate that the infiltration 
of endophytes in the inner plant tissue is possibly through the inactivation of the 
primary defense system of the host plant which leads the selection of endophytes by 
recognition of microbe-associated molecular patterns (MAMPs) (Newman et  al. 
2013; Cord-Landwehr et al. 2016). These MAMPs include several receptor mole-
cules such as flagellin (Flg), elongation factor TU (EF-Tu), peptidoglycan (PGN), 
lipopolysaccharides (LPS), bacterial cold shock protein, several plant ROS scaveng-
ing molecules (SOD, GPx, APx, etc.), β-glycan (GE), β-glucans, oligopeptides 
(Pep-13), xylanase (EIX), and chitin (Newman et  al. 2013; Shimizu et  al. 2010), 
which are enucleated by the pattern recognition receptors (PRRs; present on the sur-
face of plant cells). For example, the defensive reaction of the host plant is triggered 
by the recognition of chitin-specific receptors (PR-3; chitin oligomers) (Sanchez-
Vallet et  al. 2015). Furthermore, endophytes also synthesize several unknown 
MAMPs to defend themselves from the innate immune system of the plant and are 
non-detectable by PRRs (Vandenkoornhuyse et  al. 2015; Cord- Landwehr et  al. 
2016). For example, Burkholderia phytofirmans (as an endophyte) introduces flagel-
lin (FLS2) that is different from phytopathogens (i.e., Pseudomonas aeruginosa or 
Xanthomonas campestris) (Trda et  al. 2015). Moreover, endophytes also produce 
several ROS/RNS scavenging molecules (such as superoxide dismutases, catalases, 
peroxidases, alkyl hydroperoxide reductases, and glutathione S-transferases) to pro-
tect themselves against nitro-oxidative bursts (Zeidler et al. 2004). As a part of these, 
endophytes are also able to modulate the host immune system by the formation of 
protein secretion systems (SSs). For instance, several pathogens deliver the effector 
proteins though the high stimulation of type III secretion system (T3SS) and type IV 
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secretion system (T4SS) (Green and Mecsas 2016; Liu et al. 2017). However, endo-
symbionts communicate with host plants by least stimulation of T3SS and T4SS 
except few rhizobial and non-photosynthetic Bradyrhizobium strains where T3SS 
plays a decisive role in legumes for nodulation and rice for colonization, respectively 
(Okazaki et al. 2013; Ausmees et al. 2004; Piromyou et al. 2015). Similarly, type VI 
secretion systems (T6SSs) are present in several commensal plant symbionts for 
antimicrobial activity (Reinhold-Hurek and Hurek 2011; Bernal et al. 2018).

12.4  Role of Endophytes on ISR Elicitation

The new sustainable agricultural practices lead to the search for effective bioinocu-
lants for the amelioration of productivity and health issues of plants. In this context, 
the effective bioinoculant is not only able to promote the growth and productivity of 
plants by the secretion of several phytohormones and other plant growth-promoting 
substances but is also involved in eliciting different defense responses in both abiotic 
(i.e., drought, salinity, heavy metals, extreme temperature, radiation, etc.) and biotic 
(such as insects, mites, aphids, nematodes, bacteria, fungi, viruses, etc.) stresses 
through different mode of actions. Such ability to suppress the infection of different 
plant invaders (through the secretion of antibiotics and antimicrobial substance) is 
termed as antagonism or biocontrol. It includes other specific mechanisms such as 
antibiosis, competition, etc. Alternatively, microbes can induce the innate immune 
system of the host plants through the synthesis of various secondary metabolites and 
in a way that the endophytes elicit the resistance of the plant toward several biotic 
and abiotic stresses. The microbe-mediated induction of systemic resistance of the 
plant is known as induced systemic resistance (ISR) (Fig. 12.2). Moreover, the resis-
tance develops due to the chemical inducers or pathogenicity of necrotrophic patho-
gens is termed as systemic acquired resistance (SAR) (Fig. 12.3). Both pathways not 
only differ by the elicitors but also accomplished it by different signal transduction 
pathways. The ISR is activated through the signaling pathway of using jasmonic acid 
or ethylene (Matilla et al. 2010), whereas the stimulation of salicylic acid is respon-
sible for the elicitation of SAR. In a few cases, jasmonic acid or ethylene also per-
forms a decisive role in the activation of SAR. ISR cannot be distinguished based on 
SAR-based signal transduction pathway because some current findings have demon-
strated that endophytes and other plant-associated beneficial microbes can induce the 
ISR which is completely dependent on the salicylic acid (van Loon et al. 2006).

Furthermore, bacterial endophytes are involved in the amelioration of various 
stress responses and are known to initiate responses like those of the rhizosphere- 
associated bacteria (Ryan et al. 2008). The mechanisms involved in eliciting abiotic 
defense responses have been extensively reviewed by Khan et al. (2015), and more 
recently by Lata et al. (2018). The endophytes have been reported to play a signifi-
cant role in the amelioration of diverse abiotic stresses. The mechanisms involved in 
biotic stress defense responses have been thoroughly studied by Kloepper and Ryu 
(2006) and Busby et al. (2016), which involve the role of both bacterial and fungal 
plant endophytes against the invading plant pathogens.
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12.5  Role of Endophytes in Biotic Stresses

The plants in their natural habitat face several biotic stresses which include the 
attack of various macroscopic organisms including insects, mites, aphids, nema-
todes, etc. as well as various microscopic pathogens like bacteria, fungi, viruses, 
etc. It has been reported that the priming or treatment of plants with the endophytes 
has resulted in a decrease in damage caused by invading pathogens and pests 
(Romero et al. 2018; Pappas et al. 2018). The mechanisms related to the antimicro-
bial activity of potent endophytes have been studied severally (Mishra et al. 2018a; 
Singh and Gaur 2016, 2017). Many reports demonstrate that endophytes suppress 
the pathogenicity of the plant by direct antagonism (by the synthesis of several anti-
microbial substances including antibiotics) or through the modulation in the sever-
ity of the host defense system (via ISR) against phytopathogens (Singh and Gaur 
2017; Mishra et al. 2018a).

Furthermore, endosymbionts induce the stimulation of JA, SA, and ET (ISR and 
SAR pathway signaling molecules), which are severally known for the stress 
responses against phytopathogens (Khare et al. 2016).

Fig. 12.3 Systemic acquired resistance (SAR) in plants
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Moreover, the application of endophytes also regulates the gene expression of 
host plants which leads to the enhanced physiological performance, higher expres-
sion in defense-related pathways, synthesis of antimicrobials, etc. (Mishra et  al. 
2018b). Phytohormones also play a decisive role in the plant defense system. For 
instance, gibberellin (GA3) production by endophytes pre-immunizes the host plant 
toward the phytopathogens as well as insects (Waqas et al. 2015). Furthermore, seed 
coating with endophytic actinobacterial strains not only improves the strength and 
physiology of chickpea plants but also upregulates the expression level of defense- 
related genes against S. rolfsii (Singh and Gaur 2016). Endosymbionts are well 
known to synthesize several volatile organic compounds (VOCs) which have sig-
nificant antimicrobial activity against fungal, bacterial, and viral phytopathogens 
and nematodes. Endophytes are also able to synthesize phytoalexins (low molecular 
weight antimicrobial molecules) that induce the production of phyto-stimulants in 
host plants. In a study, Gupta et al. (2017) reported that chitinolytic bacterial strains, 
namely, Chitiniphilus sp. and Streptomyces sp., inhibit the pathogenicity of 
Meloidogyne incognita (nematode) and induce the synthesis of secondary metabo-
lites in Bacopa monnieri. Furthermore, findings of several workers reveal that the 
pretreatment of endophytes improves the cellulose content and lamina density, 
which reduces the attack by herbivores including leaf-cutting ants (Van Bael et al. 
2012; Estrada et al. 2013). In this way, the endophytes not only develop resistance 
against plant invaders through ameliorating the host defense system but also stimu-
late several antimicrobial substances that have an antagonistic approach toward the 
phytopathogens.

12.5.1  Bacterial Endophytes

The niche provided by the host plants provides a safe harbor for the bacterial strains 
that can colonize in planta without causing diseases in their host plants (Bacon 
2018). The bacterial endophytes are widely reported to inhabit within the intercel-
lular and intracellular cells within the host tissue (Liu et al. 2017; Hardoim et al. 
2015; Thomas and Sekhar 2014) (Table 12.1). Several endophytes have not only 
been isolated from the leaves, stems, and roots of the plants but also the seeds 
(White et al. 2018; Ambrose et al. 2018; Truyens et al. 2015). The endophyte isola-
tion has been carried out from different plants like crop plants (Contreras-Cornejo 
et al. 2018; Abd-Allah et al. 2017; Ahmad et al. 2015), forest trees (Yao et al. 2017; 
Somjaipeng et  al. 2015), and medicinally important plants (Mishra et  al. 2018a; 
Singh and Gaur 2016) as well as from grasses (White et al. 2018).

The recent studies have shown that the endophytic bacteria play a critical role in 
eliciting defense responses in host plants against the invading pathogens through 
both direct and indirect mechanisms (Strobel 2018; Lata et al. 2018; Singh and Gaur 
2017). The mechanisms of eliciting defense by endophytes are reported to be simi-
lar to that of the rhizospheric bacteria (Brader et al. 2014). The prior introduction or 
priming of plants through the treatment of roots or seed treatments prevents the host 
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plant from diseases caused by bacterial and fungal phytopathogens (Mishra et al. 
2018a; Singh and Gaur 2017). The effects of priming of plants with endophytes 
have been reported to act as a defense against various insects and pest as well (Vidal 
and Jaber 2015). The bacterial endophytes are reported to activate induced systemic 
resistance (ISR) similar to that of the rhizospheric bacteria (Berendsen et al. 2018; 
Shoresh et al. 2010). ISR is a plant defense pathway that is triggered by jasmonic 
acid or ethylene-based pathways. It is similar in response to systemic acquired resis-
tance (SAR), which is salicylic acid-dependent pathway for the defense against the 
invading phytopathogen in the host plants (Shoresh et al. 2010). The SAR is acti-
vated when a pathogen invades which in turn activates the first line of defense in the 
host plant and elicits hypersensitive reaction to restrict the spreading and propaga-
tion of the pathogen further into the plant cells. The hypersensitive reaction acts 
suicidal response causing the death of its cells where the pathogen invaded, result-
ing in restricting the spread of the pathogen through the formation of localized 
necrotic zones (Gao et al. 2015). The ISR, on the other hand, primes the plants’ 
second line of defenses and thus does not cause visible symptoms like those formed 
during SAR (Pieterse et al. 2014).

The bacterial endophytes not only trigger defense responses in the host; they are 
also involved in direct antagonistic action against the invading pathogens through 
the secretion of various enzymes and antimicrobial compounds. The enzyme pro-
duced by the endophytes includes fungal cell wall degrading chitinase and cellulose 
or for bacterial pathogen β-glucanases (Khare et al. 2018). The endophytes also are 
a rich repository of various antimicrobial compounds which are used as antibiotics 
and are known to be antifungal. Some endophytes are belonging to genera Bacillus, 
Pseudomonas, and Burkholderia that are known to produce a wide range of antimi-
crobial compounds against the invading pathogens (Martinez-Klimova et al. 2017; 
Gouda et al. 2016).

Antibacterial compounds like munumbicins A–D (Hasegawa et al. 2006); kaka-
dumycins (Castillo et  al. 2003); coronamycins, a peptide antibiotic (Ezra et  al. 
2004); and dimethyl novobiocins (Kurosawa et al. 2006) have been reported from 
endophytic strain of Streptomyces spp. compounds like pumilacidin, an antifungal 
compound (Melo et al. 2009); and antifungal iturin A, fengycin, and bacillomycin 
(Gond et  al. 2015) are reported to be produced by Bacillus sp. Among the 
Pseudomonas, antifungal volatile organic compounds (Hernández-León et al. 2015) 
are reported to be produced along with compounds like ecomycins B and C (Miller 
et al. 1998) and pseudomycins (Harrison et al. 1991).

12.5.2  Fungal Endophytes

Several fungal strains have been reported as endophytes (Table 12.1). These endo-
phytes are known for their hyperparasitic or mycoparasitic activity against the 
invading fungal phytopathogens. Endophytic Trichoderma sp. is known to parasit-
ize the phytopathogen Rhizoctonia solani and other phytopathogens by coiling 
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around the pathogen and producing chitinase enzyme leading to the disintegration 
of the fungal cell wall (Grosch et al. 2006; Chen et al. 2016)

The endophytic fungal isolates have been isolated from several medicinal plants 
such as Paraconiothyrium from Taxus baccata (Somjaipeng et al. 2015); Bacillus 
amyloliquefaciens and Pseudomonas fluorescens from W. somnifera and R. serpen-
tina (Mishra et al. 2018a); bacterial strains from Ginkgo biloba (Yang et al. 2015); 
Trichoderma gamsii from Panax notoginseng (Chen et al. 2016) as well as com-
mercially important plants, i.e., Trichoderma atroviride from maize (Contreras- 
Cornejo et al. 2018); Pestalotiopsis sp. from rice (Cord-Landwehr et al. 2016); and 
Pseudomonas sp. from Solanum lycopersicum (Subramanian et al. 2015), and these 
endophytes have been extensively utilized owing to their ability of production of 
secondary metabolites. Studies have revealed that these fungal endophytes mimic 
the secondary metabolites produced by their host plant, thus providing an additional 
layer of defense to their host plant against the invading phytopathogens, pest, and 
herbivores. However, the exact mechanism involved in the mimicking the produc-
tion of the secondary metabolites of host plants by the endophytes is still not clear. 
The fungal endophytes are known to produce a more diverse group of compounds 
as compared to the native soil fungi (Nisa et al. 2015). Endophytic Trichoderma 
harzianum isolated from Ilex cornuta has been reported to produce antimicrobial 
compound trichodermin against phytopathogens like Alternaria solani and R. solani 
(Shentu et al. 2010). Cycloepoxylactone and cycloepoxytriol B are produced endo-
phytic fungus Phomopsis sp. isolated from Laurus azorica (Hussain et al. 2009). 
Pestalachloride A isolated from the endophytic fungus Pestalotiopsis adusta inhab-
iting stem of an unknown Chinese tree is reported to be antagonistic against the 
phytopathogens like Fusarium culmorum, Gibberella zeae (anamorph F. gra-
minearum), and Verticillium albo-atrum (Li et al. 2008).

The fungal endophytes like their bacterial counterparts are known to induce ISR 
mechanism in their host plants to elicit defense responses. The ISR elicited by the 
fungal endophytes may also be linked to the expression of pathogenesis-related 
genes. PR genes PR5 and PR7 in tomato plant roots are triggered by the endophytic 
fungal isolate Fusarium solani against the tomato foliar pathogen Septoria lycoper-
sici (Kavroulakis et al. 2007). Nonpathogenic strains of Fusarium oxysporum are 
known to elicit ISR in banana plants against Radopholus similis (Vu et al. 2006). 
Endophytic Trichoderma spp. have been reported to protect Arabidopsis thaliana 
against Botrytis cinerea through ISR (Contreras-Cornejo et al. 2011).

Other mechanisms used by the endophytic fungal isolates include eliciting higher 
lignin deposition and enhanced activity of both antioxidant and defense enzymes. It 
has been reported in Citrullus lanatus and Cucumis sativus primed with the non-
pathogenic mutant of Colletotrichum magna against the phytopathogens 
Colletotrichum orbiculare and Fusarium oxysporum (Redman et al. 1999). In Cicer 
arietinum colonization by endophytic fungi, Piriformospora indica has shown 
enhanced production of the antioxidant enzyme against the phytopathogen Botrytis 
cinerea (Narayan et al. 2017). Trichoderma T22 has shown to enhance the expres-
sion of the defense enzyme phenylalanine ammonia lyase (PAL) which is involved 
in the lignifications of the host plant’s cell wall in maize plants (Shoresh et al. 2010).
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Nematodes are also identified as one of the major agricultural pathogens that 
lead to severe crop loss annually. Stirling (2017) defined the biological control of 
nematodes as “reduction in nematode damage by organisms antagonistic to nema-
todes through the regulation of nematode populations and/or a reduction in the 
capacity of nematodes to cause damage, which occurs naturally or is accomplished 
through the manipulation of the environment or by the mass introduction of antago-
nists” (Stirling 2017). Although nematologists have been extensively researching 
biological control of nematodes since the 1920s till date, only a few biological con-
trol agents have been reported, but some fungal endophytes have been reported to 
be antagonistic to the invading nematodes. Clonostachys rosea has been reported to 
be a parasitic nematode fungus through the production of fungal proteases (Iqbal 
et al. 2018).

12.6  Role of Endophytes in Abiotic Stresses

Plants were grown under the surroundings of inanimate components of environ-
ments (i.e., light, water, carbon, nutrients, etc.) which are associated with climatic, 
edaphic, and physiographic factors. Categorically the extreme conditions of these 
factors (i.e., drought, salinity, temperature, heavy metals, poor soil nutrient, and 
oxidative burst) considerably affect the plant growth and cause abiotic stress. 
Endophytes successfully ameliorate the negative impact of these abiotic factors by 
the implementation of several mechanisms. The interaction of endosymbionts with 
the plant is very crucial not only for the induction of ISR against biotic stresses but 
also in terms of adaptation and tolerance of both participants against abiotic stresses. 
The endosymbiotic-mediated abiotic stress responses of the plant are termed as 
induced systemic tolerance (IST).

In past decades, the emerging role of endophytes for the alleviation of plant abi-
otic stresses has attained a great response (Nadeem et al. 2014; Souza et al. 2014). 
Endophytes possess several fundamental metabolic and genetic abilities that signifi-
cantly perform a vital role in the amelioration of abiotic stresses in the host plant 
(Hardoim et  al. 2015). Several plant-associated beneficial microbes including 
Pseudomonas sp. (Otieno et  al. 2015), Bacillus sp. (Vardharajula et  al. 2011), 
Rhizobium sp. (Remans et  al. 2008), Bradyrhizobium sp. (Aung et  al. 2013), 
Streptomycetes sp. (Naylor et al. 2017), Trichoderma sp. (Mishra et al. 2019; Ahmad 
et  al. 2015), Methylobacterium sp. (Meena et  al. 2012), and Cyanobacteria sp. 
(Singh et al. 2011) are reported for the mitigation of abiotic stresses in the plant. 
Currently, Mishra et al. (2019) have reported the efficacy of impulsive microman-
ager Trichoderma reesei MTCC5659 on CO2 stress amelioration in drought- resistant 
and sensitive rice cultivars because of the upregulation of dehydrin (dhy), glutathi-
one S-transferases (gst), universal stress protein (usp), late embryogenesis protein 
(lea), and no epical meristematic (nam) genes along with several fundamental pro-
cesses (i.e., photosynthesis, transpiration, respiration, stomatal conductance, and 
water-use efficiency). The association of endophytes leads to several modifications 
in the host plant, i.e., level of phytohormones, defense-related proteins, synthesis of 
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antioxidants, exopolysaccharide, and enzymes which ensure the tolerance of the 
host plant against drought stress condition (Hubbard et al. 2014). For example, the 
application of Trichoderma reesei not only enhances the germination of Cicer ari-
etinum in diesel fuel-spiked soil but also elevates the dehydrogenase activity and 
microbial dynamics of rhizospheric soil (Mishra and Nautiyal 2009).

Soil salinity is also a very effective abiotic factor and causes substantive harm to 
plant growth and productivity. The bacterial endophytes such as Pseudomonas sp. 
and Bacillus subtilis (BERA 17) are reported to produce the higher content of ACC 
deaminase and IAA which confirms the growth, osmo-regularity, photosynthetic 
rate, and productivity of tomato and chickpea plant under high salinity condition of 
soil, respectively (Win et al. 2018; Abd-Allah et al. 2017). Likewise, Burkholderia 
phytofirmans strain PsJN ameliorates the salinity stress in Arabidopsis thaliana 
(Pinedo et al. 2015). Similarly, the application of Streptomyces sp. confers the NaCl 
tolerance and growth in tomato plant (Palaniyandi et al. 2014). Besides, these sev-
eral toxic metalloids (arsenic, cadmium, lead, etc.) and other hazardous compounds 
are regularly deposited in the soil because of several anthropogenic activities and 
industrial effluents. They not only affect the growth and productivity of plants but 
also limit the nutritional value of the soil.

Furthermore, several findings demonstrate that the traces of heavy metals are 
accruing in the crops and vegetable from the contaminated irrigating water or grow-
ing soil (Sharma et al. 2006; Dwivedi et al. 2010; Awasthi et al. 2017). These toxic 
metalloids are nondegradable; therefore, they can never be eliminated from the 
environment completely. However, studies revealed that few beneficial microbes 
efficiently reduce the toxicity through the biotransformation of toxic metalloids in 
less or nontoxic forms (Lakshmanan et al. 2016; Singh and Gaur 2016). For instance, 
the endophytic bacterial strains isolated from the Betula celtiberica have the great 
potential to improve the phytoremediation of As (Mesa et al. 2017).

Similarly, Salix caprea plant is well known regarding their potential to support 
heavy metal phytoextraction. Different actinobacterial strains of Salix caprea can 
synthesize the Zn and Cd mobilizing metabolites and therefore enhance the alloca-
tion of metals in the plant (Kuffner et al. 2010). On the other hand, the treatment of 
Trichoderma not only reduces the As deposition in chickpea plant but also enhances 
the nutritional value of the plant yield (Tripathi et al. 2013). Likewise, arsenic (As)-
resistant strain Staphylococcus arlettae reduces the As uptake in Indian mustard 
(Brassica juncea) along with plant growth-promoting abilities (Srivastava 
et al. 2015).

Apart of that, endosymbionts also able to trigger the innate immunity of plants 
through the secretion of extracellular secondary metabolites, and consequently sev-
eral defense-related activities have been taking place in each and every plant cell to 
reduce the negative impact of stress conditions. Similar to other microscopic endo-
symbionts, mycorrhiza also played a decisive role in the plant growth regulation and 
abiotic stress amelioration. The fine threads like networking of mycorrhizal hyphae 
are beneficial in the nutrient uptake management by plant roots. An endophytic 
mycorrhiza, namely, Piriformospora indica, ameliorates the level of antioxidants 
which subsequently improves the NaCl and drought tolerance ability of barley 
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(Baltruschat et al. 2008) and Chinese cabbage (Sun et al. 2010). On the one hand, 
endophytes triggered the systemic resistance for the survival of the plant under 
unfavorable environmental conditions, while on the other they improve the health 
and yielding attributes of the host plant by phytohormones stimulation, synthesis of 
phyto-inducers and antimicrobial substances, production of chelating ions, and fixa-
tion of N and other factors. All of these traits of endosymbionts make their presence 
necessary for the amelioration of abiotic stresses and thus prove themselves as an 
excellent option for crop management strategies.

12.7  Future Outlook

Endophytes remain untapped, not widely explored the community of microbes 
residing within the host plants. A few decades ago, they were thought not to affect 
their host plants. But in the recent years, the extensive research done on the role of 
endophytes in regulating various physiological aspects in its host plants have 
brought to light their critical role and have opened up new avenues for their utiliza-
tion of various sectors including in pharmaceutical industries, mediating various 
plant protection strategies and abiotic stress amelioration. The unique ability of the 
endophytes to mimic the secondary metabolite synthesis pathways of their host 
plants makes them ideal candidates for the source of several medicinally and phar-
maceutically important drugs which earlier could only be obtained through harvest-
ing the host plants. This technique is turning in the conservation of several important 
plant species that are being threatened to extinction due to overexploitation by 
human interventions. Thus, these endophytes serve as an economically attractive 
solution for obtaining various valuable drugs and medicines without harming the 
environment. However, how and why the endophytes develop these abilities to 
mimic their host remains the question of further research.

In the past decade, the development of science and technologies through the facil-
itation of various “omics” studies has opened doors of new possibilities to under-
stand these microbes better and to utilize them for the betterment of human society. 
The omics studies like transcriptomics, proteomics, and metabolomics help to eluci-
date the various pathways involved and to understand better the mechanisms that 
they employ during the tripartite interaction of the endophyte and host and the invad-
ing pathogen (Laur et al. 2018). The studies have revealed that these endophytes that 
are involved in inducing disease resistance in their host plants have a wide variety of 
tools at their disposal (Mishra et al. 2018a, b; Singh and Gaur 2017). The myriad of 
metabolites like bacillomycin, phenazines, iturin, fengycin, etc., produced by these 
endophytes are found to have antimicrobial properties, which they use against the 
invading pathogens. These compounds in the future could be identified and isolated 
for the development of pathogen-specific drugs for agricultural purposes (Zouari 
et al. 2016; Brader et al. 2014). The endophytes are also known to produce fungal 
cell wall degrading enzymes that contribute to their antagonistic ability against vari-
ous invading phytopathogens which can be employed in designing targeted, inte-
grated disease management strategies (Mishra et al. 2018a; Singh and Gaur 2017). 
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These strategies will not only be effective in controlling the diseases but also play a 
critical role in promoting and achieving the goal of sustainable agriculture by replac-
ing the use of synthetic chemicals. However, how different endophytic communities 
coordinate among one another in the microenvironment and coexist remains largely 
unknown. The better understanding of these aspects will further help in designing 
more precise disease management strategies (Card et al. 2016).

The endophytes are also known to regulate the physiology of the host plants to 
adapt better and to acclimatize with the surrounding environment. It has been found 
that the root endophytes help in drought resistance in their plants enhance the 
expression and activity of a vacuolar H+ -pumping pyrophosphatase (Vigani et al. 
2018). Such endophytes can be widely used in abiotic stress mitigation in a cost- 
effective manner. Extensive research on their potential can unveil untapped aspects 
of their ability to combat the various constraints faced in the agriculture sector in 
cost-effective, eco-friendly, and environmentally sustainable manner.

12.8  Conclusion

As discussed in the different contents of the chapter, endophytes serve as great alter-
natives for the growth and development of host plants, including the enhancement 
of production of the novel active phyto-compounds. Moreover, several strains of 
endosymbionts (i.e., bacteria, actinomycetes, fungi, etc.) are performing a decisive 
role in the induction of systemic resistance in plants, thus leading the suppression of 
disease severity in the host plant. On the one hand, these findings on endophytic 
research describe the antagonistic mechanisms of microbes, whereas on the other 
hand it also illustrates the host responses during the signal transduction pathways 
that govern the disease protection. The induction of systemic resistance of plants is 
interconnected with plant growth and development. However, the determination of 
specific microbial traits and gene pools that ignite the systemic resistance-related 
signaling in the host plant is still the case of an investigation.

Furthermore, the understandings about the selection criteria followed by the host 
plant for the elicitation of systemic resistance and plant beneficial strategies in stress 
conditions also remain to be answered. Several researchers are encouraged to 
explore the diversity and applications for the endophytes for the upliftment of plant 
growth and yield under different stress conditions. However, the multifarious per-
formance of endophytes and the way of communication with the host plant still 
need higher attention. Moreover, the endophytes also represent an incredible source 
of novel bioactive natural products. Several genes obtained from endophytes have 
great potentiality, which might be helpful in the development of biotic and abiotic 
resistant varieties and can also help to improve the understanding of the behavior 
and mechanisms of microbes during the interaction. Furthermore, currently, just 
1–2% of plant species are studied for endophytic association (Strobel and Daisy 
2003), and the rest of plant diversity remains unexplored (Strobel 2018). It is now 
needed to explore the remaining plant-associated microbial diversity at metabolo-
mics as well as the genomic level to detect the biochemical and physiological 
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aspects of endophytes. Moreover, the information regarding the secondary metabo-
lites and novel bioactive compounds obtained from endophytes that can be facili-
tated as a cure of several problems are not available in any database.

By resolving these issues, we can exploit the endophytes as an emerging tool in 
agriculture, medical, and phytopharmaceuticals. In the upcoming scenario, the 
endophytes may revolutionize the agricultural practices in terms of plant growth 
and stress management. Furthermore, plant-based drugs can also be modified 
through the intervention of endophytes-derived bioactive molecules in the near 
future which can be useful for the amelioration of not only yield and growth of the 
plants for societal benefits but also the pre-immunization of host plants against sev-
eral invaders. Similarly, the endophytes-treated plant varieties can also be intro-
duced shortly that develop the plant resistance against phytopathogens. The 
application of endophytes can also be a better option for the preservation and con-
servation of indigenous plant species at their natural habitats. Moreover, the devel-
opment of next-generation bio-formulations based on endophytes still needed more 
attention and much deeper knowledge on the following threatening issues: (i) 
genetic and molecular cross talk between both partners, (ii) important factors for the 
stable and healthy association between the plant and endophytes, and (iii) mode of 
the interaction.

Conclusively, endophytes are a very valuable biological tool, which can be 
explored in upcoming days to achieve the objectives of disease management, envi-
ronmental sustainability, and novel drug development. There is a need to explore the 
molecular and genetic information of the plant and endophytes during the establish-
ment of a plant-microbe association to obtain the higher benefits from this incredi-
ble event.
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Abstract
The agricultural production security is a major challenge under global climatic 
changes as the agricultural production does not solely depend upon the abiotic 
factors like temperature and moisture but is also equally affected by the biotic 
factor present in rhizospheric zones known as soil-plant microbiomes. The impor-
tance of soil-plant microbiomes in agricultural production has been revealed by 
reviews and literatures. Rhizospheric microbiomes hold great ability to bestow 
the crops sustainable and to encourage the application of bio- formulation carrying 
potential microbiomes, which introduces additional or optional approaches to 
develop agricultural practices and finally enhances crop productivity. In current 
chapter, a brief outline of functional activities of rhizospheric microbiomes within 
their habitat have been focused and majorly on available modern approaches of 
biotechnological techniques and allied sciences used in identifications, explora-
tion, and taxonomy in soil-plant microbiomes. Further, to conclude the theme of 
microbiomes exploration and identification, an endeavor has been made to cover 
some of the highly used tools of bioinformatics.
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13.1  Introduction

Intense agricultural practices have consequences in the enhanced agriculture pro-
duction of crops like wheat, rice, and maize (Zhang et al. 2011; Deb et al. 2015; 
Kumar et al. 2019). Higher production of rice and wheat ensured food security for 
continuously growing world population under changing climatic conditions (Tilman 
1999; West et al. 2014). Besides food security, there has been noticed an increasing 
awareness of undesirable environmental threats arising from the extensive applica-
tion of modern agriculture techniques. Some of the highlighted impacts of intense 
agriculture are greenhouse gas emission, nutrient leaching, increase soil degrada-
tion, and worst part of modern agriculture techniques which is based on the incor-
poration of synthetic fertilizers and pesticides that deteriorate the ecosystem 
gradually (Matson et al. 1997; Kumar et al. 2018; Sabarwal et al. 2018). However, 
along with the maintenance of food security, it is also essential to the standardiza-
tion of the modern agriculture practicing protocols and techniques, which stabilized 
the standard of soil quality through the inclusion of microbes which provide valu-
able ecosystem services. The presence of all soil nutrients in farmland is not only a 
single parameter for the healthy soil, but abundance of viable entities like microbes 
which perform various functions in the rhizosphere in order to maintain its fertility 
and soil sustainability is also equally important (Bhattacharyya et al. 2016; Singh 
2015; Mosttafiz et al. 2012).

Soil is a heterogeneous complex system on earth, which provides residence to 
great diverse organisms ranging from unicellular to multicellular organisms. It has 
been concluded in the literature that single gram of soil contains an abundance of 
viable entities (bacteria) close to 105–106 different taxonomic groups with huge 
microbial diversity (Griffiths et al. 2016). The soil microbiome is a collection of 
microorganism population inhabiting in the animals, plant, rhizosphere, or food 
which includes fungi, bacteria, archaea, and viruses and other genera (Kurokawa 
et al. 2007; Smith et al. 2013; Coleman-Derr et al. 2016). Mainly, bacteria and fungi 
are core regulators of various ecosystem processes and play crucial roles in nutrient 
cycling (Bardgett et al. 2008). Microorganisms have a diverse responsibility in the 
soil like the decomposition of various compounds and transformation of nonsoluble 
nutrients to a soluble form and fixation of different nutrients, resulting in the promo-
tion of plant growth (Bender et al. 2016).

Soil microbiomes are highly abundant in rhizospheric zones and equally diverse 
in nature (Blazewicz et al. 2013). They perform various beneficial functions in the 
soil, and their worthy functions need to be assessed, which demand their accurate 
identification. From the beginning of microbiology, identification of microbial 
strains was a very tedious and time-taking process as identification of microbes was 
purely based on the physical and morphological appearance. Microbial character-
ization based on the morphology was not at all precise and lacked accuracy. In the 
beginning year of microbiomes identification, in 18th century, the microbiologist of 
that era has started microbial characterization based on metabolic pathways. Further, 
soil microbiomes especially unicellular entity like bacteria showed enormous diver-
sity about their metabolisms and cell structures, and hence, identification based on 
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morphological and biochemical means becomes worthless (Gevers et  al. 2005; 
Achtman and Wagner 2008).

In spite of deficiency in a consistent species-level classification, the well-
timed categorization and identification of microorganisms remain to be signifi-
cant in various sciences related to environmental and soil monitoring or clinical 
diagnosis (Liu et al. 2010). Especially, the current advances of molecular biology 
covering modern techniques in the field of genomics and proteomics which are 
potential to put forward attractive and easy alternatives over conventional micro-
biological procedures, which are used for the exploration, characterization, and 
identification of microbiomes (Hugenholtz, and Tyson 2008; Martínez-Porchas 
and Vargas-Albores 2017). From the last three decades, modern sciences like 
genomics and proteomics with the inclusion of computational science and infor-
matics science have greatly strengthened and provide quick multidimensional 
data for quick microbial identification. The sequencing technologies coupled 
with bioinformatics has not only revealed rapid identification of microbiomes 
(Martínez-Porchas and Vargas-Albores 2017; Marshall et al. 2018) but also made 
possible rapid gene annotation of microbiomes within a short period of times 
(Liu et al. 2007; Logue et al. 2008).

Soil microbiomes communities and their related functions principally conclude 
the productivity of agriculture crops (Van Der Heijden et al. 2008; Dias et al. 2015; 
Kumar and Verma 2019). The present compositions of the rhizospheric microbi-
omes are the most indispensable factors in determining the bacterial and fungal 
association linked to plant roots (Boe et al. 2000; Berendsen et al. 2018), and hence 
the identification of microbiomes irrespective of origin is essential for the better 
understanding of their functions. Molecular identification is highly accurate and 
hardly creates cumbersome and also makes possible manipulation of microbial trea-
sure for the better uses for human society. In the current chapter, the tools and tech-
niques related to the soil microbiomes exploration and identification in the 
biotechnology era have been covered comprehensively. The current chapter also 
covered the putative role of bioinformatics to decipher the molecular taxonomy and 
phylogenetic studies.

13.1.1  Soil Microbiomes Interaction with Plant

In the last two decades, several milestones have been covered with respect to micro-
biome identification of different origin and the phrase “plant microbiome” or “rhi-
zospheric microbiomes” has gained considerable attention, as rhizospheric 
microbiome affects the soil fertility in multiple ways. Soil microbes provide the 
protection to the plant against plant pathogens and promote goodness to the plant 
and finally enhance the crop productivity. The plant microbiome holds the dissimi-
lar functional gene pool, linked from viruses, prokaryotes, and eukaryotes and also 
coupled with various residents of a plant host (Rout and Southworth 2013). The hot 
spot location of microbiomes and plant interaction is the rhizosphere which is 
always under the inclination of plant roots via accumulation of exudates, mucilages, 
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and sloughed cells (Uren 2001; Bais et al. 2006; Moe 2013). Hence, plant roots are 
potential to manipulate the soil and to inhabit microbiomes. Further, the rhizosphere 
microbiomes can promote plant growth through the secretion of regulatory com-
pounds like siderophore, hormone production as indole acetic acid, gibberellic acid, 
and stress regulation through 1-aminocyclopropane-1-carboxylate (ACC) deami-
nase activity (Shi et  al. 2011; Philippot et  al. 2013; Spence et  al. 2014; Sarkar 
et al. 2018).

The rhizospheric microbiomes have inverse or direct (beneficial) influence on 
plant growth promotion and wellness. Rhizospheric microbiomes directly affected 
the attack of pathogens and mutualistic benefits through the decomposition of com-
plex compounds and nutrient solubilization like phosphates, potassium, and other 
nutrient cycling (Glick 1995); discharge of plant growth hormones like auxin and 
gibberellins (Narula et al. 2006; Ortíz-Castro et al. 2008; Ali et al. 2009; Mishra 
et al. 2009); anti-pathogens activities (Kloepper et al. 2004); and stimulation and 
induction of the plant immune system through induced systemic resistance 
(Ramamoorthy et al. 2001; Vessey 2003; Rudrappa et al. 2010). The recent litera-
ture substantiates that plant host and developmental stage have a noteworthy influ-
ence on determining of the rhizospheric microbiome (Peiffer et al. 2013; Chaparro 
et al. 2014; del Carmen Orozco-Mosqueda et al. 2018).

13.2  Microbial Identification

There are diverse microorganisms which exhibit plant growth-promoting (PGP) 
activities and help in the crop growth and productions (Meena et al. 2017; Sahoo 
et al. 2019). Their application has lead to the use of microorganisms in agriculture, 
which has further needed the identification of these organisms having PGP activi-
ties. This has given a separate branch of study called systematics or taxonomy. 
Systematics or taxonomy consists of classification, nomenclature, and identifica-
tion, where identification is the practical application of the taxonomy. Classification 
can be considered as an art, but the identification is purely a science (Cowan 1965). 
There are several methods for identification of microbes ranging from morphologi-
cal studies to molecular studies (Zhang et al. 2010a; Sahoo et al. 2019). First of all, 
it is very important to isolate organisms from the pool of the microbes, and this 
purified single colony should be identified for accurate nomenclature with molecular- 
based methods (Colombo et al. 2009; Armstrong 2007; Wagner and Haider 2012).

Initially, the organisms were identified based on pathogenicity, whether they are 
pathogenic or nonpathogenic. Nungester (1963) started microbe identification 
based on fewer objectives: (a) susceptibility to the antimicrobial drug, (b) based on 
prognostic value, (c) potential danger to the people in contact to the infected person, 
and (d) source of infection, etc. Initially, these objectives were used for clinical 
microbiologist later amended and further utilized for the normal identification irre-
spective of the field. Before this, the identification involves a comparison of an 
unknown organism to known organism and eventually giving the name to the for-
mer. After that, more progressive methods (Cowan 1965) were used which aim to 
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determine a few fundamental characteristics, so that the isolates can be placed in the 
same genera (Drahos 1991; Armstrong 2007; Colombo et  al. 2009; Wagner and 
Haider 2012). Some of the modern techniques used in microbiome identification 
have been discussed in a further section.

13.2.1  Methods of Microbiomes Identification

The methods of identification of microbe can be categorized in (a) classical or tra-
ditional and (b) modern methods based on instrument and technique used (Fig. 13.1). 
Traditional methods rely on the phenotypical characterization of the microbe, which 
can be observed by the naked eye, including morphological and biochemical analy-
sis. Psychrobacter spp., a nonmotile bacteria associated with freshwater fish spoil-
age, were characterized phenotypically (García-López et al. 2004). Morphological 
characteristics involve the morphology, shape, size, opacity, color, and transparency 
of the colony. These characters can be observed after incubating the microbe for a 
certain period on the solid agar plate. The primary distinguishing characteristics are 
whether it can grow in an aerobic or anaerobic environment. However, these pheno-
typic characterizations are not sound very much scientific and sensitive at the level 
of strain differentiation (Sagan et al. 1994; Collazo et al. 2005; Vernière et al. 1998). 
Figure 13.1 has briefly described the most common methods generally used in the 
microbial characterization.

Fig. 13.1 Methods used to characterize genotypic and phenotypic characteristics and requirement 
of the characterization
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Initially, microscopy was developed mainly for the phenotypical characteriza-
tion. The phenotypical characterization includes the shape of the microbe whether 
it is a bacillus, coccus, spiral, or some other shapes and the study of the mobility of 
the microbe by identifying the flagella whether it is mono-, bi-, or multi-flagellated. 
Microbes can also be analyzed through the staining pattern of the bacteria, whether 
it is gram-negative or gram-positive. The presence of spore, capsule, inclusion body, 
and many more things can be detected. Some of the bacteria have a specific pigmen-
tation and fluorescence, which can be utilized as a characteristic for identification 
(Giana et al. 2003). There is a variety of staining, i.e., gram staining, endospore 
staining, and Ziehl-Neelsen staining used for characterization (Hatamoto et  al. 
2007; Hugon et al. 2017). Besides the light and compound microscopy, there are 
several other microscopes, which have been proven advantageous in the character-
ization of the microbes, for example, confocal microscopy is being used to see the 
organelle of the microbe; besides this, for the greater resolution, SEM (scanning 
electron microscopy) and TEM (transmission electron microscopy) are being uti-
lized (Hatamoto et al. 2007; Golding et al. 2016).

A variety of biochemical tests like catalase, oxidase, peroxidase, urease, citrate, 
protease, and others specify the organism at the genus and species level. In 
Enterobacteriaceae and Pseudomonas spp., identification of carbapenemase types 
using a biochemical test is one of the examples (Dortet et al. 2012). Similarly, the 
nitrate reduction test can be utilized in the identification of Mycobacteria (Virtanen 
1960). Dichotomous identification is also one of the methods, where the whole 
kingdom is divided into two parts based on characteristics; as we choose multiple 
characters, it goes narrower (Noguerola and Blanch 2008). Traditional methods are 
widely used but have major drawbacks. It is only applicable to an organism which 
can be cultured in vitro, and there are various microbes which do not fit to a particu-
lar genus because of the unique biochemical properties. The modern methods 
mostly rely on the molecular biology, which can detect similarities and dissimilari-
ties even at the molecular level, no need to be dependent on live culture, and can 
reveal minute differences between organisms which can escape in classical methods.

13.2.2  Molecular Techniques for Microbiomes Identification

Conventional methods of identification are labor-intensive and time-consuming and 
are often not enough to differentiate the species of the same genus (Verma et al. 
2019). These limits are especially important for the medical diagnostic point of 
view. Rapid and proper identification of the microbe is essential in medical science. 
Therefore, there is the requirement of the alternating methods for quick identifica-
tion. Nowadays, molecular taxonomy relies on the 16S ribosomal RNA gene 
sequencing and several PCR-based methods. The 16S ribosomal RNA gene 
sequencing has led to microbe identification at species and subspecies level 
(Adekambi and Drancourt 2004; Chen et al. 2000). These PCR-based sequencing 
methods are highly sensitive and reproducible. These sequencing methods also 
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reduce the time and labor as it requires the genomic DNA of the microbe and PCR 
reaction.

Similarly, microarray-based methods use the probe specific to the organism. In 
the microarray, there are a number of probes (16S rRNA probes) from different 
organisms, so from a single microarray, it can identify several microorganisms in a 
microbiome as each probe corresponds to a specific microorganism (Peplies et al. 
2003). The serology-based method also works on the same principle, but here we 
use the antigen-based enzyme-linked immunosorbent assay (ELISA) plate, and 
each antigen corresponds to the specific microbe. Besides the simple PCR, there are 
some recent advancements such as amplified fragment-length polymorphism 
(AFLP), repetitive element polymerase chain reaction, riboprinting, and multiplex 
PCR which have been proven useful in the identification (Emerson et  al. 2008; 
Ricke et al. 2018).

13.2.3  Selection of Target Gene for Sequencing

Many gene targets have been identified in archaea, bacteria, fungi, and viruses. The 
gene sequence should have been conserved in the same species of bacteria or fungi. 
In bacterial identification, mostly 16S rRNA gene (16S rDNA) of ~1500 bp sequence 
is used for the identification of the species (Nocker et al. 2007). The 16S rDNA has 
conserved region as well as various regions (Fig. 13.2). In earlier studies, the scien-
tist uses the whole 16S rDNA sequence for the identification. Nowadays, people are 
using the variable region only for the identification because they are more prone to 
the mutation and this region of DNA form only loops in the secondary structure of 
16S ribosomal subunit (Fig. 13.2b). Some of the bacteria have multiple copies of the 
gene, while some microorganisms like Bacillus cereus and Bacillus anthracis have 
the same sequences. The multiple copies can make the interpretation difficult if 
every copy has a variation in base sequence. But, in clinical samples, the multiple 
copies are helpful in the amplification. Because of the difficulties in the interpreta-
tion in these cases, sometimes the sequence of the β subunit of the RNA polymerase 
II (rpo B) is used for the identification in place of 16S rDNA (Volokhov et al. 2012). 

Fig. 13.2 (a) Schematic representation of ITS regions in fungi (eukaryotes) and (b) schematic 
representation of variable regions (orange) and conserved region (blue) present in 16S rRNA genes 
in bacteria
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The rpoB gene has been proven useful in the identification of fast- growing bacteria 
like mycobacteria, i.e., Mycobacterium chelonae and Mycobacterium abscessus. 
These two species have indistinguishable 16S rRNA gene sequences but exhibit 
13% sequence divergence with rpoB (Adékambi  and  Drancourt 2004; Poretsky 
et al. 2014; Nasiri et al. 2017). There are some other gene targets, which are the bet-
ter option to distinguish the differences between species. These genes include tuf 
(elongation factor), gyr A (gyrase), gyr B, sod A (superoxide dismutase), HSP 
(heat-shock protein), etc. In the case of fungi, the scientist uses the internal tran-
scribed region (ITS-I and ITS-II) sequence (Fig. 13.2a). These variable regions lie 
between 18S, 5.8S, and 26S rRNA genes. The variation between the ITS regions 
can be utilized for the identification of the fungi, such as Saccharomyces, Candida, 
Trichosporon, Cryptococcus, and Aspergillus (Chen et al. 2000; Ciardo et al. 2006). 
The ITS regions also have some limitations; because of that, the two variable 
domains D1 and D2 near the 5′ end of 28S ribosomal RNA genes (Dagar et  al. 
2011), elongation factor α (e.g., Fusarium sp.), and β-tabulin (e.g., Phaeoacremonium 
sp.) are being used as an alternative gene target (Stielow et al. 2015).

13.2.4  Gel-Based Identification and Characterization

Protein profiling is one of the recent methods for identification (Karlsson et  al. 
2018). For the protein profiling, first lyse the cell and then separate on the SDS- 
PAGE (polyacrylamide gel electrophoresis). Bacteria can be identify on the basis of 
the migration pattern of the protein on the gel, which can be compared with the 
reference. The 2DE (two-dimensional gel electrophoresis) is the fusion of the iso-
electric focusing (IEF) and SDS-PAGE. In the isoelectric focusing, the proteins are 
first separated on the basis of the isoelectric point (charge). Then, the SDS-PAGE 
was performed to separate the protein on the basis of molecular weight. It means 
that the protein is first separated on the basis of charge and then on the basis of 
molecular weight. The 2DE map of different organisms can be stored, and a data-
base can be prepared, which can be used as a reference and compared with test 
organisms (Malmström et al. 2002). The major drawback of this method is that it is 
labor-extensive and time-consuming and requires an ample amount of the protein. 
Proteome profile of organisms can be compared with the existing databases, and 
based on the comparison, the microorganism can be identified. Redmond and his 
colleague analyzed the exosporium of Bacillus anthracis spores by isolating the 
proteins from the outer casing of the spore using SDS-PAGE and analyzed the iso-
lated protein. The team identified several proteins associated with the exosporium of 
B. anthracis (Redmond et al. 2004). The introduction of MALDI-TOF-MS greatly 
enhances this method. Using this method, the proteome of many microbes has been 
made available (Nouwens et al. 2000; Peng et al. 2005; Pieper et al. 2006).
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13.2.5  Fingerprinting-Based Technology

Fingerprinting is the most widely used technology in the genomics for bacterial 
identification. The repetitive PCR, amplified fragment-length polymorphism 
(AFLP), random amplification of polymorphic DNA (RAPD), and multiplex PCR 
are widely used methods. These techniques utilize the PCR machine to amplify 
multiple copies of the DNA fragment using the defined set of primers, and then dif-
ferences in these amplified fragments are utilized for the analysis and differentiation 
among the species of similar ecology (Lam et  al. 2015). Similarly, restriction 
fragment- length polymorphism (RFLP) utilized a restriction enzyme. These meth-
ods are used to take advantage of the DNA polymorphism in the related organism, 
on the basis of which the organism can be differentiated in the mixed samples 
(Versalovic et al. 1994; Cocconcelli et al. 1995; Lin et al. 1996).

13.2.6  Microarray-Based Technology

Microarray is another technique to identify microbes at the species level and also 
impart the functional structure of a given microbial community (Bai et al. 2017; 
Thissen et al. 2019). The basic principle of this technique is to utilize specific probes 
which are spotted on a solid platform. This is called chip, which is further hybrid-
ized with fluorescently labeled DNA or RNA molecules from the microbial popula-
tion. This genetic material (DNA & RNA) only hybridized with specific probe 
present on the specialized chip which can be detected. In the case of bacterial iden-
tification, several interactions of “polychip” have been used that utilize the small 
subunit of the ribosomal genes (Liu et al. 2001; Wilson et al. 2002). These chips are 
useful in the identification of a broad group of environmental bacteria (Loy 
et al. 2002).

13.2.7  Mass Spectrometry-Based Microbiomes Identification

Mass spectrometry is another latest next-generation tool for quick microbiome 
identification and classification. Matrix-assisted laser desorption ionization-time of 
flight mass spectroscopy (MALDI-TOF-MS) and electrospray ionization mass 
spectrometry (ESI-MS) have revolutionized the clinical identification of microor-
ganism in a minute at the species level (Cherkaoui et al. 2010). Thomson (1899) 
first discovered this method to measure the mass to charge (m/z) ratio for the elec-
tron. Further, the mass spectrometry application was expended in physical and 
chemical characterization, including biological samples. In end of 19th century, the 
development of the soft ionization processes has made this useful for the large bio-
logical molecules (Fenn et al. 1989). MALDI-TOF is widely used in microbial iden-
tification. The bacterial cell can directly be utilized for the analysis. It can produce 
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the reproducible spectral pattern, which contains the information that can be used 
for the identification and characterization of the microbe. The basic procedures of 
the proteome analysis of the bacterial cell have been summarized in Fig. 13.3. For 
the ionization of the microbial sample, specific matrix has been used, which helps 
in the sample ionization. There are different types of matrix available for different 
types of sample. After the ionization of the microbe, particles are allowed to migrate 
in an electric field, and because of the field, each ionized particle acquires a path 
which gets detected by the analyzer. Finally, the analyzer gives spectra based on m/z 
ratio of the particle, which can be compared with the spectra of the known databases 
using an automated program (Dingle and Butler-Wu 2013). The most commonly 
used mass spectroscopy for the identification of microorganisms is MALDI-TOF 
(Krásný et al. 2013). Cell lysate can be utilized for protein profiling using MS. Using 
protein profiles to differentiate bacteria was first introduced by Cain et al. (1994).

13.2.8  Metagenomics

Metagenomics is derived from two major developments in biology. First is the 
development of next-generation DNA-sequencing technologies which has greatly 
enhanced capabilities for sequencing large meta-data sets, and second is the emerg-
ing appreciation for the importance of complex microbial communities in diverse 
environmental condition (Handelsman 2005; Petrosino et al. 2009). Metagenomics 

Fig. 13.3 Flowchart of microbial identification using MALDI-TOF-MS. The microbe was puri-
fied, and protein extraction was done from the whole cell lysate. The cell lysate was processed and 
mixed with the matrix, and the spot was done on the MS plate, which was further put inside the 
MALDI-TOF instrument. The spectra are analyzed on the database for the identification
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is the genome analysis of a population of microorganisms. It doesn’t need the cul-
turing of the organism. The genomic DNA can be isolated directly from the soil 
samples or the defined environment and cloned in the desired vector or plasmid. The 
idea of cloning DNA samples directly from the environment was first discovered by 
Pace et al. (1986), and then the next advance is the construction of the metagenomic 
DNA library of the isolated DNA from the mixture of the microbes and the library 
vector (Schmidt et al. 1991). Further, the clones can be analyzed or screened for the 
phylogenetic markers likes 16S ribosomal RNA genes, RecA, gyrA, rpoB, etc., or 
can be screened for specific traits like enzyme production and expression of specific 
genes (Stein et al. 1996).

Metagenomics is a tool that can provide an abundance of knowledge to under-
stand the microbial population. It has further improved our understanding of many 
of the exotic and familiar habitats that are attracting the attention of microbial ecol-
ogists, including deep sea, hot springs, temperate, desert, and cold soils; frozen 
Antarctic lakes, plant rhizospheres, and phyllosphere; and fungi-lichen symbioses 
(Yin et al. 2018).

13.3  Bioinformatic Scope in Microbiome Identification

The modernistic approach of microbial identification is based on the application of 
modern technology, along with bioinformatics tools. Bioinformatics is an interdis-
ciplinary field of science in which algorithms and software tools can be developed 
for a better understanding of biological data to accelerate and enhance biological 
research. In the recent past, the explosion in capabilities of high-throughput omics 
technologies, system biology, and deep-sequencing platforms is generating a huge 
amount of data which require computational approaches to manage and analyze 
(Jiang et al. 2013). There are several computational tools and techniques that are 
used to analyze the hunks of biological data more accurately and efficiently by auto-
mated processes. Bioinformatics played an important role in various fields, i.e., in 
sequencing and annotation of microbial genomes; it has also aided in the sequenc-
ing of observed mutations in the various organisms. These tools have proven useful 
in the comparative analysis of the microorganisms and understanding of the evolu-
tionary aspect based on molecular biology (Zhang et al. 2010b). Hence, computa-
tional biology can be considered as a field of data science for solving problems in 
biology, medicine, and agriculture.

13.3.1  Next-Generation Sequencing of Microbes

Next-generation sequencing (NGS), a newly emerged technique, is being used a lot 
in various field of science. This technology has tremendous advantages over the 
Sanger sequencing method. The development in this technique has led to the high- 
throughput sequencing, which has further boost the several findings which were 
earlier seemed to be laborious and time-consuming by traditional methods. Millions 
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of molecules can be sequenced simultaneously producing a huge amount of data. 
This technology is highly parallelized in such a way that it can analyze a huge 
amount of data and can give valuable information. Several algorithms have been 
written for data analysis. The NGS technology is high throughput, which is quick 
and economic enough to be considered as a tool for bacterial identification and 
characterization (Loman et al. 2012; Stahl and Lundeberg 2012; Srivastava et al. 
2019a, b). Several algorithms have been written and assembled in a group, which 
further used as a tool for NGS data analysis. Short sequencing reads have limited 
power to resolve large repetitive regions, even within small microbial genomes 
(Chain et al. 2009; Nagarajan and Pop 2013). Generally, short- read technologies 
enable to resolve microbial genomes up to the high-quality draft standard (Treangen 
and Salzberg 2012), which sound applicable for understanding gene-coding poten-
tial, strain typing, or pan-genome analysis (Roberts et al. 2013). Draft genomes are 
the assemblies of fragmented short genomes which may contain incorrect gene 
calls, misassembled regions, and other artifacts. Fragmented assemblies are often 
attributed to repetitive DNA regions (such as rRNA operons) which are enormous 
in microbial genomes and present the greatest technical challenge to the assembly 
process, especially when the repetitive region is longer than the read lengths 
(Treangen and Salzberg 2012; Brown et al. 2014). Finished genome sequences are 
high quality by definition, represent more accurate genomic information, and can be 
adopted for model organisms and industrially important microbes (Fraser et  al. 
2002; Thomma et al. 2016; Boulund et al. 2018). The accurate analysis of NGS data 
revealed important clues in the quest for the treatment of various life- threatening 
diseases, improved crop varieties etc. There are several computational methods to 
analyze NGS data.

13.3.2  Data Cleaning and Preprocessing

The very first step is the cleaning or preprocessing of sequences of microbes 
retrieved from various sequencers. These sequences include the adapter and primers 
which can occur at both the ends of NGS reads. These adapter and primer sequences 
can hinder the correct alignment and mapping; because of that, it is important to 
remove these sequences. These ligated adapter sequences required the deletion from 
the sequence as the adapter can interfere with the original mapping of the reads and 
influence SNP calling and other downstream analyses. Various programs/applica-
tions are available for cleaning raw data by trimming low-quality reads and adapter 
contamination removal. Before analysis, these preliminary quality control checks 
can be applied. There are several open sources as well as commercial tools of data 
cleaning and processing. In Table  13.1, we have listed some of the online tools 
available.
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13.3.3  Genome Assembly

With the advent of many sequencing techniques, there is a massive overflow of 
genomic data in less time at low cost. Genome assembly is the process of making 
the original DNA sequence from a large number of short DNA sequences by putting 
all the sequences together. These sequences are aligned in such a way that the over-
lapping sequences read in contiguous sequences (contigs). This is called the de novo 
assembly, where there is no requirement of the reference genome. The most effi-
cient assemblers for short-read sequences are typically those that employ de Bruijn 
graphs to produce an assembly (Compeau et  al. 2011). Different algorithms are 
being used for the genome assembly. This algorithm takes all the pieces of DNA 
sequences, aligns them to one another, and searches for the overlapping sequences. 
These overlapping reads are merged with two paired reads, and assembly continues. 
Genome assembly is a difficult computational problem, as many genomes contain 
large numbers of repeat sequences. One of the first and most widely used de Bruijn 
graph assembler is the open-source program Velvet (Zerbino and Birney 2008). 
With further development to improve the resolution of repeats and scaffolding using 
paired-end and longer reads (Zerbino et al. 2009), Velvet remains one of the most 
used (and cited) assembler for bacterial genomes, being best suited to Illumina 
sequence reads (Velvet is included as the default assembler in the IlluminaMiSeq 
analysis suite).

There are two approaches to the assembly. First is de novo where no reference 
sequence is taken, and second is reference-guided where a reference genome is 
taken. Different types of software and algorithms are available for both the 
approaches of assembly. De novo approach relies on the fact that reads need to be 
assembled to generate a contiguous sequence either by overlap/layout/consensus 
graph (e.g., Celera Assembler, Arachne, CAP, and PCAP) or de Bruijn graph (e.g., 
Euler, Velvet, ABySS, AllPaths, SOAPdenovo, CLC Bio). Reference-guided assem-
bly includes the use of reference genome to assemble reads into contigs. There are 
some assemblers which take reference genome as template to arrange reads helping 
in generating quick and accurate assembly (e.g., Velvet, DNASTAR’s Lasergene 
Genomics Suite). This approach helps in identification of insertions and deletions.

Table 13.1 Tools of data cleaning and processing

Tools Link
FastQC (Andrews 2010) http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
Fastx toolkit http://hannonlab.cshl.edu/fastx_toolkit/download.html
Galaxy (Giardine et al. 2005) https://usegalaxy.org/
Trimmomatic (Bolger et al. 2014) http://www.usadellab.org/cms/?page=trimmomatic
CLC Bio (Workbench 2010) Commercial
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13.3.4  Assembly Quality Assessment

After the genome assembly, it is very important to check the quality of the assembly. 
The maximum and minimum length of contigs/scaffolds, its length distribution, the 
total length of the assembly, etc., are the important criteria for the quality assess-
ment. N50 and L50 are the important criteria as they represent the quality and size 
of the contigs or scaffolds in the assembly. There are several assembly tools avail-
able such as ABySS, Mimicking Intelligent Read Assembly (MIRA), CLC Bio 
Workbench, etc. The de novo assembly algorithm of CLC Genomics Workbench 
performs comprehensive support for a variety of data formats, including both short 
and long reads and mixing of paired reads (both insert size and orientation).

13.3.5  Gene Identification Tools

Gene prediction is one of the most important steps in understanding the sequenced 
genome of a species. At the computational point of view, gene prediction or gene 
findings are the process of identifying the regions of genomic DNA that encode 
genes. It includes protein-coding genes as well as RNA genes, but it may also 
include prediction of other functional elements, i.e., regulatory regions. At present, 
with comprehensive genome sequence and powerful computational resources avail-
able to the scientific communities, and gene finding has been redefined as a largely 
computational problem. The advances in bioinformatics research ensured the pos-
sibility to predict the function of a gene based on its sequence alone, and some of 
the popular tools have been listed in Table 13.2.

Table 13.2 Bioinformatics tools to predict the function of a gene based on its sequence

Name Description URL link
FRAMED Find genes and frameshift in 

G+C rich prokaryotic sequences
https://omictools.com/framed-tool

GENIUS Linking ORFs in complete 
genomes to protein 3D structures

http://genius.cbrc.jp/summary_linking.
html

GENEID Program to predict genes, exons, 
splice sites, and other signals 
along a DNA sequence

http://genome.crg.es/software/geneid/

GENEPARSER Parse a DNA sequence into 
introns and exons

https://bio.tools/GeneParser

GeneMark.hmm Gene prediction program for 
prokaryotes and eukaryotes

http://exon.gatech.edu/GeneMark/

GeneTack Prediction of genes with 
frameshifts in prokaryotic 
genomes

http://83.149.211.146:23194/~ivan/
cgi-bin/GeneTack/cgi/print_page.
cgi?fn=home.html&title=Home

GLIMMER Finding genes in microbial DNA http://www.cbcb.umd.edu/software/
glimmer/glimmer2.jun01.shtml
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13.4  Conclusion

The classical identification of microbiomes was purely based on biochemical, which 
is insufficient to deal with the identification issue of diverse rhizospheric microbi-
omes. Hence, molecular level identification of rhizospheric microbiomes is essen-
tial and is covered only under the umbrella of biotechnology and its allied sciences. 
The advancement in the biotechnology tools has certainly played a crucial role in 
the accurate identification and phylogenic mapping of the diverse rhizospheric 
microbiomes as rhizospheric microbiomes have potential to increase crop produc-
tions. In last few decades, the application of biotechnology in a combination of with 
computational sciences like bioinformatics has refined the microbiomes phylogenic 
position. Advanced technologies like MALDI-TOF-MS, metagenomic studies of 
various environmental samples, nucleotides sequencing coupled with streams such 
as bioinformatics, molecular modeling, and docking have certainly led to several 
innovations and crucial progress in biological sciences. Further, biotechnology and 
bioinformatics helped in deciphering the structural and functional genes, which are 
involved in regulations of several physiological mechanisms of higher and lower 
organisms, including plant microbiomes.
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Abstract
Plant-parasitic nematode causes enormous damages to various crops. To manage 
this tiny pest through ecofriendly approaches is the need of the hour. Application 
of biocontrol agents in the management of phytopathogenic nematodes has been 
a promising tool. There are a wide range of biocontrol agents including fungi and 
rhizobacteria which can protect the crops from pathogens/pest attack and also 
promote the yield attributes. It also improves the germination of the seed, helps 
in the development of root, and much more important thing, it increases the 
water utilization rate in plants. Moreover, some of the particulate air pollutants 
are also recommended for the management of phytonematodes. Among the 
particulate matter, fly ash was found to be most resistant to nematodes. 
Application of fly ash improves the growth of many crop plants when amended 
in the soil at low levels due to the presence of almost all the macro- and 
micronutrients. Many of the researchers observed that fly ash suppress the 
nematode population or disease caused by nematode in roots of plants, and this 
is due to the presence of many heavy metals in it.
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14.1  Introduction

Plant-parasitic nematodes (PPN) cause enormous losses and therefore warranted to 
be managed with safe approaches (Bernard et al. 2017). Among the different stages 
of life cycle of root-knot nematodes, the second stage of juveniles (J2) penetrates 
and sucks the nutrients from host plants. (Gheysen and Mitchum 2011). Due to the 
high impact of PPN, many of the researches have been focused specially in the two 
groups of PPN like cyst nematodes (Heterodera and Globodera sp.) and root-knot 
nematodes (Meloidogyne sp.). The life cycle of cyst nematode completes in 
approximately 30 days of Heterodera sp. and 60 days of Globodera sp. in optimal 
situation and has six stages such as the egg, four stages of juvenile (J1, J2, J3, and 
J4), and lastly adult stage (Williamson and Gleason 2003). Out of four, the second 
stage causes the infection to the root system of the plants. After detecting the host 
root, it penetrates intracellularly with the help of cell wall-degrading enzymes 
secreted by the esophageal glands of the nematodes and migrates toward the vascular 
bundles. Here nematodes stimulate the formation of a metabolically active and 
sophisticated nematode feeding site (NFS), which is known as “syncytium” or 
“transfer cell” through secretion and injecting of enzymes and proteins inside the 
host cell via stylet (Baum et  al. 2007). The main transcriptomic, metabolic, 
morphological, and physiological changes occur through the formation of NFS, like 
surrounding cell walls partially split-up, nuclei enlargement, organelles of cytoplasm 
increase in density, accumulation of endoplasmic reticulum, etc. (Hussey et  al. 
2002; Siddique and Grundler 2018). A female adult becomes swollen and sedentary 
and remains adjoining to the roots, and posterior extremity of the body comes 
outside from the ruptured cells of the root. The males maintain their vermiform 
form and leave the roots to fertilize. Mature female absorbs the nutrients from nurse 
cells (giant cell) to support the metabolic activities of the nematode and also helps 
in egg production. After completing the life cycle, wall of the female body becomes 
thick and makes a tough brown leather bag which is known as “cyst.” The cysts 
serve as initial protection of around 200–500 eggs against adverse conditions until 
egg hatching takes place in favorable environmental conditions (Jasmer et al. 2003). 
In contrast, the duration of life cycle varies from several days to several months 
based on some factors like humidity, temperature, presence of the convenient host, 
and the species of RKN. The second stage of juvenile (J2) detects and penetrates 
inside the root of the host through signals from the host and the penetrating action 
of the stylet. The young one moves intercellularly within the tissues of the root and 
ultimately reaches to the vascular bundle. Thus, the nematode absorbs some 
secretions from the esophageal gland in the formation of 5–7 multinucleated and 
metabolically active nutritious or feeding cells known as “giant cells” that are the 
consequence of cytokinetic mitosis (Mhatre et  al. 2015; Siddique and Grundler 
2018). Male nematodes migrate towards the female for the copulation, on the other 
hand, apple-shaped swollen females remain sedentary within the roots, and eggs 
produce in the gelatinous matrix. Nematodes target the roots system of the host 
plant and cause the infection leading to intermittent supply of water and nutrient. 
Due to severe infestation, the plant growth and yield are significantly reduced. 
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Plant-parasitic nematodes recognized as hidden enemies are responsible for the 
heavy losses in various crops and horticultural. Moreover, PPN is responsible for 
approximately $ 157 billion yield loss in the world; a yield loss of $ 40.3 million is 
from India, which shows a 12.3% average loss of yield (Abad et al. 2008; Singh 
et al. 2015).

14.2  Management Strategies of Nematodes

Due to parasitic organisms, the management of plant disease has become a daunting 
task in the present scenario for researchers in sustainable agriculture. Approximately 
4000 organisms which are parasitic have been identified and mostly present in the 
major biomes. Organisms as plant-parasitic absorb many nutrient content and water 
through the vascular tissues from their host plants (Press and Phoenix 2005). In the 
parasitic organisms, the management of nematodes is more difficult due to the 
habitat and their inhabitation and mode of parasitism (Gillet et al. 2017). In plants, 
nematodes attack mostly underground parts and cause a serious loss of yield. Many 
species of nematodes like Meloidogyne sp., Heterodera sp., Globodera sp., and 
Pratylenchus sp. are considered as the most important species from the economic 
point of view due to the damage and infection level to wide range of host.

Nematicides of chemical origin are responsible for the enhancement of agricul-
tural capacity in terms of increased food and production of fiber. On the other hand, 
the application of chemically manufactured nematicides has resulted in environ-
mental risk and also the impact on human health (Aktar et al. 2009). The use of 
synthetic nematicides is being banned because of their dangerous nature, which is 
harmful to untargeted organisms, a threat to environmental protection, and a cause 
of public health problems (Schneider et al. 2003). Therefore, it is the need of the 
hour to search an alternative that must be ecologically safe. Many ecological 
approaches that promote plant growth-promoting rhizobacteria (PGPR) can act as 
effective biological control of nematodes, as well as an agent that promotes plant 
growth and yield of various crops. Strains of rhizobacteria use organic compounds, 
sugars, and amino acids which are released from the roots of the plant for their 
growth and energy. In mutualism, strains of rhizobacteria fabricate different 
substances to improve plant growth and biological control activities in support of 
the host plant (Karthik et al. 2017). The above facts show that the chapter focused 
on the positive PGPR correlation for the biological control of nematodes and the 
enhancement of agricultural productivity. Among the different environment-friendly 
approaches, PGPR strain can act as effective biological control of the nematode, as 
well as play an important role in the plant growth-promoting agent for the growth of 
plants and yield improvement.

Several options are available here to limit the damage, such as eco-friendly use 
of some industrial waste, biological control, resistant cultivars, intercropping, deep 
plowing, crop rotation, and nematicides. However, the use of intercropping, crop 
rotation, and deep plowing is not beneficial in case of cyst formation, gelatinous 
matrix, various survival adaptations, and survival in the soil without presence of 
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host. The chemical method has been very effective for controlling nematodes, but 
farmers avoid this method due to the expensive cost, environmental problems, and 
high risks of health, while the continued growth of resistant cultivars on the same 
plot of land leads to the reducing resistance capacity because of the continuous 
development of virulent pathogens. Removing the nematode stress through the most 
effective and efficient methods is biological control, which is also an aim to save the 
crops (Timper 2014). Biological control is defined as “a deficiency of the nematode 
population, which is accomplished by the activity of living organisms except for the 
nematode resistant host plant, which occurs through naturally or changes in the 
environment or the establishment of antagonists” (Tian et  al. 2007). The main 
objective of biological control is reduction of nematode populations by enhancing 
the number of natural enemies which is present in the soil. The soil is the collection 
of microflora, which is majorly diverse in structure and activity. In the rhizosphere, 
microbial flora acts as a front line which performs defense mechanism against 
various pathogens and can be utilized as biocontrol agents (Mendes et al. 2013). 
Use of such kind of biological organisms is able to maintain ecological balance and 
is responsible for the pure environment. After the establishment, the biological 
agent is active in the soil for a long time and also leads to the concept of “oppressive 
soil,” where microorganisms populate in the soil naturally suppressing the PPN 
population (Trudgill et al. 2000). Biological control of nematodes is also achieved 
from bacterial and fungal antagonists. Fungal antagonists to nematodes consist of a 
variety of microorganisms including endoparasitic fungi, toxin-producing fungi, 
nematode-trapping fungi, parasites, and vesicular-arbuscular mycorrhiza which 
feed on the sedentary nematodes, females, and eggs. (Tranier et al. 2014), while 
bacterial antagonists are made up of mainly three groups such as epiphytic, 
endophytic, and endoparasitic bacteria. Bacteria reach biological control by the 
mechanisms such as antibiotics, competition, and parasitism (Abd-Elgawad and 
Kabeil 2012).

14.3  Plant Growth-Promoting Rhizobacteria (PGPR)

The roots of the surrounding plant from the “rhizosphere” soil include many bacte-
rial species, which promote plant growth regulators, improve the development of 
plants, and increase the availability of nutrients. Such bacteria are called PGPR 
(Fig.  14.1; Table  14.1). PGPR contain a large group of free-living bacteria that 
colonizes in rhizomes and contributes to the development of plant growth rather 
than improving the yield of agricultural crops (Kumar et al. 2016). In soil, diverse 
microorganisms such as Rhizobium sp., Xanthomonas sp., Arthrobacter sp., Bacillus 
sp., Bradyrhizobium sp., Enterobacter sp., Frankia sp., Klebsiella sp., Proteus sp., 
Flavobacterium sp., Microbacterium sp., Pseudomonas sp., Serratia sp., 
Acinetobacter sp., Azospirillum sp., Alcaligenes sp., Agrobacterium sp., Azotobacter 
sp., Burkholderia sp., Cellulosimicrobium sp., and Erwinia sp. are the common 
constituents of rhizosphere and make complete colony in the rhizosphere 
(Bhattacharyya and Jha 2012; Tailor and Joshi 2014; Karthik et al. 2016; Teymouri 
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et  al. 2016). There are widely known commercial rhizosphere-colonized 
microorganisms among rhizobacterial genera like Bacillus, Azospirillum, and 
Pseudomonas. Use of rhizospheric bacteria play an important role in the biofertilizer, 
phytostimulation, biocontrol, and phytoremediation, but it depends on their 
formation of a colony in the rhizosphere. Microorganisms present in the rhizosphere 
have the efficiency to improve the plant growth through the production of multiple 
plant growth substances and also responsible for the inhibition of phytonematodes. 
To reduce the damage caused by plant-parasitic nematodes, PGPR also known as a 
potential agent (Tabatabaei and Saeedizadeh 2017; Rashad et al. 2015). Species of 
Pseudomonas and Bacillus belong to those bacterial groups which form endospore 
and are majorly antagonist to PPNs in the rhizosphere. Many Bacillus strains can 
inhibit nematodes and promote plant growth. Furthermore, it has been reported that 
Bacillus sp. was also directly antagonist toward the PPNs like Meloidogyne, 
Heterodera, and Rotylenchulus (Siddiqui and Mahmood 1999; Kokalis-Burelle 
et al. 2002; Li et al. 2005). Strains of Pseudomonas in the rhizosphere also show 
pathogenic mechanism against PPNs (Kerry 2000; Siddiqui et  al. 2005). Some 
studies have been conducted to evaluate the mechanism involved in the decreasing 
populations of PPN during the interaction of Pseudomonas and PPNs by the 
production of induced systemic resistance (ISR) and antibiotics. (Siddiqui and 
Shaukat 2003c). These two major antagonists and many other rhizobacteria were 
also reported as PPN antagonists, including members of such kind of genera like 
Agrobacterium, Arthrobacter, Alcaligenes, Azospirillum, Beijerinckia, 
Bradyrhizobium, Clostridium, Comamonas, Corynebacterium, Desulfovibrio, 
Gluconobacter, Flavobacterium, Phyllobacterium, Sphingobacterium, Serratia, 
Streptomyces, Variovorax, Actinomycetes, Aureobacterium, Azotobacter, Bacillus, 

Fig. 14.1 PGPR help in plant growth and nematode control
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Burkholderia, Chromobacterium, Clavibacter, Curtobacterium, Desulfovibrio, 
Enterobacter, Hydrogenophaga, Klebsiella, Methylobacterium, Pseudomonas, 
Rhizobium, and Stenotrotrophomonas (Tian et  al. 2007; Siddiqui and Mahmood 
1999; Wani 2015). Utilization of PGPR is beneficial in attaining substantial improve-
ment in both plant growth and nematode suppression. Therefore, PGPR play an 
important role in the improvement of a sustainable agricultural system, being one of 
the key components in integrated nematode management (Mhatre et al. 2018; Abd-
Elgawad and Kabeil 2012). Many of the PGPR strains like Bacillus firmus T11, 
Bacillus aryabhattai A08, Paenibacillus barcinonensis A10, Paenibacillus alvei 
T30, and Bacillus cereus N10w has to show the reduction in several galls. The 
greenhouse experiment conducted on carrots, treated with strain T30, caused a sig-
nificant reduction in gall index and egg mass index as compared to non-treated 
control set. It was observed that the treatment with B. aryabhattai A08 gave signifi-
cant results on tomato, reducing the gall index and egg mass index compared to the 
control set. It is concluded that the bacterial strains P. alvei T30 and B. aryabhattai 
A08 have potential as biological control agents of M. incognita on carrots and toma-
toes, respectively (Viljoen et al. 2019).

Application of PGPR can improve the plant growth and yield related characterics 
with or without nematode infestations. PGPR can suspend the nematode activity 
and register significant enhancement in the plant health through nitrogen fixation, 
phosphate solubilization, siderophore production, lytic enzyme production, 
antibiosis, ISR, etc.

14.4  Mechanism of PGPR in Nematode Suppression

14.4.1  Direct Antagonism

Rhizobacteria plant-parasite exhibits a different mode of action in the rhizosphere 
to suppress nematodes. The mechanism for suppression of nematodes can be 
classified mainly into two major heads. In direct,  enzymes are antagonistic to 
nematodes, toxic substances and other metabolic products regulate the nematode 
behavior, indirect effect, by changing root variation and motivating the production 
of repellents by the host which adversely affects. The recognition of the host, 
changes in the development of the nematode feeding site, and the sex ratio within 
the root system induce growth of plants, competing for essential nutrients and 
inducing systemic resistance (Siddiqui and Mahmood 1999; El-Nagdi and Youssef 
2004; Singh et al. 2019).

14.4.1.1  Antibiosis
Microorganisms produce antibiotics, which are the organic compounds of low 
molecular weight. It plays a beneficial role in biocontrol of many pests through 
parasitism and competition (Raguchander et  al. 2011). Most of the rhizobacteria 
work against PPN through the production of toxins, enzymes, and metabolic 
by-products. This helps in the survival, development, reproduction, and hatching of 
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the nematodes (Siddiqui and Mahmood 1999). Furthermore, it is believed that 
P. fluorescens secretes secondary metabolites such as 2-4-diacetylphloroglucinol 
which reduces the cyst nematode population (Siddiqui and Shaukat 2003c), while 
some rhizobacteria were found to secrete compounds such as hydrogen cyanamide, 
which destroys detrimental organisms in the rhizosphere and is beneficial in creating 
a favorable environment for better development of the plants (Tian et  al. 2007). 
Rose et  al. (2012) also observed that the presence of P. fluorescence is able to 
decrease the growth rate of nematodes and is found to be most effective when used 
in combination with neem cake. In the study of PGPR, three genera, namely, 
Azospirillium, Rhizobium, and Azotobacter and mycorrhizal genus Glomus sp. have 
been reported to reduce galling in roots which is caused by the M. javanica in 
chickpea (Siddiqui and Mahmood 2001).

14.4.1.2  Production of Lytic Enzymes
The growth and development by the action of enzymes is another mechanism of 
PGPR through the production of some enzymes like chitinases, phenylalanine 
ammonia lyase, lipases, proteases, peroxidase, dehydrogenase, β-glucanase, 
phosphatases, etc. Corynebacterium paurometabolous produced chitinase and 
hydrogen sulfide, which are responsible for the inhibition of nematode egg hatching 
(Jamal et al. 2018; Patel et al. 2018; Mena and Pimentel 2002). Isolation of three 
bacteria Pseudomonas sp., Stenotrophomonas maltophilia, and Bacillus mycoides 
proven to be nematicidal reducing 56–74% population of Tricodorid infesting potato 
crop. In addition, these bacteria were a specialty for the oxidation of phenol and 
antifungal activity with the production of HCN and hydrolytic enzymes (Insunza 
et al. 2002). With the isolation of 16 potential PGPR from grapevine roots, 7 isolates, 
namely, S. marcescens, C. acidovorans, A. piechaudii, S. plymuthica, Pantoea 
agglomerans, Sphingobacterium spiritivorum, and B. mycoides, have been proved 
to suspend the reproduction of Meloidogyne ethiopica. Secondary metabolites of all 
the strains exhibit significant hatching prohibition of M. ethiopica, and from the 
isolates, P. megatorium and P. putida are found the most effective (Aballay 
et al. 2013).

14.4.1.3  Induced Systemic Resistance (ISR)
The induced resistance plant has increased defense capacity, which is achieved after 
proper stimulation against the parasite and broad-spectrum diseases. The increase in 
defense response due to the inducing agent causing the infection through pathogen 
is called induced systemic resistance (ISR) or systemic acquired resistance (SAR) 
(Van-Loon 2000). This induced resistance produces non-specific defense against 
various types of pathogens, such as fungus, bacteria, viruses, nematodes, and insects 
(Beneduzi et al. 2012). Several organic molecules are found to be associated with 
systemic resistance such as polyphenol oxidase (PPO), phenylalanine ammonia 
lyase (PAL), peroxidase (PO), lipoxygenase (LOX), superoxide dismutase (SOD), 
chitinase, catalase (CAT), ascorbate peroxidase (APX), proteinase, and β-1,3- 
glucanase (Pokhare et al. 2012; Mhatre et al. 2017). Such kinds of enzyme begin the 
stimulation of resistance through the production of phenolic and phytoalexin 
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compounds (Viswanathan et al. 2003). Various studies observed that rhizobacteria 
inhibit nematode severity through inducing the plant systemic resistance 
(Ramamoorthy et al. 2001; Pieterse et al. 2002). This induced resistance is obtained 
through the mechanical and physical strength of the cell wall by the callose 
deposition, accumulation of phenolic compounds, and thickening of the cell wall. 
The synthesis of some biochemical compounds like phytoalexin, PR proteins, 
siderophores, salicylic acid (SA), lipopolysaccharides (LPSs), PO, jasmonic acid 
(JA), chitinase, and some other secondary metabolites that regulate the reaction 
provides the protections (Siddiqui and Mahmood 1999; Ramamoorthy et al. 2001). 
Another study showed that infections caused by the potato cyst nematodes and root- 
knot nematodes were reduced through induced systemic resistance by Rhizobium 
etli (Hallmann et al. 2001). R. etli have lipopolysaccharides that act as the inducing 
agent which is helpful in the systemic resistance and is found to play an important 
role in reducing the penetration and recognition of Meloidogyne incognita and 
Globodera pallida (Reitz et al. 2000; Mahdy et al. 2001). According to Meena et al. 
(2012), the maximum activity of enzymes is recorded in the low nematode 
population on tomato when treated by the consortium of PGPR formulation 
(P. fluorescens, Pf128+ B. subtilis, Bbv 57). Xiang et al. (2017) reported that 613 
Bacillus strains caused mortality to H. glycines in  vitro, and, specifically, 
B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 
60 DAP in the greenhouse, microplot, and field trials. The B. mojavensis strain 
Bmo3 suppressed H. glycines cyst and total H. glycines population density under 
greenhouse conditions, and B. safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) 
reduced H. glycines cyst population density at 60 days after planting in the field 
trials. Moreover, Aljaafri et al. (2017) found that a harpin elicitor can function to 
turn on plant defenses in H. glycines in soybean and M. incognita and R. reniformis 
in cotton in susceptible cultivars.

14.4.2  Indirect Effects

PGPR promote the growth of plants by the phytohormone production like auxins, 
cytokines, ethylene, and abscisic acid. Moreover, siderophore improves the mineral 
uptake in the plants.

14.4.2.1  Phytohormone Production
Most rhizobacterial strains are capable of producing substances that promote growth 
and development of plant. PGPR produce some plant growth regulators like auxins, 
cytokines, gibberellic acid, abscisic acid, ethylene, polyamines, brassinosteroids, 
jasmonates, salicylic acid, strigolactones, and other compounds that help in the 
regulation of plant growth (Mhatre et al. 2018; Gopalakrishnan et al. 2015). It is 
believed that PGPR produce phytohormones and plays an important role in 
promoting plant growth and interaction between plant and bacteria. Microbial 
phytohormones responsible for the enhancement in the growth of the plant by the 
stimulation of cell division, cell elongation, and expansion of tissue indicate 
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beneficial effects on the growth and yield of plants (Karthik et al. 2016; Khan et al. 
2009). Indole acetic acid improves adventitious and lateral roots, which leads to 
increased nutrient and mineral uptake (Arora et al. 2013; Shaikh and Saraf 2016). It 
has been suggested that phytohormones formed by PGPR may inhibit the deadly 
effects of different environmental stresses. For example, Streptomyces strains 
produce phytohormones, which can improve the growth of eggplants through the 
suppression in the galls and egg masses of the nematode (Rashad et  al. 2015). 
Similarly, Ruanpanun et  al. (2010) reported that nematicidal activities of 
phytohormones generate Streptomyces sp. Therefore, any direct effects of bacteria 
on the production of phytohormones affect the efficiency of phytostimulation.

14.4.2.2  Nitrogen Fixation
Nitrogen is one of the important macronutrients, which is beneficial for the growth 
and development of the plant, also involved in photosynthesis and protein synthesis 
and acts as a nitrogenous base in nucleic acids. Due to the regular loss of nitrogen 
in the soil, agricultural land has a limited amount of nitrogen. However, the plants 
cannot directly use atmospheric nitrogen. In this situation, PGPR perform an 
important role in the fixation of nitrogen and nutrients supplementation. These 
microorganisms are categorized into two separate groups, such as symbiotic and 
free-living nitrogen-fixing microorganisms (Mhatre et  al. 2018; Gopalakrishnan 
et al. 2015). PGPR play an important function in nitrogen fixation which shows a 
vital contribution in sustainable agriculture. Aggangan et  al. (2013) found that 
inoculation of nitrogen-fixing bacteria significantly improves the growth of banana 
through inhibition of the population of Radopholus similis and Meloidogyne 
incognita. Similarly, El-Hadad et al. (2011) also suggest improvement in the growth 
of plants and nematicidal activity by the nitrogen-fixing microorganism, 
Paenibacillus polymyxa. El-Sayed et  al. (2014) found the biocontrol activity of 
nematodes with the help of nitrogen-fixing PGPR strains. Some genera of PGPR 
such as Bradyrhizobium, Mesorhizobium, Rhizobium, Frankia, and Sinorhizobium 
are responsible for the fixation of atmospheric nitrogen which is utilized by the 
plants and beneficial for plant growth (Zahran 2001; Vessey 2003; Arora et al. 2012; 
Gaby and Buckley 2012; Dash et al. 2017).

14.4.2.3  Phosphate and Potassium Solubilization
After nitrogen, phosphate is another major macronutrient which can promote plant 
growth. Phosphate plays a pivotal role in plant growth, such as the composition of 
nucleic acid, protein synthesis, cell division, growth of new tissues, and association 
with energy transformation complex (Gopalakrishnan et al. 2015; Oves et al. 2013). 
PGPR also work in the conversion of unavailable forms of phosphorus from the soil 
in available form through the production of organic acids, chelation, and acidity 
(Mhatre et al. 2018; Gulati et al. 2010) and influence nutrient availability and growth 
of host plants. Several genera of PGPR such as Bacillus, Burkholderia, Erwinia, 
Microbacterium, Rhizobium, Serratia, Arthrobacter, Beijerinckia, Enterobacter, 
Flavobacterium, Pseudomonas, and Rhodococcus are already reported as 
solubilizers of phosphate (Zaidi et al. 2009; Sharma et al. 2013; Ahemad et al. 2009; 
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Oves et al. 2013). Guang-Can et al. (2008) reported that strain of bacteria such as 
B. megaterium, B. caryophylli, B. cereus, P. cichorii, and P. syringae perform such 
kind of activity like solubilizations of phosphate and efficiency of mineralization, 
thus enhancing phosphate bioavailability. Inoculation of solubilizing phosphate by 
the strain of Mesorhizobium mediterraneum improved the growth of barley and 
chickpea (Peix et  al. 2001). El-Hadad et  al. (2011) observed that inoculation of 
phosphate-solubilizing bacteria (B. megaterium) improved the length of shoot, dry 
weight of shoot, dry weight of root, and amount of N, P, K in the plant of tomato and 
decreased the population of M. incognita in the rhizosphere. Potassium is another 
important plant nutrient after phosphate and nitrogen which perform various 
functions in plants. In the growth of plants, potassium is responsible for the 
physiological and biochemical functions (Zhang and Kong 2014). However, the 
maximum amount of potassium nutrient in soil containing orthoclase, feldspar, 
mica, muscovite, biotite, and illite in the form of potassium, not easily utilized by 
the plants. Just as bacteria dissolve phosphate, few rhizospheric microorganisms 
dissolve insoluble form of potassium making it accessible to the plants  for  their 
growth and development. PGPR solubilize potassium through various mechanisms 
like chelation, organic acid, acidolysis, complex lysis, and reduction (Meena et al. 
2016). Several genera of microbes like Acidithiobacillus ferrooxidans, B. edaphicus, 
B. mucilaginosus, Burkholderia, Paenibacillus sp., and Pseudomonas sp. are 
responsible for the solubilized potassium (Han and Lee 2006). 

14.4.2.4  Production of Siderophores and Ammonia
Iron is another necessary plant nutrient element that is beneficial for the living 
organisms which performs many biological functions like photosynthesis, 
respiratory, electron transport, and cofactors for many enzymes, etc. (Aguado- 
Santacruz et al. 2012). Siderophores are iron-chelating agent which make the iron 
accessible to the plants. PGPR have the ability to develop some specific mechanisms 
like chelating the insoluble form of iron through the siderophores due to the 
production of low molecular weight (Dell’mour et  al. 2012). Diverse groups of 
PGPR include Aeromonas, Azadirachta, Azospirillum, Azotobacter, Bacillus, 
Burkholderia, Enterobacter, Pseudomonas, Rhizobium, Serratia, and Streptomyces 
sp. beneficial for the production of the siderophore that transports iron in the cells 
of plants for growth (Cornelis 2010; Sujatha and Ammani 2013). Ruanpanun et al. 
(2010) reported that the production of siderophores inhibit the activity of nematodes 
by the Streptomyces sp. Similarly, El-Sayed et  al. (2014) also reported that the 
Bacillus sp., Enterobacter sp., and Pseudomonas sp. improve multifarious growth 
of plants as well as nematicidal activity.

Plant growth promotes various substances by the strains of PGPR which directly 
affect the growth of host plant through the stimulation in cell division, development 
of tissue, and physio- and biochemical functions. However, these PGPR strains 
provide additional support to the host plant to cope with nematode infection. 
However, such strain of PGPR provides an additional endorsement to the host plant 
to cope up with the infection of nematode (Mhatre et al. 2018).
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14.5  Fly Ash

Fly ash (FA) is one of the important types of particulate waste that is generated by 
the combustion of coal in thermal power plants for the generation of the increasing 
demand for electricity (Ahmaruzzaman 2010). With increasing demand of electricity 
in India, the US Energy Information Administration Department (EIAD) noted that 
the use of energy consumption growth would exceed and leave behind the countries 
like China, the USA, and Russia until the end of 2035 because 76.4% of electricity- 
generating power plants are coal-based (Singh et  al. 2018). Production of FA 
between 2010 and 2011 increased to about 130 million tons, which was about 85.7% 
higher than 1996 to 1997. The FA utilization rate also increased from 9.63% in 1996 
to 1997 to 54.53% in 2010 to 2011, an increase of 466% over 15 years (Singh and 
Gupta 2014). Atmospheric pollution due to FA has found to be harmful and affects 
the human health if the FA directly discharges from power plant chimneys into the 
atmosphere without treatment (Bartoňová 2015; Ding et al. 2015). In thermal power 
plants, the characteristics of FA depend on the type of coal and the burning 
conditions. The appearance of fly ash in the form of fine particle and the average 
diameter is less than 20 μm, bulk density is 0.54–0.86 g/cm3, and specific surface 
area ranges between 300 and 500 m2/kg (Lanzerstorfer 2018; Yao et al. 2015). There 
are some essential elements, including P, K, Mg, Zn, Fe, Mn, and others except N 
are found in FA. FA can improve the texture of the soil, making it more fertile and 
increasing the growth and yield of many crops (Parab et al. 2012; Kalra et al. 2000; 
Yeledhalli et al. 2010; Garg et al. 2005; Dhadse et al. 2008; Dermatas and Meng 
2003). Besides this, the important oxide components, i.e., SiO2, Al2O3, CaO, MgO, 
Na2O, and TiO2, are also found in FA (Ahmaruzzaman 2010; Bartoňová 2015; 
Adriano et al. 1980). FA was found to reduce the gaseous air pollutant like SO2 and 
VOCs after some modifications (Izquierdo and Rubio 2008; Zhou et  al. 2015). 
Therefore, FA has a great concern to many researchers worldwide.

14.5.1  Management of Nematode by Fly Ash

Application of fly ash for the management of plant-parasitic nematodes improves 
the soil health. Khan (1989) reported that the soil application of fly ash inhibits the 
root penetration of juveniles and reduce the root-knot disease intensity caused by 
M. incognita on tomato. Similarly, according to Singh (1989), galling and the 
production of egg mass of M. incognita on lentil were found to be reduced. The 
higher concentration of fly ash suppressed the M. javanica in soybean and at 100% 
fly ash amendment exhibited no gallings and eggmasses of M. javanica (Singh 
1993). Singh et  al. (1994) studied that all the morphometric parameters of 
M. javanica decreased in pea plants grown in fly ash amended soil. According to 
Khan et al. (1997), the application of fly ash in soil (20–100%) adversely affected 
the root invasion by the larvae and decreased the disease intensity (gall and egg 
mass/root system) of root-knot nematodes, on tomato. Khan and Ghadirpour (1999) 
observed that fly ash reduced the disease severity caused by M. incognita on tomato, 
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eggplant, and chili. Joshi et al. (2000) observed the effect of organic amendment and 
fly ash on the root-knot disease of tomato, and the galling index was reduced greatly. 
Tararmum et al. (2001) observed the effect of different levels of fly ash (0, 25, 50, 
75, and 100%) on hatching, penetration, and development of M. javanica on 
chickpea. Hatching and penetration were greatly suppressed. At 50% onward, no J2 
developed to the mature female stage. Similarly, Iram (2010) evaluated the different 
levels of fly ash amended soil in the management of root-knot nematode and 
observed all the levels of fly ash significantly inhibit the reproduction of nematodes. 
Iram (2006) studied the response of root-knot nematode, M incognita, to fly ash on 
pepper (Capsicum annuum L.). All the fly ash levels reduced the hatching and 
suppressed the development of juveniles but increased the mortality rate. Root 
penetration was inversely proportional to fly ash ratios. The highest increase in plant 
growth was observed at 20% level. Tanweer et al. (2007) observed the effect of fly 
ash amended soil (0, 10, 20, 30, 40 & 50%) on the development of root-knot 
nematode, M. incognita, on ivy gourd (Coccinia cordifolia). A number of galls and 
egg masses per plant were decreased in 10–50% fly ash levels as compared to 
control. According to Singh et al. (2011), root galling increased at 25 and 50%, but 
decreased at the 75 and 100% fly ash levels. Gradual suppression in egg mass 
production and fecundity were observed at all levels of fly ash. A pot experiment 
was conducted in a glasshouse to evaluate the effect of Cassia tora leaf extract on 
the growth and yield characteristics of tomato and on the reproduction of root-knot 
nematodes in fly ash amended soil. Data on plant growth, leaf area, yield 
characteristics, and root-knot and egg mass indices on tomato grown in different 
concentrations (0, 20, 30, and 50%) of fly ash amended soil with leaf extract of 
Cassia tora were recorded. The results indicated that the plant growth and yield 
were enhanced and the nematode population was reduced in the 20% fly ash 
treatment. Among all the treatments, 50% fly ash amended soil effectively reduced 
the galling and nematode population (Azam et al. 2013). Ahmad and Khan (2016) 
evaluated the effect of fly ash on hatching, mortality, and penetration of M. incognita 
in pumpkin roots. All the levels of fly ash were found toxic and reduced the hatching 
of juveniles, increased the mortality rate, and inhibited the penetration of juveniles. 
The maximum inhibition was observed at 50% level of fly ash. The development of 
juveniles of Meloidogyne incognita in the roots of pumpkin was significantly 
suppressed by all fly ash and soil mixtures. The J2 developed to J3/J4 stages at all 
levels of fly ash amendment, but their number was less than in control and decreased 
with the increase of the fly ash up to 40% soil mixture. At the end of the first week, 
neither premature nor mature females were found. During the second week, J2 
developed to older stages. However, while premature females occurred in all roots, 
only a few mature females occurred in control and at the 5–10% levels of fly ash and 
none at larger proportions of the amendment. During the third week, the juveniles 
that had penetrated into the roots developed further. However, numbers of premature 
females were significantly suppressed by all proportions of fly ash, while mature 
females were significantly suppressed at 5–10% of this amendment and were still 
absent at larger proportions. After 4 weeks, all the J3/J4 had developed further, but 
premature females were still significantly less than in control at all proportions of 
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the amendment, and a few mature females were observed only up to 20% of the 
amendment, with none at all at greater proportions (Ahmad et al. 2017).

14.5.2  Fly Ash and Phytobiome Consortia in the Management 
of Nematodes

Many researchers observed that fly ash in combination with PGPR and fungi caused 
a significant reduction in the reproduction of many plant-parasitic nematodes. 
Phytoparasitic nematodes usually cause physical damage to the roots, which may 
allow secondary infection by other pathogens (Sitaramaiah and Pathak 1993). 
Endoparasitic nematodes, Meloidogyne spp., create a wound in roots, allowing the 
other pathogens to become established (Siddiqui et  al. 2012). There are many 
synergistic effects of fungi, bacteria, and nematode interactions are also investigated 
(Stansbury et al. 2001; Rubio-Cabetas et al. 2001; Partridge 2008; Mallesh et al. 
2009). According to Khan and Siddiqui (2017), the galling of root and multiplication 
in the nematode population were decreased in the plant when inoculated with 
R. solanacearum or P. vexans. Moreover, inoculation of both R. solanacearum and 
P. vexans together caused a greater reduction in a number of galls and population of 
nematodes than inoculated singly with either R. solanacearum or P. vexans. 
Inoculation of R. solanacearum with P. vexans before M. incognita caused a 
maximum reduction in galling and nematode multiplication.

Glasshouse experiments were conducted twice to assess the ash amendments (0, 
20, and 40% with soil), Pseudomonas striata, and a root-nodule bacterium 
Rhizobium sp. on the reproduction of root-knot nematode Meloidogyne incognita 
and the growth and transpiration of pea. 10%–50% levels of fly ash amended soil 
caused decreased egg masses and galls of M. incognita in carrot, while 50% fly ash 
amended soil completely inhibits the egg masses and galls formation (Haris et al. 
2018). Rhizobium sp. was found to be much more effective and reduced the galling 
and nematode multiplication in comparison to P. striata. Moreover, the use of both 
organisms together also had a greater adverse effect on galling and nematode 
multiplication than caused by either of them alone. The 40% fly ash mixed soil with 
both Rhizobium sp. and P. striata showed the highest reduction in galling and 
nematode multiplication (Siddiqui and Singh 2005).

14.6  Conclusions and Future Prospects

Following conclusions from the present article can be drawn:

 1. Various plant-parasitic nematodes such as Meloidogyne, Heterodera, 
Trichodorus, etc. are responsible for causing a greater loss in crop production.

 2. Fly ash can be used in the management of plant-parasitic nematodes leading to 
enhanced plant growth and yield attributes.
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 3. An important rhizosphere component, PGPR also play an important role in the 
reduction of plant-parasitic nematodes infestations in various crops.

 4. The most effective module has been found to be the consortium of root biome 
and fly ash which can be used in the management of plant-parasitic nematodes.

 5. Application of these consortia not only improves the soil health but also enhances 
the crop productivity in a significant manner.

 6. However, the presence of some heavy metals in the fly ash is the main problem 
which needs to be reckoned before its application in the field as they may be a 
source of soil pollution.
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Abstract
Phytobiomes exist in plant biome and consist of diverse microbial communities. 
In the recent past, a new field emphasizing on the characterization of the plant- 
associated microbiome, referred to as the phytobiome, is seen as a solution 
toward the green agriculture methods as these phytobiomes can be easily manip-
ulated for the betterment of agricultural practices in a eco-friendly method of 
crop production. Microbiome engineering plays a fundamental role in plant’s 
requirements of nutrients and disease management, and it helps in maintaining 
the soil conditions for agricultural production. This chapter discusses about the 
influential role of microbiome on the plant and related environment. This chapter 
focuses on the role of quorum sensing and signaling and its application in the 
eco-friendly method of farming that is sustainable agriculture.
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15.1  Introduction

In the recent past, a new field emphasizing on the characterization of the plant- 
associated microbiome is referred to as the phytobiome. These phytobiomes can 
impart its role in the production of enhanced yield and disease-resistant and eco-
logically adapted crops, along with preserving the natural ecosystem. Phytobiome 
consists of all living organisms in, on, or around plants (e.g., microorganisms, ani-
mals, other plants) and the environment (i.e., soil, air, water, and climate). The phy-
tomicrobiomes are vibrant in composition when evaluated with the atmosphere in 
which they thrive (Hawkes and Connor 2017). The plant microflora is composed of 
a diversity of microbes concomitant within a typical habitat representing an ecologi-
cal balance (Jasim et al. 2014).

Soil microorganisms play fundamental roles in achieving food demand as per 
increasing global demand, and it helps in maintaining the soil quality (Kumari et al. 
2017; Majeed et  al. 2015; Rosier et  al. 2018). This method has further made us 
comprehend that microbes could momentously influence host improvement and 
evolutionary dynamics of plant populations. Overall, possibilities of a new green 
revolution rely on the ecological management and engineering of this microbiome 
and its practical applications in an eco-friendly manner (Gupta and Dikshit 2010; 
Patil and Solanki 2016).

The phytobiome complex communicates within its network (consisting micro-
flora, environment, and the host plant) through various mechanisms like nutrient 
recycling, competition for nutrients, antagonism, and chemical signals. These 
chemical signal molecules are responsible for the maintenance of ecological bal-
ance in the soil community. There is a need for understanding these signal systems 
for its developing new strategies of breeding, to combat different stresses (biotic and 
abiotic) in the agricultural system. Recently the researchers are focusing on new 
horizon of metagenomics to get highly efficient molecular database of phytobiomes 
and other omics technologies to get a better understanding of plant microbiome and 
its communication within the plant system and with the surroundings as well. 
Therefore, there is an urgent need of interdisciplinary, system approach for the 
study of phytobiome’s dynamics and interactions.

15.2  Interdependency of Plant and Microbiome: Novel 
Opportunity

The mutual interaction of microbiome and plant in the rhizosphere has led nutrient 
and disease management in plants. The plant directly or indirectly influences the 
microbes around its rhizosphere; this potential of plant provides us a novel opportu-
nity toward understanding their interaction and microbiome engineering. The role 
of these rhizospheric microorganisms becomes important for ecologists and 
researchers as it can benefit plant health, leading us toward sustainable methods of 
farming. The microbiome helps plants in nutrient enhancement, disease resistance, 
and resistance toward different biotic and abiotic stresses, ozone depletion and 
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increasing carbon-dioxide level is one of them (Bacon et  al. 2015; Kasim et  al. 
2016). The application of microbiome on main agricultural crops like wheat, maize, 
rice, and barley is extensively studied during the last two decades (Chen et al. 2012; 
Moshynets et al. 2019; Mücke et al. 2019; Rankl et al. 2016; Sivakumar et al. 2018; 
Yuan et al. 2010) (Table 15.1). The microbes (bacteria, fungus, viruses, and nema-
todes) and rhizosphere have great impact on attaining sustainable agriculture goals 
as new techniques like high-throughput analysis, genome banking, metagenomics, 
proteomics, and micro-engineering assist crop production methods (Bais et  al. 
2006; Doornbos et al. 2012; Finkel et al. 2017).

15.2.1  Role of the Plant

Recently, researchers and scientists are focusing on two major aspects to promote 
potential and helpful microbiome utilization near rhizosphere so as to get improved 
agricultural products (Bakker et al. 2012). The first aspect relies on manipulating 
the specific microbial diversity as per the requirement of the crop plant; it helps in 
nutrient uptake and provides disease resistance for the plant. Another aspect utilizes 
the plant’s ability to attract specific microbiome for maintaining the promotion of 
plant growth and susceptibility toward adverse ecological conditions. In the nearest 
future, direct manipulation of the soil microbiome would lead us to attain green 
agriculture goal (Kumari et al. 2019a; Pandin et al. 2017; Rognes et al. 2016).

15.2.2  Role of the Microbiome: Bacterial Microbiome

For decades, rhizobia were believed to be the only nitrogen-fixing population of 
legume nodules. However, other bacteria, which are not typical rhizobia, are habitu-
ally perceived within nodules obtained from soil, thus exposing the existence of a 
phytomicrobiome where the interaction among the individuals not only is complex 
but also likely affects the behavior and fitness of the host plant (Borriss 2015; Igual 
et al. 2001; Kashyap et al. 2018; Lemanceau et al. 2017). It is also noted that the 
incredibly diverse population of bacteria residing within nodules induce neither 
nodulation nor nitrogen fixation. This community exists within the nodule, albeit 
outnumbered by nitrogen-fixing rhizobia. This phytomicrobiome has the potential 
to enhance plant survival, particularly under environmental stress conditions. This 
knowledge has paved the way for research in bringing out strategies to formulate 
bio-inoculants utilizing these rhizobia (Albareda et al. 2006; Sang et al. 2018).

15.2.3  Fungal Microbiome

A variety of fungal microbiomes have been reported in plants and soil atmosphere. 
Several reports have demonstrated the role of fungal association with plants like 
Alternaria, Fusarium spp. Acremonium, Cladosporium, Epicoccum (Bailey et al. 
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2006; Baker 1988; Chaparro et al. 2011; Mohammad et al. 2012; Mohsenzadeh and 
Shahrokhi 2014), Penicillium spp. Eurotiomycetes, Dothideomycetes, 
Leotiomycetes, Sordariomycetes, Tremellomycetes, Aureobasidium, Cladosporium, 
Chaetomium (Almeida et al. 2007; Cook 1993; Harman et al. 2004; Jetiyanon et al. 
2003), Fusarium and its teleomorphs, Microdochium, Stemphylium, and Xylaria 
(Yadav et al. 2015).

Many fungi form vesicular-arbuscular mycorrhizal (VAM) relationship with 
plants. These fungi provide nutrient absorption in root and help as a carbohydrate 
source for the fungi in return (Harman et al. 2004). So it is possible to have two- 
thirds of all plants form a relationship with VAM fungi in their root systems (Tilman 
et al. 2002). Some VAM fungal relationships with plants depend on fungi to provide 
sufficient levels of phosphorus (Svenningsen et al. 2018). Phosphorus absorption is 
not the only benefit derived by the plant from the mycorrhizal relationship, but also 
VAM fungi protect plant roots from pathogens.

15.2.4  Other Insects

Along with symbiotic and asymbiotic PGPR and diversity of fungal microbiomes, 
there is a special class of organisms like insects which affects plant’s aboveground 
parts like leaves and stems. These may act as causative agents of different plant 
diseases. Meanwhile some can be beneficial for the plants. Some insect’s behavior 
helps plants in its defense mechanism, as they may feed on some harmful bacteria 
or fungal strains and, therefore, the plants are indirectly benefitted. Such insects 
include caterpillar, aphids, and grasshoppers. Recently Hannula et al. (2019) stud-
ied the behavior of insects in maintaining plant-soil interactions. They hypothesized 
that plant-mediated changes in soil microbiome would affect the microbiome of 
caterpillars feeding on plants that grow later in these soils, through modifications of 
the microbiome of their host plants. After analyzing the data, they found that insect 
microbiome relied on soil microbiome and those effects of plants on soil microbi-
ome. This mutual interaction of plant and soil microbiome affects the aboveground 
insects which later on feeds the other plants (Hannula et al. 2019).

15.3  Role of the Environment

15.3.1  Mechanism of Communication

15.3.1.1  Plant-Microbe Signaling
Plant-microbe interacts through chemical signal system produced as exudates and 
the microorganisms in the soil. Plants root exudates attract the microbiome, which 
is often called rhizodeposition. The rhizodeposition mainly consists of carbon com-
pounds, mucilage, soluble root exudates, and some organic carbon both volatile and 
nonvolatile (Bais et al. 2006; Doornbos et al. 2012; Finkel et al. 2017; Hartmann 
et al. 2009). These compounds help the host plant to attract a diversity of bacteria, 
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including both prokaryotes and eukaryotes (Doornbos et  al. 2012). Plant secrets 
amino acid and carbohydrate as exudates through roots which attract a variety of 
bacteria in the rhizosphere as compared to bulk soil (Kumari et al. 2019b); besides, 
a number of chemical signals triggered by bacteria and plants interact to communi-
cate. Mark et al. (2005) characterized expression of some genes responsible for the 
mutualistic association of Pseudomonas strain in the soil with beetroot plant, and It 
induced more colonization of Pseudomonas aeruginosa strain PAO1in the host 
plant rhizosphere. This condition was caused due to some exudates secreted from 
the host plant (Mark et al. 2005). Similarly, Han et al. (2016) reported that two iso-
lates from banana (B. subtilis N11) and cucumber rhizosphere (B. amyloliquefa-
ciens SQR9) which were reciprocally inoculated in same plants indicated more 
enrichment of microbiome colonization among cucumber and banana plant-soil 
interaction zone. Chemotaxis and biofilm formation were reported as the reason of 
this increased interaction with reciprocal rhizospheric soil and plant environment. 
Plants root exudates trigger signals which led to communication among the microbes 
and neighboring plants in the rhizospheric zone. Some plants secrete a chemical 
(mucilage) which acts as biocontrol agent and prevents the growth of pathogenic 
microbes around the meristamic zone of root tip and elongating cells (Walker et al. 
2003). A compound canavanine, which mostly resembles arginine, is exudates from 
certain leguminous roots. Canavanine has toxic effects on native bacteria around the 
host plants, but a different strain of bacteria in the same rhizosphere can detoxify 
this compound. In this way, a specific strain of bacteria is considered beneficial for 
the rhizospheric colonization among the legumes (Cai et al. 2009). The signals pro-
duced by phytobiomes are known as quorum sensing signals (QSS). Transcriptosome 
and proteome of host plant play active role responding to the signals produced by 
microbiomes. These responses are brought about by specific changes in the plant 
protein in response to structure and specific concentration of quorum sensing mol-
ecules. Quorum sensing and biofilm formation are considered key feature of micro-
biome engineering as it provides the agronomist a platform to manipulate the 
microbiome as per the requirement of modern agricultural method in a sustainable 
manner. Table 15.2 shows a recent advancement in the field of microbiome engi-
neering and quorum sensing (QS) molecular studies in different plants and agricul-
tural crops.

15.3.1.2  Quorum Sensing and Biofilm Formation
Cell-to-cell communication between bacteria is mediated via diffusible chemical 
signals, known as quorum sensing (Abisado et  al. 2018). During the process of 
swarming, virulence, and biofilm formation, regulation of microbial genes is 
through the quorum sensing molecules. The complex extracellular matrix of exo-
polysaccharides and proteins is mainly involved in the formation of biofilm (Gond 
et  al. 2015; Rosier et  al. 2018). This embedded matrix of compounds helps the 
bacterial population in the adherence on or inside plant tissue and cells (Kashyap 
et al. 2019; Rankl et al. 2016). It is reported that in axenic conditions, Bacillus amy-
loliquefaciens sp. plantarum FZB42 transposon mutagenesis leads to gene expres-
sion related to bacterial swarming, biofilm formation, root colonization, and plant 
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Table 15.2 Quorum-sensing-mediated communication mechanism of phytobiome (special refer-
ence to staple crops)

Bacteria Occurrence Effect
Method of 
analysis References

Pantoea stewartii Maize 
rhizosphere

The causative 
agent of Stewart’s 
wilt

Transcriptome 
EsaR regulon,
whole genome 
sequencing

Ramachandran 
et al. (2014), 
Tan et al. 
(2015)

Burkholderia sp. Maize 
rhizosphere

PGP and 
antifungal activity

Whole genome 
sequencing

Abisado et al. 
(2018)

Pseudomonas 
aylmerense sp.

Maize 
rhizosphere

Xenobiotic 
degrader and PGP

16S rRNA 
sequence analysis, 
DNA 
fingerprinting, 
BLAST

Tchagang et al. 
(2018)

Pseudomonas 
aeruginosa 
PGPR2

Maize 
rhizosphere

PGP and disease 
resistance activity

INSeq technology Sivakumar et al. 
(2018)

Xanthomonas 
oryzae pv. oryzae 
(Xoo)

Rice 
rhizosphere

Causes bacterial 
blight disease in 
rice through its 
flagellin

Solexa/Illumina 
sequencing

Yu et al. (2014)

Xanthomonas 
oryzae pv. oryzae 
(Xoo)

Rice 
rhizosphere

XA13, COPT1, 
and COPT5 
proteins are linked 
to causing copper 
redistribution in 
rice plant

qRT-PCR Yuan et al. 
(2010)

Xanthomonas 
oryzae pv. oryzae 
(Xoo

Rice 
rhizosphere

Set of proteins 
involved in 
causing virulence 
in rice

TALEs target 
genes were 
identified, causing 
virulence in rice 
through in silico 
methods

Mücke et al. 
(2019)

Magnaporthe 
oryzae (fungus)

Rice 
rhizosphere,

Causes rice blast, Avirulence genes 
identified,

Yoshida et al. 
(2009)

Bacillus, 
Pseudomonas 
spp. (AHLs) in 
wheat

wheat 
rhizosphere

improves growth 
and resistance in 
wheat

qRT-PCR Moshynets 
et al. (2019)

Burkholderia 
glumae

Rice 
rhizosphere

Causes blight of 
rice

luxI homolog, tofI, 
and luxR homolog, 
tofR by DNA 
sequencing

Chen et al. 
(2012)

Pseudomonas 
ultra-performance 
liquid 
chromatography 
(UPLC)’s spp.

Rice, wheat, 
maize

Responsible for 
PGP

Acylated 
homoserine 
lactone was 
identified

Venturi (2006)

(continued)
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growth promotion (Budiharjo et al. 2014). The bacterial strain which is involved in 
film formation is quite more tolerant to antimicrobial compounds; they are different 
from other nitrogen-fixing bacteria (free living) phenotypically and physiologically 
as well (Kavamura and de Melo 2014). Free-living diazotroph Azospirillum brasi-
lense found in the wheat rhizosphere promotes growth through biofilm formation in 
the root zone (Aßmus et al. 1995). It is suggested that root exudates are initiator and 
manipulator molecules for the biological and physiological interactions between 
microorganisms and the host plant root system (Bais et al. 2004). Bais et al. reported 
about the role of biofilm formation on biocontrol in an experiment carried out on 
Arabidopsis. He observed that when Bacillus subtilis mutant strain was inoculated 
with Arabidopsis, there was no biofilm formation and Arabidopsis was infected 
with Pseudomonas syringae, whereas when another mutant B. subtilis subtilis strain 
6051 was inoculated it was able to form biofilm and triggered the biocontrol on to 
P. syringae, B. subtilis strain 6051 produced some specific antimicrobial compound 
(a lipopeptide) and surfactin which were lethal to P. syringae. It could be concluded 
that biofilm formation is an essential factor in the biocontrol activity of phytobi-
omes (Bais et al. 2004a).

Table 15.2 (continued)

Bacteria Occurrence Effect
Method of 
analysis References

PGPRs of barley Barley Responsible for 
lateral root 
formation, 
increased K uptake

AHLs were 
identified

Rankl et al. 
(2016)

PGPRs of barley Barley Responsible for 
lateral root 
formation, 
increased K uptake

AHLs identified 
by UPLC

Götz et al. 
(2007)

Acidovorax 
radicis N35

Primed to 
barley seeds

Responsible for 
PGP

AHL compound 
detection through 
pcr + biosensor 
strain

Han et al. 
(2016)

Paenibacillus, 
Pantoea, and 
Pseudomonas 
spp.

Primed to 
barley seeds

Phytohormones 
stimulation

Illumina Miseq Yang et al. 
(2017)

Paenibacillus, 
Pantoea, and 
Pseudomonas 
spp.

Primed to 
barley seeds

PGP improved 
mineral nutrition 
and induced 
resistance against 
the fungal 
pathogen Blumeria 
graminis

Ion Torrent (gyrB 
gene)

Rahman et al. 
(2018)

PGP plant growth promotion, AHL N-acyl homoserine lactone, PCR polymerase chain reaction, 
UPLC ultra-performance liquid chromatography, TALE transcription activator-like effector
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15.3.1.3  Phytobiome Engineering
According to the United Nation’s recent report, the global population will overpass 
the data of more than nine billion by twenty-second century (Kumari et al. 2017). 
To meet the ever-increasing demand for food, there must be more agricultural yield 
per unit area of available agricultural land. The role of plant microbiome has been 
now seen as an effective way to enhance the global food production, in an eco- 
friendly manner. This practice would need the engineering of phytobiomes. Upon 
effective way of manipulation, these phytobiomes may encounter the problems 
arose due to excessive use of inorganic fertilizers. The phytobiome engineering is 
creating an opportunity to enhance the nutritional requirement of plants in a sustain-
able manner, beside that they are also enabling the host plant to combat the physi-
ological stresses like heat, salinity, and other stresses (Abhinandan et  al. 2018; 
Bouffaud et al. 2018). Thus, the significance of evolving approaches that involve 
engineering of phytobiomes for plant’s growth promotion, enhanced nutrition avail-
ability, biocontrol, and disease resistance is currently acknowledged (Kashyap et al. 
2018; Kumari et al. 2019a; Pandin et al. 2017; Rosier et al. 2018).

The richness of microbial diversity in the rhizospheric soil is greatly enhanced 
and altered with the crop rotation technique of agriculture, which allows the phyto-
biome manipulation. Altered microbial diversity in the root zone enables the plant 
to avail better nutrients and more disease resistance as well (Cook 1993; Doornbos 
et  al. 2012; Finkel et  al. 2017). Researchers observed that the altered microbial 
strains affected the cultivars especially corn (Foo et  al. 2017; Pham et  al. 2017; 
Rekha et al. 2017; Rozier et al. 2017). The other way of manipulating the microbial 
community is the co-inoculating with other strains; this strategy is found to be use-
ful in plant disease management also (Khezri et al. 2011; Pandin et al. 2017; Sumi 
et al. 2015). Further, the growth management of inoculated microbiome is crucial as 
the reduction of time in its exploration would directly affect the colonizing capacity 
around the root zone; co-inoculation of beneficial strains could be a crucial factor in 
achieving the proper exploration of inoculated phytobiomes. The co-inoculation of 
specific strain is also vital as they may secret antibiotics and disease-resistant com-
pounds (Larran et al. 2016; Rafique et al. 2015; Sudha et al. 2016; Tao et al. 2014). 
Some microorganisms like Rhizobium spp. have the capacity to enhance the nutri-
tional availability of the soil, and ultimately, the plant gets its benefit. Rhizobium 
spp. are reported to have the potential of enhancing nitrogen contents in soil, espe-
cially in leguminous plants (Bach et  al. 2016; Han et  al. 2016; Manjunath et  al. 
2016; Timmusk et  al. 2014). Some inoculants have the potential to improve the 
phosphate level in the soil; these inoculations could be incorporated with rock phos-
phates (Chakdar et al. 2018; Geetha and Joshi 2013). Although this manipulation 
has excellent possibilities for sustainable methods of attaining desired yield goals, 
few things may be considered as limiting factors. The maintenance of the desired 
density of inoculated strain is a point of consideration, as they start decreasing by 
their density with time. Another significant consent is as follows: are these engi-
neered phytobiomes free from other chemicals like their metabolites and antibiotic 
compounds? So these methods of manipulating phytobiomes must assure their 
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ethical adaptability from the human health point of view (Amundson et al. 2015; 
Morawicki and Díaz González 2018).

Table 15.1 describes the mutual association and beneficial activities of the micro-
biome and the target plant. Scientists are trying to establish the best delivery system 
for enabling the PGPR and other microbes to communicate in more important per-
spectives. Researchers are nowadays focusing on the development of better carrier 
molecules and multi-strain inoculation environment. Another focused area is the 
formulation of low-cost yet sustainable encapsulation systems and a better transi-
tion of it from laboratory to the farmer’s field. These technologies have to be imple-
mented soon for the development of transgenic crops (Bargaz et  al. 2018; Kafle 
et al. 2019; Ribeiro et al. 2018; Rosier et al. 2018; de Souza et al. 2015).

Several PGPR inoculums products are currently in the market globally (Kumari 
et al. 2019b). The main problem in fungal microbiome engineering is actually due 
to difficulties in culturing them in the absence of their host/obligate symbionts. In 
this condition, inoculums production gets limited, though several global companies 
are launching AM inoculums products, useful in forestry, agriculture, and horticul-
ture. New developments like in vitro monoxenic root organ cultures have enabled 
the scientists to establish AM fungal culture successfully. Molecular identification 
and different in silico lab techniques are enabling us to understand the communica-
tion among them (Hunter et al. 2017; Jacoby et al. 2017; de Souza et al. 2015).

15.4  Its Application on Sustainable Agriculture

15.4.1  Soil Health

Recent advances in the field of microbial identification and its metabolite interac-
tion (signals) attracted the researchers toward its practical applications for sustain-
able and integrated approaches to agriculture. This microbiome has potential to 
increase plant nutrient uptake (Abhinandan et al. 2018; Santoyo et al. 2016) and 
enhance plant growth (Aung et al. 2013; Baltrus 2017; Díaz Herrera et al. 2016; 
Zahedi and Abbasi 2015). Benefits of these living microorganisms are vibrant and 
potentially self-sustaining, which ultimately reduce the need for repeated applica-
tions, pests attack, and pathogens that evolve resistance to the treatments (Lucas 
2011). Phytobiomes help the host plant by increasing their growth (enhances the 
phytohormone biosynthesis, nutrient availability) directly or indirectly (Brown and 
Saa 2015; du Jardin 2015). They also enable the plant against different biotic and 
abiotic stress. Different microorganism-based bioformulations are available in the 
agricultural market. These microbiomes are engineered or co-inoculated PGPRs 
like Serratia, Variovorax, and Azotobacter species. Endophytic bacteria and fungal 
formulations are beneficial for the plant (Nakkeeran et al. 2006; Barea 2015; Bishnoi 
2015; FAO 2016; Le Mire et al. 2016).

B. Kumari et al.



395

15.4.2  Disease Control

Consistent use of inorganic fertilizer and pesticides has led to dangerous conditions 
of soil due to its residual persistence, which raises food safety concerns among the 
consumers (Ahemad and Kibret 2014; Anand et  al. 2016). Recently PGPRs and 
other microflora have been proven to be better biocontrol agents as they help the 
plant in fighting against pathogens and by electing antagonistism (Beattie 2006). 
These microorganisms are designed now with advanced systems like proteomics 
and high-throughput data analysis methods. These methods are economically 
acceptable, and as per the host’s requirement, they are easily degradable. These 
formulations are a better solution to integrated pest management (IPM) programs. 
Being safe to use, ecologically adaptable, and easy to handle, it is an excellent 
opportunity for a new green agricultural method of farming. This microbiome 
increases the availability of nutrients and effects positively on the plant hormone 
biosynthesis. They produce siderophores enabling the plant to fight against the 
harmful pathogens (Kumari et  al. 2016; Yang et  al. 2009; Haghighi et  al. 2011; 
Anand et al. 2016; Le Mire et al. 2016; Rubin et al. 2017). A variety of bacteria, 
specially Bacillus, are reported to possess the growth-promoting activities along 
with disease resistance in agricultural and medicinal plants (Kashyap et al. 2019; 
Kumari et al. 2017). Nanomaterial-based biocontrol strain engineering is another 
fascinating area on which researchers are working to synthesize nanoparticle or 
nanofiber-based sensor tool and formulation development with minimal impact on 
natural rhizosphere (Kashyap et al. 2019; Kumari et al. 2019b).

15.5  Challenges of Phytobiome Engineering

The modern technologies like high-throughput sequence analysis methods have 
influenced the characterization methods of plant microbiome. These technologies 
have an impact on promoting high-level research on plant health in a stressed 
condition.

Another technological advancement that took place recently is metagenomic 
analysis. This technology is enabling the identification of a functional group of 
microbes based on their metabolic potential. This technology helps us in the study 
of different types of secretions from plant root (exudates) and their interaction 
toward plant microbiome and surroundings.

Besides these developments, there are some challenges in the field of phytobi-
ome engineering, and this may be due to a large number of genomic data and diver-
sity of data as well. The influence of environment is also an important factor that 
controls the changes in the microbial diversity in plant biome. The biggest limita-
tion of micro-engineering-based agricultural advancement is its ethical acceptance. 
The farmer is properly not well educated about the costiveness of this recent 
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agricultural facility. Another drawback is this engineered product is not easily avail-
able for commercialization.

15.6  Future Prospects

Presently, diverse research tactics are being addressed to discover the aspect of 
microbiome engineering parameters while averting the presence of pathogens. 
Upon getting fruitful rhizosphere, new advantageous mechanistic approaches can 
lead to new advancement in its engineering. By exploiting the useful microbial ser-
vices, we could enhance rhizobial performance or persistence. It would decrease the 
demand of agrochemical fertilizers and pesticides in our agricultural system. A 
combination of all of these approaches can increase our understanding of how to 
enrich the effectiveness and tenacity of bacteria in the rhizosphere to finally improve 
plant health and agroecosystem productivity.

15.7  Conclusion

It is evident that all plants can acquire a variety of microorganisms throughout all 
phases of their lifetime. Phytobiome characterizes plant growth and evolutionary 
change, and thus, a thorough understanding of the relationship among plant and 
their associated microbes could facilitate the engineering of these communities. 
Microbial inoculants could be a boon to the agricultural sector if implemented on 
following aspects: (i) to increase the scientific/technical aspects of inoculum pro-
duction; (ii) to produce precise normative for the preparation of inoculum, either 
from seed or on soil, or the plant on which inoculum is to experiment; (iii) to reduce 
the unpredictability of the field results; and (iv) to increase knowledge and propaga-
tion by elaborating its usefullness and limitations to the society
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