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Abstract
The world of microorganisms comprises a vast diversity of living organisms, 
each with its individual set of genes, cellular components, and metabolic reac-
tions that interact within the cell and communicate with the environment in many 
different ways. Microbes perform several key ecosystem functions. They provide 
a number of ecological services like soil formation, nutrient cycling, plant 
growth, bioremediation, source for pharmaceuticals, etc. Earth may be a home 
for more than 1012 microbial species. These species are present in varied environ-
ments, many of which for other life forms are extremely hostile. Microbes have 
been found in varied environments ranging from the tropics to the Arctic and 
Antarctica, from underground mines and oil fields to the stratosphere and the top 
of great mountains, from deserts to the Dead Sea, from aboveground hot springs 
to underwater hydrothermal vents. They can survive at pressures up to 110 MPa, 
at extreme acid (pH 0) to extreme alkaline (pH 12.8) conditions, at temperatures 
as high as 122 °C to as low as −20 °C, in toxic wastes, in organic solvents, heavy 
metals, guts of insects, roots of plants, low oxygen conditions, etc. These micro-
organisms are classified according to their habitats such as thermophiles/hyper-
thermophiles, psychrophiles, acidophiles and alkaliphiles, barophiles, and 
halophiles. Studies on microbial life, their diversity, physiology, genetics, ecol-
ogy, and biochemistry can reveal a lot in terms of the characteristics of biological 
processes, such as biochemical limits to macromolecular stability and genetic 
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instructions for constructing macromolecules. These organisms have also 
provided a number of clues to the origin and evolution of life. Further, a study of 
microbes in conflict environments has become vital in the field of research in 
astrobiology, since the microbes found in extreme environments may be analo-
gous to potential life forms in other planets. In the present times of climate 
change, the study of microbes living at the edge of life has become even more 
important.
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1.1	 �Introduction

During the history of earth’s evolution, microbes have played a vital role in chang-
ing and maintaining the environments on earth. An environment that was initially 
anoxygenic was transformed and has been maintained till today in the present state 
by microorganisms. Since their evolution on earth at about 3–4 million years ago, 
microbes have occupied every nook and corner of the earth that one can think of. 
The earliest microorganisms were anaerobic heterotrophic, since the atmosphere 
was free of oxygen. The enormous microbial biodiversity that we find today is the 
result of a balance between evolution, extinction, and colonization. Microbial spe-
cies have been found in varied environments, many of which for other life forms are 
extremely hostile or not “normal,” with normal being those environments where 
temperature is between 4 and 40 °C, pH between 5 and 8.5, and salinity between 
that of freshwater and that of seawater. Many microbes have the ability to survive in 
extreme conditions, whereas others cannot survive and die in these conditions. The 
study of microorganisms in varied environments allows us to get a glimpse of the 
environment that must have been present on the earth before the rise of eukaryotes 
and the role microbes must have played in making the conditions feasible for the 
higher life forms. Their study can also provide vital clues that can be used by 
humans for adapting to the changing environment.

Many microorganisms can survive in multiple extreme conditions, e.g., cyano-
bacterium Chroococcidiopsis can survive in a variety of extreme conditions such 
as acidity, salinity, dryness, and high and low temperatures. Salinibacter ruber is 
a red obligatory aerobic chemoorganotrophic extremely halophilic Bacterium, 
related to the order Cytophagales. It was isolated from saltern crystallizer ponds 
and requires at least 150 g l−1 salt for growth. Microbes, present everywhere, play 
an important role in the cycling of carbon, hydrogen, oxygen, nitrogen, sulfur, etc. 
However, archaea is the main microbial group to thrive in most of the extreme 
environments.
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1.2	 �Microbes in Varied Environments

1.2.1	 �Microbes in High Salt Concentration

Halophiles are found in all three domains of life. Within the Bacteria, we know 
halophiles are found within the phyla Cyanobacteria, Proteobacteria, Firmicutes, 
Actinobacteria, Spirochaetes, and Bacteroidetes. Within the archaea the most salt-
requiring microorganisms are found in the class Halobacteria. Members of the 
Halobacteria are characteristic inhabitants of salt lakes at or approaching halite 
saturation, saltern crystallizer ponds, and other high salt environments (i.e., the 
Dead Sea, the Great Salt Lake, etc.). Halophilic organisms can also be found in 
man-made saline environments such as salted foods and tanned hides (Antranikian 
2009). Most of its relatives are obligate halophiles and require over 150–200 g L−1 
of salts for growth and structural stability. Further, they cannot survive under lower 
concentrations. The halophilic species are also found within the order Methanococci. 
Halophiles adopt different strategies for survival in high salt concentrations and thus 
maintain the cytoplasmic balance with the medium. One of the widely adopted 
strategies is the accumulation of compatible organic osmotic solutes which do not 
interfere with the enzymatic activity. These compatible osmolytes include glycine 
betaine, glycerol, ectoine, and other amino acid derivatives, sugars and sugar alco-
hols, etc. These are uncharged molecules and their concentrations are adjusted to 
the outside salinity. Halophiles commonly contain cell membrane proteins with 
high ratio of acidic to basic amino acid, thus giving the surface of the proteins a 
negative charge (DasSarma and Arora 1997). These organisms have a highly acidic 
proteome. Their protein surfaces have excess of negatively charged amino acids 
such as aspartate and glutamate, when compared to the positively charged amino 
acids like lysine and arginine.

1.2.2	 �Microbes in Low-Temperature Environments

A number of microorganisms can grow optimally at less than 15 °C (upper limit of 
20  °C) and are called psychrophiles, whereas some others are able to survive at 
temperatures below 0 °C and grow optimally at 20–25 °C and are called psychrotol-
erant organisms. The psychrophiles usually inhabit marine ecosystems, where the 
temperatures are permanently lesser than 5  °C.  In contrast, the psychrotolerant 
organisms are usually isolated from terrestrial environments, which are prone to 
extreme temperature fluctuations (Deming 2002). Cold temperature usually limits 
the cell function since it has negative impact on the cell integrity, water viscosity, 
membrane fluidity, and macromolecular interactions. Therefore, the organisms 
adopt a number of adaptive strategies to maintain vital cellular functions at cold 
temperatures and associated stress factors, such as desiccation, radiation, excessive 
UV, high or low pH, high osmotic pressure, and low nutrient availability. These 
microorganisms contain polyunsaturated and fatty acids and cold shock proteins to 
help in fluidity and nutrient transportation (Feller 2013).

1  The Multifaceted Life of Microbes: Survival in Varied Environments
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1.2.3	 �Microbes in High-Temperature Environments

The microorganisms growing optimally at temperature between 60 and 80 °C are 
designed as thermophiles. In contrast to this, some non-photosynthetic prokaryotic 
can grow at >100 °C or even more are referred as hyperthermophilic (Scambos et al. 
2018). These are found in the three domains of life, Archaea, Bacteria, and 
Eukaryotes. There are two major types of thermophiles: the microbes that grow in 
geothermal sites and that grow in self-heating materials such as composts. The ther-
mophiles contain a variety of mechanisms that allow them to survive at higher tem-
perature no other organisms can thrive (Weigal. 2000). These microorganisms have 
evolved several traits including novel membrane lipid composition (saturated fatty 
acids with more branches), thermostable membrane proteins, and higher rates of the 
synthesis of various enzymes (Sterner and Liebl 2001). Apart from having thermo-
stable membrane proteins, these microorganisms also contain stabilized proteins, 
DNA, and RNA (Ladenstein and Ren 2006). Further, genomic studies of thermo-
philes have demonstrated that the evolution of thermophiles depends on the level of 
heritable variation (i.e., genomic size, gene mutations, transcriptional and proteome 
regulations) (López-García 1999).

1.2.4	 �Microbes in the Atmosphere

The atmosphere of the earth is comprised of different layers, i.e., troposphere, 
stratosphere, mesosphere, and thermosphere. These layers are based on the tem-
perature. The troposphere, which is the lowest layer, begins at the surface of the 
earth and extends up to 10 km above sea level. It is the wettest layer of the atmo-
sphere and has almost all types of clouds and all types of weathers. The layer imme-
diately above the troposphere is the stratosphere. The bottom of the stratosphere is 
at 10 km above sea level and extends up to 50 km above sea level. Ozone is abun-
dant in this layer and heats this layer as it absorbs the energy from the incoming UV 
radiations. This layer is dry and thus contains very few clouds. The temperature 
increases as the altitude increases. The layer above the stratosphere is the meso-
sphere. It extends from 50 to 85 km above sea level. The temperature decreases with 
altitude in this layer and the coldest temperature on earth (−100 °C) can be recorded 
in this layer. The thermosphere extends from about 90  km to between 500 and 
1000 km above our planet, and the temperatures can range from about 500 °C to 
2000 °C. This is followed by the ionosphere, the part of the atmosphere ionized by 
solar radiation. The uppermost layer is the exosphere (up to 10,000  km), which 
merges with space. Diverse and viable communities of bacteria reside high in the 
troposphere despite the extreme cold, high UV irradiation, and thin air, suggesting 
adaptive mechanisms. Surprisingly, viable bacteria form up to 20% of the total 
number of particles found in the troposphere (DeLeon-Rodriguez et al. 2013). Some 
atmospheric regions have extreme conditions, but microorganisms already live 
under even harsher environments with extremes of pH, temperatures, and radiation 
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(Pikuta et al. 2007). The roles of high-altitude dwelling bacteria are not well under-
stood. It is likely that these microbes affect meteorological events, such as cloud 
formation, precipitation, or atmospheric chemistry. Microbes are often considered 
passive inhabitants of the atmosphere, dispersing via airborne dust particles. 
However, recent studies suggest that many atmospheric microbes may be metaboli-
cally active (Bowers et al. 2009), even up to altitudes of 20,000 m (Griffin 2004). 
Some airborne microbes may alter atmospheric conditions directly by acting as 
cloud condensation nuclei (Bauer et al. 2003; Mohler et al. 2007) and/or ice nuclei 
(IN) (Pouleur et al. 1992; Mohler et al. 2007); this hypothesis is supported by the 
observation that most ice nuclei in snow samples are inactivated by a 95 °C heat 
treatment (Christner et  al. 2008). However, the overall contribution of airborne 
microbes to atmospheric processes such as ice nucleation remains unclear.

1.2.5	 �Microbes in Varied pH Environments

Extremely low and high pH habitats have been observed for different ecosystems 
contaminated by mining waste on earth. Acidophiles thrive at low pH and come 
from bacteria, fungi, algae, protozoa, and archaea. Currently, the most extreme acid-
ophiles and alkaliphiles can thrive at pH 0 and pH 12. These microorganisms thrive 
in hot springs, marine vents, sulfuric pools and geysers, coal mines, and metallic 
ores. In order to maintain the internal pH, acidophiles either actively excrete protons 
or use them in various metabolic reactions such as the reduction of oxygen in the 
membrane. Acidophiles utilize both energies derived and non-energy processes to 
maintain internal pH.  On the other hand, the alkaliphiles thrive in environments 
with a pH between 10 and 12 with an optimum growth pH of about 9 (Padan et al. 
2005; Singh et  al. 2016; Li et  al. 2017). These microorganisms are distributed 
worldwide like hypersaline lakes, soda lakes, industrial effluents, and alkaline soil 
microenvironments (Fujisawa et al. 2010). In order to survive at these extreme con-
ditions, these microorganisms have novel adaptations to cell wall structure such as 
a variety of acidic compounds (i.e., phosphoric acid, aspartic acid, galacturonic 
acid, glutamic acid, and gluconic acid).

1.2.6	 �Microbes in High-Pressure Environments

These microorganisms (piezophiles/barophiles) have the capability to thrive at 
high-pressure area, especially higher than normal (from 0.1 MPa to 112 MPa), or 
they need increased pressure for their normal growth and survival. They thrive in 
deep sea location, hydrothermal vents, trenches, sediments, and water samples 
from depths (Certes 1884). S. benthica and M. yayanosii have different strains 
which are extremely barophilic and barophilic with optimal growth at 50–80 MPa 
(Kato et al. 1998). S. violacea and Photobacterium profundum and M. japonica 
strains come in the category of moderate barophilic bacteria thriving at pressures 
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of 10–50 MPa (Kato et al. 1995). Sporosarcina sp. strains belong to the category of 
barotolerant capable of growing at 0.1  MPa pressure (Kato et  al. 1995). These 
microbes have adapted to such extreme environments because of various modifica-
tions like secretion of polyunsaturated fatty acid (PUPA) and eicosapentaenoic 
acid (EPA) (Nogi et al. 1998; DeLong et al. 1997; Kato et al. 1998). Such microbes 
have gene expression under the control of pressure-regulated promoter sequences 
(Nakasone et al. 1998). There are reports of pressure-inducible proteins (Jaenicke 
et al. 1988) and elevated levels of heat shock protein GroES (Lin and Rye 2006). 
These extremophiles can be exploited for the industrial and high-pressure fermen-
ters because genes and proteins are accustomed to high-pressure conditions; also 
the barophilic origin proteases and glucanases can be used for detergents and DNA 
polymerases in PCR amplification. The research is being extended to mesophilic 
piezophiles apart from commonly explored psychrophilic and thermophilic piezo-
philes. The yeast S. cerevisiae is converted into a piezophile by manipulating the 
genome and by introducing genes that control high-pressure growth in yeast. 
Tryptophan permease gene TAT2 confers high-pressure growth in S. cerevisiae 
(Abe and Horikoshi 2000). The mesophilic organisms with piezophilic applications 
may help industrial applications. Similarly, novel antibiotics may be produced from 
mutants grown under high-pressure conditions. Piezophiles/barophiles have a 
unique membrane composition or structure that would allow them to survive at the 
greatly increased pressure.

1.2.7	 �Microbes in Radiation Environment

These extremophiles can withstand and survive the presence of ionizing and UV 
radiations such as Deinococcus radiodurans (Sandigursky et al. 2004), D. radiophi-
lus (Yun and Lee 2004), Thermococcus piezophilus (Jolivet et  al. 2004), and 
Cyanobacteria like Nostoc muscorum and Microcoleus vaginatus (Singh 2018). 
Acinetobacter radioresistens (Jawad et al. 1998) are few examples of radiophiles. 
They thrive in various radioactive places like dry climate soil, nuclear reactors like 
D. radiodurans, and Mars Analog Antarctic Dry Valleys (Musilova et  al. 2015). 
They have various adaptations to withstand radiation stresses like Nudix hydrolase 
enzyme superfamily and the homologs of plant desiccation resistance-associated 
proteins contributing to extreme radiation and desiccation resistance of Deinococcus 
sp. (Makarova et al. 2001). PprA protein helps in DNA ligation after DNA fragmen-
tation due to radiation exposure reported in D. radiodurans (Narumi et al. 2004), 
increased metal concentration (i.e., Mn/Fe) ratios in protection of D. radiodurans 
cellular proteins from oxidative damage (Daly 2009), and accumulation of MnII. 
It helps in resistance toward gamma radiation exposure (Daly et al. 2004), produc-
tion of mycosporine-like amino acids (MAAs) in cyanobacteria due to exposure of 
solar UV-B radiations (Sinha et al. 2001), etc. As far as applications of radiophile 
are concerned, they are helpful in the management of nuclear waste-polluted envi-
ronments (Brim et al. 2003; Appukuttan et al. 2006).

R. P. Singh et al.
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1.2.8	 �Microbes in Metallic Environment

These extremophiles (metallophiles) have the capability to grow in the presence of 
heavy metal waste. They thrive in industrial sediments, soil, and waste effluents 
containing heavy metals (Mergeay et al. 2003). These metallophiles possess heavy 
metal resistance due to the presence of megaplasmids conferring genes for resis-
tance by efflux mechanisms (Gomes and Steiner 2004). These microorganisms 
remove toxic metals via change in redox potential of metals by aiding in bioleach-
ing of contaminants and precipitation (Lovley and Coates 1997; Wani et al. 2007; 
Pal and Rai 2010). These extremophiles can be exploited as bioremediation/biole-
aching for different metal ores (i.e., Cu, Fe, Zn, etc.) from toxic compound removal 
from various industrial/mining waste effluents.

1.2.9	 �Microorganisms in Xerophilic Environment

These microorganisms (xerophiles) are able to thrive in low water environments and 
resist high desiccation, i.e., water activity below 0.8. Endolithic and halophilic 
microbes come under xerotolerant. Some xerophiles such as Cyanobacteria, Nostoc 
commune, were recovered from dry area after 13 years and from herbarium storage 
after 55 years (Shirkey et al. 2003), from dry storage conditions of herbarium after 
87  years (Lipman 1941), and after 107  years from dry soil sample (Blank and 
Cameron 1966). There are reports of synthesis of extracellular polysaccharides 
(EPS) which withstand dry environment (De Philippis and Vincenzini 1998); cell 
component stabilization by buildup of compatible solutes like trehalose (Welsh 
2000); upregulation of genes related to osmotic, salt, and low-temperature stress, 
osmoprotectant metabolisms, K+ transporting system, and heat shock proteins; and 
downregulation of genes involved in photosynthesis, nitrogen transport, RNA poly-
merase, and ribosomal proteins (Katoh et  al. 2004). The proteins like catalases, 
peroxidases, and superoxide dismutase expression are increased to neutralize ROS 
due to desiccation (Shirkey et al. 2000).

1.3	 �Future Prospective

All the three domains of life (thermophiles, halophiles, acidophiles, alkaliphiles, 
and piezophiles) take life to the extreme. By studying the biology of these unique 
microorganisms, we can gain deep insight into how life evolve on earth and even 
infer as to how life would be able to exist elsewhere in the universe. As for the ori-
gins of life on earth, some scientists are looking to the extremophile microbes such 
as D. radiodurans as model organisms when exploring the existence of extraterres-
trial life of the solar system and beyond. This microorganism has the unique ability 
to survive radiation at several thousand times the lethal dose for humans.

With these groundbreaking research work and recent development in the field of 
extremophiles, which have been directly applicable in different branches of life 
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sciences, our understanding about the biosphere has grown and the putative bound-
aries of life have expanded. However, due to the recent growth and advancement, 
we are just at the beginning of exploring the world of extremophiles. In this chapter, 
we have discussed the several aspects of these fascinating microorganisms, explor-
ing their habitats, biodiversity, ecology, evolution, biochemistry, as well as 
applications.
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