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Abstract
Pyrethroids are the synthetic compounds derived from the Chrysanthemum cin-
erariaefolium plant. The first synthetic pyrethroids developed in the United 
States are allethrin and bioallethrin. According to the World Health Organization, 
the classification pyrethroids has a place in the fourth group of insecticides and 
includes 42 substances. More than 30% of pyrethroid insecticides are used 
worldwide. In the year 2015, the global market of pyrethroid insecticides has 
been estimated at USD 4.67 billion and is expected to touch USD 6.45 billion by 
the year 2021. Pyrethroid insecticides are potent against an extensive variety of 
pests belonging to the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, 
Lepidoptera, Orthoptera, and Thysanoptera. Pyrethroid insecticides interrupt 
the functioning of the peripheral nervous system by reacting with the voltage-
gated sodium channels and cause a series of bursts and paralyses. The low ten-
dency to accumulate in organisms, short biodegradation period, and economic 
value have led to the overuse of pyrethroids with unavoidable consequences. The 
increase in the production of mites in cotton, in tea, and in vegetables was 
reported by the constant use of synthetic pyrethroids. Even at a very low 
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concentration in water, pyrethroids are strongly absorbed by the gills of fish due 
to their lipophilic nature and lead to their toxicity and even altered homing ability 
in honeybees. Pyrethroid metabolites were detected in the breast milk of women 
in various parts of the world. Long-term exposure of pyrethroids leads to aggres-
sive behavior in humans due to the leftover traces of pyrethroid metabolites in 
urine. Further research should be done to prove the toxicity of pesticides in the 
ecosystem, the effects of pesticide residues, and their interaction with nutrients.

Keywords
Pyrethroids · Insecticides · Sodium channel · Toxicity · Pyrethroid degradation, 
World Health Organization

8.1	 �Introduction

Pyrethroids are synthetic insecticides and are the structural modifications of 
pyrethrins which are extracted from Chrysanthemum cinerariaefolium flowers of 
the genus Chrysanthemum. Pyrethrins are the esters of cyclopentenolone alcohol 
and cyclopropane carboxylic acid, and in the existence of sunlight, moisture, and 
water, they increase the insecticidal potency and longevity (Elliott 1995). 
Pyrethroids keep the acid/alcohol configuration of pyrethrins and have similar 
chemical structures across the class. As a result, concern of health effects can be 
made on the full class of pyrethroids. Over dozens of pyrethroid molecules are 
registered in various regions of the world which find application in many prod-
ucts of agriculture, household, veterinary, and in the field of medicine. Pyrethroid 
class includes allethrin, bioallethrin, bifenthrin, cyfluthrin, cypermethrin, delta-
methrin, d-phenothrin, esfenvalerate, fenvalerate, fenpropathrin, flumethrin, flu-
valinate-tau, lambda-cyhalothrin, permethrin, prallethrin, resmethrin, tefluthrin, 
and tetramethrin.

From the last 20 years, pyrethroid use has risen with their extensive exposure to 
environment, humans, and aquatic animals. Pyrethroids have a half-life of less than 
8 h (Kim et al. 2008; Godin et al. 2010). In population sampling programs, urinary 
metabolites of pyrethroid have been confirmed (Health Canada 2013; Dewailly 
et al. 2014; Lewis et al. 2014; CDC 2015). Only recognition does not determine that 
an antagonistic health consequence will arise. So, there is an unending interest in 
the possible relations of pyrethroid exposure and health effects, especially on envi-
ronment levels.

8.2	 �History

The pyrethrum flowers were firstly used by Caucasian tribes in the early 1800s 
to control body lice and later on produced on a commercial level in Armenia in 
1828. In Dalmatia (Yugoslavia) the production started in about 1840 and was 
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centered there until the First World War, in Japan before the Second World War, 
and after that in East Africa. Insect powder was first imported into the United 
States in about 1860, and several attempts were made for the next 90 years to 
produce the flowers commercially in this country but remained unsuccessful 
(Casida 1980). In the year 1940, Schechter and his colleagues developed the 
first synthetic pyrethroids, allethrin and bioallethrin, in the United States 
(Sanders and Taff 1954; BBSRC 2014). Pyrethroids are 20 times more success-
ful in killing insects than dichloro-diphenyl-trichloroethane (DDT) without 
affecting environmental and human health (BBSRC 2014). Elliott’s team at 
Rothamsted (United Kingdom) in the year 1962 developed a synthetic pyre-
throid resmethrin by changing the molecular arrangement of naturally arising 
pyrethrin, and later on it was developed by the researchers at Sumitomo, a 
chemical company in Japan.

Later on, in the year 1967, the Elliott team isolated an active compound 
from synthetic pyrethroid resmethrin and again produced a first-generation 
pyrethroid, bioresmethrin, which is a mixture of four diverse isomers. 
Permethrin, the first pyrethroid to be used for agricultural purposes which does 
not collapse quickly in sunlight, was developed in 1972 by Michael Elliott. 
With the growing concern of the bioaccumulation of pesticides, for incidence, 
the breakdown of DDT in sunlight and its persistence in the environment lead 
to its ban by the United States in the same year. Two new extremely potent 
insecticides cypermethrin and deltamethrin were developed by Michael Elliott 
along with his colleague Izuru Yamamoto in Japan in 1976. Sumitomo, a chem-
ical company, developed fenvalerate pyrethroid in 1976. Pyrethroids generate 
25.1% of the worldwide insecticide market in the year 1983, and around 33 
million hectares of crops were treated with pyrethroids (Wirtz et  al. 2009). 
Owing to the low toxicity of pyrethroids, deltamethrin, and permethrin to 
humans and other mammals, the World Health Organization (WHO) in the 
1980s recommend their use in insecticide-treated nets (BBSRC 2014). The 
annual sales of synthetic pyrethroids reached US $1.2 billion in the early 1990s 
(Housset and Dickmann 2009). A study was conducted in the rural region of 
Gambia in 1991 in which children under the age of 5 are treated by using per-
methrin-treated mosquito nets, and a reduction in the number of deaths by 
around two-thirds was observed (Alonso et al. 1991). In the year 2002, delta-
methrin turned out to be the world’s major-selling pyrethroid with yearly sale 
of US $208 million (BBSRC 2014). A product is developed by the researchers 
at Rothamsted (UK) in 2004, which releases an enzyme inhibitor to disable the 
insect’s resistance mechanism to overcome resistance to pyrethroid insecti-
cides that is emerging in a number of insect crop pests (BBSRC 2014). In the 
year 2007, global sales of insecticides reached US $8 billion with 17% of 
global insecticides as pyrethroids (Davies et al. 2007; BBSRC 2014). To tackle 
the cases of malaria, WHO in the year 2011 recommended the utilization of 
long-lasting insecticidal mosquito nets (LLINs) which were developed at 
Rothamsted (UK) (Lengeler 2004).
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8.3	 �Classes of Pyrethroids

Pyrethroids are categorized into two classes, namely, class I and class II, on the 
basis of physical and toxicological properties (Gajendiran and Abraham 2018). 
Pyrethroids of class I contain cyclopropane carboxylic ester in their structure and 
include resmethrin, phenothrin, allethrin, tefluthrin, bifenthrin, permethrin, and tet-
ramethrin. Class II pyrethroids contain a cyano group and include fenpropathrin, 
flumethrin, tralomethrin, deltamethrin, cyfluthrin, cyhalothrin, cypermethrin, fen-
valerate, flucythrinate, and fluvalinate. These pyrethroids cause choreoathetosis and 
salivation. Pyrethroids are proficient in contrast to an extensive variety of pests 
which belong to the order Coleoptera, Hemiptera (Homoptera and Heteroptera), 
Diptera, Hymenoptera, Lepidoptera, Orthoptera, and Thysanoptera. Mostly, they 
are used for domestic purposes, for example, as a grain protectant, active in animal 
houses, fields, greenhouses, and in veterinary medicines (ATSDR 2003) (Table 8.1).

8.4	 �Mode of Action of Pyrethroids

The molecular targets of pyrethroid class of insecticides are the same in case of 
mammals and insects. Mode of action includes voltage-gated sodium, nicotinic 
receptors, chloride and calcium channels, intercellular gap junctions, gamma-
aminobutyric acid (GABA)-gated chlorine channels, and membrane depolarization 
(Forshaw and Ray 1990; Song and Narahashi, 1996a, b). Mammals are vulnerable 
to pyrethroid toxicosis in small amount as compared to insects, the primary reason 
being higher body temperatures, rapid metabolic clearance, and a lower sympathy 
for pyrethroids (Song and Narahashi 1996b; Gammon et al. 2012). This particular 
insecticidal class slows the opening and closing of the sodium channels, causing the 
subsequent excitation of the cell (Marban et al. 1989). The action potential for type 
II pyrethroids is more durable than for type I. The direct exposure of pyrethroids 
causes paresthesia of the sensory nerve endings. This leads to the repetitive firing of 
the fibers. Sodium channels must be reformed by the insecticide to produce definite 
neurological signs and symptoms. In higher concentrations, pyrethroids of class II 
may act on GABA-gated chloride channels (Bloomquist et al. 1986) and control the 
cell excitability when it comes in contact with the voltage-dependent chloride chan-
nels existing in the brain, nerve, muscle, and salivary gland. Different forms of 
functional chloride channels are present when related to the sodium channels. Most 
of the insecticide-sensitive channels have been found to be linked with the Maxi 
chloride channel class, which gets triggered by various modes of excitation such as 
depolarization and protein kinase C phosphorylation. This particular channel has 
high conductivity and is calcium-independent.

There are a number of ways by which pyrethroids can penetrate into the body of 
an organism. One way is non-stereospecific in which pyrethroids permeate quickly 
from the epidermis, followed by uptake by the blood or hemolymph carrier proteins 
and continuously delivered all over the body. The main route of pyrethroid delivery 
to the central nervous system is along the epidermis cells. They directly enter into 
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Table 8.1  Classes of the pyrethroids used for crop protection, household, animal house, and 
veterinary

Pyrethroid Class Trade name Molecular structure
Types of 
crop

Insecticidal 
role

Insecticidal 
role other 
than crop

Permethrin I Ambush Cotton, 
wheat, 
maize, 
alfalfa, 
potato, 
spinach, 
green 
pepper, 
mushroom

Beetle, 
bollworm, 
budworm, 
termites, 
and weevils, 
moths

Ants, fleas, 
flies, lice, 
mosquitoes

Phenothrin I Sumithrin NA NA Flies, gnats, 
mosquitoes, 
cockroaches, 
and lice

Resmethrin I Chrysron NA NA Flies, gnats, 
mosquitoes, 
fleas, ticks, 
and black 
flies

Tefluthrin I Force Sugar beet, 
cabbage, 
maize, 
carrot

White grub, 
southern 
corn leaf 
beetle, flea 
beetle, and 
chinch bug

NA

Bifenthrin I Brigade Corn, hops, 
raspberries

Beetles, 
weevil, 
aphids, 
moths, 
locust

Mosquitoes, 
lice, bedbugs, 
cockroaches

Allethrin I Pynamin NA NA Flies, 
mosquitoes, 
and ants

Tetramethrin I Neo-
Pynamin

NA NA Wasps, 
hornets, 
roaches, ants, 
fleas, and 
mosquitoes

(continued)
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Table 8.1  (continued)

Pyrethroid Class Trade name Molecular structure
Types of 
crop

Insecticidal 
role

Insecticidal 
role other 
than crop

Cyfluthrin II Baythroid Artichokes, 
brassica 
crops, 
caneberries, 
canola, 
Crambe, 
rapeseed, 
cilantro, 
coriander, 
citrus, com, 
cotton, 
cucurbits, 
beans, peas, 
grapes, 
hops, 
lettuce 
(head), 
mayhaw, 
okra, 
peanut, 
pears, roots 
crops, 
soybean, 
spinach, 
tobacco, 
tomato

Aphids, 
cabbage 
stem flea 
beetle, rape 
winter stem 
weevil

Houseflies, 
cockroaches, 
mosquitoes

Cyhalothrin II Commodore Tomato, 
Bengal 
gram, chili, 
grapes, 
onion, soya 
bean

Bedbugs, 
beetles, 
moths, 
weevils

Houseflies, 
ked, lice, 
mosquitoes

Cypermethrin II Ammo, 
Cymbush

Wheat, 
okra, 
sunflower, 
cabbage

Moths Cockroaches, 
mosquitoes, 
flies

Fenpropathrin II Danitol, 
Meothrin

Tea, chili Aphids, 
beet 
armyworm, 
mealybug, 
potato 
leafhopper, 
moths, 
leafrollers, 
and lace 
bugs

Mites

(continued)
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the central nervous system (CNS) via acting together with sensory organs of the 
peripheral nervous system. Also, they enter the body through the air in the vapor 
phase. Invertebrates and vertebrate insects are delicate to pyrethroids (Soderlund 
and Bloomquist 1989).

The peripheral and central nervous system of insects both are affected with the 
pyrethroids. Initially, they stimulate the nerve cells for the production of repetitive 

Table 8.1  (continued)

Pyrethroid Class Trade name Molecular structure
Types of 
crop

Insecticidal 
role

Insecticidal 
role other 
than crop

Fenvalerate II Pydrin, 
Ectrin

Cauliflower Beetles, 
locusts, 
moths

Cockroaches, 
flies, 
mosquitoes

Flucythrinate II Cybolt Lettuce, 
apples, 
cabbage, 
maize, 
cotton seed

Bollworms, 
leafworms, 
sucking 
insects, 
whiteflies, 
and beetles

NA

Fluvalinate II Klartan, 
Mavrik

Cotton Aphids, 
leafhoppers, 
moths, 
spider 
mites, 
thrips, and 
whiteflies

NA

Deltamethrin II Butoflin, 
Butoss

Wheat, rice Aphids, 
beetles, 
bollworm, 
budworm, 
caterpillars, 
cicadas, 
moths, 
tortrix 
moths, 
weevils, 
whitefly, 
and winter 
moths

NA

Tralomethrin II Scout 
X-TRA

NA NA Ants and 
cockroaches

NA Not Applicable
Adapted from Gajendiran and Abraham (2018)
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discharges which eventually cause paralysis. For the production of repetitive dis-
charges, only a minor section of the sodium channel inhabitants is reformed by 
pyrethroids as with DDT.  After alteration by pyrethroids, the sodium channels 
retain their capability to conduct Na+, and the channels will remain open as the 
insecticide interferes with it and get closed either by inactivation or deactivation. 
The membrane potential is moved for the functioning of nerve cells in a compara-
tively stable form of abnormal hyperexcitability. In insects a sublethal effect known 
as “knockdown” is produced. Due to greater lipophilicity, the pyrethroids enters to 
the target more quickly and delivers better knockdown levels. Type I pyrethroids 
(e.g., permethrin) are capable of influencing repetitive firing in axons, restlessness, 
un-coordination, and hyperactivity followed by prostration and paralysis and are 
usually good knockdown agents as shown in Fig. 8.1. Pyrethroids of the class II 
(e.g., deltamethrin) with cyano group at the α-benzylic position (the α-carbon of the 
3-phenoxybenzyl alcohol) caused a noticeable uncontrollable stage bringing about 
better kill because depolarization of the nerve axons and terminals is unalterable as 
shown in Fig. 8.1 (Bloomquist 1996).

Fig. 8.1  Mode of action of pyrethroids on neurons. The top diagram shows the normal function-
ing of sodium channels which open, allowing sodium to pass, but then close after the action poten-
tial. This single action potential propagates through the nerve tail (axon) and triggers muscle 
contraction. Upon exposure to pyrethroids, the sodium channels malfunction and may remain open 
instead of returning to a closed state after initiation of the action potential. This will lead to repeti-
tive firing (in type I pyrethroids) or depolarization (in type II pyrethroids) leading to tremors or 
involuntary movements (choreoathetosis) depending on the type of pyrethroid. Note that the T 
(fine tremors) and CS (choreoathetosis and salivation) syndromes are not as clearly differentiated 
as initially characterized in the pyrethroid literature and mixed symptoms may occur. (Adopted 
from Hénault-Ethier et al. 2016)
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8.5	 �Current Uses of Pyrethroids

From the past 20 years, synthetic pyrethroids have been used in various crops to 
control pests (Maund et al. 2001), but they are becoming more and more popular 
even after the ban on the usage of cholinesterase-retarding insecticides (Feo et al. 
2010; Luo and Zhang 2011). The ban on the use of two commonly used organo-
phosphate (OP) pesticides, chlorpyrifos and diazinon, by the Environmental 
Protection Agency (EPA) in the year 2000–2001 resulted in the substantial rise in 
the marketplace diffusion of the pyrethroid products (EPA 2000, 2001). Due to the 
wide spectrum, high efficiency, low toxicity to mammals and avian, and biodegrad-
ability, the pyrethroids have a large share in the insecticidal market (Pap et al. 1996).

Nowadays, more than 30% of insecticides are used worldwide mostly in the field 
of horticulture, agriculture, forestry, public health and household purposes (Barr 
et al. 2010; Feo et al. 2010). The usage of synthetic pyrethroids and pyrethrins to 
control vector has been accepted by WHO and recommended the use of pyrethroids 
(lambda-cyhalothrin, bifenthrin, deltamethrin, cyfluthrin) for spraying indoor 
against malarial vectors (Walker 2000; Raghavendra et al. 2011). Pyrethroids are 
also applied on bed nets to control malarial vector (WHOPES 2005; Raghavendra 
et al. 2011).

According to the Environmental Protection Agency (EPA) data, about 1 million 
kg permethrin are used every year in agricultural, in household, and in public health 
fields (Feo et al. 2010). In 2015, the global market of pyrethroid insecticides has 
been evaluated at USD 4.67 billion and is expected to touch USD 6.45 billion by the 
year 2021 (Business Wire 2016).

8.6	 �Toxicity

Skin exposure is the most common route of entry for the insecticide pyrethroids 
(Gammon et al. 2012; Anadon et al. 2013). Its bioavailability usually accounts to 
1% when exposed dermally. Absorption usually occurs via the stomach after an oral 
exposure in humans and mostly accounts to 36%. Soon after absorption, the insec-
ticide gets quickly dispersed due to their lipophilicity and produce uncontrollable 
effects such as increased salivation and hyperexcitability. Majority of the pyrethroid 
formulations which are marketed contain solvents which are also the main cause of 
toxicity (Malik et al. 2010; Ensley 2018).

The half-life of this particular class of insecticide is usually hours (in blood 
plasma), while oral exposure is relatively shorter than the dermal exposure. 
Cyfluthrin has a half-life of 19–86 min. Acute toxicity is the major neurotoxicity 
caused due to pyrethroid exposure. Fishes are highly sensitive to pyrethroid (Ansari 
and Kumar 1988; Ensley 2018). Household exposure of fish to the insecticide can 
arise when the premises are sprayed with it. Birds are considered to be tolerant 
toward pyrethroid but they tend to be carriers. It has been reported that the LD50 
value is greater than 1000 mg/Kg (Mueller-Beilschmidt 1990). Half-life values of 
the different pyrethroid compounds have been enlisted in Table 8.2. Clinical signs 
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and symptoms after exposure have been observed to be almost similar when it 
comes to mammals such as cats and dogs. Some of which are as follows: salivation, 
vomiting, seizures, dyspnea, prostration, weakness, and eventually death (Ensley 
2018). Apart from neurotoxicity, pyrethroids can also cause dermal, hepatic, renal, 
cardiac, endocrine disruption, reproduction, and developmental effects in mammals 
(Drago et al. 2014; Atmaca and Aksoy 2015; Hossain et al. 2015; Botnariu et al. 
2016; Ben Slima et al. 2016; Malik et al. 2017; Ensley 2018).

8.7	 �Effect on Human Health

Usage of permethrin in household causes allergies and asthma, chiefly in children. 
A research conducted on 300 children residing in the Baltimore region presented a 
decline in the anti-inflammatory level IL-10 (Interleukin) in plasma as when related 
to people who are not in touch with pyrethroids (Skolarczyk et al. 2017). Similarly, 
when 5% permethrin was applied on the skin of 20-month-old child travailing from 
scabies showed symptoms of nausea, metabolic acidosis, respiratory distress, vom-
iting, and tachycardia (Goksugur et al. 2015). Metabolites of permethrin in concen-
trations 1.45–24.2  ng/g were recognized in the breast milk of women in Spain, 
Brazil, and Columbia (Corcellas et al. 2014). Long-term exposures of permethrin in 
children were described to cause an increase in the level of urine, behavioral 
changes, and an increase in aggressive behaviors shown in Fig. 8.2 (Outhlote and 
Bouchard 2013).

Similarly, exposure of deltamethrin at a dose level of 0.25–1% to humans for a 
long time through insecticidal mosquito nets caused lacrimation, limb spasms, 
abdominal pain, weakness, nausea, headaches, diarrhea, vomiting, apathy, ataxia, 
convulsions, and allergic reactions (Kumar et  al. 2011). Permethrin metabolites 
were examined in the urine of 6-year-old children residing in Brittany (France) 
(Glorennec et al. 2017). The recommended dosage level of pyrethroids on a daily 
basis is 0.01 mg/kg, and poisoning symptoms occur after dosage of 2–250 mg/kg 
body weight. Aggregation of deltamethrin takes place in brain neurons when 

Table 8.2  Half-life of pyrethroid compounds in environment

Pyrethroid
Photolysis Soil degradation
Half-life in water Half-life in soil Aerobic soil Anaerobic soil

Bifenthrin 408 96.9 96.3 425
Cyfluthrin 0.673 5.02 11.5 33.6
Cypermethrin 30.1 165 27.6 55
Deltamethrin 55.5 34.7 24.2 28.9
Esfenvalerate 17.2 10 38.6 90.4
Fenpropathrin 603 4.47 22.3 276

γ-Cyhalothrin 24.5 53.7 42.6 –

Pennethrin 110 104 39.5 197
Tralomethrin 2.47 3.87 3.25 5

Adopted from Laskowski (2002)
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administered orally or through the skin (Husain et al. 1996; Kim et al. 2008; Viel 
et al. 2015). Even exposure of deltamethrin in the course of pregnancy results in 
detrimental health effects such as fetal central nervous system (Husain et al. 1996; 
Viel et al. 2015). Children undergo sleep disorders, memory impairment, poor ver-
bal abilities, and decrease in intelligence (Elwan et  al. 2006; Viel et  al. 2015). 
Deltamethrin contributes to Parkinson’s disease by acting on the neuronal dopamine 
carrier (Elwan et al. 2006).

Alpha-cypermethrin metabolites were observed in the urine of people working 
in the cotton fields which further caused skin abrasions on the face and neck 
(Singleton et al. 2014). In contrast to permethrin, prolonged exposure of alpha-
cypermethrin affects the central nervous system and induces complications with 
motor coordination and learning, but aggressive behaviors have not been observed 
(Manna et al. 2005). Through free radical formation, cypermethrin induces neuro-
toxicity, reduces the antioxidant defense mechanism, and inhibits the acetylcho-
linesterase (AChE) activity by acting together with the anionic substrate binding 
site (Sharma et  al. 2014). Resveratrol improved the brain damage caused by 
cypermethrin by reducing oxidative stress and enhancing AChE activity in Wistar 
rats (Sharma et al. 2014).

Fig. 8.2  Biomagnification of the pyrethroids in the ecosystem
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Mcdaniel and Moser (1993) have concluded that Cypermethrin causes detri-
mental effects such as neurobehavioral changes in pawing, burrowing, salivation, 
choreoathetosis, hypothermia, and reduction in the motor activity (Mcdaniel and 
Moser 1993). Noticeable neuromuscular weakness, lateral head movements, vari-
ations in stimuli, equilibrium changes, retropulsion, and increased urination were 
also observed in cypermethrin toxicity (Mcdaniel and Moser 1993). Both the 
acute and toxic reactions of cypermethrin on the seminal gland, a rise in the 
height, multiplying of the cells, and a progressive appearance of mast cells have 
been observed (Mun et al. 2005; Rodriguez et al. 2009). Cypermethrin stands a 
highly used pesticide in agricultural practices as well as in household practices to 
fight against insects, but their consistent use may cause chronic toxicity among 
humans that may disturb the male fertility in upcoming years and also affect the 
food (Manna et al. 2005).

8.8	 �Effect on Animal Health

Pyrethroids are highly lethal to fish as they affect them indirectly through insecticide-
affected food materials (WHO 2014; Hossain et al. 2017). Deltamethrin is the most 
toxic insecticide and allethrin as the least toxic followed by intermediately toxic 
pyrethroids, fenvalerate, permethrin, and cypermethrin (WHO 2014). LC50 values 
for fish are less than 1.0 parts per billion (ppb) in 40% cases. Fenvalerate mainly 
affects the nervous system of the teleost fish. There is an alteration in the calcium 
uptake, abnormal excretion rates of sodium and potassium, and increase in level of 
urine osmolality due to the production of osmoregulatory imbalance from fenvaler-
ate (Shafer et al. 2008; Omotoso et al. 2014; Dohlman et al. 2016). This insecticide 
histologically damages the gill surface of fish by accumulating in the gills and 
causes mucus secretion, increases the aeration capacity, and decreases oxygen 
uptake efficiency in gills. Fenvalerate poisoning in fish causes reduction in the 
schooling behavior, inability to swim close to the surface of water, hyperactivity, 
buoyancy loss, raised cough level, increase in the secretion of gill mucus, head 
shaking, and lethargy prior to death (Kotila and Yön 2015).

Alteration in the behavior of honeybees to maintenance, feeding, and communi-
cation were observed when they are exposed to permethrin. Bees which receive 
surface exposure in the concentration of 0.001 μg permethrin were involved in trem-
bling dances, self-cleaning, rotation, leg rubbing, and abdomen tucking than the 
nonexposed bees (Cox and Wilson 1984). About 90% of bees arrive to their hive 
within 30 s of journey, while among the deltamethrin-treated bees, only 9% were 
capable to return within this time. A change in the flight patterns and homing abili-
ties was observed when forager honeybees were exposed to 2.5 ng deltamethrin per 
bee in relation to nonexposed bees (Vandame et al. 1995). Permethrin-exposed bees 
spend less time in walking, giving food, and antennae touching. Dietary exposures 
of pyrethroid concentrations (i.e., as in nectar or syrup) cause irregularities in 
behavior and fall in the fertility. The bees which feed on syrup comprising 940 μg/L 
deltamethrin were reported to exhibit learned alignment toward an odor stimulus by 
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nearly 11–24% (Decourtye et al. 2005). Bifenthrin or deltamethrin fed diet at con-
centration level of 4.0, 7.9, 15.5, 30.6, and 60.2 mg/L or 20.0, 36.0, 64.8, 116.6, and 
210.0 mg/L caused adverse impact in honeybees. Similarly, ingestion of bifenthrin 
and deltamethrin reduced the production of egg and the period in the egg stage. 
Exposure of deltamethrin lowered the capping frequency and prolongs the extent of 
the undeveloped stage (Dai et al. 2010).

The pyrethroids also influence birds because of the threat to their food supply. 
Small insectivorous and waterfowl are more prone to pyrethroids (Peter et al. 1996). 
They are mostly unaffected by pyrethroids as compared to mammals (Addy-Orduna 
et al. 2011). Quail ejected fenvalerate more quickly and showed poorer absorption 
and fast metabolism. The LD50 value of 4000 mg/kg body weight and 450 mg/kg 
body weight in quail and rat was observed when fenvalerate was administered orally 
which is nearly an order of 10 magnitudes higher (Dayal et al. 2003).

8.9	 �Degradation of Pyrethroid Residues

On the basis of clinical information and laboratory work, the pyrethroids hold estro-
genic and antiprogestagenic actions and are categorized as endocrine disruptors 
(Garey and Wolff 1998). As a result, it is vital to create quick and proficient degra-
dation methods to eradicate or decrease their amount in the environment. Biotic and 
abiotic methods comprising of photooxidation, chemical oxidation, and biodegra-
dation degrade pyrethroids in the natural environment (Abraham and Silambarasan 
2014; Abraham and Silambarasan 2016). Mainly, they are degraded by chemicals 
and native microorganisms present in the soil. Microorganisms play a substantial 
role in degradation of pyrethroids in the soil and sediments. Degradation frequency 
lies mainly on the type of pyrethroids, soil, climate, and the kind of microorganism 
and the size of their population. Pseudomonas aeruginosa CMG 154 make use of 
cypermethrin as the source of carbon (Thatheyus and Selvam 2013). The effective-
ness of Enterobacter asburiae and Pseudomonas stutzeri for degradation of cyper-
methrin at concentration of 500 ppm was predicted (Thatheyus and Selvam 2013).

Lee et al. (2003) studied the capability of six bacterial strains and transformed 
bifenthrin and permethrin by isolating these bacteria from contaminated sediments. 
A degradation of permethrin and bifenthrin in the aqueous phase and reduction in 
their half-life from 700 h to 30–131 h were observed by using Stenotrophomonas 
acidaminiphila. Permethrin isomers can be degraded by using Aeromonas sobria, 
Erwinia carotovora, and Yersinia, and reduction by tenfold in the half-life of cis-
and trans-permethrin was observed. Permethrin, deltamethrin, Fastac, fenvalerate, 
and fluvalinate were also degraded by using Bacillus cereus, Achromobacter spp., 
and Pseudomonas fluorescens. Of all the pyrethroids and deltamethrins, permethrin 
has a half-life of 21–28 days and can be degraded quickly (Maloney et al. 1988). 
The isolation of Serratia plymuthica and Pseudomonas fluorescens from synthetic 
pyrethroids-contaminated (SPs) farmland was noticed to degrade SPs by at least 
50%. Biodegradation is a practical and suitable way for purifying SPs before dis-
posing them either into soil, dip trough, or into the river (Grant et al. 2002).
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8.10	 �Conclusion and Future Prospects

The resistance to change under the influence of radiant energy property of pyre-
throids leads to discovery of the first pyrethroid, permethrin, and consequently this 
increases their use for management of pests. Pyrethroids are the broad-spectrum 
insecticides, that is, represent various compounds that are very toxic to nontarget 
land-dwelling insects and many aquatic organisms. The environmental providence 
and physical properties of pyrethrins and pyrethroids are clearly understood. 
Pyrethroids are sustained in the soil and sediments with a half-life greater than 
30 days, but in contrast to legacy pesticide DDT, their half-lives are considerably 
lower. The sediment-residing invertebrates are mostly influenced by the pyrethroids 
because of their extensive half-lives mainly in urban areas where these insecticides 
are mostly used. Pyrethroids can be immediately biodegraded and are not biomagni-
fied through different levels of the food chain. The research and expansion in the 
discovery of pyrethroids on commercial basis have mostly come to an end since the 
late 1990s, but in spite of this, efforts are going on to bring together isomer combi-
nations of compounds like cypermethrin and cyhalothrin. With the ban on the use of 
fenvalerate and esfenvalerate, there is progress in the development of pyrethroids by 
many manufacturers in Japan which developed metofluthrin for commercial use; 
pyrethroid development appears to be well past its maximum (Matsuo et al. 2005). 
The pseudo-pyrethroids like etofenprox are the key for the continued commercial-
ization of pyrethroids in Europe and the United States that are widely used and 
present lower acute toxicity to aquatic organisms. After 1984, pyrethrins, pyre-
throids, and their synergists that were registered are presently experiencing process 
reviews in the United States to evaluate the efficacy of recent regulatory decisions 
and to consider new data. The registration review is concentrated on the progressive 
neurotoxicity. Pyrethroids are commonly being used for the past 40  years even 
though they are not pest-specific. However, they are target specific to an extensive 
range of pests and have low application amount, low mammalian toxicity, and a 
favorable environmental providence outline. The pyrethrins and pyrethroids will 
keep on being utilized in the future provided their utilization in a suitable way, and 
rules for them should be based on scientific indications.
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