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Preface

In the present scenario nanoscale devices have emerged with the capability to anal-
yse associated plant diseases, nutrient deficiencies or any other ailments that affect 
food security in agroecosystems. It has been envisioned that smart delivery systems 
for agriculture can exhibit benign multifunctional characteristics to avoid habitat- 
imposed stresses for successful targeting. Nanoparticle-mediated smart delivery 
systems can examine the effects of delivery of nutrients or bioactive and/or pesticide 
molecules. It has been investigated that nanoparticles in plants might determine the 
nutritional status of plants and help in suitable curative measures upon induction in 
agroecosystems.

To enhance soil and crop productivity, attempts have been made to make nano- 
fertilizers and their delivery to the crops by deploying nanotechnology. In concomi-
tant with nano-delivery, nano-fertilizer may be defined as nanoparticles that may 
directly help in supplying essential nutrients for plant growth and soil productivity. 
Herein, nanoparticles can absorb on to the clay network, thereby preventing fixation 
through releasing into the soil solution that can be utilized by plants; thus, progres-
sion improves soil health and nutrient use efficiency by crops. Furthermore, fertil-
izer particles can be coated with nanoparticles that make possible the slow and 
steady release of nutrients, thereby reducing loss of nutrients and enhancing its use 
efficiency of agri-crops.

Therefore, regardless of the fact that nanotechnology in agroecosystem is mostly 
speculative at this stage and requires an attention to be continued to have a momen-
tous effect in nanoparticle-mediated delivery systems for agri-inputs to sustenance.

By keeping above views in mind, the present book is designed to explore nano-
technology in agroecosystems with reference to biogenic nanoparticles. Hence, the 
emphasis has given on:

• Occurrence and diversity of biogenic nanoparticles
• Mechanistic approach involved in the synthesis of biogenic nanoparticles
• Synthesis of nanoparticles by employing photoactivation and their fate in soil 

ecosystem
• A general idea on potential applications of nanoparticles in the agricultural 

systems
• Application and biogenic synthesis of gold nanoparticles and characterization
• Impact of biogenic nanoparticles on biotic stress to plants
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• Mechanistic approach involves in biogenic nanoparticles on antimicrobial effects 
and cytotoxicity

• Role of biogenic nanoparticles in plant disease management
• A relevance of biological synthesized nanoparticles on longevity of agricultural 

crops
• A design and synthesis of nanobiosensor for monitoring of pollutants in water, 

soil and plant systems
• An applications of nanotechnology in agriculture with special reference to soil, 

water and plant sciences

In the present book, editors compiled researches in the form of compendium 
with elaborate description related to ‘deployment of nanoparticles in amelioration 
of agriculture’. It will be one more milestone in addition to the published books that 
have been edited by our team to resolve the issues around food security with refer-
ence to biotechnological implication of microbes in agroecosystems.

Chapter 1 discusses exciting examples of selected applications of nanotechnologies 
in farm animals to realize the benefits of emerging nano-tools that promise the 
increase in food production in a sustainable manner.

Chapter 2 emphasizes complete knowledge of the positive and negative impacts of 
nanoparticles and its associated characteristics and highlights the impact of 
nanoparticles on the growth and development of plants.

Chapter 3 describes the use of nanobiotechnology in improving crop and food pro-
cessing and supports the expansion and commercial applications of nanotechnol-
ogy at large scale through public and private sectors.

Chapter 4 stresses that in agriculture, a positive effect on ecology can be made by 
using nano-agrochemicals instead of conventional pesticides.

Chapter 5 elaborately describes a great deal of processes for biogenic nanoparticle 
production schemes suitable for large-scale (industrial-scale) production.

Chapter 6 provides a gist of the traditional insect/pest control strategies and dis-
cusses the potentials of nanotechnology as a new tool for insect control.

Chapter 7 emphasizes that there is an augmenting need to evolve sustainable, reli-
able and eco-friendly procedures to fabricate nanoparticles with broad scope. 
Biogenic nanoparticles (NPs) synthesized via nanobiotechnology-related pro-
cesses have the potential to carry hygienic manufacturing technologies. This lat-
est technology can remarkably decrease the contaminants in the environment and 
danger to humans due to the usage of poisonous solvents and chemicals.

Chapter 8 involves understanding the behaviour of nanoparticles in the soil, influ-
encing soil physicochemical properties and assessing possibility hazards.

Chapter 9 discusses control of plant diseases by using nanoparticles as antimicro-
bial factors that have become highly prevalent as technological progression, 
making their production affordable.

Chapter 10 defines the role of nanoparticles in controlling insect pests.
Chapter 11 emphasizes the application of gold NPs in sustainable agriculture.
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Chapter 12 specially focuses on the uses of biological and non-biological (both 
biogenic) agents on the shelf life of agricultural crops.

Chapter 13 describes various methods of NP synthesis followed by a detailed 
description of the fate of NPs in soil with regard to their impact on the growth of 
plants and microbes in different prospective.

Chapter 14 emphasizes engineered nanoparticle (ENPs) by using gold, silver and 
aluminium to test a possible eco-friendly agent and others on the PGPR.

Chapter 15 defines a precise and on-demand application of nano-pesticides or nano- 
fertilizers that can enhance the productivity and prove protection against several 
pests without harming the environment.

Chapter 16 elaborately discusses that nanomaterials are designed to be utilized in 
the field of personal care items, agribusiness, food, pharmaceuticals and biotech-
nology. It is perceived that nanomaterials may effectively contribute in the analy-
sis, diagnosis and avoidance of diseases such as microbe-based infections or 
carcinoma and its treatment.

Chapter 17 focuses on the various aspects of nanotechnology and nanoinformatics 
in the field of agriculture. This includes different approaches and applications of 
nanotechnology and nanoinformatics especially in the area of agriculture.

Chapter 18 focuses on the aspects of nanotechnology that have revolutionized the 
agriculture field, leading to better environmental management and sustainable 
practices.

Chapter 19 focuses on the applications of nanotechnologies in nutrigenomics par-
ticularly for the prevention or treatment of certain metabolic disorders.

Chapter 20 describes the development of multifunctional nutraceutical nanocarriers 
combining several useful properties in one particle that can boost up the efficacy 
of many therapeutic and diagnostic protocols.

Chapter 21 focuses on the benefits of advances in nanotechnology and probable 
risks involve along with future approaches.

Chapter 22 highlights particularly ignored or missed case of using nanoparticle pro-
ducers  – microorganisms. Authors briefly discuss, as another concept, that 
enhancing anti-phytopathogen potential capacity of soil can negatively be 
affected by NP-synthesizing microorganism that may drastically impair micro-
flora balance and its own biocontrol capacity besides their expected positive 
advantages in purpose of antimicrobial property.

Chapter 23 highlights the use of nanomaterials in the detection of different pesti-
cides even at lower concentrations using various types of sensors. These nano-
structured materials are also able to degrade variety of pesticides to almost 
harmless or less harmful compounds and will provide a pathway of detection and 
degradation of pesticides to keep our Earth clean and green for years to come.

Chapter 24 highlights the use of NPs in food science through nanosensors that are 
developed for smart packaging so as to detect spoilage of food and to release 
nano-antimicrobials as and when required to extend the shelf life, thereby help-
ing keep the food fresh for a longer period. There is a great demand for nano- 
enabled packaging of food, beverage and pharmaceutical products in industries 
due to regularly changing consumption patterns.
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Chapter 25 discusses a thorough summary of the prospective uses of distinct bio-
logical sources for the synthesis of nanoparticles, types, physiochemical proper-
ties and nanoparticle characterizations which exist in multiple forms in 
agriculture.

Chapter 26 describes the role of nanoparticles in developing biosensors and in 
detecting, monitoring and diagnosis of pollutant in environment and 
agriculture.

Chapter 27 especially focuses on synthesis particularly plant-intermediated biosyn-
thesis of metal nanoparticles and their classifications.

 Mansour GhorbanpourArak, Iran
 Prachi BhargavaBarabanki, Uttar Pradesh, India

 Ajit VarmaNoida, Uttar Pradesh, India
 Devendra K. ChoudharyNoida, Uttar Pradesh, India
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1Application of Nanotechnology 
in Agricultural Farm Animals

Naresh L. Selokar, Seema Dua, Dharmendra Kumar, 
Bharti Sharma, and Monika Saini

Abstract
The agricultural farm animal production system is under a massive burden to provide 
adequate food to the rapidly growing human population. The emergence of new 
diseases and climate change has enhanced burdens on the animal production system. 
Nanotechnology, an application of materials at the nano scale, offers opportunities to 
improve animal health and production by providing better therapeutics, diagnostics, 
vaccines and adjuvants, animal feed and additives, and even helping animal repro-
duction. This chapter discusses the exciting examples of the selected application of 
nanotechnology in farm animals to realize the benefits of emerging nanotools that 
promise increase in food production from farm animals in a sustainable manner.

Keywords
Nanotechnology · Agriculture · Farm animals · Food production

1.1  Introduction

Nanotechnology (NT), an application of materials at the ultramolecular level, has 
expanded its uses to agricultural animal health and their food production. NT aims 
to produce materials at the nanoscale size with at least one dimension between 1 

The original version of this chapter was revised. A correction to this chapter can be found at 
https://doi.org/10.1007/978-981-15-2985-6_28
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to 100 nanometers (Roco 2003), in relation to biological structures of different 
sizes (Fig.  1.1). These ultrasmall materials have high surface-area ratio, called 
nanoparticles (NPs). NPs can easily be made from a variety of materials, includ-
ing metals, flowers, leaves, and chemicals (Charitidis et al. 2014). At the ultrasmall 
level, NPs acquire unique physical, chemical and biological properties that pro-
vide new ways to study the structural, cellular, and molecular mechanisms in 
mammalian cells (Scott 2005). There are several areas in the agricultural animal 
production system in which NT can be applied with an aim to improve animal 
health and food production.

For many decades, the domestic animals, such as cattle, goat, sheep, pig, buffalo, 
and poultry have been used as a source of food (milk, meat, and their products) for 
human consumption. It is expected that the human population will be about 9 billion 
by 2050, and the global agricultural production needs to double or triple to provide 
sufficient food to the ever-growing human population (Sekhon 2014). Therefore, we 
need to use modern technologies, including NT, in the agricultural animal produc-
tion system, to boost the productivity of domestic animals. In the last few years, 
there is a growing interest to explore NT in animal health and production. Here, we 
highlight some of the NT applications in agricultural animal production.

1.2  Improvement in Animal Health

Healthy farm animals support high animal productivity, which ensures a regular and 
safe food supply, less use of antibiotics and vaccines, and regular trade of animal 
products. Therefore, good health care and prevention of disease outbreaks can save 
millions of dollars by eliminating the investment of money on disease treatment and 
its eradication. One of the most noticeable examples is an outbreak of the foot and 
mouth disease, a devastating viral disease of cattle, buffalo, sheep, goats, and pigs, 
which costs 11 billion US dollars to the outbreak countries, mainly India and China 
(Knight-Jones and Rushton 2013). Furthermore, animal products (milk, meat, and 
their products, including hide) are not accepted by disease-free importing countries 
like the USA and EU, which also causes heavy loss in animal trade. The NPs are at 
the same scale as disease-causing viruses (nanometer in size) that would open up 

Fig. 1.1 Size of different biological structures in farm animals
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the possibility to develop effective diagnosis and treatment strategies to a particular 
disease (Scott 2005). Hence, NT is considered as an attractive option to improve 
animal health, drug delivery, and veterinary medicine.

1.2.1  Veterinary Diagnostics

The rapid, accurate, and sensitive detection of a disease-causing pathogen is the 
basis for effective treatment and eradication of a disease. Recently, the advance-
ments in NT have revolutionized the veterinary diagnostics. For example, iron 
oxide-based NPs can be used to determine the distribution of a drug in the body 
using magnetic resonance imaging (MRI) (Soenen et  al. 2010). Also, a specific 
drug can be tagged with fluorescent NPs to detect its localization inside the tar-
geted cells (Ajmal et al. 2015). Furthermore, NP-based diagnostic chips are made 
available to quickly analyze a large number of samples (Craighead 2006). NP-based 
diagnostic chips take less time, a small volume of starting material (blood or 
serum), fewer consumables, and give more accurate results compared to classical 
laboratory tests, such as polymerase chain reactions and enzyme-linked immuno-
sorbent assays (Bai et al. 2018). A few examples of NP-based veterinary diagnos-
tics are summarized in Table 1.1.

1.2.2  Veterinary Therapeutics and Vaccine Delivery

Investment in the field of research and development activities of veterinary medi-
cine will create ample access to the best drugs and vaccines to treat diseases. NT has 
opened new avenues in veterinary therapeutics by developing a smart drug delivery 
system that ensures the efficient delivery of drugs to the target tissues (Scott 2005). 
The smart drug delivery system ensures maximum absorption and low irritation at 

Table 1.1 Some innovative applications of NP-based veterinary diagnostics

Animal species Nanoparticle-based diagnostic tool References
Poultry Quantum dot-based 3D-printed immunoassay to detect avian 

influenza (H7N9) virus
Xiao et al. 
(2019)

Pig Nano-polymerase chain reaction assay to detect the epidemic 
porcine diarrhea virus

Wanzhe et al. 
(2015)

Poultry Gold nanoparticle-coated polyvinylidene difluoride 
membrane to detect avian flu antibodies in serum

Emami et al. 
(2012)

Cattle Nanoparticle-based array of sensors (NA-NOSE) to detect 
volatile organic compounds linked to bovine tuberculosis in 
breath

Peled et al. 
(2012)

Domestic and 
wild ruminants

Nanoparticle-based biosensor assay to detect the 
Mycobacterium avium subsp. paratuberculosis (MAP), the 
causative agent of Johne’s disease (JD), in fecal samples

Kumanan 
et al. (2009)

Chicken and 
goat

Quantum dot-based fluoroimmunoassay to detect antibodies 
of chicken Newcastle and goat pox virus in serum

Yuan et al. 
(2009)

1 Application of Nanotechnology in Agricultural Farm Animals
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the target site, and also has maximum therapeutic activity for an adequate duration 
(Sabry et  al. 2018). In recent years, several NPs such as polymeric NPs, carbon 
nanotubes, liposomes, dendrimers, nanoshells, nanopores, and magnetic nanoparti-
cles have been used for targeted delivery of drugs to treat veterinary diseases 
(reviewed by Muktar et al. 2015).

A wide range of antibiotics such as penicillin, amoxicillin, streptomycin, tetracy-
cline, and gentamycin are frequently used drugs in veterinary medicine. In farm 
animals, particularly in poultry and pigs, the antibiotics are not only used to kill 
pathogenic bacteria but also used as growth promoters (Gross 2013). Humans 
exposed to antibiotics through the consumption of antibiotics-treated milk and meat 
products may increase the incidence of antibiotics resistance (Bartlett et al. 2013). 
NT can play an important role in developing effective and nontoxic antimicrobial 
agents to overcome the excessive use of antibiotics in farm animals.

Vaccines, antigenic components of pathogens, are regularly used to protect ani-
mals from the occurrence of a disease state. The vaccine stimulates the body’s 
immune system to produce specific antibodies against a particular pathogen 
(Pulendran and Ahmed 2011). The efficacy of vaccines is highly dependent upon 
antigen type, route of delivery, and vaccine composition. With vaccines, the adju-
vants (immunological agents) are often injected to augment the body’s immune 
response that provides stronger and long-lasting immunity to a particular disease 
(Awate et al. 2013). New vaccine candidates like synthetic peptides and recombi-
nant proteins are sensitive to degradation, and commonly use aluminum-based adju-
vants could not protect these new classes of vaccines from early degradation 
(Underwood and van Eps 2012). NPs can be used to engineer the adjuvants in such 
way that vaccines have longer bioactivity with reduced dose to provoke a specific 
immune response. Various forms of NPs such as liposomes, polystyrene nanobeads, 
and immune-stimulating complexes can be used to engineer the adjuvants 
(Underwood and van Eps 2012). A few examples of NP-based therapeutics in vet-
erinary are summarized in Table 1.2.

1.3  Improvement in Animal Production

Farm animals are reared to produce large quantities of milk, eggs, meat, fiber, and 
hide at the lowest possible cost. Efficient farm production requires good manage-
ment practices that include adequate nutrition and good health, and the adaptation 
of animals to specific production conditions. In the past few decades, the fast- 
growing demand for animal origin food has massively changed the farm animal 
production system, which is supported by the mechanization of agriculture and 
technological developments. Nanotechnologies can also be applied to increase the 
production potential of farm animals. For example, supplementation of NP-coated 
feed, called nanofeed, to promote animal growth and yield, and to fortify milk, eggs, 
and meat products (Konkol and Wojnarowski 2018). At present, NT in animal pro-
duction systems is in its budding stage, there is great potential in the coming years 
that NT will be extensively used to boost farm animal production.

N. L. Selokar et al.
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1.3.1  Nanofeed

In an animal production system, approximate 40-50% of operating costs are due to 
animal feed (Wanapat et al. 2015). The feed industry’s aim is to increase the effi-
ciency of feed and its additives. Nutritional deficiency significantly decreases the 
production potential of animals, and nutrient-deficient animals are more prone to 
disease (Wanapat et al. 2015). The animal feed industry should formulate animal 
feed with NPs with the following aims: (1) improvement of overall feed efficiency, 
(2) increased production levels and quality of animal products (milk, eggs, and 
meat), (3) use of NPs having antioxidant and immune-modulatory properties to 
improve health, (4) reducing the requirement of antibiotics as growth promoters, as 
these may have negative effects on human health, and (5) removing unpleasant 
smells (boar taint) of animals products, particularly in meat of pigs (Hill and Li 
2017). Several studies suggested that nanoform of feed can be used to enhance its 
nutritive value and to promote animal growth (Hill and Li 2017). Some of the exam-
ples of nanofeed additives are summarized in Table 1.3.

1.3.2  Nano-Reproduction

Reproduction is a natural way to increase the population of livestock in which sex 
cells (oocyte and sperm) are united to form an embryo that develops into a new 
generation of animal. Since many decades, humans have been exploiting the best 
genotype and phenotype parent animals to produce next-generation animals that are 

Table 1.2 Examples of NP-engineered therapeutics and vaccines in veterinary medicine

Animal 
species Nanoparticle-based therapeutic and vaccine
Cattle Liposome-based streptomycin delivery for the treatment of brucellosis disease

Intra-nasal delivery of ring-shaped nanoparticles for the treatment of respiratory 
syncytial virus
Transdermal delivery of liposomes-based diclofenac as an anti-inflammatory 
and analgesic drug

Sheep Polystyrene nanobeads to deliver foot and mouth disease vaccine
DNA chitosan nanospheres to deliver Newcastle disease vaccine
Liposome-based staphylococcal mastitis vaccine
Liposome-based bovine leukemia virus vaccine

Horse Liposome-based delivery of diamidine for the treatment of babesiosis disease
Micelle-based delivery of ivermectin for the treatment of Strongylus vulgaris
Water-based nanoparticle adjuvant vaccine against Rhodococcus equi 
pneumonia
Liposome-based delivery of Toxoplasma gondii vaccine

Pig Dendrimer-based delivery of foot and mouth vaccine
Polymeric E. coli fimbriae vaccine

The table is adopted and modified from Underwood and van Eps 2012

1 Application of Nanotechnology in Agricultural Farm Animals
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intended to produce more food (milk and meat) for human consumption. In farm 
animal reproduction, artificial insemination with frozen semen is the most com-
monly used method that assists faster and wider multiplication of elite animal pro-
duction traits.

Recently, NPs have been used to study the physiological interaction between 
sperm and oocyte to understand the physiology of the fertilization process (Vasquez 
et  al. 2016; Feugang et  al. 2015). Furthermore, NP-based magnetic purification 
method of bull semen has demonstrated separation of damaged and defective sperm, 
thereby improving fertilization ability both in vitro and in vivo (Odhiambo et al. 
2014; Durfey et al. 2019). Recently, Falchi et al. 2018 reviewed the potential appli-
cations of NPs as antioxidants and protective agents that are supplemented in semen 
extender to protect sperm during cryopreservation stress. NT can be coupled with 
gamete biology and semen cryopreservation methods to enhance the reproduction 
potential of animals.

1.4  Conclusion

Nanotechnology has great potential to improve agricultural farm animal health and 
production. Existing research studies have clearly demonstrated the practicality of 
NT in accurate diagnostic tools, targeted drug delivery, enhanced vaccine response, 

Table 1.3 Commonly used nanoparticle additives in farm animal feed

Animal species Nanomaterial Application
Sheep, goat and 
poultry

Selenium Stimulation of rumen microbial 
and enzyme activity
Enhancing the semen quality
Enhancing the immune response

Ruminants, pig 
and poultry

Zinc Improving feed conversion ratio 
that promotes growth
Enhancing the immune response

Pig Chromium Anti-diarrheal
Improving carcass quality, 
particularly lean meat production
Enhancing the immune response

Poultry Copper Stimulating the metabolic rate in 
broilers during embryonic 
development
Strengthening immunological 
biocompatibility

Poultry Montmorillonite –composite Reducing aflatoxin toxicity
Farm animals, 
including poultry

Nano-polystyrene with polyethylene 
glycol linkers and mannose targeting 
biomolecules

Binding and removal of food- 
borne pathogens in animal feed

The table is adopted from Sabry et al. 2018
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7

improved feed efficiency, and augmentation of reproduction in farm animals. 
Scientists, engineers, and biologists working in the field of nanotechnology need to 
continue efforts to revolutionize animal health and production, and also require sig-
nificant budgetary allocation in research and development.
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Abstract
Over time, nanotechnology has enabled a wide range of applications in the agri-
cultural field due to the distinctive properties of nanoparticles, including high 
surface area, reactivity, agglomeration, penetration capability, size and structure. 
Nanoparticles have been by far advantageous for plant growth, development and 
protection. Nanoparticles bestow specificity in pesticide delivery, enhanced 
nutrient supply, managing pathogenicity, increasing photosynthetic capacity and 
germination rate. Apart from beneficial impacts on plants, there have been 
instances of toxicity and bioaccumulation of nanoparticles, which led to a few 
setbacks. Thus, it is necessary to have a complete knowledge of the positive and 
negative impacts of nanoparticles and to study all their characteristics in detail. 
This chapter highlights the impact of nanoparticles on the growth and develop-
ment of plants.

Keywords
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Toxicity · Agriculture · Nanotechnology · Metals · Plant growth · Uptake and 
translocation · Carbon nanotubes · Graphene · Fertilizers · Phytotoxicity

2.1  Introduction

“Nanotechnology is a novel, innovative, interdisciplinary scientific approach of 
designing, developing, manipulating and application of materials at nano-scale” 
(Ali, Muhammad, et  al. 2014). “Nano” signifies one-billionth unit, therefore 
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nanotechnology involves substances quantified as billionth of a meter. Ten hydro-
gen atoms placed side by side cover a distance equivalent to a nanometre. Although 
nanotechnology involves the science of minute components, it also encompasses a 
much wider range of disciplines, including expertise from physics, biology, chem-
istry and various other disciplines.

Nanoparticles (NPs) of sizes less than 100 nm belong to an intermediate zone 
between an atom and its bulk components, having the capability to alter a material’s 
physicochemical properties, i.e. exceptional reactivity, sensitivity and conductivity. 
(Mishra and Kumar 2009). Nanotechnology has been widely applied in the agricul-
tural field, as it is quite a challenge to feed the increasing population, beyond 7 bil-
lion, as well as to simultaneously provide adequate nutrients.

Among the discrete molecules and their respective bulk components, there exists 
a transitional zone where nanoparticles lie, with properties that are novel from those 
of its bulk as well as molecular equivalents (Singh et al. 2015). With the develop-
ment of nanotechnology, apart from the classical agricultural methods, scientists 
have tried to make use of the advanced characteristics of nanoparticles to enhance 
the growth and development of plants.

Nanosized components can be engulfed by bacteria and can penetrate plant cells 
(Liu et  al. 2009a, b), and at high levels of dosage can induce phytotoxicity 
(Stampoulis et  al. 2009). Research on nanotechnology-based agrochemicals has 
influenced numerous scientists to ponder over the advantages that nanotechnology 
can bestow upon agricultural crops. Advantages offered by nanotechnology include 
treatment of plants by nanocides, nutrient maintenance through nano-fertilizers and 
prevention of diseases (Moraru Carment 2003; Priester et  al. 2012). In different 
areas, the effect and usage of nanomaterial variants such as carbon nanotubes, poly-
mers, metals and nonmetals, quantum dots, magnetic particles, etc. are being stud-
ied (Rico et al. 2015).

Nanoparticles have the capability to transform the food and agricultural indus-
tries due to their unique characteristics that enhance nutrient adsorption by plants, 
molecular level disease management and pathogen detection. It involves the opera-
tion at a similar level with those of the disease causing particles, which enables the 
instinctive detection and elimination of those particles (Prasad et al. 2014).

Nanoparticles with characteristics such as enhanced reactivity, small surface to 
volume ratio, surface structure, agglomeration, etc. have found application in vari-
ous areas, like cancer therapy, nano-pharmacology, targeted drug delivery, nano- 
medicine and delivery of agrochemicals. These extraordinary characteristics of 
nanoparticles have enabled scientists to study their interaction with plants, both 
in vivo and in vitro.

Nanoparticles are specifically designed and engineered with unique surface and 
chemical properties. A varying class of nanoparticles have been produced, includ-
ing metal oxide nanoparticles, magnetic nanoparticles, gold nanoparticle, mesopo-
rous silica nanoparticle, quantum dots, carbon nanomaterials such as carbon 
nanotubes, fullerenes and graphene (Wang et al. 2016a). Scientists demonstrated 
that carbon nanotubes have the ability to penetrate seed husks, which enables faster 
germination of seeds (Zhang et al. 2015a).
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Nanoparticles are designed such that they can favour usage of optimal concentra-
tions, regulated release, decline in phytotoxicity and targeted delivery. Pesticides 
are loaded into the inner core of the mesoporous silica nanoparticles, leading to 
regulated release as well as protection from photodegradation (Wang et al. 2016a). 
Quantum dots have a diameter from 2 to 10 nm. They are minute semiconductor 
particles that are used for cellular imaging and labelling by the production of 
fluorescence.

Nanoparticles have found important perspective in targeting specific biotic life 
forms through their unique delivery system and are highly used in the medical field. 
A similar principle is applied in plants, specifically in tackling phytopathological 
infections, growth adjuvant and supplementation of nutrients.

Use of nanoparticles is still a fresh and new approach, which needs further study 
and research for proper understanding and implementation of their properties for 
the betterment of food and crop as well as in other fields of science. In this chapter, 
will discuss some of the widely studied effects of nanoparticles on agriculture, 
which specifically focus on plant growth promotion. Nanotechnology is a niche area 
which still needs a thorough understanding, but it is sure to expand its boundaries, 
including agriculture and allied sectors, providing immense benefits.

In food and agricultural fields, nanotechnology has found widespread applica-
tions, but still at a budding stage, and thus they require thorough knowledge and 
guidance so as to indulge in developing “green nanotechnologies” and take into 
account all the necessary precautions in order to minimize the prospective unfavour-
able impacts they can pose to the environment and to human health (Mishra and 
Kumar 2009).

Nanoparticles have gained demand in the agricultural and medical fields due to 
their unique physicochemical properties, including ability to penetrate, larger sur-
face area and chemically active. With the increase in demand they have also become 
potential threats to the environment (Borm et al. 2006; Kreyling et al. 2006; Lam 
et al. 2006; Maynard 2004).

Nano-enabled products have been profoundly used globally due to their immense 
availability, which can be released into the environment in high quantities as engi-
neered nanoparticles usually displaying properties different from their bulk compo-
nents (Geisler-Lee et al. 2012).

Nanoparticles have aggregation tendencies and low solubility in water, which 
limits their access to most living organisms (Maynard et al. 2004; Brant et al. 2005). 
Certain experiments demonstrated penetration of nanoparticles through skin, food 
and water or air into animals and humans (Oberdörster et al. 2006; Jain et al. 2007). 
Nanoparticles can translocate along the food web and can accumulate in higher- 
level consumers, influencing the extent of toxicity on organisms which belong to 
distinct trophic levels (Krysanov et al. 2010).

Metal oxide nanoparticles, i.e. titanium oxide and carbon-based fullerene 
nanoparticles, show microbial toxicity, as well as fullerenes display low mobility in 
soil and aqueous medium (Lecoanet and Wiesner 2004; Brant et  al. 2005). 
Nanoparticle toxicity is not only associated with size but also with their physico-
chemical properties.
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It is presumed that biologically attainable nanoparticles will materialize in high 
quantities in the future and will be higher in organisms at higher trophic levels. 
Accumulation of nanoparticles in organs or tissues leads to increased effects on 
cells and cellular structures. The issue with translocation of nanoparticles within the 
food web is that it is inevitable.

Farmers used conventional chemicals for controlling pests and pathogens, which 
had a drastic impact on the environment as well as on the farmer’s economy, because 
upon application 90% was lost as runoff or into the air (Thul and Sarangi 2015). 
Release of pesticides and insecticides through a nano-scaled delivery system led to 
the application of these chemicals only when the need arises (Gruère et al. 2011).

Toxicity and accumulation of nanoparticles have led to the necessity to search for 
biodegradation pathways for nanoparticles and their impacts on living species, 
including the natural structures and functions as well as artificial biocenoses 
(Krysanov et al. 2010).

At present, the knowledge on the providence of nanoparticles into the environ-
ment is scarce and their bioaccumulation by living beings and their tissues, is also 
sparse rather practically absent and specifically whether they have chronic impact or 
not (Fig. 2.1).

Nanotechnology

Plant Growth & 
Development

Encapsulated 
Nano carriers

Nano-fertilizer

Nanocides

Nanotubes

metal based 
nano-particles

Sustainable 
Agriculture

Quantum dot 
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Aggregation
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Fig. 2.1 Diversification in the application of nanotechnology (Modified from Ditta et al. 2015) 
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2.2  Molecular Mechanism of Nanoparticles in Plant Growth 
and Protection

2.2.1  Mode of Entry and Uptake

Plant transport pathways play a vital role in the entry of nanoparticles into plants as 
well as into the surrounding environment, which can lead to their accumulation. 
Engineered nanoparticles were transferred through protoplasts, intact plants and 
dissected organs (Wang et  al. 2016a). Nanoparticle entry into plant cells largely 
depends on the species of plant and the nanoparticle properties and is obstructed due 
to its cell wall (Singh et al. 2015). Entry through the plant cell wall occurs either 
through engulfing, endosome formation or through sieving mechanism. Entry of 
ENPs occurs either by way of organs and tissues above the ground level, i.e. sto-
mata, hydathodes, cuticles, stigma and trichomes, or by the root tissues, as well as 
through junctions and injuries (Wang et al. 2016a).

A plant cell wall has pores with diameters in the range of 5–20 nm. Usually, 
through the cell wall water molecule as well as solute accretion occurs, this is due 
to the porous polysaccharide fibre matrix of the cell wall (Tripathi et  al. 2017). 
Thus, for efficient entry into the plant cell wall, the size of the nanoparticles should 
be less than the cell wall pore diameter. The efficient passage of these nanoparticles 
through the pores enables them to extend towards the plasma membrane. The pore 
size of the cell wall can even be enlarged upon association with engineered nanopar-
ticles, thereby favouring the uptake of nanoparticles (Nair et al. 2010). Plants grown 
in soil as well as on sand depicted no uptake or minimal uptake of nanoparticles. 
Therefore plant cells are grown on growth medium for the uptake of nanoparticles. 
The low or no uptake of nanoparticles by soil- and sand-grown plants is due to the 
adhesion of metal oxide nanoparticles (Singh et al. 2015). The growth medium var-
ies with different types of nanoparticle uptake.

The ion channels and carrier proteins which are embedded in the membrane also 
lead to the transport of nanoparticles across the membranes in the cell. Nanoparticle 
entry into the plant cells is therefore an active transport process which is regulated 
by various cellular mechanisms, including signal transfer, plasma membrane regu-
lation and recycling (Tripathi et al. 2017). When applied on the surface of leaves, 
the entry of nanoparticles is governed either by the stomatal openings, by the tri-
chomes or by cuticular routes which accumulate and are then transported to the 
varying plant tissues, which is described as a top-down movement.

After penetration into the root’s epidermal cell wall and membrane, the nanopar-
ticles enter the vascular bundles through a series of steps. To achieve the crossing of 
nanoparticles into the cell membrane, it is necessary for the nanoparticles to undergo 
passive integration from the endodermal apoplast (Tripathi et al. 2017). The pene-
tration into the seed coat occurs by uptake through parenchymatous spaces and is 
regulated by the aquaporins present in the seed, which thereby enhances liquid dif-
fusion into the cotyledons (Wang et al. 2016a). Entry of nanoparticles through the 
vascular system or lateral root sites occurs due to incomplete formation or break-
down of Casparian strips, respectively.
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In comparison to plants, uptake of nanoparticles by animal cells occurs by the 
endocytic pathway which includes both clathrin-independent and clathrin- dependent 
pathways. Fluid phase and caveolae endocytosis and phagocytosis constitute the 
independent pathway whereas the synthesis of clathrin-coated forms by the forma-
tion of sheathed assembly on the plasma membrane constitutes the dependent 
pathway.

The uptake of zinc oxide nanoparticles was established by the electron micro-
scopic images, which depicted the damage caused to the epidermal as well as corti-
cal cells due to the uptake of nanoparticles. This even led to an injury on the vascular 
and endodermal cells, resulting in the inhibition of growth of ryegrass.

2.2.2  Nanoparticle-Plant Interactions

Engineered nanoparticles include:

• Carbon nanomaterials – carbon nanotubes (CNTs), single-walled carbon nano-
tubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene and 
fullerenes

• Quantum dots – Cadmium-selenium (CdSe), Cadmium-telerium (CdTe), etc.
• Metal-based nanomaterials – metal oxide, i.e. zinc oxide (ZnO), titanium oxide 

(TiO2), copper oxide (CuO) silicon dioxide (SiO2), etc.; zero valent, i.e. iron (Fe), 
silver (Ag), gold (Au), etc.; and metal salts, i.e. silicates and ceramics

• Nanopolymers – latex, dendrimers, etc.

These particles have exceptional reactivity and surface areas in comparison to 
their bulk equivalents (Service 2003) which is the result of eccentric physical and 
chemical properties. The presence of nanoparticles in the environment and biotic 
surroundings leads to inevitable interactions with the biotic components, thereby 
causing physicochemical alterations, like dissolution, incidental coating by biomol-
ecules and redox reactions (Rico et al. 2015).

Plants exhibit intense interactions with the external environment, thus exposure 
to nanoparticles affects plants strongly. These interactions lead to numerous 
changes, including anatomical and morphological, the alteration depends largely on 
the concentration and nature of nanoparticles.

López-Moreno et al. (2010) showed that roots of soybean when germinated upon 
treating with zinc oxide nanoparticles transformed from +2 to nitrite or acetate, 
whereas when treated with cerium oxide no such transformation occurred.

Dissolution is widely considered for the transformation of metal-based nanoma-
terials, which alters their properties and fate in the plant species. Plant roots excrete 
organic acids, which are necessary for biotransformation of nanoparticles as they 
promotes dissolution. Transformation of nanoparticles takes place outside the roots 
as well as after entering the roots of a plant. Metal nanoparticles with variable 
valences undergo redox reactions in the soil, transforming these particles by their 
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interaction with plant’s biogenic redox agents (Rico et  al. 2015). Nanoparticles 
upon interacting with plant cells release reactive oxygen species (ROS) in large 
amounts due to stress which in turn affects the plant biomolecules. Among nanopar-
ticles, carbon nanotubes specifically induce accumulation of ROS.

2.2.3  Translocation

Research on the uptake of nanoparticles led to the study of their absorption, translo-
cation or transport and accumulation in plants, which is still not very clearly under-
stood. Ongoing research on the transport of nanoparticles suggests that these 
particles have the ability to move across tissues either intra- or extracellular to the 
xylem.

Nanoparticles with small sizes are able to pass through the cell wall pores into 
the cell membrane whereas those larger in size than the pores accumulate outside 
the cell wall, unable to enter. For example, nano-conjugates of titanium oxide aliza-
rin red (30 nm) can traverse through the cell wall and accumulate in the subcellular 
portions of roots and leaves of Arabidopsis plant (Kurepa et al. 2010); on the other 
hand the accumulation of 25 nm titanium oxide on the surface of roots of maize 
altered the hydraulic conductivity and availability of water, thus reducing transpira-
tion rate and affecting development of plants (Asli and Neumann 2009).

Sabo-Attwood et al. (2012) demonstrated that the absorption of Au nanoparticles 
takes place in a size selective pattern in tomato seedlings, among which the 18 nm 
size particles are restricted from entering the pores and thus accumulate on the sur-
face of roots whereas the 3.5 nm Au nanospheres easily traverse into the plant cells.

Zhu et al. (2012) depicted that roots easily take up gold nanoparticles (AuNPs) 
with positive charge whereas the negatively charged ones translocate from roots 
into the stems as well as leaves. The sequence of concentration of Au in the roots 
was AuNPs(+) > AuNPs(0) > AuNPs(−) whereas the reverse sequence was present 
in the shoots. Au concentration in rice roots followed the  above order whereas 
reversed order for shoots, specifying favourable translocation of Au nanoparticles 
with negative charge.

Birbaum et al. (2010) suggested that treating maize plants with 37 nm cerium 
oxide nanoparticles either in the form of aerosols or in suspension form resulted in 
no internalization or translocation. Wang et al. (2012) provided evidence on the 
penetration of CuO nanoparticles into the root system of maize plants by the com-
bination of energy dispersive spectroscopy (EDS) and transmission electron 
microscopy (TEM) of the xylem sap. Engineered nanomaterials upon reaching the 
xylem tissues are translocated towards the aerial segments. Through the experi-
ments by split roots and observation by high-resolution TEM showed that the 
translocation of these nanoparticles can also occur from shoots into the roots by 
phloem, thus reducing nanoparticles from the copper (Cu) (II) to the copper (Cu) 
(I) state (Zhang et al. 2015b).
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2.3  Effect of Nanoparticles

Nanoparticles with the emerging advancement have shown varying beneficial 
effects upon plants. They have been implemented for conversion of waste to energy, 
production of by-products via nano-bioprocessing, usage as nano-fertilizers and 
nano-pesticides for regulated delivery.

These nanoparticles play an important role in plant growth and development, 
which renders them widely used. Different nanoparticles bestow a different effect 
on plants as every particle interacts with plants in a different pattern, including 
alteration in morphology as well as physiology. The chemical composition, reactiv-
ity, size and other properties of these nanoparticles determine its function upon 
interaction with plants, which can be positive or negative (Rico et al. 2015).

Copper, gold, zinc oxide, cerium oxide, titanium oxide and silver nanoparticles 
are some of the widely used and synthesized metal nanoparticles. Apart from these, 
manganese, cobalt-ferric oxide and ferric oxide are also used. Among the engi-
neered nanoparticles, both metal and carbon-based nanoparticles have the ability to 
accumulate ROS, which affects the macromolecules in plants and thus leads to 
stress.

Carbon-based nanoparticles have distinctive chemical, electrical, mechanical 
and thermal characteristics which render them their significant functions (Singh 
et  al. 2015). Single-walled carbon nanotubes are responsible for the transport of 
DNA and other molecules, such as dye, across plant cells as well as from the outer 
surrounding into the plant cells. They are regarded as nanotransporters. On the other 
hand, MWCNTs play a vital role in the enhancement of water uptake with the 
uptake of nutrients, thereby augmenting germination of seeds and growth of plants. 
Studies reveal that carbon nanotubes promote accumulation of ROS and lead to 
peroxidation of lipid molecules in the root tips of seedling and cultures of cells 
(Siddiqui et al. 2015). The rate of germination of seeds is elevated due to the perfo-
ration of nanoparticles into the cell wall, which strengthens uptake of water.

2.3.1  Effect on Photosynthesis

For plant growth, hardly 2–4% of the radiation energy is used. Photosynthesis pro-
vides an easy detection parameter for the stress produced due to the living and non- 
living factors. Nanoparticles disturb the photochemical fluorescence, photosynthetic 
activity and efficiency and the quantum yield, causing oxidative stress to plants.

Govorov and Carmeli (2007) conducted an experiment in which nAg and nAu 
were bound to the chlorophyll of the reaction centre of PSI forming a unique hybrid 
system, leading to two contradictory effects on photosynthetic efficiency, i.e. the 
nanoparticles had plasmon resonance effect, which enhanced the chlorophyll’s light 
absorption efficiency and hence led to a decrease in the photosystem’s quantum 
yield which was due to a tenfold increase in the transfer of energy upon chlorophyll 
enhancement (Siddiqui et al. 2015).
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Scientists observed that there was three times increase in the activity of photo-
synthesis upon supplementing single-walled carbon nanotubes into chloroplasts 
compared to those lacking nanoparticles (Giraldo et  al. 2014). Treating with 
SWCNTs increased the transport of electrons and enhanced the ability of plants to 
recognize signal molecules, such as nitric oxide (Siddiqui et al. 2015). The enhance-
ment of photosynthetic activity of plants by SWCNTs is due to its transport and 
irrevocable concentration within the chloroplast’s lipid layer. The chloroplast- 
SWCNTs complex increases transport rate in leaves in vivo by a process supple-
mented with photo absorption.

Noji et al. (2011) deduced through his experiments that, the activity of reaction 
responsible for the generation of photosynthetic oxygen can be stabilized by the 
formation of a complex between the PSII and the nano-mesoporous silica com-
pound (SBA), thus depicting the transport of electrons from water, due to light- 
mediated reaction, to quinine. This complex is expected to render properties needed 
for the development of artificial photosynthetic system and photo biosensors 
(Siddiqui et al. 2015).

The effect of Au nanoparticles upon fluorescence quenching of chlorophyll a of 
PSII in soybean leaves was analysed. The extracted chlorophyll was blended with 
varying concentrations and sizes of Au nanoparticles and their absorbance and fluo-
rescence spectra at 538 nm and 625–800 nm was noted, respectively. This led to the 
conclusion that with increasing concentration of Au nanoparticles, the fluorescence 
quenching increased with increase in absorbance, whereas at the largest size of Au 
nanoparticles, the absorbance was lowest. Depicting that size of nanoparticles sup-
presses the fluorescence, thus lower the size of Au nanoparticles, higher will be the 
fluorescence quenching. The suppression of fluorescence was due to the high sur-
face area which favours increase in adsorption of chlorophyll and enhancing elec-
tron transfer from chlorophyll to nanoparticles.

Metal nanoparticles, such as nano-anatase titanium oxide refine the rate of pho-
tosynthesis, transpiration rate and water conductivity in plants, upon their exoge-
nous application. The photocatalysing feature of titanium oxide refines the 
absorption and transformation of light as well as encourages assimilation of carbon 
dioxide (Siddiqui et al. 2015). Carbon assimilation is enhanced by the activation of 
rubisco, the most abundant enzyme responsible for the carboxylation reaction 
occurring during the light-mediated photosynthesis pathway, and hence promotes 
plant growth.

The function of nano-anatase largely depends on its high thermal conductivity, 
high surface area and photocatalytic activity. The chloroplast of spinach upon treat-
ment led to enhanced absorption of light by chlorophyll a, oxygen evolution rate, 
quantum yield and transfer of electrons in PSII. However, in Ulmus elongata the 
foliar application of 0.1–0.4% nTiO2-A when exposed to 800 and 
1600 μmol m−2s−1light intensity led to decrease in quantum yield of photosystem II 
(PSII), electron transfer and fluorescence quenching but increase in water loss and 
non-photochemical quenching.

Similarly, the effect on photosynthesis by zinc oxide nanoparticles varied with 
the species of plant, though the concentration and stage of growth were among the 
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other parameters upon which its activity depended. ZnO NPs (24 ± 3 nm) showed 
that after 20 days, there was reduction in photosynthetic activity, chlorophyll con-
centration and stomatal conductivity at 800 mg/kg in corn but no change in the other 
stages at 400 mg/kg (Du et al. 2017).

Among all the photosynthetic pigments, chlorophyll a has more sensitivity 
towards photodegradation and is used as an indicator of toxicity by nanoparticles, in 
comparison to other parameters. The photosynthetic efficiency can be determined 
by the chlorophyll a/b ratio. The ratio determines the availability of nutrients, spe-
cifically N and light to plants. Comparison of nanoparticle-treated plants with that 
of control elaborates that the ratio of chlorophyll in ferric oxide and cobalt ferric 
oxide nanoparticles decreased. These observations were in contrast to chloroplasts 
treated with cerium oxide nanoparticles, which have the ability to eliminate ROS, 
thereby protecting chloroplast and improving photosynthesis. However, these 
nanoparticles alter the stomatal openings and modify the microstructure of chloro-
plast, which adversely effects photosynthesis (Du et al. 2017).

Therefore, it is necessary to have detailed knowledge about the interaction of 
nanoparticles with plants’ photosynthetic system, which will hence determine how 
nanoparticles promote anti-oxidant defence and oxidative stress in plants. It has 
been shown that ions released by the nanoparticles lead to stress generation and 
induce accumulation of ROS.

2.3.2  Effect on Seed Germination

The initial stages of growth and development of plants begins with seed germina-
tion, leading to elongation of roots and emergence of shoot. Depending on the con-
centration and on the plant species, nanoparticles have varying effects on seed 
germination. Metal oxide nanoparticles and carbon-based nanoparticles exhibit 
diversifying effects on seed germination, root elongation and shoot growth. 
Scientists have shown through their experiments that different nanoparticles aug-
ment both positive and negative effects upon different plant species. Upon exposure 
to metal oxide nanoparticles, the effect on seed germination as well as elongation 
can be inhibitory, neutral or promoting.

Among the metal-oxide nanoparticles, TiO2 nanoparticles have the ability to 
enact as photo catalyst, thereby inducing redox reaction which enhances germina-
tion of seeds with the initiation of growth of plumule and radicle in the seedlings of 
canola (Crabtree 1998). TiO2 NPs specifically favour vigour of aged seeds and for-
mation of chlorophyll as well as enhance the activity of rubisco enzyme, which 
promotes photosynthesis and growth of plants (Siddiqui et al. 2015).

The effect of CuO nanoparticles in rice exhibited inhibitory patterns on elonga-
tion and germination of seeds specifically with size greater than 50 nm. This pattern 
was also seen in soybean, chickpea, maize, cucumber and Indian mustard seeds. 
These inhibitory patterns were studied by various scientists, including Da Costa and 
Sharma (2016), Wang et al. (2015), Adhikari et al. (2012).
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Similarly, ZnO nanoparticles at lower concentrations exhibited neutral or pro-
moting effects on seed germination of soybean seeds and inhibitory effects at higher 
concentrations, depicting a dosage-dependent pattern (Stampoulis et  al. 2009; 
Ghodake et al. 2011; Lee et al. 2010; Yang et al. 2015). In a case studied by Helaly 
et al. (2014), supplementing ZnO nanoparticles with MS media stimulated plantlet 
regeneration and somatic embryogenesis, and enhanced the activity of superoxide, 
peroxidase, dismutase and synthesis of proline and catalase, which led to an increase 
in biotic stress tolerance. Wang et al. (2012) showed that CeO2 nanoparticles led to 
no change in the germination of rice and tomato seeds, whereas there was signifi-
cant reduction in the germination of seeds of cucumber and corn (Du et al. 2017).

Ag and Fe nanoparticles with zero valence at varying concentrations inhibit ger-
mination of seeds, which is observed at the incubation process of seeds instead of 
the soaking process. AgNPs had no effect on germination but caused alteration in 
the cell wall’s chemical composition, which confirmed that the impact of nanopar-
ticles was up to cellular and molecular levels. Among metal-based nanoparticles, 
AuNPs have shown no impact on germination of barley seeds, rather they led to 
lower biomass production and stimulating impact on growth. However, a contradic-
tory observation by Savithramma et  al. (2012) and Gopinath et  al. (2014) in 
Boswellia ovalifoliolata and in Gloriosa superb, respectively, claimed that AuNPs 
did improve the germination of seeds.

When silicon oxide nanoparticles (up to 8gL−1) were applied exogenously to 
seedlings, it was observed that they enhanced growth of the seedlings as well as the 
quality, including diameter of root collar, quantity of seedling’s lateral roots, mean 
height and root length. This exogenous application led to improved germination of 
tomato seeds, germination index, fresh and dry weight of seedlings, seed vigour 
index and utilization of nutrients which increases the parameters for germination 
making them available for the seeds thereby maintaining the growth medium’s pH 
and conductivity.

Apart from enhancing germination and quality of seeds, SiO2 nanoparticles also 
stimulated chlorophyll synthesis, which is effective for crop growth and yield 
(Haghighi et  al. 2012; Li et  al. 2012). Under salinity constraints, silicon oxide 
nanoparticles improve accumulation of proline, antioxidant enzymes, free amino 
acids which improve abiotic stress tolerance by plants (Kalteh et al. 2014; Shalaby 
et al. 2016).

Apart from metal oxide nanoparticles, multi-walled carbon nanotubes have been 
found to enhance seed germination. They specifically prompt the uptake efficiency 
of macronutrients especially Ca and Fe and water, which will in turn enhance the 
growth and development of plants. Like other nanoparticles, even MWCNTs have 
the ability to penetrate the seed coat, which triggers the germination of barley, corn 
and soybean seeds when added to a sterilized agar medium. This penetration was 
due to the regulatory effects of MWCNTs on the expression of genes encoding the 
proteins of the water channel.

Khodakovskaya et al. (2012) showed that upon upregulating the marker genes 
responsible for formation of cell wall (NtLRX1), cell division (CycB) and transport 
of water (aquaporin, NNtPIP1), they accelerated the tobacco cell growth in culture. 
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This proved that MWCNTs play a vital role as regulators of the growth and germi-
nation of seeds (Ditta and Arshad 2016). MWCNTs upon primary uptake and aggre-
gation in roots, can improve the activity of peroxidase and dehydrogenase enzymes, 
which stimulate the growth of roots and shoots. Followed by accumulation, these 
MWCNTs translocate from the roots towards the leaves, which induces expression 
of genes (Smirnova et al. 2012).

Similarly, Graphene accelerates germination of seeds and specifically decreases 
the time duration of germination. The rate of germination of seeds treated with gra-
phene showed exceptional increase for the first few days as compared to untreated 
seeds (Zhang et al. 2015a).

2.3.3  Root and Shoot Growth

Nanoparticles not only affect photosynthesis or seed germination, they also affect 
root and shoot growth. They have the ability to enhance or inhibit the root and shoot 
length. Different nanoparticles have differing impacts on root and shoot growth, 
including those discussed so far.

Roots of Vigna radiata and Cicer arietinum seedlings, upon absorbing zinc oxide 
nanoparticles, boosted the length of roots and shoots and their biomass as well 
(Mahajan et al. 2011). Gruyer et al. (2013) found that depending on the species of 
plant, Ag nanoparticles can induce and inhibit the elongation of roots. In case of 
barley, the length of roots increased whereas in lettuce it was inhibited. The enhance-
ment of root growth in Crocus sativus occurs due to blockage of ethylene signalling. 
As compared to AgNO3, AgNPs increased the length of roots in maize, barley and 
cabbage (Siddiqui et al. 2015).

Apart from the plant species, the morphology of nanoparticles also plays a vital 
role in root growth. Syu et al. (2014) demonstrated the effect on root growth and the 
physiological changes in Arabidopsis seedlings when subjected to Ag nanoparticles 
with three different morphologies, among which the decahedral morphology exhib-
ited the highest level of promotion of root growth, whereas there was no effect on 
root growth in the case of spherical one, rather stimulated accumulation of anthocy-
anin at high levels. Ag nanoparticles also inhibited elongation of root by activating 
aminocyclopropane-1-carboxylic acid (ACC) in Arabidopsis seedlings and lowered 
the expression of ACC oxidase 2 as well as ACC oxidase 7, implicating that percep-
tion and synthesis of ethylene was inhibited by Ag nanoparticles (Siddiqui 
et al. 2015).

Metal-based nano-particles including silicon, palladium, high levels of copper, 
low levels of gold and mixture of gold and copper led to a positive impact on seed-
lings growth and ratio of shoot to root, while cerium oxide nanoparticles effected 
only root elongation of lettuce at 2000 mg/L concentration. Seeds of parsley when 
treated with nano-anatase had stimulated root and shoot length, germination and 
chlorophyll content of seeds. In pumpkin, elongation of roots occurs when exposed 
to iron oxide nanoparticles.
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ZnO nanoparticles promote elongation of roots in soybean. In Cyamopsis 
tetragonoloba, the biomass of plant, root and shoot length, synthesis of protein and 
chlorophyll and other parameters of growth improved on exposure with ZnO 
nanoparticles (Singh et  al. 2015). In radish and rape plant, the growth of roots 
decreased upon incubation in a suspension of Zn nanoparticles. However, this kind 
of inhibition was not seen in suspensions of ZnO nanoparticles because of seed 
coat’s selective permeability.

In a range of plants, carrot, cucumber, cabbage and corn growth declined as pure 
alumina nanoparticles (13 nm) reduced the elongation of roots without causing any 
modifications. In the presence of Cu nanoparticles, seed germination in lettuce led 
to an increase in the ratio of shoot to root in comparison to plants in the absence of 
nanoparticles (Nair et al. 2010).

Supplementation of nutrient medium having protein in which infusorium 
Tetrahymena pyriformis was cultured with nanotubes, it had unexpected growth 
simulation and increased nanotube concentration (Zhu et al. 2006). This unexpected 
simulation was presumed to be due the binding between protein and nanotube sup-
plements, thus increasing protein penetration into cells and enhancing growth 
(Krysanov et al. 2010).

Carbon-based nanoparticles, like carbon nanotubes and graphene, have also 
shown varying impact on roots and shoots of plants. In onion and cucumber, elonga-
tion of roots was induced by carbon nanotubes, as well as formation of nanotube 
sheets on the surface of roots of cucumber upon interaction with fCNTs and CNTs. 
But these nanotubes were unable to enter the roots. These nanotubes had no effect 
on cabbage and carrot plants. Elongation of roots was inhibited by fCNTs in lettuce 
and by CNTs in tomato, while tomato being highly sensitive to CNTs. Scientists 
demonstrated that at concentrations of 0.5, 0.9 and 0.16 gL−1, SWCNTs enhanced 
the growth of roots in onion and cucumber seeds.

Among, carbon-based nanoparticles, graphene showed exceptional effects on 
seeds. In an experiment on tomato seedlings exposed to graphene, it was observed 
that on the 19th day, the seedlings exposed to graphene had stems up to 17% longer 
compared to the control seedlings and longer length roots of up to 12.5% compared 
to control (Zhang et al. 2015a).

2.3.4  Effect on Nutrient Delivery

In agriculture, the requirement for nutrients is fulfilled by the use of fertilizers as the 
soil lacks most of the macro- and micronutrients. Almost 35–40% of the overall 
productivity of crops is dependent on fertilizers and most fertilizers directly affect 
the growth of plants. At present, the nutrient utilization efficiency is quiet low, as 
approx. 50–70% of nitrogen provided through conventional fertilizers is lost. In the 
continually increasing population, the demand for food is increasing, which 
increases the need for macronutrients by crops.

To decrease the loss of nutrients, new systems were exploited for the delivery of 
nutrients which involved porous nanoscale plant parts that led to the reduction in 
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nitrogen loss. Upon encapsulating fertilizers into nanoparticles the uptake of nutri-
ents can be increased. Use of nano-fertilizers and nano-composites instead of the 
conventional fertilizers is an exquisite breakthrough in science as these have a slow 
nutrient release rate, which continues throughout the growth of crops, enabling the 
crops to utilize nutrients without wasting them and prevents water pollution (Singh 
et al. 2015).

Nano-fertilizers are composed of nanosized macronutrients such as N, P, K, Ca, 
Mg and S, which are needed in high demand by crops or to supplement the activities 
of chemical fertilizers. N is the chief nutrient for the growth of all plants, which is 
released slowly through urea-coated zeolite chips. Similarly, in the soft wood cavi-
ties of Gliricidia sepium nanoparticles of hydroxyapatite, a derivative of urea was 
encapsulated and observed for the slow and feasible release of nitrogen. Zeolites 
have a crystal structure with honeycomb-like layers and occur as natural mineral 
groups, supplying nutrients slowly on demand (Manjunatha et al. 2016).

Fertilizers are encapsulated within nanoparticles through three ways (Naderi and 
Danesh-Shahraki 2013).

 1. Encapsulation of nutrients within nanoporous components.
 2. Thin coating of polymer film.
 3. Delivering nanoscale dimensions in the form of particles or emulsifiers.

Phosphorus is one of the essential components in most metabolites and is 
involved in almost all the metabolic processes, which is supplied through conven-
tional fertilizers. Crops take up only 20% of the available phosphorus while the rest 
80% accumulates in soil and water bodies due to runoff leading to eutrophication. 
Use of nanotechnology increases the efficiency of phosphorus utilization and elimi-
nates environmental menace.

In greenhouse conditions, soybean (Glycine max) showed 33% increase in the 
rate of growth and 20% yield of seeds in comparison to chemical phosphatic fertil-
izers due to continuous Ca and P supply (Singh et al. 2015). Upon foliar application 
of nano-fertilizers, there was prominent increase in the yield of crops (Tarafdar et al. 
2012a, b). Yield of 80 kg ha−1 of cluster bean and pearl millet was obtained through 
foliar application of 640 mg ha−1 (40 ppm concentration) nanophosphorus under an 
arid environment (Manjunatha et al. 2016).

Compared to chemical P fertilizers, administration of nanoparticles elevated the 
rate of growth and germination of seeds by 33% and 20%, respectively, indicating 
that soybean roots absorbed hydroxyapatite nanoparticles as an implicit P source. 
Nano- and sub-nano-composites control the release of nutrients from the fertilizer 
capsule (Singh et al. 2015).

The nutrient utilization efficiency (NUE) increases up to three times as well as 
provides ability to tolerate stress by the use of nano-fertilizers. Combining nano- 
fertilizers with nano-devices releases N and P fertilizer and the uptake by plants in 
a synchronized manner, thereby eliminating the undesirable loss of nutrients and 
preventing interaction with soil, air, microorganisms and water (Manjunatha et al. 
2016). With respect to nutrient utilization, scientists demonstrated that 
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nano-composites containing macronutrients, micronutrients, amino acids and man-
nose upon application influenced uptake and utilization (Ali et al. 2014). Iron che-
lated nano-fertilizers showed increased photosynthesis, adsorption and surface area 
expansion in leaves (Singh et al. 2015).

2.3.5  Effect on Rhizospheric Environment

Soil is an omnipresent habitat for a wide range of microbes interacting with the 
biotic components, specifically rhizosphere, and with each other. At the rhizospheric 
site, a complex association between root and associated microbes occurs with a high 
diversity of microbes. Microbes present in soil are involved in the productivity of 
crops, functions of the ecosystem and maintenance of soil health (Mishra and 
Kumar 2009).

Effective molecular techniques and certain biochemical processes were devel-
oped by microbes far before detected by plants to detoxify, efflux and accumulate 
metal ions. Microbes have the ability of volatilizing metal ions in order to eliminate 
acute toxicity (De Souza et al. 2000).

Rhizobacteria exhibiting propitious effects on growth of plants are termed as 
plant-growth-promoting rhizobacteria (PGPR). PGPR are soil-borne, free-living 
bacteria isolated from the rhizosphere, and upon application to seeds or crops 
enhance plant growth. PGPRs are involved in controlling plant pathogens, nutri-
ent cycle, growth of seedlings and many other ecosystem functions. PGPR are 
associated with asymbiotic fixation of nitrogen, production of phytohormones, 
i.e. IAA  (Indole-3-Acetic Acid), gibberellins, cytokinins, phosphate solubiliza-
tion and production of siderophores, which help in the growth of plants (Mishra 
and Kumar 2009).

Bacterial taxa are altered in a dose-dependent manner in which some taxa 
increase in proportion while others decrease, resulting in reduction in diversity. The 
application of nanoparticles directly on land or through treated biosolids with 
mobile nanoparticles interacts with soil microbes. Microbes can absorb and accu-
mulate nanomaterials effectively and initiate mobilization through food chain and 
altering taxa with diverse populations, i.e. bacteria, plants, fishes, within the food 
web (Holden et al. 2013). Soil bacteria and fungi help plants to take up nutrients 
easily from the soil (Thul and Sarangi 2015).

Uptake of cerium oxide nanoparticles into the roots and nodules led to the elimi-
nation of nitrogen fixation and impairing growth of soybean. Zinc oxide, titanium 
dioxide and silicon dioxide nanoparticles relay toxic impact upon bacteria, which 
intensifies in the presence of light (Thul and Sarangi 2015).

Fortner et al. (2005) demonstrated the inhibitory effect of C60 fullerene aggre-
gates on Escherichia coli (gram negative) and Bacillus subtilis (gram positive) 
which were grown on rich and minimal media and under both aerobic and anaerobic 
conditions, respectively. It was observed that at concentrations above 0.4  mg/L, 
complete inhibition of bacterial growth occurred in both the cultures which were 
subjected to both the absence and presence of oxygen and light conditions, while at 
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concentrations up to 2.5 mg/L it was observed that no inhibition occurred in rich 
media, which can be because of precipitation of C60 or by protein coating in the 
media (Mishra and Kumar 2009).

Nyberg et al. (2008) depicted that there was no effect of C60 fullerene nanopar-
ticles on anaerobic microbes. Fullerenes inhibit growth of bacteria mostly found in 
soil and water, which can be due to the antioxidant property of fullerenes leading to 
generation of ROS which disrupts membrane lipids and other biomolecules specifi-
cally DNA. They adsorb vitamins, minerals and trace elements found in soil which 
limit the growth of bacteria indirectly, ultimately leading to adverse impacts of 
nanoparticles on the environment.

R. metallidurans cells grown in medium containing AuCl4− (50 mM) showed 
toxicity to gold as 90% of the cells died after 4 h however, increased after 72 h of 
inoculation, depicting that R. metallidurans possesses toxicity resistance to AuCl4− 
and can adapt to high concentrations of gold. Initially precipitation of gold was 
significant by R. metallidurans but after incubation of 8  h, 3  mM gold was 
precipitated.

Silver nanoparticles have size in the range of 1–50 nm, the surface area of such 
nanoparticles is larger as compared to their volume. The large surface area provides 
an increase in reactivity and toxicity towards various microorganisms and bacteria. 
In some cases, the usage of silver nanoparticles leads to antibiotic resistance amid 
toxic or lethal bacteria. Various ecosystem processes controlled by bacterial species 
are endangered due to the use of silver nanoparticles, as they act as a strong bacte-
ricide (Elechiguerra et al. 2005).

Antibacterial activity towards Pseudomonas aeruginosa, Salmonella paratyphi, 
Shigella strains and Klebsiella pneumoniae PGPs (Plant Growth Promoters) was 
experimented using copper oxide nanoparticles (80–160  nm) (Mahapatra et  al. 
2008). Apart from this, it was interesting to find that copper/copper oxide nanopar-
ticles were synthesized by Serratia, a gram-negative bacterium which dies in the 
process (Mishra and Kumar 2009).

It is presumed that iron- and copper-based nanoparticles produce free radicals by 
reacting with peroxides found in the environment. These radicals are known to be 
highly toxic to microorganisms. ZnO and magnesium oxide nanoparticles are potent 
microbe killers and act as food preservative as well (Mishra and Kumar 2009).

Upon evaluation of the impact of various nanoparticles, including fullerenes, 
aluminium, silver, gold, etc. on PGPR, it was suggested that nanoparticles effec-
tively degraded phytostimulatory bacteria found in soil and also caused ecotoxicity 
(Table 2.1).

2.3.6  Toxicity

Application of gentle nanoparticles has been commercially approved by the Food 
and Drug Administration (FDA) but accumulation of nanoparticles like heavy metal 
nanoparticles, nanopesticides, etc. can lead to mild as well as severe nanotoxicity, 
which is not rationalized with respect to its bulk counterparts (Dubey et al. 2018).
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Nanoparticles, upon direct application can have disastrous impact, whereas upon 
diffusing into the apoplectic intercellular space, results in membrane adsorption and 
incorporation (Nowack and Bucheli 2007). Transport of compounds with negative 
charge occurs due to a negatively charged plant cell surface. Transfer into apoplast 
is interfered because of the Casparian strips, which act as a barrier to the flow, thus 
favouring transport into xylem symplastically (Thul and Sarangi 2015).

The production and usage of nanoparticles is increasing, leading to increase in 
congregation into the environment. Toxicity and environmental harm due to 
nanoparticles, including both direct and indirect exposures, is an ongoing debate 
(Brayner 2008; Panda et al. 2011; Dubey et al. 2018).

Table 2.1 Impact of various nanoparticles on different plant species (Siddiqui et al. 2015; Singh 
et al. 2015; Manjunatha et al. 2016) 

S.No Nanoparticles Plant species
Optimal 
concentration Impact

1 Silver Boswelia 
ovalifoliolata

10–30 μg/ml Enhancement in seed 
germination and growth

2 Gold Cucmis sativus, 
Lactuca sativa

62 μg/ml Germination index 
elevates considerably

3 Selenium Nicotinia tabacum 0.1 mg/gm Initiation of callus and 
micro-shoot formation

4 Aluminium Raphanus 
raphanistrum, 
Brassica napus

2 mg/ml Ameliorated root growth

5 Alumina Lemna minor 0.3 mg/ml Elongation of root length
6 Titanium oxide Lycopersicum 

esculantum
0.05–0.2 mg/ml Overall rate of 

photosynthesis and 
conductivity of water 
increased

Triticum aestivum 1 mg/ml Rise in amount of 
chlorophyll

7 Ferrous oxide Glycine max 0.5–0.75 mg/ml Quality and yield 
refinement

8 Cobalt (II,III) 
oxide

Raphanus sativus 5 mg/ml Enhanced growth of root

9 Zinc oxide Gycine max 0.5 mg/ml Enhanced root growth
Arachis hypogeal 1 mg/ml Elevated shoot and root 

growth and increased yield
Cicer arietinum L. 0.15 mg/ml Considerable increase in 

shoot and dry weight
10 Multi-walled 

carbon nanotubes

Lycopersicum 
esculantum

50 μg/ml Increase in flower number 
and boosted plant height200 μg/ml

11 Carbon nanotubes Lycopersicum 
esculantum

40 μg/ml Improvement in seedling 
germination and growth

12 Silicon dioxide Arabidopsis thaliana 0.4 mg/ml Elevation in root length
2 mg/ml and 
4 mg/ml

Reduction in root length
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2.3.6.1  Pathogen Suppression
Crop improvement and conservation was mainly achieved through pesticide appli-
cation, plant breeding and maintaining regular sanitation. The yield and quality of 
crops decline due to pathogens, thus there was high usage of the traditional crop 
improvement techniques. The traditional techniques were expensive as well as led 
to increase in resistance with time. Scientists found that the use of nanoparticles not 
only led to preservation of crop quality but also enhanced the productivity of crops 
(Emamifar et al. 2010; Bouwmeester et al. 2009).

Toxicity cognate with nanoparticles was utilized to tackle microbial pathogenic-
ity in plants. Suppression of pathogens due to the antimicrobial properties associ-
ated with nanoparticles has shown to increase product quality and yield.

Antimicrobial function of nanoparticles occurs through five general mecha-
nisms. specifically of metal nanoparticles (Lemire et al. 2013; Zeng et al. 2007):

 1. Alteration of membrane protein function and permeability due to liberation of 
toxic ions

 2. Impairment in uptake of nutrients and transport system in membranes
 3. Rise in genotoxicity and cell death due to the interaction of toxic ions with DNA
 4. Oxidative stress and damage of cellular components as well as DNA due to the 

production of reactive oxygen species (ROS)
 5. Interference in metabolic pathways, which alters energy generation, membrane 

properties and protein oxidation

The antimicrobial properties of nanoparticles are presumed to aid unique and 
improved antimicrobial actions which are dosage and temperature dependent. 
Macromolecule oxidation or microbial membrane interaction of nanoparticles exert 
antimicrobial functions, which either damage or alter the permeability of mem-
branes. Upon entry into bacterial cell, nanoparticles produce reactive oxygen spe-
cies (ROS), which oxidize macromolecules, hampering important processes of cell 
leading to cell apoptosis (Musee et al. 2011). Nanoparticles such as silver, titanium 
oxide, fullerene C60 and single-walled carbon nanotubes particularly depict antimi-
crobial functions on bacterial monocultures (Morones et al. 2005; Lyon et al. 2006).

Nanoparticle toxicity of Au, Ag, Fe and fullerene C60 towards bacterial patho-
gens including E. coli, B. subtilis and A. tumefaciens was evaluated, among which 
Ag nanoparticles exhibited vigorous bactericidal activity upon every tested strain 
while fullerenes also showed inhibitory action on growth of all the strains. Among 
all the pathogenic microbes, fungi has been shown to cause highly detrimental 
infections and diseases in plants. Zn, Si, Ti and Cu nanoparticles showed strong 
antifungal properties and it was seen that the growth of fungal pathogen A. niger 
was inhibited by ZnO and zinc titanate (ZnTiO3) nanoparticles (Ruffolo et al. 2010). 
A comparative study of the antifungal impact of sulphur nanoparticles with their 
bulk counterpart against A. niger showed increase in growth inhibition due to sul-
phur nanoparticles (Choudhury et al. 2010).

Si nanoparticles organize themselves as biomineralized silicon dioxide, which 
imparts fungal resistance (Wang et al. 2001). Two rice varieties, the resistant Nongda 
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18 and the susceptible Mongolian, were tested for inhibitory effects when treated 
with and without Si nanoparticles showed inhibition of growth of fungal pathogen 
M. grisea while there was no effect on the control ones (Dubey et al. 2018).

Composition of Ag-Si nanoparticle as an effective alternative for expensive fun-
gicides was sought to be environment friendly, feasible as well as advantageous to 
humans and offered resistance from pathogens, including Pythium spp., Blumeria 
spp., Colletotrichum spp., Sphaerotheca spp., Botrytis spp., Magnaporthe spp., 
Rhizoctonia spp. and Phytophthora spp. (O’Neill et al. 2003; Shankar et al. 2003; 
Yau et al. 2004).

2.3.6.2  Regulated Delivery of Pesticides
Application of agrochemicals on crops is usually done through suspensions or 
sprays. These agrochemicals are mostly leached or degraded by either microbes or 
by photolytic or hydrolytic mechanism, causing loss of chemicals as well as pollu-
tion of soil and ground water. In order to eliminate this problem, designing of nano- 
encapsulated agrochemicals was highly important as they have the necessary 
characteristics, including high effectiveness, stability and solubility, on demand 
release, target-specific activity and minimal toxicity (Boehm et al. 2003; Green and 
Beestman 2007; Thul and Sarangi 2015).

Silica nanoparticles with hydrophobic surface modification were used for con-
trolling various agricultural pests (Rahman et  al. 2009) while mesoporous silica 
nanoparticles with surface functions specifically manipulated the expression of 
genes at the cellular level through delivery of DNA and regulatory proteins in a 
controlled manner (Torney et al. 2007).

It was observed by Kaunisto et al. (2013) that using a polymer matrix, which has 
swelling and dissolution properties, influenced transport pathways, thereby altering 
the release conditions. The polymer matrix were prepared from polyethylene glycol 
or polyvinylpyrrolidone nanospheres. Liposome nanopolymers as regulated deliv-
ery units for monitored insecticide release were first prepared and used by Bang 
et al. (2009). Moreover, the haphazard use of pesticide increased the bioaccumula-
tion and resistance in pathogens and pests with reduction in biodiversity of soil, 
leading to declining nitrogen fixation and decline in pollinators with diminishing 
bird habitats (Ghormade et al. 2011; Thul and Sarangi 2015).

Varying compositions of insecticides based on polyethylene glycol led to sys-
temic release at rates lower than the commercially produced ones with imidaclo-
prid, thiram and carbofuran (Adak et al. 2012; Pankaj et al. 2012; Kaushik et al. 
2013). In insects, blockage of neurotransmission through avermectin, a pesticide 
which inhibits chloride ion channel, having 6 h half-life upon exposure to ultra-
violet rays gets inactivated in the field, which can be avoided by the controlled 
release up to 30 days due to encapsulation of avermectin by NP carriers (Thul and 
Sarangi 2015).

Nanocrystals of polylactic acid and cellulose were organized as a network of 
nanofibers to which thiamethoxam at a concentration of 50% was added, resulting 
in the decline of whitefly within 9 days monitoring in a glass house experiment 
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(Xiang et  al. 2013). Nano-formulations associated with active compounds were 
observed effective compared to the commercial compounds for use in agriculture 
(Thul and Sarangi 2015).

2.3.6.3  Physiological and Biochemical Changes in Plants
Generation of reactive oxygen species due to the application of nanoparticles leads 
to the peroxidation of lipid molecules (Cabiscol et  al. 2000), which remarkably 
impacts the biochemical as well as molecular properties of the membrane, including 
permeability, fluidity, osmotic stress susceptibility and loss in uptake of nutrients. 
Osmotic stress was identified due to soil and water, which activates an array of 
metabolic functions, in turn alleviating metal stressors (Chinnusamy et  al. 2004; 
Thul and Sarangi 2015) (Table 2.2).

2.3.7  Accumulation of Nanoparticles

Nanoparticles have been found to accumulate in plants and the surrounding envi-
ronment, as plants bear large size, higher leaf area and are immobile in nature, 
rendering them highly susceptible to exposure from varied nanoparticles present in 
the environment (Dietz and Herth 2011).

Table 2.2 Toxicity caused by nanoparticles on diverse microbes (Thul and Sarangi 2015; Ditta 
et al. 2015) 

S.No Nanoparticles Microbial species Toxicity
1 Silver Escherichia coli Bactericidal activity 

inhibits growth of bacteriaStaphylococcus aureus
Salmonella typhimurium

2 Ferrous oxide Trifolium repens Decrease in biomass of 
mycorrhizal clover

3 Zinc oxide Rhizobiales, Bradyrhizobium. Reduction in bacterial 
communities

Pseudomonas putida Hinders growth of bacteria
Bacillus subtilis Synthesis of ROS causes 

mild toxicity
4 Aluminium oxide Bacillus cereus, Pseudomonas 

stutzeri
Response to transcription 
by microbes decline

5 Titanium dioxide Bradyrhizobiaceae Bacterial community 
diminishes

Escherichia coli ROS production leads to 
amiable toxicity

6 Cerium oxide Rhizobium, Azorhizobium Decline in nitrogen 
fixation ability

7 Silicon dioxide Escherichia coli ROS production leads to 
toxicity

8 Single-walled carbon 
nanotubes

Rhizobium leguminosarum Alters the cellular 
morphology of bacteria
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The initiation of nanoparticle mobilization within the food chain due to the 
adsorption and accumulation of nanoparticles by soil microbes upon direct applica-
tion onto land or biosolids having mobile nanoparticles can lead to alteration in the 
community’s food web and multiple populations, including plant, microbes and 
fishes (Thul and Sarangi 2015).

The size of nanoparticles contributes to the contamination of the surrounding 
environment, depicting distinctive physicochemical characteristics, such as high 
surface area, energy and surface confinement, resulting in alteration in environmen-
tal behaviour and increasing toxicity drastically, compared to their bulk compo-
nents. The surface properties are the main reason for toxicity of ENPs (Engineered 
Nano-Particles), which can be inhibited using surface functioning (Geisler-Lee 
et al. 2012).

Environmental conditions alter the surface coating of nanomaterials, which can 
amend or simulate toxicity in microbes (Suresh et al. 2013). Due to high demand for 
nanoparticle-derived consumer goods, soil and water are highly potent for contami-
nation (Thul and Sarangi 2015).

2.3.7.1  In Plants
Accumulation in plants occurs mainly through the roots harbouring most of the 
nanoparticles they are exposed to and cause toxicity. In terrestrial plants, most of the 
soil is exposed to nanoparticles, leading to leaching of nanoparticles, release into sub-
surface, contamination of land due to biosolid applications and discharge into waste-
waters (Pokhrel and Dubey 2013; Hai et al. 2013). Therefore plants can effectively 
decide the fate of nanoparticles and their environmental transport by aggregating them 
into their biomass (Navarro et al. 2008; Ma et al. 2010; Anjum et al. 2013).

The final consumers of products produced by plants in the ecosystem are humans 
and animals. Metal nanoparticles like AgNPs upon accumulation would be trans-
ported into humans and animals through plant products (Cheng et al. 2011; Kim 
et al. 2011; Yin et al. 2011). AgNPs-treated Lemna paucicostata, an aquatic plant, 
and Loliummultiflorum, common grass seedlings, led to toxicity whether they were 
placed in a petri plate or in an aquatic environment (Geisler-Lee et al. 2012).

The problem of concern is the transport of nanoparticles into the food chain, 
which happens through consumption of edible plants. Using synchrotron X-ray 
fluorescence (μ-XRF) and X-ray absorption near edge structure (μ-XANES) analy-
sis of Cucumis sativus, a garden vegetable, was conducted, which demonstrated 
titanium dioxide nanoparticle translocation from roots to the fruit without biotrans-
formation (Servin et al. 2013; Thul and Sarangi 2015).

It is difficult to completely explain the phytotoxicity caused due to AgNPs just 
by the release of Ag ions. Plants subjected to Ag NP and silver nitrate (AgNO3) 
suspension indicated that higher accumulation of silver occurred in AgNP suspen-
sions compared to AgNO3 due to uptake of AgNP by plants. In the case of Brassica 
juncea, there was no accumulation of Ag when exposed to AgNP.

Ultra-small anatase TiO2 nanoparticles upon entering plant cells get accumulated 
in the sub-cellular sections, including vacuoles and root nuclei, leading to reorienta-
tion and exclusion of microtubules, which thereby inhibit elongation of roots in 
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Arabidopsis (Kurepa et  al. 2010; Wang et  al. 2011). Similarly, effect of ZnO 
nanoparticles was also observed in Arabidopsis, which showed reduced accumula-
tion of biomass in shoots and roots and decrease in chlorophyll content instead of 
carotenoid content (Wang et al. 2016b).

Through μ-XRF imaging, it was established that Ce and Zn traverse between tis-
sues with water flow during transpiration, which led to their bioaccumulation (Zhao 
et al. 2013; Thul and Sarangi 2015).

Hu et al. (2014) suggested that upon exposure to ZnO nanoparticles upto 7 days, 
their accumulation and dissipation led to aggregation of zinc in leaves and roots of 
Salvinia natans. Whereas Zhai et al. (2014) demonstrated that in the cytoplasm, cel-
lular organelles, root cells and leaf cells, there was accumulation of Au nanoparti-
cles, which was confirmed by transmission electron microscopy and measured by 
inductively coupled plasma mass spectrometry (ICP-MS) (Thul and Sarangi 2015).

2.3.7.2  In Soil and Water Bodies
Aquatic invertebrates, including copepods (Amphiascus tenuiremis), amoebae 
(Entamoeba histolytica), cladocerans (Daphnia magna), infusoria (Tetrahymena 
pyriformis and Stylonychia mytilus), absorb carbon nanoparticles from food, but it 
is still unspecified if these nanoparticles penetrate internal organs (Oberdörster 
et al. 2006; Templeton et al. 2006; Zhu et al. 2006, 2009; Elías et al. 2007; Roberts 
et al. 2007).

It was experimentally observed that the existence of nanoparticles within aquatic 
organisms leads to reduced fertility, abnormalities in behaviour, physiological alter-
ations and increased rate of mortality (Lovern and Klaper 2006; Templeton et al. 
2006; Krysanov et al. 2010).

The penetration ability of carbon nanoparticles into aquatic organisms depends 
upon their structure and modification. In the embryos of zebrafish (Danio rerio), the 
unmodified C60 fullerenes penetrated through chorion, whereas hydroxylated deriv-
atives (C60(OH)24) could not (Isaacson et  al. 2007). Similarly, when subjected to 
copper nanoparticles, the NPs accumulated at a concentration of 1.9 fold in the gills 
after 48 h as compared to the controls (Griffitt et al. 2007).

Daphnias were subjected to titanium dioxide, aluminium oxide and zinc oxide 
nanoparticles for 48 h, which accumulated in the gut (Zhu et al. 2009). This was 
due to the fact that the nanoparticles aggregated within 12 h but their excretion 
was delayed due to which most of the nanoparticles were retained in the body for 
another 72 h.

Zhao et al. (2012) demonstrated the concurrence of zinc oxide nanoparticles with 
zinc-dissolved species which was liberated constantly into the soil, leading to 
replenishment of zinc ions, which were rummaged by roots in comparison to 
alginate- treated soil, thus promoting aggregation of zinc in the tissues of corn (Thul 
and Sarangi 2015).

Quantum dots have the ability to fluoresce, which makes them efficient in moni-
toring the penetration and translocation pattern within living organisms. Quantum 
dots have superseded in reaching not only to the gut but to various other parts of 
daphnia (D. magna) (Ingle et al. 2008; Thul and Sarangi 2015).
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3.1  Introduction

Nanotechnology is the study of nanoscale (1–100 nm) materials known as nanopar-
ticles (NPs), exhibiting unique and novel physical, chemical and biological proper-
ties (Li et  al. 2001). Over the past decade, the use of nanotechnology in the 
agricultural field has gained momentum by delivering robust applications (Tarafdar 
2012; Kah and Hofmann 2014). These include nanotechnological applications in 
plant disease resistance and plant growth that have overwhelmingly remoulded the 
agricultural sector (Ghormade et  al. 2011; Chowdappa and Gowda 2013). The 
major applications of nanotechnology in agriculture are schematically represented 
in Fig. 3.1 and they include the following:

• Improved seed germination using nanoformulations
• Formulation of nanofertilizers for balanced crop nutrition
• Development of nanoherbicides for weed control
• Development of efficient nanopesticides for pest and disease control
• Management of post-harvest diseases and improving post-harvest quality
• Diagnostic devices based on nanosensors for monitoring agroecosystems
• Improved agricultural engineering using nanotechnology in the field of 

Agricultural machinery

Fig. 3.1 Overview of nanotechnology applications for enhancing quality and yield of crop plants
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3.2  Nanoparticles in Agriculture and Their Fabrication

The emergence of nanotechnology has revolutionized the scientific world because 
of its novelty, high growth and pertinent broad impacts. These NPs have flexible 
physical properties with a large surface area to volume ratio and a strong affinity for 
proteins. Polymeric nanoparticles have been most commonly extensively used in 
making nanoproducts or formulations for potential use in agriculture. These poly-
meric nanoparticles are defined as particles of diameter <1 μm and made up of 
either biodegradable or non-biodegradable polymers from synthetic or natural 
source. Mostly pesticides or fungicides are either integrated in the matrix or attached 
to the surface.

3.3  Polymers Used as Nanocarriers

Polymers that are used as nanocarriers for formulating nano-agrochemicals are clas-
sified as follows:

 A. On the basis of occurrence in nature, polymers are classified as natural and syn-
thetic polymers:
 (i) Natural polymers: Natural polymers are obtained naturally and can be 

directly used. Examples include alginate, gelatin, albumin and 
chitosan.

 (ii) Synthetic polymers: Synthetic polymers are chemically synthesized and do 
not occur in nature. Some examples are polylactides (PLA), polylactide-co- 
glycolide (PLGA), poly epsilon-caprolactone (PECL), poly ethylene glycol 
(PEG) and poly butyl cyanoacrylate (PBCA).

 B. On the basis of biodegradability, polymers are classified into biodegradable and 
non-biodegradable polymers:
 (i) Biodegradable polymers: These polymers get degraded easily in the envi-

ronment by the influence of microbial action. The most commonly used 
biodegradable polymers are polylactides (PLAs), poly cyanoacrylate and 
poly (D, L-lactides).

 (ii) Non-biodegradable polymers: These polymers do not get degraded by 
microbial interventions and are hard to dispose and hazardous to the envi-
ronment. Examples are polyethene and polystyrene.

3.4  Nanoparticles for Seed Germination and Plant Growth

Nanoemulsions of chemicals have been reported to significantly influence seed ger-
mination and growth in many crop plants. Use of nanoformulations of plant growth 
regulators (plant growth promoting substances) in the form of nanoemulsions as 
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well as nanofertilizers improves the rate of seed germination, influences breaking 
seed dormancy and improves seedling vigour (Fig. 3.2). Use of various nanoparti-
cles, such as of Ag (Almutairi and Alharbi 2015), FeS2, ZnO and Co nanoparticles 
(Hoe et al. 2018), SiO2 (Karunakaran et al. 2015), has shown promising results in 
seed germination and plant growth. Nanoparticles are known to penetrate the seed 
coat and exert a beneficial effect on the process of seed germination through 
increased water absorption, nitrate reductase enzyme levels, seed antioxidant sys-
tems, reduced antioxidant stress through H2O2 and superoxide radicals by increased 
enzyme activity (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase 
and catalase). As defined earlier, the principal factors of nanoparticles are their 
increased surface area and quantum effects, which enable easy absorption and smart 
delivery of nutrients. Also, aspect ratio of the size of nanoparticles helps in competi-
tive binding with receptors and in subsiding reactive oxygen species. Some types of 
nanoparticles have been found to be well known for their antimicrobial properties, 
which results in controlling seed-borne pathogens (Table 3.1).

3.5  Nanofertilizers

Recent applications of nanotechnology in agriculture have successfully demon-
strated the utility of nanomaterials as a potential plant growth regulators, but practi-
cal application of nanomaterial-based fertilizers on agricultural lands requires a 

Fig. 3.2 Nanoemulsion seed treatment improves seed germination rate, breaks seed dormancy 
and improves seedling vigour
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suitable substrate to effectively disperse the nanomaterials (Kumar et  al. 2018). 
Nanofertilizers relates to nanoformulations of fertilizers like N, P and K along with 
other essential minerals and micronutrients. They are modified fertilizers synthe-
sized by chemical, physical or biological methods involving nanotechnology with 
the aim to improve their attributes and composition as well as enhance the produc-
tivity of crop plants (Singh et al. 2017). Their formulations are made with the prime 
motto of achieving the following objectives: (i) to reduce element volatilization, (ii) 
increase nutrient uptake, (iii) improve nutrient use efficiency, (iv) to reduce fertilizer 
dosage, (v) improve soil microflora and fauna and (vi) improve water-holding 
capacity. In simpler terms, nanofertilizer application is expected to improve the 
yield and nutritive value of crop plants, thereby resulting in improved plant health. 
Encapsulation of fertilizers with nanomaterials is the most common method 
employed till date for developing nanofertilizers. Fertilizer delivery through 
nanoparticle can be done in three ways: (i) encapsulation in nonporous material, (ii) 
coating of polymer around fertilizers and (iii) nutrient itself in nano form (Naderi 
and Shahraki 2013). The most commonly used nanocarriers of nanofertilizers are 
chitosan and oleylamine along with surfactants such as gluconic acid and cellulose. 
In order to stabilize and prevent agglomeration, polymers like polyethylene glycol 
(PEG), poly N-vinyl-2pyrrolidone (PVP), poly (methyl-methacrylate) (PMMA) 
and poly (methacrylic acid) (PMAA) are also used in nanofertilizer commercial 
formulations (Grillo et al. 2015).

Table 3.1 Effect of nanoparticles on seed germination in crop plants

Nanoparticles Uses References
Mixture of nanoscale 
SiO2-TiO2

Increase nitrate reductase activity in 
soybean (Glycine max), thus improving 
seed growth

Lu et al. (2002)

Single-walled (SWCNTs) 
and multi-walled 
(MWCNTs) carbon 
nanotubes

Penetrate tomato seeds and increase the 
germination rate by increasing the seed 
water uptake

Khodakovskaya 
et al. (2009)

NanoTiO2 Promote photosynthesis and nitrogen 
metabolism, and thus greatly improve 
growth of spinach

Yang et al. (2007)

Nano-ZnCuFe-oxide 
followed by nano-FeO and 
nano-ZnO

Suspension of nanoparticles affects the 
growth of mung (Vigna radiata) 
seedlings

Dhokev et al. 
(2013)

FeS2 NPs Increase the production of spinach and 
different crops

Srivastava et al. 
(2014)

SiO2 NPs Have a significant impact on the seed 
germination potential in tomato 
(Lycopersicum esculentum)

Siddiqui and 
Whaibi (2014)

Silver (AgNPs) Have significant effects on seed 
germination and seedling growth of 
corn, watermelon and zucchini plants

Almutairi and 
Alharbi (2015)

ZnO NPs For seedling emergence and germination 
of wheat (Triticum aestivum)

Hussain et al. 
(2018)
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3.6  Classification of Nanofertilizers

Four classes of nanofertilizers are currently available on the market:

 1. Nitrogen nanofertilizers
 2. Potash nanofertilizers
 3. Zinc nanofertilizers
 4. Nanoporous zeolite

Among these, zeolites are most unique as they individually serve as a fertilizer as 
well as can be used as a material for nanoformulation of other nutrients. Zeolites at 
nanoscale are used to slow down release of fertilizers by virtue of their property to 
form pores which can hold cations, small molecules and water within a crystalline 
state. They can hold cationic nutrients (e.g. NH4+ and K+) as well as anionic forms 
such as SO4

2−, NO3
− and PO4

3− with surface modification by the cationic surfactant 
hexadecyltrimethylammonium bromide (CTAB). Zeolite NPs have been employed 
in delivering nitrogen, phosphorous, potassium and sulphur (Table 3.2) (Subramanian 
et al. 2015; Manikandan and Subramanian 2014).

Nanofertilizers are applied to the soil or sprayed as foliar sprays. Soil applied 
nanofertilizers facilitate easy movement in the soil, increasing the release of nutri-
ents and penetration into the roots, thereby enabling better uptake and translocation 
in the plant system, while foliar spray nanofertilizers increase chlorophyll forma-
tion and dry matter production, which consequently improve plant growth (Dhokev 
et al. 2013). They are less toxic to humans and animals (Leon-Silva et al. 2018). 
Movement of nanoparticles in the plants is determined by the mode of application 
of nanoparticles. A nanoparticle having better translocation ability via phloem is 
more likely to get a good distribution in the plant. This indicates that if the applica-
tion of nanoparticle is done via foliar spraying, then maximum efficient usage of the 
chemicals is possible. For nanofertilizers, wherein the nutrients move through roots, 
soil application is advised, which allows better uptake via xylem (Fig. 3.3).

Table 3.2 Nanofertilizers and nanoformulations for plant nutrition

S. No. Nanomaterial Nutrient References
1 Surface-modified zeolite Phosphate Rayalu et al. (2006)
2 Nanocomposites containing organic 

polymer intercalated in the layers of 
kaolinite clays

Wide range of 
nutrient

Liu et al. (2006)

3 Nanocoating of sulphur with chitosan 
and other nanocomposites

NPK Wilson et al. (2008)

4 Surface-modified zeolite Sulphate Li and Zhang (2010)
5 Montmorillonite Nitrogen Bortolin et al. (2013)
6 Zeolite Nitrogen Komarneni (2010) and 

Manikandan and 
Subramanian (2014)
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In root-feeding, the movement of nanoparticles in plants tissues occurs either by 
apoplastic or symplastic action. In the apoplastic movement, the nanoparticles move 
through the extracellular spaces, cell walls of the adjacent cell and xylem vessels 
(Sattelmacher 2001). Apoplastic movement allows nanoparticles to move towards 
the central cylinder of root and into the vascular tissues for further movement 
towards the aerial part through xylem by following the transpiration system (Larue 
et al. 2012; Zhao et al. 2012; Sun et al. 2014). In the symplastic movement, the 
particles move between the cytoplasm of adjacent cells through plasmodesmata and 
sieve plates (Roberts and Oparka 2003). In the symplastic pathway, nanoparticles 
have to cross the Casparian strip to reach inside the phloem. Sun et al. (2014) and 
Lv et al. (2015) showed that some nanomaterials get stuck and accumulate at the 
Casparian strip. Distribution of nanoparticles in non-photosynthetic tissues and 
organs takes place with the help of the sieve tube elements in the phloem (Wang 
et al. 2012; Raliya et al. 2016).

On foliar application, nanoparticles follow a lipophilic or hydrophilic pathway 
(Schönherr 2002). Lipophilic diffusion of nanoparticles takes place through cuticu-
lar waxes, while in hydrophilic pathway nanoparticles move via polar aqueous 
pores present in the cuticle and stomata. Foliar application of nanoparticles is size 
limiting because the diameter of cuticular pores are approximately 2 nm (Eichert 
and Goldbach 2008). So nanoparticles of size more than 2 nm cannot get past and 
are restricted from foliar application.

Fig. 3.3 Mechanism of movement of nanofertilizer into the root system of plant
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3.7  Benefits of Nanofertilizers

 1. Field trials with nanofertilizers in sunflower have demonstrated grain yields 
increase by 50% and in cucumber by 25%.

 2. Increase of about 10% in protein and sugar content in many fruits and vegetables 
have been demonstrated.

 3. The overall health of the plant is enhanced, as the host defence system is 
enhanced indirectly by nutrients.

3.8  Advantages of Nanofertilizers

The following are the advantages of nanofertilizers as described by Leon-Silva 
(2018):

 1. Reduces fertilizer requirements and lowers the cost of production
 2. Reduces nutrient loss through leakage and seepage in soil, especially in the case 

of soil application
 3. Eco-friendly synthesis
 4. Economical and easily available custom-made products
 5. Controlled release of plant nutrients and improved nutrient uptake
 6. Improved soil nutrient status and bioavailability of essential nutrients
 7. Less negative impacts and toxicity
 8. Improved product quality

3.9  Nanoherbicides

Weeds are plants out of place in a cultivated ecosystem of agricultural crop plants, 
which compete with them for nutrients, water and sunlight. Heavy weeds in the 
cultivated fields of crop plants affect the growth, alter the developmental stages and 
ultimately account for 30–40% yield loss. Weeding is an intercultural operation, 
wherein removing unwanted parasitic weeds is done manually. Herbicides are an 
alternative to the laborious and time-consuming weeding operations, and the mode 
of action of any herbicide depends on the moisture content, time of application, 
persistence and availability. In order to increase the efficiency of herbicides, nano-
encapsulation has been attempted, which could facilitate controlled release and 
delivery when sufficient moisture is available. Nanoherbicides are formulated 
mainly using nanoencapsulation techniques and a few successful examples of nano-
encapsulated herbicides are presented in Table 3.3.

A. Bajpai et al.
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3.10  Advantages of Nanoherbicides

 1. Herbicide-loaded nanoparticles reduced the use and rate of herbicide 
application.

 2. Improved efficacy and environmental safety.
 3. Low cytotoxic effect on cell lines and therefore pose lesser risk to animals and 

humans.

3.11  Nanopesticides

Nanopesticides are pesticides formulated in nano to micro scales with the aim of 
slow and steady release, such that the active ingredient is completely used for the 
control of pests and diseases. In general, polymer-based nanoencapsulated formula-
tions are widely used for developing nanopesticides using different polysaccharides 
such as chitosan, alginates, starch and polyesters (e.g. poly-ε-caprolactone, polyeth-
ylene glycol). The first polymer nanopesticide formulation was reported in the 
1970s for controlled release of biocides. Nanobiocides, also grouped in the category 
of nanopesticides, are nanoformulations of microbial or living agents used for kill-
ing other living entities. Some successful examples of nanopesticides that have been 
reported are ZnO and Ag NPs. Foliar application of nanopesticides works in the 
mode as explained earlier in the mechanism of movement and translocation of 
nanoparticles in the plant system (Fig. 3.4).

Table 3.3 Nanoherbicides for effective weed management

S. No Nanomaterial Herbicide Purpose References
1 MnO2 core shell protected 

with bilayer polymers
Herbicide Controlled release of 

active ingredient 
after receiving 
rainfall

Chinnamuthu 
and Kokiladevi 
(2007)

2 Manganese carbonate core 
nanoshell coated with water 
soluble polymer sodium 
poly styrene sulfonate and 
poly allylamine 
hydrochloride

Pendimethalin Release of active 
ingredient on receipt 
of rainfall for rainfed 
cropping system

Kanimozhi 
and 
Chinnamuthu 
(2012)

3 Poly(epsilon-caprolactone) 
nanoparticles

Atrazine Control weeds and 
reduce damage to the 
environment

Pereira et al. 
(2014)

4 Herbicide-loaded pectin 
nanoparticles

Metsulfuron 
methyl

Low herbicide 
loading (6.30%) and 
high encapsulation 
efficiency (63 to 
65%)

Kumar et al. 
(2017)
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3.12  Advantages of Nanopesticides

The following are the advantages summarized from the results obtained in the appli-
cation of nanopesticides at laboratory and field trials (Table 3.4);

 1. Reduces pesticide requirements and application rates, thereby reducing costs of 
cultivation

 2. Controlled and slow release by smart delivery system, resulting in enhanced 
efficiency

 3. Prolonged availability of active ingredient for better control of insect pests
 4. Reduced environmental contamination and easily biodegradable
 5. Reduced toxicity risks to animals, humans and natural flora and fauna

Fig. 3.4 Mechanism of movement of nanoparticles from foliar spray of nanopesticides into the 
aerial shoot system through leaves
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Table 3.4 Nanopesticides and their examples in pest and disease management of different crop 
plants

S. No. Nanoformulation Purpose Crop Pest managementa References
I Nanopesticides, mode of operation and control of insect pests of different crops
1 Solid lipid 

nanoparticles of 
essential oil from 
Artemisia arborescens

Reduce the 
rapid 
evaporation of 
essential oil

Citrus 
Quercus 
suber

Aphis gossipy 
Bemisia tabaci 
and Lymantria 
dispar

Lai et al. 
(2006)

2 Polyethylene glycol 
polymer coated NPs: 
Essential oil from garlic

Slow and 
persistent 
release of the 
active 
componentsß

Cereals, 
beans, 
nuts

Tribolium 
castaneum insect 
in stored products

Yang et al. 
(2009)

3 Alumina NPs Significant 
mortality of 
pest

Cereals, 
beans, 
nuts

S. oryzae L. and 
Rhyzopertha 
dominica (F.),

Stadler 
et al. 
(2010)

4 Silver nanoparticles High efficacy 
and mortality

Rice Sitophilusoryzae Debnath 
et al. 
(2011)

5 Nanosilica Control of 
neonates by 
affecting their 
feeding 
preference

Tomato Spodoptera 
littoralis

EL-bendary 
and 
El-Helaly 
(2013)

6 Imidachloprid – sodium 
alginate

Low pesticide 
load and 
prolonged 
availability

Bhendi Leafhoppers, 
Jassids (sucking 
pests)

Kumar 
et al. 
(2014)

II Nanofungicides, mode of operation and control of fungal pathogens of different crops
1 Porous hollow silica 

NPs – validamycin
Antibacterial, 
controlled 
delivery 
system of 
water-soluble 
bactericide

Rice, 
potato

Rice sheath 
blight, black scurf 
on seed potatoes, 
damping-off, 
Rhizoctonia 
solani

Liu et al. 
(2006)

2 Silver nanoparticles Inhibition of 
spore and 
germ tube 
formation

Cereals B. sorokiniana 
and M. grisea 
in vitro studies

Jo et al. 
(2009)

3 Silver nanoparticles Antifungal Pear, 
apple, 
grapes 
etc.

Phoma glomerata Gajbhiye 
et al. 
(2009)

4 Fungicide – ZnO Antifungal All crops Botrytis cinerea 
and Penicillium 
expansum

He et al. 
(2011)

(continued)
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3.13  Nanosensors and Their Applications

Nanosensors are modified sensors used to detect diseases, moisture and nutrient 
condition for determining optimum usage of pesticides, water requirements, and 
fertilizer dosages (Rai and Ingle 2012). These nanosensors are developed using top- 
down lithography, molecular self-assembly and bottom-up assembly approaches. 
The potential use of nanosensors is in the detection of pathogens causing diseases 
in crop plants (Table 3.5), identification of pests and for post-harvest quality assess-
ment. Nanosensors primarily consist of three components: (i) bioreceptor, (ii) trans-
ducer and (iii) detector. Nanosensors are devices of nanoscale in which the 
biodetector measures an analyte by selective binding, signal is generated due its 
interaction with the bio-element present in the bioreceptor, the signal is processed 
into useful metrics by transducer and then detected by the detector and analysed 
(Fig. 3.5). Different types of nanosensors work on the same principle with a com-
mon basic workflow but for modifications in their bioreceptor component.

Nanomaterials with mechanical, electronic, photonic, and magnetic properties prove 
advantageous in the development of sensors and diagnostic tools. E-nose is a nanotech-
nology-based sensor which is used to assess pest or mechanical damage in cucumber, 

Table 3.4 (continued)

S. No. Nanoformulation Purpose Crop Pest managementa References
5 Zinc oxide Deformation 

in mycelia 
mats and 
prevention of 
development 
of conidia and 
conidiophore

Fruit 
crops

Botrytis cinerea 
and Penicillium 
expansum

He et al. 
(2011)

6 AgNPs – Bacillus sp. Antifungal Many 
crops

Fusarium 
oxysporum

Gopinath 
and 
Velusamy 
(2013)

7 Thiram – ZnO 
nanoparticles

Multipurpose Different 
crops

Antifungal Xue et al. 
(2014)

8 Green Bs AgNPs Antifungal Wheat Spot blotch 
disease, Bipolaris 
sorokiniana

Mishra 
et al. 
(2014b)

9 AgNPs – Serratia sp. Antifungal Wheat Bipolaris 
sorokiniana

Mishra 
et al. 
(2014a)

10 AgNPs – Brassica rapa Antifungal Tree 
species

Wood-rotting 
pathogens

Narayanan 
and Park 
(2014)

11 AgNPs – Calotropis 
procera

Antimicrobial 
activity

Different 
crops

Many pathogens Mohamed 
et al. 
(2014)

aPests here include insect pests as well as disease-causing pathogens

A. Bajpai et al.
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pepper and tomato leaves by sensing differences in the profiles of volatile organic com-
pounds (VOCs) emitted from both damaged and undamaged plants. This nanosensor 
was successfully demonstrated for precisely discriminating spider- mite- infested cucum-
bers from healthy plants. Similarly, e-nose-based sensors have been used to identify 
plants infected by powdery mildew in tomato. Nanobiosensors can detect soil condition 
and provide advisory for optimum chemical fertilizer dosages. Nanosensors can be 
linked to a global positioning system (GPS) for real-time monitoring of disease, and 
distributed throughout the field to monitor soil conditions and crop health.

3.14  Classification of Nanosensors

Liu (2003) has classified nanosensors based on their mechanism and material used 
in their development into the following five classes:

 1. Nanostructured materials, e.g. porous silicon
 2. Nanoparticles-based sensors
 3. Nanoprobes
 4. Nanowire nanosensors
 5. Nanosystems: cantilevers, nano-electromechanical systems (NEMS)

Table 3.5 Nanosensors in pathogen detection, plant disease monitoring and management

S. No. Nanosensors Pathogen Disease Crop References
1 Fluorescent silica 

nanoparticles (FSNP)
Bacterial spot 
disease

Bacterial spot 
disease

Tomato Yao et al. 
(2009)

2 Gold nanoparticles 
based

Tilletia indica 
(fungus)

Karnal bunt 
disease

Wheat Singh et al. 
(2010)

3 Luminescent 
semiconductor 
nanocrystals (QDs)

Beet necrotic 
yellow veinvirus 
(BNYVV)

Rhizomania Beet Safarpour 
et al. (2012)

4 Gold nanoparticles Triteza virus Tristeza Citrus Shojaei et al. 
(2016)

Fig. 3.5 Schematic representation of the working principle of a nanosensor
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3.15  Advantages of Nanosensors

The following are the advantages of nanosensors listed out by Lu and Bowles 
(2013):

 1. High sensitivity and selectivity
 2. Near-real-time detection
 3. Low cost and portability

3.16  Nanotechnology for Post-harvest Improvement

Nanotechnology has found a significant foothold in production technology and 
post-harvest shelf life enhancement through the control of microorganisms, packag-
ing materials (films), etc. Nanotechnology-led packaging allows control of the 
influence of gases and UV, increased strength, quality and aesthetic value enhance-
ment. Use of multiple chips with nanobiosensors has led to automated storage con-
trol. Application of chitosan has gained importance for controlling pre- and 
post-harvest diseases for improvement of produce quality and environment safety 
due to low toxicity, initially in tomato grey mould resistance (Botrytis cineraria). 
Since, newer nanoparticles have been used for fungal control towards increased 
post-harvest life of banana, carrot, tomato, onion, etc. Newer range of packaging 
coverages have evolved, such as TiO2 and silver ions that are suited owing to physi-
cal and chemical stability, low cost, ease of availability and non-toxicity. These have 
also attracted the interest of several researchers, because of their photoactivity, 
semiconductor photocatalysis, nanocrystallites and antibacterial activity. 
Development of nano-TiO2 with light catalysing capability, nano-Ag with quanta 
and large external area effect have shown ability to absorb and decompose ethylene. 
Fuji apples with nano-SiOx/chitosan and Green tea have demonstrated better- 
quality maintenance through nanopacking. Technologies for using biological mol-
ecules, such as sugars or proteins food biosensors, are at their infancy. Such 
biosensors can serve as detectors of food pathogens/contaminants and as devices to 
track food products. Delivery and controlled-release systems of nutraceuticals in 
food grains through nanotechnology are another feasibility. Some application of 
nanobiosensors include: virus recognition using antibody sensor arrays on self- 
assembled nanoscale block copolymer patterns, detection of food-borne toxins with 
multifunctional nanoparticles, development and characterization of nanocomposite 
materials for the detection of pore-forming toxins and molecular imprinted poly-
mers for plant and insect virus recognition.

A. Bajpai et al.
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3.17  Microbial Nanoformulations in Quality Enhancement

Nanoparticles are not only used to control insect pests and diseases but also for 
improving quality-related traits in cereals, pulses and post-harvest quality of fruits 
and vegetables. Spoilage by phytopathogens can be reduced by use of biocontrol 
agents which improve quality. Some microbial biocontrol agents are formulated 
using nanotechnology and have been successfully demonstrated in quality improve-
ment in different crops (Table 3.6).

3.18  Nanopackaging Technology

Smart packaging is a system of packaging which involves use of nanotechnology 
for packing perishable fruits and vegetables with reduced space, minimal process-
ing and at the same time enhance their shelf life for better marketability and distant 
marketing. In India, lack of cold storage accounts for major post-harvest losses. 
Post-harvest losses can be minimized by use of ethylene blockers, delaying ripening 
processes by manipulation of ethylene biosynthesis, wax coating, etc. An alternate 
to these strategies is smart packaging systems which involve the use of nanofilm, 
called as nanopackaging technology. When applied to fruits and vegetables, nano-
films was found to emit a chemical vapor which can extend the shelf life of vegeta-
bles by upto 21 days without any loss of quality. This nanomaterial contains a key 
ingredient known as hexanal, a synthetic version of that found usually in beans and 
cucumbers. Attempts have been made to use hexanal in natural plant fibres and wax 
coatings so as to enhance shelf life of fruits and vegetables. Hexanal inhibits phos-
pholipase- D in the peel of fruits, which is involved in the deterioration of fruit qual-
ity (Jincy et al. 2017). In Tamil Nadu Agricultural University, Coimbatore, India, 
nano-based hexanal technology was developed to extend the shelf life of mangoes. 

Table 3.6 Microbial-based nanoformulations and their use in agriculture

Sources Nanoformulation Applications References
AgNPs Trichoderma viride Vegetable and fruit 

preservation
Fayaz et al. (2009)

AgNPs Aspergillus niger Antifungal and antibacterial Jaidev and Narasimha 
(2010)

AgNPs Spirulina platensis Bactericidal Mala et al. (2012)
AgNPs Cow’s milk Antifungal Lee et al. (2013)
ZnNPs Aspergillus 

fumigatus
Enhanced P-mobilizing 
enzymes and gum production 
in cluster bean

Raliya and Tarafdar 
(2013)

3 Use of Nanotechnology in Quality Improvement of Economically Important…



54

This was prepared by subjecting a polymer to high-intensity voltage to convert the 
solution into a nano-fibre. Using the electrospinning technique, a nano-fibre was 
developed with polyvinyl alcohol and cyclodextrin as a sheath and the hexanal in 
the core, thereby providing a unique advantage of high surface to mass ratio and 
regulating the release of hexanal vapor. This technology was demonstrated to 
increase the shelf life of mango fruit by 2–3 weeks. In India, trials are under way 
using hexanal nanofilm technology for extending the shelf life of mangoes, espe-
cially in Tamil Nadu (Anusuya et al. 2016). The TERI report (2017) had empha-
sized reduced nutrient losses and agrochemicals usage, by ensuring smart delivery 
of using nanotechnology. Furthermore DBT (2019) has formulated draft guidelines 
for evaluation of nano-agri input (NAIPs) and nano-agriproducts (NAPs) in India, 
that is aimed at providing uniform guidelines to support quality commercialization 
of nanotechnology-based innovations that are safe for human health and environ-
ment. Very few nanotechnology applications have yielded commercialization of 
products due to inconsistent national legislative frameworks, limited regulatory 
guidelines and a lack of public licensing initiatives. Food and Agriculture 
Organization, the Organisation for Economic Co-operation and Development 
(OECD) and the Australian Pesticides and Veterinary Medicines Authority 
(APVMA) have argued for prioritizing regulatory frameworks to reap the potential 
benefits.
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Abstract
Herbal, animal and agricultural activities that have been applied to meet human 
needs in harmony with nature throughout human history have not harmed the 
ecosystem and have not caused environmental problems. However, the current 
ecosystem balance continues to deteriorate as a result of classical agricultural 
practices to get more products from the unit area to meet the food needs of the 
rapidly growing population. Therefore, new approaches to agricultural produc-
tion and techniques such as nanotechnology are needed. In this context, nanopar-
ticles that form the basis of nanotechnology have emerged as a versatile platform 
for solving the problems encountered. Nanoparticles have the potential in agri-
cultural applications to be used in plant nutrition, plant and animal breeding and 
in the fight against herbicides and harmful insects.
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Headings

 1. The effects of nanoparticles on the growth and development of plants are 
important.

 2. Nanoparticular fertilizers can increase the effective use of plant nutrients.
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 3. Nanotechnology applications in agriculture aim to reduce excessive use of 
chemical-containing plant protection products.

 4. Nanoparticles are important in the increase of agricultural productivity.

4.1  Introduction

The need for food to feed the population of billions of people around the world is 
increasing. Global climate changes, rapid population growth, and inadequate food 
production have begun to worry all countries. The adverse effects of excessive 
chemical use in agriculture for the purpose of controlling microorganisms that are 
responsible for virus and fungi infections, which cause diseases before and after 
harvesting, are still unsolved. Therefore, research is focused on the search for alter-
natives that may be environmentally friendly and may be effective for microbial 
control. Therefore, the importance of agriculture has gradually increased and the 
use of new techniques has become extremely important. Nowadays, traditional agri-
culture techniques have reached saturation, and modern agricultural technologies 
aimed at increasing efficiency have also ignored environmental factors especially in 
developing countries and have caused a damaged ecosystem. In this context, people 
have needed to mention crop productivity increase and sustainable environmental 
management; thus, novel, big, friendly and cost-effective approaches to agriculture 
and environment are needed for drought conditions. Today, many types of research 
are being carried out on the use of nanotechnology, which can help with overcoming 
the issues mentioned. Therefore, agricultural nanotechnology can play a fundamen-
tal role as an environmentally friendly, cost-effective green technology for sustain-
able agriculture. Historically, nanotechnology was developed for industrial 
applications half a century ago, and then the use of nanotechnology in agriculture 
attracted attention (Mukhopadhyay and Sharma 2013). The applications of nano-
technology in agriculture aim to reduce the excessive use of chemical-containing 
plant protection products and to increase nutrient intake and productivity with effec-
tive fertilization.

At least one dimension of nanoparticles which originate from nanotechnology 
have a minimum size of ≤100 nm and are made of metals such as silver, copper, 
carbon and silicon (0.1–100 nm diameter). Because of their extremely small dimen-
sions, nanoparticles are used in many areas such as medicine, environment and 
energy and the food industry. They are derived from biopolymers such as proteins 
and carbohydrates, which have a low negative impact on human health and the envi-
ronment. Biosynthesized nanoparticles are obtained from plant extracts with vari-
ous analytical techniques.

Because plants contain alkaloids, flavonoids, phenols, terpenoids, alcohols and 
sugars, their extracts are used in the synthesis of gold nanoparticles (Siddiqi and 
Husen 2016).

Increasing the use areas and applications of nanomaterials is thought to cause a 
significant increase in their interactions with the environment and lead to very dif-
ferent environmental behaviours and effects of their distinctly different 
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physicochemical properties, such as the higher surface-to-volume ratio of nanopar-
ticles, electronic structure, intermediate surface reactivity, etc. (Ma and Wang 2010).

Nanoparticles with different concentrations can have both positive and negative 
biological effects. Physical nanoparticles have a less toxic effect than chemical 
nanoparticles (Taran et al. 2017).

Nanoparticles are effective in the fight against herbicides and harmful insects and 
have the ability to provide effective use of water and fertilizers in agricultural pro-
duction, and are important in the increase of agricultural productivity. It is also used 
in the production of insecticides, insect-repellents (Bhattacharyya et al. 2010), her-
bicides, and fungicides (Worrall et  al. 2018). However, in molecular studies, 
nanoparticles provide significant contributions in many areas, such as the develop-
ment of a gene transferred transgenic plant such as Medicago truncatula, Zea mays, 
Nicotiana tabacum, Gossypium hirsutum and  Oryza sativa L. that is resistant against 
stress factors, developing defence mechanisms against diseases caused by patho-
gens, etc. (Aras et al. 2015). The use of nanoparticles as biosensors in the diagnosis 
of plant disease has also been among the research subjects (Elmer and White 2018).

Nanoparticles can pass through the cell wall, membrane and ultimately penetrate 
the double membranes of chloroplasts. Thus, by injecting genes directly into plant 
chloroplasts, DNA transmission to the cells is possible. In a study, with gene trans-
fer, new plants with the desired characteristics were obtained as a result of genetic 
modification. In some plants such as cotton, because in vitro regeneration is diffi-
cult, troublesome and complex, DNA was injected into pollen through nanoparti-
cles, and direct transgenic seeds were obtained as a result of pollination (Zhao et al. 
2018). In another study, to produce transgenic seeds of cotton directly without tissue 
culture, transgenic seeds were obtained by transferring the plasmid DNA loaded 
magnetic nanoparticles carrying functional genes to the pollens (Zhang et al. 2018). 
However, it was reported that when soybean was exposed to cerium dioxide 
nanoparticles (CeO2-NPs), the nanoparticles caused mutations by showing a toxic 
effect on DNA and genes in soybean (López- Moreno et al. 2010). Another signifi-
cant breakthrough of nanotechnology to ensure improvement in agricultural pro-
duction is the development of insect-resistant varieties as a result of DNA transfer 
through nanoparticles in plants.

Nanoparticles, which have gained extensive usage, participate in the ecosystem 
but their environmental impact is not fully known. The number of studies that deter-
mine the effects of nanoparticles on plants that form the basis of the ecosystem is 
few. Nanoparticles sometimes adversely affect the ecosystem by causing toxicities 
on living organisms, environment and plants, i.e. by producing free radicals or reac-
tive oxygen derivatives that can cause oxidative stress in organisms. Nano-pesticides 
that are very effective at even low doses and cause environmental pollution, are 
placed in the leaf and flower parts of plants during air transport, blocking stoma, 
causing a layer on the stigma that prevents pollen germination and affecting the 
transport of water, food and assimilation products adversely by entering the conduc-
tive tissues.

Although research has reported harmful effects on human health and environ-
ment, nanoparticles have innovative features in the economic field. Today, with the 
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development of nanotechnology, nanoparticle availability for agriculture has 
increased. Because of their small sizes, wide and reactive surface areas, they can be 
used as bactericide, fungicide, nanofertilizers and used in the diagnosis of plant 
diseases and agricultural chemicals.

Pesticides used in agriculture are not very efficient, and also pollute both terres-
trial and aquatic environments as a result of their widespread use. Therefore, in 
agriculture, a positive effect on ecology can be made by using nano-agrochemicals 
instead of conventional pesticides. Nano-agrochemicals containing polymeric 
nanoparticles, silver ions, gold nanoparticles and iron oxide nanoparticles are used 
as pesticides (Al-Samarrai 2012).

4.2  Effects of Nanoparticles on Plant Development

The effect of many nanoparticles on the growth and metabolic functions of plants 
varies according to plant species; research examining their effects on plant growth 
and development have been conducted, with both positive and negative results.

In agriculture, rapid and homogeneous seed germination and seedling emergence 
are important in terms of yield. In recent years, numerous nanoparticles have been 
applied as pretreatment agents to wheat (Taran et al. 2017; Li et al. 2019; Jhanzab 
et al. 2019), corn (Mahakham et al. 2016) and spinach (Srivastava et al. 2014) seeds 
to stimulate seed germination, seedling growth and stress tolerance. Mahakham 
et al. (2017) reported that silver nanoparticles (AgNPs) induced seed germination 
and starch mobilization in rice, and their work will shed light on the future of nano- 
priming for sustainable agricultural practices and seed industry. However, extensive 
studies on the physiological and molecular mechanisms of nano-priming effects on 
seed germination are insufficient. Therefore, further research is needed specifically 
to determine the effect of nanoparticles on seed germination.

It has been reported that in the (Bt)-transgenic and non-transgenic cotton plant, 
Si02NPs applications inhibit the growth of plants, and also that the nanoparticles are 
located in the xylene tissue of transgenic cotton roots, and this condition is risky for 
human health (Le et al. 2014) Copper oxide (CuO) nanoparticles have been reported 
to prevent the growth of wheat crops grown in the sand, changing the structure of 
the roots (Tang et al. 2016). However, starch-based nanoparticles are biodegradable 
and can also be used in food packaging technology (Aldao et al. 2018), which are 
not toxic to plants, animals or the environment, may be an alternative to the chemi-
cals in agriculture and are suitable for sustainable agriculture (Marchiol 2018). A 
study concluded that carbon-based nanoparticles (CNPS) created a physiological 
response in the mung bean and positively influenced its growth (Li et al. 2016).

Research has reported that zinc oxide nanoparticles (ZnONPs) are harmless at 
low concentrations, stimulate certain enzymes in plants, inhibit diseases (Singh 
et al. 2017), increase yield under cadmium (Cd) stress by increasing wheat develop-
ment and photosynthesis (Hussain et al. 2018), and can be used in the fight against 
rice bacterial leaf blight (Xanthomonas oryzae pv. oryzae) (Ogunyemi et al. 2019).
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Since antique times, silver and its salts have been used, and the effect of silver 
nitrate particles in plants is important because of their easy distribution in the envi-
ronment. Silver nanoparticles have been tested for antimicrobial effects against 
many diseases caused by pathogens in animals and plants and are also plant growth 
stimulators. A study indicated that copper oxide (CuO) and titanium dioxide (TiO2) 
nanoparticles in the leaves of rose plant caused an increase in the zeatin riboside 
(ZR) phytohormone, thereby the nanoparticles had antifungal effects against the 
Podosphaera pannosa pathogen causing powdery mildew, and that it could be used 
as a new plant protection strategy (Hao et al. 2019).

In a study conducted in greenhouse conditions, silver nanoparticles (AgNPs) 
applied to Triticum aestivum, Brasica juncea and Vespertilio sinensis plants 
increased the length of shoot and root in plants (Mehta et al. 2016).

Small-size chitosan nanoparticles (ChNPs) can be used in agriculture, genetic 
engineering, food industry, environmental pollution control, water treatment, paper 
production and so on. In the conducted studies, it was reported that ChNPs inhibited 
the growth of Fusarium oxysporum in  vitro (Oh et  al. 2019) and Cu-chitosan 
nanoparticles increased germination rate, shoot and root length, number of roots, 
seedling length and wet and dry weight (Saharan et al. 2016).

Silicon dioxide nanoparticles (SiO2NPs) are also used in agriculture. It has been 
reported that these nanoparticles have an important effect on seed germination 
potential in tomatoes and can be used as a fertilizer source in sustainable agriculture 
(Siddiqui and Al-Whaibi 2014). Lack of water in drought conditions in agricultural 
production is an important problem. Hydrogels containing silicon dioxide nanopar-
ticles (SiO2NPs) can help conserve water in agricultural soils (Pathak and Kumar 
2017).

In a study of barley (Hordeum sativum distichum), it was revealed that copper 
oxide nanoparticles (CuO-NPs) reduce the number of chloroplasts but increase the 
size of chloroplast (Rajput et al. 2018).

Titanium dioxide nanoparticles (TiO2-NPs) can be used in nano-agriculture, but 
limited studies on photosynthesis are available (Dias et al. 2018). Abiotic stress fac-
tors in plants such as drought, salinity and heavy metals affect the development, 
germination and some physiological developments in plants. The application of 
TiO2-NPs can be a promising approach in preventing the adverse effects of wheat 
seed germination and cadmium (Cd) stress in plant development (Faraji and Sepehri 
2018).

Due to excessive and irregular use of chemical fertilizers in agriculture, many 
problems have occurred, such as atmospheric and groundwater pollution, decreased 
soil efficiency and loss of biodiversity. For this reason, instead of traditional fertil-
izers, environmentally friendly bio- and nano-fertilizers that tend to increase soil 
efficiency have been obtained with nanotechnology methods. Thus, the increase in 
the quantities of nitrogen and phosphoric compounds in waters (eutrophication) and 
groundwater pollution are prevented (Mukhopadhyay and Sharma 2013).

Nano-structured fertilizers can increase the effective use of plant nutrients 
through mechanisms such as being target-oriented and having slow or controlled 
release. In recent studies, nano-fertilizers have been reported to have the ability to 
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control plant diseases and to increase the rate of seed germination, seedling growth, 
photosynthetic activity, nitrogen metabolism, carbohydrate and protein synthesis 
and also product quality and efficiency (León-Silva et al. 2018; El-Ghamry et al. 
2018; Shinde et al. 2018; Hussein et al. 2019).

Due to the nano size of the particles, their permeation to the plant cells is too high 
and can be effective at very low doses. They increase the benefits of micro and mac-
ronutrients, interacting with plants and causing various physiological and morpho-
logical changes due to their different physicochemical properties. Thus, they can 
increase the photosynthetic efficiency of the plants and achieve higher productivity 
in the unit area. Magnesium hydroxide (Mg(OH)2) nanoparticles help promote seed 
germination and plant growth in corn (Zea mays L.), and therefore such nanoparti-
cles have been expressed to be used as nano-feeders for effective plant 
development.

4.3  Conclusion

With intensive, irregular application of traditional agriculture, enough yield can be 
achieved in the desired product, but natural resources are exhausted simultaneously, 
biodiversity is decreased and ecosystem balance deteriorates due to air pollution, 
water pollution and soil pollution, leading to irreversible problems. With the appli-
cation of excessive agriculture  such as excessive use of natural resources, faulty 
farming practices and unconscious and excessive use of chemical drugs in agricul-
ture, it is inevitable to continue the loss of soil. This situation has become critical to 
global agricultural production. Therefore, the use of nanoparticles in agricultural 
nanotechnology has gained importance. A number of analytical studies should be 
performed to determine and characterize the intake, translocation and intracellular 
biotransformation of nanoparticles in plants, and further studies should be carried 
out to provide adequate information about the interaction between nanoparticles 
and plants.
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5Large-Scale Production/Biosynthesis 
of Biogenic Nanoparticles

Reza Mohammadinejad and G. Ali Mansoori

Abstract
Biogenic nanoparticles are either produced inside the biological entity or outside 
of it. While this has been the interest of many groups of investigators and a more 
widely explored area in nanotechnology, there are very few such processes hav-
ing the potential for large-scale production mostly due to: difficulty to control the 
process, lack of availability of large-scale industrially abundant raw materials, 
lack of their environmental friendliness, and raw material expenses. The present 
chapter defines the process involved in the production of biogenic 
nanoparticles.

Keywords
Biogenic process · Nanoparticles · Large-scale production · Raw materials · 
Environmental friendliness · Biosynthesis

5.1  Introduction

Nanoparticles which are produced through biological processes using fungus, 
microorganisms, other living things, vegetation, etc., are known as “biogenic 
nanoparticles” (BN), also known as biomineralization (Ingale and Chaudhari 2013; 
Akhtar et al. 2013). Provided the process is performed with such biological entities 
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and solvents, which are environmentally friendly it will be in the category of “Green 
Nanotechnology Synthesis.” Of course there is a need to produce nanoparticles with 
close to uniform size and shape (Mansoori et al. 2007). To achieve this, it is neces-
sary to choose the process-appropriate conditions, including temperature, pH, salin-
ity, electrostatics, and possibly environmental pressure. Presently such appropriate 
conditions may be defined by extensive laboratory tests, known as trial-and-error 
tests (Mansoori 2005).

For practical applications of biogenic nanoparticles it is necessary to design the 
strategy for their large-scale production (Vahabi et  al. 2011). They are officially 
named extracellular or intracellular biogenic processes (Akhtar et al. 2013; Ingale 
and Chaudhari 2013). In processes involving extracellular production, the biologi-
cal entity used for biogenic nanomaterials may be recyclable. However, in the case 
of intracellular production, separation of the produced nanoparticles will be a bit 
more difficult to achieve due to the necessity of disruption/killing the biological 
entity by breaking its living structure. Such intracellular cases may not be appropri-
ate for large-scale production due to the lack of reuse of biological entity after 
destruction and production of too much waste.

The known biogenic nanoparticles are metallic nanoparticles, and mostly silver 
nanoparticles (Vahabi et  al. 2011; Mohammadinejad et  al. 2013). Metal ions are 
generally toxic to biological entities. To get rid of the toxicity of the metal ions, 
biological entities go through certain biological detoxification stages causing the 
metal ions to convert to insoluble solid metals through chemical reduction and/or 
precipitation.

5.2  Detoxification Principles

Detoxification is a physiological process to remove toxic substances from a living 
organism. The main reason for organisms (plants, single-celled life forms, etc.) to 
synthesize nanoparticles is their inherent detoxification ability. The main route the 
cell(s) protect themselves from the toxicity of certain soluble ionic species, espe-
cially metal ions, is to convert them into insoluble solid metallic forms through a 
natural reduction process which will end in their precipitation (Fig. 5.1).

While liver in humans and other large animals has the complex multiprocess role 
of detoxification of their bodies, detoxification in organisms may be due to one of 
the following five basic processes (Srivastava 2019):

 (i) Sequestration in biological processes is the action by organism accumulating a 
compound or tissue. Detoxification through sequestration is referred to as the 
conversion of a toxic species (like metal ions) to a nontoxic form (solid metal) 
and its accumulation within (intracellular sequestration) or outside (extracel-
lular sequestration) the cell.

 (ii) Enzyme (catalytic) reduction of the toxic species (like metal ions) to a less- or 
nontoxic form (solid metal).

R. Mohammadinejad and G. A. Mansoori
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 (iii) Ability of the cellular transport mechanisms to restrict entry of the toxic ions 
(like metal ions) into the cell and its reduction to nontoxic element (solid 
metal) upon contact with the outer cell membrane.

 (iv) Activation of energy-dependent uptake and efflux pathways in cells to elimi-
nate the toxic species.

 (v) In certain other cases, nanoparticles production happens in order to meet a 
cell’s requirements for a functional component. Such nanoparticles production 
occurs through oxidation and condensation-association.

The more wide application of biosynthesis of biogenic nanoparticles is for the pro-
duction of silver and gold nanoparticles (AgNP and AuNP). They have found wide-
spread applications in many fields, such as medicine and science and technology 
(Prabhu and Poulose 2012; Mansoori et al. 2010).

5.3  Biosynthesis of Biogenic Nanoparticles

In Table 5.1 we report a collection of biosynthesis of biogenic nanoparticle (BBN) 
processes using vegetation/agricultural products/plants which are reported as of 
now. Vegetation and plants have been shown to be effective in synthesizing silver 
and gold nanoparticles and the amount of reports available in this topic is quite 
large. In 2011, we undertook a research project to synthesize silver nanoparticles 
using Silybum marianum seed extract and we published the results of our research 
in 2013 (Mohammadinejad et al. 2013). We also kept studying biogenic nanoparti-
cles production processes using vegetation/agricultural products/plants. We have 
produced Table 5.1 comparing characteristics and large-scale production potentials 

Fig. 5.1 Intracellular and extracellular detoxifications at the cellular level

5 Large-Scale Production/Biosynthesis of Biogenic Nanoparticles
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(LSPP) of such processes since 2011. Some of the plant species that have been 
employed to synthesize nanoparticles are listed in Table 5.1. This table covers the 
processes introduced since 2012, it is quite large and it highlights the extensive 
amount of research already carried out in this area in the past 7 years.

5.4  Industrial-Scale Production/Biosynthesis of Biogenic 
Nanoparticles

There exists a great deal of processes in the literature for biogenic nanoparticles 
production. However, a limited number of such production schemes are suitable for 
large-scale (industrial-scale) production. Generally, for a process to be suitable for 
scale-up to industrial scale it needs to meet the following criteria:

 (a) The raw materials for the process need to be producible, industrially abundant, 
and available in large scale.

 (b) The raw materials, products, by-products, and wastes must be environmentally 
friendly.

 (c) While the conditions for the process need to be well defined, they need to be 
wide enough to be able to control the process automatically through available 
process-control facilities.

 (d) Economics of the production process must be appropriate for investment in its 
production.

The basic stages of a large-scale production scheme for biogenic nanoparticles 
are shown in Fig. 5.2.

In order to scale up a research laboratory of a process to industrial/large-scale 
production scheme, the principles of process scale-up need to be understood and 
followed.

Fig. 5.2 Basic stages of large-scale biogenic nanoparticles production

R. Mohammadinejad and G. A. Mansoori
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5.5  Process Scale-Up Principles

The goal of scale-up principles is to identify and develop a process that will success-
fully produce a desired product when manufactured at a commercial scale. To suc-
cessfully move from the laboratory scale to the large industrial scale, one must 
understand how size changes impact a number of physical and chemical phenom-
ena. For this purpose, it is customary to build a pilot-plant of the process for which, 
in principles includes all the stages of the industrial scale, but at a fraction of its 
production rate (Fig. 5.3). However, scale-up of biosynthesis of biogenic nanomate-
rials can be challenging with respect to their economics, productivity, and 
reliability.

For fast reactions, the biosynthesis of biogenic nanomaterials (BBN) is usually 
reaction-rate limited and production rate is strongly dependent on reactor size. For 
most, if not all, BBN schemes, only large-sale batch processes are suitable. Thus, 
scale-up parameters need to include proper design of uniform and proper tempera-
ture, pH, and salinity control as well as agitation/mixing of solid-liquid mixture in 
the batch system. Detailed reaction rate data for most of the BBN processes are 
unavailable, which is a challenge for developing correlations for process control 
applications. Unit reliability also needs to be addressed in the design stage of BBN 
large-scale batch reactors.
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Abstract
The continuous use of pesticide-mediated insect control has led to the rise in 
insecticide resistance cases. It has now become a global problem and a matter of 
serious concern. Therefore, more reliable and advanced methods are urgently 
required for the control of insect/pests. Nanotechnology, an interdisciplinary 
field, has revolutionized different sectors of science and technology by introduc-
ing nanoparticles. Nanoparticles can be utilized for enhancing the efficacy of 
insecticides and pesticides in reduced doses. The use of nanotechnology in agri-
culture is less frequent compared to sectors like medicine and pharmacy. In this 
chapter, we give a gist of traditional insect/pest control strategies and discuss the 
potential of nanotechnology as a new tool for insect control.

Keywords
Nanoparticles · Nanotechnology · Pesticides · Nanopesticides · Pests

6.1  Introduction

Biotic and abiotic stresses are the two major components influencing crop losses. 
Drought, temperature, humidity, and salinity are abiotic stresses which influence the 
spread of biotic factors like insects/pests, pathogens, and weeds (Pandey et  al. 
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2017). Among biotic factors, insects contribute significantly to crop loss by compet-
ing with humans and plants for their co-existence in nature. Insects can affect the 
crop at multiple stages of plant growth, which depends upon the life cycle of the 
insect. Starting from seedling to standing/mature crop and further during storage of 
the grains, pests-mediated losses are huge. Farmers spend a huge amount of money 
in plant protection programs to minimize crop losses by pests. Even today, the use 
of pesticides in different combinations is considered to be the primary option for 
pest control. Use of pesticides has several advantages, including high availability, 
fast action, and reliability, but the side effects of pesticides cannot be ignored 
(Damalas 2009). Development of insecticide resistance is an ever-increasing, com-
plicated worldwide problem (Hawkins et al. 2019). Additionally, harmful effects of 
pesticides on nontarget insects and other organisms is a matter of grave concern. 
Transgenic crops expressing insecticidal proteins are another option to control crop 
losses but ironically, this strategy is not very efficient against many species of insect/
pest (Tabashnik and Carrière 2017). Development of alternative strategies for the 
control of insect pests is the need of the hour. Pesticides based on nanotechnology 
could be the promising tool for developing target-specific insect pest management 
methods (Fig. 6.1). The most promising effect of nanotechnology has been seen in 
the case of drug delivery: targeted drug delivery and prolonged/sustained delivery 
of drugs (Patra et al. 2018). A new era has emerged with the discovery of nanomedi-
cines where nanoparticles are engineered to deliver pharmaceutical ingredients (Mu 
et al. 2018).

Fig. 6.1 Schematic 
representation showing the 
specificity of nanoparticles
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6.2  Methods for the Management of Insects/Pests

Different methods for the management of insects/pests can be used based on the 
type of insects in the field and the extent of their infestation. Following are different 
methods adopted for the control of insects/pests in the field:

 (a) Cultural control: Cultural control method is a preventive measure for the 
establishment and outbreak of pests (Dhaliwal et al. 2004). This includes a shift 
in agricultural practices (altering the environment, condition of the host or site) 
from the routine, which negatively impacts the life cycle of pests. Cultivation of 
resistant plant varieties, change in the timing of planting, harvesting, ploughing, 
irrigation, and application of recommended fertilizers are some of the practices 
known to reduce the burden of pests in the field. Further, crop rotation and 
planting of trap crops have also been shown to be effective methods of pest 
management (Hokkanen 1991), (Weisz et al. 1994).

 (b) Mechanical and physical control: This strategy uses mechanical or physical 
devices for reducing the burden of the pest population in a given locality by 
preventing the entry of pest in the area, their trapping and removal from the 
area, directly killing them, or making the environment unsuitable for their prop-
agation. Heat and steam sterilization of soil is used in greenhouses to kill any 
existing stages of pest in the soil. Physical method also includes the proper 
sweeping of the floors and benches, use of screens, barriers, fences, and nets, as 
well as light trapping for the removal of insects (Vincent et al. 2003).

 (c) Biological control: The principle of the biological control method is the utiliza-
tion of various natural enemies (predators, parasites, pathogens, and competi-
tors) of the pests for keeping a check on their population (Jonsson et al. 2008). 
Biological control is often targeted against pests that are not native to the geo-
graphical area. Nonnative pests can be a big threat to crops as no natural ene-
mies are available in the area to control or suppress their population. To control 
their population, natural enemies of the pest population are explored in their 
native place and released in the targeted area after ensuring them to be harm-
less, otherwise. This is a highly regulated process with complete surveillance on 
the introduced biological control agents, as sometimes such agents themselves 
become pests. Several different types of biological control methods have been 
used from time to time and at different places, which has shown to be an effec-
tive insect control strategy (Johnson et al. 1988) (Divya and Sankar 2009).

Another type of biological control method is based on manipulating the repro-
ductive system of insects, for example, Sterile Insect Technique (SIT), which ulti-
mately leads to reduction in pest population (Hendrichs and Robinson 2009; Dunn 
and Follett 2017). Mating of sterile males of targeted pest population with wild-type 
females results in no progeny by the virtue of sterility in the released males. 
Continuous release of sterilized males ultimately leads to decline in the targeted 
insect/pest population. SIT has been successfully used in the control of many insects 
(Scott et al. 2017).
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A recent modification of the traditional sterile insect technique is in the trial 
phase, which uses molecular tools rather than ionizing radiation to render the males 
sterile (Lees et  al. 2015; Wilke and Marrelli 2012). Another biological control 
method is based on an endosymbiont bacterium, Wolbachia, which interferes with 
the normal reproduction of its host insect. The infection of Wolbachia causes femi-
nization, parthenogenesis, male killing, and cytoplasmic incompatibility (CI). CI is 
also called incompatible insect technique (IIT) and has been effectively used for the 
control of several insect pests and disease vectors (Nikolouli et  al. 2018; Zhang 
et al. 2015).

 (d) Chemical control: Pesticides are formulated chemicals to control or com-
pletely destroy insects, fungi, weeds, rodents, and microbes. A large number of 
artificial and natural pesticides are available in the market. Pesticides are very 
effective in killing insects/pests but continuous use of pesticides leads to the 
development of resistance in the pest population besides having negative effect 
on soil structure, fertility, mineral cycles, and soil micro-flora (García-García 
et al. 2016). Pesticides adversely affect nontarget insect/pests and even human 
beings (Le Goff and Giraudo 2019). Pesticides are known to cause several 
deadly diseases in humans, including endocrine disruption, breast cancer, cyto-
toxicity, and reproductive toxicity (Gangemi et al. 2016; Nicolopoulou-Stamati 
et al. 2016). It is advisable to use chemical control methods for the management 
of pest population as a last option, only when the pests cannot be controlled by 
natural methods.

6.3  Nanoparticles as a New Tool for Pest Management

Nanotechnology, an interdisciplinary field, has enormous potential in different areas 
such as medicine, pharmaceutical, and agriculture. The word nano is derived from 
the Greek, meaning “dwarf,” which justifies the word nanotechnology, which 
evolved due to the use of particles with size ranging in nanometers (size of 
1–100 nm) (Bhattacharyya et al. 2010). Nanotechnology is one of the most reliable 
and expanding technologies of the twenty-first century. It has enormous advantages, 
especially in the field of agriculture, which include insect pest management through 
the formulations of nanomaterials-based pesticides and insecticides, development 
of insect pest-resistant crop varieties, and increase in agricultural productivity using 
bio-conjugated nanoparticles (Dimetry and Hussein 2016). Nanoparticles have dis-
tinct physical, biological, and chemical properties associated with extraordinary 
strength and more chemical reactivity.
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6.4  Role of Naturally Occurring Nanoparticles in Insects

There are a lot of naturally occurring nanostructures which meet certain specifica-
tions, but until now they have been neglected (Ehrlich et al. 2008). A very good 
example is ordered hexagonal array of structures in cicada wings, e.g., Psaltoda 
claripennis Ashton and termite, family Rhinotermitidae (Zhang et al. 2006). Many 
studies have shown that the size of nanoparticles varies from 200 to 1000 nm. These 
wing structures have a round shape at the top and there is a protrusion of about 
150–350 nm on the outer side. These features increase the aerodynamic efficiency 
of the insect. Similar nanostructures are also present in compound eyes of some 
insects. Interestingly, the bright colored components present in butterfly wings are 
nothing but nanoparticles. These naturally occurring nanoparticles have been 
reported to be responsible for plant-insect interactions (Gorb and Gorb 2009). Some 
ferromagnetic material is found in the different body parts of some insects which 
are magnetic nanoparticles and act as geomagnetic sensors specifically in social 
insects (Esquivel 2007). Yang et  al. have shown the insecticidal properties of 
polyethylene- glycol-coated nanoparticles which is responsible for almost 80% mor-
tality in Tribolium castaneum due to continuous release of dynamic components 
nanoparticles.

6.5  Nanoparticles Used in Biopesticides Controlled Release 
Formulations

The different types of nanomaterials used are:

 (i) Nanospheres: Active compound is dispersed into the polymeric matrix.
 (ii) Nanocapsules: Active compound is lined by matrix polymer and centered in 

the core.
 (iii) Nanogels: These are cross-linked polymers which are hydrophilic in nature 

and can absorb large amounts of water.
 (iv) Micelles: These are aqueous collection formed by hydrophilic and hydropho-

bic molecules.

6.6  Classes of Nanoparticles

There are many ways to classify nanoparticles based on their chemical composition 
and their properties. They can also be classified based on their morphology, struc-
ture, dimension, and composition. The five major classes of nanoparticles are 
carbon- based nanoparticles, metal-containing nanoparticles (including metal 
oxides), quantum dots, zero-valent metals, and dendrimers, but recent studies have 
mainly focused on carbon-based nanoparticles (carbon nanotubes and fullerenes) 
and metal or metal-oxide nanoparticles (Ag NPs, CuO NPs, TiO2).
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 (i) Carbon-based nanoparticles: These materials have gained significant interest 
in different areas because of their unique structure as well as excellent mechani-
cal, chemical, and optical properties. There are two major categories of carbon- 
based nanoparticles: carbon nanotubes (CNTs) and fullerenes (Khan et  al. 
2017). Carbon nanotubes are graphene sheets which are rolled into a tube, 
which provide structural support as they are almost 100 times stronger than 
steel. These nanoparticles are very unique as they are thermally conductive 
along the length and nonconductive across the tube. Fullerenes are carbon allo-
tropes having sixty or more carbon atoms arranged in a pentagonal and hexago-
nal array in a hollow cage structure. These are commercially very useful because 
of their high strength and electrical and structural properties.

 (ii) Metal-containing nanoparticles: These constitute the largest group of 
nanoparticles, which include oxides such as zinc oxide (ZnO), titanium dioxide 
(TiO2), cerium dioxide (CeO2), copper oxide (CuO), chromium dioxide (CrO2), 
molybdenum trioxide (MoO3), bismuth trioxide (Bi2O3), and lithium cobalt 
dioxide (LiCoO2) (Buzea et al. 2007). These nanoparticles have gained immense 
popularity over the last few years due to their extensive use in food, chemical, 
and biological areas.

6.7  Nanopesticides

Nanopesticides are biologically derived complexes with nanoparticles which are 
designed to be used as pesticides. Nanopesticides consist of organic ingredients 
such as polymers and inorganic ingredients such as metal oxides (Kookana et al. 
2014). Nanoformulation has a significant role in the development of nanopesticides 
by increasing the apparent solubility of poorly soluble active ingredients and releas-
ing the active ingredient in a targeted manner and protecting the active ingredient 
against premature degradation (Kah et  al. 2013). There are many nanopesticides 
which are engineered with useful pesticidal properties and it has been shown to be 
effective against a variety of insects. The salient features which make nanoparticles- 
based pesticide formulation important include increased stability of formulation 
which prevents early degradation, more elimination of toxic substances compared 
to conventional pesticides, improved mobility and higher insecticidal activity due to 
smaller particle size, and larger surface area, which increases their longevity (Shah 
and Wani 2016). The benefits of nanoparticles include better and accurate delivery 
of products as they are designed to transfer particular molecules to a cell or tissue 
according to requirement. These nanoparticles enter into the plant cell by binding to 
some carrier protein or through ion channels (Singh and Lillard 2009). Permeability 
of plant cell wall also plays an important role in this uptake. In spite of its advanta-
geous effect on plants, these nanoparticles are being tested for its phytotoxicity. 
Different studies have reported different effects of these nanoparticles on seed ger-
mination and plant development. For example, it has been shown that nano-ZNO 
particles promote seedling growth of mung and gram beans at a certain concentra-
tion whereas treating castor seeds with silver nanoparticles did not show any effect 
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on seed germination nor on growth of lepidopteran insects on the seeds (Dhoke 
et al. 2011). Localization of nanoparticles in nucleolus or mitochondria, by scan-
ning electron microscopy confirmed their penetration into cell organelles, which 
suggest their use for targeted delivery of pesticides.

6.8  Methods to Develop Nanoparticles for Pest Control

Pesticide encapsulation is essential for its controlled release as well as to minimize 
its toxic properties. There are many chemical and physical methods to develop 
nanoparticles loaded with pesticides. Some of the uses of nanoparticles for pest 
management are described below:

 (i) Pesticide-loaded nanoparticles: There are some nanoparticles which have the 
property of loading different kinds of pesticides such as insecticides, herbi-
cides, fungicides, and nematicides. Different studies have used different tech-
niques to formulate nanoparticles. Crooks et al. have made aqueous suspension 
of nanoparticles which contain an organic active ingredient such as pesticides. 
There have been many insecticides, herbicides, fungicides, aphicides, and 
miticides which are formulated with this technique. In another study, Ishaque 
et al. developed pesticide-coated metal oxide nanoparticles comprising a UV 
photo protective filter. This formulation is really helpful for controlling harm-
ful insects.

 (ii) Insecticide-loaded nanoparticles: Imidacloprid is a novel insecticide encap-
sulated with chitosan and sodium alginate and presents in a low amount in 
soybean plants (Guan et al. 2008). Deltamethrin, a silver nanoparticle conju-
gated to the pyrethroid pesticide, was shown to be effective against arthropod 
vectors such as mosquitoes (Sooresh et  al. 2011). Another nanoparticle, 
Pyrifluquinazon, which has a controlled release feature, was found to be effec-
tive against Myzus persicae (Kang et al. 2012). Recent studies have character-
ized natural insecticides such as polyethylene-glycol-coated nanoparticles 
which were more effective against insect pests compared to essential oils 
(Yang et  al. 2009). Nanogels loaded with cumin and ajwain essential oil 
showed more efficacy against insect pests compared to only oil-loaded 
nanogels.

 (iii) Fungicide-loaded nanoparticles: These nanoparticles were prepared using 
polyvinylpyridine (PVPy) and polyvinylpyridine-co-styrene and were loaded 
with tebuconazole or chlorothalonil fungicides as aqueous dispersions. This 
formulation was shown to be effective against many pathogenic fungi (Liu 
et al. 2003).

 (iv) Nematicide-loaded nanoparticles: Yin et  al. reported the formulation and 
efficacy of Lansiumamide B, a nematicide-loaded insecticide which was pre-
pared using the microemulsion polymerization method (Yin et al. 2012).

 (v) Herbicide-loaded nanoparticles: These nanoparticles have very low phyto-
toxicity on crops and are designed for slow and controlled release of active 
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substances. A study reported by Silva et al. has shown that Paraquat-loaded 
alginate/chitosan nanoparticles can change the release profile of a herbicide 
and its interaction with the soil (Silva et al. 2010). Eventually, herbicide-loaded 
nanoparticles can be applied to reduce the negative impacts caused by herbi-
cides. Glyphosate isopropylamine, a water-soluble herbicide, was prepared 
using a green nanoemulsion system, and it was shown to be effective against 
the weeds creeping foxglove, slender button weed, and buffalo grass (Lim 
et al. 2013). Another nanoparticle loaded with chloroacetanilide herbicide (ala-
chlor) was shown to reduce the degradation of the herbicide (Thompson et al. 
2010).

6.9  Mechanisms of Action of Nanoparticles

Though there is vast data available on the toxicity of nanoparticles, the precise 
mechanisms of action of nanoparticles against insects are not well understood 
(Benelli et al. 2018). Understanding the mechanisms is really important to predict 
the toxicological effects in using these nanoparticles as pesticides. Most of the tox-
icity studies have been done for silver nanoparticles considering the fact that toxic-
ity is highly influenced by size, shape, and charge of nanoparticles (Foldbjerg et al. 
2015). Also, these studies have been largely done on bacterial models or by in vitro 
cytotoxicity assays; very few studies have been done on insects, which opens up 
new avenues for further research (L. Santo-Orihuela et al. 2016). One of the most 
accepted theories about the mechanism of action of nanoparticles is that they pen-
etrate exoskeleton and bind to DNA and proteins, which lead to rapid denaturation 
of organelles and enzymes. Ultimately, disturbance in proton motive force and 
decrease in membrane permeability results in loss of cellular functions, leading to 
cell death. However, the studies done on the mechanism of action of nanoparticles 
on insects/pests are very limited as even today a PubMed search for the mechanism 
of action of nanoparticles against insect/pests retrieves very few articles. Some of 
the research articles showing the possible mechanism of action of nanoparticles are 
summarized in Table 6.1. Hence, there is a need for further research on this aspect 
of nanoparticles.

6.10  Conclusion: Nanotechnology Risks and Regulation

Traditional strategies are insufficient for the control of pests in very large areas. 
Chemical pesticides are very effective but associated with huge toxic effects on 
other animals as well as human beings. Besides, there is always a threat of emer-
gence of pesticide resistance among insect/pests. Nanotechnology and RNAi-based 
pesticides, a relatively recent field, can be an alternative approach for the manage-
ment of insect pests in agriculture without negatively affecting nature. Furthermore, 
combining pesticides with nanoparticles will have more specific and targeted effects 
on pest populations. This will also reduce the burden of pesticides as combining 
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Table 6.1 Current knowledge about the mode of action of nanoparticles against insects

S.No
Tested 
nanomaterials Target insect/pest Mode of action References

1 Nanodiamonds 
coated with 
Neb-colloostatin

Tenebrio molitor Apoptosis of 
hemocytes and 
inhibited cellular and 
humoral immune 
responses

2 Titanium dioxide 
nanoparticles 
(TDNPs)

Helicoverpa armigera Reduction of 
detoxifying enzymes 
such as β-glucosidase 
and carboxylesterase 
and increase of 
glutathione 
S-transferase

Chinnaperumal 
et al. (2018)

3. Ag nanoparticles 
prepared using 
Cassia fistula 
extract

Aedes albopictus and 
Culex pipiens pallens

4th instar larvae 
showed a decrease in 
total protein levels; 
nanoAg also reduced 
acetylcholinesterase 
and α- and 
ß-carboxylesterase 
activities

(Fouad et al. 
2018)

4. Ag nanoparticles 
fabricated using 
salicylic acid and 
3,5-dinitrosalicylic 
acid

Aedes albopictus 4th instar larvae 
showed a decrease in 
total proteins, esterase, 
acetylcholine esterase, 
and phosphatase 
enzymes

Ga’al et al. 
(2018)

5. Ag nanoparticles Drosophila 
melanogaster

Accumulation of 
reactive oxygen species 
(ROS) leading to 
ROS-mediated 
apoptosis, DNA 
damage, and 
autophagy; activation 
of the Nrf2-dependent 
antioxidant pathway

Mao et al. 
(2018)

6. Nanostructured 
Al2O3

Sitophilus oryzae Bind to the beetle 
cuticle due to 
triboelectric, results in 
insect dehydration 
forces, sorbing its wax 
layer by surface area 
phenomena, resulting 
in insect dehydration

Stadler et al. 
(2017)

7. Au nanoparticles 
fabricated using 
latex of Jatropha 
curcas

Aedes aegypti, 
beetles, and 
mealybugs

Triggered trypsin 
inhibition

Patil et al. 
(2016)

(continued)
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Table 6.1 (continued)

S.No
Tested 
nanomaterials Target insect/pest Mode of action References

8. Graphene oxide 
nanoparticles

Acheta domesticus Increase in enzymatic 
activity of catalase and 
glutathione 
peroxidases, as well as 
heat shock protein 
(HSP 70) and increase 
in total antioxidant 
capacity levels

Dziewiecka 
et al. (2016)

9. TiO2 nanoparticles Bombyx mori Upregulation of PI3K 
and P70S6K [mTOR 
pathways]; 4 
cytochrome P450 
genes were 
upregulated; 
20-hydroxyecdysone 
biosynthesis was 
stimulated; reduced 
development and 
molting duration were 
noted

Li et al. (2014)

10. Ag nanoparticles Drosophila 
melanogaster

Loss of melanin 
cuticular pigments, 
reduced activity of 
Cu-dependent enzymes 
(tyrosinase and Cu-Zn 
superoxide dismutase)

Armstrong 
et al. (2013)

11. SiO2 nanoparticles Bombus terrestris Leads to midgut 
epithelial injury in 
intoxicated workers

Mommaerts 
et al. (2012)

12. Ag and TiO2 
nanoparticles

Drosophila 
melanogaster

Loss of progeny and a 
decrease in 
developmental success

Philbrook et al. 
(2011)

13. Polystyrene 
nanoparticles

Insect cells 
(BACULOSOMES®)

Inhibited the enzymatic 
activity of CYP450 
isoenzymes in 
BACULOSOMES®

Fröhlich et al. 
(2010)

14. Carbon black and 
multiwalled 
nanotubes

Drosophila 
melanogaster

Nanomaterials adhere 
strongly to fly body 
parts which leads to 
impaired motor 
functions, resulting in 
insect mortality

Liu et al. (2009)

15. SiO2 nanoparticles Different species, 
with special reference 
to stored product pests

Physio-sorbed by the 
insect cuticular lipids, 
causing major 
damages, followed by 
insect death

Barik et al. 
(2008), 
Debnath et al. 
(2011) and 
Athanassiou 
et al. (2018)
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even a small amount with nanoparticles will have a significantly stronger effect. 
Though the toxic effects of nanoparticles have been studied on some aquatic organ-
isms, not much data is available on the toxicity of nanoparticles on beneficial 
insects. This gives an opportunity to the scientific community for further research 
and validation with the aim of completely harnessing the potential of nanoparticles 
and nanotechnology in the agricultural field (Fig. 6.2).
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Abstract
Nanotechnology is a promising technology in sensing and preventing pollution 
due to its nanosized materials and augmenting agricultural production by detect-
ing microbes, humidity, and toxic pollutants. Photocatalysis is an incredible pro-
cess in nanotechnology to degrade organic pesticides and industrial pollutants 
into nontoxic and beneficiary product. Nanotechnology jumps into the agricul-
tural fields from the lab, achieving the milestone continuously in different ways. 
In the present chapter, focus has been given on nanoparticle synthesis and its 
deployment for sustainable development.

Keywords
Biogenic nanoparticles · Sustainable developement · Green synthesis · Agriculture

7.1  Introduction

The field of nanotechnology, an interdisciplinary area among biology, physics, and 
chemistry with vast variety of technical features, covers fabrication, characteriza-
tion, and handling of nanoscale structures and materials. Research related to nano-
technology draws increasing attention due to its good as well as bad impacts on 
numerous areas like environment, technology, agriculture, and medicine (Seabra 
and Duran 2010; Zhang et al. 2011; Duran and Seabra 2012a; Kumar et al. 2017a, 
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b, 2018; Vishwakarma et al. 2017). An eminent emerging field in nanotechnology is 
nanobiotechnology which implicates various research fields of proficiency like biol-
ogy, chemistry, physics, engineering, medicine, and material science (de Lima et al. 
2012; Duran and Seabra 2012b).

Agriculture is an essential profession in every part of the world. There are a num-
ber of professional farmers doing the agriculture in their old traditional methods to 
satisfy the human and animal needs. On the other hand, the growing population and 
their need for food are increasing day by day, but the limited arable land to produce 
larger amount of foods is difficult, and the pressure on the natural source will 
increase (Wheeler and von Braun 2013). Besides, a number of threats will arise 
while farming which includes insufficient minerals and nutrients, harmful patho-
gens, natural disaster, etc. Similarly, the innovative technologies also increase paral-
lelly to support the farming by reducing their risk by giving latest machines, 
vehicles, nutrition supplement, and pesticides. In this ladder, nanotechnology plays 
the incredible part to enhance the productivity of the foods drastically because of its 
robust applications (Nair et al. 2010, Ghormade et al. 2011). Currently, the biogenic 
nanoparticles have given us a number of new ways to develop agricultural product 
in the eco-friendly manner to limit the plant diseases (Navrotsky 2000, Hu et al. 
2006, Moonjung et al. 2010).

One of the noteworthy activities of the nanotechnology is the antimicrobial activ-
ity. Harmful plant pathogens are majorly responsible for the agricultural loss, 
(Pimentel 2009) in that $45 billion loss universally is due to fungi. This is because 
of the ability of the microbe to damage the plant at any parts it adheres with 
(Fernández-Acero et  al. 2007). In order to avoid the adherence of the microbes, 
there should be the requirement of its resistance. For that nanoformulation is pio-
neer agent to genetically modified plants to act against the pathogens and pests 
(Ragaei and Sabry 2014). This is because the nanosized particles improve the 
enhancement and attachment with the plant surface and reduce the spillage (Chen 
and Yada, 2011).

Universally, various organic and inorganic contaminants from industrialization 
could play a major role in water pollution, and pollution and scarcity of water affect 
the livelihood of aquatic organisms (Anjum et al. 2016). In addition to that, it is too 
difficult to identify the need of purification process in water which was elevated 
around the world (Zhang et al. 2016). Detection, monitoring, and remediation of 
pollutants could be influenced through nanotechnology. These applications can be 
achieved by the production of engineered nanoparticles (NPs) (<100 nm). Chemical 
reaction will convert the harmful pollutants into harmless chemicals. For example, 
a dangerous pollutant which is commonly seen in industrial wastewater, namely, 
trichloroethene, can be catalyzed and treated by nanoparticles (Nutt et al. 2005). In 
addition to that, nanotech for hazardous waste cleanups is done with nanoscale 
material which shows enormous difference. Nanomaterials can easily penetrate 
them by means of their size, and engineered coating lets them suspend in 
groundwater.

Furthermore, we could treat wastewater in an exact and accurate manner by 
means of nanomaterials which have the capacity to deliver clean and affordable 
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water treatment technologies. At present, removal and degradation of water pollut-
ants through nanoscale adsorbents and catalysts is an emerging one. Application of 
biogenic nanomaterials leads wastewater treatment as an escalating area of research.

Presently, there is an augmenting need to evolve sustainable, reliable, and eco- 
friendly procedures to fabricate nanoparticles with broad scope. Biogenic nanopar-
ticles (NPs) synthesized via nanobiotechnology-related processes have the potential 
to carry hygienic manufacturing technologies. This latest technology can remark-
ably decrease the contaminants in the environment and danger to humans due to the 
usage of poisonous solvents and chemicals. A wide range of bioactive compounds, 
primary and secondary metabolites which enables the plants and microbes to act as 
bio factories to fabricate NPs.

7.2  Nanoparticles and Its Classification

The NPs have less than 100 nm size in at least one dimension [1D] with its specific 
chemical (Parashar et  al. 2009), physical, optical (Li and Du, 2003), biological 
(Schlorf et al. 2011), photoelectrochemical (Mohanpuria et al. 2008), mechanical, 
electronic, electrical (Krumov et  al. 2009), and magnetic (Osterloh et  al. 2005) 
properties which differ from their bulk materials because of the distinctive and note-
worthy characteristics that are determined by its monodispersity, size, and shape 
(Fig. 7.1).

Deducing the size of NPs results in one-dimensional, two-dimensional, or three- 
dimensional confinements which determine the physical properties of NPs by accel-
erating the surface energy and surface atoms in numbers and decreasing the 
imperfections in fabricated particles (Fig. 7.1). Surface-enhanced Raman scattering 

Fig. 7.1 Classification of nanoparticles (NPs)
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(SERS), surface plasmon resonance (SPR), and quantum size result in semiconduc-
tor particles, and also the outstanding paramagnetic characteristics of magnetic NPs 
disclose that these NPs have been ideal for the construction of next-generation 
industrial and scientific instruments (Akbarzadeh et  al. 2009; Narayanan and 
Sakthivel, 2010; Rong et al. 2010). The NP synthesis can have superior control over 
the particle distribution, purity, size, surface morphology, quantity, and quantity by 
following ecological friendly processes which have been assessed as a challenge 
(Fig. 7.1). In addition, special focus is granted to monodispersing and steady parti-
cle formation. Due to the size distribution and shape of the NPs, it is having its own 
property. Moreover, nanomaterials (NMs) act as a link among molecular structures 
and bulk scale materials (Daniel and Astruc, 2004).

Typical shapes can be developed such as rods, spheres, hexagons, pentagons, 
particles, triangles, cubes, and wires (Fig. 7.1).

7.3  Different Methods of Synthesis of NPs

7.3.1  Green Chemistry in Fabrication of Nanomaterials/
Nanostructures

There are several naturally available bionanostructures or biotemplates like DNA, 
RNA, microtubules, flagella and S-layer of bacteria, viral capsid, proteins, and 
amino acids that showed many advantages when compared with chemically consis-
tent carbon nanotubes or other solvents in the nanowire synthesis because of the 
presence of different functional groups on the surface intensively. Moreover, there 
is a probability to manipulate their chemistry of exposure with the help of genetic 
engineering (Zheng et al. 2004; Hinds et al. 2006; Wang et al. 2012). Following by 
millions of years of evolution, biological bodies have attained optimum develop-
ment for the biogenic synthesis of NMs and conduct ideal biochemical pathways 
and also act as templates to make nanosized structures/materials when compared 
with man-made systems.

The nanostructures and NMs can be procured according to our need by biologi-
cal heterogeneous techniques. They can be applied in a broad range of applications 
from removal of dye in wastewater to drug delivery (Sadighi et al. 2012). As it is not 
a fully inspected research zone of nanobiotechnology, the futuristic viewpoint of 
functional nanostructures and nanomaterials production will be mainly based on 
biotemplate-mediated systems, valuable and environmentally benign (Marchiol, 
2012).

7.3.1.1  Biogenic NPs
In the current years, “green nanotechnology” has captivated much attention due to 
its probability to mitigate or eradicate toxic substances. Biogenic nanomaterial syn-
theses like nanoparticles, nanorods, nanowires, and nanotubes are assessed eco-
nomically as a valuable substitute to produce nanomaterials for various applications. 
It proves brand new potentials and beneficial functionalities for the biological 
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entities with immense applications in diverse field of science and technology 
(Krumov et al. 2009; Yang et al. 2009).

The green synthesis involves biological resources such as plant’s extract, biode-
gradable waste, and microorganisms like bacteria, algae, fungi, virus, and yeast as a 
reducing agent, and it is referred to as “bionanofactories,” “biological factories,” 
“nanofactories,” or “green factories.” These are eco-friendly, cost-effective, effec-
tual, structured exclusively, and naked, having metal uptake with high potential 
(Sarkar et al. 2012; Cai et al. 2011; Honary et al. 2012).

By coating biomolecules on the NP surface, the NP becomes biocompatible as 
compared to the NPs synthesized by physical and chemical methods (Mukherjee 
et al. 2001; Hakim et al. 2005) (Fig. 7.2).

Our main motive is to highlight the biogenic synthesis of NPs, as this approach 
is advantageous in term of cost effectiveness, alternative for toxic solvents/chemi-
cals, eco-friendly, can manufacture NPs in a relatively less time period, sustainable, 
biocompatible, and can provide excellent control on characteristics and its immense 
application. Biogenic NPs can be synthesized by using bacteria, yeast, fungi, plants, 
etc. (Fig.  7.3). Furthermore, unicellular/multicellular organisms can produce the 
NPs intracellularly and extracellularly (Figs. 7.4 and 7.5). Several microbes have 
shown to manufacture NPs biologically with the help of NADPH-dependent reduc-
tase enzymes, which reduce the metallic salt solution into NPs via electron shuttle 
enzymatic metal reduction process (Bhawana and Fulekar, 2012).

Numerous microbes like bacteria (Stephen and Macnaughtont, 1999; Shivaji 
et al. 2011), yeast (Dameron et al. 1989; Kowshik et al. 2003), fungi (Syed et al. 
2013), actinomycetes (Hassan et al. 2018), plant extracts (Akhtar et al. 2013), and 
biodegradable waste materials (Kanchi et  al. 2014) acted as ideal progenitors to 
fabricate NPs with broad applications.

Fig. 7.2 The types of NP synthesis methods
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7.3.1.1.1 Microbial Synthesis of Nanoparticles
To synthesize nanoparticles, microorganisms have been used because they are easy 
to handle, need less safety maintance, can grow in low cost medium such as cellu-
losic wastes or wastelands and can synthesize nanoparticles by adsorbing the metal-
lic ions and reducing them to nanoparticles with the help of enzymes (Kumar et al. 

Fig. 7.3 The mechanism of biogenic NP synthesis

Fig. 7.4 The mechanism intracellular synthesis of NPs
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2014; Luo et al. 2014). Depending on the locus, nanoparticle synthesis by microbes 
can be intracellular and extracellular. Mechanism behind intracellular microbial syn-
thesis of NPs is electrostatic attraction (i.e., movement of certain ions into negatively 
charged cell wall in company of positively charged metals and get dispersed into cell 
wall whereas the toxic metals convert into nontoxic metal NPs by the enzymes in the 
cell wall) (Fig. 7.4). Mechanism of extracellular microbial synthesis of NPs entails 
enzymes produced by various prokaryotes or fungus such as hydroquinone or nitrate 
reductase which transforms the metallic ions to metallic NPs (Fig. 7.5). A related 
mechanism was identified in Rhodomonas capsulate for gold NP synthesis (Pacioni 
et al. 2015; Khandel and Shahi, 2016). While in case of transforming the metals into 
volatile matters, the microbes perform certain detoxification mechanisms like vola-
tilization or metal binding and vacuole compartmentalization.

Under stress condition of metals, the microbes execute different mechanisms to 
remove the toxic heavy metals. Toxic metallic ions are reduced into nonmetallic ions 
by entailing active efflux reaction through cell membranes, and the nontoxic metal 
ions get cumulated inside the cells. Heavy metals such as silver, lead, gold, nickel, 
etc. are intruded through ion channels, ion pumps, endocytosis, lipid permeation, or 
transport using carrier (Issazade et  al. 2013). Small ionic binding molecules like 
siderophores (chelating agent) chelate heavy metals by conducting absorption and 
aid in transport from the microbial cell (Kumar et al. 2017a, b). Molecules such as 
metallothioneins (MTs), a low molecular weight protein rich in cysteine (Gomathy 
and Sabarinathan, 2010), or glutathione, a derived peptide heavy metals (i.e., phyto-
chelatin) (Xu et  al. 2014), are extracted from E. coli, Synechococcus sp., 
Cyanobacterium, and Pseudomonas putida which perform metal detoxification.

Fig. 7.5 The mechanism extracellular synthesis of NPs
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7.3.1.2  Bacteria-Based NP Synthesis
In recent years, NP production from bacteria has extended comprehensively because 
of its vast applications. According to the studies, the reports have shown that many 
bacteria can effectively uptake and reduce the metallic ions as well as facilitate 
either reduction, biosorption, or oxidation of metal ions. The NP synthesis may be 
of intracellular or extracellular which depends on the bacterial species (Fig. 7.4 and 
7.5). Adversely, there is a limit for accumulation of NPs in the bacteria. While cross-
ing the limit, the NP load becomes toxic to the bacteria (Deepak et al. 2011). This 
was the first evidence of NP fabrication from bacteria. Pyramidal and hexagonal 
silver nanoparticles (AgNPs) up to 200 nm were produced by Pseudomonas stutzeri 
AG 259 isolated from silver mine (Table 7.1) (Klaus et al. 1999).

AgNPs were fabricated using many bacteria which include E. coli, Staphylococcus 
aureus, Klebsiella pneumoniae, Bacillus subtilis, Candida albicans, Lactobacillus 
acidophilus, and Enterobacter cloacae by using silver nitrate at the concentration of 
10−3 M as a reducing agent. K. pneumoniae, E. coli, and E. cloacae were detected 
as effective among other organisms for AgNP production extracellularly (Fig. 7.5) 
(Minaeian et al. 2008).

Klebsiella pneumoniae produced selenium nanoparticles (SeNPs) with average 
size of 245 nm using selenium chloride, and the SeNPs were procured from the 
bacteria by sterilizing it for 20 min at 17 psi or 121 °C (Table 7.1) (Fesharaki et al. 
2010).

Sunkar and Nachiyar (2012) reported about the ability of Bacillus species to 
lessen silver and fabricated NPs extensively in the range of 10–20 nm in size.

As compared to the bulk gold, gold nanoparticles (AuNPs) show high chemical 
reactivity. Correa-Lianten et al. (2013) fabricated AuNPs by Geobacillus sp. strain 
ID17, a thermophilic bacterium and exposed to Au3+ ions. It was identified and iso-
lated from Deception Island, Antarctica. This reaction was mediated by enzymes 
and NADP as cofactor (Table 7.1). Cadmium sulfide nanoparticles (CdSNPs) in the 
range of 12 nm formed after the reduction of cadmium sulfate solution by Serratia 
nematodiphila which was collected and isolated from the effluent of a chemical 
company. The CdSNPs exhibited antibacterial property against Klebsiella plantic-
ola and Bacillus subtilis (Table 7.1) (Malarkodi et al. 2013).

7.3.1.3  Fungi-Based NP Synthesis
Filamentous fungi have exclusive competency over other microbes like algae and 
bacteria, as they are highly resistant to metals and have bioaccumulation profi-
ciency. These are favorable in the viability count, biomass handling, and scale-up 
and downstream processing. They have discharged the enzymes extracellularly 
making them easily suitable for large-scale production (Fig. 7.5). The shape, size 
distribution, and biochemical composition of the NPs are regulated by the bioactive 
compounds.

Itajahia species, a basidiomycetous fungus, acts as a stabilizing polymer. Rod- 
shaped ferrous sulfide nanoparticles (FeS NPs) in the size of 200 nm were synthe-
sized using a polymer of Itajahia species in addition to FeSO4 solution and exposed 
to stirring under nitrogen atmosphere. Surprisingly, it devalued lindane 
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(γ-hexachlorocyclohexane), an organochlorine pesticide and a persistent organic 
pollutant (Table 1) (Paknikar et al. 2005).

7.3.1.4  Algae-Based NP Synthesis
Algae, a photosynthetic eukaryote and an oxygenic aquatic microorganism, have 
the property of bioaccumulation of heavy metals inward and outward. This charac-
ter manifests algae as an inexhaustible raw source for the synthesis of NPs (Castro 
et al. 2013). Numerous studies have opened the secret that biological molecules in 
the cell wall of various seaweeds act as catalyst in which the precursor metal salt 
source gets reduced into nucleated NPs (Mahdavi et al. 2013; Kumar et al. 2013), 
whereas huge amphiphilic biomolecules direct and govern the NPs growth (Stalin 
Dhas et al. 2012).

Spirulina platensis, a blue-green algae, produced AuNPs in which they have 
absorbed Au ions and manufactured AuNPs intracellularly especially assembled in 
the vacuoles by involving some bioactive molecules in the metabolism of fungal 
cells such as 3-glucan binding proteins, glyceraldehyde-3-phosphate dehydroge-
nase, and ATPases (Table 7.1) (Fig. 7.4) (Suganya et al. 2015).

Fucoidan, a polysaccharide secreted from the cell wall of marine brown algae 
like Fucales, Dictyotales, Laminariales, Desmarestiales, and Chordariales, pos-
sessed whitening agent, antiaging compound (Fitton et al. 2007), and few pharma-
cological activities like antitumor (Li et  al. 2008), antiviral, anti-peptic (Shibata 
et  al. 2003; Yang et  al. 2006), anti-proliferation (Teruya et  al. 2007), anti- 
inflammation, and anticoagulant (Cumashi et al. 2007). Therefore, this has proven 
to be a valuable alternative to the hazardous old physical and chemical methods 
(Soisuwan et al. 2010).

Ecklonia cava, a marine brown alga, was exploited to produce spherical- and 
triangular-shaped pure AuNPs in the range of 30 ± 0.25 nm at 80 °C within 1 minute 
and were employed with biomolecules that contain hydroxyl group, primary amine 
group, and few stabilizing functional groups. Notably, they were biocompatible 
with the human keratinocyte cell lines (Table 7.1) (Venkatesan et al. 2014).

A recent study reported that Ulva armoricana sp. green algae having ulvan 
which is a sulfated polysaccharide was investigated for the first time as it is recog-
nized as a stabilizing and reducing agent for the fabrication of AgNPs. Ulvan would 
be a promising alternative for citric acid as it’s a natural stabilizer for AgNPs. 
Besides, it will serve as an advanced material to prepare antimicrobial compounds 
in the field of cosmetics and biomedicine (Table 7.1) (Massironi et al. 2019).

7.3.1.5  Yeast-Based NP Synthesis
Yeast, a single-celled microorganism, possesses many advantages over bacteria due 
to their mass fabrication of NPs. It is very easy to handle in laboratory circum-
stances, and they synthesize various enzymes because of their rapid growth by con-
suming simple nutrients (Dameron et  al. 1989). During log phase of its growth 
cycle, a yeast strain MKY3 resistant to silver in which the culture tolerated up to 
0.8 mM of silver and synthesized AgNPs (silver chloride nanoparticles) in the range 
of 2–5 nm extracellularly in high quantity without any loss in the cell viability and 
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recovered using uncomplicated downstream processing (Kowshik et al. 2003). Also, 
the fabrication of circular-shaped Ag/AgCl-NPs (silver/silver chloride nanoparti-
cles) in the range of 2–10 nm assisted by yeast strains has been shown which has 
high resistivity against Gram-positive Staphylococcus aureus and Gram-negative 
Klebsiella pneumoniae. Hence, it is highly significant in biomedical field (Table 7.1) 
(Eugenio et al. 2016).

Both yeast magnetic bionanocomposite (YB-MNP) and magnetite nanoparticles 
(MNP) synthesized by using the biomass of yeast which procured from the ethanol 
industry. These magnetic materials can detach mixed used motor oil (MUMO), new 
motor oil (NMO), and Petroleum 28 °API (P28API) from water applying the ASTM 
F726–12 method (Debs et al. 2019).

7.3.1.6  Plant-Based NP Synthesis
It renders a one-step biofabrication process. Plants have high preferences to synthe-
size NPs as it is renewable, biocompatible, and free from toxicity, and it supplies 
natural stabilizing agents to the NPs readily.

Contrary to classical material science procedures which need nonaqueous sol-
vents, high pH, and temperature, the biological approaches typically permit the 
reactions to begin at ambient pressure, temperature, and extremely low pH val-
ues.  Studies have shown  the important role  of hydroxyl and carboxyl groups of 
proteins like functional proteins (Mms6 protein in magneto tactic bacteria), 
enzymes, and few intracellular polypeptides (photoheating), beside polysaccharides 
(starch) in the transition of some metal ions into their NPs (Fig. 7.4) (Faramarzi and 
Sadighi 2013). Extracts of plants and its parts like leaf, stem, latex, root, and seed 
have been utilized to fabricate NPs as it acts as reducing/capping agents (Yallappa 
et al. 2015).

Using single-pot green method, the spherical-shaped gold nanoparticles (AuNPs) 
in the range of 20–50 nm were fabricated in the first time using Croton caudatus 
Geisel extract by deducing chloroauric acid (HAuCl4). The polyphenols, a phyto-
chemical which is present in the extract, act as an ideal reducing agent for gold, and 
the AuNPs show high free radical scavenging property (Table  1) (Kumar et  al. 
2019).

Silver nanoparticles (AgNPs) were synthesized using the neem extract (NE) and 
also the combinational extracts of Neem, Onion, and Tomato (NOT) at pH of 5, 7, 
and 9. The phytochemicals such as flavonoid and terpenoid were as reducing and 
capping agents which were proven by the FTIR results. Also, it has greater potential 
for drug delivery, cosmetic products, cryogenics, food storage, biosensor, and dental 
materials. The AgNPs synthesized using NOT extract employs as an efficient drug 
material against Staphylococcus aureus, a Gram-positive bacterium (Table  7.1) 
(Chand et al. 2019).

7.3.1.7  Biological Particle-Based NP Synthesis
Bioparticles like proteins, vitamins, virus, enzymes, and peptides could act as a 
source to fabricate NPs. Cowpea mosaic virus and cowpea chlorotic mottle virus 
have been exerted to mineralize the inorganic materials (Douglas and Young, 1998; 

N. Kumar et al.



111

Douglas et al. 2002). Crystalline and sulfide nanowires have been mineralized by 
tobacco mosaic virus (TMV) (Shenton et al. 1999). Peptides are efficient in nucleat-
ing the nanocrystal growth, whereas it was authenticated from the integrated screen 
and identified on the M13 bacteriophage surface (Mao et al. 2003).

7.3.1.8  Biodegradable Waste-Based NP Synthesis
Our environment acts as a treasure of waste substances especially food wastes. 
However, it can be exploited for the different NP production, as its cell wall has 
various organic compounds like polysaccharides, dietary fibers, carotenoids, phe-
nols, flavonoids, vitamins, and essential oils (Heim et al. 2002; Kim et al. 2012) 
which function as templates.

In a study, extract of mango peel has produced monodispersed AuNPs in the 
range of 6.03 ± 2.77 to 18.01 ± 3.67 nm in size. These were examined for toxicity 
on human’s fetal lung fibroblast cells and on African green monkey’s kidney cells 
by treating it for 24  h at various concentrations including 0, 20, 40, 80, and 
160 μg mL−1 and also showed no toxicity even at high concentration (160 μg ml−1) 
of mango peel extract (Yang et al. 2014).

Wine industries generated huge amount of grape waste which is actually a raw 
source of biologically organic molecules and reduced the metals into spherical-
shaped AgNPs with average size of 25 to 35 nm and exhibited antibacterial activity 
for Gram-positive and Gram-negative bacteria (Xu et al. 2015) (Table 7.1).

The eggshell membrane (ESM) of chicken is one of the nature’s bonus, which is 
not edible and used for the fabrication of AuNPs with fluorescence via one-step 
process under optimum conditions (Devi et  al. 2012). It has amino acids which 
include alanine, glycine, and uronic acid and glycoproteins like collagen (Arias 
et al. 1991) which employed as a template for the production of AuNPs (Devi et al. 
2019).

Custard apple or Annona squamosa belongs to Annonaceae family which has 
anticancer, antimicrobial, medicinal, and insecticidal properties (Dwivedi and 
Gopal, 2010; Madhumitha et al. 2012). It is edible, and the peels were considered as 
waste; however, the peels consist of hydrophilic hydroxyl and ketone groups which 
actually account for the transition of silver ions into AgNPs, and these groups offer 
stability by establishing thin layer on the surface of NPs (Kumar et  al. 2012) 
(Table 7.1).

7.4  Factors that Impact the Synthesis of Nanoparticles

The synthesis of nanoparticles is influenced by various physiochemical parameters. 
Factors that have been reported for green synthesis of nanoparticles were size, 
shape, and reaction rate. Control of shape and size are the major pivotal challenges 
for the biosynthesis of nanoparticles.
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7.4.1  Impact of pH

The solution’s pH is one of the deciding factors for nanoparticle formation of diverse 
size, shape, and bio-reduction rate (Armendariz et al. 2004). Even in various plant 
extracts taken from different parts of the same plant may have various pH values. 
Hence, optimization is indispensable to obtain the ideal NP synthesis. The effect of 
pH in the range of 1–11 has been shown in the AgNP synthesis from the bark extract 
and powder of Cinnamomum zeylanicum (Sathishkumar et al. 2009). At basic/high 
pH, high dispersed tiny spherical nanoparticles were found in large quantity because 
the Ag (I) complexes in high numbers can bind with plant extract and nucleate indi-
vidually from many NPs with small diameter, whereas at acidic/low pH, big ellip-
soidal nanoparticles were found in small quantity.

7.4.2  Impact of Temperature

Temperature also plays a prominent role that determines the size, rate of reaction, 
and shape. AgNPs were synthesized from the bark extract of Pinus eldarica and 
observed the decline in size, whereas the sharpness increased in absorption peak 
with the increased temperature which includes 25 °C, 50 °C, 100 °C, and 150 °C 
(Iravani and Zolfaghari, 2013). In a study, the synthesis of NPs gets enhanced with 
the increase in temperature and reaction rate (Dwivedi and Gopal, 2010; Philip 
2009).

In a comparative study, synthesis of bimetallic Au-Ag NPs involved the reduc-
tion of gold and silver ions by the leaf extract of Anacardium occidentale from 
lower to higher temperature to attain the optimum conditions for the synthesis. 
More extract was needed at lower temperature for the stable NP synthesis. At 
100 °C, 0.6 ml of extract was needed for the synthesis, whereas at 27 °C, 2.5 ml of 
extract was needed for the synthesis. Reduction takes place at high temperatures 
which lead to the synthesis of large-sized stable NPs (Sheny et al. 2011).

7.4.3  Impact of Plant Extract Concentration

Depending on the concentration of plant extract, the rate of reaction, the shape, and 
the size of NPs can be determined. The tansy fruit extract (Tanacetum vulgare) with 
different concentrations such as 0.5  mL, 1.0  mL, 1.8  mL, 2.8  mL, 3.8  mL, and 
4.8 mL as well as Chenopodium album leaf extract was used for the AgNP and 
AuNP synthesis and observed the rise in absorption peaks with decreased particle 
size while increasing the extract concentration (Dwivedi and Gopal, 2010; Dubey 
et al. 2010). In the synthesis of AgNPs by using the leaf extract of Coleus amboini-
cus with multiple concentrations like 0.5 mL, 2 mL, and 4 mL, the particle size and 
the surface plasmon resonance (SPR) bands were declined with the increment in 
extract concentration, and it was proved by HR-TEM analysis (Narayanan and 
Sakthivel, 2011).
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7.4.4  Impact of Metal Ion Concentration

To determine the size, shape, and reduction rate of NPs, metal ion concentration 
also plays a pivotal role. AgNPs and AuNPs were synthesized using the extract of 
tansy fruit with diverse concentrations such as 1–3  mM.  They reported that the 
absorption peak was broadened while increasing the concentration of silver ions 
from 1 mM to 2 mM. Larger size of AgNPs was found at higher concentration of 
metal ion. By comparing AuNPs and AgNPs at high metal ion concentration, the 
AuNPs had larger size shown by TEM images (Dubey et  al. 2010). Similarly, 
Dwivedi and Gopal in 2010 synthesized AgNPs and AuNPs from the leaves of 
Chenopodium album. They have noticed that the particle size and absorbance peak 
have increased with increase in metal ion concentration, whereas at low metal ion 
concentration, the synthesis rate as well as particle size and absorbance peak was 
observed to be slow.

7.4.5  Impact of Reaction Time

The virtue of biogenic nanoparticles synthesis also relies on the reaction time/incu-
bation period which greatly holds the yield, size, shape, stability, and optimum syn-
thesis of NPs. AgNPs were synthesized with 5 h of incubation period from the leaf 
extract of Capsicum annuum which were in spherical, 10 ± 2 nm, and the diffraction 
ring evinced that the NPs were polycrystalline whereas the size of the NPs got 
increased to 25 ± 3 nm and 40 ± 5 nm at 9 h and 13 h of incubation time, respec-
tively (Li et al. 2007). In 2010, Dubey et al. synthesized AgNPs and AuNPs from the 
extract of tansy fruit by giving starting incubation time of 10 min and then observed 
the increased sharpness in the absorption peak while increasing the incubation 
period for both AgNPs and AuNPs. To fulfil the nucleation process and to stabilize 
the NPs, Veerasamy et al. (2011) have reported that 60 min is the ideal incubation 
period for the extract of mango leaf to synthesis AgNPs.

7.4.6  Capping Agents

Capping agents has a salient role in the synthesis of NPs. Both Gittins et al. (2000) 
and Liu et al. (2005) reported that it was used to stabilize and functionalize the NPs. 
Moreover, it imparts functional properties by governing the size and morphology 
and prevents aggregation by protecting the surface. Because aggregation reduces 
the interfacial free energy, particle reactivity, and specific surface area, hence, it is 
extremely essential to strengthen the stability of the NPs for its overall life span, 
storage, and transportation.

To alter the NPs with desired size and shape, several surfactants were used. The 
commercial surfactants were onerous to remove and degrade, altering the NPs phys-
ically and chemically, and occupy vital mass fraction (> 50%) of nanoparticle sys-
tem as well as dangerous to the environment (He and Zhao 2007; Stubbs and Gilman 
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2007). While looking at the limitations of these chemicals, there is an immediate 
need to employ biocompatible (i.e., hydrophilic, nontoxic, and non-immunogenic), 
eco-friendly stabilizing agents/green capping agents such as vitamins (B, C, D, K), 
enzymes, polysaccharides, citric acid, silica, and phytochemicals including poly-
phenols and biodegradable polymers like chitosan, cellulose, polyethylene glycol 
(PEG), and polylactides (PLA). In this chapter, some of them have been discussed 
with their potent role.

7.4.6.1  Green Capping Agents
It has predominant importance with properties such as renewable, efficient, effec-
tive, nontoxic, and inexpensive and can be applicable for diverse NPs. For instance, 
amino acids can act as stabilizing agents as well as reducing agents. Currently, it is 
grabbing an increased attention amidst the scientific community.

7.4.6.2  Polysaccharides
Polysaccharides belong to the class of linear/branched polymeric carbohydrates 
whose molecules consist of repetition units of either monosaccharide (glucose, 
fructose, galactose) or disaccharide (sucrose, lactose) connected by glycosidic 
bonds. As it is cheap, stable, harmless, hydrophilic, and biodegradable, it is one of 
the best capping agents for NPs. Toxic solvents can be eliminated by using water as 
a solvent to synthesis NPs (Akhlaghi et al. 2013; Duan et al. 2015). In addition, it 
speeds up the rate of sol-gel process due to their catalytic reaction (Boury and 
Plumejeau, 2015). AuNPs which are spherical, ~15 nm in size, were synthesized 
using water as solvent and organic honey as reducing/stabilizing agents. In honey, 
the proteins act as capping agents, whereas the fructose acts as reducing agent 
(Philip, 2009).

Dextran is a polycationic soluble carbohydrate which consists of more glucose 
molecules with varied lengths of chains. It is nontoxic, hydrophilic, efficient, and 
utilized as capping agent for several metal NPs (Virkutyte and Varma, 2011).

7.4.6.3  Carboxymethyl Cellulose (CMC)
It is one of the most available polysaccharide polymers, biocompatible and renew-
able, and can be altered facile into sodium carboxymethyl cellulose (CMC) by 
exchanging the native group (CH2OH) with carboxymethyl group (-CH2-COOH) in 
the glucose unit. Nanomaterials stabilized with CMC are persistently acquiring sig-
nificance due to their distinctive properties (e.g., highly sensitive, low toxicity) in 
many technologies like water and land remediation and biological and medical 
applications such as biolabeling, antimicrobial coatings, biomedical devices, and 
food packaging (He et al. 2007, 2009). CMC is not capable to synthesize PdNPs, 
PtNPs, and AuNPs because at room temperature, noble metals do not chelate with 
carboxyl groups (Nadagouda and Varma, 2007).

7.4.6.4  Polyethylene Glycol (PEG)
It has gained much recognition as it is nontoxic, hydrophilic, and inexpensive. Its 
character can be changed by tuning the molecular weight (Ma et al. 2008; Chen 
et al. 2005). In 2008, Nadagouda and Varma synthesized metal NPs like Pt, Ag, and 
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Fe and stabilized simultaneously with PEG by using water as solvent. At room tem-
perature, they mixed suitable aqueous metal salt solution with PEG by assisted 
microwave method at 280 psi for 1 h at 100 °C. Such technique does not need reduc-
ing agents/surfactants, so that it did not create any hazardous wastes. This can be 
suited for diverse applications.

7.5  Applications

7.5.1  Agriculture

Nowadays a number of researchers use nanotechnology as a tool to eradicate the 
harmful pathogens and pest from the agriculture. In the scenario, silver nanoparti-
cles synthesized by Abdelmalek and Salaheldin (2016) act against Penicillium digi-
tatum, Alternaria citri, and Alternaria alternata which are the citrus phytopathogenic 
fungi. Zinc oxide nanoparticles were observed to act against Fusarium oxysporum 
and Aspergillus niger (Patra et al. 2012). In Central India, F. oxysporum, F. equiseti, 
and F. culmorum, which were the most harmful fungi for crops, were eradicated by 
the nanoparticles from copper (Bramhanwade et al. 2016). In addition to that, 91% 
of Psilocybe cubensis and 69% of Pseudomonas syringae pv. were reduced by TiO2 
(Cui et al. 2009). Furthermore, the other significant work by Mishra S and team was 
the silver nanoparticles from Serratia sp. BHU-S4, an agro-supporting bacteria, 
controlled the most pioneer disease in wheat called spot blotch disease caused by 
the B. sorokiniana (Mishra et al. 2014).

7.5.1.1  Significance of Nanotechnology in Pest Management
Nanotechnology supports the plants to not only act against the pathogens but also to 
give the strong fight to the pests by one of the products called “nanocapsules.” 
Nanocapsules insert the active substance via cuticles and tissues and release them in 
a regular manner so it is also called as a “magic bullets” (Perez-de-Luque and 
Rubiales 2009). On the other hand, 3 nm mesoporous silica nanoparticle is used as 
a carrier by Torney and team to transport DNA and chemicals into plant cells and 
then trigger it to fix the particles via cell walls without any deadly effects. This 
method is successfully established in corn and tobacco plants (Torney et al. 2007).

7.5.1.2  Stress Reduction

7.5.1.2.1 Application of Silicon Nanoparticles to Eradicate Drought 
and Salinity Stress in Plants
Both salinity and drought had negative effect on the growth of plants by reducing its 
growth of roots (Gupta and Huang, 2014). By expanding the area of the root, the 
absorption of the diffusible ions can be facilitated (Barber 1995), and this expansion 
of the root could be achieved by silicon NP (SiNP) which improves root growth, 
biomass of shoot, and augmented water uptake even in drought condition and 
improves root activity (Hattori et al. 2008; Lee et al. 2010; Ahmed et al. 2011; Chen 
and Yada 2011; Hameed et al. 2013; Kim et al. 2014). This incredible property of 
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SiNP is achieved by adjusting the levels of solutes such as carbohydrates (Ming 
et al. 2012), free amino acids and total soluble sugars (Sonobe et al. 2010; Hajiboland 
et al. 2016) polyols, phenolics (Hashemi et al. 2010), glycine, betaine (Torabi et al. 
2015), and proline (Lee et al. 2010; Yin et al. 2013); all these things reduced the 
osmotic shock formed by NaCl ionic toxicity.

7.5.1.2.2 Application of Si Nanoparticles to Eradicate Disease in Plants
The amorphous silica precipitation is one of the mechanical barriers to the plants 
(Fauteux et al. 2005). Potential physical obstruction postulation depends upon the 
Si type deposited in leaves (Fawe et al. 2001). Universally it is accepted that the 
plant cell wall and apoplast contain polymerized Si which prevents the penetration 
of pathogens (Table 7.2) (Fleck et al. 2010) and hence prevents plants from harmful 
infections.

Table 7.2 Biogenic nanoparticles and its applications

Type of nanoparticle Applications References
Polymerized Si NPs Prevents the penetration of pathogens Fleck et al. 

(2010)
Pd-on-Au bimetallic nanoparticle Used as catalyst to treat water 

pollutant ‘trichloroethene’
Nutt et al. 
(2005)

Rod-shaped Fe2O3 NPs using Aloe 
vera leaf extract

Used for arsenic(V) remediation and 
having high sorption capacity of 
arsenic(V)

Mukherjee et al. 
(2016)

Magnetic iron oxide (Fe3O4) 
nanoparticles from tea waste

Eradication of As [arsenic]. Lunge et al. 
(2014)

Iron-oxide nanowires New adsorbent for the removal of 
arsenic from water

Andjelkovic 
et al. (2017)

Fe3O4 nanocomposite-modified 
cells of Yarrowia lipolytica (NCIM 
3589 and NCIM 3590)

Removal of hexavalent chromium 
[Cr(VI)]

Rao et al. (2013)

Zero-valent iron nanoparticles 
(ZVNI) from the leaf extracts of 
Eucalyptus globules

High adsorption capacity of 
hexavalent chromium (Cr(VI))

Madhavi et al. 
(2013)

Magnetic inverse spinel iron oxide 
nanoparticles (MISFNPs)

Capable of recycling and removal of 
heavy metals without loss of its 
stability

Lingamdinne 
et al. (2017)

CdSNPs from P. aeruginosa JP-11 Used for Cd removal from simulated 
wastewater

Raj et al. (2016)

Iron oxide nanoparticles Adsorbent for cadmium ion removal Ehrampoush 
et al. (2015)

Pd NPs (palladium) and MnOx NPs 
(manganese oxides)

Used for continuous elimination of 
pollutants from pharmaceutical 
industry

Forrez et al. 
(2011)

MnOx NPs Degradation of ciprofloxacin Tu et al. (2014)
Pt nanocatalyst Biocatalysts for removal of 

ciprofloxacin, sulfamethoxazole, 
ibuprofen, and 17β-estradiol

Martins et al. 
(2017)
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7.5.2  Wastewater Treatment

7.5.2.1  Biogenic NPs for Heavy Metal Removal
For the last few decades, heavy metals have been used enormously which results 
in damaging terrestrial and aquatic environments, drainages, and industrial and 
domestic effluents and mostly affects the agricultural cultivable lands, though 
heavy metals are even at low concentration because of their high bioaccumula-
tion. Heavy metals include chromium, cadmium, mercury, nickel, lead, and arse-
nic (Chipasa, 2003).

Comparatively, arsenic (As) is considered to be an extremely hazardous pollut-
ant. This heavy metal could be eradicated with the help of biologically synthesized 
rod-shaped Fe2O3 nanoparticles from Aloe vera leaf extract which has polysaccha-
rides and anthraquinones and enables aqueous phase sequestration. At 20 °C, the 
maximum adsorption capacity was calculated to be 38.47  mg/g (Table  7.2) 
(Mukherjee et al. 2016). For As(V) and As(III), it is 153.8 and 188.69 mg/g, respec-
tively (Lunge et  al. 2014). Biologically synthesized nanoparticles were encapsu-
lated with chitosan to prepare magnetic organic-nano-Fe hybrid with a ratio of 
50:50. Recycling study also showed that prepared nanoparticles could be recycled 
up to four times (Table 7.2) (Andjelkovic et al. 2017) which extracted iron oxide 
nanowires from chemoautotrophic bacteria M. ferrooxydans on a bacterial biofilm 
and applied it for the removal of trivalent and pentavalent As. As removal is pH 
sensitive with As(III) having a high degree of removal at pH 6–10 and As(V) have 
high degree of removal at acidic pH 3. The maximum adsorption capacities for 
As(V) and As(III) were estimated to be 48.06 and 104.53 mg/g, respectively.

In a study by Rao et al. (2013), P. granatum extract fabricated a biocompatible 
FeNPs and modified by yeast Y. lipolytica and then used it for the eradication of 
Cr(VI) in aqueous solutions. With respect to contact time, pH, and temperature, the 
extent of removal was decreased with increasing temperature, and maximum 
removal was estimated at 60 min of contact time at pH 2. The maximum adsorption 
capacities for NCIM 3590 and NCIM 3589 were found to be 156.3 and 125 mg/1, 
respectively (Table 7.2). Madhavi et al. (2013) synthesized zero-valent iron nanopar-
ticles of size 50–80 nm from the leaf extract of Eucalyptus globulus which results 
in the successful separation of Cr(VI) up to 98.1% in 30 min contact time (Table 7.2).

Xiao et al. (2016) prepared iron nanoparticles from 15 different plant extracts to 
remove Cr(VI) with a removal capacity of 0.5  g/g and average particle size of 
13.7 ± 5.0 nm. S. jambos was also found to be potential in separating Cr(VI) with 
removal capacity of 0.69 g/g. Lingamdinne et al. (2017) performed biogenic reduc-
tive preparation of magnetic iron nanoparticles from Cnidium monnieri seed extract 
for the removal of Pb(II) and Cr(III) from aqueous matrices with maximum adsorp-
tion capacity of 102.3 and 105.6 mg/g for Cr(III) and Pb(II), respectively (Table 7.2).

Raj et al. (2016) prepared biogenic CdS nanoparticles from P. aeruginosa JP-11 
and used them for Cd removal from simulated wastewater of particle sizes ranging 
from 20 to 40 nm in size. It reveals that these NPs removed 88.66% of Cd in 48 h 
contact time (Table 7.2). Ehrampoush et al. (2015) synthesized iron nanoparticles 
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from tangerine peel extract by aqueous phase and estimated to remove Cd(II) up to 
91% removal at pH 4.0 and 90 min contact time at equilibrium state (Table 7.2).

Jain et al. (2015) produced biogenic selenite nanoparticles for Zn(II) removal by 
incubating Se with anaerobic granular sludge which attains this state at 4 h contact 
time. Interestingly, the SeNPs effectively sequestrated Zn (II). Kandasamy (2017) 
synthesized the FeNPs from S. thermolineatus and employed them to separate Cu 
ions from the effluents of pigment industries with and efficiency of 85%. Wang 
et al. (2018) has fabricated selenite nanoparticles from bacterial PS for the removal 
of Hg from groundwater which shows 81.2% efficacy.

Srivastava et al. (2015) synthesized flower-shaped MgONPs using acacia gum 
and applied to remove several divalent heavy metals such as Pb(II), Co(II), Ni(II), 
Cu(II), Cd(II), Zn(II), and Mn(II) with varying concentrations of acacia gum and 
named as AGM-20 and AGM-10. The removal trend for AGM-20 and AGM-10 was 
estimated to be Zn(II) < Mn(II) < Pb(II) < Co(II) < Cu(II) < Cd(II) < Ni(II) and Mn(
II) < Co(II) < Zn(II) < Cu(II) < Cd(II) < Pb(II) < Ni(II), respectively. Zhou et al. 
(2015) synthesized the biogenic manganese oxide NPs from P. putida MnB1 and 
applied for the removal of divalent heavy metals such as Cd(II), Pb(II), and Zn(II). 
The removal of Pb(II) was higher when compared to Zn(II) and Cd(II).

7.5.2.2  Organic Pollutant Removal
An organic pollutant is the one which is comprised of nitrogen, sulfur, halogens, 
phosphorous, insecticides, synthetic dyes, pharmaceuticals, pesticides, aromatic 
hydrocarbons, phenols, and halogenated hydrocarbons (Lapworth et  al. 2012). 
Moreover, the persistent organic pollutants are highly toxic to aquatic environment 
when discharged from industrial effluent to agricultural fields (Yadav et al. 2015). 
There are many more products such as nanofilms, nanocatalysts, and nanoadsorbents 
which have been produced by nano-enabled technology (Gautam et al. 2015), and 
some of them create carcinogenic and allergic effects. Khan et al. (2016) synthesized 
silver nanoparticles using aqueous extract of C. japonicum and performed fast 
removal of bromophenol blue through their catalytic reduction with size 8–10 nm.

Huang et al. (2014) fabricated iron nanoparticles from tea extract and subjected 
to remove carcinogenic dye malachite green, which resulted in 74.5% removal. 
Weng et al. (2013) synthesized iron nanoparticles from aqueous green tea extract 
and determined the catalytic reactivity with malachite green which resulted in 91% 
removal with 9 h of contact time. Devi et al. (2016) synthesized silver nanoparticles 
from A. agallocha leaves by aqueous phase to remove Victoria blue which resulted 
in in 99.46% removal in 1–2 h treatment time.

Shahwan et al. (2011) synthesized biogenic FeNPs using green tea and employed 
them for the removal of methyl orange and methylene blue from wastewater. Smuleac 
et al. (2011) synthesized iron and iron/palladium bimetallic nanoparticles of sizes 20 
to 30 nm from tea extract and applied them for the acute elimination of more toxic 
pollutants such as trichloroethane (TCE) from water. Zaheer et al. (2016) synthesized 
silver nanocatalysts from mint leaves and applied them for the removal of Congo red 
which was then capped and stabilized by SDS and CTAB. Vanaamudan et al. (2016) 
synthesized biogenic silver nanoparticles from palm shell extract and capped with 
H2O2 for the removal of a Cu phthalocyanine-based dye and xanthene dye.
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Bogireddy et  al. (2016) synthesized AgNPs from S. acuminata fruit aqueous 
extract for the elimination of some organic dyes, viz., methylene blue, 4- nitrophenol, 
Direct blue 24 methyl orange, and phenol red from consumable water. Nadaf and 
Kanase (2016) fabricated biogenic gold nanoparticles from B. marisflavi to remove 
Congo red and methylene blue from wastewaters. Qu et al. (2017) developed bio-
compatible gold NPs from the supernatant of Aspergillus sp. and employed it to 
remove aromatic pollutants such as 3-nitrophenol, 4-nitrophenol, and 2- nitrophenol. 
Shen et al. (2017) synthesized Au-NPs from Aspergillus sp. extract and used it for 
the removal of 4-nitrophenol. Wang et al. (2017) produced bioinspired manganese 
oxides nano-biocomposite using Desmodesmus sp. for the complete removal of 
bisphenol from wastewater. Zinatloo-Ajabshir et  al. (2018) synthesized bio- 
modulated Dy2Ce2O7 nanostructures from Vitis vinifera juice and employed them 
for the catalytic removal of rhodamine B, methyl orange, and B naphthol. Beddow 
et  al. (2014) demonstrated that silver NPs could reduce the rate of nitrification 
potential of Nitrosococcus sp. and Nitrosomonas europaea.

7.5.2.3  Radioactive and Inorganic Pollutants Removal
Radioactivity possessing pollutants such as radioisotopes and radionuclide might 
cause chronic and acute toxicity to the humankinds when exposed to aquatic envi-
ronments from mines and effluents exposing from nuclear reactors (Gawande and 
Jenkins-Smith, 2001).

In the above perspective, Handley-Sidhu et  al. developed a biogenic nano- 
metered hydroxyapatite material (Bio-HAP) using NCIMB 40259 strain of Serratia 
sp. to separate strontium (Sr2+) from simulated groundwater. Size and adsorption 
capacity of Bio-HAP were calculated to be 25  nm and 5  mg/g, respectively. In 
another work, they fabricated Bio-HAP nanomaterials from Serratia sp. and used it 
to remove the biohazardous radionuclides such as cobalt, uranium, strontium, and 
europium from artificial groundwater (Handley-Sidhu et al. 2014). At 400 °C, the 
Bio-HAP nanomaterials have the largest surface area of 115m2/g.

They also synthesized Bio-HAP nanomaterials of sizes between 20 and 90 nm 
for the sequestration of Sr2+ and Co2+ from the aqueous phase (Handley-Sidhu et al. 
2011). Choi et al. 2017 fabricated biogenic gold nanoparticles using D. radiodurans 
and used for the removal of 125I from effluent of nuclear reactor which size ranges 
from 40–60 nm. Wang et al. (2014) synthesized two different types of Fe nanoad-
sorbents from aqueous leaf extracts of green tea and eucalyptus and further studied 
their ability to remove nitrate which showed 59% and 41.4% removal of nitrate, 
respectively.

Paixão et  al. (2017) synthesized Cu nanoparticles from H. sabdariffa flower 
extract and impregnated onto the surface of activated carbon. At 15 °C, it was cal-
culated that the maximum adsorption capacity was 45.01 mg/g. Katata-Seru et al. 
(2017) synthesized two different iron nanoparticles from M. oleifera seed and leaf 
extracts and applied them for the nitrate removal from water samples which resulted 
in 85% and 26% removal for seed and leaf-based Fe nanoparticles, respectively.

Yong et al. (2004) formulated a nanopowder from Serratia sp. and used it for 
phosphate removal in water which resulted in decrease in the phosphate 
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concentration from ∼24 ppm to ∼3 ppm. Cao et al. (2016) synthesized nanoparti-
cles from Eucalyptus leaf extract and coated with a cationic surfactant and applied 
for phosphate removal which increased from 71.0% to 97.3% after coating.

7.5.2.4  Metallic and Nonorganic Pollutant Removal
Zhang (2003) demonstrated that the laboratory-synthesized nanoscale metallic iron 
has strong destroying activity against chlorinated and brominated methanes, triha-
lomethanes, chlorinated ethenes and benzenes, pesticides, and dyes. Nanoscale 
zero-valent iron could reduce both organic contaminants and inorganic contami-
nants such as anion nitrate which is reduced to NH3 and perchlorate/chlorite which 
is reduced to arsenite, chloride, arsenate, and chromate powder and also removes 
some metals such as Pb, Ni, and Li.

Macaskie et al. (1997) isolated A. Serratia from a metal-contaminated site and 
provided with organic phosphate and inorganic phosphate as heavy metals. The 
cells also immobilized as a biofilm to the removal of uranyl ion from U-mine wastes.

7.5.2.5  Pharmaceutical Pollutant Removal
Nowadays, the effluent from the pharmaceutical industry produces a new area of 
micropollutants containing antibiotics, endocrine-disrupting compounds (EDCs), 
steroids, and hormones which cause adverse effects in living things and enter in to 
the water system (Kim et al. 2007). To eradicate this problem, there are a number of 
techniques used, in that nano-based techniques showed promising results (Malik 
et  al. 2017). One research team has formulated Bio-Pd (bio-palladium) and 
BioMnOx (biogenic manganese oxides) nanoparticles for continuous elimination of 
pollutants from pharmaceutical industry using membrane bioreactors (MBR) at lab 
scale (Table 7.2) (Forrez et al. 2011).

In this contest, another unique nanoparticle named BioMnOx-MBR (via oxida-
tive degradation) has strongly eliminated 14 out of 29 various types of micropollut-
ants from the effluent, they were removed more than 90% of ibuprofen, naproxen, 
diuron, codeine (b), N-acetyl-sulfamethoxazole, exceed 80% of chlorophene, 
diclofenac, mecoprop, triclosan, go beyond 70% of clarithromycin, iohexol, more 
than 60% of iopromide, iomeprol and 52% of sulfamethoxazole. On the other hand, 
using bio-Pd through catalytic reduction, some other pollutants were removed, and 
the maximum up to 97% elimination was found from iomeprol, iohexol, and iopro-
mide and 90% from diatrizoate. Likewise, BioMnOx synthesis from P. putida elimi-
nates the large amount of micropollutants in marine environment (Furgal et  al. 
2015). Similarly, BioMnOx obtained from G7 species of Pseudomonas (using oxi-
dation process) successfully done degradation of ciprofloxacin in aqueous phase 
(Table 7.2) (Tu et al. 2014). Recently, the wide range of pharmaceutical hazards 
were degraded using bioelectrochemical method, which was done by the combina-
tion process of biogenic Pd NPs, with chemically synthesized Fe3O4 and MnO2 
nanoparticles (Xu et al. 2018).

Further, about 94.85% elimination was observed for sulfamethoxazole and 
17β-estradiol, whereas 70% was observed for ciprofloxacin using synthesized NPs. 
Significant reduction in diatrizoate by improving electrochemical reduction was 
achieved by the bio-Pd NPs which were entrenched to cathode in MEC (microbial 
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electrolysis cell) and observed that dehalogenation reaction was achieved by ele-
vated voltage given to the MEC and at – 0.8volt diatrizoate eradication was achieved 
in 2 h (Gusseme et al. 2012). Furthermore, ciprofloxacin, sulfamethoxazole, and 
17β-estradiol were recently removed using the bio-Pt nanocatalyst synthesized from 
D. vulgaris (Martins et al. 2017). In addition to that, the combination of zero-valent 
Au NPs with bio-Pd NPs was used to treat diclofenac treated water, and in 24 h, a 
larger amount elimination of diclofenac was observed. However, another notewor-
thy work was done first by De Corte et al. (2011) and got succeeded. In this work, 
S. oneidensis synthesized Pd/Au bimetallic nanocatalyst was resulted in decontami-
nation of diclofenac and trichloroethylene in water. Interestingly, both of the nano-
catalysts such as bio-Au and monometallic bio-Pd individually were not working, 
but the combination showed remarkable activities and achieved 78% elimination of 
pollutants at 24 h. Henceforth, the crystalline nanostructure of Au-Pd was confirmed 
by the results of TEM and XRD.

7.5.3  Growth Promotion

Iron nanoparticles enhance the leaf and pod dry weight and improve yield of soy-
bean, wheat, and peanut seedlings through FeNPs (Sheykhbaglou et  al. 2010). 
CuNPs have caused the shoot and root growth of mung bean, whereas CsNPs 
increase the pod weight of peanuts (Prasad et  al. 2012). By showing increasing 
sugar content and super oxide dismutase activity followed by proteomic analysis, it 
was confirmed that the uptake of copper and iron nanoparticles improved the yield 
in wheat through physiological impacts (Yasmeen et al. 2017).

Besides, the photosynthetic activity of cucumber and germination of spinach 
seeds were effectively increased due to TiO2 NPs and positive effect on plants. 
Interestingly, chlorophyll formation in spinach was improved by 28% by rutile and 
19% by TiO2 (Zheng et al. 2005). On the other side, growth of spinach was enhanced 
by the processes of photoreduction of atmospheric N2 to NH3 by TiO2 nanoparticles 
(Yang et al. 2007).

Carbon nanotube, a precious member of nanotechnology, plays a major role by 
increased uptake of water to enhance the plant growth and seed germination. In 
addition to that, it has pioneer place as nano-fertilizers to advance the agriculture 
sector. Furthermore, it increases the bioavailability of hazardous metals in agricul-
tural crops, by inducing apoptosis through reactive oxygen species (ROS) genera-
tion, and drastically reduces the diversity in microbes used in agricultural fields 
(Vithanage et al. 2017).

7.5.4  Present Challenges in Agriculture and Nanotechnology- 
Based Solutions

Nowadays, NPs, liposome, and fluorescent dendrimers are used as a pesticide nano-
carrier to control pest in the agricultural crops. Nanoscience delivers a number of 
innovative methods for disease management at molecular level which increases the 
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yield of plants via nanofertilizers/nanoinsecticides, delivers efficient use of natural 
resource, improves the uptake of nutrient (Peters et al. 2016), maintains soil health, 
and reduces the amount of growth promoters (Baker et al. 2017).

The biosynthesized Ag nanoparticles at concentration 5 μg/mL could have the 
ability to fight against blight disease in tomato without disturbance of the soil health. 
Prevention of the infection establishment, increasing the host plant resistance by 
decreasing the biotic stress, and increasing the chlorophyll content and antioxidant 
levels could be done with the pre-treatment of Ag nanoparticles on tomato leaves.

Though cucumber plants are water crucial and adequate irrigation has to be per-
formed in order to prevent the fall of fruits and flowers from the plant (Hashem et al. 
2011; Sahin et al. 2015), the cucumber plants grown in a greenhouse condition with 
amorphous silica nanoparticles (SiNPs) showed the normal growth without any 
symptoms of irrigating water shortage up to 85%. The highest yield of fruit per 
plant was obtained at 85%. Silver nanoparticles with a rate of 200 mg/kg have the 
higher positive effect on yield characteristics and vegetation of the plant in compari-
son with the lower and higher concentrations. This results that silver nanoparticles 
play a major role in balancing the nutrient uptake by the plants by increased uptake 
of potassium, nitrogen, and silicon and decreased uptake of sodium in various parts 
of the plant.

Mg(OH)2NP-treated Z. mays seeds showed the significant improvement in their 
germination rate at 500 ppm concentration (Jayarambabu et al. 2016). In addition to 
that, these biogenic Mg(OH)2 NPs synthesized from the fungus showed the remark-
able activity in the enhancement of percentage and for breaking the seed dormancy. 
Furthermore, nanoparticles inoculated with MS medium showed an enhanced 
growth in Z. mays seedlings in comparison with the other medium. Similarly, 
Mg(OH)2NPs have the potential to enhance the growth of Z. mays plant in fields.

The chlorophyll fluorescence study also established that the nanoparticle-treated 
plant has high-performance index and low energy losses when compared to normal/
untreated plants. Also, the roots and leaves of NP-treated plants showed high con-
tent of Mg in comparison with the salt-treated plants. These overall outcomes con-
clude that the treatment of Mg(OH)2 NPs could be easily penetrated and translocated 
in various plant parts which result in increased seed germination percentage and 
plant growth promotion.

7.6  Conclusion

The approach of synthesizing nanoparticles by green nanotechnology possesses the 
high potential to become a strong leader among the industries. As the biogenesis of 
nanoparticles achieves more commercialization, the synthesis from bacteria, fungi, 
algae, biodegradable wastes, and plants becomes more prominent leading to genera-
tion of safe, secure, environment-friendly nanomaterials. However, several studies 
in pharmaceutical development still involve challenges with respect to the optimiza-
tion of various factors such as optimum temperature, pH, stabilizers, etc. Knowing 
the applications of variety of nanomaterials in agriculture, pest management, stress 
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reduction, wastewater treatment, cosmetics, etc., they can be considered to improve 
the quality of life of human beings and environment as well as promote ethical val-
ues in nanotechnology.
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Abstract
There are various methods available today for the synthesis of biogenic nanopar-
ticles (by plants, algae, yeast, bacteria, fungi and waste material), which, due to 
their cheapness and environmental effects, are superior to chemical synthesis. 
Soil microorganisms by the secretion of various substances (such as a variety of 
enzymes, proteins, amino acids, etc.) play a critical role in the synthesis and 
bioavailability of biogenic nanoparticles in the soil. Synthesized biogenic 
nanoparticles, due to their nature as well as their surface properties, can lead to 
the bioremediation of inorganic and organic contaminants in the soil. Among the 
physicochemical properties of the soil, pH, organic matter content and clay seem 
to have the most influence on the distribution and immobilization of soil nanopar-
ticles. These nanoparticles may be accumulated in the soil for various reasons or 
may be transported to groundwater and lead to contamination in humans, ani-
mals, plants and microorganisms. Therefore, it is necessary to understanding the 
behaviour of nanoparticles in the soil, which influence soil physicochemical 
properties, and to assessing possibility hazards.
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8.1  Introduction

The idea of nanosize and nanoscale (10−9 m) has been known since the nineteenth 
century. The term “nanoparticles” (NPs), nevertheless, has been public for about 
30  years, these particles were formerly called “ultrafine”, “submicron” or “fine- 
grained.” The prefix “nano” (such as nanotechnology, nanoparticles, nano- fertilizers, 
etc.) is nowadays a part of scientific literature, especially in soil science. For 
instance, refers to rock weathering as nanosize decomposition and to soil as “a more 
complex nanoparticle–mixed inorganic, organic, biological, and various sizes” 
where “most of the transport of heavy metals, nutrients, pollutants, organics happen 
at the nanosize” (Navrotsky 2003; Maghsoodi et  al. 2019). Recently, biogenic 
nanoparticles (BioNPs) production has given a charming alternative to chemical 
methods due to their cheapness and reduced environmental effects. There are vari-
ous methods available today for the synthesis of biogenic nanoparticles using a 
variety biosystems containing plants, algae, fungi, yeast or bacteria (Narayanan and 
Sakthivel 2010, 2011a, b; Sinha et al. 2009; Mandal et al. 2006; Rai et al. 2009; 
Mohanpuria et al. 2008; Durán et al. 2010, 2011; Varshney et al. 2012; Durán and 
Marcato 2012; Rubilar et al. 2013).

Industrial nanoparticles synthesized by humans eventually enter the soil through 
sewage and dust, resulting in the pollution of soil and water (Maroufpour et  al. 
2019). Soil is the main sink of engineered nanoparticles relative to air and water 
(Gottschalk et al. 2009; Rajput et al. 2017; Keller et al. 2013). Soil physicochemical 
properties, such as organic matter (OM), pH, soil texture, soil structure, compact-
ness, ionic strength, microorganisms and redox potential (Eh) play major roles 
influencing the immobilization, bioavailability and distribution of NPs (Pachapur 
et al. 2016; Fierer and Jackson 2006; Jiménez-Lamana and Slaveykova 2016).These 
nanoparticles are adsorbed into soil for various reasons and cause contamination in 
humans, animals, plants and microorganisms. Therefore, it is necessary to under-
standing the behaviour of NPs in the soil, which influence soil physicochemical 
properties, and to assessing possibility hazards (Shrestha et al. 2013).

8.2  Synthesis of Biogenic Nanoparticles

According to Fig. 8.1, the synthesis mechanism of BioNPs mostly include biopre-
cipitation and bioreduction using amino acids, carbohydrates, peptides, polysac-
charides, polyphenols, flavonoids, biopolymers, vitamins, alkaloids attained from 
living organisms in nature (Gautam et al. 2019; Park et al. 2011). Various macro- 
and microorganisms, such as bacteria (Stephen and Macnaughtont 1999; Shivaji 
et al. 2011), algae (Castro et al. 2013; Shankar et al. 2016), fungi (Chan and Mat 
Don 2013; Syed et al. 2013), actinomycetes (Fayaz et al. 2011), yeast (Kowshik 
et al. 2002), and waste material such as fruit waste (Kanchi et al. 2018) and plants 
(Alshehri et al. 2017; Makarov et al. 2014) have operated as precursors for the syn-
thesis of BioNPs. As shown in Table 8.1. various synthesis of BioNPs result in the 
production of NPs with varied sizes and morphologies. The benefits of nanoparticle 
biosynthesis over chemical synthesis include green technology, biological process, 
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reliable, economical, biocompatible with environment, higher catalytic activity, 
energy saving, lack of high temperature and no harmful chemicals in the synthesis 
process (Tripp et al. 2002; Bhattacharya and Gupta 2005; Mukherjee et al. 2001; 
Hakim et al. 2005). Iravani (2011) reported that plants probably are the appropriate 
choice for synthesis of BioNPs due to their easy availability, abundance and diver-
sity, as well as lesser time compared to microbial synthesis. As result, the choice of 
different plant species for extraction is a significant factor (Parsons et  al. 2007). 
Vanaja and Annadurai (2013) reported different plant species (terrestrial to aquatic) 
have been successfully used in the biosynthesis of NPs. Some researchers report 
that fresh/biomass can be used to synthesize NPs instead of powdered/dried bio-
mass (Dauthal and Mukhopadhyay 2016).On the other, Patel et al. 2015 reported 
that different forms of algae can be considered as model systems for nanoparticle 
synthesis because they have significant ability for metal bioremediation.

8.3  Applications of Biogenic Synthesis of NPs

The synthesis of BioNPs with different crystalline nature, shape and particle size 
has been one of the important goals in chemistry that could be used for different 
purposes (Table 8.2), such as agriculture (bioremediation), industry (biosensors and 
catalysts) and medicine (biomedical) (Staniland 2007; Frances et al. 2009; Antonyraj 
et  al. 2013. The characteristics of these BioNPs vary as per the NPs produced 
through chemical and other common methods because no surfactants/detrimental 
materials are involved. Therefore, synthesis of NPs by bacteria, fungi, algae, yeast, 
waste materials and plant represents a wide range of applications.

Fig. 8.1 Schematic representation for biosynthesis of NPs
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Table 8.1 Synthesis of different biogenic NPs

BioNPs Species Shape Size (nm) References
Bacteria strain

Au Pseudomonas fluorescens 
417

Spherical 5–50 Husseiny et al. 
(2007)

Au Rhodopseudomonas 
capsulata

Spherical 10–20 Syed et al. (2016)

Au Shewanella algae Spherical 9.6 Mishra et al. 
(2011)

Au Escherichia coli DH5a Spherical 20 Suganya et al. 
(2015)

Au Escherichia coli Spherical 5–20 Gopal et al. 
(2013)

Au Klebsiella pneumonia Spherical 5–65 Kumar et al. 
(2014)

Au Bacillus 
stearothermophilus

Triangular 5–30 Luo et al. (2014)

Au Stenotrophomonas 
maltophilia

Spherical ∼40 Srinath and Rai 
(2015)

Au Geobacillusstearo 
thermophilus

Spherical 12–14 Gomathy and 
Sabarinathan 
(2010)

Au Magnetospirillum 
Gryphiswaldense MSR-1

Spherical 10–40 Cai et al. (2011)

Au Shewanella oneidensis Spherical 2–50 Suresh et al. 
(2011)

Au Sporosarcina koreensis 
DC4

Spherical 30–50 Singh et al. 
(2016)

Au Staphylococcus 
epidermidis

Spherical 20–25 Ogi et al. (2010)

Fe3O4 Geobacter sulfurreducens – 10–50 Byrne et al. 
(2011)

CuO Serratia sp. – 10–30 Saif Hasan et al. 
(2008)

Cu2O Lactobacillus sp. and S. 
cerevisiae

– 10–20 Prasad et al. 
(2010)

CuO E. coli Variable shapes Varied V Singh et al. 
(2010)

CuO Biomass of Pseudomonas 
stutzeri

Spherical 8–15 Varshney et al. 
(2010)

CuO Pseudomonas stutzeri 
bacterial strain from 
electroplating wastewater

– 50–150 Varshney et al. 
(2011)

Se0 Citrobacter freundii Y9 Amorphous 71 ± 16 Wang et al. 
(2017)

Plants
Au, Ag, 
Au-Ag

Leaf extracts of Jasminum 
sambac

– – Yallappa et al. 
(2015)

(continued)
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Table 8.1 (continued)

BioNPs Species Shape Size (nm) References
Ag J. curcas Cubical 10–20 Bar et al. (2009)
Ag° Commercial green tea 

extract (Camellia sinensis)
Spherical – Rolim et al. 

(2019)
CuO Aloe vera extract – 15–30 Sangeetha et al. 

(2012)
Cu Lemongrass tea Spherical 2.9 ± 0.64 Brumbaugh et al. 

(2014)
CuO Leaf extracts of Magnolia – 40–100 Lee et al. (2011)
Fe A. spinosus leaf Spherical – Muthukumar and 

Matheswaran 
(2015)

Fungi strain
Ag+ Verticillium – 25 ± 12 Mukherjee et al. 

(2001)
Ag Verticillium Spherical 25 Sharma et al. 

(2015)
Ag Trichoderma harzianum Spherical 58 ± 4

20 and 30
Guilger et al. 
(2017)

Au Aureobasidium pullulans Spherical 35–23 Suganya et al. 
(2015)

Au Alternaria alternata Spherical and 
triangular

2–30 Sarkar et al. 
(2012)

Au Botrytis cinerea Hexagonal, 
spherical, 
pyramidal, 
Triangularand 
decahedral

1–100 Vijayaraghavan 
et al. (2011)

Au Penicillium crustosum Spherical 100 Roy and Das 
(2016)

Au Penicillium rugulosum Spherical, 
triangular and 
hexagonal

30–70 and 
20–80

Mishra et al. 
(2012)

Au Phanerochaete 
chrysosporium

Spherical 10–100 Sheikhloo and 
Salouti (2011)

Au Rhizopus oryzae Spherical 5–65 Sanghi et al. 
(2011)

Au Neurospora crassa Spherical 3–100 Castro et al. 
(2014)

Au Fusarium semitectum Spherical 10–35 Barabadi et al. 
(2014)

Au Fusarium solani Spherical 20–50 Castro-Longoria 
et al. (2011)

Au Penicillium chrysogenum Spherical, triangle 
and rod

5–100 Sawle et al. 
(2008)

Au Sclerotium rolfsii Spherical 25 Das et al. (2012)

(continued)
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Table 8.1 (continued)

BioNPs Species Shape Size (nm) References
Au Trichodermaviride 

hypocrealixii
Spherical 20–30 Narayanan and 

Sakthivel (2011a, 
b)

Au Aspergillus foetidus Spherical 30–50 Singaravelu et al. 
(2007)

Copper 
oxides

Penicillium 
aurantiogriseum,

Spherical 91–119 Rubilar et al. 
(2013)

Copper 
oxides

Penicillium citrinum Spherical 91–133 Rubilar et al. 
(2013)

Copper 
oxides

Penicillium waksmanii Spherical 80–88 Rubilar et al. 
(2013)

Algal strain
Ag C. racemose, Colpmenia 

sinusa, Jania rubins, 
capillacae, Ulva faciata, 
Pterocladia

Spherical 30 Edison et al. 
(2016)

Ag Cystophora moniliformis Spherical 50–100 Prasad et al. 
(2013)

Au Brown, Ecklonia cava Triangular and 
spherical

30 ± 0.25 Kathiraven et al. 
(2015)

Ag Chlamydomonas 
reinhardtii

Rectangular or 
round

5–35 Barwal et al. 
(2011)

Au Padina gymnospora Spherical 53–67 Singh et al. 
(2013)

Au Tetraselmis kochinensis Triangular and 
spherical

5–35 Venkatesan et al. 
(2014)

Au Brown, Sargassum 
muticum

Spherical 5.4 ± 1.2 Namvar et al. 
(2015)

Au Fucus vesiculosus Spherical Variable Mata et al. (2009)
Au Chlorella vulgaris – 2–10 Annamalai and 

Nallamuthu 
(2015)

Au Natural honey (fructose) – 15 Philip (2009)
CdS Phaeodactylum 

tricornutum
– – Scarano and 

Morelli (2003)
Waste material

Ag Industrial milk waste Nanorods – Sivakumar et al. 
(2013)

Ag Satsumamandarin (Citrus 
unshiu) peel extract

Spherical 5–20 Basavegowda and 
Rok Lee (2013)

Au Rice bran Spherical 50–100 Malhotra et al. 
(2014)

Au Grape seeds, stalk and skin Quasi-spherical 20–25 Krishnaswamy 
et al. (2014)

(continued)

K. Khalkhal et al.



139

8.4  Biogenic Nanoparticles in Soils

Soils contain many kinds of inorganic and organic particles with at least one dimen-
sion in the nanoscale or colloidal range (<100  nm). Natural NPs in soil include 
oxides (Al, Fe and Mn), humic substances, clay minerals, mobile colloids, enzymes 
and viruses (Kretzschmar and Schäfer 2005). Organic NPs are in contact with inor-
ganic NPs or occur as coatings on inorganic NPs surfaces (Chorover et al. 2007; 
Oades 1989). Due to surface properties and their nature, NPs in environments par-
ticipate in vital ecological services, ranging from regulating element cycling and 
water remediation, via transport or adsorption of biological and chemical pollutants, 
to serving as a sink/source of plant nutrients and organic carbon. The clay fraction 
of the soil usually represents particles less than 2 μm in diameter. So, mineralogists 
and soil scientists have confirmed that this clay fraction (i.e. colloidal particles) 
contains nanoscale particles (<100 nm) (Theng and Yuan 2008).

Table 8.1 (continued)

BioNPs Species Shape Size (nm) References
Fe Citrine juices Irregular, 

cylindrical and 
spherical

3–300 Machado et al. 
(2014)

N-CNTs Chicken feather – – Gao et al. (2014)
Pb Watermelon rind Spherical 96 Lakshmipathy 

et al. (2015)
Silicon 
carbide

Electronic compact discs 
char

Spherical 40–90 Rajarao et al. 
(2014)

Cellulose Cotton fibres Spherical 40–90 Fattahi Meyabadi 
et al. (2014)

Actinomycete strain
Au Thermomonospora Spherical 8 Fayaz et al. 

(2011)
Au Streptomyces 

hygroscopicus
Spherical 20 Husseiny et al. 

(2007)
Au Gordoniaamarae Spherical 15–40 Montes et al. 

(2011)
Au Streptomyces fulvissimus Spherical 20–50 Balagurunathan 

et al. (2011)
Au Streptomyces sp. 

VITDDK3
Hexagonal, cubical, 
brick and irregular

90 Soltani Nejad 
et al. (2015)

Au Thermomonospora Spherical 8 Fayaz et al. 
(2011)

Au Streptomyces viridogens 
(HM10)

Spherical and rod 18–20 Arumugam and 
Berchmans 
(2011)

Au Streptomyces 
hygroscopicus

Spherical 20 Khan et al. (2016)

Au Gordoniaamarae Spherical 15–40 Elavazhagan and 
Arunachalam 
(2011)
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Table 8.2 Applications of biogenic synthesized NPs

BioNPs Roles Effective References
Fe Contaminants 

immobilization in 
soils and waters

The removal of As (V) and As (III) 
from water and soil

Shipley et al. (2011)

Fe3O4 Bioremediation Reducing toxic Cr(VI) to less toxic 
Cr(III)

Byrne et al. (2011)

FeS Remediation and 
adsorbent

Removal of Cr(VI) (convert Cr(VI) 
to Cr(III)) in chromium- 
contaminated soil and water

Watson et al. (1995) 
and Mullet et al. 
(2004)

Se0 Bioremediationof 
contaminated soil

Immobilization Hg0 in soil under 
both aerobic and anaerobic 
conditions

Wang et al. (2017)

Se Removal from 
wastewater

Adsorption of Zn2+ ions onto Se 
BioNPs

Jain et al. (2015)

Se Metal immobilization 
in soils and waters

Remediation of Hg0 contamination Wang et al. (2017, 
2018a, 2019a)

Ag Antifungal and 
antibacterial

Against bacterial pathogens such 
as Staphylococcus aureus, E. coli, 
Vibrio parahaemolyticus, 
Shewanella putrefaciens
Against fungal pathogen of 
Candida albicans

Nayak et al. (2018)

Ag Biocompatible agent 
and antimicrobial

Against E.coli Eckhardt et al. (2013) 
and Jung et al. (2008)

Ag Antimicrobial Against the phytopathogenic 
fungus Sclerotinia sclerotiorum 
(responsible for white mould 
disease)

Guilger et al. (2017)

Ag° Antimicrobial Against gram-positive 
Staphylococcus, gram-negative 
Pseudomonas aeruginosa, 
Klebsiella pneumoniae, 
Salmonella enterica and E. coli

Rolim et al. (2019)

Au Antibacterial Against S. aureus and B. subtilis. Uma Suganya et al. 
(2015)

Ag Antimicrobial Against pathogenic bacteria 
(Staphylococcus aureus, Bacillus 
subtilis, E. coli, Pseudomonas 
aeruginosa) and against yeast 
(Candida albicans)

Ibrahim (2015)

Cu2O Antibacterial Against E. coli Gopalakrishnan et al. 
(2012)

Au Biomedical 
applications

Emerging alternative for DNA 
modeling and life-threatening 
diseases

Khan et al. (2013) and 
Gupta and Gupta 
(2005)

Iron 
and iron 
oxide

Biomedical 
applications

Tissue repair, cell labeling, 
magnetic resonance imaging and 
drug delivery

Pankhurst et al. (2003) 
and Catherine and 
Adam (2003)

(continued)
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The transformation and formation of BioNPs in soil may be accomplished via 
either a biological or an abiotic pathway, or both. For instance, humic substances are 
formed through biological pathways and aluminosilicates are formed through non- 
biological pathways, while some nano-oxides Fe and Mn are formed through a 
combination of biological and non-biological pathways. (Theng and Yuan 2008). 
On the other hand, soil is the final sink of engineered nanoparticles (ENPs) from the 
industry. The increasing influx of ENPs (photocatalysts, fullerenes, carbon nano-
tubes semiconductors, black carbon, soot, vehicle exhaust emissions and zero- 
valent iron/nickel) into soil has increased concerns about their harmful effects on 
human, animal and plant health (Nowack and Bucheli 2007).

Since most of the organic colloids are coated with metal oxides in the soil or in 
some way related to mineral surfaces, the characteristics of the soil minerals are 
greatly affected by organic colloids. For instance, the formation of complexes 
between allophane and humic acid results in a significant increase in copper and 
cadmium adsorption (Yuan et al. 2002). Most of the research in this field is related 

Table 8.2 (continued)

BioNPs Roles Effective References
Pd Biocatalysts Reductive removal of 

contaminants, namely azo dyes, 
trichloroethylene, 
polychlorobifenyls and Cr(VI)

Quan et al. (2015) and 
Hennebel et al. (2012)

Pd Biocatalysts Removal of 4 pharmaceutical 
products (PhP): 17b-estradiol, 
ibuprofen, sulfamethoxazole and 
ciprofloxacin

Martins et al. (2017)

Pt Biocatalysts Removal of 4 pharmaceutical 
products (PhP): 17b-estradiol, 
ibuprofen, sulfamethoxazole and 
ciprofloxacin

Martins et al. (2017)

Ag Catalytic applications Reduction of 4-nitrophenol Liang et al. (2014)
Fe3O4 Catalytic applications Removal of contaminants Magnacca et al. 

(2014)
Pd Catalytic applications Degradation of azo dyes Petla et al. (2012)
Pd Catalytic applications Catalyst for Mizoroki–Heck 

cross-coupling reaction
Eroglu et al. (2013)

Pd Catalytic applications The reaction of methyl acrylate 
and iodobenzene

Parker et al. (2015)

Au Biosensor 
applications

Detection of hormone (HCG) in 
pregnant women

Kuppusamy et al. 
(2014)

Au-Ag Biosensor 
applications

Detecting cancer Zhang et al. (2012)

Au or 
PEG- 
coated 
Au

Biosensor 
applications

Cancer nanotechnology, anticancer Visaria et al. (2006), 
Van Horssen et al. 
(2006) and Cai et al. 
(2008)

Pt Biosensor 
applications

Determination of adrenaline Brondani et al. (2009)
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to synthesized laboratory NPs. Even if NPs reactivity studies are carried out in the 
laboratory, it would be difficult to interpret the results due to some variables, such 
as loading of contaminant, ionic strength and pH, that affect NP pollutant interac-
tions (Theng and Yuan 2008; Chorover et al. 2007).

Microorganisms also play a key role in the production of mineral BioNPs, such 
as phyllosilicates. Microorganisms such as bacteria are suitable for mediating the 
formation of mineral NPs due to their high surface area and negative electrical 
charge on the cell wall. This negative charge on the cell wall causes the adsorption 
and accumulation of cations and then the anions of the environment to produce vari-
ous types of biogenic NPs. On the other hand, these bacteria play as oxidizing/and 
or reducing bacteria in the soil, thereby increasing the precipitation or solubility of 
NPs (Bargar et  al. 2008). Although inadequate, Information is available on the 
microbially mediated alteration and formation of minerals in soil, except for such 
environments as acid sulphate soils and acid mine drainage systems (Banfield and 
Zhang 2001; Douglas and Beveridge 1998).

Most soils include diverse oxides/hydroxides (Al, Fe and Mn), formed using 
microbial process or through weathering of primary and secondary silicate miner-
als. These nanominerals (in PZC ˃pH  =  8) play a key role in the retention and 
adsorption of nutrient anions (sulfate, phosphate, molybdate, borate) by ligand 
exchange and electrostatic interactions, and they actively aggregate soil stabiliza-
tion and promote clay flocculation (Schwertmann 2008; McBride 1994). Unlike 
other (hydro)oxides, most oxides and hydroxides of Mn have a low PZC (pH <4). 
Since manganese oxides and hydroxides are in the pH range of most of the soils 
having a negative charge, these oxides are efficient scavengers and sorbents of 
heavy metals (Tebo et al. 2004; McKenzie 1989).

8.5  Effect of Soil Physicochemical Properties 
on Immobilization of Biogenic Nanoparticles

In soil, the successful performance of remediation by BioNPs is nearly associated 
with the environmental fate of NPs. Soil physicochemical properties, such as pH, 
salinity, ionic strength, clay minerals, texture, structure, compactness, colloids, 
organic matter and soil microbial community play important roles influencing the 
dispersion, aggregation, immobilization, bioavailability, stability and transport of 
NPs (Fierer and Jackson 2006; French et al. 2009; Van Hoecke et al. 2011; Hua 
et al. 2015; Pachapur et al. 2016; Jiménez-Lamana and Slaveykova 2016; Ellis et al. 
2016; Maghsoodi et al. 2019). Soil can contain large quantities of organic matter, 
such as dissolved organic matter (DOM), natural organic matter (NOM) and par-
ticulate organic matter (POM), that affect the mobility of NPs. DOM is a complex 
mixture of various functional groups, molecular weights and different structures 
such as protein, fulvic acid and humic acid (Chen et al. 2013). The heterogeneous 
molecular weight of DOM affects the binding behaviour between NPs, metals and 
DOM (Wu et al. 2012), whose effects on the fate of nanoparticles (such as Ag, Au 
and fullerenes) are observed (Shen et al. 2015; Louie et al. 2013). DOM-coated NPs 

K. Khalkhal et al.



143

influence their stability and can cause declined aggregation via steric stabilization 
and surface charge effects (Li et  al. 2016; Erhayem and Sohn 2014). However, 
bridging mechanisms and charge neutralization between DOM and NPs can also 
lead to enhanced aggregation (Buffle et al. 1998). Biochemical processes, source of 
materials and hydrology may cause different composition as well as different effects 
of DOM (Aiken et  al. 2011). The application of DOM increased the stability of 
SeNPs and thus favoured the immobilization of Hg0. Upon interaction with interme-
diate molecular weights, DOM demonstrated the biggest effect (Wang et al. 2019a).

Natural organic matter (NOM) plays an important role in NPs aggregation and is 
one of the major constituents of colloidal natural materials. Fulvic acid and humic 
acid are considered to be POM that have been studied. NOM can stabilize colloids 
and NPs due to the coating effect on the surface of the NPs via a steric stabilization 
and charge mechanism. Giasuddin et  al. (2007) has reported that interactions 
between NOM and NPs affect the stability of colloidal NPs and chemical reactions. 
Apart from DOM, there is another important and dynamic fraction of the NOM 
called particulate organic matter (POM) that effect on the fate of Se NPs and mer-
cury immobilization in the soil, which has not been fully investigated (Wang et al. 
2019c).The POM consists of organic debris, rhizoplan and fine-grained fragments 
that are between 2–53 mm in size and can affect the fate and performance of NPs in 
the remediation process (Leifeld 2006; Cambardella and Elliott 1992; Wang et al. 
2019c). Wang et al. (2019c) reported that low concentrations of more negatively 
charged POM hindered heteroaggregation and homoaggregation with SeNPs which 
had a lower negative charge via electrostatic repulsion. In high concentrations of 
POM, SeNPs were formed to bind to POM with further Hg0 presence in the POM 
due to a higher content of NPs, which result in successful collisions. Although, 
mercury immobilization capability by SeNPs was not remarkably affected using the 
application of POM (Wang et al. 2019c).

Soil microorganisms produce BioNPs in the soil, but on the other hand, these 
microorganisms are affected by the toxicity of the NPs in the soil. In other words, 
the physicochemical properties of the soil affect microorganisms by affecting the 
toxicity of NPs. The toxicity of NPs cannot be limited to a single soil property, and 
features such as soil texture, pH and OM at high concentrations are among the most 
important. Comparison of AgNP toxicity with soil physical and chemical properties 
showed that the toxicity decreased with increase in clay percentage and increasing 
pH.  But, AgNPs toxicity did not seem to be influenced by soil organic matter 
(Schlich and Hund-Rinke 2015).

Soil biological systems reduce the number of Cu ions to reduce the toxicity of 
copper, or, like the rhizospheres of Iris pseudoacorus and Phragmites australis, 
convert copper particles into biogenic NPs and prevent its toxicity (Manceau et al. 
2008a, b). Biomolecular responses to Cu stress by plant roots in oxygenated envi-
ronments have resulted in its transformation and immobilization (Manceau et al. 
2008a, b).CuBioNPs may be formed in phytoremediated soils around peat bogs or 
swamps. For example, CuNPs have been formed by plant rhizospheres in swamp 
peats around New Brunswick, Canada. The physicochemical properties of the rhi-
zosphere result in the immobilization of CuNPs and prevent their entry into plants 
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and food chains that can infect humans and animals (Shotyk 1988). The addition of 
peats that either act as templating substrates or include CuNPs could raise the effi-
cacy of using swamp plants for immobilization.

The retention and immobilization of AgNPs in soils rely on many physicochemi-
cal factors, for example redox potential (Eh), soil organic matter, clay, various 
microorganisms (Li et al. 2017; Hoppe et al. 2014) and exposure period (Whitley 
et  al. 2013). For instance, positively charged clay edges and Al and Fe oxides/
hydroxides controlled AgNPs immobilization (Cornelis et  al. 2010). In addition, 
Hedberg et al. (2015) reported that greater retention of AgNPs occurred in acid and 
clay soils than in natural and sandy soils, respectively. Wang et al. (2018b) reported 
the results of multiple regression analyses indicated that the retention capacity of 
Ag+ ions on soils was largely correlated to soil OM content, while retention capacity 
of AgNPs was positively correlated with the Fe oxide content. Highest retention 
capacity of Ag+ ion and AgNPs in soils is diverse with soil physical and chemical 
attributes, and especially, soil organic matter contents and iron oxide are two pivotal 
factors controlling Qmax (Wang et al. 2018b).

Another important and influential feature of soil on the immobilization and bio-
remediation of NPs is salinity and ionic strength. Wang et al. (2019b) reported that 
on aggregation, Hg0 immobilization was suppressed due to reduced surface area and 
decreased availability sites of the Se BioNPs, and the inhibitory effect was more 
pronounced with increased salinity in soil rather than in soil solutions. It is known 
that Se BioNPs have a higher Hg sorption capacity than chemical Se ENPs (Johnson 
et al. 2008). According to the following reaction, Se BioNPs are a successful biore-
mediation method for mercury immobilization in water and soil:

 
Hg Se HgSe 1 kjmol Wang et al , c0 0 0 138 2017 2018+ → = −( )−∆G . ( . )  

Joo et al. (2013) reported that the reduced electrical double layer with increasing 
salinity led to an increase in the hydrodynamic diameter of AgNPs. Generally, 
higher salinity can lead to less toxicity of NPs as they may be released from metal 
nano-oxides due to lower metal ions concentration (Yung et al. 2017). On the con-
trary, the toxicity of AgNPs coated with polyvinylpyrrolidone significantly increased 
with enhancing salinity although the toxicity of Ag+ decreased (Macken et al. 2012).

Microorganisms such as algae have been properly recognized due to their phyto-
chemical action to immobilize, stabilize and synthesize the NPs (Jena et al. 2013). 
Fungi, on the other hand, are capable of immobilizing, stabilization, and synthesiz-
ing of metallic NPs by secreting different enzymes, polypeptides and proteins, etc. 
and act as nanocatalysts and nanoadsorbents (Yadav et  al. 2015). Fungi such as 
wasp nest soil fungi (Nayak et al. 2018) are more advanced than other microorgan-
isms in the synthesis of NPs, since most of the fungi possess high wall-binding 
capacity to immobilize, are easy to handle, have intracellular metal uptake capabili-
ties and require simple nutrients to grow (Bhat et al. 2015). Coutris et al. (2012) 
evaluated the behaviour of three types of Ag, namely, uncoated AgNPs (19 nm), 
silver nitrate and citrate stabilized AgNPs (5 nm), in two soils with various OM 
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content, and to follow changes in binding strength over time. Their findings showed 
that silver nitrate is quickly immobilized in soil, while uncoated Ag NPs can act as 
a persistent source of bioaccessible Ag.

MnNPs whose high retention potential for toxic trace metals, especially Pb, is 
well established (Villalobos et  al. 2005). Many researchers have investigated the 
mechanisms of trace metal retention on biogenic and synthetic Mn4+NPs (O’Reilly 
and Hochella 2003; Tebo et al. 2004; Nelson and Lion 2003). These researchers 
noted the key role played by negatively charged sites in the (hydro)oxides and by 
inner-sphere surface complexation of the metals (i.e. direct chemical binding of the 
metals to the mineral surface). Tebo et al. (2004) and Manceau et al. (2003) have 
also reported high sorption affinity of Mn oxides in sediments and natural soils for 
other bivalent trace metal cations, such as Co, Cd, Zn and Ni. Biogenic Mn oxides 
therefore have two strong metal cation retention mechanisms: the binding of species 
at the external edges of crystallites and the structural binding of species at interlayer 
sites (Villalobos et  al. 2005). These mechanisms demonstrate the observed high 
affinity of birnessite NPs for lead. It has been clear that the biogenic magnetite NPs 
serve as efficient adsorbents for metal contaminants cations such as Mn2+, Co2+, Ni2+ 
and Zn2+ (Iwahori et al. 2014).

8.6  Influence of Soil Properties on the Toxicity 
of Nanoparticles

Soil is a dynamic, heterogeneous, porous, complex and live system composed of 
three phases: solid (organic and inorganic), liquid and gas. Agricultural soils are 
exposed to metal oxide NPs due to the use of sewage sludge as fertilizers and differ-
ent pesticides (Larue et al. 2014; Suppan 2013). Soil physicochemical properties 
such as pH, soil texture and OM contents substantially affect the bioavailability and 
behaviour of conventional contaminants like ENPs, polycyclic aromatic hydrocar-
bons, heavy metals and pesticides (Giller et al. 1998; Martins and Mermoud 1998; 
Labud et al. 2007; Ranjard et al. 2000). Metal NPs interact with OM and clay miner-
als due to their small size (2–53 and < 2 nm) (Antisari et al. (2013). Since most of 
the soil bacteria are in the fine soil (less than 20 nm), the metal NPs in the clay frac-
tion are in direct contact with microbial communities (Ranjard and Richaume 2001; 
Antisari et al. 2013). Among the various soil parameters, soil microbial communi-
ties have been identified as sensitive ecological indicators of soil response to envi-
ronmental stress due to soil microbial impact on ecosystem function (Doran and 
Zeiss 2000; Schloter et al. 2003; Lejon et al. 2008; Baptist et al. 2008) and may be 
good models to examinw TiO2NPs impact on soil quality and functioning (Holden 
et al. 2014). Some researchers reported that metal NPs can alter the bacterial com-
munity structure and reduce microbial activity in soils (Ge et al. 2011; Du et al. 
2011; Nogueira et  al. 2012). Simonin et  al. (2015) evaluated the influence of 
TiO2NPs on soil microbial communities in six agricultural soils displaying different 
OM contents and textures in microcosms. TiO2NPs only in silty-clay soil (due to 
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high OM and carbon mineralization) significantly decreased the abundance and 
activity of microbial communities. In this study, OM and pH were the main param-
eters affecting the toxicity of NPs in soil, and soil texture showed no significant 
effect on the toxicity of TiO2NPs.

8.7  Toxicity of Nanoparticles in Soil

In recent years, the synthesis and application of NPs in agricultural and plant sci-
ences has grown exponentially and many advances have been made (Ghorbanpour 
and Hadian 2015, 2017; Hatami et al. 2013, 2014, 2016, 2017, 2019; Ghorbanpour 
et  al. 2015, 2018; Ghorbanpour and Hatami 2014, 2015; Ghorbanpour 2015; 
Ghorbanpour and Fahimirad 2017; Hatami and Ghorbanpour 2013, 2014; Baiazidi- 
Aghdam et al. 2016; Hatami 2017; Chegini et al. 2017; Mohammadi et al. 2018; 
Fahimirad et al. 2019; Tian et al. 2018; Ahmadi et al. 2018), but these advances have 
been along with the diffusion of different NPs into the environment and increased 
pollution (Aitken et  al. 2006; Maghsoodi et  al. 2019; Khadem Moghadam et  al. 
2019). In the case of metal-based nanoparticles such as Ag, ZnO, CeO and TiO2, the 
toxicity has largely been due to the emission and release of free metal ions into the 
environment (Auffan et al. 2009), and as a result of high specificity and reactivity, 
its toxicity effects are expected to increase ( Van Gestel et al. 2010). The NPs can be 
divided into two classes of organic and inorganic nanoparticles. Inorganic NPs 
mainly include, metal oxides (Fe3O4, Al2O3, Cu2O, CuO, CeO2, La2O3, In2O3, NiO, 
MgO, SnO2, TiO2, ZrO2, ZnO), metals (Ag, Al, Au, Bi, Cu, Co, Mo, In, Ni Fe, Sn, 
Zn, Ti, W) and quantum dots, while carbon nanotubes and fullerenes are organic 
NPs (Rajput et al. 2018a, b). Among inorganic NPs, metal NPs are more broadly 
used because of their dangerous effects (as biocides to suppress microorganisms) 
and have many effects on the diversity, abundance, activity and habitat of living 
organisms (Rajput et al. 2018a, b). Thus, these NPs should be examined for their 
toxic fate and effects in soil. NPs released into the environment may be adsorbed 
into soil, create leaching or drain to groundwater or degradation by abiotic and 
biotic processes (Boxall et al. 2007; Khadem Moghadam et al. 2019). Therefore, it 
is necessary to assess the risks associated with nanoparticle toxicity in soil. 
Contaminant NPs mobility via the soil profile rely on the kind of soil minerals, size, 
shape, charge and soil physicochemical and biological properties (Petosa et  al. 
2010). For example, zinc oxide NPs are adsorbed in the surface of soil colloids. 
These ZnONPs have low mobility depending on the ionic strength (Zhao et  al. 
2012), and are more strongly adsorbed than the Zn2+ion. Adsorption of Zn2+and 
ZnONPs increases with increasing pH (Rajput et al. 2018a, b).

Biodiversity, microbial biomass and abundance are important biological proper-
ties of soil affected by NPs (Bondarenko et al. 2013). Silver, copper and silicon NPs 
in arctic soils significantly reduced microbial biomass (Kumar et al. 2011). ZnO and 
CuONPs had significant toxic effects on the soil microbial community and caused 
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enzymatic activities, such as fluorescein diacetate hydrolysis, urease and catalase 
(Chai et al. 2015; Dinesh et al. 2012). The toxic effects of some metal and metal 
oxide NPs on microorganisms have been reported more than carbon nanotubes and 
fullerenes (Simonin and Richaume 2015; Frenk et al. 2013). Ge et al. (2011) inves-
tigated the influence of ZnO and TiO2 on soil microbial communities and indicated 
that both NPs decrease diversity and microbial mass. The effects of silver and cop-
per oxide NPs on leaf microbial decomposition led to a reduction in leaf decomposi-
tion rate (Pradhan et  al. 2011). Fe3O4 and CuONPs did not affect some of the 
macroscopic as well as organic matter, but in contrast to the microscopic properties, 
the bacterial community and humic substances in DOM were changed, although the 
effects of CuO NPs were greater than that of Fe3O4NPs. The effect depended on NPs 
concentration, NP types and soil types (Ben-Moshe et  al. 2013). The effects of 
CuONPs, ZnONPs and TiO2NPs on different soils resulted in a significant reduction 
in the diversity of microbial community, soil microbial activity and enzymatic activ-
ity (Xu et al. 2015; Rousk et al. 2012). The toxicity of CuONPs was more severe 
than TiO2NPs, because CuONPs (heavy metal) altered nutrient bioavailability, pro-
ducing free radicals and high dissolution of soil microbes, while the effect of TiO2 
NPs were mainly caused by titanium particles themselves (Gajjar et al. 2009; Xu 
et al. 2015). Burke et al. (2014) reported that the variation in arbuscular mycorrhiza 
fungal community in the TiO2NP amended soil, in contrast, a notable enhancement 
in soil richness was reported by Shah et al. (2014). This difference of soil biological 
response to NPs can be due to the coactions of some parameters, such as exposure 
time and dose, microbiological species, inherent toxicity differences among NPs 
soil property (Eh, pH, iron strength, water content, OM, etc.) or other experimental 
conditions.

8.8  Conclusion and Future Research

As the bulk of industrial nanoparticles eventually enter the soil and lead to contami-
nation of soil, groundwater and surface water, future research should focus on the 
synthesis and use of biogenic nanoparticles instead of engineered nanoparticles, and 
further research on soil bioremediation and immobilization of various types of con-
taminants (organic and inorganic) are needed in soil using biogenic nanoparticles. 
Soil physicochemical properties (pH, EC, OM, Eh, ionic strength, clay minerals, 
texture, structure, compactness, colloids and soil microorganisms) play important 
roles influencing the aggregation, immobilization, bioavailability, stability and 
transport of NPs, however, clay content, organic matter content, and pH have 
received the most attention. Studies on some physicochemical properties of the soil 
such as calcium carbonate (CCE), active calcium carbonate equivalent (ACCE), 
cations exchange capacity (CEC), soil water content and clay type (2: 1 and 2: 1) 
have not mentioned the behaviour of biogenic nanoparticles and this should be 
included in future research.
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9Biogenic Nanoparticles as Novel 
Sustainable Approach for Plant 
Protection
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and Mansour Ghorbanpour

Abstract
Around the world due to plant diseases, the amount of crop decreases annually. 
Different natural and synthetic approaches to manage and reduce damage dis-
eases are used, out of which using nanoparticles is one of them. In the last 
decades, interest in research on using nanoparticles has increased because of the 
global concern about environmental pollution. A variety of traditional physical 
and chemical processes are used to produce nanoscale materials, but nowadays 
environment-friendly green chemistry-based techniques are available to biologi-
cally synthesize materials. Recently, nanotechnology and biology have conver-
gence to create a new field called nanobiotechnology which incorporates the use 
of biological entities such as actinomycetes, algae, bacteria, fungi, viruses, 
yeasts, and plants in a number of processes, either biochemical or biophysical. 
Nanobiotechnology processes have a significant potential to boost nanoparticle 
production and reduce the use of harsh, toxic, and expensive chemicals that are 
commonly used in the conventional physical and chemical processes of 
production.
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9.1  Introduction

The most challenging aspect of the farmer for crop production is control of plant 
diseases. The primary food source for humans and almost other organisms on the 
earth are plants, among which six plant species of sweet potato, wheat, corn, cassava, 
rice, and potato provide 80% of calories consumed by humans worldwide (FAO 
2012; Goudie and Cuff 2001). As respects crop casualties in resources, because of 
diseases, are usually overstated and not founded on a comprehensive strategy consid-
ering all possible production limitations. A recent investigation handling with all 
production limitation (containing diseases) in 13 Asian and African agriculture sys-
tems for six main crops (rice, wheat, cassava, cowpea, chickpea, and sorghum) 
revealed that casualties created by diseases ranged from 3% to 14%, while yield 
casualties to all crop production restrictions ranged from 36% to 65% and yield casu-
alties because of all biotic stresses ranged from 16% to 37% (Waddington et  al. 
2010). To control plant diseases, different kinds of synthetic and natural methods are 
used, out of which the application of chemical pesticides is highly prevalent. 
Recently, environmental risk of chemical pesticides has caused scientists to search 
for an alternative approach with the least environmental hazards (Jo et al. 2009). In 
order to control plant diseases, agricultural scientists and experts seek alternative 
eco-friendly and less capital-intensive methods (Parthiban et al. 2019). As a replace-
ment to chemical pesticides, usage of nanoparticles as antimicrobial factors has 
become highly prevalent as technological progression, making their production 
affordable (Malandrakis et al. 2019; Sahadan et al. 2019). A new area of utilization 
of NPs in agriculture is seen in their usage as a fertilizer or a plant protection product 
(Gogos et al. 2012; Khot et al. 2012; Rai and Ingle 2012) (Fig. 9.1).

The increasing demand for nanomaterials should be accompanied by “green” 
synthesis methods in an effort to reduce generated hazardous waste from this indus-
try. Green chemistry would help minimize the use of unsafe products and maximize 
the efficiency of chemical processes (Parthiban et al. 2019). An advantage of bio-
genic synthesis, over conventional chemical synthesis, is the safer and easier han-
dling of microbial cultures and the simpler downstream processing of biomass as 
compared to synthetic methods (Rai et  al. 2011). Hence, biogenic NP synthesis 
represents a very interesting greener and more environmentally friendly manufac-
turing alternative, due to the use of chemicals of lower toxicity and to the use of 
lower ambient temperatures and lower pressures in the synthesis (Chhipa 2019).

In an attempt to overcome the limitations of these conventional methods and the 
growing demand to come up with synthesis methods of nanomaterials with the desired 
size and shape that are fast and eco-friendly, researchers have developed biogenic syn-
thesis principles for nanomaterials with the use of biological resources such as plants 
and microorganisms or their products (Rónavári et al. 2018; Schröfel et al. 2011).

N. Maroufpour et al.



163

9.2  Biogenic Nanoparticle

Diverse microorganisms of both prokaryotic and eukaryotic origins are used for 
biosynthesis of metallic nanoparticles such as silver, gold, platinum, zirconium, pal-
ladium, iron, and cadmium and metal oxides such as titanium oxide, zinc oxide, etc. 
as a green and eco-friendly technology (Hasan 2015; Luo et al. 2018). Bacteria, 
actinomycetes, fungi, and algae are part of these microorganisms. Based on the 
location of nanoparticles, the synthesis process can be intracellular or extracellular 
(Hulkoti and Taranath 2014; Mann 2001).

The most extensively researched natural resource for the synthesis of metallic 
nanoparticles are prokaryotic bacteria (Luo et al. 2018), which the relative ease to 
manipulate them for nanoparticles synthesis is one of the reasons for the “bacterial 
preference” (Slawson et al. 1992). Microbial synthesis is one of such processes, a 
green chemistry approach that interlinks nanotechnology and microbial biotechnol-
ogy (Luo et al. 2018). The major bacterial species used for the synthesis of metallic 
nanoparticles include Acinetobacter spp., Escherichia coli, Klebsiella pneumoniae, 
Lactobacillus spp., Bacillus cereus, Corynebacterium sp., and Pseudomonas sp. 
(Iravani 2014; Mohanpuria et al. 2008; NVKV Prasad et al. 2011).

Synthesis of metal nanoparticles in microbes takes place in the intracellular or 
extracellular environment (Ghandehari et al. 2018), the former of which requires 
additional steps such as ultrasound treatment or reactions with suitable detergents in 
order to isolate the synthesized nanoparticles (Kalimuthu et al. 2008). Meanwhile, 
the latter is cheaper and requires simpler downstream processing. The extracellular 
form is in favor of large-scale production of silver nanoparticles to further explore 
its potential applications. In regard to this, a lot of researchers have focused their 
work on extracellular methods of metal nanoparticle synthesis (Durán et al. 2005). 

Fig. 9.1 Application of nanoparticle in plant protection
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Considering the fast rate of microbe reproduction, it makes them a perfect model to 
exploit their use in various aspects of biological sciences. Microbiology is the result 
of biotechnology joining hands and emerging as an initiative to study microbes and 
their various characteristics.

Microorganisms, called nanofactories because of their small size of 10–6 nm, 
generate nanoparticles. Because of their presence in nature, they are also called 
biofactories (Deepak et  al. 2011). Bacteria synthesize metal nanoparticles as a 
defense mechanism (resistance mechanism), since the resistance of bacterial cell on 
metal ions in the environment is the cause for nanoparticle synthesis, and cell wall 
(negatively charged) interacts electrostatically with the metal ions (positively 
charged) (Luo et al. 2018).

The enzymes present within cell wall bioreduce the metal ions to nanoparticles, 
and finally the smaller-sized nanoparticles get diffused of through the cell wall, and 
the nanoparticles are produced (Mukherjee et al. 2001). The first synthesis of Ag 
nanoparticles by bacteria was reported in 2000. Joerger et  al. (2000) used 
Pseudomonas stutzeri AG259 to synthesize Ag nanoparticles with a size of less than 
200 nm.

The rapid synthesis of silver nanoparticles using the reduction of aqueous Ag+ 
ion in culture supernatants of Klebsiella pneumoniae, Escherichia coli, and 
Enterobacter cloacae (Enterobacteriaceae) has been reported by Shahverdi et  al. 
(2007) and (Lee 1996). Lactobacillus, a common bacterial strain present in the but-
termilk, synthesizes both Au and AgNPs under standard conditions (Nair and 
Pradeep 2002).

Also, the synthesis of spherical Cu nanoparticles using nonpathogenic 
Pseudomonas stutzeri has been observed in a rapid biological synthesis technique 
performed by Varshney et al. (2011). In a recent study, an innovative approach used 
Pseudomonas stutzeri bacterial strain to synthesize copper nanoparticles from elec-
troplating waste water (Varshney et al. 2011).

In relation to other plant material and microbes for NP synthesis, fungi have a 
number of advantages. Several fungal strains such as Aspergillus, Fusarium, 
Penicillium, and Verticillium have been used as promising resources for nanoparti-
cle fabrication. The fungi because they are simpler to handle in the laboratory and 
produce large quantities of enzymes have the potential to use the synthesis of NPs 
(Mandal et al. 2006; Mitra et al. 2019; Mohanpuria et al. 2008). Many studies have 
been reported the synthesis of NPs by fungi. The synthesis of nanoparticles by fungi 
may be intracellular or extracellular. The authors reported that Fusarium oxysporum 
synthesized the AgNPs by intra- and extracellular method (Birla et  al. 2013; 
Khosravi and Shojaosadati 2009; Mitra et al. 2019; Zhang et al. 2019). In another 
study, synthesis of magnetite NPs by F. oxysporum and Verticillium sp. was demon-
strated (Durán et  al. 2010). Also, biosynthesis of NPs by Penicillium sp. was 
reported by other researchers (Kathiresan et  al. 2009; Maliszewska et  al. 2014; 
Nayak et  al. 2011; Shaligram et  al. 2009; Singh et  al. 2014). The investigations 
proved that biosynthesis of metal NPs is affected by culture conditions (Hamad 
2019; Ingle et al. 2008; Saravanan and Nanda 2010), and some factors such as the 
biomass concentration of the fungal species, incubation time and conditions, pH, 
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temperature, nature of the metal species or parent compound, and colloidal interac-
tion conditions (Jain et  al. 2011; Kumar et  al. 2008; Prakash and Soni 2011; 
Saravanan and Nanda 2010; Sunkar and Nachiyar 2013).

9.3  Nanoparticle and Pathogen Control

In agriculture, many NPs have been studied for their potential application such as 
nano-zinc oxide (ZnO), nano-silica (SiO2), nanosilver (Ag), nano-titanium dioxide 
(TiO2), nano-copper (Cu), carbon nanotubes (CNT), and nano-aluminum (Al). With 
approximately half of the NP constituents being designed as the active ingredient 
and the other half as the additive, plant protection is the principal purpose (75%). 
Furthermore, fertilization and UV protection are other purposes (Gogos et al. 2012). 
As physicochemical properties of nano-forms considerably differ from bulk forms, 
they become significant to test the impact of NPs on microorganisms in order to 
restrain the benefit of this technology in the plant protection exclusively against 
phytopathogens. Nanoparticles may affect activity of microorganisms through too 
small size, even smaller than a virus bit and high responsiveness (Khan and Rizvi 
2014). Various types of nanomaterials have also been tested like copper, zinc, tita-
nium (Gu et al. 2003), magnesium, gold, alginate (Ahmad et al. 2006), and silver, 
but AgNPs have shown to be the most efficient ones as they have excellent antimi-
crobial efficiency against bacteria, viruses, fungi, and other eukaryotic microorgan-
isms (Alvarez-Puebla et al. 2004; Gong et al. 2007; Lead and Wilkinson 2006).

Based on the possible reactions between nanoparticles and macromolecules of 
living organisms, numerous investigations have been conducted. Due to different 
charges with microorganisms, a nanoparticle acts as an electromagnetic absorber 
between the microbe and the nanoparticle and helps the nanoparticle to stick to the 
cell surface, leading to cell death. Many of these contacts cause oxidation of surface 
molecules of microbes, eventually leading to death (Lin and Xing 2007).

Bacterial development and stress resistance, plant susceptibility to bacterial 
infection, and mechanisms of interaction among plant and related bacteria are influ-
enced by some NPs (Degrassi et al. 2012). Many researchers consider the antibacte-
rial characteristics of nanoparticles so that many articles are daily published 
concerning the wonderful property of nanoparticles to overcome pathogens resis-
tant to current antibiotics (Elechiguerra et  al. 2005). A number of nanomaterials 
such as carbon nanotubes (Kang et al. 2007; Liu et al. 2009), iron-based nanoparti-
cles (Hu et al. 2010), silver (Sondi and Salopek-Sondi 2004), graphene-based nano-
materials (Hu et al. 2010), zinc, copper, and titanium oxide nanoparticles (Ge et al. 
2011; Kasemets et al. 2009) have been noted to have a toxic influence on pure cul-
tures of bacteria (He et al. 2011) and toxic impact on both harmful and useful rhizo-
sphere microorganisms (Gajjar et al. 2009; Gunawan et al. 2011; Jones et al. 2008) 
containing Pseudomonas chlororaphis (Dimkpa et al. 2012), Pseudomonas putida 
(Gajjar et al. 2009), Escherichia coli, Bacillus subtilis, Streptococcus aureus (Baek 
and An 2011), and Campylobacter jejuni (Xie et al. 2011). Nevertheless, the reports 
are incompatible about the effect of nanoparticles on secondary metabolites of 
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microbes. The investigation of the antibacterial action of zinc NPs has demonstrated 
that the morphology and oxidative stress play significant roles in the antibacterial 
activity (Dwivedi et  al. 2014; Raghupathi et  al. 2011). Several elements such as 
ZnO, SiO2, and inorganic TiO2 have been reported to exert a toxic impact on bacte-
ria that toxicity of these elements considerably intensifies in attendance of light 
(Adams et al. 2006).

The most sensitive microbial process of the nitrogen cycle may be nitrification, 
albeit moderate stimulatory impacts can also consequence on exposure to a narrow 
range of sublethal AgNP concentrations. Reduction in nitrification activity occurs 
before other nitrogen cycling operations are affected if AgNP concentrations reach 
the inhibitory levels (Yang et  al. 2013). Mechanisms of AgNPs against bacteria 
involved alteration of cell wall and cytoplasm (Łysakowska et al. 2015), alteration 
of membrane permeability and respiration (Manjumeena et al. 2014), alteration of 
membrane (Naraginti and Sivakumar 2014), morphological alterations, disjuncture 
of the cytoplasmic membrane from the cell wall, plasmolysis (Tamayo et al. 2014), 
change of membrane with inhibition respiratory activity (Wang et al. 2014), irreme-
diable injury on bacterial cells, change of membrane penetrance and respiration 
(Morones et  al. 2005), irreversible damage on bacterial cells (Jain et  al. 2009), 
deterrence of bacterial DNA replication, bacterial cytoplasm membrane injury, and 
alteration of intracellular ATP levels (Shameli et al. 2012). For sustaining life, bac-
teria are believed to use an enzyme to metabolize oxygen, but silver ions disable the 
enzyme and prevent the metabolization of oxygen suffocating the bacteria, resulting 
in death (Alghuthaymi et al. 2015). The deterrent impact of nanoparticles against 
bacterial types can be due to injury to the bacterial enzymes or plasma membrane. 
Leakage of the cytoplasmic content to the surroundings impaired metabolic path-
ways, leading to the death of bacterial cells (Li et al. 2006).

Some researchers have reported the antifungal impact of silver nanoparticles on 
some pathogenic fungi (Kim et al. 2009). The considerable decrease in mycelial 
development and incubated spore germination is observed with silver nanoparticles 
(Morones et al. 2005). In the nanoparticles, the inbitory impact can be owing to the 
release of extracellular enzymes and metabolites working as a factor for their own 
survival when exposed to stress from poisonous elements and temperature altera-
tions as confirmed in the case of fungus Trichoderma reesei and other fungi (Pérez- 
de- Luque and Rubiales 2009).

A number of silver nanoparticles have antifungal property on some fungi such as 
Fusarium species, wood rotting fungi, and other phytopathogenic fungi. The inves-
tigation has shown that the antifungal activity against fungal pathogens can be due 
to repression of enzymes and toxins utilized by the fungal pathogens for pathogen-
esis (Bhainsa and D’souza 2006; Khabat et al. 2011). Min et al. (2009) determined 
the antifungal activity of silver nanoparticles against sclerotium-forming phyto-
pathogens, S. sclerotiorum, S. minor, and R. solani. According to the obtained infor-
mation, the nanoparticles strongly inhibited the sclerotial germination growth and 
fungal development. In addition, it is suggested that nanometer-sized silvers have 
various attributes, which might be the result of physiological, morphological, and 
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structural changes (Baek and An 2011). The data collected from the microscope 
demonstrated that silver nanoparticle-treated hyphae were extremely damaged on 
walls causing the plasmolysis of hyphae (Min et al. 2009). A recent study indicated 
that transport systems, including ion efflux, were disrupted by silver nanoparticles 
(Morones et al. 2005). The result of dysfunction of ion efflux may be a quick accu-
mulation of silver ions, preventing cellular activities at their lower concentrations 
such as metabolism and respiration by responding to molecules. Furthermore, silver 
ions through reaction with oxygen can generate reactive oxygen species (ROS), 
being harmful to cells and leading to injury to nucleic acids, lipids, and proteins 
(Hwang et al. 2008).

At 100 ppm concentration of silver nanoparticles, most fungi have shown high 
deterrence efficacy. Generally, with the increase in the concentration of AgNPs, 
inhibition increased. This increase occurs owing to the above density at which the 
solution could impregnate and stick to fungal hyphae, inactivating plant pathogenic 
fungi. The DNA loses its capability to replicate after treatment with Ag finishing in 
the deactivated expression of ribosomal subunit proteins. Moreover, some other cel-
lular proteins and enzymes are necessary to the ATP production. For Ag+, it is 
assumed that Ag+ primarily impacts the function of membrane-bound enzymes 
such as those in the respiratory chain (Kim et al. 2012). Nowadays, the application 
of the antimicrobial properties of nano-sized silver particles has become more 
accepted as technological progress made their manufacturing more economical. In 
order to control spore-producing fungal plant pathogens, the antifungal activity of 
nanoparticle silver or ionic has high potential. Studies on the antifungal activity of 
different forms of silver ions and nanoparticles have been conducted on the two 
plant pathogenic fungi, namely, Bipolaris sorokiniana and Magnaporthe grisea (Jo 
et al. 2009). According to the results of investigations, the effect of silver is highly 
influenced by utilization time and preventive applications of silver nanoparticles 
work better before fungal isolates penetrate and colonize within the plant tissue 
(Kim et al. 2012).

9.4  Conclusions

Biogenic methods for synthesis of nanoparticles are still in the development stages, 
and furthermore, biogenic synthesized NPs in comparison with chemically synthe-
sized ones are more polydisperse. Optimization of important parameters controls 
the growth condition of organisms, cellular activities, and enzymatic processes 
which in turn can control the properties of NPs. Since the mechanism of production 
has not been described clearly, more investigations are needed to understand the 
exact mechanisms of biogenic methods and identify the enzymes and proteins 
involved in nanoparticle biosynthesis. Given that in many fields, these nanomateri-
als can be used, but environmental risks about them exist, so we need more study in 
this area. Top of this matter, it’s true that the nanoparticles have a good potential in 
control and nanoparticles are a new weapon of human for the fight with plant 
diseases.
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10Biogenic Nanoparticles in the Insect 
World: Challenges and Constraints
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Abstract
Insects are found in a variety of environmental conditions and occupy little more 
than two-thirds of the known species of animals in the world. Traditional pest 
management tactics used in plant protection are insufficient, and synthetic pesti-
cides are costly and have adverse effects on human and environment. A brilliant 
approach to pest control is using nanoparticles to help reduce the application of 
synthetic pesticides and environmental pollution, therefore providing green and 
efficient alternative approaches for pest control in plant protection by the help of 
nanotechnology without harming the environment. Nowadays, biosynthesis of 
nanoparticles by microorganisms and plants is being efficiently used in plant 
protection.
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10.1  Introduction

Insects are one of the largest animal populations that the first insects living in the 
Devonian layers have been seen. Insects have existed for more than 500 million 
years in all geological periods on Earth. Because of successful development, insects 
have been scattered in all possible environments throughout the world. Features like 
high reproductive potential, desiccation-resistant eggs, metamorphosis, malleable 
exoskeleton, and wings are just a few of these evolutionary successes. According to 
scientific estimates, about 4/5 of the known animal species of the world are insects. 
On the other hand, the number of insect species to date has been reported by over 
one million species, which is only 1/4 up to 1/3 of the total insects on Earth. Insects 
in human societies cause damage to health and the economy issues through vectors 
of many diseases and agricultural pests. These insects can also be useful species, 
such as honey bee or parasitoids and predators for controlling agricultural pests 
(Ragaei and Sabry 2014). We are faced daily with nanoscience in our environment 
from butterflies with iridescent colors to geckos that walk upside down on a ceiling, 
apparently against gravity. In nature, we encounter some outstanding solutions to 
complex problems in the form of good nanostructures with which accurate func-
tions are concerned.

10.2  Biogenic Nanoparticles and Insects

By natural nanomaterials mean to us that these are materials belonging to nature 
(animal and mineral), without manipulating and changing humans, as well as hav-
ing interesting properties due to their intrinsic structure (Filipponi et  al. 2010). 
Natural nanomaterials have led to that the human integrates nanoscience in their 
environmental issues and uses it in its own affairs. Living organisms rely on 
nanometer- shaped protein machines to be able to do anything, whether as small as 
whipping bacterial flagella or flexing of muscles (Huck 2008). Although natural 
nanostructures are usually ignored, they are in fact sources of special properties 
(Watson and Watson 2004). Natural nanomaterials are not only intended to figure 
out the unusual properties of biological materials but also to design and fabricate 
new materials with more useful properties (Filipponi et al. 2010).

The industries that are emerging on the basis of nanotechnology in the world 
have not used very much of free technology available in nature (Ehrlich et al. 2008). 
The presence of natural nanoparticles is seen throughout nature, including the world 
of insects. Nanoparticles are seen from different parts of the body, including the 
compound eyes, antenna, wings, and abdomen, that isolated nanoparticles of abdo-
men and antennae have diameters of about 12 and 11  nm, respectively. A good 
example for the insect wings would be cicada (Psaltoda claripennis Ashton) and 
termite (Rhinotermitidae) (Zhang et al. 2006).

Researches have indicated that these wing nanoparticles help in the aerody-
namic efficiency of the insect and consist of a round-shaped apex that protrudes 
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some 150–350 nm out from the surface plane (Ragaei and Sabry 2014). Butterfly 
wings with bright color elements have nanoparticles. The wings of butterflies 
often display amazing colors which are a result of the wing’s surface and its inter-
play with light. The wings also display iridescence, which is the change in color 
of an object when seen at various angles. The interaction of light with the physical 
structure of the surface causes an iridescence, which is a physical color. To inter-
act with visible light, these structures need to be within the range of the nanoscale 
that this interaction causes constructive or destructive interference (Ragaei and 
Sabry 2014). Factors like the refractive index of the substrate, thickness, fre-
quency of the incident light, and incident angle can affect the intensity, angles, 
and color of iridescence. The natural iridescence happened in materials such as 
opals because of packed silica spheres in the nanometer range uniform in size and 
arranged in layers. This presents suitable conditions for intervention. But the 
interference in these insects (butterflies and moths) for the iridescence is produced 
by a different method. In studies that researchers conducted on the structure of the 
wings of Morpho rhetenor, they found that each scale is about 70 × 200 μm and 
these are formed of rows of scales arranged such as tiles in a roof. Also, they 
found that scales have a smaller structure on its surface, a very intricate and highly 
ordered nanometer organization of ridges that every ridge has about 800 nm wide 
(Ragaei and Sabry 2014). In this structure, the spaces between scales lead to the 
formation of natural photonic crystal that can generate constructive and destruc-
tive interference. The image of the cross section of the ridges on the wings using 
the SEM analysis shows a more intricate structure that looks like fir trees, called 
setae, and these are about 400 nm long. These setae are responsible for producing 
constructive interference in the blue wavelengths which create a strong blue color 
(Filipponi et al. 2010). Furthermore, a shell is arisen by a layer of cells that first 
lays down a coating of protein that these proteins work same as nano-assembly 
mechanism to control the growth of carbon carbonate crystals. The honeycomb-
like matrix of protein and chitin remains around each crystal that this flexible 
envelope is necessary for the mechanical characteristics of the shell and mitigates 
cracking (Filipponi et al. 2010).

The fine structure of opals and butterflies directly connected to their colors. 
Actually, this structure packed nanostructures that work as a diffraction grid and 
persuade iridescence. In the case of butterflies, this color can be due to pigments that 
absorb specific colors in the wings or in some species, such as Morpho rhetenor, 
due to the presence of nanostructures which are photonic crystals. Meanwhile, in 
the opals, this is because of packed silica spheres in the nanometer range, uniform 
in size and arranged in layers (Filipponi et al. 2010).

Another example of the presence of biogenic in insects is spider silk. Silk is the 
material known with about five times higher strength that of steel of the same 
weight. The remarkable characteristics of spider silk are because of the proteins that 
build the silk (mainly fibroin) and its supramolecular organization which is at the 
nanoscale level (Filipponi et al. 2010).
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10.3  Engineering Biogenic Nanoparticle in Control of Insects

Many pest control strategies such as integrated pest management have been used in 
agriculture that are insufficient, therefore needing to use the chemical pesticides. 
Considering the many problems for human health and the environment caused by 
pesticides (Benelli et al. 2017b; Naqqash et al. 2016), some of the more important 
ones include poorly water-soluble molecules (e.g., oil-in-water (O/W) emulsions 
and emulsifiable concentrates, ECs) and formulations like ECs that consist of 
organic, toxic, expensive, and flammable solvents or a blend of surfactant emulsi-
fiers used in the water and spray tanks (Knowles 2009). O/W emulsions do not have 
such problems, but the process of emulsification requires high-energy input which 
is a major drawback (Kah et al. 2013; Kah and Hofmann 2014).

In the world of pest control and pesticides, nanotechnology has been embraced 
in the recent decade (Mukunthan et al. 2011). Researches have shown that nanopar-
ticles (NPs) have insecticidal properties and can be used as nano-carriers and also 
bioinsecticides (Barik et al. 2008; Elango et al. 2016). Because nanoparticles have 
novel properties (size, shape, specific surface area, and chemical composition), they 
are thought to be potentially toxic (Sharifi et al. 2012).

Nanoparticles can be used in the production of new compounds (pesticides and 
insect repellants) for pest control (Owolade et  al. 2008). Many natural materials 
with different shapes and compositions were used or synthesized to make nanopar-
ticles, including carbon, silicates, polymers, ceramics, proteins, emulsions, den-
drimers, lipids, semiconductor quantum dots (QDs), metal oxides, and metal 
(Niemeyer 2001; Oskam 2006). Different methods were extended for the synthesis 
of these nanoparticles like hydrothermal synthesis, thermal decomposition, chemi-
cal reduction, ultrasonic technique, sol-gel, microemulsion, precipitation method, 
and electrochemical and microwave-assisted process (Lin et  al. 2013a; Singhal 
et al. 2011). Disadvantages of these approaches are hazardous chemicals, the diffi-
culty of scaling up the process, high energy requirements, and low material conver-
sion. Given these disadvantages, the development of nanoparticle production 
methods without the use of hazardous materials is very necessary.

The concerns of consumers about the environmental use of synthetic materials 
propelled scientists to find alternatives for the production of nanomaterials, the so- 
called green synthesis (Benelli and Lukehart 2017).

The idea of this method is based on the fact that various organisms have the 
capacity to generate nonorganic materials (Simkiss and Wilbur 2012). Synthesis of 
nanoparticles by microorganisms such as bacteria, viruses, fungi, yeasts, actinomy-
cetes, and plant extracts is suggested as possible eco-friendly alternatives to physi-
cal and chemical approaches (Dubey et al. 2009; Mohanpuria et al. 2008; Narayanan 
and Sakthivel 2010).

Compared to other methods, green synthesis is regarded as cost-effective, safe, 
sustainable, and environment-friendly. The use of plants can be advantageous over 
other biological processes due to being easily available, low cost, eco-friendly, and 
safe to handle. Also, it possesses a broad variability of metabolites that may aid in 
the reduction and a single-step method for biosynthesis process (Govindarajan and 
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Benelli 2016; Govindarajan et  al. 2016; Huang et  al. 2007; Shankar et  al. 2004; 
Teimouri et  al. 2018). Many investigations on different metal nanomaterials are 
performed to improve the potential tools for alternative and effective control of 
agricultural or stored product pests especially of pests related to humans’ and ani-
mals’ health. A lot of researches have been done about the toxicity of nanoparticles 
toward various arthropod species of economic value, and more than half of them 
were done using the so-called green synthesis method (Athanassiou et  al. 2018; 
Banumathi et al. 2017; Benelli 2018; Benelli et al. 2017b; Rajan et al. 2015). Recent 
investigations indicate the potential of the green synthesis for metal NPs, mainly 
AgNPs, in controlling a wide range of pests in the field and laboratory.

The efficacy of a number of plant-synthesized NPs has been tested against arthro-
pod pests with economic importance such as lice (Jayaseelan et al. 2011), hard ticks 
(Zahir et al. 2012), louse flies (Jayaseelan et al. 2012), beetles (Zahir et al. 2012), 
moths (Roni et al. 2015), and mosquitoes (Benelli 2016a, b). Also, a lot of researches 
associated with public health issues concerning other common pests have been 
done.

Furthermore, plant-synthesized NPs have shown promising value as ovicides and 
adulticides for many pest species, for example, all larval instars and pupae of the 
cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), where 
they exhibited susceptibility to AgNPs synthesized by leaf aqueous extract of 
Euphorbia hirta L. (Malpighiales: Euphorbiaceae) (Devi et al. 2014). Similar results 
were obtained with larvae of the mosquitoes C. quinquefasciatus and A. subpictus 
exposed to AgNPs synthesized from the leaf aqueous extract of Mimosa pudica L. 
(Fabales: Fabaceae) (Marimuthu et al. 2011).

In the same study, larvae of the tick Rhipicephalus microplus Canestrini (Acari: 
Ixodidae) were proven very susceptible to AgNPs (Marimuthu et  al. 2011). In 
Arjunan et al. (2012) study, AgNPs synthesized by leaf aqueous extract of Annona 
squamosa L. (Magnoliales: Annonaceae) showed very good mortality in pupa and 
all larvae instars of C. quinquefasciatus and Anopheles stephensi Liston (Diptera: 
Culicidae). Similar results were obtained in the reports of Suresh et al. (2014) who 
observed AgNPs triggered 100% mortality of second-instar larvae of A. aegypti L. 
(Diptera: Culicidae). They biosynthesized AgNPs using the root extract of 
Delphinium denudatum Wall (Ranunculales: Ranunculaceae) (Suresh et al. 2014). 
Field experiments of Dinesh et al. (2015) reported that AgNPs synthesized by leaf 
aqueous extract of Aloe vera (L.) Burm. f. (Asparagales: Xanthorrhoeaceae) were 
toxic for all larvae instars of A. stephensi. Suresh et al. (2015) also reported that A. 
aegypti larvae after application of AgNPs synthesized by leaf aqueous extract of 
Phyllanthus niruri L. (Malpighiales: Phyllanthaceae) resulted in good mortality. 
Similar results were reported by Subramaniam et al. (2015) who observed the sus-
ceptibility of A. stephensi and A. albopictus to AgNPs biosynthesized using 
Mimusops elengi L. (Ericales: Sapotaceae).

AgNPs not only indicated highly promising toxicity against mosquitoes and 
ticks but also adulticidal, ovicidal, and oviposition deterrence effects have been 
observed (Benelli 2018; Benelli et al. 2017a; Rajaganesh et al. 2016; Suresh et al. 
2015). For example, the housefly, Musca domestica L. (Diptera: Muscidae), was 
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completely suppressed at the adult stage after 4 h of exposure with AgNPs synthe-
sized by leaf aqueous extract of Manilkara zapota (L.) (Ericales: Sapotaceae) 
(Kamaraj et al. 2012). About adulticidal toxicity of nanoparticles, only a few studies 
are available. Jayaseelan et al. (2011) reported that the head louse, P. humanus capi-
tis De Geer (Phthiraptera: Pediculidae), can be controlled when adult exposed with 
AgNPs is synthesized by leaf aqueous extract of Tinospora cordifolia (Thunb.) 
(Ranunculales: Menispermaceae). Similarly, Veerakumar and Govindarajan (2014) 
indicated that adults of A. stephensi, A. aegypti, and C. quinquefasciatus controlled 
by AgNPs are synthesized using Feronia elephantum Corrêa (Sapindales: Rutaceae) 
leaf extract. In the same study, adults of A. stephensi, A. aegypti, and C. quinquefas-
ciatus showed a good mortality after applications of AgNPs synthesized by leaf 
extract of Heliotropium indicum L. (Eudicotidae: Boraginaceae) (Veerakumar and 
Govindarajan 2014). AgNPs biosynthesized using Phyllanthus niruri were very 
toxic to A. aegypti adults (Suresh et al. 2015). Also, suppressed female fecundity, 
egg hatchability, and reduced longevity in both sexes by biosynthesized nanoparti-
cles against mosquitoes were observed in some investigations (Madhiyazhagan 
et al. 2015; Roni et al. 2015). Meanwhile, among the different tested mosquitoes’ 
species, the most resistant to the toxic activity of plant-synthesized NPs are reported 
from Culex quinquefasciatus larvae and pupae (Benelli 2016b). Marine plants, apart 
from terrestrial plants, have been used for the biosynthesis of metal NPs as a novel 
biological control strategy against insect pest species that impact agriculture and 
public health. Marine plants like Sargassum muticum (Yendo) Fensholt (Fucales: 
Sargassaceae), Caulerpa scalpelliformis (R.  Brown ex Turner), and C.  agardh 
(Bryopsidales: Caulerpaceae) were used for fabricating nanoparticles (Moorthi 
et al. 2015; Murugan et al. 2015b).

The biosynthesis of metal NPs by fungus also indicated interesting prospects for 
the management of insect pest species (Amerasan et  al. 2016). The scientists 
reported that the nanoparticles synthesized by some fungi such as Chrysosporium 
tropicum J.  W. Carmich. (Onygenales: Onygenaceae), Trichoderma harzianum 
Rifai (Hypocreales: Hypocreaceae), Fusarium oxysporum, and Cochliobolus luna-
tus R.  R. Nelson and Haasis (Pleosporales: Pleosporaceae) controlled very well 
mosquitoes’ species (Salunkhe et  al. 2011; Soni and Prakash 2012, 2013; 
Sundaravadivelan and Padmanabhan 2014).

10.3.1  Mode of Action of Nanoparticles Against Insect Pests

We have strictly inadequate knowledge about the possible mode of action of 
nanoparticles against insect pests which is important information to forecast the 
toxicological outcomes arising from the real-world application of nanoparticles as 
pesticides.

The cytochrome (CYP) P450 monooxygenases (p450s) include a group of 
enzymes found in most living organisms (Werck-Reichhart and Feyereisen 2000). 
The CYP genes (CYP2, CYP3, CYP4 and mitochondrial) are involved in the first 
and second step of proceeding drug metabolism, in detoxification of numerous 
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xenobiotics, endogenous substances, and detoxification (Afrin and Wait 2018; 
Fröhlich et  al. 2010; Martignoni et  al. 2006; Pelkonen et  al. 1998). Meanwhile, 
resistance in the insects to insecticides is often linked with one or more detoxifying 
genes such as p450s, esterases, and glutathione S-transferases (Martínez-Paz et al. 
2012; Niu et al. 2011). Nevertheless, the important roles in metabolism and inacti-
vation of xenobiotic compounds like pesticides and insecticides are with the p450 
genes (Iga and Kataoka 2012; Lin et al. 2013b).

There are only a few investigations carried out about express CYP p450 gene in 
arthropod when they exposed to toxic concentrations of AgNPs (Fröhlich et  al. 
2010; Lamb et al. 2010; Warisnoicharoen et al. 2011). Furthermore, an important 
role has been demonstrated for CYP6BG1 in metabolizing toxic nanoparticles in 
the insects (Afrin and Wait 2018).

Also, about the toxicity of several types of nanoparticles, a theory is widely 
accepted that they achieve toxicity triggering oxidative stress in arthropod tissues 
(Foldbjerg et al. 2015; Mao et al. 2018; Nair and Choi 2011, 2012). The penetration 
of nanoparticles into the cell organelles and localization of the NPs at mitochondria 
or nucleolus in insect tissues were demonstrated by transmission electron micros-
copy (TEM). With this information, scientists suggest that mitochondria or nucleo-
lus in insect tissues can be used for targeted delivery of pesticides (Yasur and Rani 
2013, 2015). Moreover, nanoparticle in the intracellular space binds to phosphorus 
from DNA or to sulfur from proteins, and the consequence of this linking is organ-
elles’ and enzymes’ rapid denaturation. Subsequently, these changes can cause a 
disturbance in proton motive force, decrease in membrane permeability, and finally 
loss of cellular function and cell death (Benelli 2016a; Jiang et  al. 2015). 
Sundararajan and Kumari (2017) reported that AuNPs biosynthesized by Artemisia 
vulgaris L. leaf extract cause accumulation of this nanoparticle in the midgut region 
and damage of an epithelial cell, cortex, and midgut in third and fourth instars of A. 
aegypti. The same result for AuNPs against A. aegypti was recorded (Suganya et al. 
2017). In another research, toxicity of grapheme oxide nanoparticles on Acheta 
domesticus (L.) was investigated. The authors observed that this nanoparticle causes 
increased enzymatic activity of glutathione peroxidases, heat shock protein (HSP 
70), catalase, and total antioxidant capacity levels (Dziewięcka et al. 2016).

Between different nanoparticles, many investigations have been conducted about 
the AgNP mechanism. Fouad et al. (2018) produce AgNPs by the Cassia fistula L. 
fruit pulp and then was used against fourth-instar larvae of Culex pipiens pallens 
(Coquilett) and Aedes albopictus (Skuse). The authors found that nanoparticles 
reduced α- and ß-carboxylesterase, acetylcholinesterase activities, and total protein 
levels (Fouad et  al. 2018). Also, Ga’al et  al. (2018) reported that AgNPs on the 
fourth-instar larvae of Ae. albopictus cause decrease of total proteins, acetylcholin-
esterase, esterase, and phosphatase enzymes. In a study done by Kalimuthu et al. 
(2017), A. aegypti were exposed to biosynthesized AgNPs by Hedychium coronar-
ium J. Koenig. In this mosquito pest, AgNPs cause partial lyses of the midgut epi-
thelial cells, vesicles, and damaged membranes at the apical side of epithelial cells. 
Meanwhile, some evidence demonstrated that particle size or surface area is mainly 
responsible for AgNP toxicity. Also, after oxidation of AgNPs, Ag+ released from 

10 Biogenic Nanoparticles in the Insect World: Challenges and Constraints



180

that could enter into the body and interact with biological molecules (Lin et  al. 
2010; Moore 2006; Park et al. 2010). Nair and Choi (2011) evaluated the impact of 
the AgNPs on the expression of glutathione S-transferase (GST) genes, which are 
linked with the occurrence of oxidative stress. They reported that all GST genes 
showed up- or downregulation to varying levels based upon the tested concentration 
and duration of exposure to the contaminant, with the highest mRNA expression in 
Delta3, Sigma4, and Epsilon1 GST class (Nair and Choi 2011). In another study, 
Nair et al. (2011) showed that AgNPs in Chironomus riparius cause downregulation 
of the ribosomal protein gene (CrL15) regulating ribosomal assembly, thus the syn-
thesis of proteins. In addition, upregulation of the gonadotropin-releasing hormone 
gene (CrGnRH1) and the Balbiani ring protein gene (CrBR2.2) can indicate the 
activation of gonadotropin-releasing hormone mediated signal transduction path-
ways and reproductive failure and the organism protection mechanism against the 
AgNPs, respectively. In the same study, Nair et al. (2013) reported that the transcript 
levels of catalase, phospholipid hydroperoxide glutathione peroxidase 1, and thiore-
doxin reductase 1 were upregulated after exposure to AgNPs. Yasur and Rani (2015) 
also reported AgNPs in Spodoptera litura (Fabricius), and Achaea janata (L.) 
induced oxidative stress in moth larval guts, as proved by the enhanced antioxidant 
enzyme levels. Moreover, Bharani and Namasivayam (2017) demonstrated that 
AgNPs biosynthesized by the Punica granatum L. in third-instar larvae of S. litura 
affected lipase, protease, invertase, and amylase activities. Furthermore, they 
observed the extracellular enzyme production, gut microflora, total heterotrophic 
bacterial population, pH, and weight decreased in the larvae (Bharani and 
Namasivayam 2017). Armstrong et al. (2013) indicated that AgNPs in Drosophila 
melanogaster Meigen (wild type) cause loss of the melanin cuticular pigments, 
achieving a lighter body color and strongly decreasing the activity of Cu-dependent 
enzymes (i.e., tyrosinase and Cu-Zn superoxide dismutase). In further research, 
DNA damage, ROS-mediated apoptosis, and autophagy due to the accumulation of 
reactive oxygen species (ROS) in the fly tissues in D. melanogaster have been indi-
cated as well (Mao et al. 2018).

10.4  Conclusions

Nowadays, management of insect pests is focused on the modern approaches of 
nanotechnology using nanomaterials instead of traditional strategies based on 
chemical insecticides (Ragaei and Sabry 2014). Nanotechnology decreases the 
usage of crop protection chemicals which makes agriculture eco-friendly and profit-
able (Athanassiou et al. 2018). The efficacy of nanoparticle biosynthesis is really 
promising and inspires many study groups worldwide to manage vectors and pests 
with new methods. There are a number of publications and successfully explored 
examples with considerable confidence that biosynthesis of nanoparticles has a 
bright future and potential for developing eco-friendly method for the control of 
agricultural pests related to humans’ and animals’ health. Natural pesticides in com-
parison to the conventional pesticide have advantages. For instance, insects are less 
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likely to evolve resistance to the toxins. Many studies have been conducted to 
understand the mechanism of nanoparticles, but the actual mechanism of nanopar-
ticles inside the insect’s body requires more detailed studies and our knowledge is 
still limited about this field. The challenge in nanoparticle biosynthesis technology 
is to characterize the nanoparticles by controlling their shape and size, so the impact 
of nano-size, shape, and charge on the various potential mechanism(s) of action will 
be elucidated. Moreover, further works are required in the field of plant protection 
to validate the proposed nano-pesticides in field conditions to monitoring their sta-
bility and sublethal effects on nontarget organisms (Baun et  al. 2008; Foldbjerg 
et al. 2015; Fruijtier-Pölloth 2012). Nevertheless, since there are concerns about the 
potential toxicity of nanomaterials, which are neither well explored nor well under-
stood or standardized yet, this technology will likely go through strong scrutiny by 
international and national safety regulators that request far more investigation on 
human and environmental impacts of these materials (Athanassiou et  al. 2018; 
Benelli 2015; Murugan et al. 2015a, b; Fahimirad et al. 2019).
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Abstract
Nanotechnology is a new approach for the production of particles with unique 
features at the nanoscale dimensions. Among the various routes available for the 
synthesis of these nanoparticles, biogenic synthesis is a simple, low-cost, and 
eco-friendly method. The biosynthesis of gold nanoparticles is provided by vari-
ous natural sources including plants, fungi, bacteria, actinomycetes, yeasts, and 
algae. Gold nanoparticles of various shapes and sizes are synthesized using bio-
mass and/or extract of the organism. Enzymes secreted by microorganisms and 
metabolites of plants act as reducing, stabilizing, and capping agents for the pro-
duction of the nanoparticles. The gold nanoparticles have antibacterial/antifun-
gal properties that can be used to protect plants against pathogens. In addition, 
they can be applied for pesticide identification and water purification. This chap-
ter focuses on the biosynthesis of gold nanoparticles, their characterization, and 
application in agriculture.
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11.1  Introduction

In recent years, nanotechnology has development as an effective field in biology and 
material science. Nanotechnology is a technology at nanometer scale (1–100 nm) 
that controls the shape and size of particles. The nanoparticles have unique proper-
ties that are related to the very small size of particles and the increase of the surface 
to volume ratio (Ochekpe et al. 2009; Khadem Moghadam et al. 2019; Maghsoodi 
et al. 2019).

Nanoparticles are produced by different approaches, including physical, chemi-
cal, and biological methods. Biogenic synthesis of nanoparticles is a process that 
utilizes the biological agents such as plants, bacteria, fungi, etc. to produce nanopar-
ticles (Fig. 11.1). The biological synthesis of nanoparticles is important because of 
its environment-friendly approach.

In recent years, the biosynthesis of noble metal nanoparticles (gold, silver, pal-
ladium, and platinum) has been considered due to the development of eco-friendly 
technologies in material synthesis (Chandran et al. 2006; Aromal and Philip 2012; 
Jia et al. 2009; Song et al. 2010). Among metal nanoparticles, gold is a very popular 
element due to being chemically inert and non-toxic (Connor et al. 2005). The gold 
nanoparticles are most stable and resistant to oxidation (Daniel and Astruc 2004). 
They are used in a variety of fields, including catalysis, gene expression, nonlinear 
optics, and delivery systems. The biosynthesis of metal nanoparticles is carried out 
using the “bottom-up” approach of nanotechnology (Golinska et al. 2014). In this 
method, the nanoparticles are formed through the growth or assembly of atoms or 
molecules that are the building units.

Fig. 11.1 Synthesis of nanoparticles using biological method
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Biosynthesis of nanoparticles is formed through reduction/oxidation reactions of 
metal. In biogenic synthesis of metal nanoparticles, enzymes secreted by microbial 
agents and metabolites of plants are responsible for the occurrence of these reac-
tions (Prabhu and Poulose 2012).

11.2  Biosynthesis of Nanoparticles

11.2.1  Synthesis of Gold Nanoparticles Using Plant

The use of plant extracts is preferred to produce metal nanoparticles compared with 
the use of microorganisms. The synthesis rate of nanoparticles using plants is faster 
than microbial agents, and nanoparticles obtained are more stable (Iravani 2011). In 
addition, plants are known as an important source of various metabolites, and they 
have the potential for synthesis of metal nanoparticles in large scale (Jha et  al. 
2009). However, reaction time required for biogenic synthesis methods is longer 
than chemical methods for the production of nanoparticles (Song and Kim 2009). 
Biomass and extract of different parts of plants such as leaf, root, flower, seed, stem, 
and fruit are used for the biosynthesis of gold nanoparticles. Extract of plants can 
act as a stabilizing, reducing, and capping agent for the synthesis of nanoparticles 
(Sharma et al. 2015).

11.2.1.1  Plant Biomass
The presence of metal elements, especially in drinking water, is a serious concern 
for global health. The use of plant biomass for the removal of heavy metals from 
aqueous solutions can be valuable as an eco-friendly method and also because of 
their potential application in removing contaminants from industrial wastewater in 
the future.

For this reason, many researchers have studied the role of plants in the absorption 
and accumulation of metal nanoparticles. The formation of gold nanoparticles from 
living plants was first reported by Gardea-Torresdey et al. (2002). The gold nanopar-
ticles are synthesized inside live alfalfa plants (Medicago sativa) by gold ion uptake 
from the AuCl4-rich agar solid media. The absorption and formation of gold 
nanoparticles within the plant were confirmed by X-ray absorption spectroscopy 
(XAS) and transmission electron microscopy (TEM). TEM images showed that 
gold nanoparticles were in crystalline state, but also twinned crystal structures and 
icosahedral nanoparticles were found.

In another study, Armendariz et  al. (2004a) reported the synthesis of gold 
nanoparticles using oat (Avena sativa) biomass. The binding trend of Au(III) to oat 
and the possible formation of gold nanoparticles were studied at different pH values 
(pH 2–6). The size of the nanoparticles produced by oat biomass was dependent on 
the pH of the solution, while the shape of the nanoparticles was not significantly 
affected by the different pH values. Similar results have been reported for gold 
nanoparticles formed by wheat biomass (Armendariz et al. 2004b).

11 Biogenic Synthesis of Gold Nanoparticles and Their Potential Application…
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11.2.1.2  Plant Extracts
The synthesis of gold nanoparticles using plant leaf extracts has been demonstrated 
by many researchers (Table 11.1). Dubey et al. (2010a) reported the rapid synthesis 
of gold nanoparticles using leaf extract of Rosa rugosa within 10 min. In addition, 
they evaluated the effect of leaf extract quantity and concentration of metal solution 
(auric acid) in order to optimize the synthesis route of the metal nanoparticles. The 
formation and stability of the biosynthesized gold nanoparticles was confirmed 
using spectroscopic characterizations of UV-Vis, TEM, FTIR (Fourier transform 
infrared spectroscopy), and zeta potential. The sharpness, shape, size, and rate of 
formation of gold nanoparticles depend on the concentrations of leaf extract and 
metal ion. Sharp and symmetrical nanoparticles were formed at higher concentra-
tions of leaf extract. Comparatively larger size of gold nanoparticles (50–250 nm) 
was found at higher gold ion concentration, and the rate of formation of the nanopar-
ticles was slower at lowest concentration.

Gold nanoparticles were formed when the leaves of Pelargonium graveolens 
were exposed to aqueous chloroaurate ions. The rapid bioreduction of metal ions 
led to the formation of stable gold nanoparticles of different sizes. The size of the 
nanoparticles was in the range of 20–40 nm, and their shape was mainly decahedral 
and icosahedral (Shankar et al. 2003).

Shankar et  al. (2004) reported the synthesis of pure metallic silver and gold 
nanoparticles and bimetallic Au core-Ag shell nanoparticles using the broth of neem 
leaves (Azadirachta indica). They proposed that the presence of reducing sugars 
and/or terpenoids in the broth can possibly facilitate the reduction of metal ions. The 
time of reduction of Au+ ion (2 h) by neem leaf extract was faster than that observed 
for Ag+ ion (4 h).

The biological synthesis of gold nanoparticles using olive leaf extracts has been 
reported (Khalil et al. 2012). The characterization of gold nanoparticles exhibited 
that the morphology of the gold nanoparticles depends on the extract concentration 
and the solution pH. The nanoparticles formed at lower concentrations of leaf broth 
were mainly triangular in shape, while spherical shaped nanoparticles were obtained 
at higher concentrations of leaf broth. The increase of pH also results in the produc-
tion of smaller nanoparticles.

Green synthesis of gold nanoparticles using fruit extracts has been demonstrated 
by some researchers. For instance, Ankamwar et al. (2005) used Emblica officinalis 
(amla) fruit extract to produce gold nanoparticles. Chloroauric acid solution was 
treated with amla fruit extract (as the reducing agent), which results in the formation 
of highly stable gold nanoparticles. The size of the nanoparticles produced was in 
the range of 15–25 nm.

The effect of pH on the morphology of gold nanoparticles prepared from pear 
fruit extract has been investigated (Ghodake et al. 2010). According to the results of 
the investigation, gold nanostructures produced in an alkaline condition were very 
efficient and provide an optimal quantity of pure nanomaterial (Fig. 11.2b). The 
triangular and hexagonal nanoplates were formed in the range of 200–500 nm in 
size, depending on the shape (Fig. 11.2c, d). It was suggested that the mechanism of 
induction of these nanostructures is alkaline-responsive phytochemicals, such as 
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organic acids, amino acids, peptides, and/or proteins. Gold nanoparticles obtained 
under the normal conditions showed plate-like morphologies with low production 
efficiency (Fig. 11.2a).

Biosynthesis of gold nanoparticles using tansy fruit extract (Tanacetum vulgare) 
has also been reported (Dubey et al. 2010b). Zeta potential is an index of surface 
charge of the nanoparticles that is used to predict the stability of colloidal particles 
(Heurtault et al. 2003). The effect of pH on zeta potential of the nanoparticles pro-
duced by tansy fruit extract indicates that the zeta potential value of nanoparticles 
depends on the pH of the solution. The zeta potential value of gold nanoparticles in 
alkaline pH was slightly higher than that of acidic pH. Furthermore, size of the par-
ticles produced was increased by decreasing the pH.

In another study, gold nanoparticles have been fabricated by treatment of the 
HAuCl4 solution with Prunus domestica (plum) fruit extracts (Dauthal and 
Mukhopadhyay 2012). The catalytic activity of gold nanoparticles dispersed in the 
fruit extract was studied for 4-nitrophenol reduction to 4-aminophenol. FTIR analy-
sis suggested that the water-soluble polyols like flavanols, glycosides, and phenols 
were responsible for the reduction of Au3+ ions. Biosynthesized gold nanoparticles 

Fig. 11.2 HR-TEM micrographs of the gold nanoparticles formed from pear fruit extract under 
the normal (a) and alkaline (b) conditions and HR-TEM micrographs of a gold nanohexagon and 
nanotriangle formed under alkaline conditions (c and d) (Ghodake et al. 2010)
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showed dose-dependent catalytic activity for 4-NP reduction. The catalytic activity 
of 4-nitrophenol increased with increasing dosage of colloidal gold nanoparticles.

Flower extract of the plant Nyctanthes arbor-tristis has been used as the reducing 
and capping agent for the synthesis of gold nanoparticles (Das et al. 2011). TEM 
images of the nanoparticles showed a mixture of different shapes (triangular, pen-
tagonal, rod shaped, and spherical) with an average size of 19.8 ± 5.0 nm. Sneha 
et al. (2011) also reported the formation of gold nanoparticles using cumin seeds 
(Cuminum cyminum). They stated that the particles were predominately monodis-
persed at higher pH and polydispersed particles formed at lower pH. Table 11.1 
summarizes the important examples of gold nanoparticles synthesized by plants.

11.2.2  Synthesis of Gold Nanoparticles Using Bacteria

Many microorganisms can produce various biomolecules either intracellularly or 
extracellularly. In synthesis of nanoparticles outside the cell, extracellularly, the 
enzymes secreted by microorganism play an important role in the bioreduction of 
metal ions. In synthesis of nanoparticles inside the cell, intracellularly, the enzymes 
present in the cell wall of the microorganisms involve in the reduction of metal ions 
to metal nanoparticles (Hulkoti and Taranath 2014). The nanoparticles produced 
inside the organism can have a smaller size than extracellularly formed nanoparti-
cles (Narayanan and Sakthivel 2010).

Beveridge and Murray (1980) synthesized the gold nanoparticles using the cell 
wall of Bacillus subtilis. They were chemically modified amine and carboxyl groups 
of the cell wall of B. subtilis to determine their contribution to the metal uptake 
values. Their results indicated that chemical modifications of amine functions did 
not decrease the metal uptake values, whereas alteration of carboxyl groups was 
severely restricted metal deposition of most of the metals tested.

Deplanche and Macaskie (2008) demonstrated microbial reduction of gold using 
Escherichia coli and Desulfovibrio desulfuricans and determined the location and 
size of the formed gold particles. According to their report, hydrogenases are 
responsible in the bacteria-mediated reduction of the gold ions. The size and shape 
of the gold nanoparticles produced depend on the solution pH and the location of 
the formation of the nanoparticles. The nanoparticles ranged from 5 to 50 nm and 
located in the periplasmic space and on the cell surface as well as intracellularly.

The extracellular synthesis of gold nanoparticles using the gram-negative soil 
bacterium Pseudomonas fluorescens has been proven (Rajasree and Suman 2012). 
In a recent study, a human pathogenic bacterium Salmonella enterica subsp. enterica 
serovar Typhi isolated from blood and stool specimens of patients provided the 
biogenic synthesis of gold nanoparticles (Mortazavi et al. 2017). Characterizations 
of some gold nanoparticles synthesized by bacteria are enlisted in Table 11.2.
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11.2.3  Synthesis of Gold Nanoparticles Using Actinomycetes, 
Algae and Yeast

Actinomycetes are a group of gram-positive bacteria that have the characteristics of 
fungi. They produce various biomolecules including proteins, enzymes, antibiotics, 
and vitamins. Actinomycetes can be used as stabilizing and capping agents for the 
synthesis of metal nanoparticles, including gold. Among the bioactive agents 
secreted by actinomycetes, proteins play an important role in the synthesis of the 
nanoparticles. It is proven that free amine groups or cysteine residues in the proteins 
can bind to gold nanoparticles (Gole et al. 2001).

The alkalothermophilic actinomycete Thermomonospora sp. has been explored 
for extracellular synthesis of stable gold nanoparticles (Ahmad et  al. 2003a). 

Table 11.2 Biological synthesis of gold nanoparticles using bacteria, actinomycetes, algae, and 
yeast

No.
Name of 
microorganism

Extracellular/
intracellular Morphology Size References

Bacteria
01 Escherichia coli, 

Desulfovibrio 
desulfuricans

Intracellular Spherical, 
triangles, 
hexagons, and 
rods

5–50 nm Deplanche 
and Macaskie 
(2008)

02 Pseudomonas 
fluorescens

Extracellular Spherical 50–70 nm Rajasree and 
Suman 
(2012)

03 Salmonella enterica 
subsp. enterica 
serovar Typhi

Extracellular – 42 ± 2 nm Mortazavi 
et al. (2017)

Actinomycetes
01 Thermomonospora 

sp.
Extracellular Spherical 8 nm Ahmad et al. 

(2003a)
02 Rhodococcus sp. Intracellular Spherical 5–15 nm Ahmad et al. 

(2003b)
03 Streptomyces 

fulvissimus
Extracellular Spherical 20–50 nm Soltani Nejad 

et al. (2015)
Algae
01 Plectonema 

boryanum
Extracellular/
intracellular

Cubic < 10–25 Lengke et al. 
(2006)

02 Sargassum wightii 
Greville

Extracellular Thin planar 
structures

8–12 nm Singaravelu 
et al. (2007)

03 Galaxaura elongata – Spherical 3.85–
77.13 nm

Abdel-Raouf 
et al. (2017)

Yeast
01 Yarrowia lipolytica 

NCIM 3589
Intracellular Hexagonal, 

triangular
15 nm Agnihotri 

et al. (2009)
02 Magnusiomyces 

ingens LH-F1
– Sphere, 

triangle, and 
hexagon

80.1 ± 9.8 nm Zhang et al. 
(2016)
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Intracellular synthesis of gold nanoparticles has been provided by Rhodococcus sp. 
actinomycetes (Ahmad et  al. 2003b). Spherical nanoparticles with size range of 
5–15 nm were achieved.

Algae are photosynthetic eukaryotic microorganisms used for synthesis of gold 
nanoparticles. Cell walls of algae contain biomolecules, including polysaccharides, 
proteins, and enzymes which act as reducing agents for the reduction of gold ions 
(Sharma et al. 2015).

The powder and the ethanolic extract of marine red alga Galaxaura elongate 
have been used for synthesis of gold nanoparticles. The formation of gold nanopar-
ticles by powder (3 h) was faster than alcoholic extract (2–5 min) (Abdel-Raouf 
et al. 2017).

Yeasts are single-cell eukaryotic microorganisms that are classified in the fungus 
kingdom. The biogenic synthesis of gold nanoparticles by the non-conventional 
yeasts Yarrowia lipolytica and Magnusiomyces ingens is described (Agnihotri et al. 
2009; Zhang et al. 2016). X-ray diffraction (XRD) data and TEM images of Y. lipo-
lytica showed that the nanoparticles are synthesized with a size of 15 nm and located 
on the wall of the cells (Agnihotri et al. 2009). TEM images and dynamic light scat-
tering (DLS) data of M. ingens indicated that the average size of gold nanoparticles 
was 80.1 ± 9.8 and 137.8 ± 4.6 nm, respectively. According to the results of the 
investigation, some biomolecules were absorbed on the surface of the nanoparticles, 
which can act as organic ligands in the formation of gold nanoparticles (Zhang et al. 
2016). Important examples of biosynthesis of gold nanoparticles by actinomycetes, 
algae, and yeasts are summarized in Table 11.2.

11.2.4  Synthesis of Gold Nanoparticles Using Fungi

The biosynthesis of gold nanoparticles using fungi has been demonstrated 
(Table 11.3). Among the microorganisms used for the synthesis of metal nanopar-
ticles, fungi are a suitable candidate for the production of different enzymes, which 
have high growth capacity and are easy to handle.

The exact mechanism of synthesis of nanoparticles using biological agents is still 
unknown, but it has been demonstrated that different biomolecules have a signifi-
cant role in the synthesis of nanoparticles. It has been revealed that the enzyme 
nitrate reductase is involved in biosynthesis of nanoparticles by fungi (Kumar et al. 
2007a, b). The mechanisms for intracellular and extracellular synthesis of nanopar-
ticles are different. Moreover, the shape and size of nanoparticles produced can be 
affected by enzymes and mechanisms involved in the synthesis of nanoparticles.

Mukherjee et al. (2001) reported intracellular synthesis of gold nanoparticles by 
bioreduction of aqueous AuCl4

− ions using the fungus Verticillium sp. TEM image 
of a single cell showed that the gold nanoparticles were formed on both the cell wall 
(outer boundary) and the cytoplasmic membrane (inner boundary). The number of 
gold nanoparticles on the cytoplasmic membrane was more than on the cell wall. 
The shape of gold nanoparticles was mostly spherical, although a few triangular and 
hexagonal particles were observed.
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In addition, they reported extracellular synthesis of gold nanoparticles by a 
eukaryotic system such as fungi for the first time (Mukherjee et  al. 2002). The 
nanoparticles were synthesized by treatment of the fungus Fusarium oxysporum 
with AuCl4

− solution. TEM pictures showed that gold particles have spherical and 
triangular morphology with a size range of 20–40 nm. Indeed, the gold nanoparticle 
formed by reaction of gold ions with extracellular secreted enzymes by the fungus. 
Thakker et al. (2013) synthesized gold nanoparticles using a plant pathogenic fun-
gus F. oxysporum f. sp. cubense and reported their antibacterial activity against 
Pseudomonas sp.

The microbial synthesis of gold nanoparticles has been investigated using the 
fungus Rhizopus oryzae to remove different organophosphorus pesticides (model) 
from water along with some microorganisms (Das et al. 2009). The gold nanopar-
ticles were formed on the surface of R. oryzae and were stable even up to 6 months. 
FTIR spectra after treatment of R. oryzae with HAuCl4

− revealed the presence of 
amide I, II, and III groups and the disappearance of carboxyl groups present in 
mycelia. Based on the FTIR results, it was suggested that polypeptides/proteins are 
involved in the reduction of gold ions. Indeed, the gold nanoparticles are formed by 
surface-bound protein molecules that act as both reducing and stabilizing agents.

In another study, the use of a marine-derived fungus Aspergillus sydowii resulted 
in the formation of spherical gold nanoparticles with an average size of 10 nm. The 
fungus could synthesize gold nanoparticles extra-/intracellularly depending on the 
applied gold ion concentration (Vala 2015). Fungus-mediated synthesis of gold 
nanoparticles by Penicillium aurantiogriseum, P. citrinum, and P. waksmanii has 
been demonstrated (Honary et al. 2013).

11.3  Characterization of Gold Nanoparticles

The characteristics of gold nanoparticles are determined using various techniques 
such as scanning electron microscopy (SEM), atomic force microscopy (AFM), 
TEM, DLS, FTIR, XRD, and UV-Vis spectroscopy. The shape and size of nanopar-
ticles are determined by TEM, SEM, and AFM. DLS is also used for determination 
of size, dispersity, and zeta potential of nanoparticles. Furthermore, FTIR and XRD 
are applied for the determination of structural characteristics and crystallinity of 
formed particles.

In the biogenic synthesis of gold nanoparticles, the change of color of the reac-
tion mixture from pale yellow to dark purple/deep red reflects the formation of gold 
particles. The different colors of gold nanoparticle solution are due to their surface 
plasmon resonance properties (He et al. 2007). Generally, UV-visible spectroscopy 
is utilized to confirm formation of metal nanoparticles including gold. The 
UV-visible spectrum of the reaction mixtures (organism-gold ions) represents the 
formation of a gold surface plasmon resonance (detection of gold nanoparticles) 
that ranged from 500 to 600 nm (Deplanche and Macaskie 2008).
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11.4  Applications of Gold Nanoparticles in Agriculture

In recent years, the use of nanotechnology in various fields, including pharmaceuti-
cals, engineering, and agriculture, has been developed. The application of nanotech-
nology in the agricultural sector has improved, especially in the area of food industry 
and plant protection. Gold nanoparticles have many potential applications in agri-
culture due to their antimicrobial activity and unique optical property.

Gold nanoparticles can be applied as a sensor in a series of colorimetric assays. 
In this assay, the interaction between the analyte and the gold nanoparticles can 
induce the aggregation of gold nanoparticles and consequently solution color 
changes from red to purple. This feature can be used to identify different molecules, 
including pesticides. For instance, Bai et al. (2010) have studied gold nanoparticles 
as colorimetric probes for screening insecticide pymetrozine. It has been demon-
strated that compounds containing nitrogen heterocycles and amine groups can be 
bound to the surface of metal nanoparticles and induce the accumulation of the 
nanoparticles (Gittins and Caruso 2001; Ai et  al. 2009). Chemical structure of 
pymetrozine contains multiple binding sites including one exocyclic secondary 
amine and four-nitrogen hybrid ring. Indeed, the color change and aggregation of 
gold nanoparticles can be attributed to the specific interactions between the func-
tional groups of gold nanoparticle and pymetrozine.

In addition, gold nanoparticle-based sensors can be utilized to determine the resi-
due of different pesticides in plants and food products. For example, Bai and his 
colleagues (2010) determined the concentration of pymetrozine with the low detec-
tion limit (1 × 10 −6 M) and reported the high sensitivity of this method for pyme-
trozine compared with other 11 pesticides. The detection sensitivity of this system 
could be increased by adding salt and reducing the pH. The use of bacterial-derived 
gold nanoparticles to detect organophosphorus pesticide residues in fruits and veg-
etables has been proven (Malarkodi et al. 2017).

Gold nanoparticles can also be useful in water purification. For instance, Zhang 
et al. (2014) fabricated imidazole ionic liquid functionalized gold nanoparticles for 
the recognition of imidacloprid. The researchers suggested that the detection system 
could be used to determine and remove imidacloprid in different water samples 
based on the aggregation phenomena of gold nanoparticles. The application of 
fungus- mediated synthesized gold nanoparticles to remove pesticides and patho-
gens from water has been reported (Das et al. 2009).

Gold nanoparticles have antibacterial and antifungal properties that can be used 
in plant disease management, food safety, and medical applications. Jayaseelan 
et  al. (2013) synthesized gold nanoparticles using seed aqueous extract of 
Abelmoschus esculentus and posed antifungal activity of the nanoparticles against 
Candida albicans, Aspergillus niger, Aspergillus flavus, and Puccinia graminis 
tritci. The antibacterial activity of the biosynthesized gold nanoparticles against 
Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia 
coli has been reported (Annamalai et al. 2013; Muthuvel et al. 2014).

The mycelial growth inhibition of Phomopsis theae by Trichoderma atroviride- 
mediated biosynthesized gold nanoparticles has been demonstrated (Ponmurugan 
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2016). Field experiments conducted with soil application and wound dressing of the 
nanoparticles confirmed the efficacy of the nanoparticles for control of Phomopsis 
canker disease in tea plants.

It has been revealed that biosynthesized gold nanoparticles can be useful to con-
trol pests in agriculture and public health (Thakur et  al. 2018; Sundararajan and 
Kumari 2017). Thakur et  al. (2018) studied the effect of biosynthesized gold 
nanoparticles on root-knot nematodes (Meloidogyne incognita) in tomato crop. The 
nanoparticles showed suitable nematicidal effect and had no negative impact on 
plant growth. All articles on the insecticidal activity of gold nanoparticles focused 
on mosquito species of medical and veterinary importance.

Many researchers have demonstrated that gold nanoparticles induce cell division, 
seed and pollen germination, and plant growth (Arora et  al. 2012; Gopinath et  al. 
2013; Mahakham et  al. 2016; Thakur et  al. 2018). Therefore, application of gold 
nanoparticles in agriculture and plant sciences could be beneficial to increase the plant 
growth and crop yield like several types of engineered nanomaterials (Baiazidi-
Aghdam et al. 2016; Ghorbanpour and Hadian 2015; Hatami et al. 2013, 2016, 2017, 
2019; Ghorbanpour et  al. 2015, 2018; Ghorbanpour and Hatami 2014, 2015; 
Ghorbanpour 2015; Ghorbanpour and Hadian 2017; Ghorbanpour and Fahimirad 
2017; Hatami et  al. 2014; Hatami and Ghorbanpour 2013, 2014; Hatami 2017; 
Chegini et al. 2017; Mohammadi et al. 2018; Tian et al. 2018; Ahmadi et al. 2018).

11.5  Conclusions

The main goal of most nanotechnology research is to design and produce nanoparti-
cles with new features. Compared with the chemical method, the biological synthesis 
of gold nanoparticles by organisms is an environmentally friendly and reliable method. 
The gold nanoparticles of a variety of shapes and sizes can be easily synthesized from 
different types of plants and microbes. The synthesis of gold nanoparticles depends on 
various factors including the concentration of plant extract/biomass and metal salt, pH 
of the solution, temperature, reaction time, and the location of nanoparticle formation 
(extracellular/intracellular). Applications of such eco-friendly nanoparticles in agri-
culture to purify rivers and lakes from pesticides can reduce the harmful impacts on 
nontarget organisms. Biosynthesized gold nanoparticles can be effective to protect the 
various crop plants against plant pathogens and can be a suitable alternative to chemi-
cal pesticides that are toxic to human and the environment.
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12Application of Biogenic and Non- 
biogenic Synthesized Metal 
Nanoparticles on Longevity 
of Agricultural Crops

Mousa Solgi

Abstract
Agricultural crops includes horticultural (vegetables, fruits and ornamental 
plants), agronomic and aromatic medicinal herbs. Human population is growing 
fast, and consequently providing enough and healthy food is becoming a very 
significant problem in the near future. Nowadays, decreasing postharvest waste 
through using the findings of innovative technical studies like nanotechnology 
and nanobiotechnology in crops could be planned as one of the best resolutions to 
this problem. Progressing in time proved development in technology that showed 
the ability of metals of nanoscale to perform specific utilities better than the bulk 
form of metals. Nanotechnology by means of specific characters of nanoparticles 
can be an identical valuable knowledge in various industry and science divisions. 
Therefore, the current chapter especially focuses on the uses of biological or bio-
genic and non-biological (biogenic) on the shelf life of agricultural crops.

Keywords
Biogenic nanoparticles · Non-biogenic nanoparticles · Shelf life · Postharvest · 
Green nanoparticles

12.1  Introduction

The effects of metal nanoparticle on postharvest process of agricultural crops, par-
ticularly horticultural crops, have been widely studied. Solgi et  al. (2009) first 
reported that 1 or 2 mgL−1 of silver nanoparticles (SNP) along with 6% sucrose can 
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increase the vase life of gerbera flowers (Dune) from 8.3 (control) to 16 days. This 
study aimed at evaluating the effects of SNP and essential oils acting as new antimi-
crobial agents to extend the vase life of gerbera (Gerbera jamesonii cv. ‘Dune’) cut 
flowers. The vase life of flowers kept in a solution including 5 mgL−1 of SNP and 
6% sucrose showed significantly more than those treated with 8-hydroxyquinoline 
citrate (8-HQC) or distilled water (control). The flowers kept in SNP solutions indi-
cated significantly more relative fresh weight (RFW) compared to the control group. 
The vase life of gerbera flowers was also increased using 1 or 2 mgL−1 of SNP as 
well as 50 or 100 mgL−1 of carvacrol from 8.3 to 16 days. Moreover, RFW and solu-
tion uptake of gerbera flowers were extended adding 1 or 2  mgL−1 of SNP and 
100 mg L−1 of essential oils than the control groups. Based on the results, SNP or 
essential oils can be used as new alternatives to usual agents, like silver nitrate and 
8-HQC for gerbera flowers.

Based on Liu et al. (2009), 24 h pulsing by 5 mgL−1 of nano-silver solution along 
with holding in deionized water (DI) retained water uptake, increased vase life and 
prevented bacterial growth on cut gerbera ‘Ruikou’ flowers. Solgi et al. (2011) indi-
cated that vase life of gerbera can be ended via stem bending, breaking or petal 
wilting. In addition, the impacts of vase solutions including 1  mgL−1 of silver 
nanoparticles using or without 6% sucrose on gerbera ‘Deep Purple’ cut flowers 
were also measured. In this regard, they measured the following parameters: the 
vase life, RFW, relative solution uptake, stem bending/breaking, stem end discolou-
ration and ethylene synthesis via petals, stem ends and stem necks. According to 
their findings, the combined SNP and 6% sucrose extended vase life to 8 days than 
that of the control group treated with deionized water. They also reduced petal wilt-
ing and stem breaking in comparison to the control group. The combined SNP and 
6% sucrose treatment increased ethylene synthesis by petals, stem ends and stem 
necks through vase life.

However, no significant adverse effect was found in ethylene enhancement on 
vase life factors. In general, SNP (1 mgL−1) with 6% sucrose showed commercial 
benefits to use as vase solution for cut gerbera flowers (Table 12.1 and Figs. 12.1 
and 12.2).

Table 12.1 Effects of deionized water (control), 6% sucrose, 1 mgL−1 SNP and 1 mgL−1 SNP 
plus 6% sucrose on gerbera stem breakage and consequent ethylene production by stem necks 
(Solgi et al. 2011)

Treatments

Breakagea No breakagea

No. of 
stems

Ethylene 
productionb

No. of 
stems

Ethylene 
productionb

Deionized water 6 0.417 ± 0.106 18 0.079 ± 0.019
6% sucrose 0 0.147 ± 0.001 24 0.102 ± 0.016

1 mgL−1 SNP 4 0.63 ± 0.221 20 0.146 ± 0.046

1 mgL−1 SNP + 6% 
sucrose

0 0.364 ± 0.001 24 0.216 ± 0.028

aThe total number of stems in the experiment was 24
bEthylene production: Log10 (1 + μL kg−1 fresh weight−1)
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The imbalanced vase solution uptake and water loss in cut flowers can result in 
petal wilting and stem breaking as well. Microbial population in vase solutions 
caused by xylem blockage has been shown as the major reason for negative water 
balance and terminated vase life of cut flowers (van Meeteren 1978; van Doorn and 
De Witte 1994; Liu et al. 2009).

It is essential to develop postharvest treatments for reducing vase life difficulties 
for ornamental plants. Cut flowers like roses, carnations and gerbera usually needed 
vase solutions consisting of carbohydrate supply plus an antimicrobial agent for 
maximizing vase life. Sucrose is commonly applied for maintaining metabolic 
activity and antimicrobial agents, including silver nitrate and 8-HQC employed for 
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Fig. 12.1 Effects of deionized water (●), 6% sucrose (○) and 1 mgL−1 SNP with (∆) or without 
(▼) 6% sucrose on gerbera flower relative fresh weight (RFW; a), relative solution uptake (RSU; 
b), stem end discolouration (c), stem bending (d) and petal wilting (e) during gerbera vase period. 
LSD (P = 0.05) values are present for comparison of means (n = 10) (Solgi et al. 2011)
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vase solutions (Abdel-kader and Rogers 1986; Accanti and Jona 1989; Gerasopoulos 
and Chebli 1999; Meman and Dabhi 2006).

In cut flowers, stem bending generally happened about 10 cm under their head 
(capitulum) (Ferrante et al. 2007). The synthesis of ethylene can be seen in bent or 
breaking stems than the straight parts (Mencarelli et al. 1995; Balestra et al. 2005). 
According to Ferrante et al. (2007), the prevalence of stem bending is lower after 
treatment with ethylene, which is linked to the increased phenylalanine ammonia- 
lyase (PAL) activity in several cut flowers, such as gerbera.

The silver ion is the main cause of increasing vase life of cut flower due to the 
efficacy of silver nitrate and silver thiosulphate (STS). Antimicrobial efficacy and 
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antiviral and algicidal effects of Ag+ have been indicated (Sondi and Salopek-Sondi 
2004; Blaser et  al. 2008; Navarro et  al. 2008). Ag+ is able to interact with thiol 
groups (–SH) of enzymes and other proteins essential for metabolic and mainte-
nance processes, such as respiration and substance transportation through cell- 
bounding membranes and also through the cells (Maneerung et al. 2008).

Using silver nanoparticles has been recently increased for several purposes, 
including textile industries, electronics, medicine, cosmetics and environmental 
measures (Navarro et  al. 2008). Their size is lower than 100  nm in at least one 
dimension. SNP has shown great antimicrobial properties than bulk silver metal, 
due to the large specific surface area leading to elevated fraction of surface atoms. 
The interaction of SNP with bacterial membranes leads to structural modifications, 
proton motive force dissipation and free radical manufacturing resulting in loss of 
DNA replication ability and consequently cell death (Feng et al. 2000; Sondi and 
Salopek-Sondi 2004; Danilczuk et al. 2006).

In contrast, many investigations have indicated the association between vascular 
blockage and further senescence of cut flowers and bacterial plugging of stem fac-
tors (Zagory and Reid 1986). Microbes in vase solution of cut flowers are the most 
usual factor for stem blockage and reduced longevity, which can lead to physical 
plugging of the cut stem, releasing toxic agents and enzymes or ethylene synthesis 
(Rodney and Hill 1993). Accordingly, several antimicrobial materials, including 
8-hydroxyquinoline sulphate, silver nitrate and aluminium sulphate, have been 
applied in vase solution for cut flowers for increasing vase life (longevity) through 
increasing water uptake. The vital role of silver nanoparticles as antibacterial mate-
rials has been widely shown (Lu et al. 2010).

It has widely shown that the genera, including Bacillus, Pseudomonas and 
Acinetobacter, are the most type of bacteria found in vase solution of some cut flow-
ers (Balestra et al. 2005; Van Doorn and De Witte 1994; Jowkar et al. 2012; Zagory 
and Reid 1986; Solgi 2014).

The human food chain is affected by several microbial, physical and chemical 
health problems due to this main safety issue. Vegetables and fruits are usually con-
nected with soil, insects, humans and animals not only through the growth and har-
vesting periods but also in processing. Therefore, natural contamination can 
influence vegetable and fruit surface. Several fresh products have shown to have 
104–106 microorganism cells per 1 g (Ukuku 2004), of which Salmonella, E. coli, 
Listeria monocytogenes and Staphylococcus aureus have been reported as the cer-
tain pathogenic microorganisms (Trias et al. 2008).

In contrast, grey mould disease induced by Botrytis cinerea has been shown as 
an important postharvest pathogen worldwide, which causes decay on numerous 
economically important fruits and vegetables through the growing season and also 
postharvest storage. It has been also found as a main challenge for long-distance 
transportation and storage. The leaves, stems, flowers and fruits are infected by 
Botrytis cinerea via direct penetration or wounds through cultivation practices. 
Grey mould control is essentially crucial in storage period, since it grows in low- 
temperature environments and spreads promptly between fruits and vegetables. 
General knowledge about the adverse effect of synthetic fungicide residues on 
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human health and environment has prompted deregulation of main chemical fungi-
cides (Yadollahi et al. 2010).

Nanotechnology has been used for developing antifungal agents in several types 
of fruits and vegetables. A technology has been recently introduced for producing 
zinc oxide nanoparticles by microbial strategy. Some nanoparticles have been 
applied as antifungal in  vitro and also for postharvest storage of banana, carrot, 
tomato, onion, etc. (Yadollahi et al. 2010).

Storing fruits and vegetables is linked to their microbiological deterioration usu-
ally due to adverse effects of bacteria, moulds and yeasts. It can be inhibited using 
nano-silver solutions. Silver nanoparticles exert antibacterial activity, which is able 
to break down the bacteria, like Escherichia coli and Staphylococcus aureus. Ag+ is 
interacted electro statistically with bacterial cells that are negatively loaded. Silver 
is mainly active in cellular structural proteins and enzymatic proteins, which are 
essential for the accurate function of microorganisms (Atiyeh et  al. 2007; Solgi 
et al. 2009). The impact of metal nanoparticles on longevity of agricultural crops, 
such as fruits, vegetables, cut flowers and ornamental plants, has been indicated 
(Table 12.2).

12.2  Application of Biological (Biogenic/Green) Synthesized 
Nanoparticles to Improve Longevity of Agricultural 
Crops During Postharvest

However, using physicochemical production of metal nanoparticles on the posthar-
vest quality of several agricultural crops has been extensively reported. Limited 
information is available on using biological or green or biogenic synthesized metal 
nanoparticles on postharvest quality of crops.

Saffron is largely produced in Iran with 230 tons per year, which accounts for 
93.7% of the world saffron production (Ghorbani 2008). Saffron petals are by- 
products of saffron processing and are throwing out following harvesting. Petals are 
produced more than 10,000 tons annually. Currently, dye extraction is the main and 
only application of saffron petals, which has not increased yet (Abbasi-Alikamar 
et al. 2007). Solgi (2014) aimed at investigating the saffron (Crocus sativus) petal 
extract-mediated biosynthesis of silver nanoparticles and their influence on some 
bacteria genera involved in reducing flowers’ longevity for finding the possible use 
of huge amounts of petal residues as green biosynthesis. Green synthesis of silver 
nanoparticles via petal extract of saffron petals as a reducing agent from 5  mM 
AgNO3 has been evaluated in this research. Several ratios of petal extracts (1:20, 
1:10, 1:5, 1:1 and 2:1 saffron petal extract/silver nitrate V/V) as well as reaction 
times (zero time, 30 min and 2 h following reaction) were employed to produce 
SNPs. The obtained SNPs were characterized using UV-Vis spectra at the wave-
length of 200–700 nm, Philips X’Pert 1 X-ray diffractometer and FTIR methods 
(spectral range of 500–4000 cm−1 and resolution of 4 cm−1). According to the find-
ings, silver nanoparticles were produced quickly in 30 min of incubation, and the 
resulted SNPs indicated an absorption peak at 380–400 nm in the UV-Vis spectrum. 
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Table 12.2 The application of different types of metal nanoparticles on postharvest of different 
agricultural crops

Agricultural crop 
name Metal nanoparticle type

Concentration of 
metal 
nanoparticle Year References

Rose 
‘Avalanche’ and 
‘Fiesta’ cut 
flowers

Silver 0, 50, 100 and 
200 mgL−1

2013 Rafi and 
Ramezanian

Rose ‘Cherry 
Brandy’ cut 
flower

Silver 1, 2.5 or 5% 2013 Jowkar

Strawberry 
fruits

Nano-silver based on 
polyethylene, nano-silver based 
on polypropylene, nano-silicate 
based on polyethylene, 
nano-silicate based on 
polypropylene

– 2013 Zandi et al.

Tuberose cut 
flower 
(Polianthes 
tuberosa)

Silver 0, 15, 30 and 
45 mgL−1

2014 Bahrehmand 
et al.

Gerbera cut 
flower

Silver 0, 5, 10 mgL−1 2015 Jafarpour 
et al.

Fresh-cut melon 
fruit

Silver 150, 250 and 
500 ppm (w/v)

2015 Danza et al.

Tomato and 
apple

Silver 0, 2.5 and 50 ppm 2015

Gladiolus 
(Gladiolus 
hybridus) cut 
flower

Silver 10, 25 and 
50 mgL−1

2017 Li et al.

Eustoma 
grandiflorum 
‘Echo’ cut 
flower

Silver and silicon 0, 10, 20 and 
40 mgL−1

2017 Kamiab et al.

Anthurium cut 
flower

Silver 5, 10 and 
15 mgL−1

2017 Amin

Tomato and 
cabbage

Silver (AgNPs impregnated 
cellulosic packets)

10% AgNPs 
colloidal 
suspension

2017 Singh and 
Sahareen

Tomato 
vegetable

Silver 0%, 1%, 5% and 
10%)

2018 Zhang et al.

Fig (Ficus 
carica) fruit

Zinc oxide 25, 50, 75, 100, 
125, 150, 175 and 
200 ppm

2018 Lakshmi 
et al.

Tomato 
vegetable

Copper 50, 125, 250 and 
500 mg L−1

2018 López- 
Vargas et al.
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Metallic silver synthesis was confirmed by XRD spectrum. Green-synthesized sil-
ver nanoparticles were applied as antimicrobial material for Bacillus, Pseudomonas 
and Acinetobacter contaminated the preservative solution of cut flowers as well. 
The biosynthesized SNPs by saffron petals successfully controlled these bacteria 
leading to consider them as promising options for production of new generation of 
antimicrobial agents. This method is quick, cost-effective and simple, and no haz-
ardous agents are produced for the synthesized SNPs. The antibacterial activities of 
various amounts of synthesized SNPs were significant than the pure saffron petal 
extracts (Fig. 12.3). Synthesized SNPs, especially with the ratios of 1:20 and 1:5, 
indicated antibacterial activity for both tested gram-negative and gram-positive bac-
teria. However, pure petal extract was not found to exert antibacterial activity 
(Figs. 12.4 and 12.5). Saffron petal extract includes phenolic compounds, including 
flavonoids (kaempferol) and anthocyanins (anthocyanidin, delphinidin and pelargo-
nidin) (Isao and Ikuyo 1999; Hadizadeh et al. 2003). The hydroxyl groups of such 
materials can bind to silver ions and play a role in the biosynthesis of SNPs and also 
act as reducing agent for the reduction of silver ions (Ag+) to silver nanoparticles 
(Ag0) (Dubey et al. 2010; Bankar et al. 2010; Jain et al. 2009; Solgi and Taghizadeh 
2012).

The plant-mediated SNPs have shown to have antibacterial activities. Bankar 
et al. (2010) have indicated the antibacterial effect of synthesized SNPs by banana 
peel extracts against E. coli, E. aerogenes, Klebsiella sp. and Shigella sp. Kaviya 
et al. (2011) reported the higher antibacterial effect of synthesized SNPs with Citrus 
sinensis peel extracts for E. coli and P. aeruginosa (gram negative) compared to S. 
aureus (gram positive) as well.

Carnation has been regarded as one of the most crucial and used cut flowers 
throughout the world. Solgi (2018) has recently examined the impacts of eco- 
friendly agents, such as green silver nanoparticles (25 and 50 mgL−1), thymol (25 

b

a
a

c
0

0.5

1

1.5

2

2.5

3

3.5

C1 (2:1) C2 (1:5) C3 (1:20) C4 (Saffron petals
extract)

In
hi

bi
tio

n 
zo

ne
 d

ia
m

et
er

 (c
m

)

Synthesized SNPs concentrations

Fig. 12.3 Antibacterial activity of different concentrations of synthesized SNPs by saffron petal 
extract in comparison to pure saffron petals (Solgi 2014)

M. Solgi



213

and 50 mgL−1) and chitosan (25 and 50 mgL−1), than the control group (distilled 
water) and 2% sucrose on postharvest quality of cut carnation ‘Tabor’. Studies 
with completely randomized design (CRD) in three replications have been per-
formed, in which vase life, RFW, relative solution uptake, chlorophyll amount 
and ion leakage of leaves’ and petals’ tissues were the evaluated characteristics.

Biosynthesis of green silver nanoparticles was performed by saffron petals 
(Crocus sativus) (Solgi 2014). In brief, saffron petal powder (2 g) was placed in a 
250 mL beaker including 100 mL of distilled water and located on a boiling steam 
bath for within 15 min at 65–70 °C until colour changes. They were cooled at the 
room temperature, gradually pressed and filtered via Whatman No. 40 filter paper. 
Silver nitrate (purity 99.9%; Sigma) solution (5 mM) was prepared and reduced by 
saffron petal extract at room temperature. Green silver nanoparticles were produced 
quickly in 30 min of incubation and UV-Vis spectrum or XRD spectrum approved 
their production.

Fig. 12.4 Antibacterial activity of synthesized SNPs by saffron petal extract (from left to right; 
saffron extracts, 2:1, 1:5 and 1:20) on different gram-negative and gram-positive bacteria (from top 
row to bottom; Bacillus cereus, Pseudomonas aeruginosa, Pseudomonas fluorescens, Acinetobacter 
and Bacillus subtilis) (Solgi 2014)
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Based on the findings, the vase life of cut carnations was increased by adding 25 
or 50  mgL−1 chitosan for 17  days or 50  mgL−1 green silver nanoparticles for 
15.7 days than the control group (10 days) (Fig. 12.6). The influences of various 
treatments on RFW (except for the days 3 and 4) and relative solution uptake were 
significant in the studied days (Figs. 12.7 and 12.8). Although chlorophyll amount 
did not change significantly, all agents significantly (P ˂  0.05) sustained the ion leak-
age of petals (Fig. 12.9).

In addition, Solgi and Taghizadeh (2017) examined the impacts of green silver 
nanoparticles (25, 50 and 100 mg L−1), thymol (25, 50 and 100 mg L−1) and chitosan 
(25, 50 and 100 mg L−1) for silver nitrate (25, 50 and 100 mg L−1) and control (2% 
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Fig. 12.5 Antibacterial activity of synthesized SNPs by saffron petal extract on different gram- 
negative and gram-positive bacteria (Solgi 2014)
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sucrose) on vase life of carnation cut flowers ‘White Liberty’. Two per cent sucrose 
was existed in all treatments. Cut flowers were treated for 24 h, followed by replacing 
with distilled water. This CRD research was done in three replications. Vase life, 
RFW (on days 2, 3, 4, 7, 9 and 10), solution uptake (on days 1, 2, 3, 4, 7, 8, 9 and 10), 
ion leakage of petals (on day 11) and chlorophyll contents (on days 2, 4 and 8) were 
assessed. We found that different treatments were significantly effective on vase life, 
and thymol 25 (13  days), green silver nanoparticles and chitosan 25 (12.5  days) 
showed the highest vase life than the control group (Fig. 12.10). The treatments were 
significantly effective on RFW and solution uptake in the studied days. However, the 
chlorophyll content of leaves and ion leakage of petals were not significant.

We indicated that pulse treatment by chitosan, thymol and green silver nanopar-
ticles (25 mg L−1) significantly enhanced the vase life of cut carnations cv. ‘White 
Liberty’. Two sections of sucrose as nutrition source and antimicrobial factors are 
possibly essential for carnation cut flowers. Several studies have displayed their 
antimicrobial effects.

We also observed that the minimum longevity by control treatments approved 
this idea. Different bacteria in holding solution can result in vascular occlusion and 
interrupt the water balance leading to flower wilting (Van Meeteren 1978; Van 
Doorn and De Witte 1994; Balestra et al. 2005; Solgi et al. 2009, 2011; Hassan et al. 
2014). Accordingly, two sections of sucrose as nutrition source in respiration and 
antimicrobial agents are probably effective for many cut flowers (Halevy and Mayak 
1979; Solgi et al. 2009; Jowkar et al. 2012). Silver nanoparticles have been widely 
shown as effective antimicrobials (Sondi and Salopek-Sondi 2004; Navarro et al. 
2008; Bankar et al. 2010; Ahmad et al. 2010; Solgi 2014).

The chemically produced silver nanoparticle in vase solutions of numerous cut 
flowers, such as gerbera (Solgi et al. 2009; Liu et al. 2009; Solgi et al. 2011) and 
rose (Lu et al. 2010; Rafi and Ramezanian 2013), has been applied. However, using 
green silver nanoparticles as antimicrobial agents in preservation solution is still a 
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developing method, which was first reported by Hassan et al. (2014). They evalu-
ated the impacts of 25, 50 and 100 mg L−1 biologically synthesized silver nanopar-
ticles on postharvest quality of rose cut flowers ‘First Red’ and indicated that all 
levels of biologically synthesized silver nanoparticles significantly increased the 
vase life than the control group. The microbial growth was prevented in vase solu-
tion, whereas RFW, relative water content, chlorophyll amount and membrane sta-
bility index were constant. Moreover, stomatal conductance, ethylene, 
malondialdehyde and hydrogen peroxide (H2O2) synthesis were reduced, while 
antioxidant enzyme activities were enhanced.
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Abstract
The nanoparticles (NPs) can be synthesized by different methods, importantly 
the chemical and biological methods. At the present state of technology, chemi-
cal methods are widely used to synthesize large quantities of NPs for various 
commercial applications. However, biological methods which use plants or 
microorganisms to synthesize nanoparticles, are low cost and eco-friendly. The 
phytosynthesis method in particular offers a handy and easy operation and has 
great potential for future use. Soil is considered as an ultimate sink for NPs intro-
duced in our ecosystem. Since NPs are quite resistant to degradation, their accu-
mulation and persistence in soil may profusely influence the soil microbial 
community and plant roots. The impact of NPs on microorganisms and plant 
may vary with the microbe/plant species, soil type and the NP species. In the 
presented chapter, a concise note on various methods of NP synthesis is pre-
sented, followed by a detailed description on the fate of NPs in soil with regard 
to their impact on growth of plants and microbes in different prospective.

Keywords
Nanoparticles · Biosynthesis · Antimicrobial effects · Phytotoxicity

Nanotechnology is one of the recently explored technologies that possess a wide 
application in different sectors including agriculture. The nanomaterials have poten-
tial scope for use in the production and protection of crops and livestock as well as 
in the natural resource conservation (Khan and Rizvi 2017). Nanotechnology may 
also provide solutions to the challenges in the areas of environmental contamination 
and water purification. Nanotechnology has two major aspects; the first aspect is 
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synthesis of nanoparticles in the particle range size of 1–100 nm, and the second is 
application of the nanomaterials for a desired use. The synthesis of nanoparticles 
requires specific skill and facilities depending on the method to be used (Khan and 
Rizvi 2014). Once the synthesis is achieved, characterization of nanoparticles is 
done to ensure that the required particle size of the material has been achieved. In 
this chapter we shall present an overlook on the methods used to synthesize the 
nanoparticles, followed by the fate of nanoparticles in the soil and their interaction 
with the soil microorganisms and plant roots.

13.1  Synthesis of Nanoparticles

The nanoparticles (NPs) can be synthesized using mainly the chemical and biologi-
cal methods depending on the need, as efficiency of synthesis varies with the method 
(Fig.  13.1). At the present state of technology, chemical methods to synthesize 
nanoparticles are considered to be the most efficient and used to produce large 
quantities of nanoparticles for various applications.

13.1.1  Chemical Methods of NP Synthesis

The chemical methods are commonly used to produce large quantities of nanopar-
ticles for commercial use. Since there are different chemical methods for NP syn-
thesis, choice of the methods may depend on the type of material and amount of 
NPs required. Some of the important chemical methods of NP synthesis are reduc-
tion method, sonochemical method, solvothermal decomposition method, etc. 
which are briefly summarized below.

13.1.1.1  Chemical Reduction Method
The chemical reduction of metal ions is simple and is in common use to synthesize 
metallic nanoparticles. Song et al. (2004) reported that the reduction method offers 

Fig. 13.1 SEM images of silver nanoparticle synthesized by chemical method (A; Im et al. 2005), 
plant material, Lantana camara (B; Fatimah and Indriani 2018) and microbe, Aspergillus oryzae 
var. viridis (C; Binupriya et al. 2010)
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the production of nanoparticles of uniform shape and size. In the chemical reduction 
techniques, a metal salt, for example, copper sulphate, is reduced by a reducing 
agent such as sodium borohydride (Aslam et al. 2002), ascorbate (Wang et al. 2006), 
polyol (Park et al. 2007), isopropyl alcohol with cetyl trimethyl ammonium bro-
mide (CTAB) (Athawale et al. 2005) or ascorbic acid (Umer et al. 2012).

13.1.1.2  Electrochemical Method
In this method, the NP synthesis is achieved by passing an electric current between 
two electrodes separated by an electrolyte of the metal salt (Gupta et al. 2013). The 
NP synthesis takes place at the electrode-electrolyte interface. To synthesize Cu 
NPs, the electrolytic solution of copper salt and sulphuric acid are usually used. The 
electrochemical technique is low cost, simple, handy, with high flexibility and eco- 
friendly (Kajbafvala et al. 2013). The copper nanoparticles of 40–60 nm size were 
formed in 30 min when 4V/5A current was passed through electrodes in copper 
sulphate and sulphuric acid as the electrolytic solution (Raja et al. 2008).

13.1.1.3  Solvothermal Decomposition
In this method the chemical reaction takes place in a sealed vessel where solvents 
are heated at a temperature much higher than the boiling points. Byrappa and 
Yoshimura (2001) reported that in a hydrothermal process (using water as a sol-
vent), heterogeneous chemical reaction is carried out in a closed system, in the pres-
ence of aqueous or non-aqueous solvent above the room temperature and at a 
pressure > 1 atm at 647.15°K and 221 bar, water is said to be a supercritical fluid, 
which act both as a liquid and gas. A supercritical fluid decreases the surface tension 
at the interference of solid and dissolves the chemical compounds which are very 
difficult to be dissolved at NTP. This technique is used to drastically enhance solu-
bility and reactivity of metal. The use of supercritical condition is becoming very 
popular for the synthesis of copper, silver, gold, platinum, germanium and silicon 
nanoparticles because of the rapid reaction rates and particle fast growth (Reverchon 
and Adami 2006; Chen et al. 2010). Yang et al. (2001) reported that the reaction 
initiated under ambient conditions before the mixture was transferred to an auto-
clave and heated to 100 °C. By varying the solvent and reaction temperatures, the 
NPs of varying sizes and morphologies were produced. Amendola et  al. (2006) 
observed controlled production of Cu NPs with regard to shape and structure by 
regulating the reaction temperature and quantity of sodium 
dodecylbenzenesulfonate.

13.1.1.4  Microemulsion/Colloidal Method
In this method, two immiscible fluids such as water in oil (W/O) or oil in water 
(O/W) or water in supercritical carbon dioxide become a thermodynamically stable 
dispersion with the aid of a surfactant. Chen et al. (2006) reported that a typical 
emulsion is a single phase of three components, water, oil and a surfactant. Kitchens 
and Roberts (2004) stated that oil and water are immiscible, but with the addition of 
a surfactant, the oil and water become miscible because the surfactant is able to 
bridge the interfacial tension between the two fluids. The metallic nanoparticles 
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(Cu, Ag, Co, Al), oxides (TiO2, SiO2), metal sulphides (CdS, ZnS) and various other 
nanomaterials can be prepared using this microemulsion technique (Cason et  al. 
2001). Pileni and Lisiecki (1993) demonstrated that copper and silver nanoparticles 
can be synthesized using reverse micelle system.

13.1.1.5  Sonochemical Method
This method uses ultrasound irradiations of 10–20 kHz to enhance the chemical 
reaction of molecules (Suslick et al. 1991). Suslick et al. (1996) used this method to 
synthesize iron NPs. The sonochemical technique has also been found quite effi-
cient to synthesize other metals and metal oxides (Pol et al. 2003). The major advan-
tage of this method is its simplicity, operating conditions and good control of NP 
size (Vijayakumar et al. 2000). The sound waves at a fixed frequency are allowed to 
pass through a slurry or solution of carefully selected metal complex precursors. In 
the solution at a vapour pressure of a certain threshold, the alternating waves of 
expansion and compression induce the formation of cavities, which grow and 
implode. Sonochemical reactions of volatile organometallics have been exploited as 
a general approach to synthesize various nanophase materials by changing the reac-
tion medium (Pol et al. 2003).

13.1.1.6  Microwave Method
The microwave irradiation is another simple, easy and efficient method of the NP 
synthesis (Komarneni 2003). Microwaves, a form of electromagnetic energy at a 
frequency of 300 MHz to 300 GHz, commonly 2.456 GHz, can induce synthesis of 
crystalline particles with radius ranging from 90 to 260 nm (Blosi et al. 2011). The 
microwaves induce fast and homogeneous reaction conditions during the synthesis 
of Cu NPs (Blosi et al. 2011). The efficiency of Cu NP synthesis may be increased 
further by using copper sulphate as a precursor and sodium hypophosphite as the 
reducing agent in ethyl glycol under microwave irradiation (Zhu et al. 2004).

13.1.2  Biological Methods of NP Synthesis

Biological methods or green synthesis methods involve use of plants or microorgan-
isms for the synthesis of nanoparticles (Fig. 13.1; Khan and Rizvi 2017). Plants 
(Khan et al. 2019b) and soil microorganisms are important biological agents and 
have immense potential to mediate the synthesis of nanoparticles (Khan et  al. 
2019a). In view of the risk of soil and water contamination due to chemical pro-
cesses, exploitation and development of efficient and eco-friendly processes for 
synthesis of nanoparticles shall be crucial in popularizing the use of nanotechnol-
ogy in agriculture.

13.1.2.1  Phytosynthesis of Nanoparticles
Using plants or their extracts to bring about synthesis of nanoparticles is a low-cost, 
handy and environment-friendly process. Plant extracts contain a range of biochem-
ical molecules such as proteins, sugars, phenol, alkaloids, flavonoids, hormones, 
terpenoids, anthraquinones, etc. which bring about the synthesis of nanoparticles 
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through reduction of ions in an aqueous solution of a metal salt (Khan et al. 2019b). 
The plant extracts from Centella asiatica, Citrus sinensis, Ocimum tenuiflorum, 
Solanum trilobatum and Syzygium cumini are well documented to induce reduction 
of Ag ions to Ag NPs in the silver nitrate solution. Patil et al. (2012) reported that O. 
tenuiflorum leaf extract brought about the reduction and stabilization of Ag ions to 
Ag NPs of 25–40 nm size. The leaf extract of Piper longum also acted as reducing 
and capping agent and yielded Ag NPs in 1 mM AgNO3 solution. The leaf extracts 
of Artemisia nilagirica (Asteraceae) produced 70–90  nm Ag NPs (Vijayakumar 
et al. 2013).

In addition to above, leaf extracts of several other plants such as Avena sativa 
(Armendariz et al. 2004), Azadirachta indica (Shankar et al. 2004a, b), Aloe vera 
(Chandran et al. 2006), Acanthella elongate (Inbakandan et al. 2010), Cinnamomum 
camphora (Huh and Kwon 2011), Coriandrum sativum (Badrinarayanan and 
Sakthivel 2008), Carica papaya (Mude et al. 2009), Emblica officinalis (Ankamwar 
et al. 2005), Medicago sativa (Gardea-Torresdey et al. 2003; Schabes-Retchkiman 
et al. 2006; Lukman et al. 2011), Pelargonium graveolens (Shankar et al. 2003a, b), 
Parthenium hysterophorus (Parashar et  al. 2009), Sesuvium portulacastrum 
(Nabikhan et al. 2010), Tamarindus indica (Shanker et al. 2004a, b) and Tritium 
vulgare (Armendariz et al. 2009) have also been reported to induce reduction of 
metal ions to metal NPs. As the above citations reveal, generally the leaf extracts are 
used to synthesize the NPs. This is probably for the soft and succulent tissue with 
easy and bulk availability of leaves. Further, higher contents of reducing and stabi-
lizing biochemicals such as isoflavonoids, flavonoids, proteins, alkaloids, terpe-
noids, carbohydrates and anthraquinones occur in the leaf tissue (Suman et  al. 
2013). Huang et  al. (2007) reported that dry leaf power of plants, for example, 
Cinnamon camphora, may also induce synthesis of nanoparticles such as silver and 
gold.

13.1.3  Microbial Synthesis of Nanoparticles

Soil microorganisms constitute one of the vast and diversified natural biotic 
resources that can be exploited in NP synthesis (Fariq et  al. 2017; González- 
Garcinuño et al. 2019). A wide range of microorganisms have been found to catalyse 
the formation of nanoparticles (Fig.  13.1; El-Rafie et  al. 2012, Khan and Rizvi 
2014). The microbial metabolites generally act as reducing and capping agents for 
conversion of ions into nanoparticles. Gurunathan et al. (2009) reported that culture 
supernatant of Escherichia coli induced the reduction of Ag + ions to Ag NPs. The 
extracellular biosynthesis of Ag NPs using E. coli has also been achieved 
(Manonmani and Juliet 2011). Law et al. (2008) successfully achieved the reduction 
of Ag (I) as insoluble AgCl or Ag (+) ions by using Geobacter sulfurreducens. The 
Ag NPs were also synthesized through the mediation by a gram-positive bacteria 
Morganella morganii in the culture medium (Abd et al. 2013)

Besides Ag NPs, gold nanoparticles have also been synthesized by using bacte-
ria. Ahmad et al. (2003a) reported that extremophilic bacteria, Thermomonospora 
sp., catalysed the synthesis of Ag NPs in the medium. The Au NPs were synthesized 
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with the help of culture of mesophilic bacterium, Shewanella (Konishi et al. 2004). 
He et al. 2007 noticed that culture of Rhodopseudomonas capsulata facilitated the 
production of 10–20 nm Au NPs. Similarly, Husseiny et al. (2007) used the cell 
supernatants of Pseudomonas aeruginosa to achieve reduction of Au ions to Au 
NPs. Ahmad et  al. (2003b) successfully obtained the extracellular synthesis of 
spherical 8 nm gold nanoparticles using the actinomycete, Thermomonospora sp. 
The extremophilic yeast has been found effective in mediating the synthesis of Ag 
and Au NPs (Mourato et al. 2011). Kalimuthu et al. (2008) reported successful syn-
thesis of Ag NPs (20 nm) and Au NPs (30–100 nm) using the yeast biomass. They 
used Bacillus licheniformis to catalyse synthesis of 50 nm Ag/Au NPs.

Woolfolk and Whiteley (1962) reported that cell-free extracts of Micrococcus 
lactilyticus reduced the uranium (vi) to uranium (iv). Similarly, Lovley et al. (1989) 
reported that Alteromonas putrefaciens culture in the presence of hydrogen as elec-
tron donor and U (vi) as electron acceptor reduced U (vi) to U (iv). Further, reduc-
tion of soluble U (vi) to insoluble U (iv) was achieved when G. metallireducens 
GS-15 was grown anaerobically in the presence of acetate and U (vi) as electron 
donor and electron acceptor (Lovley et al. 1991). Reduction of selenite to elemental 
selenium and accumulation of selenium granules in the cytoplasm or extracellular 
space was achieved by using Stenotrophomonas maltophilia SELTE02 (Di Gregorio 
et  al. 2005). Using different groups of bacteria such as facultative anaerobes, E. 
cloacae (Losi and Frankenberger 1997), nonsulphur bacterium Rhodospirillum 
rubrum and anaerobic Desulfovibrio desulfuricans (Tomei et al. 1995), reduction of 
selenite to selenium was achieved successfully. Silverberg et al. (1976) reported that 
E. coli mediated the synthesis of Se NPs. Similarly, aerobic reduction of selenite to 
elemental selenium was achieved with the help of P. stutzeri (Lortie et al. 1992). 
Another phosphate-solubilizing bacteria, P. aeruginosa, reduced Se ions to spheri-
cal Se NPs (Yadav et al. 2008).

Microbial synthesis of different nanoparticles has also been reported using a 
wide range of fungi such as Aspergillus fumigatus (Bhainsa and D’Souza 2006), A. 
niger (Gade et al. 2008), Colletotrichum sp. (Shankar et al. 2003a, b), Cladosporium 
cladosporioides (Balaji et al. 2009), Coriolus versicolor (Sanghi and Verma 2009), 
Fusarium oxysporum (Bansal et al. 2004), F. solani (Ingle et al. 2009), F. semitec-
tum (Basavaraja et al. 2008), Phanerochaete chrysosporium (Vigneshwaran et al. 
2006), Phoma glomerata (Birla et al. 2009), Penicillium brevicompactum (Shaligram 
et  al. 2009), Penicillium fellutanum (Kathiresan et  al. 2009), Trichothecium sp., 
Trichoderma asperellum, T. viride (Khandel and Shahi 2018) and Volvariella volva-
cea (Philip 2009) which have also been found quite effective in catalysing the for-
mation of nanoparticles. El-Rafie et al. (2012) examined the effect of some factors 
such as biomass concentration of F. udum, pH of the reaction medium, AgNO3 con-
centration and the ratio of AgNO3 to biomass concentration to synthesize Ag NPs. 
Optimum synthesis of Ag NPs was attained 10 g using biomass of F. solani /100 ml, 
0.078 g AgNO3/100 ml concentration pH 12; 25 °C temperature and 24 h duration. 
This set of conditions yielded stabilized concentration of 2000  ppm Ag NPs of 
8–15 nm size. Gade et al. (2008) reported extracellular synthesis of silver nanopar-
ticles could be achieved by Aspergillus niger. The cyanobacteria, Anabaena, 
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Calothrix and Leptolyngbya, have been found to produce Au, Ag, Pd and Pt nanopar-
ticles extracellularly. The NPs produced in the culture medium were stabilized by 
the algal polysaccharides (Brayner et al. 2007). Dameron et al. (1989) demonstrated 
that yeast Candida glabrata can intracellularly produce spherical and CdS quantum 
dots measuring 2  nm. The yeast Schizosaccharomyces pombe also produced 
wurtzite- typed hexagonal lattice-structured CdS nanoparticles of 1–1.5  nm size 
(Kowshik et al. 2002). Another yeast, Pichia jadinii, produced spherical, triangular 
and hexagonal gold nanoparticles of 100 nm size (Gericke and Pinches 2006). Gold 
nanoparticles in the size range of 2–10 nm were produced by S. cerevisiae (Jha et al. 
2009). Microbial synthesis of other metals has also been well documented. Prasad 
et al. (2007) reported that the extracellular culture filtrate of Lactobacillus sp. syn-
thesized spherical 40–60  nm titanium NPs. Konishi et  al. (2007) achieved the 
microbial synthesis of Pt (ii) organics and metallic platinum nanoparticles of 
30–300 nm size extracellularly using gram-negative cyanobacterium P. boryanum 
similarly. Yong et al. (2002) reported that anaerobic sulphate-reducing bacterium 
Desulfovibrio desulfuricans also reduced palladium (2+) ions to palladium NPs 
extracellularly. An iron-reducing bacterium, S. oneidensis, reduced Pd (ii) to Pd (0) 
nanoparticles in the presence of lactate as electron donor inter- and extracellularly 
(De Windt et al. 2005). In the same study, the Au NPs of 5–15 nm were formed 
using alkalotolerant actinomycete, Rhodococcus sp.

13.2  Fate of Nanoparticles in Soil

Soil is supposed to be the largest recipient of NPs. When nanoparticles or nanofor-
mulations are applied on the plants, the material finally reaches to the soil. Hence, 
it becomes very important to understand the fate and behaviour of NPs in the soil, 
as soil is the ultimate sink for nanoparticles. Upon reaching in soil, the nanomaterial 
is exposed to a variety of factors or agents especially plant roots and microorgan-
isms and develops different relationship with them, most commonly synergistic or 
antagonistic relationship. Soil is also considered as an externally important environ-
mental matrix, richest in natural NPs both as primary particles and aggregates. 
Anthropogenic introduction of NPs into the soil might have significant impact on 
the soil biota. The protection of soil microbial biomass and diversity as well as root 
growth are the major issues for sustainable use of NPs in crop production (Torsvik 
and Øvreås 2002; Khan and Rizvi 2014). Hence, we discuss under the interactions 
between nanoparticles and plants/microorganisms with regard to NP effects.

13.2.1  Effect of Nanoparticles and Materials on Plants

The nanoparticles or nanomaterials when applied to plants through foliar spray on 
soil application are ultimately absorbed by the plant foliage and/or roots and cause 
a complexity of effects. The effects, however, may vary with the material or NP spe-
cies and the amount. Since nanoparticles are very small in size, they have potential 
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to enter, translocate and penetrate physiological barriers to travel within the plant 
tissues with fair degree of free movement. However, long-term NP effects in plant 
systems are not fully understood. Some researchers suggest that the NPs may cause 
morphological, physiological and genetic modifications leading to quantitative and/
or qualitative changes in the plant growth. It is well understood that nanoparticles 
enter plant tissues either via root tips, rhizodermis and lateral root junctions when 
present in the soil or via cuticles, trichomes, stomata, etc. when applied on the foli-
age. The effects of nanoparticles on plants may be growth suppressive or promon-
tory depending on the NP species and its concentration.

13.2.1.1  Suppressive Effects on Plants
The nanoparticles may easily penetrate the root and may cause toxic effects which 
may limit to a group of cells to expression of toxic symptoms and suppression of 
plant growth. Toxic effects of nanoparticles on plants may appear in the form of 
seed germination, root/shoot growth, biomass production, transpiration photosyn-
thesis, biomolecule synthesis, etc. (Ghosh et  al. 2016). Nanoparticles may cause 
decline in the plant growth, degrade its quality and lower the nutritive value of the 
produce (Le Van et al. 2016a, b; Rajput et al. 2018a, b). From various studies it is 
now well recognized that NPs adversely affect crop development and yield and 
accumulate in the plant tissues, fruits, grains, etc. It has been found that NPs may 
inhibit seed germination, reduce plant growth and decrease in photosynthetic rate 
and pigments of a number of crops such as cucumber (Moon et al. 2014), coriander 
(Zuverza-Mena et al. 2015), lettuce (Trujillo-Reyes et al. 2014; Hong et al. 2015), 
onion (Cvjetko et al. 2017), rice (Shaw and Hossain 2013), mung bean (Nair et al. 
2014), radish (Corral-Diaz et al. 2014), spinach (Singh and Kumar 2016), soybean 
(Nair and Chung 2014, Yang et al. 2015, Priester et al. 2017), tobacco (Frazier et al. 
2014), wheat (Vannini et  al. 2014) and mustard (Nair and Chung 2015). Toxic 
effects of NP on plants have been summarized in Table 13.1.

13.2.1.2  Promontory Effects on Plants
Nanoparticles of some chemicals especially those which are useful for plant growth 
such as nitrogen, phosphorus, zinc, etc. stimulate the plant growth and enhance the 
biomass production and yield. Nitrogen is a vital nutrient for plant growth and 
development, and 50–70% of the applied N dose is lost to the soil due to leaching 
and other factors. It has been found that application of nano-nitrogen shall be far 
more effective than even polymer-coated conventional slow-release N fertilizers 
due to the high surface area to volume ratio (Hossain et al. 2008; De Rosa et al. 
2010). Similarly, phosphorus fertilizers are also lost due to eutrophication problem 
in surface waters (Correll 1998; Carpenter 2005; Conley et al. 2009). The commer-
cially available P fertilizers are water-soluble phosphate salts, which easily get dis-
solved in the soil solution and available for plant uptake (Fageria 2009). However, 
the phosphates soluble in water are highly mobile in the soil, and large portions are 
lost due to surface run-off or seepage. On the other hand, solid forms of P such as 
naturally occurring phosphate rocks and apatites have also been attempted as P 
fertilizers where the phosphate is locked in a solid form and is less easily available 
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Table 13.1 Phytotoxic effects of some important nanoparticles

NPs, size and 
concentration Plants/species Effects References
Ag 1–10 mg/L Triticum aestivum Decreased seedling growth and 

modified root tip cells
Vannini et al. 
(2014)

Ag 
1000–3000 mM

Pisum sativum Decreased photosynthetic 
pigments

Tripathi et al. 
(2017)

Ag 5–25 nm; 
40 mg/L

Phaseolus radiatus Ag accumulation in roots and 
shoots. Growth inhibited

Lee et al. (2012)

Ag 5–20 μg/L Allium cepa Chromosomal aberrations in both 
mitotic and meiotic cells

Saha and Gupta 
(2017)

Ag 0.6–2 nm; 
0–100 mg/L

Flax, ryegrass, 
barley

Reduced seed germination and 
shoot length

El-Temsah and 
Joner (2012)

Ag 1000 mg/L Oryza sativa Phytotoxic effect on plant Mazumdar and 
Ahmed (2011)

Al 2000 mg/L Corn, lettuce Decline in root length Lin and Xing 
(2007)

Al 20 mg/L Ryegrass, corn Reduced germination and root 
length

Lin and Xing 
(2007)

Al2O3 13 nm Carrots, cabbage, 
cucumber, maize

Decline in root growth Yang and Watts 
(2005)

Au 25–100 mg L Arabidopsis 
thaliana, Medicago 
sativa

Up to 75% reduction root length Taylor et al. 
(2014)

CeO2 
0–500 mg kg

R. sativus Retarded germination Corral-Diaz 
et al. (2014)

CeO2 7 nm; 
0–4000 mg/L

Alfalfa, cucumber, 
maize, soybean, 
tomato

Reduced germination, biomass, 
shoot and root growth

Lopez-Moreno 
et al. (2010)

Cu 1000 mg/L Mung bean, wheat Reduced seedling and shoot 
growth

Lee et al. (2008)

CuO 0–80 mg/
kg

Coriandrum 
sativum

Reduced germination and shoot 
elongation

Zuverza-Mena 
et al. (2015)

CuO 
10–1000 mg/L

Cotton Shoot and root length decreased 
and senescence

Le Van et al. 
(2016b)

CuO 
200–500 mg L

Vigna radiata L. Affected root length, biomass, 
total chlorophyll content, 
primary and lateral root growth

Nair et al. (2014)

CuO 0–20 mg/L Lactuca sativa, 
Medicago sativa

Reduced the root length; 
increased Cu, P and S in alfalfa 
shoots; and decreased P and Fe 
in lettuce

Hong et al. 
(2015)

CuO 
50–500 mg/L

Glycine max Significantly reduced the shoot 
growth, weight, total chlorophyll 
content and root length

Nair and Chung 
(2014)

CuO 
0–500 mg/L

Brassica juncea Affected shoot and root growth Nair and Chung 
(2015)

(continued)
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Table 13.1 (continued)

NPs, size and 
concentration Plants/species Effects References
CuO 0–50 mg/L Oak Disturbed shape, plastoglobules 

and starch contents of leaves’ 
cells

Olchowik et al. 
(2017)

CuO 
1–1000 mg/L

Carrot Biomass decreased significantly Ebbs et al. 
(2016)

CuO 
10–1000 mg/L

Cotton Reduced the uptake of minerals 
(B, Mo, Mn, Mg, Zn, Fe)

Le Van et al. 
(2016a, b)

CuO 0–80 mg/L Onion Reduced/stopped root growth 
and caused showed deformation 
on root cap surface and 
meristematic zone

Deng et al. 
(2016)

Fe NPs 
50–100 mg/L

Sunflower Reduced uptake and 
translocation of nutrients and 
root hydraulic conductivity

Martinez- 
Fernandez et al. 
(2016)

Fe NPs 
50–100 mg/L

Tomato Inhibited root hydraulic 
conductivity

Martinez- 
Fernandez and 
Komarek (2016)

Fe NPs 
1–50 mg/L

Lettuce Decreased root elongation Liu et al. (2016)

Fe NPs 
2–200 mg/L

Rice Inhibited phytohormones Gui et al. (2015)

ZnO 
500–1500 mg/L

Mustard Reduced seed germination and 
seedling growth

Zafar et al. 
(2017)

ZnO 
0.05–0.5 mg/L

Soybean Leaf chlorosis, necrosis and 
affected photo system II quantum 
efficiency

Priester et al. 
(2017)

ZnO 1000 mg/L Spinach Reduced root and shoot length, 
total weight, chlorophyll and 
carotenoid content

Singh and 
Kumar (2016)

ZnO 
100–500 mg/L

Bean Inhibited growth, imbalanced 
nutrient in shoots, Na increased, 
Fe, Mn, Zn and Ca decreased

Dimkpa et al. 
(2015)

ZnO 2000 mg/L Maize, rice Inhibited root elongation Yang et al. 
(2015)

ZnO Rice Induced phytotoxicity, reduced 
ROS production and lipid 
peroxidation

Chen et al. 
(2015)

ZnO 500 mg/L Soybean Reduced root and shoot growth, 
seed formation

Yoon et al. 
(2014)

ZnO 2000 mg/L Radish, rapeseed, 
ryegrass, lettuce, 
corn, cucumber

Reduced root growth and 
elongation

Lin and Xing 
(2007)
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to plant roots and also less easily transportable by run-off or soil erosion (Fageria 
2009). However, these solids are less effective in providing nutrient P to plants 
(Fageria 2009). In addition, application of solid phosphates in agriculture is hin-
dered by the large size of the particles. However, nano-sized apatite particles could 
be as effective in providing the nutrient P as the commonly used soluble P fertiliz-
ers, but shall greatly minimize the eutrophication.

In a greenhouse test, application of nano-sized hydroxyapatite increased the 
height of soybean plants by 30% over regular P fertilizer treatment. The treatment 
also enhanced the growth, dry biomass and seed yield of soybean greater than regu-
lar P applied soybean plants (Liu and Lal 2014).

Around 50% of the arable soils of the world are Zn deficient (Sillanpaa 1990). 
The effectiveness of Zn fertilizers for providing plants with Zn in Zn-deficient soils 
largely depends on the solubility of the Zn in soil. The inorganic ZnO is a most com-
monly used Zn fertilizer (Martens and Westermann 1991). Use of ZnO NPs in place 
of conventional ZnO appears a most promising approach where a very small dose 
would fulfil the Zn requirement of the plant (Khan and Rizvi 2017). Application of 
ZnO NPs may improve the efficiency of the fertilizer and Zn availability to plants 
by enhancing the rate and extent of Zn dissolution (Panwar 2012). Pot trials with 
foliar spray have demonstrated that plants sprayed with 20 mg ml−1 ZnO NPs solu-
tion showed improved growth and biomass production over conventional Zn fertil-
izer (De la Rosa et al. 2013). The treatment with TiO2 nanoparticles promoted the 
plant growth of maize; however, the effect of TiO2 bulk treatment was negligible. In 
another experiment, a compound of SiO2 and TiO2 nanoparticles increased the 
activity of nitrate reductase in soybeans and intensified plant absorption capacity, 
making an efficient use of water and fertilizer (Lu et al. 2002).

13.2.2  Effect of Nanoparticles on Microorganisms

Nanoparticles are generally found toxic to microorganisms (Khan et  al. 2019a). 
Accumulation of NPs in the soil may adversely affect the microbial community and 
diversity. The effects on the microbial communities as well as on the individual 
microorganisms may vary with NP species and are described below.

13.2.2.1  Effects of Nanoparticles on Soil Microbial Community
At the present state of knowledge, it is not properly understood how nanoparticles 
can affect the microbial communities in the soil (Table 13.2). The nanoparticles may 
directly affect the bioavailability of other toxins and nutrients or indirectly via inter-
actions with natural organic compounds (Haris and Ahmad 2017). Nanoparticles and 
their ions can produce free radicals which can damage microbial cell membrane, 
DNA and mitochondria resulting in death of the microbes (Rajput et al. 2018a, b). 
Soil respiration and enzymatic activities are important determinants to assess the 
impact of nanoparticles on microbial activity (Simonin and Richaume 2015). Metallic 
nanoparticles may influence enzymatic activities and bacterial abundance in soil; soil 
types may also play an important role in the NP toxicity (You et  al. 2018). The 
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Table 13.2 Effects of nanoparticles on microbes and their communities

Nanoparticles Microorganisms Effects References
Ag (0.14 mg/kg) Bacterial community Modified the community Colman et al. 

(2013)
Ag 
(1.25 μg–30 mg/
kg)

Soil microbial community Decreased the enzymatic 
activities

Peyrot et al. 
(2014)

Ag NPs Aspergillus niger, 
Staphylococcus sp., 
Bacillus sp. and E. coli

100% inhibition in the 
colonization

Rajkishore 
et al. (2013)

Ag NPs Escherichia coli 33–45% damage to the 
cells

Beddow et al. 
(2014)

Ag NPs Chlamydomonas 
reinhardtii

Toxicity Navarro et al. 
(2008a, b)

Ag Escherichia coli MIC 1 g/ml Vertelov et al. 
(2008)

Ag Ammonia bacteria 
oxidizing
Nitrosomonas europaea, 
Nitrosospira multiformis 
and Nitrosococcus oceani

Significant inhibition to the 
nitrification potential rates

Beddow et al. 
(2014)

Ag0 Escherichia coli MIC 100 g/ml Chudasama 
et al. (2010)

Ag, Al2O3, SiO2 
(50 mg/kg)

Soil bacteria Reduced dehydrogenase 
and urease activity

McGee et al. 
(2017)

Au (0.1–100 mg/
kg)

Soil bacterial community Decreased the enzyme 
activities, community and 
nutrient cycling

Asadishad 
et al. (2017)

CuO Bacillus subtilis Inhibited colonization Baek and An 
(2011)

CuO Klebsiella pneumoniae, P. 
aeruginosa, Salmonella 
paratyphi and Shigella

Antibacterial activity 
inhibited the growth

Rajkishore 
et al. (2013)

CuO (10 mg/kg 
soil)

Soil microbial community Inhibiting Ben-Moshe 
et al. (2013)

CuO (upto 
1000 mg/kg soil)

Soil microbial community Decreased the microbial 
biomass, enzymatic 
activities, disturbed 
community structures

Xu et al. 
(2015)

Cu-doped TiO2 Shewanella oneidensis Inhibited colonization Wu et al. 
(2011)

CdSe QDs 
(quantum dot)

Escherichia coli Pokhrel et al. 
(2012)

CuO, Fe3O4 (10 g/
kg

Soil microbial community Affected the microbial 
community

Ben-Moshe 
et al. (2013)

CdSe/ZnS QDs Pseudomonas aeruginosa Inhibited colonization Yang et al. 
(2012a, b)

CeO2 Escherichia coli Inhibited colonization Pelletier et al. 
(2010)

(continued)
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introduction of NPs into the natural environments may pose threat to beneficial 
microbial communities also. The TiO2 and CuO NPs decreased soil microbial bio-
mass and enzymatic activities and affected their community structures in flooded 
paddy soil (Xu et al. 2015). You et al. (2018) reported similar effects of ZnO, TiO2, 
CeO2 and Fe3O4 NPs on the microbial enzymes such as invertase, urease, catalase, 
phosphatase and bacterial communities in two different soil types. High concentra-
tion of Fe3O4 NPs significantly decreased the soil of bacteria count (Cao et al. 2016). 
Chai et al. (2015) observed decrease in the plate counts of Azotobacter, P-solubilizing 
and K-solubilizing bacteria and enzymatic activities due to ZnO and CeO2 NPs. 
Similarly titanium dioxide NPs reduced the enzymatic activity and abundance and 
diversity of rhizoplane bacteria (Buzea et al. 2007; Solanki et al. 2008). The CuO 
NPs were found very toxic to native soil bacteria, causing cavities, holes, membrane 
degradation and lysis in the microbial cells (Concha-Guerrero et al. 2014). Xu et al. 
(2015) reported drastic decrease in the microbial biomass and enzymatic activity of 
the microbial community in soil due to 1000 mg Cu NPs/kg soil. However, Baek and 
An (2011) reported inhibitory effect of Cu NPs on soil microbial community at a 
much lower concentration, i.e. 10 mg/kg soil.

Table 13.2 (continued)

Nanoparticles Microorganisms Effects References
Fe (550 mg/kg 
soil)

Soil microbial community Adverse effect on bacterial 
groups

Shah et al. 
(2014)

Fe3O4 (0.1–
10.0 mg/kg soil)

Soil bacterial community Decreased the bacteria 
count in soil

Cao et al. 
(2016)

SiO2 Escherichia coli Toxic effect Li et al. 
(2012)

TiO2 Vibrio fischeri Toxic effect Heinlaan 
et al. (2008)

TiO2 Pseudomonas aeruginosa Toxic effect Hessler et al. 
(2012)

TiO2 (20 g/kg) Bacterial community Decreased the diversity Ge et al. 
(2012)

ZnO (0.1 mg/L) Escherichia coli Inhibited colonization Applerot 
et al. (2009)

ZnO (20 mg/L) Escherichia coli 100% mortality Jiang et al. 
(2009)

ZnO (960 mg/L) Escherichia coli O157:H7 100% mortality Liu et al. 
(2009)

ZnO (1000 mg/kg 
soil)

Azotobacter, P-solubilizing 
and K-solubilizing bacteria

Inhibited enzymatic 
activities

Chai et al. 
(2015)

ZnO (500–
2000 mg/kg soil)

Altered soil bacterial 
community structure and 
decreased bacterial 
diversity

Ge et al. 
(2011)

ZnS QDs Nitrosomonas europaea Toxic effect Yang et al. 
(2012a, b)
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13.2.2.2  NP Effects on Individual Microbes

13.2.2.2.1 Silver Nanoparticles
The silver ions and Ag NPs were tested for their effect on Bipolaris sorokiniana and 
Magnaporthe grisea (Jo et al. 2009). The NP treatments significantly suppressed 
the colonization of both the fungi, and the EC50 of Ag NPs was much lower than the 
ionic Ag. A significant reduction in the colonization of two fungi on perennial rye-
grass was recorded due to Ag NP treatment (Kasprowicz et al. 2010). Safavi et al. 
(2011) reported that nanosilver had a good potential for removing the bacterial con-
taminants during tissue culturing of tobacco plant. The antibacterial activity of the 
Ag NPs/polyvinylpyrrolidone (PVP) against three different groups of bacteria, 
Staphylococcus aureus (gram-positive bacteria), E. coli (gram-negative bacteria), P. 
aeruginosa (nonfermenting gram-negative bacteria), as well as against spores of 
Bacillus subtilis has been reported (Bryaskova et al. 2011). Guzman et al. (2009) 
found that Ag NPs showed high bactericidal activity against gram-positive bacteria 
such as E. coli, P. aeruginosa and S. aureus. The Ag NPs/PVP was also tested for 
fungicidal activity against different yeasts and moulds such as Candida albicans, C. 
krusei, C. tropicalis, C. glabrata and Aspergillus brasiliensis. The hybrid materials 
showed strong antifungal effects against the tested microbes (Bryaskova et  al. 
2011).

The silver nanoparticles at 15 mg/l greatly inhibited the growth of Alternaria 
alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, 
B. cinerea and Curvularia lunata (Krishnaraj et al. 2012). Application of different 
concentrations of Ag NPs before and after disease outbreak on cucurbits under field 
conditions showed that 100  ppm Ag NPs provided better disease control when 
applied both before and after the outbreak of the disease (Lamsa et al. 2011). Silver 
nanoparticles have a high surface area and fraction of surface atoms; as a result, they 
have high antimicrobial effect tested compared to the bulk silver (Singh et al. 2015).

13.2.2.2.2 Zinc and Sulphur Nanoparticles
Like Ag NPs, the zinc oxide nanoparticles have also been found more antimicrobial 
than the conventional ZnO powder. Tayel et al. (2011) tested efficacy of ZnO NPs 
against nine bacterial strains in comparison to conventional ZnO. The ZnO NPs 
were found more suppressive to bacteria than powder. Gram-positive bacteria were 
generally more sensitive to ZnO than gram negatives. The ZnO NP treatment to 
Salmonella typhimurium and Staphylococcus aureus caused 100% cell death within 
8 and 4 h of application, respectively (Tayel et al. 2011). Antibacterial activity of 
ZnO NPs against P. aeruginosa has been reported by Jayaseelan et al. (2012). The 
maximum zone of inhibition in the colonization of the bacteria (22 ± 1.8 mm) was 
recorded at 25  ng/mL ZnO NPs. Antifungal efficiency of sulphur NPs (S NPs) 
against Fusarium solani and Venturia inaequalis was investigated in vitro (Rao and 
Paria 2013). The S NPs (35 nm) were found more effective than the bigger particles 
in suppressing the fungal colonization. Microscopic study revealed that the accumu-
lation of S NPs on the surface of the spores and hyphae and subsequent damage 
were the main cause for the fungal suppression (Rao and Paria 2013). Study on the 
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ZnO NPs against Botrytis cinerea and Penicillium expansum showed that ZnO NPs 
at 3 mmol/l significantly inhibited the growth of B. cinerea and P. expansum; the 
latter fungus was found more sensitive to the treatments. Jayaseelan et al. (2012) 
reported that ZnO NPs at 25 mg/ml suppressed the colonization of A. flavus.

13.2.2.2.3 Copper and Silica Nanoparticles
Cioffi et al. (2004) reported that Cu NPs suppressed the colonies of Botrytis cinerea 
greater than the copper salt powder. The Cu NP antifungal activities of polymer- 
based copper nanocomposites against pathogenic fungi (Cioffi et  al. 2004) and 
silica- silver nanoparticles against Botrytis cinerea, R. solani and Colletotrichum 
gloeosporioides have been reported (Park et al. 2006). Copper nanoparticles in soda 
lime glass powder showed efficient antimicrobial activity against gram-positive and 
gram-negative bacteria and fungi (Esteban-Tejeda et  al. 2009). The antibacterial 
activities of CuO nanoparticles have also been reported against S. aureus, Bacillus 
subtilis, P. aeruginosa and E. coli (Azam et al. 2012).

13.3  Conclusion

The critical analysis of the relevant literature has revealed that there are various 
methods of synthesis of nanoparticles and nanomaterials, but for simplicity and eco- 
friendly nature, green synthesis methods, especially phytosynthesis techniques, 
appear to have substantial potential for future exploitation and use. Since soil is an 
ultimate sink for final accumulation/deposition of nanomaterials, the plant roots and 
soil inhibiting microorganisms are exposed and affected directly to nanoparticles. 
The information available on this aspect shows that the nanoparticles especially the 
nano-form of inorganic fertilizers like N, P, Zn, etc. can greatly enhance their effi-
cacy and can substantially reduce the dose of application. However, the NPs espe-
cially of the toxic metals may suppress the growth of plant and soil microbes. The 
nanoparticles generally prove antimicrobial at a concentration not causing phyto-
toxic effects. Hence, the antimicrobial characteristics of nanoparticles offer a diver-
sified application of nanotechnology against plant pathogens. However, antimicrobial 
nature of NPs may also lead to the suppression of beneficial soil microorganisms. 
Before commercial use of nanoparticles and nanomaterials in crop production, the 
biosafety and environment safety aspects associated with NP applications as well as 
their effects on plants and beneficial microbes are required to be ascertained in a 
fool-proof manner.
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Abstract
Rhizosphere is a site of high microbial diversity that makes soil more physiologi-
cally active. High diversity of bacteria in the rhizosphere depends on physico-
chemical composition of soil, its pH, partial pressure of oxygen (pO2) and water 
potential. The continuous increase of population and availability of low- 
production land causes high demand of crop production with a significant 
decrease of synthetic chemical fertilizers and pesticide use which is a huge chal-
lenge nowadays. Plant growth-promoting rhizobacteria are free-living, soilborne 
rhizobacteria that play a significant role in the sustainable agriculture. Soil diver-
sity of microbes shows key role in maintaining soil fertility, functions and crop 
productivity. The use of metal nanoparticles to increase the soil microbial diver-
sity has been reported recently. Although metal nanoparticle could meaningfully 
produce ecotoxicity and kill phytostimulatory soil bacteria, so engineered 
nanoparticles (ENPs) using gold, silver and aluminium should be added to test as 
a possible ecofriendly agent, and others on the PGPR.
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14.1  Introduction

As the worldwide population grows exponentially day by day, so simultaneously 
the demand of food production also increases; this may soon cause insufficiency to 
feed all of the world’s population. To overcome from this problem, developing such 
agricultural techniques and strategies that can enhance the yield to feed all of these 
individuals is an important challenge in the twenty-first century (Ladeiro 2012; 
Glick 2014; Goswami et al. 2016).

Major factors that play an important role for agriculture productivity are water 
quality, soil composition, climate change, organic matter of soil and soil environ-
ment. Soil content is regulated by a number of factors, such as organic carbon con-
tent, moisture, nitrogen, phosphorous and potassium content and other biotic and 
abiotic factors. However, increase in use of chemical fertilizers has led to substan-
tial soil pollution by altering pH and making these nutrients unavailable to crops; 
this will result in loss of productivity (Gupta et  al. 2015). One possible way to 
overcome this problem is the use of soil microorganisms, such as bacteria, fungi and 
algae (Vejan et al. 2016). Association between microbes and leguminous plants will 
result in biomineralization and synergistically improve soil quality and fertility 
(Herrera Paredes and Lebeis 2016; Agler et al. 2016; Gouda et al. 2018).

Kloepper and Schroth in 1978 introduced the term ‘rhizobacteria’ that form sym-
biotic relationships between plant root and colonizing bacteria and stimulate the 
plant growth, thereby reducing the incidence of plant diseases. These beneficial 
rhizobacteria (free-living soil bacteria) are termed as plant growth-promoting rhizo-
bacteria (PGPR). PGPR play a vital role in converting poor-quality soil into fertile 
soil and enhance plant growth and health by suppressing plant pathogens and mak-
ing different nutrients available to plants. The term PGPR was coined by Kloepper 
around the 1970s; PGPR can also be termed as plant health-promoting rhizobacteria 
(PHPR) or nodule-promoting rhizobacteria (NPR) and are attached with the rhizo-
sphere that is an important ecological environment of soil for plant-microbe interac-
tions (Tariq et al. 2017; Gouda et al. 2018).

Various species that have been reported in the group belong to PGPR, and some 
of them have been commercialized, such as Acinetobacter, Agrobacterium, 
Arthrobacter, Azotobacter, Azospirillum, Burkholderia, Bradyrhizobium, 
Rhizobium, Frankia, Serratia, Thiobacillus, Pseudomonas, Bacillus, Enterobacter, 
Klebsiella, Variovorax, Serratia, Alcaligenes, Flavobacterium, Mesorhizobium, 
Rhodococcus, Streptomyces, etc. (Tariq et al. 2017). Generally, it was observed that 
about 2–5% of rhizosphere bacteria are PGPR (Goswami et al. 2016; Vejan et al. 
2016; Tariq et al. 2017; Hayat et al. 2010).

There are many factors that may affect the microbial flora present in soil and 
affect the PGPR efficacy by altering the nutrient value of soil, pH, chemical compo-
sition, etc. These factors could be soil contaminants such as hydrocarbon, nanopar-
ticles and heavy metals and change in geographical area, etc. Mostly all nanoparticles 
are widely used, and its use increases day by day due to wide range of consumer and 
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industrial products such as textiles, food packaging, wound dressings, drug delivery, 
medical devices, paints, water treatment processes, electronics, defence and bio-
medical, etc. Nanoparticles are generally synthesized from metal oxides such as 
Al2O3, MgO, ZrO2, CeO2, TiO2, ZnO, Fe2O3, SnO, etc. Increased uses of metal 
oxide nanoparticle led to their accumulation and release in the environment, which 
may cause toxic effects. Most of metal oxide nanoparticles exhibit excellent antimi-
crobial activity against Gram-positive and Gram-negative bacteria and show unde-
sirable toxic effects on both deleterious and beneficial soil microorganism. Soil acts 
as a substantial sink for nanoparticles so it is directly affected by toxicity which 
deteriorates the population of agriculturally important microorganism. Deposition 
of metal oxide nanoparticle in agricultural field could negatively affect PGPR such 
as mineral solubilization, secondary metabolite production, phytohormone produc-
tion, nitrogen fixation, siderophore production, etc. (Karunakaran et al. 2014; Haris 
and Ahmad 2017).

14.2  PGPR

Plants have always been in a symbiotic relationship with soil microbes (bacteria and 
fungus) during their growth and development. The symbiotic free-living soil micro-
organisms inhabiting the rhizosphere of many plant species and having diverse ben-
eficial effects on the host plant through different mechanisms such as nitrogen 
fixation and nodulation are generally referred to as plant growth-promoting rhizo-
bacteria (PGPR). PGPR and their interactions with plants are exploited commer-
cially and have scientific applications for sustainable agriculture growth. 
Applications of these associations have been investigated in oat, canola, soy, potato, 
maize, peas, tomato, lentil, barley, wheat, radicchio and cucumber (Ladeiro 2012; 
Gouda et al. 2018; Gray and Smith 2005).

14.2.1  Role of PGPR as a Plant Growth Enhancer

Plant growth and health improvement by PGPR are regulated in two different ways, 
indirectly or directly. PGPR may affect plant growth and development by using any 
one, or more, of these mechanisms as shown in Fig. 14.1.

14.2.1.1  Direct Mechanism
Direct promotion of plant growth by PGPR directly enhances plant growth either 
by providing nutrients or by producing growth regulators/metabolites to the plant 
with a compound that is synthesized by the bacterium, for example, phytohor-
mones. In short, direct mechanism includes facilitating the uptake of certain 
nutrients from the environment and enhanced availability of nutrients. This is 
directly responsible to plant growth so termed as ‘direct mechanism of PGPR’ 
(Glick 2012; Gouda et al. 2018).
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14.2.1.2  Indirect Mechanism
Indirect mechanisms of growth promotion by PGPR induced systemic resistance, 
antibiotic protection against pathogens, reduction of iron availability by sequestra-
tion with siderophores and synthesis of antifungal enzymes or lytic enzymes 
(Burdman et al. 2000; Ashraf et al. 2013). In indirect mechanism, plant gets bene-
fited by reducing the impact of diseases, which include antibiosis, induction of sys-
temic resistance and competition for nutrients and niches (Egamberdieva and 
Lugtenberg 2014). Indirect mechanism helps plant to grow healthily under environ-
mental stresses (abiotic stress) and induction of systemic resistance to plant patho-
gens (biotic stress) (Goswami et al. 2016).

14.3  Beneficial Aspects of PGPR

Rapid industrialization and increase in population result in the increase of demand 
for crop production with a significant reduction of synthetic chemical fertilizers and 
pesticide use which is a big challenge nowadays. The use of PGPR is steadily 
increased in agriculture and offers an attractive way to replace chemical fertilizers, 
pesticides and supplements (Dasgupta et  al. 2015). The use of PGPR has been 
proven to be an environmentally sound way of increasing crop yields by facilitating 
plant growth. PGPR applications and its mode of action were briefly shown in 
Table 14.1.

Fig. 14.1 Mechanism of plant growth promotion by PGPR
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Table 14.1 PGPR application and its mode of action to promote plant health and growth

Microbe Uses
PGPR mode of 
action References

Pseudomonas and 
Acinetobacter, 
Microbacterium 
arabinogalactanolyticum

Phytoremediation of 
heavy metals

Enhance the 
phytoavailability of 
metal by their direct 
effect on plant 
growth dynamics or, 
indirectly, by 
acidification, 
chelation, 
precipitation or 
immobilization of 
heavy metals in the 
rhizosphere

Tak et al. 
(2013)

Kocuria Turkanensis 2M4, 
Arthrobacter, Bacillus, 
Beijerinckia, Burkholderia, 
Enterobacter, 
Microbacterium, 
Pseudomonas, Erwinia, 
Rhizobium, Mesorhizobium, 
Flavobacterium, 
Rhodococcus and Serratia

Phosphate 
solubilization

Solubilizing 
unavailable 
complexed 
phosphate into 
available inorganic 
phosphate ion in soil

Jha and Saraf 
(2015) and 
Gouda et al. 
(2018)

Rhizobium sp., Azoarcus sp., 
Beijerinckia sp., Pantoea 
agglomerans and K. 
pneumoniae

Nitrogen fixation Improves soil 
quality and enhances 
nodule formation

Gouda et al. 
(2018), Ahemad 
and Kibret 
(2014), and 
Damam et al. 
(2016)

Acidithiobacillus sp., 
Bacillus edaphicus, 
Ferrooxidans sp., Bacillus 
mucilaginosus, Pseudomonas 
sp., Burkholderia sp. and 
Paenibacillus sp.

Potassium 
solubilization

Solubilize potassium 
rock by producing 
and secreting 
organic acids, 
potassium- 
solubilizing PGPR 
used as biofertilizer

Pawar et al. 
(2013), Liu 
et al. (2012), 
and Setiawati 
and 
Mutmainnah 
(2016)

Pseudomonas putida, 
Enterobacter asburiae, 
Pseudomonas aeruginosa, 
Paenibacillus polymyxa, 
Stenotrophomonas 
maltophilia, Mesorhizobium 
ciceri, Klebsiella oxytoca, 
Azotobacter chroococcum 
and Rhizobium 
leguminosarum

Phytohormone 
(gibberellins, 
cytokinins, abscisic 
acid, ethylene, 
brassino steroids and 
auxins) production

PGPR provide such 
external 
environmental 
signals to hormone- 
mediated pathways 
that enhance the 
production of 
phytohormones

Damam et al. 
(2016), 
Sureshbabu 
et al. (2016), 
and Ahemad 
and Kibret 
(2014)

(continued)
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14.4  Disadvantages of PGPR

Besides the various advantages of PGPR in agriculture industries, there are certain 
disadvantages of PGPR when we compare them with chemical compounds used in 
agro-industries. These disadvantages are as follows (Labuschagne et al. 2010):

• Due to the use of live microorganisms, they are more sensitive to environmental 
conditions such as temperatures, soil conditions, desiccation, etc. So microor-
ganisms cannot be able to produce desirable metabolites until they are in their 
optimal conditions; this may limit the use of PGPR in wide area or condition.

• Shelf life of commercial PGPR in general is shorter than that of the chemical 
pesticides or fungicides.

• The major important disadvantage is the fact that the efficacy of PGPR in general 
has been inconsistent under field conditions. Many of researches and scientific 
reports on PGPR were done under controlled environmental conditions or in 
green house, but it was found that once they were implemented in field condition, 
the efficacy of PGPR was reduced.

These were considered as major disadvantages of PGPR. However, this does not 
detract from the large number of beneficial aspects of PGPR.

Table 14.1 (continued)

Microbe Uses
PGPR mode of 
action References

Pseudomonas sp. Siderophore 
production

PGPR can produce 
siderophores to 
increase iron uptake 
capacity of plants

Saha et al. 
(2016), 
Beneduzi et al. 
(2012), and Jha 
and Saraf 
(2015)

Rhizobium leguminosarum, 
Azotobacter vinelandii, 
Bacillus drentensis, 
Enterobacter cloacae, 
Agrobacterium sp., 
Xanthomonas sp. and 
Rhizobium sp.

Exopolysaccharide 
production

Maintaining water 
potential, 
aggregating soil 
particles, ensuring 
obligate contact 
between plant roots 
and rhizobacteria, 
sustaining the host 
under conditions of 
stress or 
pathogenesis

Jha and Saraf 
(2015), Ahemad 
and Kibret 
(2014), 
Sanalibaba and 
Çakmak (2016), 
and Pawar et al. 
(2013)

Pseudomonas, Bacillus, 
Arthrobacter, 
Stenotrophomonas and 
Serratia

Production of 
volatile organic 
compounds (VOCs)

Increased disease 
resistance, abiotic 
stress tolerance and 
plant biomass

Santoro et al. 
(2016), Sharifi 
and Ryu (2016), 
and 
Kanchiswamy 
et al. (2015)

Ashish et al.



253

14.5  Nanotechnology in PGPR

In current scenario, agriculture as a food source is becoming more and more impor-
tant in the world of diminishing resources and demographic growth (Brennan 2012). 
To fulfil the sufficient demand of the global population, advanced technologies are 
required in agriculture and food science, such as nanotechnology. In the area of 
agriculture, many researchers face a major challenge, to feed the constantly growing 
global population without degrading the soil health and agroecosystems.

The use of nanotechnology approaches to deal with the problem of increasing 
demand for food production and obtaining a significant role in agriculture areas like 
plant protection, monitoring plant development, detection of plants and animals’ 
relevant diseases, enhancement of the quality of foodstuff and minimization of 
renewable strengthening of spoil are the areas of focus in nanotechnology.

Agriculture production has growing tremendously using chemical fertilizers to 
fulfill the raising demand of peoples worldwide. As long as the massive usage of 
fertilizers and pesticides in agricultural lands has great impact on degradation in soil 
quality and fertility, thus the agricultural land progression with rich soil is nearly 
impractical; therefore, some scientific personnel focus on improving the safety and 
fertile techniques of agricultural activities.

Plant growth-promoting rhizobacteria (PGPR) has been proven to be co- evolution 
among plants and microorganisms revealing conflicting and symbiotic interactions 
with microbes and the soil. Microbial rejuvenation through plant growth stimulators 
is being obtained by direct and indirect methods such as bio-fertilization, stimulat-
ing root development, phytoremediation, resistance to disease, etc. Despite that 
there are large varieties of PGPR and their associates have major role, application 
for ecofriendly agriculture remains as doubtful and limited.

The instability in their functioning of PGPR might be caused by a lot of ecologi-
cal conditions that can influence their progress and proliferation in the plants. These 
constraints might be tackled by innovative attempts and techniques like nanotech-
nology. Its advances belong to the fast-growing industry offering novel approaches 
and future prospects with enormous possibilities leading to economically and eco-
logically significant implications. The field of nanotechnology becomes known as a 
technological innovation which can transform the agricultural field-related areas by 
introducing the latest resources for the molecular discipline (Chen and Yada 2011; 
Kah and Hofmann 2014; Khot et al. 2012).

In recent time nanotechnology is focused on the biotic and abiotic stresses, quick 
disease identification and management and improvement of the capacity of plants 
that consume nutrients or plant protection agents. Researchers have also been inves-
tigating the impact of nanoparticles towards enhancement of plant growth and 
development that found positive response (Karunakaran et al. 2013a, b, 2014).
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14.5.1  Nanoparticles

The relations of PGPR and plants is very auspicious in the field of agriculture and 
to maintain an environment-friendly sustainable environment. More significantly, 
introducing the nanoparticles into the environment could have considerable influ-
ence as they might be highly resistant to degradation and have the ability to accu-
mulate in bodies of water or in soil, although nanoparticles are capable to operate on 
living cells at the nano-grade, consequently in biological positive effect.

Nanosensors or nanotechnology is an emerging technology that are currently being 
used in agricultural industries and upgrading the crop production capability (Handford 
et al. 2014; Parisi et al. 2015).

Nanotechnology-based devices like nanotubes, nanowires, fullerene derivatives 
and quantum dots are also being explored and received a huge interest in the area of 
plant breeding and genetic transformation (Torney et al. 2007; Prasad et al. 2014). 
Similarly between these accomplishments, dynamic encapsulate components such 
as fertilizers, herbicides, fungicides, insecticides and micronutrients in sustained- 
release matrix classified among the highly promising and appropriate choices to 
resolve the constraints in agriculture field for sustainable development and food 
abundance in global climate change also reduce the toxicity and environmental con-
taminants (Cota-Arriola et al. 2013).

This particularly applies via formulations of encapsulated nanoparticle-based 
fertilizers or pesticides as nanoemulsions or nanocapsules could improve their tar-
geted delivery and productivity.

Overall plant growth is stimulated by commercially based fertilizers, although 
majority of fertilizers have toxic nature towards humans, animals and ecological 
system. Similarly, demand of fertilizer also confronts challenges like hydrolysis, 
disintegration and seepage process. Therefore, nanoparticle-based and nano- 
encapsulated fertilizers are used instead of conventional fertilizers and found to be 
efficient in improving plant growth by encouraging certain release of nutrients to 
the plant (DeRosa et al. 2010; Nair et al. 2010). Nano-fertilizers also have tendency 
to promote the fertility of soil and eventually come to the aid of elimination of 
waterlogging contaminants (Giraldo et al. 2014; Galbraith 2007; Torney et al. 2007; 
Lahiani et al. 2013; Siddiqui and Al-Whaibi 2014).

14.5.1.1  Gold Nanoparticles
The use of microorganisms to synthesize functional nanoparticles has been of great 
interest recently (Philip 2009). Gold nanoparticles (GNPs) recently considered as 
many biological applications. GNPs is synthesized chemically and its impact was 
studies on PGPR. GNPs can be exploited as nano-biofertilizers for selected PGPR 
microorganisms. The chemical inertness makes gold as a ‘crucial substance’ that 
demand is for making nano-scale based tools and devices (Shankar et al. 2004).

14.5.1.2  Silver Nanoparticles
Silver nanoparticles (SNPs) showed stronge bactericidal characteristics, even it 
present in less concentration. In situ studies have shown that silver, even in larger 
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particle form, prevents microbial growth below concentrations of other heavy met-
als. Toxicity of nanosilver has been reported in heterotrophic (ammonifying/nitro-
gen fixing/PGPR) and chemolithotrophic soil formation bacteria (Throbäck et al. 
2007).
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Abstract
Nanotechnology has opened up new avenues in precision and sustainable agri-
culture by offering more efficient fertilizers and pesticides. The effects of use of 
these nanomaterials include increased seed germination, length of root-shoot, 
and biomass of the seedlings along with enhancement of the physiological 
parameters that enhance nitrogen metabolism and photosynthetic activity in 
many crop plants. They also provide many other benefits as reducing the amount 
of chemical used and increasing the absorption of nutrients from the soil, hence 
reducing the agricultural inputs. Nanotechnology holds the promises controlled 
release of agrochemicals as well as targeted delivery of several macromolecules. 
This technology may be used to make nanoscale sensors for monitoring the soil 
quality as well as nutritional status of agricultural field. Precise and on-demand 
application of nanopesticides or nanofertilizers can enhance the productivity and 
prove protection against several pests without harming the environment.
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15.1  Introduction

In present-day scenario, nanotechnology is getting huge attention of scientists, and 
the field of nanotechnology is also being explored as a new source for key improve-
ments in various areas as industries, medicine, as well as agriculture. Agriculture 
occupies second place in the list of uses of nanotechnology. The term “nanotechnol-
ogy” was first defined in 1974 by Norio Taniguchi of Tokyo Science of University. 
Nanobiotechnology is the multidisciplinary integration of biotechnology, nanotech-
nology, chemical processing, material science, and system engineering into bio-
chips, molecular motors, nanocrystals, and nanobiomaterials (Huang et al. 2007). 
Nanotechnology can be used to create many new materials and devices having vast 
range of applications in Nano-Bio farming as development of new tools for the 
treatment of plant diseases, rapid detection of pathogens using nano-based kits, as 
well as improving the ability of plants to absorb nutrients. Nanomaterials find appli-
cations in precision agriculture, smart plant protection, nutrition, and management 
practices in farms due to small size, high surface to volume ratio, and unique optical 
properties (Ghormade et al. 2011). There are many types of nanomaterials which 
can be used in agriculture as carbon based including single-walled and multi-walled 
carbon nanotubes (SWCNT/MWCNT); metal- and metal oxide-based dendrimers 
(nano-sized polymers) as aluminum (Al), copper (Cu), gold (Au), silver (Ag), silica 
(Si), and zinc (Zn) nanoparticles, magnetized iron (Fe) nanoparticles, zinc oxide 
(ZnO), titanium dioxide (TiO2), and cerium oxide (Ce2O3); or biocomposite nano-
materials (EPA 2007; Nair et al. 2010) or nanoparticles like ceramics, semiconduc-
tor, quantum dots, polymers (synthetic or natural), dendrimers, and emulsions 
(Puoci et al. 2008).

Nanoparticles have high reactivity, enhanced bioavailability and bioactivity, 
adherence effects, and surface effects; hence, use of nanoparticles can support sus-
tainable agriculture and decrease environmental challenges by reduced use of pesti-
cide and chemical fertilizers and plant disease control by using the nanoparticles in 
an environmentally friendly way along with improving the efficiency of pesticides 
with a lower dose (Singh et al. 2014; Bhattacharyya et al. 2016) (Gutiérrez et al. 
2011). Apart from direct agricultural benefits, nanotechnology also has various 
additional benefits such as environmental remediation, wastewater treatment, food 
processing and packaging, and the development of smart sensors (Khot et al. 2012).

Currently, the key focus areas for nanotechnology agricultural research are:

• Controlled release nanofertilizers and nanocomplexes
• Nanopesticides and nanoherbicides
• Agricultural diagnostics, drug delivery, and nanobiosensors
• Nanogenetic manipulation of agricultural crops
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15.2  Nanofertilizers

A nanofertilizer is any product that is made using nanotechnology to improve nutri-
ent efficiency or with nanoparticles.

There are basically three classes of nanofertilizers which are as follows:

 1. Nanoscale fertilizer (nanoparticles which contain nutrients)
 2. Nanoscale additives (traditional fertilizers with nanoscale additives)
 3. Nanoscale coating (traditional fertilizers coated or loaded with nanoparticles)

“Nanofertilizers are modified nanoforms of traditional fertilizers or fertilizer 
bulk materials to improve the quality, soil fertility, and productivity. Due to their 
small particle size and high surface area, they are highly reactive and hence facili-
tate diverse metabolic process in the plant system, resulting in increased rate of 
synthesis, ultimately increasing the yield. Since nanofertilizers enhance nutrient 
availability for crop plants, they also increase the quality parameters of the plant by 
including carbohydrate, protein, and oil content in the plant system. Iron and zinc 
nanoparticles have been reported to enhance the carbohydrates (starch), protein, 
chlorophyll, and IAA content in the grain (Rajaie and Ziaeyan 2009). Similarly, 
nano-Fe2O3 has been observed to promote the photosynthesis and growth of the 
peanut plant (Liu et al. 2005).

15.2.1  Effects of Nanofertilizers on Seed Germination 
and Growth Parameters of the Plant

Nanoparticles, in general, have both negative and positive effects on the plant 
growth (Nadi et al. 2013). Nanofertilizers can directly influence the seed germina-
tion and alter the seed vigor which increases the root-shoot length. They increase 
the photosynthesis rate, chlorophyll formation, and dry matter production which 
result in the overall growth of plant (Salama 2012); Kannan et al. 2012; Mahajan 
et al. 2013; Suriyaprabha et al. 2012). Application of titanium dioxide (TiO2) has 
shown excellent reduction in diseases as bacterial leaf blight disease, the Curvularia 
leaf spot of potatoes, and rice blast as well as reported to promote plant growth, 
increase the photosynthetic rate, and enhance yield by 30% in rice, wheat, and soy-
bean crops. The application of TiO2 significantly reduced the incidence of rice blast 
and tomato spray mold with a correspondent 20% increase in grain weight due to 
the growth-promoting effect of TiO2 nanoparticles as reported by Mahmoodzadeh 
et al. (2000). Interestingly, some nanoparticles may also show negative/inhibitory 
effects on the seedling growth and germination of the plant, in case the concentra-
tion is more than the optimum.
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15.2.2  Effects of Foliar Application of Nanofertilizers

Their foliar application of encapsulated nanofertilizers was also found to increase 
the nutrient uptake/availability and yield of the crops (Tarafdar et al. 2012b). Joseph 
and Morrison (2006) observed that zeolite-based nanofertilizers can increase avail-
ability of nutrient to the crop though out the growth period by preventing nutrient 
loss from leaching, denitrification, fixation in the soil especially NO3-N and NH4-N, 
as well as volatilization which release the nutrient slowly to the crop plant enhanc-
ing the growth. ZnO nanoparticles were also found to be beneficial to plant under 
stressed environmental conditions (Tarafdar et al. 2012b).

Currently, the plant growth promontory effect of many nanoparticles has been 
studied; some studies are mentioned in Table 15.1.

15.2.2.1  Advantages of Nanofertilizers
Nanofertilizers increase the quality parameters of the crop by increasing the nutrient 
efficacy and increase the yield of soil over conventional fertilizers. Nanofertilizers 
also improve the quality of the taste and the nutritional content of crops, protect the 
plants from various diseases, and improve stability of the plants by deeper rooting 
of crops and anti-bending, hence enhancing the plant growth. They are less harmful 
and nontoxic to humans and environment. By the use of nanofertilizers, one can 
increase the profit by minimizing the cost of environment protection (Naderi and 
Abedi 2012). Tarafdar et al. (2012a) proposed that through nanotechnology, bal-
anced fertilization to the crop plant may also be achieved for precision agriculture.

15.2.2.2  Controlled Release of Nanofertilizers and Nanocomplexes
Nanotech fertilizers are being engineered for slow and efficient dosage release 
(Singh 2012). Nanomaterials used in recommended doses may sometimes fail to 
exert the desired effects as concentration of these materials is much below the mini-
mum effective concentration required of the chemicals that reaches the target site of 
crops due to obstacles such as leaching of chemicals, degradation by photolysis/
microbes, and hydrolysis (Agrawal and Rathore 2014).

15.3  Nanopesticides

Plant pests and pathogens cause significant reductions in crop production of up to 
20%–40% per year in global crop production (Flood 2010). The current pest man-
agement relies severely on application of chemical pesticides including fungicides, 
herbicides, and insecticides. Pesticides also have harmful effects toward non-target 
organisms and can cause resistance development in pest population (Stephenson 
2003). Furthermore, 90% of applied pesticides are lost during or after application as 
per the estimate (Stephenson 2003; Ghormade et al. 2011) which results in high- 
performing cost of pesticides.

Currently, nanotechnology has shown immense potential in managing the prob-
lems in agriculture such as nanosensors, nanobarcoding, plant hormone delivery, 

A. Gupta et al.



263

Table 15.1 Nanoparticles used as nanofertilizers on various crops

Nanoparticles and their 
concentration Plants/organisms/herbs/weeds References
ZnO and CuO (NPs at 
2000–4000 ppm)

Buckwheat (Fagopyrum 
esculentum) seedlings

Lee et al. (2013)

ZnO (NPs at 1000 ppm) Schoenoplectus tabernaemontani Zhang et al. (2015)
ZnO NPs (NPs at 
1 ∼ 20 ppm)

Mung bean (Vigna radiata) and 
chickpea (Cicer arietinum)

Mahajan et al. (2011)

ZnO NPs, MnOx NPs, and 
FeOx

Stimulate lettuce seedlings by 
12–54%

Liu et al. (2016)

Silver nanoparticles- 
chitosan encapsulated 
paraquate

Eichhornia crassipes Namasivayam et al. (2014)

Ag, Cu, Fe, Zn, Mn Allium cepa (L.) Konotop et al. (2014)
TiO2 Anabaena variabilis, Triticum 

aestivum L. var. Pishtaz
Cherchi and Gu (2010) and 
Feizi et al. (2012)

Al Lolium perenne Lin and Xing (2007)
Al2O3 Zea mays, Cucumis sativus, 

Brassica oleracea, Daucus 
carota

Yang and Watts (2005)

CeO2 Lycopersicon esculentum and 
Zea mays

López-Moreno et al. (2010)

SiO2 Lycopersicon esculentum Mill Siddiqui and Al-Whaibi 
(2014)

Graphene oxide (NPs at 
400 and 800 mg/L)

Vicia faba L. Anjum et al. (2014)

CNTs (NPs at 40 μg/mL) Lycopersicon esculentum Morla et al. (2011)

SWCNTs (NPs at 9, 56, 
315, and 1750 mg/L)

Allium cepa, Cucumis sativus Cañas et al. (2008)

MWCNTs (NPs at 
25–100 μg/mL)

Hordeum vulgare L., Glycine 
max, Zea mays

Lahiani et al. (2013)

ZnO NPs (NPs at 400 mg/
kg)

Cucumis sativus fruit Zhao et al. (2014)

GNPs (NPs at 10 and 
80 μg/ml)

Arabidopsis thaliana Kumar et al. (2013)

Ag NPs (NPs at 10–30 μg/
mL)

Boswellia ovalifoliolata Savithramma et al. (2012)

Sulfur NPs (NPs at 500, 
1000, 2000, and 4000 ppm)

Vigna radiata Patra et al. (2013)

SiO2 NPs (NPs at 15 kg/
ha)

Zea mays L. Yuvakkumar et al. (2011) 
and Suriyaprabha et al. 
(2012)

TiO2 NPs (NPs at 
400 mg/L)

Arabidopsis thaliana Lee et al. (2010)

Aluminum oxide NPs (NPs 
at 400–4000 mg/L)

Arabidopsis thaliana Lee et al. (2010)

CeO2 (NPs at 250 ppm) Arabidopsis thaliana Ma et al. (2013)
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transfer of target genes, seed germination, water management, and controlled 
release of agrochemicals or in developing agricultural products (Hayles et al. 2017).

Material scientists have engineered nanoparticles with desired characteristics 
like pore size, shape, and surface properties so that they can then be used as protec-
tants or for precise and targeted delivery via conjugation, encapsulation, and/or 
adsorption of an active ingredient, such as a pesticide (Khandelwal et  al. 2016). 
Nanoparticles can protect plants (a) directly as nanoparticles themselves, can pro-
vide protection to the crop or (b) nanoparticles as carriers of existing pesticides, and 
can be applied by spray application or drenching/soaking onto seeds, foliar tissue, 
or roots. Agriculture nanotechnology can be exploited to create effective formula-
tions for crop plants after conducting short- and long-term field trials toward target 
pests.

15.4  Nanoparticles That Act as Carriers

Nanoparticles are also commonly used as carriers to encapsulate, absorb, entrap, or 
attach active molecules to develop effective agricultural formulations, which have 
been used as carriers for herbicides, insecticides, fungicides, and RNAi-inducing 
molecules, which are summarized in Table 15.2.

15.4.1  Nanoparticles as Carriers for Insecticides

The loading of insecticides into nanoparticles was first started in the early 2000s. 
Since then, studies of variety of nanoparticles with conventional insecticides as well 
as bioactive compounds with insecticidal properties have been shown which reduce 

Table 15.2 Antimicrobial action of nanoparticles toward plant pathogens

Nanoparticles
Antimicrobial action toward plant 
pathogens References

Ag, Au, and TiO2 Bacillus cereus, Escherichia coli, 
Bacillus subtilis, Streptococcus 
thermophilus, and Fusarium 
oxysporum

Sunkar and Nachiyar (2012), 
El-Shanshoury et al. (2011), 
and Ahmad et al. (2003)

Cu Candida spp., Aspergillus spp., 
Fusarium spp., Klebsiella 
pneumoniae, Pseudomonas 
aeruginosa, etc.

Ramyadevi et al. (2012)

Cu-chitosan Alternaria alternata, Macrophomina 
phaseolina, and Rhizoctonia solani

Saharan et al. (2013)

Zn and S Aspergillus niger and Fusarium 
oxysporum

Patra et al. (2012) and 
Choudhury et al. (2011)

MOx NPs (e.g., 
CuO, ZnO, and 
Mn2O3 NPs)

Escherichia coli Kaweeteerawat et al. (2015)
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the toxicity and increase their solubility. Till now many low-water-soluble insecti-
cides have been effectively loaded into porous silica (Wang et al. 2014) and modi-
fied chitosan (Feng and Peng 2012; Zhang et al. 2013; Lu et al. 2013). However, 
further study needs to be done to examine as well as reduce the environmental toxic-
ity of these insecticides. Essential oils rapidly evaporate due to their chemical insta-
bility in the presence of air, high temperatures, moisture, and light but also known 
for inducing insecticidal effects (Lai et al. 2006). A garlic essential oil was encapsu-
lated into polyethylene glycol (PEG) and applied to harvested rice, then overspread 
with red flour beetles (Tribolium castaneum) (Yang et  al. 2009). The toxicity of 
insecticides is potentially decreased due to slow release of active molecules.

15.4.2  Nanoparticles as Carriers for Fungicides

Since the beginning in 1997, early studies on nanofungicides were conducted on 
incorporating fungicides into solid wood (Liu et al. 2001; Liu et al. 2002). Since 
then, studies on wide range of nanoparticles with conventional biocides or antifun-
gal properties and fungicides have been conducted (Table  15.2). The most fre-
quently investigated nanoparticle carriers are polymer mixes, silica, and chitosan. 
An extensive variety of fungi were studied using nanocarrier containing insecticides 
and nanofungicide. The efficiency of nanoparticles can be exploited to improve sta-
bility while providing a slow sustained release, improve low-water-solubility issues, 
and decrease volatilization.

15.4.3  Nanoparticles as Carriers for Herbicides

Most of the studies are primarily focused on reducing the environmental impact 
caused by herbicide nanocarrier (Table 15.3) and their non-target toxicity toward 
herbicides. Various wide varieties of herbicide-based nanoparticles have been devel-
oped for example, nano-sized rice husks (Chidambaram 2016) and amino- activated 
iron (II, III) oxide magnetic nanoparticles (Viirlaid et al. 2009).

Nanoparticles, as carriers, can provide numerous benefits, like (i) enhancing 
shelf-life, (ii) ameliorating solubility of poorly water-soluble pesticides, (iii) reduc-
ing toxicity, and (iv) boosting site-specific uptake into the target pest (Hayles et al. 
2017).

15.5  Pesticide Nanoformulations

Many fungicide nanoformulations are being developed by using nanoscale ingredi-
ents or by nanoencapsulating them as a fungicide formulation containing nanopar-
ticles is being developed by Syngenta, for example, Banner MAXX Fungicide 
having active ingredient propiconazole and Apron MAXX containing active ingre-
dient fludioxonil used for seed treatments (Gogoi et al. 2009), and Primo MAXX 
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containing cyclopropyl derivative of cyclohexenone has been established as plant 
growth regulator and ameliorating the biotic and abiotic stresses including plant 
pathogens. “Nano-5” is a natural mucilage organic solution which is used to control 
many plant pathogens and pests in addition to improving crop yield. “Nano-Gro” 
(nanotechnology product) has been launched (Agro Nanotechnology Corp., Florida, 
http://www.agronano.com). Plants treated with “Nano-Gro” showed an increase of 
50% for grain yield of sunflower and 10% increase in protein and sugar content 
enables plants to be protected from various diseases. “Nano-Gro” is certified to be 
an organic one and harmless to soil and plants. Many bio-based chemicals are mixed 
to prepare “Nano Green” used to eliminate blast disease (Magnaporthe grisea) from 
infected rice plant. Few important nanoformulations which were found to be effec-
tive in various plant diseases are listed in Table 15.4.

15.6  Nanobiosensors and Agriculture

Nanobiosensors are the sensors with an immobilized bioreceptor probes which are 
selective for target molecules. Their applications in agriculture include detection of 
analytes like glucose, urea pesticides, herbicides, fungicides, insecticides, and soil 
pH and moisture. Biosensors are used for monitoring metabolites as well as detec-
tion of various pathogens/microorganisms (Rai et al. 2012). Aptamer-based nano-
sensors proved to be useful in studying the origin as well as reactions of cell 
metabolites in crop rhizosphere because they have the ability to detect individual 
chemical species in a specific location. Moreover, nanosensors designed to detect 
the level of desired as well as undesired bacteria in soil by comparing the amount of 
oxygen utilized by them during respiration can be used for soil diagnosis (Kaushal 
and Wani 2017).

Table 15.4 Nanoformulations and their significance on various crop diseases

Nanoformulations Active ingredients Significance References
Banner MAXX 
Fungicide

Propiconazole Role in seed treatments Gogoi et al. 
(2009)

Apron MAXX Fludioxonil Role in seed treatments Gogoi et al. 
(2009)

Primo MAXX Cyclopropyl 
derivative of 
cyclohexenone

Helps the plant in withstanding 
abiotic as well as biotic stresses 
including plant pathogens

Banik and 
Sharma 
(2011)

Nano-5 – Controls several plant pathogens 
and pests

Banik and 
Sharma 
(2011)

Nano-Gro Coded sugar pellets 
less than 18 ″ in 
diameter

Increases the average plant yield 
and protects from diseases

Banik and 
Sharma 
(2011)

Nano Green Bio-based chemicals Eliminates blast disease 
(Magnaporthe grisea) from 
infected rice plant

Banik and 
Sharma 
(2011)
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15.6.1  Pesticide Nanobiosensors

• The nanobiosensors are developed using photosystem II, known to bind several 
groups of herbicides, and are isolated from photosynthetic organisms which may 
have potential of monitoring polluting chemicals, leading to setup of an easy-to- 
use apparatus, low cost, able to reveal specific herbicides, a wide range of organic 
compounds present in urban and industrial effluents, sewage sludge, ground 
water, landfill leak water, and irrigation water (Rai et al. 2012).

• Nanosensors that are linked with zeolite can release minerals, or water retained 
in it based on any deficiency in soil can be detected by the sensor. Similarly, 
pesticides that are linked to nanoparticles are being produced which released in 
a controlled manner based on an environmental trigger; protein and DNA detect-
ing biosensors can prove to be useful for detection of biomarkers and in differen-
tiation of one plant species from another.

• Nanotechnology is applied to two fields of pesticides in agri-food: as a pesticide 
trace-amount detector and as pesticide delivery vector to attain pesticide man-
agement. The nanoparticles can modify/trap pesticides to target the insect pest 
slowly that will help to arrest pollution of both top soil and ground water, reduce 
pesticide amounts, and elevate its efficiency (Sinha et al. 2017).

• In addition, whole cell-based biosensors applied in herbicide and pesticide detec-
tion include bacterial, fungal, and algal cells; they also assist in the development 
of rapid, accurate, and cost-effective techniques in decontamination procedures 
and prevent damage casualties (Gheorghe et al. 2017; Husu et al. 2013).

15.6.2  Nanobiosensors for Heavy Metal Detection

Heavy metals, including Ag+, Cd2+, As3+, Pb2+, Zn2+, and Hg2+, have been classified 
as chemical contaminants (Verma and Kaur 2016). Heavy metal detecting biosen-
sors are based on a green fluorescent signal amplifier and genetically modified bac-
terial cells to detect arsenite in the foods (Pola-López et al. 2018). The biosensors 
with aptamer and DNA-based properties can detect these heavy metals on nanoscale 
levels and on very large scale that are suitable for screening and monitoring of food 
safety.

15.6.3  Nanofertilizer Nanobiosensors

Nanosensors can also be used in monitoring plant growth by assessing the cross talk 
between rhizosphere and roots, leading to the development of a dynamic, precise, 
and intelligent nanofertilizer delivery platform. The micronutrients can also be 
delivered according to the spatial requirement in plants (Kaushal and Wani 2017). 
Nanosensors are portable, small, precise, extra sensitive, and reliable, and also they 
can be used for real-time monitoring. These properties give them an edge over pres-
ent sensors.
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15.7  Root Exudates (Metabolites) Nanosensors 
and Pathogen Detection

Various metabolites are readily absorbed by the plants from the rhizosphere which 
secrete various exudates into the rhizosphere (Walker et al. 2003). As any change in 
these exudates is an indicative of change in plant health, by using the biosensor, 
their content can be easily monitored. Carbohydrate exudate includes pentoses, hex-
oses, disaccharides, and trisaccharides (Jalali and Suryanarayana 1971). Marschner 
(1996) estimated that around 5–21% of photosynthetically fixed carbon can be 
released from the roots. Using the reporter-based nanosensors, the concentration of 
sugars and amino acids can be measured, and the highest concentration of sucrose 
was found near the tip of Avena roots (Farrar et al. 2003; Jaeger III et al. 1999). 
However, during the pathogenic attack, the exudation appeared to be altered (Walker 
et  al. 2003). Plants used sucrose as a principal sugar for long-distance transport 
(Lalonde et al. 2004).

15.8  Nanosensors for Detection of Changes in Rhizosphere 
Microenvironment

The nanosensors can be used to study the parameters of root zone and signal induc-
tion when rhizosphere changes. The parameters include soil oxygen, pH, tempera-
ture, and moisture.

15.8.1  Soil Oxygen Nanobiosensors

Molecular oxygen is the most essential metabolite for all plants. The external oxy-
gen supply drops down mainly during heavy rainfall when water obstructs up the 
soil, resulting damage in the root system, which can cause adverse effects on the 
growth and development of the plant (Bailey-Serres et al. 2012). Moreover, oxygen 
sensors can be helpful in understanding the consumption of oxygen and their distri-
bution system in plants, as well as maintaining the optimum supply.

An indicator dye capable of sensing oxygen is encapsulated with an oxygen- 
permeable matrix, in order to make an oxygen detecting nanosensor. Mostly the 
indicator dyes such as from metalloporphyrins group (e.g., palladium (II) and plati-
num (II) porphyrins) and transition metal complexes with pyridine derivatives (e.g., 
ruthenium (II) and iridium (III)) are being used because they are characterized by 
strong luminescence and longer life span. However, the phosphorescent platinum 
(II) and palladium (II) porphyrins are widely used as they show high signal intensity 
and low cytotoxicity. Polymethylmethacrylates, polystyrene, glass-like materials, 
and fluoropolymers made by sol-gel process are the commonly used matrices 
(Klimant et al. 1999; Amao 2003; García et al. 2005). The dye-based nanosensors 
are the best technique which is used to sense the intracellular oxygen which utilizes 
the endogenous expression of fluorescent proteins, sensitive toward oxygen, and 
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immobilized in a solid membrane, optical fiber, or microplate (solid state sensor). 
Additionally, it can be linked to polymers which enable it to diffuse through the 
active soluble sensors. However, the positive features of both of these sensors were 
combined by the creation of nanoparticle sensors, in which the probes are encapsu-
lated in nanoparticles. This conveys strength and stability to the solid state sensor 
and prevents it from leaching out in the cell, which is also soluble and minimally 
invasive and can be injected into gene gun, living system using pico-injection, or 
liposomal transfer (Clark et al. 1999). An example of this includes the encapsulation 
of PtPFPP (platinum complex of tetra pentafluorophenyl porphyrins) in microbeads 
of polystyrene which, even though need to be microinjected into the plant cell, do 
not affect cell viability significantly (Schmälzlin et al. 2005).

15.8.2  Soil Temperature/Moisture/pH Nanobiosensors

Temperature and moisture are crucial parameters for rhizosphere, as they monitor 
the exchange of heat energy and water between soil and atmosphere. Nanotechnology- 
based micro-electromechanical system sensors have been developed that sense tem-
perature as well as moisture of the soil. As stress sensitivity and shear stress of the 
nano-resistor are used to study the changes on the surface of microcantilever, these 
changes are affected by changes in the moisture. An on-chip temperature sensor is 
used to detect changes in temperature of the water vapor (Jackson et al. 2008). A 
recent research has led to the development of the luminescent nanosensors that are 
capable of detecting oxygen, temperature, and pH simultaneously at single emission 
wavelength in the PBS buffer and the cell culture with bovine serum albumin (Wang 
et al. 2019).

15.8.3  Sensors for Toxin Detection

For development in food safety, electrochemical biosensors are used for assessment 
and fast detection of food toxins (Patra et al. 2017). Other biosensors like piezoelec-
tric and optic sensing have been applied to chemical detection and toxin in food 
production (Bahadır and Sezgintürk 2017). Fluorescent nanoparticles are developed 
to sense toxins in crops and foods including on surface and inside of foods (Burris 
and Stewart 2012). The key challenges in developing these automatic toxin detec-
tors are the toxin extraction from complex food samples (Moran et  al. 2016). 
Upcoming systems are expected to process, extract, and measure different toxins to 
determine their harmful effects and levels in food and water samples (Moran et al. 
2016; Beck and Villarroel Walker 2013). Recently, advanced separation technique is 
coupled with surface-enhanced Raman scattering to identify, quantify, and discrimi-
nate chemical toxins in food matrices (Liao and Lu 2016).
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15.9  Other Applications of Nanotechnology in the Field 
of Agriculture

Nanotechnology in agriculture has the potential to transform the different sectors of 
food industry and agricultural with modern techniques for the treatment of rapid 
disease detection, diseases, amplifying the ability of plants to absorb minerals and 
nutrients. Nanotechnology can also indirectly protect the environment through the 
use of alternative or renewable energy supplies and catalysts or filters to clean up 
and reduce existing pollutants (Tungittiplakorn et  al. 2005). Bhattacharyya et  al. 
(2011) reported applications of nanotechnology in different fields such as nano- 
food, nano-farming, and nano-food packaging as well as emphasized on the 
nanoparticles and their consequences on ecological balance.

15.10  Challenges and Opportunities

15.10.1  Regulatory Demands in Nanotechnology

Many of nanoparticles have a short life span as they frequently agglomerate or they 
dissolve in water. Human body has developed several mechanisms for filtering and 
removing some of these particles (Lin 2007). The engineered nanoparticles can be 
better to elude the body’s defenses because of their size and protective coatings. 
However, the health and environmental risks raised due to the exposure to engi-
neered nanoparticles need further study. It is essential to study the effect of nano-
technology on human health as well as on the environment, and in recent past, 
greater emphasis has been given toward nanotoxicology. Furthermore, the potential 
environmental impacts on exposure of nanomaterials are less understood than 
human health effects. Therefore, extensive research is required to understand the 
mechanism of nanomaterials’ toxicity and their impacts on the natural environment 
(Fig. 15.1).

15.10.2  Potential Consumer Safety Issues

Nanoparticles when used in agriculture have a potential to enter food chain. The 
core route of entry of nano-sized or microparticles into the gut is through the food 
and drink consumption. The nanotechnology applications are also essentially linked 
to the physicochemical nature of the nanoparticles for their consumer safety impli-
cations in food and the possibility through consumption of nano-foods. Concerns 
over ingestion of nano-sized ingredients are arising as the free engineered nanopar-
ticles can cross cellular barriers and their exposure from a growing body of scien-
tific evidence indicates to oxidative damage to the cell and enhanced oxy-radical 
production (Li et al. 2003; Donaldson et al. 2004; Geiser et al. 2005). It is known 
that the potential effects of nanoparticles may exhibit substantially different physi-
cochemical and biological properties having much larger surface areas, and their 
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effects through the gastrointestinal (GI) route are largely unknown. It is also possi-
ble that the nanoparticles may not persist in a free form in the gut, due to various 
transformations such as aggregation, adsorption, agglomeration, or reaction with 
digestive enzymes and acid or binding with other food components and, hence, may 
not be translocated in the human body. There are various applications of nanomate-
rials that lead to toxicity in ecosystems and agriculture such as nanomaterial phyto-
toxicity and potential residue carry-over in foodstuff (Chaudhari and Castle 2011). 
For example, Kahru and Dubourguier (2010) discussed the health hazards of vari-
ous nanomaterials, while Bouwmeester et al. (2009) have reviewed the health con-
cerns of nanomaterials related to plant production in detail. Furthermore, there is a 
necessity to evaluate the “toxicodynamics and toxicokinetics” of nanomaterials 
(Bouwmeester et al. 2009; Bergeson 2010) used for agricultural production. Nair 
et al. (2010) highlighted the effect of these nanomaterials which will considerably 
affect another cropping system on various agricultural crops/plants if not degraded 
quickly. The summary of FAO/WHO meeting report, 2010, represents the major 
issues related to the crop protection and nanomaterial application in agricultural 
production as (a) the precise nanomaterial characterization for in-depth understand-
ing of biological system toxicity, (b) nanomaterial interaction with biology, (c) 
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dose-response considerations, (d) exposure evaluation and characterization studies, 
(e) product life cycle considerations, (f) background levels of nanomaterials in food 
and feed matrices, and (g) nanomaterial form and amount in foodstuff due to crop 
protection and their use in agricultural production. The detailed studies on nanoma-
terial characteristics such as dosage of nanoparticles in different environments, their 
physical and chemical characterization, the mechanisms allowing them to pass 
through cell walls and cellular membranes, toxic effects of nanoparticles with their 
specific properties, and the mechanism underlying nanoparticle trophic transfers 
needed to be conducted were reported by Navarro et al. (2008). Many researchers 
such as Reijnders (2006) and Suh et al. (2009) highlighted the hazard of nanomate-
rials toward human health. There are various uptake routes of nanomaterials in 
human body such as inhalation, ingestion, and dermal exposures (Xu et al. 2010). 
Xu et al. (2010) also highlighted the various factors including chemical composi-
tion, surface structure, the size, solubility, and accumulation of the nanomaterials 
for their associated exposure risk effects to humans. Studies which assess the over-
all risk are still required in detail.

15.11  Conclusion

Nanotechnology may also be helpful for revolutionizing the agriculture advance-
ment and to find the solutions against many agriculture-related problems and 
improved the crop varieties. Nanoparticles can be easily synthesized from various 
biological sources and can be applied in agriculture. They can help in early detec-
tion of soil stresses and in alleviating stress effects, disease/toxin detection, disease 
protection in plants, and slow and on-demand release of nutrients and hence can 
increase crop production. Delivery of nanoparticles using nanotechnology posi-
tively results in enhancing the plant growth due to site-specific delivery of essential 
nutrients or pesticides. The use of nano-encapsulation improves the effectiveness of 
pesticides allowing their slow and sustained release. Nanofertilizers can also play 
an important role in enhancing crop production reducing the fertilizers cost and 
minimizing the pollution hazard. In the future, nanoscale devices could be used to 
make agricultural systems smart and to detect the pesticide residues in the field. 
Smart sensors and smart delivery systems will help the agricultural industry in com-
bating viruses, spores, and other crop pathogens. Hence, the use of nanotechnology 
can provide green, eco-friendly, and efficient strategy for sustainable agriculture 
without harming the nature. Though detailed studies are still in pipeline, in near 
future, the use of nanotechnology could authorize rapid advances in agricultural 
research.
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Abstract
In developing countries, when it comes to national economy, one of the impor-
tant building blocks is agriculture. The food production rate has risen, which has 
a substantial role in a country’s gross domestic production. The application of 
pesticides and fertilizers determines the rate of food production. Agricultural 
growth and food production are very much dependent on parameters like soil 
health, water availability, climate change, etc. Since the world population is 
expanding at an alarming rate, the food production needs to be enhanced, and 
adverse agricultural conditions have to be regulated. Supporting the massive 
increase in population, the sustainable development of agriculture is required. 
With latest advancements, new avenues have been opened up by nanotechnology 
in the field of food processing and crop improvement. The present chapter high-
lights the role and emergence of nanomaterials in agriculture system.
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16.1  Introduction

Nanoparticles (NPs) have unique optical, electronic, magnetic, and chemical char-
acteristics which make them widely applicable and have a great significance in vari-
ous fields like agriculture, medical, energy, and environment. The application of 
nanoparticles in biological field depends upon the mode in which nanomaterials are 
synthesized and their metallic properties. Different routes such as chemical, bio-
logical, and physical methods have been approached for the synthesis of nanomate-
rials. A few physical methods have found to pose risks to human health and are not 
environment-friendly, which include pyrolysis, radiation, and arc discharge. 
Likewise, in chemical synthesis, the use of harmful reductants such as hydrazine 
and sodium bborohydride generates toxic byproducts (Jain et al. 2011; Rauwel et al. 
2015). The nanomaterial toxicity concerns are less when it comes to the synthesis of 
nanomaterials through biological methods opening the door for biological applica-
tion (i.e., drug delivery, agriculture, and biosensing) (Netala et al. 2016).

Nanomaterials are designed to be utilized in the field of personal care items, 
agribusiness, food, medicinal purpose, and biotechnology which are being exposed 
to the environment and earth. It is perceived that nanomaterials may add up effec-
tively for the betterment of analysis, diagnosis, avoidance of diseases including 
microbe-based infections or carcinoma, and treatment. It has been reported that 
nanoparticles have diverse medical and industrial applications along with the pres-
ence of nanoparticles in various materials including clothes, cosmetics, etc. which 
are being used in our day-to-day life (Dubchak et al. 2010; Singh et al. 2019).

As per the alarming rate of increase in human population, the agricultural pro-
duction has to be tripled in the coming years. High yields must be achieved in the 
existing production areas since the cultivable lands are already being used (Tilman 
et al. 2002; Fountain and Wratten 2013; Kumar 2013; Gerland et al. 2014). After the 
Green Revolution, higher yields were generated, but now the growth has been stabi-
lized in most of the crops (yield stabilization phenomenon). Pests and diseases are 
the major reasons for this damage (Grassini et al. 2013; Archana Singh 2014).

Applying nanotechnology in the field of agriculture has many benefits when it 
comes to plant disease management and overall growth. For example, micro/macro 
nutrients and nanoformulations containing fertilizers, when mixed and applied for crop 
production, not only increased the crop yield but also have acted as biocontrol agent 
against various plant pathogens (Keswani et al. 2016; Vishwakarma et al. 2017a). The 
effectiveness of nanoparticles can be altered and improved by using particulate sys-
tems. Eco-friendly alternatives are offered by nanotechnology for the management of 
plant diseases which in turn plays a vital role in food security, global food production, 
and food safety. Metallic NPs (such as Ti, Au, Ni, Zn, and Ag) have been used as anti-
microbial agents against phytopathogens. There are various advantages of nanopesti-
cide formulations over conventional pesticides as they increase the solubility of poorly 
soluble active ingredients, the reduced premature degradation of active ingredients, and 
the target-oriented slow release of active ingredients. Through physical, biological, and 
chemical methods, various types of nanomaterial products for agricultural practices 
have been developed which include nanofertilizers, nanopesticides, and nanosensors.
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Nanoparticles between the range of 1 nm and 100 nm are classified as compo-
nents or aggregates (Ball 2002). Nanoparticles are considered as building blocks of 
nanotechnology which has high reactivity and a high surface/volume ratio which 
can cross the plasma membrane and the cell (Stern and McNeil 2008; Farré et al. 
2011; Tripathi et al. 2017a; Vishwakarma et al. 2017b), and its surface may attain 
intrinsic properties (Donaldson et al. 2004). It is important to note that nanoparticles 
possess these extraordinary properties that make them different from bulk materials. 
They possess both beneficial and harmful properties depending on their own char-
acteristics and plant host properties (Singh et  al. 2017; Tripathi et  al. 2017c; 
Vishwakarma et al. 2019). Agricultural researches are empowered by nanotechnol-
ogy by a broad range of advancements in transformation of wastes from agricultural 
and food products to energy, reproductive science and technology, control of dis-
eases, their treatment in plants through using various NPs, and other useful byprod-
ucts through nano-enzymatic processing (Fig.  16.1) (Moraru et  al. 2003). Major 
agricultural risks can be possibly solved by nanotechnology. It also helps to under-
stand the biology of various crops which in turn helps to enhance the yield and 
nutritional value with control over pest incidences and plant diseases (Nair et al. 
2010).

16.2  Nanotechnology in Agriculture

16.2.1  Plant Disease Suppression

A wide range of pathogenic bacteria, fungi, nematodes, and viruses can cause plant 
diseases which in turn result in reduced yield, shelf life, and quality of the product 
(Patel et al. 2014). Hence, novel systems must be utilized to overcome these kinds 

Fig. 16.1 Applications of nanotechnology in agriculture
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of problems. One such novel system includes nanoparticle utilization for suppress-
ing and preventing plant diseases. Nutrients are retained more efficiently in nano-
materials which have large surface area and functions as long-lasting and stable 
mineral store for crops (Navarro et al. 2008). Utilization of pesticides and fungi-
cides will be reduced in the coming future if supply of smart nano-supply systems 
is monitored and activated in remote areas which will give agriculture growers a 
great assistance (Rai and Ingle 2012). Utilizing metal nanoparticles and metal oxide 
can have a positive impact on pathogen suppression and crop yield, which is 
depicted in Fig. 16.2. Some nanoparticles are involved in the suppression of plant 
stress/diseases directly through antimicrobial/antioxidant/heavy metal uptake activ-
ity, for example, zinc oxide, magnesium, titanium oxide, silicon, and silver nanopar-
ticles (Tripathi et al. 2012; Prasad and Prasad 2014; Tripathi et al. 2017b; Rastogi 
et al. 2019).

The assessment of silver nanoparticles and ions was carried out to examine the 
effect of antifungal activity on Bipolaris sorokiniana and Magnaporthe grisea (Woo 
et al. 2009). When compared with silver nanoparticles, increased soil fertility and 
lesser toxicity have been observed in the case of zinc oxide nanoparticles. It was 
observed that the growth of Fusarium graminearum was diminished in mung bean 
by zinc oxide nanoparticles (Dimkpa et al. 2013). For plant growth increase, much 
attention has been given to carbon nanoparticles, multiwalled carbon nanotubes, 
and fullerols (Khot et al. 2012; Shweta et al. 2017). A study to check the effect of 
functionalized as well as nonfunctionalized multiwalled carbon nanotube on plants 
has shown that it has caused a reduction of chlordane in shoots and roots of plant 
lettuce (Hamdi et al. 2014).

Exposure of leaves to nanoparticles
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management
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Fig. 16.2 Mode of plant disease suppression
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16.2.2  Plant Growth and Germination

Surrounding environment significantly influences germination and plant growth. 
Germination and growth may or may not be affected by a chemical’s presence 
(Shojaei et al. 2009). To broaden the application of nanomaterials on germination 
and growth, several investigations have been carried out. The nanoparticles used for 
the study are ytterbium oxide (Yb2O3), gadolinium (III) oxide (Gd2O3), lanthanum 
(III) oxide (La2O3), CeO2, Zn, Al, ZnO, aluminum oxide (Al2O3), palladium (Pd), 
Si, FITC-labeled silica nanoparticles, Cu, Au, and TiO2. These NPs are used to 
check the germination of different plants such as tomato, lettuce, spinach, rice, rape 
canola, radish, corn, cucumber, cabbage, wheat, and ryegrass. Positive effects have 
been confirmed on photosynthetic rate, chlorophyll formation, dry weight, and ger-
mination rate. The nanoparticle size rate is inversely correlated to seed germination. 
Germination rate will be higher when the size of nanoparticle is smaller. Enhancement 
in photogeneration and photo sterilization of active oxygen is the reason for the 
increase in germination rate (Fig. 16.2).

An important role is played by the microorganisms in decomposition of soil 
organic matter and biogeochemical cycles. Beneficial relationships are formed by 
some microorganisms with the plant roots which in turn make the essential nutrients 
such as phosphorous and nitrogen available to plants (Kumar et al. 2017). Plants 
that are colonized with fungi have imparted tolerance to heat and drought as well as 
resistance to plant pathogens and insects. For NP-microbe interaction, NP’s concen-
tration plays an important role. Morphological changes are induced in Rhizobium 
leguminosarum by ZnO NPs (250–750 ppm), affecting the root nodulation process 
which in turn resulted in delayed biological nitrogen fixation (Huang et al. 2014). 
The nitrogen-fixing ability is declined in Rhizobium with an increase in concentra-
tion of the AgNPs (0.6–6.6%) (Kumar et  al. 2014). However, the type of NPs 
becomes an important concern when studies are performed at low concentrations 
(50–100  ppm). At 50  ppm of AgNPs, root nodulation was enhanced in cowpea 
(Mehta et al. 2016). There was an increased nitrogenase activity in moth bean, cow-
pea, cluster bean, and green gram when ZnO nanoparticles were used at 1.5 ppm 
concentration (Kumar et al. 2015).

Results have shown that the concentration of AgNPs may have a great influence 
in the nitrification and N cycle. Toxicity was exhibited by AgNPs at a concentra-
tion > 0.25 ppm, whereas the gene expression of nitrogen-fixing bacteria and deni-
trifiers at a concentration of 0.025–0.05 ppm was not affected. Using AgNPs at such 
a low concentration in N. europaea, it was observed that the gene expression was 
upregulated by 2–3 folds (Yang et al. 2013). There was a reduced nodulation fre-
quency in Sinorhizobium meliloti on Medicago truncatula when Ag, TiO2, and ZnO 
were combined at 100, 1400, and 2400 ppm, respectively, whereas the nodulation 
frequency was not reduced when AgNPs were used alone at a low concentration of 
100 ppm (Judy et al. 2016).
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Another study showed that the ammonia-oxidizing bacteria’s activity was 
affected by Fe and AgNPs which in turn resulted in reduced nitrification by 90% 
and 71%, respectively. These nanoparticles get attached to the bacterial surface 
which in turn resulted in inhibition of bacterial growth (Fig. 16.2) (Michels et al. 
2017).

The effect of TiO2 NPs on biological nitrogen fixation activity and cell growth 
was studied by Cherchi and Gu (2010) using Ohm’s law as the inactivation model 
in Anabaena variabilis. It was found that the growth rate and nitrogen fixation activ-
ity were reduced at 0.62 ppm and 0.4 ppm, respectively. At the same time, due to an 
increase of stress, cyanophycin grana proteins (CGPs) were produced at an increased 
rate in response to NPs. So the study has concluded that the growth of the plants is 
greatly influenced by exposure time than the NP toxicity. A decline in nitrogen fixa-
tion was observed using an analysis based on pyrosequencing due to the presence of 
ZnO and TiO2 in a dose-dependent manner (Ge et al. 2012). Red clover and the 
symbionts of red clover acquired nutrients effectively with the presence of the tita-
nium oxide (TiO2) nanoparticles with the concentration range of 10–1000  ppm 
(Moll et al. 2016). On the contrary, TiO2 presence in peas has delayed the root nod-
ule development and biological nitrogen fixation (Fan et al. 2014). The presence of 
CeO2 NPs at a concentration of 100 ppm in planted soil has altered soil microbial 
communities when compared to unplanted soil. Plant growth is promoted with the 
help of micronutrients such as zinc, iron, boron, copper, chlorine, manganese, and 
molybdenum optimally. Nanoformulations of micronutrients may be used to spray 
crops for enhanced foliar uptake or can be used as a soil addition for their slow 
release to promote plant growth and improve soil health (Fig. 16.2) (Peteu et al. 
2010). A chitosan-based plant growth hormone is synthesized by Tao et al. (2012) 
in which 1-naphthylacetic acid is conjugated with chitosan. The release of this 
nanoformulation depends greatly on temperature and pH, which also enables slow 
release of the hormones.

16.2.3  Nano-barcodes

Barcodes play a vital role for a successful national and international marketing. It 
illustrates various factors of electronic information which includes place and date of 
fabrication and packaging, cost of the product, methods followed, and the chemicals 
used. An electronic bar reader is necessary to read the barcodes. It is difficult to 
track and control the products due to the recent increment in the shipment of agri-
cultural commodities (Shrivastava and Dash 2012). Quality control, data monitor-
ing, and tracking of the products in a short time period have become possible 
through nanotechnology (Nam et al. 2003; Kress et al. 2005). Nano-barcodes were 
developed using fluorescent NPs doped with scarce earth materials. Optical micro-
scope and UV lamp are mostly employed to read the nano-barcodes. Date and place 
of manufacture, security and safety of the product, followed methodology, and 
chemicals used while production will be provided using an identity preservation 
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(IP) system for consumers as well as stakeholders (Meyers et al. 2004). It can trans-
figure the field by introducing biodegradable sensors for biological and physical 
characteristics such as texture, stiffness, ripening, flavor, contamination, and color 
of agricultural products.

16.2.4  Nanobiosensor

A scanning device named millipede has been introduced for agriculture. It has a 
combined concept of terabit capacity, high data rate, small form factor, and ultra- 
high density, which is being introduced in data storage (Fig. 16.3). For monitoring, 
data collection, and management of plant and soil health, nanosensors have a major 
contribution (Rai et  al. 2012; Khandelwal and Joshi 2018; Kumar et  al. 2018). 
Characteristic properties are possessed by carbon nanotube (CNT) devices for pre-
cise sensing, drug delivery, and diagnosis in livestock health management and pest 
control (Shweta et al. 2017).

To inhibit and detect plant pathogens, smart sensors are used which are driven by 
nano-based technology. For monitoring real-time crop growth and soil health condi-
tions, nanosensors can use global positioning system (GPS). Crop productivity is 
enhanced with the use of smart sensors, and also farmers get real information, 
thereby enabling them to make important decision about the crops. For quantifica-
tion and detection of contaminants of minute quality such as virus, bacteria, and 
toxins, bioanalytical nanosensors have been used in food-based systems in agricul-
ture (Seo et al. 2011; Rai et al. 2012).

Fig. 16.3 Sustainable approaches in agriculture for growth, waste, and water management/
treatment
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An antimicrobial chitosan-PVA-based hydrogel is developed by Agnihotri et al. 
(2012) which has the behavior of a nanoreactor and has a matrix that immobilizes 
silver nanoparticles (AgNPs) having antibacterial properties.

For organophosphate detection, chitosan-TiO2-graphene nanocomposite-based 
nanosensor has been developed. Studies have shown enhanced stability in biosen-
sors by using porous nanocomposites through enzyme immobilization (Cui et al. 
2018). In peanut samples, the presence of aflatoxin B1 (AFB1) is detected using 
graphene-based biosensors which contain gold and graphene oxide nanocomposites 
(GO/AuNCs) (Li et  al. 2018). Biosensors are fabricated by using nanomaterials 
which are modified morphologically which provide better chemical stability, high 
surface area to volume ratio, and biocompatibility. Examples of those modified 
nanostructures are nanoflakes, nanosheets, nanoflowers, etc. The presence of silver 
(Ag+) ions and mercury (Hg2+) are detected simultaneously in serum, drinking 
water, and cell lysate using biosensor based on tungsten disulfide nanosheets (WS2) 
which have implications in diagnosis and environmental monitoring (Zuo et  al. 
2016). Combining electrochemical techniques such as electrochemical impedance 
spectroscopy (EIS) and cyclic voltammetry (CV) with nanomaterials for detecting 
pathogen is gaining much popularity in agriculture and biomedical sector.

Crop productivity is limited due to the reoccurring of diseases. Out of many, 
diseases which are incurred by virus are difficult to control and have most devastat-
ing effects. The application of pesticides is of no use once the symptoms start to 
appear. Hence to eradicate diseases, it has to be predicted earlier. Biosensors have 
wide applications in this field; using nanobiosensor, diagnosis is much more benefi-
cial as it is more efficient with active surface area, and the detection speed is 
increased. Nanobiosensing devices of increased sensitivity can be developed by 
using various elements, nanomaterials, nanosurfaces, etc. Biosensors based on 
nanoparticles or nanosurfaces could be developed for screening applications which 
could be used for the detection of the presence of any chemical substance or bacteria 
which possess fluorescent properties and in addition can give chemical or electrical 
signal in response when the trace elements are detected (Kahveci et al. 2016). For 
nutrients to be assimilated better in our body, methods that introduce nanomaterials 
directly into food are being developed. To enhance efficiency of plants, herbicides 
are delivered in the form of nanocapsules in slow and controlled manner which get 
triggered by the target’s presence (Khoobdel et al. 2017). This also helps in mini-
mizing plant contamination. Nanobiosensors which can assess the plant’s needs 
such as water and nutrient content will have the most important application in agri-
cultural field. For monitoring continuous physiological processes of plant growth 
and development and soil conditions, nanosensors are now considered as the smart 
“eye ”. To evaluate and monitor the overall quality of food, the packaging material 
film can be integrated with the nanobiosensors. Those biosensors have the exclusive 
property of causing color change when it finds any change in reaction which helps 
in easy prediction of spoilage and shelf life of food. Due to its compactness and 
small size, nanobiosensors have an added advantage in chemical and biological 
analysis (Steinborn et al. 2017). In future prospects, when it comes to developing 
technologies for precision farming, the main goal has to be focused on increasing 
crop yield as well as minimizing the chemical input usage.
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Smart field system can be done by monitoring soil conditions and crop growth 
and automatically collecting real-time data using nanostructure sensors by scatter-
ing nanosensor network. Fluctuations in environmental conditions which affect the 
efficiency of the crop can be watched by farmers by collecting real-time data.

16.2.5  Agricultural Waste Management

The lack of skilled personnel and mechanization has led to the production of waste 
in huge amount. The agricultural waste can either rotten or defiled due to certain 
limitations in the processing of waste that would affect the crop. The effect of bio-
fuel production using agricultural wastes including vegetable oils, sugarcane, corn-
cobs, cotton stalk, rice husk, coconut shell, cotton, animal fats, and groundnut shell 
was enhanced by employing nanometallic catalysts through nano-bioengineering 
(Shrivastava and Dash 2012; Sarkar and Praveen 2017;Bharati and Suresh 2017).

To alleviate, demolish, and modify the dangerous agricultural wastes into non-
poisonous matter, NPs could be utilized as a reactant agent (Ditta 2012). Various 
approaches involving nanotechnology have been developed to treat wastewater. 
Photocatalysis is the foremost nano-based wastewater treatment technique and can 
apply for decomposition, filtration, decontamination, and purification of water and 
air. Moreover, it can remove the pathogenic or harmful agents with the incorpora-
tion of semiconductors. It’s a process in which the chemical reaction gets acceler-
ated by the catalyst that decreases the activation energy for the occurrence of 
primary reaction. In this case, the valence electrons present in the outer layer get 
excited to develop electron-hole pairs, when a NP subjected to UV light. NPs con-
taining metal oxides and sulfides like ZnS, ZnO, TiO2, and SnO2 are employed as 
catalysts (Bhatkhande et al. 2002; Li and Haneda 2003; Ko et al. 2009; Feigl et al. 
2010).

16.2.6  Water Management

In micro-irrigation technology, the consumption of plastics has increased the appli-
cation for the subsurface irrigation. This system poses burden in terms of weight, 
nonflexibility and trouble shooting. In the event of any disruption or malfunction, 
water wastage can increase dramatically in conventional piping systems. Due to 
these drawbacks, conservative irrigation systems have to be promoted for irrigation 
and water preservation by employing low-cost, flexible, biodegradable, and effi-
cient goods in the subsurface piping systems, especially for lands that have limited 
water availability. Nanomaterials can be taken into account as they provide high 
surface area, strength, and flexibility (Shrivastava and Dash 2012). Recently, utiliz-
ing the irrigation systems based on nanogel such as silica for the perennial plant, 
reduced water utilization was noted. In this event, a saturated nanogel is fixed under 
each tree, and the water moves from the gel to the root system of a plant through the 
differences of osmotic pressure (Fig. 16.3) (Vundavalli et al. 2015).
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16.3  Agrochemical Applications

16.3.1  Nanopesticides

To alleviate the limitations like enhanced solubility and rate of soil run-off solubil-
ity, pesticides are prepared in a secured casing or within a specific shells 
(Chinnamuthu and Boopathi 2009). Spodoptera littoralis, a primary level pest that 
attacks the plant kingdom mostly by initiating its resistance to all pesticides virtu-
ally, was restrained toward tomato plant covered with hydrophobic nanosilica with-
out any obstacle and exhibits positive reaction by ruining the pests at 300–350 ppm 
(El-bendary and El-Helaly 2013). Multiwalled CNT-induced pesticides like zineb, 
mancozeb were mixed with citric acid molecules and confined in an aqueous solu-
tion that would facilitate the encapsulation of the pesticides to ensure deterioration 
to the fungi (i.e., Alternaria alternata) (Sarlak et al. 2014). Yang and group have 
examined the impact of NPs coated with polyethylene glycol equipped with essen-
tial oils toward Tribolium castaneum (Yang et  al. 2009). A pesticide valindamy-
cin was later utilized after filling into the hollow porous silica NPs (Liu et al. 2006a, 
2006b). Likewise, many other NMs like ZnO NPs, TiO2 NPs, and AgNPs have been 
investigated for the insecticidal properties and resistivity against silkworm disease 
and rice pests (Goswami et al. 2010).

AgNPs have pesticidal impact against harmful fungi, described to have inhibi-
tory outcomes on conidial germination of the genus Raffaelea, which leads to mor-
tality in the oak trees (Nair et al. 2010). Moreover, avermectin which is a pesticide 
that inhibits neurotransmission in the insects has a short lifetime with 6 hours of 
half-life. The life span has been shown to increase by employing porous AgNPs 
with shell having pore diameter of 4–5 nm and thickness of 15 nm. AgNPs, which 
encapsulate avermectin and arrest degradation and its potential under ultraviolet 
rays, have expanded lifetime till 30 days roughly (Ghormade et al. 2011).

Biogenic AgNPs fabricated using Tinospora cordifolia have displayed high pes-
ticide influence on the fourth instar larvae of Anopheles subpictus, Culex quinque-
fasciatus, and top louse Pediculus humanus (Jayaseelan et al. 2011). AgNPs at a 
concentration of 100  mg/kg have reduced the growth of mycelium and conidial 
germination on pumpkins and cucurbits that belong to the family Cucurbitaceae 
against powdery mildew (Lamsal et al. 2011a, b). Phenolic suspension of hydropho-
bic alumina-silicate nanoparticles is so vigorous against grasserie disease in the 
leaves of Bombyx mori (Goswami et  al. 2010). Nano-encapsulated pesticides 
adhered on the floor of the plant assist the sustained delivery for a long period when 
compared with the ordinary pesticides which run off in the rain (Scrinis et al. 2007).

Inorganic nanosized particles like SiO2, Al2O3, TiO2, or Fe2O3 are used as carriers 
for pesticide to increase the bioactivity. Stable polymeric nanospheres were obtained 
in the range of 135  nm with encapsulation rate of 3.5%. Despite the minimum 
amount of active component, the overall yield of this formulation was notable in the 
bioavailability of the pesticide (RPA 107382) to plants (Boehm et al. 2003).
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Lately, a pesticide company established an aqueous dispersion prepared with 
nanosized biocide (Banner MAXX® from Syngenta) having diverse spectrum of 
systemic antifungal action. Its active component controls powdery mildew diseases, 
blights, leaf spots, rusts on several ornamental and horticultural plants (Latin 2006; 
Ghormade et al. 2011). Silicon nanoparticles (SiNPs) with pore size of 4–5 nm and 
shell thickness of 15 nm could carry avermectin of nearly 600 g/kg and could con-
trol the delivery speed up to 30 days after utilization (Ghormade et al. 2011).

16.3.2  Nanofungicide

Pathogenic fungus is one of the foremost barriers to the crop’s growth, which 
accounts for >70% of diseases and predominantly decreases the yield up to 100% 
loss (Baker et  al. 2017). Various nanoformulations and metal nanoparticles have 
been inspected to control the pathogenic fungus. In 2013, researchers found that 
AgNPs declined the Magnaporthe grisea growth which develops rice blast disease. 
AgNPs and fluconazole have showed high antifungal activity toward Phoma her-
barum, Fusarium semitectum, and Phoma glomerata (Gajbhiye et  al. 2009). 
Likewise, Ag2S NPs and AgNPs have displayed antifungal activity toward 
Aspergillus niger and Fusarium oxysporum, Magnaporthe grisea, Bipolaris soroki-
niana, Fusarium culmorum, and Colletotrichum (Jo et al. 2009; Min et al. 2009; 
Kasprowicz et al. 2010; Musarrat et al. 2010; Aguilar-Méndez et al. 2011).

Ag-silica NPs (nanocomposites) sprayed over the pumpkin leaves also showed 
antifungal activity toward powdery mildew infection within 3  days of spraying 
(Park et  al. 2006). In Korea, AgNPs were employed as antifungal agents for 
Raffaelea sp., a virulence fungus of oak trees (Kim et al. 2007). Copper nanocom-
posite with a polymer was fabricated and found its effectual antifungal activity 
(Cioffi et  al. 2005). MgO and ZnO were reported for its controlled growth of 
Fusarium oxysporum, Alternaria alternata, Rhizopus stolonifer, and Mucor 
plumbeus (Wani and Shah 2012). In fact, ZnO NPs induced the immune system and 
systemic defense mechanism in plants.

Using foliar spray of ZnO NPs at 1000 ppm, tomato and eggplant have showed 
optimistic results against Fusarium by inducing the defense system of the plant 
(Elmer and White 2016), and against Botrytis cinerea, Aspergillus niger, Penicillium 
expansum, and Aspergillus flavus via growth reduction (He et al. 2011; Jayaseelan 
et al. 2012).

For solid wood conservation, polyvinyl pyridine-co-styrene and polyvinyl pyri-
dine nanoparticles were utilized for the controlled delivery of chlorothalonil and 
tebuconazole fungicides (Dzung et al. 2002). This has given near quantitative inte-
gration of active ingredients. After a few years, polymeric nanocapsules were 
employed as carriers for the pesticides like ivermectin and acetamiprid (Ben-shalom 
et al. 2003).
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16.3.3  Nanobactericide

It is well known that many nanomaterials show antibacterial properties, and hence 
studies have been carried out for their use in crop protection from harmful bacteria. 
One such study has shown the use of copper nanoparticles for the effective removal 
of leaf spot and rice blast pathogens Xanthomonas campestris and Xanthomonas 
oryzae. In 2012, Mondal and Mani did studies to find the effectiveness of copper 
nanoformulation on bacterial pathogens and found that it is very effective than the 
conventional treatments using copper oxychloride. Studies with green synthesized 
silver nanoparticles have shown antibacterial properties against Erwinia cacticida 
and Citrobacter freundii (Paulkumar et al. 2014). From Macrophomina phaseolina 
(Tassi) Goid, the protein-capped silver nanoparticles synthesized have also shown 
antibacterial activity (Chowdhury et al. 2014). Another group has found that green 
synthesized silver nanoparticles have bactericidal property against bacterial patho-
gens Xanthomonas axonopodis and Ralstonia solanacearum (Aravinthan et  al. 
2015). Erwinia cacticida and Citrobacter freundii are phytopathogenic bacteria, 
and their growth has been restricted using Piper nigrum stem and leaf extract 
(Paulkumar et al. 2014). Nephrolepis exaltata L extract has been used to make bio-
genic silver nanoparticles, which also have shown significant growth reduction 
against Xanthomonas axonopodis pv. punicae (Bhor et  al. 2014). These studies 
clearly show that nanomaterials, especially silver and copper, have a tremendous 
application in the eradication of bacterial diseases in crops.

16.3.4  Nanoinsecticide

There is a huge potential in nanotechnology-based products for controlling micro-
bial pathogens in crops. Similarly, studies have shown by using nanoinsecticides 
there is a significant decrease in the proliferation of various insects in agricultural 
fields. A study has shown the growth suppression of the pest Spodoptera littoralis 
by using nanosilica, which ultimately decreased the crop yield losses (El-bendary 
and El-Helaly 2013). These silica nanoparticles have been found to be lethal against 
pests such as rice weevil, mustard weevil, coconut mite, and white fly. The mecha-
nism of silica nanoparticles having insecticidal activity was because of their physio- 
sorption in cuticle lipids of pests which stimulate killing of the insect (Fig. 16.3) 
(Barik et al. 2012).

Chitosan-derived nanoparticles increase insecticide rotenone loading by 13,000 
times when compared to free rotenone in water and also increase solubility in 
NOSCS micelles aqueous solution which ultimately paved the way for encapsula-
tion and slow leaching of agrochemicals for plant protection (Lao et al. 2010).

Cashew tree gum and chitosan-composed microspheres were used as transport-
ers for essential oil extracted from Lippia sidoides and have shown insecticidal 
properties (Paula et al. 2011). This result has shown the potential of chitosan as a 
carrier molecule for insecticides to control the spread of larvae of crop-harming 
insects. Likewise, microcapsules of chitosan and alginate were synthesized, 
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characterized, and assessed as a carrier molecule for imidacloprid (Guan et  al. 
2008). When release assays studies have been performed, a significant slow release 
of insecticide was observed when compared to the free insecticide. Further, the 
insecticide release can also be modulated by changing the concentrations of chito-
san and alginate. A study on ricinoleic acid (RA)-based carboxymethyl chitosan 
(CM-C) as a carrier for azadirachtin (AZA) biopesticide has shown assistance of 
this nanoformulation in making lipid-soluble pesticide to become water soluble 
which is advantageous for agricultural applications (Feng and Peng 2012).

16.3.5  Nanoherbicides

Undesirable weeds have negative impact on the productivity and sustainability of 
farming. To control and keep a check on the growth of the weeds, many chemical- 
based herbicides are used, but due to their chemical base, they are hard to be 
degraded by the nature and have residual toxicity. To overcome such situation, 
nanotechnology- based herbicides are used and hence termed as nanoherbicides. 
Nanoherbicides are safe because of their properties. They are stable chemical, have 
photodecomposition ability and simple solubility, and are easily absorbed by the 
soil. Nanoherbicides are created by formulating nanoparticles (epsilon- caprolactone) 
coupled with active ingredients like atrazine. The mobility of the chemicals was 
reduced, and so is their genotoxicity, by their coupling with nanoparticle-based car-
riers (Pereira et al. 2014).

Toxicity toward the environment was further reduced by encapsulation. Chitosan 
and sodium compound-based nanoparticles upon encapsulation have less toxicity 
compared to sole active components (Grillo et al. 2014). Researchers have prepared 
the controlled release of herbicides from cross-linked chitosan nanoparticles with 
disulfide bonds of diuron, based on the glutathione concentration. The results 
obtained were positive toward the plant’s growth and supported the strategies for 
reduced toxicity (Fig. 16.3) (Yu et al. 2015). In a study, hybrid nanocapsules were 
formulated from the polymeric polycaprolactones (PCL). These nanocapsules were 
filled with three different herbicides, namely, atrazine, ametryn, and simazine, and 
displayed a systemic controlled release (Grillo et al. 2014).

For targeted and systemic delivery of herbicides, nanocapsules are very effective. 
Nanoparticles inject herbicides in the plants via tissues and cuticles. The releases of 
active substance through nanocapsules were constant and slow (Duran and 
Maezrcato 2013).

Toxic chemical-based herbicide, paraquat, controls grass and weeds. Alginate/
chitosan-based nanoparticles were used by Silva et al. (2011) as a carrier system for 
its application as systemic weedicides. The study based on the release profile of the 
herbicide (paraquat) with alginate/chitosan nanoparticles demonstrated that its 
association with nanoparticles alters not just its release but also its interaction with 
the soil. This is an effective system for controlling and minimizing the negative 
effects of paraquat. There is one more study based on adsorbent conducted by Celis 
et  al. (2012) involving bio-nanocomposite material made of chitosan and clay 
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(montmorillonite). Herbicide clopyralid present in an aqueous solution or in a mix-
ture of water and soil can be removed by the bio-nanocomposites. Superb herbicide 
adsorption capacity was shown by bio-nanocomposites at pH levels at which the 
anionic form of the active principle and the cationic form of chitosan predominated. 
The efficiency of the adsorbent for the removal of herbicides from aqueous solution 
was more effective when a higher concentration of chitosan was used in the bio- 
nanocomposite. Bio-composites can be used to remove herbicides (clopyralid) from 
the soil at pH below neutral, and the use of this type of formulation reduces the 
mobility of the pesticides/herbicides of anionic nature.

Microbes like viruses are wonderful example of naturally occurring nanoparti-
cles and behave similar to manmade nanoparticles with core and outer coating. 
Tobacco mild green mosaic virus (TMGMV) is a perfect example where bioherbi-
cides were released to control a very invasive perennial weed (TSA; Solanum 
viarum) of pastures and other non-cropland areas in the southeastern and mid- 
southern regions of the United States. This systemic control of weed has been pat-
ented. Nanoparticles were prepared involving one adjuvant which is an organosilicon 
and a carborundum abrasive. Carborundum helps virus to allow its entry. The for-
mulation can be delivered using simple standard application equipment (Charudattan 
and Hiebert 2007; Ferrell et al. 2008). This TMGMV-based bioherbicide applica-
tion system is compatible as well as remains infective even in the presence of sev-
eral herbicides and control TSA and other weeds that often occur together at 
weed-infested sites (Ferrell et al. 2008).

16.3.6  Nanofertilizers

Nanosized carriers decrease the quantity of chemicals to be employed, environmen-
tal complications, and their run-off. For the controlled release of agrochemicals, 
clay nanotubes have proven to be a good one whereas it increases the connection 
between the plants and chemicals, thereby decreases the amount and price of the 
chemicals 70%–80% (Ditta 2012). In a study, anionic nanoclay was employed for the 
controlled release of agrochemicals and plant growth regulators (Oancea et  al. 
2009).

Nanoemulsions addition  to fertilizers, pesticides, or herbicides micelles 
can increase the efficacy of fertilizers and pesticides while decilne the volume of 
agrochemicals utilized (Fig.  16.3). Moreover, it can improve and strengthen the 
moisturizing ability and dispersion ability of agrochemicals and decrease the unen-
viable chemical run-off (Bergeson 2010). In addition, these are quickly degraded in 
soil, but exhibit slow degradation in plants (Khot et al. 2012). For instance, to con-
trol soybean pests, a nano-encapsulated imidacloprid was evolved by employing 
sodium dodecyl sulfate (SDS) modified Ag/TiO2 (Guan et al. 2010).

An increased plant growth was noticed in the tomato seeds that were grown in a 
soil comprising CNTs. Due to the penetration of CNTs into the seeds, there was an 
increment in the water uptake. Furthermore, CNT could be used as a carrier to direct 
the desirable molecules into the seeds at the germination time. It would protect the 
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plant from the diseases beside its growth-promoting and nontoxic properties 
(Khodakovskaya et al. 2009).

An optimized composition of gentle delivery of fertilizers and excellent absor-
bent polymers may not only crucially promote the yield and plant nutrition but it 
might be a way to alleviate the impact of stressed environment, decrease frequency 
of irrigation, and decline water loss to evaporation (Davidson and Gu 2012). 
Compound NPK fertilizer coated with chitosan was evolved with water retention 
and steady release properties, by coating the chitosan inside and poly(acrylic acid-
 co acrylamide) [P(AA-co-AM)] outside, which is an absorbent polymer (Wu et al. 
2008). Nutrients were delivered in slow and steady manner. At the 30th day, 75% 
was not reached by the nutrients that have been delivered. Chitosan is a readily 
available biodegradable matter, while P(AA-co-AM) can be decayed in the soil. 
These products have a substantial possibility of being environmentally friendly 
nanofertilizers, especially for drought-prone areas with less availability of water. In 
a similar case, Corradini et al. (2010) furnished the possibility of consuming the 
chitosan nanoparticles for slow and steady delivery of NPK fertilizer, while Hussain 
et al. (2012) observed the steady release of urea from the chitosan microspheres. It 
may be costly than the simple wide application of fertilizer as well as it can prevent 
nutrient losses (Fig. 16.3).

16.4  Targeted Genetic Engineering

For agronomic and economic trait enhancement, nanotechnology is being used to 
modify crop’s genetic constitution (Agrawal and Rathore 2014). For releasing 
genetic materials, chitosan-modified nanoparticles with polyethylene glycol (PEG) 
have been used as gene carriers. Fluorescent molecules are used for labeling starch 
nanoparticles which in turn are used for transporting genetic materials across the 
cell wall by producing aperture channels. For transporting DNA into the nucleus, 
plasmic DNA is used which is coated with silver nanoparticles. For transporting 
genes directly into the cell, the gene gun is the most widely used tool. For successful 
expression and delivery of plasmatic DNA into maize and tobacco, bombardment 
material gold nanoparticles were used (Nair et al. 2010). Mutation either natural or 
artificial plays an important role in crop improvement. Instead of using chemical 
compounds and/or physical mutagens, a remarkable ability has been shown by nan-
otechnology for inducing mutation. Hence by using nanotechnological approaches 
from traditional rice, which is purple in color, a new white-grained rice variety has 
been developed (Shrivastava and Dash 2012).

Plants can be genetically manipulated by combining nanotechnology with other 
technologies like biotechnology. For example, by using nanocapsules or nanofibers 
as vectors instead of using conventional viral vectors, genetic expression can be eas-
ily triggered and can carry a large number of genes (Miller et al. 2008; Nair et al. 
2010). Transgenic plants can be produced effectively by using nanoparticles instead 
of transporting exogenous DNA into the cells. Better transfection methods are 
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enabled by linking nanoparticles with lipids, ligands, and proteins which break the 
endosomal barriers and cross the membrane more efficiently.

Using nanomaterials as genetic tool, it has wide application in drug delivery, 
environmental monitoring, the use of nanofiber array for efficient delivery of genetic 
material into the cells, and crop engineering (Miller and Kinnear 2007).

Traditional methods for transferring gene into plants such as electroporation, 
Agrobacterium-mediated gene transfer, particle gun bombardment, PEG-mediated 
gene transfer, etc. are quite costly and also have several other disadvantages, for 
example, they have low efficiency around 0.01%–20% (Sivamani et al. 2009). Using 
nanotechnology for crop improvement has significant advantages when compared 
to other traditional and conventional techniques. Some of the main advantages are 
avoidance of transgenic silencing by combining nanoparticles with DNA copies and 
no requirement of complex carriers during the transformation mediated by nanopar-
ticles. These key features can be taken into consideration for using nanoparticles as 
gene carriers.

Several works have been carried out that (Torney et al. 2007) used silica nanopar-
ticles to deliver DNA and other chemicals into plant cells without the aid of any 
specialized equipment. Mesoporous silica nanoparticles were employed (Martin 
et al. 2012) to co-deliver DNA and protein into plant cells using biolistic methods.

In gene delivery, biodegradable chitosan is used because of its protonating ability 
in acidic solution, thereby forming a complex with DNA. The complex formation 
happens because of electrostatic interactions (Duceppe and Tabrizian 2010), but 
chitosan has low transfection efficiency. Certain factors like pH of the transfecting 
medium, molecular weight of chitosan, and deacetylation degree influence the 
transfection efficiency of chitosan (Mao et al. 2010). Due to the cationic nature of 
chitosan, complex formation between chitosan and small interfering RNA (siRNA) 
is easier and has grabbed much attention in recent times, and hence for delivery of 
siRNA, it can be used as a carrier (Katas and Alpar 2006; Malmo et al. 2012; Ragelle 
et al. 2013). dsRNA has been delivered successfully to mosquito larvae in stabilized 
form using chitosan nanoparticles (Zhang et  al. 2010). For efficient delivery of 
dsRNA, chitosan nanoparticles could be the best choice as it can bind with RNA 
efficiently. DNA-coated chitosan nanoparticles have a real potential in the near 
future to be used as nanocarrier for plant tissues and cell bombardment and gene 
gun to attain targeted gene transfer.

16.5  Labeling and Imaging

The transition of elements and several molecules in both soils and plants could be 
investigated through labeling. Labeling enables the researchers to get critical infor-
mation about effectiveness, significance, and mechanism of action of important 
chemicals. Traditional labeling involves using organic dyes, but the major disadvan-
tage it has is fast fluorescence degradation which has limited its application. In 
luminescent labeling field labeling molecules by quantum dots (QD) has grabbed 
much attention recently. As an alternative to bioanalytical methods, nanosized QD 
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have been considered due to its exclusive optical features such as high fluorescence 
intensity, narrow emission spectrum, broad tenability, and photostability. QD is 
more beneficial when compared to conventional fluorescence dyes as it has broad 
excitation spectrum, high quantum yield, narrow emission, extended fluorescence 
lifetime, and high degree of stability against photobleaching. For molecular imag-
ing, fluorescent QD has been used commonly nowadays (Zimnitsky et  al. 2007; 
Frasco and Chaniotakis 2009).

16.6  Future Prospects

Despite all the improvement in nanotechnological field, the application of 
nanoparticle in the field of crop improvement and agriculture has not yet reached 
to a satisfying level, and more research is needed (Mishra et al. 2014). As per the 
data given by the Food and Agriculture Organization (FAO) assessment, each year 
there has been a loss of up to 20–40% in the overall global crop production. This 
loss has happened due to diseases and pests even though pesticides have been 
applied (King 2017). Pesticides are severe threat to humans and animals as well 
as to the environment. In June 2009, a joint venture held by the World Health 
Organization (WHO) and FAO signified the importance of applying nanotechnol-
ogy in the field of agriculture and food (Takeuchi et al. 2014). And thus, current 
trends show that studies are being conducted in the direction of controlled release 
of pesticides, improved storage, and smart delivery of agrochemicals (Devi et al. 
2019). To overcome the threat posed to the environment by pesticides, as a pest 
control agent, nanocarriers have been applied recently, which also have a major 
role in drug delivery (Liu et al. 2015). Nanoscience has paved the way for crop 
improvement by improving the nutrient uptake capability of plants, thereby 
increasing the yield, and managing the disease at the molecular level (Park et al. 
2006). A smart delivery system has been represented by NPs which acts as a 
“magic bullet” delivering organics, beneficial genes, and herbicides to the tar-
geted plant parts by which productivity is enhanced (Marchiol et  al. 2014). In 
agricultural application area, nanobiopolymers have a great role in dosage reduc-
tion of agrochemicals, enhancing the efficiency of nutrient management and in 
maintenance of soil health. Drug-resistant microbes can be inactivated by bion-
anohybrid (Baker et al. 2017).

Similarly, researchers are getting motivation from biochar, to make biochar- 
based eco-friendly fertilizer which helps to improve crop production by controlling 
the release of fertilizer, thereby minimizing nutrient loss. Due to its porous nature, 
biochar can be incorporated with essential nutrients and other materials such as 
phosphates (Xu et al. 2014), nitrates (Hale et al. 2013; Kammann et al. 2015), urea 
(Khan et al. 2008; Xie et al. 2011), and ammonium salts (Spokas et al. 2012), thus 
making it available on slow release basis to soil and crops. Besides helping in reduc-
ing and managing waste, this kind of approach also helps in preventing pollution by 
producing wealth from waste.
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Future use of nanotechnology in agriculture will cover suppression of plant 
stress/diseases directly through antimicrobial/antioxidant/heavy metal uptake activ-
ity (Tripathi et al. 2017b; Rastogi et al. 2019). Sustainable growth in agriculture 
should be the prime focus, as enough destruction of nature has been done, and ulti-
mately it is going to harm human beings. So, nanotechnology has shown us the way, 
and researchers have come with lots of alternatives which are environment-friendly 
and will also ensure high yield from crops.
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Abstract
Nanotechnology is a very rousing area in the field of science and technology, 
which has multifaceted role in agriculture field. It is a branch of nanoscience that 
deals with the applications of nanomaterials and nanoparticles and provides abil-
ity to design a new material and product with improved quality, new advanced 
devices, smart medicine and sensors that play a promising role in agriculture and 
healthcare. Nanotechnology along with bioinformatics and biotechnology plays 
a significant part in the advancement of agriculture field. The amalgamation of 
these two branches helps in building tools and devices that are used in early 
diagnosis and treatment of plant diseases; improving the absorption of nutrients, 
site-specific delivery of active constituents and water treatment processes; con-
trolling the chemical damages; and enhancing the crop quality and yield. Besides 
this, nanotechnology increases the production rate with low cost as well as non- 
toxic effect on living being and environment. The present review focusses on the 
various aspects of nanotechnology and nanoinformatics in the field of agricul-
ture. This includes different approaches and applications of nanotechnology and 
nanoinformatics, especially in the area of agriculture.
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17.1  Introduction

Nanoparticles usually refer to particles ranging from dimensions between 1 and 
100 nm. Below 1 nm, the behaviour of these particles is explained by using known 
atomic, molecular and ionic interactions and forces, whereas particles above a 
dimension of 100 nm have properties similar to the bulk properties of the material. 
Particles within the range of 1–100 nm exhibit unique and variable properties due to 
quantum effects. Also, the particles having dimensions less than 100  nm show 
increased bioavailability and transportation through biological organisms, tissues, 
cells, organelles and membranes. The branch of biotechnology dealing with the 
study, analysis and use of nanoparticles is known as nanobiotechnology (Owolade 
and Ogunleti 2008; Guo 2009; Bhattacharyya and Bhaumik 2010; Wu and Chen 
2012; Rani 2015; Manjunatha and Biradar 2016).

In contrast, nanoinformatics refers to the use of techniques of bioinformatics for 
analysing and processing informati0on about the structural and physiochemical prop-
erties of nanoparticles and nanomaterials, along with their interaction with the environ-
ment and their applications in different fields (González-Nilo et al. 2011). Majorly, 
nanoinformatics is used in the field of medicine and agriculture due to its small size, 
shape and ability to penetrate biological cells and tissues (Fig.  17.1). Doxil and 
Abraxane are two nanodrugs which are already approved and available in the market.

17.2  Integrated Approach of Nanotechnology 
and Nanoinformatics in Agriculture

Nanotechnology is recently emerging as a promising field to boost agricultural pro-
ductivity at a large scale. With the emergence of combined approaches of nanotech-
nology, biotechnology and bioinformatics together can transform the current scenario 

Fig. 17.1 Applications of nanotechnology in various fields
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of agriculture. Nanosensors and nano-based smart delivery systems help ensure natu-
ral resources like water, nutrients and chemicals are used efficiently and in the appro-
priate amount to enhance crops in the field of agriculture. There are a number of 
different ways in which nanotechnology and nanoinformatics can help increase the 
yield of crops and also enhance the quality of products produced (Fig. 17.2).

17.3  Precision Farming

Precision farming is a technique of farming that aims to maximize the crop yield 
while minimizing the use of fertilizers, herbicides and pesticides. The use of less 
fertilizers, herbicides and pesticides will reduce the production cost of crops and 
will also minimize its effect on the environment (Joseph 2006). Computers, global 
satellite positioning systems and remote sensing devices are used to monitor local-
ized environmental conditions and determine whether the crops are growing at 
maximum efficacy. Using centralized data that enables the farmers to evaluate soil 
conditions and the development of plants, generated from these devices, can help in 
limiting the quantity of fertilizers, chemicals and water that will eventually lead to 
high yield of plants at lower production cost (Rhodes 2014). Nanotechnology- 
enabled devices are increasingly used for autonomous sensors that are linked into a 
GPS which can provide real-time monitoring (Rathore 2014). These nanosensors 
are distributed throughout the field where they evaluate soil conditions and growth 
of crops. Wireless sensors are already being used in some parts of Australia and the 
USA. For example, Californian vineyards known as Pickberry, in Sonoma, have 
already installed wifi systems with the help of the IT company Accenture.

Fig. 17.2 Various integrated approaches of nanotechnology and nanoinformatics in agriculture
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17.4  Nanomaterials as Antimicrobial Agents for Plant 
Pathogens

Metal nanoparticles like copper and silver nanoparticles are being studied in great 
detail by the researchers for their antimicrobial activities. The antimicrobial activi-
ties exhibited by various metal nanoparticles are of great application because of 
their capability to act against a wide range of microorganisms. There are various 
nanoparticles that are designed to be used as effective antimicrobial agents. Also, 
the products designed and prepared from nanoparticles show considerable effects 
against the powdery mildew disease of pumpkin within 3 days of spraying the prod-
uct (Ingle 2012). The following lists nanoparticles and their antimicrobial property 
(Table 17.1).

17.5  Monitoring

Nanosensors are one of the most known sensors which are dispersed throughout the 
field to continuously monitor soil conditions and growth of crops. These integrated 
systems sense, monitor and generate active responses for plant production. Also, 
real-time monitoring is achieved by linking nanotechnology-enabled sensor devices 
with a GPS. Nanobiosensors are used for detection of pathogens, toxins and bacte-
ria in food (Ghormade 2011). The following lists various nanoparticles that are used 
as sensors for various pesticides (Table 17.2).

Table 17.1 List of nanoparticles and their antimicrobial property

Nanoparticle Property
Polymer-based 
nanoparticles

Exhibit antifungal activity against various plant pathogenic fungi

Silica-silver nanoparticles 
(Abd-elsalam 2013)

Control plant pathogenic fungi like Rhizoctonia solani, Botrytis 
cinerea, Magnaporthe grisea, Colletotrichum gloeosporioides 
and Pythium ultimum

Silver nanoparticles Have strong bactericidal activities and broad spectrum 
antimicrobial activities
Reduce various plant diseases caused by spore-producing fungal 
pathogens

Zinc oxide nanoparticles 
(Abd-elsalam 2013)

Inhibit fungal growth of Botrytis cinerea by influencing cellular 
functions that lead to deformation in mycelial mats
Inhibit the growth of conidiophores and conidia of Penicillium 
expansum

Silicon Increase disease resistance and stress resistance by promoting the 
physiological activity and growth of plants
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17.6  Smart Delivery Systems

Nanoscale smart devices are designed and used to identify dysfunctions in plant 
health before they have increased to an extent that they are visible to the farmers. 
Also, these devices provide counter remedies in response to dysfunctions. Therefore, 
these devices act as both an early warning system and as a curative device. Thus, 
chemical agents, such as fertilizers, pesticides and herbicides, can be delivered in a 
targeted and controlled manner. Nanoscale vehicles are also used for effective deliv-
ery of micronutrients and sensitive bioactives. The following lists nanoparticles that 
have been designed for the delivery of pesticides, fertilizers, etc. (Joseph 2006; 
Hussain 2017) (Table 17.3).

Table 17.2 List of nanoparticles used as sensors

Nanoparticle used as nanosensor Pesticide
Size of 
nanoparticle

Gold Carbofuran/
triazophos

40 nm

Gold (Lisa 2009) DDT 30 nm
Iron oxide Dimethoate 30 nm
Zirconium oxide (Gan 2010; Wang 2009) Organophosphate 50 nm
Silica (Ramanathan 2009) Paraoxon 100–500 nm
Iron oxide (Kaushik 2009) Pyrethroid 22 nm
Titanium oxide Imidacloprid 30 nm

Table 17.3 Details of nanoparticles used for the delivery of pesticides, fertilizers, etc

Substance to be delivered Nanoparticle used for delivery
Size of 
nanoparticle

Avermectin (chemical pesticide) Porous hollow silica 15 nm
Ethiprole (chemical pesticide) Polycaprolactone 135 nm
Gamma-cyhalothrin (chemical pesticide) Solid lipid 300 nm
Chlorothalonil (chemical pesticide) Polyvinylpyridine and 

polyvinylpyridine-co-styrene
100 nm

Plant origin biopesticide Nanosilica 3–5 nm
Essential oil encapsulated biopesticide Solid lipid 200–294 nm
Microorganism origin biopesticide Silica 7–14 nm
NPK (fertilizer) (Corradini 2010) Nano-coating of sulphur 100 nm layer
DNA (genetic material) (Elbaz and 
Willner 2012; Vijayakumar 2010)

Gold
Starch

10–15 nm or 
5–25 nm
50–100 nm

Double-stranded RNA (Zhang 2010) Chitosan 100–200 nm
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17.7  Minimizing Soil and Groundwater Pollution

Contaminated soil and groundwater can be cleaned by using iron nanoparticles as 
they can catalyse the oxidation of organic pollutants like PCBs, dioxins, carbon 
tetrachloride and trichloroethene to form less toxic carbon compounds. Iron oxide 
nanoparticle is also very effective in removing arsenic from groundwater. Therefore, 
nanoparticles remove contaminants from soil and water and provide conditions that 
enhance the quality and yield of crops. The following lists certain nanoparticles that 
are designed to reduce soil and groundwater pollution (Joshi 2010) (Table 17.4).

17.8  Engineering of Crops

Nanotechnology plays a vital role in the re-engineering of crops at genetic as well 
as cellular levels. This technique helps in the development of crops that have desired 
traits like drought resistance, salt tolerance, excess moisture tolerance, ability to 
withstand a wide range of temperature fluctuations and resistance to certain pests 
and pathogens. There is an increasing list of such traits which can be introduced into 
the crops to enhance the quality of crops and increase the crop yield. The following 
lists a few examples of nanoparticles that are designed to insert gene of interest into 
the plant cells in order to produce crops with desired traits (Table 17.5).

17.9  Smart Field Systems

Nanotechnology is used in the designing of smart field systems. These systems help 
in detecting the shortage of water in the field and locating that specific area in the 
field. These systems report the level of water in the soil continuously and direct the 
water to appropriate areas. Therefore, these systems ensure that the crops get suffi-
cient amount of water so that the yield and quality of crops are enhanced.

Table 17.4 Details of nanoparticles used to reduce soil and groundwater pollution

Nanoparticle Function
Silver and gold nanoparticles Destruction and mineralization of halocarbons

Detection and extraction of endosulfan (a 
pesticide)
Quantitative removal of chlorpyrifos and 
malathion

Silver nanoparticle-coated polyurethane 
foam

Antibacterial water film

Porum thin film of titanium oxide Degradation of naphthalene and anthracene
Nanoparticles supported on alumina Complete removal of pesticides from water
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17.10  Nanobarcodes and Nanoprocessing

The field of nanoinformatics is now widely used for the manufacturing of nanobar-
codes (Tarafdar 2011). These barcodes can help monitor the quality of crops. With 
the help of nanobarcodes, the farmers can select the high-quality variety of crops 
and selectively increase the production of such crops. Therefore, nanotechnology 
can help in monitoring and enhancing the quality of crops and also increasing the 
yield of desired variety of crops.

17.11  Risk Factors and Future Considerations in the Field 
of Agri-nanotechnology

Future studies and researches in the field of nanotechnology should be carried out 
in such a manner that it would reduce the toxic effects of nanoparticles on the envi-
ronment and the living beings (Sandhya Mishra 2017). The following key points 
should be kept under consideration:

• Future researches must be focused towards designing research work in ways that 
could reduce the risk factors associated with the use of nanoparticles.

• The study and synthesis of nanoparticles must not be limited to a few applica-
tions applicable in the laboratory conditions only. Nanoparticles and its applica-
tions in the field of agriculture must be expanded to bring down to the field level 
as well.

• The dose of nanoparticles considered safe for usage must be validated, and there-
after nanoparticles must be used within the permissible limits only. This could be 
achieved by conducting the concentration-dependent study in natural soil system 
to understand the active and non-toxic dose of nanoparticles.

Table 17.5 Details of nanoparticles used to produce crops with desired traits

Nanoparticle Function
Carbon nanofibres Carbon nanofibres are modified with plasmid DNA on the surface for 

quick, efficient and controlled delivery of genetic material into the 
plant cells

Chitosan nanoparticles These are very versatile and efficient for the delivery of gene. Their 
efficiency can be modified by using PEGylated

Starch nanoparticles These are fluorescently labelled and they efficiently transport gene 
across the plant cell wall by creating an instantaneous pore in the cell 
wall, cell membrane and nuclear membrane with the help of 
ultrasound

DNA-coated silver 
nanoparticle  
(Rad et al. 2013) 

These carry plasmatic DNA into the nucleus of isolated protoplasts 
that have been incubated in the presence of ethylene glycol
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• The researchers must also study the effect of nanoparticles used in agriculture on 
different trophic levels and on various generations. This would give a very accu-
rate and comprehensive knowledge of nanotoxicity.

• A study of the physical and chemical properties of the soil will help in reducing 
the risk of nanoparticles towards plant and soil biota.

• Altering soil environment to alter the transport and bioavailability of nanoparti-
cles to reduce the toxicity of these nanoparticles can help make nanoparticles 
safe and beneficial in the field of agriculture.

• Biosynthesized nanoparticles and environment-friendly approach of green syn-
thesis of nanoparticles must be designed in a way that will lead to a lesser or no 
toxicity.

17.12  Conclusion

Nanotechnology is one of the most promising emerging fields due to its capability 
to revolutionize the existing technologies and develop new technologies that can be 
used in various sectors including agriculture. Nanoinformatics finds application in 
all fields ranging from science, physical science, environmental science, electronics 
and technology, space technology, social perspective and medical science to future 
nanorobots. Nanotechnology provides some concrete remedies for various 
agriculture- related problems like insect pest management, adverse effects of chemi-
cal pesticides, the development of improved crop varieties and many more. It shows 
some promising new developments that may lead to a better quality and high yield 
of crops through precision farming, monitoring of soil and environmental condi-
tions, nanobarcodes and nanoprocessing, smart delivery systems, minimizing soil 
and groundwater pollution, re-engineering of crops and smart field systems. 
Nanoparticles are now being widely used in the formulation of new pesticides, 
insecticides as well as insect repellents. Nanotechnology shows some promising 
application with respect to nanoparticle-mediated gene transfer.

With more research in the field of nanotechnology and nanoinformatics, it is 
expected that the applications in these fields will help in solving some major issues 
like toxicity, environmental effects, climate change, decreasing quality of crops due 
to pests and soil and groundwater pollution.
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18Green-Nanotechnology for Precision 
and Sustainable Agriculture
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Abstract
Nanotechnology has aroused as a field that has resulted in paradigm shift in agro-
nomic practices and given a true essence to sustainable agriculture. Nanomaterials 
belonging in the agriculture domain are of vast variety and had find applications 
in crop production, soil and water management, diagnostic measurements, con-
trolled use of chemicals, and plant protection owing to their tailored properties, 
small size, and surface to volume ratio. The contribution of nanotechnology in 
precision farming through the development of nano-based fertilizers, pesticides, 
herbicides, and early pathogen diagnostic can be considered as a breakthrough. 
The chapter will focus on the aspects of nanotechnology that have revolutionized 
the agriculture field, leading to better environmental management and sustain-
able practices.

Keywords
Green synthesis · Nanofertilizers · Nanocides · Nano-sensors · Soil and water 
management

18.1  Introduction

Nanotechnology is deemed as the science for cleaner technologies having significant 
impact on the technological developments of the twenty-first century. Manipulating at 
small size and large surface area has made the miniaturization possible which resulted 
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in materials being more efficient and less material consuming. With its emerging 
potential and recent pressure to look for greener aspects of this technology, scientists 
and engineers have diverted their efforts to design and opt ways to shift this realm to 
benign potential. Hence, the combination of green chemistry, green technologies, and 
nanotechnology has defined a new direction to nanotechnology avenue.

18.2  Green Nanotechnology

Green nanotechnology (G-NT) is a nanotechnology that is environment-friendly 
and can help in minimizing the environmental as well as health risks associated with 
the product development and consumption (Rai and Posten 2013; Safaei et  al. 
2014). It caters within two main aspects, i.e.:

• Production of nanomaterials without harming the environment.
• Production of nano-products that provide solutions to environmental problems, 

and in some cases, the third facet is also added, i.e.:
• Replacement of existing products with new environment-friendly nano-products 

(Figovsky and Beilin 2017).

18.3  Nano-agrotechnology

Nanotechnology has paved its way in agriculture field as well and has played an 
important role in transforming it to a new venture. Various subdisciplines are catered 
by nano-agrotechnology (N-AT) as outlined in Fig. 18.1. This engross in itself the 

Fig. 18.1 Prospects of nanotechnology in agriculture
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revolution in farming practices which deals with improving the nutrient use effi-
cacy, less use of chemicals for control of pests and diseases, improved sensing 
applications, and optimized water management (Parisi et  al. 2015; Prasad et  al. 
2017b), thereby resolving many problems associated with conventional farming 
along with enhancing the agriculture production in an eco-friendly way.

Nanotechnology being recognized by the European Commission as one of the 
“key enabling technologies” has redefined the concept of sustainable agriculture 
and acts as a paradigm shift in precision agriculture as well. The precision agricul-
ture is defined by the Directorate-General for Internal Policies of the European 
Union as “A farming management concept of measuring and responding to inter and 
intra-field varying in crops to form a decision support system for whole farm man-
agement and to reap the maximum output from the available resources” (Duhan 
et al. 2017). On the other hand, the sustainable agriculture according to the National 
Research Council is a “long term maintenance of natural resources and agricultural 
productivity, minimal adverse impacts, adequate economic returns to farmers, opti-
mal crop production with minimized chemical inputs, satisfaction of human needs 
for food and income, provision for social need of farm families and communities” 
(Jordan 2013).

The combination of G-NT and N-AT hence will address all the three aspects of 
the G-NT. Therefore, this chapter will briefly describe the green routes to the syn-
thesis of nanomaterials and present a detailed overview about the practices that can 
help in agricultural precision management through these nanomaterials.

18.3.1  Biosynthesis of Nanomaterials

Nanoparticles (NPs) are generally synthesized through physical and chemical 
approaches, and there is a reasonable doubt about the greenness of these methods 
owing to the involvement of high energy and toxic chemicals. The biosynthesis of 
NPs involving plants, microbes, fungus, algae, etc. (Fig. 18.2) has gained attention 
recently because of their environment-friendly approach (Siddiqui et al. 2015).

Fig. 18.2 The plant-mediated and microbial route to the green synthesis of nanoparticles
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18.3.1.1  Plant Based
Plants are being rightly recognized as natural nanofactory, widely available (Jha 
et al. 2009) in various parts of the world, but are still waiting for an exploration of 
their full potential toward the green synthesis of NPs. General scheme for the syn-
thesis of NPs using plant-based materials involves preparation of plant extract, bio-
reduction of metal salts to metal NPs, their confirmation via UV-vis spectrometer, 
and finally the separation to be used for miscellaneous applications (Singh et al. 
2016).

Plant-mediated synthesis of NPs has several advantages over the microbial-based 
synthesis and hence is rated as better on account of the abundant availability of 
plants, ease of handling, enhanced stability of NPs achieved through them, fast reac-
tion rates, and one-step synthesis making the process viable for large-scale produc-
tion (Baker et al. 2013; Siddiqui et al. 2015). The presence of biomolecules in plant 
extracts like proteins, polysaccharides, amino acids, flavonoids, terpenoids, poly-
phenols, alcoholic compounds, etc. is mainly responsible for the reduction of metal 
salts to metal NPs. These metabolites also play an imperative role in stabilizing the 
NPs through capping and chelating effect as well as controlling their size and shape 
(Baker et al. 2013; Iravani 2011). A multitude of factors like reaction temperature, 
extract concentration, extract contents, and metal ion concentration have high 
impact on the size and shape of NPs (Iravani 2011). In this context, researchers have 
exploited the use of plant leaves, fruits, and even flowers from a myriad of plants in 
pursuit of finding the best source and conditions for application-driven synthesis of 
nanomaterials.

18.3.1.2  Microbes Based
The deliberate synthesis of NPs through the use of a number of possibilities among 
the microbes has gained popularity in the scientific community in an essence to 
design green routes. The microorganisms exploited in this regard are bacteria both 
gram positive and negative, actinomycetes, fungi, algae, and yeast (Niemeyer and 
Mirkin 2004), as outlined in Fig. 18.2, which generate NPs by either intracellular or 
extracellular activities. The former one involves the metal ions’ transportation into 
the cell where different enzymatic activities lead to the formation of NPs, while in 
the latter case, metal ions are trapped on the cell surface effecting the reduction into 
NPs through the proteins available on the surface which also act as capping and 
stabilizing agents. The size and shape of NPs can be manipulated by varying the pH, 
temperature, metal ion concentration, and medium concentration (Durán et al. 2011; 
Li et al. 2011).

18.4  Applications of Nanotechnology in Precision 
Agriculture

The applications of nanotechnology in the field of precision agriculture are broad as 
outlined in Fig. 18.1. The innovations are still enjoying their infancy, but still volu-
minous research work had been carried out in the field of smart delivery fertilizers 
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and sensors. This chapter will briefly describe the few important fields of precision 
agriculture that are greatly influenced by nanotechnology.

18.4.1  Nano-fertilizer

Conventional fertilizers, in the context of available nutrients to the plants, suffer 
from serious drawback, as the total crop plant uptake in terms of fertilizer use effi-
cacy accounts to 20–50% for nitrogen, 10–25% for phosphorus, and 35–40% for 
potassium (Guo et al. 2018; Naderi and Danesh-Shahraki 2013). The rest of fertil-
izers not taken up by plants either results in atmospheric losses or leaching/runoff 
contributing to disturbance in soil mineral balance, soil infertility, eutrophication, 
greenhouse gases, and multiple other environmental problems. All these problems 
can be enhanced manifolds considering the fact that the world total fertilizer (NPK) 
demand is projected to reach 201,663 thousand tones in 2020 (FAO 2017) and hence 
posing a threat to irreparable damage. In this context, the nanotechnology revolu-
tion had led to the development of smart delivery nano-fertilizers that can prevent 
undesirable nutrient loss and henceforth put a halt to escalating consumption of 
fertilizers and paving a way to sustainable agriculture. The feasibility of several 
materials has been exploited as slow-release materials for a number of crops and 
proved to augment germination and increase plant growth, yield, no. of seeds, fruit-
ing, etc. In addition to these, multiple benefits have been delineated in favor of 
nano-fertilizers in comparison to the conventional analogues as briefed in Fig. 18.3.

An overview of nanomaterials developed for the smart delivery of nutrients is 
laid out in Table 18.1. Most of the researches have opted for foliar spray applica-
tions considering the fact that NPs can be easily taken up by the plants through 
stomatal pores. The complexity of biological systems leads to different uptake 
mechanisms in roots, leaves, etc. with strong dependency on the characteristics of 

Fig. 18.3 Some advantages related to nano-fertilizer in comparison to its conventional 
analogues

18 Green-Nanotechnology for Precision and Sustainable Agriculture



322

Table 18.1 Overview of the nano-fertilizer developments and their impacts on crops studied

Nanomaterial Crop Application Impacts References
Fe Black-eyed 

pea
Foliar Increased 

pods/plant 
seeds/plant, 
1000 seeds 
weight, 
chlorophyll 
content

Delfaniet al. 
(2014)

Mg
Zn Pearl millet Foliar Improved 

shoot length, 
root length, 
root area, 
chlorophyll 
content, total 
soluble leaf 
protein, plant 
dry biomass, 
enzyme 
activities, 
grain yield

Tarafdar et al. 
(2014)

B Pomegranate Foliar Enhanced leaf 
concentrations, 
fruit yield, 
fruit quality, 
maturity index

Davarpanah 
et al. (2016)

Zn
Zn + B Potato Fertigation 

through 
irrigation 
water

Better plant 
height, number 
of stems, 
number of 
leaves, yield, 
no. of days to 
tuberization, 
no. of days to 
flowering, no. 
of days to 
maturity

Janmohammadi 
et al. (2016)

Ca
N, P, K, Fe, Zn, Ca, Mg, Mn, 
Cu, B, Mo
Fe Wheat Foliar Improved 

spike weight, 
1000 grain 
weight, 
biologic yield, 
grain yield and 
grain protein 
content

Bakhtiari et al. 
(2015)

(continued)
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Table 18.1 (continued)

Nanomaterial Crop Application Impacts References
Nano-fertilizer (Ca, Fe, Si, 
Mg. S, Zn, Fe, Al, Na, Mo, 
K, Cu, Ni, Co, Sr)

Black cumin Foliar Capsule/plant, 
seeds/capsule, 
seeds/plant 
seeds weight/
plant, 1000 
seed weight, 
seed yield

Zn/B Coffee Foliar Chlorophyll 
content, uptake 
of Zn, N, P, 
plant height, 
stem dia

Wang and 
Nguyen (2018)

Urea-based 
aminopropyltrimethoxysilane

– – – Hidayat et al. 
(2015)

Urea-modified 
hydroxyapatite NPs 
encapsulated wood

Kottegoda et al. 
(2011)

PVA-starch supported 
Cu–Zn/carbon nanofibers

Chickpea – Plant growth, 
antioxidant 
potential

Kumar et al. 
(2018)

Chitosan-based NPK Garden pea Reduced root 
elongation, 
upregulation 
of proteins 
(negative 
impacts)

Khalifa and 
Hasaneen 
(2018)

Urea-hydroxyapatite Kottegoda et al. 
(2017)

Zeolite loaded with N, P, K, 
Ca, Mg. S, Fe, Zn, Cu

Lateef et al. 
(2016)

NPK Guo et al. 
(2005)

Chitosan-NPK Wheat Foliar Harvest index, 
crop index, 
mobilization 
index, plant 
growth

Abdel-Aziz 
et al. (2016)

Biochar loaded with N, P, K, 
Ca, Mg. S, Fe, Zn, Cu

– – – Lateef et al. 
(2019)

(continued)

18 Green-Nanotechnology for Precision and Sustainable Agriculture



324

Table 18.1 (continued)

Nanomaterial Crop Application Impacts References
Phosphate-potash/neem cake/
PGPR

Vigna 
radiata

– Germination, 
specific 
activity of 
enzymes, 
carbohydrates, 
protein, 
photosynthetic 
pigments, root 
nodule 
number, and 
microbial 
population

Mala et al. 
(2017)

Urea-kaolinite – – – Sempeho et al. 
(2015)

Liulitian (N, P, K, Mg, Ca, 
and humic acid)

Green 
pepper

Growth, soil 
nutrients, 
enzyme 
activity and 
microorganism

Teng et al. 
(2018)

Pulverized calcite-seaweed 
extract

Grape wine Foliar Enhancements 
in foliar 
development, 
chlorophyll 
concentration, 
berry 
characteristics, 
yield, leaf 
nutrient 
content

Sabir et al. 
(2014)

CNT/NPK/chitosan French bean Foliar Improved 
water 
absorption, 
nutrient 
uptake, plant 
growth

Hasaneen et al. 
(2016)

Sodium alginate-g-Poly 
(acrylic acid-co-acrylamide)/
Clinoptilolite

– – – (Rashidzadeh 
et al. 2014)

ZnO Tomato Foliar soil Optimized 
NPs in 
response to 
dry biomass 
yield, fruit 
yield and 
nutritional 
quality, flower 
and fruit 
development, 
chlorophyll 
content, plant 
growth

Raliya et al. 
(2015)TiO2
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both plant and NPs. The translocation of NPs from the leaf to the root occurs by 
phloem transport mechanism (Fig.  18.4-I, II) mediated by apoplast (through the 
wall) as well as symplast (cell to cell) – the former being preferred for larger parti-
cles (200 nm) and the latter for smaller NPs less than 50 nm (Fig. 18.4-I). Hence, 
among the different particle shapes and sizes (sphere (10.9 nm), cubic (2.3 nm), 
rhombic dodecahedra (11.3 nm), and rod (37.4)), particles translocate and internal-
ized differently (Raliya et al. 2016). In the case of root, uptake is initiated by strong 
adhesion followed by absorption and travelling to different plant tissues after chela-
tion with microbial siderophores (Chen 2018). Another study on uptake of ceria 
NPs in cucumber plant through the root denotes this adherence to electrostatic inter-
action between positively charged NPs and negatively charged root surfaces created 
by the secretion of mucilage – a mixture of hydrated polysaccharides (Zhang et al. 
2011). Similar findings were observed for Zn NPs translocation in Zea mays or corn 
(Zhao et al. 2012). Further, other phenomena like osmotic pressure and capillary 
forces play an important role in the movement of these NPs into roots and transpor-
tation to shoot with water via vascular system, transpiration, and evaporation 
(Fig. 18.4-II) (Raliya et al. 2015; Zhang et al. 2011) as indicated by the transloca-
tion and agglomeration in TEM images of leaf and stem (Fig. 18.4-A, B). Certain 
studies have also supported the direct intake of NPs through cell wall pores having 
limiting diameter of 3.5–5 nm or via creation of holes in the cell wall. The probabil-
ity was also suggested related to the entry of NPs in roots through the apical meri-
stematic tissue available at the tip of the root under root cap leading to diffusion of 
NPs into xylem (Zhu et  al. 2012). Transversal cut of fluorescein isothiocyanate 
(FITC) stained image of the root (Fig. 18.4-C) confirms the entry of Zn NPs (dark 

Fig. 18.4 (I) NPs transportation through apoplast and symplast pathways in plant cells along with 
the gradient or mass flow of photosynthate product. Inset represents the favorable transport of gold 
nanostructure (rod shaped) more through apoplast than symplast pathways. Color gradient in the 
phloem represents mass concentration of photosynthate with NPs (Raliya et  al. 2016). (II) 
Mechanistic understanding of nanoparticle uptake, translocation, and accumulation along with 
TEM micrograph of leaf (A) and stem (B) for foliar application of TiO2 (Raliya et al. 2015) and (C) 
root cross section of FITC-labeled ZnO NPs showing stained NPs aggregates in the root epidermis, 
cortex, endodermis, and xylem. (D) Confocal image of longitudinal section of corn root showing 
aggregation of NPs vascular cylinder attached to xylem vessel walls (Zhao et al. 2012)
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green dots) into the root cortex through the epidermis, somewhat retention by the 
Casparian strip, and transportation to the endodermis and vascular cylinder 
(Fig. 18.4-D) by the apoplastic and symplastic pathways, respectively.

The studies performed on rice, ryegrass, radish, and pumpkin showed that the 
surface charge of NPs also play an important role in the uptake mechanism based on 
the binding capacity and internalization into the plant system. Positively charged Au 
NPs have effective binding and poor internalization, while negatively charged NPs 
depict poor binding to the root surfaces and high efficiency for internalization that 
varies from plant to plant. The same species-dependent response was observed in 
the transportation of NPs from the root to shoot to leaves (Zhu et al. 2012).

18.4.2  Nanocides

The development of nano-formulations of pesticides, fungicides, and herbicides, 
cumulatively known as nanocides, enabled better plant protection through enhanced 
solubility, increased bioavailability, decreased effect on nontarget organisms, 
improved specificity, better stability, and permeability (Fig. 18.5d). As was the case 
in conventional fertilizers, conventional pesticides suffer from more or less the same 
scenario  – leaching; degradation either by photolysis, hydrolysis, or microbes; 
effective concentration availability; and ecotoxicity. Hence, to resolve these issues, 
the pesticide and related nano-formulations come up with essential traits like con-
trolled release, effective concentration, improved targeted delivery, less number of 
applications, low ecotoxicity, reduced dosage, safe mode of delivery, and less 
human exposure (Prasad et al. 2017a; Tuteja and Gill 2012). There are four types of 
formulations (Fig. 18.5) available for the delivery of active ingredients, AI (pesti-
cides, herbicides, and fungicides), i.e.:

• Nano-emulsion – usually oil-in-water (O/W) based in which the AI nano- droplets 
solubilized in oil portion are dispersed in water with surfactant molecules stabi-
lized with emulsifiers.

• Nano-suspensions – also named as nano-dispersions; AI droplets are suspended 
in aqueous phase stabilized by surfactant molecules.

• Nano-capsules – having core-shell structure with AI either in the form of liquid 
or powder core is covered by polymeric layer shell either through encapsulation 
or entrapment.

• Nanoparticles  – the nanoparticles having pesticidal, fungicidal activities, etc. 
can be used directly as AI. These include two types of NPs: (a) inert dusts like 
silica, diatomaceous earth, alumina, and clays and (b) metal NPs, e.g., Ag, TiO2, 
Cu (Abd-Elsalam and Prasad 2018; Hayles et al. 2017; Kah and Hofmann 2014; 
Khandelwal et al. 2016; Zhao et al. 2017).

Nano-pesticides owing to their small size and large surface area are more perme-
able into insect as compared to conventional ones. The pest poisoning is caused by 
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four modes of entry as depicted in Fig. 18.5e, i.e., inhalation, stomach, dermal con-
tact, and respiration system (fumigation) (Zhao et al. 2017).

The use of NPs as protectants to plant diseases has shown good nanocidal activi-
ties toward various pests, fungal strains, etc. Treatment of rice with alumina NPs 
dust has resulted in its protection from Sitophilus oryzae L. (rice weevil) and 
Rhyzopertha dominica (F.) (grain borer), as almost 100% mortality of these species 
was observed on the ninth day at dose rate of 500 mg Kg−1 (Stadler et al. 2010). 
Silver NPs with its antifungal activity are able to control fungal infections in the 
plants. Green synthesized Ag NPs dealt effectively with wheat pathogen, Bipolaris 
sorokiniana infection in plants under in vitro and in vivo conditions. A small con-
centration of these NPs, i.e., 2 μg/ml, was able to inhibit 100% conidial germination 
(Fig. 18.6a, b) (Mishra et al. 2014). Silver NPs and their core-shell structure were 
also found effective in inhibiting the growth of F. oxysporum in tomato plants 
(Madbouly et al. 2017) and other species, i.e., Phytophthora capsici, Phytophthora 
nicotianae, and Phytophthora colocasiae (Ho et al. 2015), respectively. In addition 
to that, these Ag NPs have depicted antifungal activity against various strains like 
Botrytis cinerea, Magnaporthe grisea, Fusarium culmorum, Colletotrichum 

Fig. 18.5 Nanocide formulation types, i.e., (a) nano-emulsion, (b) nano-suspension, (c) nano- 
encapsulation, (d) along with their potential advantages over conventional counterparts (e) and 
mode of action of nano-pesticide (e) (Zhao et al. 2017)
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gloeosporioides, etc. by halting growth of germinating fragments and sprout length 
(Abd- Elsalam 2012).

Similarly, the use of NiFe2O4 and CoFe2O4 NPs (500 ppm) has not only impeded 
78.91–81.39% mycelial growth of three fungal strains, i.e., Fusarium oxysporum, 
Colletotrichum gloeosporioides, and Dematophora necatrix, but also impacted pos-
itively in controlling pathogen wilt in capsicum plant (Sharma et al. 2017). Vegetative 
growth as well as sporulation of A. niger, a common fungus, isolated from potato 
strain, was effectively controlled by the use of nano-sulfur. The effectiveness of 
functionalized NPs of ZnO, Al2O3, SiO2, and TiO2 toward controlling rice contami-
nated with Sitophilus oryzae was also checked, and it was observed that at a dose of 
1 g/kg, the alumina (mean mortality 97–100%) and silica (mean mortality 86–95%) 
are much effective as compared to the TiO2 (mean mortality 29–45%) and ZnO 
(mean mortality 36–40%). In determining the NPs activity, hydrophilic and hydro-
phobic characters play an important role, and the order of effectiveness is α-Al2O3 
(hydrophobic) > γ-Al2O3 (hydrophilic) > SiO2 (hydrophilic) > SiO2 (hydrophobic) 
(Goswami et al. 2010). The dependence of fungicidal activity was also found depen-
dent on the nature of composite as well as the strains. Chitosan and its NPs 

Fig. 18.6 (I) Antifungal effects of biosynthesized Ag NPs (bsAgNPs) on B. sorokiniana conidial 
germination in (A) control and (B) after 24 h. (II) Herbicidal activity of (A) control, (B) unloaded 
NPs, (C) free paraquat, (D) paraquat-loaded NPs in cultivations of maize after 48 h
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composites (i.e., chitosan-saponin, Cu-chitosan) were found to show in vitro myce-
lial inhibition activity against the three strains, i.e., A. alternate, M. phaseolina, and 
R. solani, based on the order Cu-chitosan > chitosan-saponin > chitosan, chitosan > 
chitosan-saponin > Cu-chitosan, Cu-chitosan > chitosan > chitosan-saponin, respec-
tively, while Cu-chitosan was found most effective in controlling spore germination 
of these fungal strains (Saharan et al. 2013). Lower concentration (i.e., 1 g/L) of 
these Cu-chitosan was also found effective in controlling the vascular wilt disease 
in date palm caused by Fusarium oxysporum as compared to conventional fungicide 
Rizolex™ (dose 3 g/L) (Mohamed et al. 2018). NPs of ZrO at a concentration level 
of 100 μg/L have depicted significant inhibition in growth of Rhizoctonia solani 
(86.6%) relative to untreated control under laboratory conditions. Cucumber plants 
treated with these NPs are found to have much resistant to root rot disease under 
greenhouse (34–46%) as well as field conditions (52–56%) compared to nontreated 
control plants (Derbalah et al. 2019).

NPs have also been exploited as nano-carrier of pesticides, fungicides, herbi-
cides, etc. The role of silica NPs as target-specific material in this aspect is well 
exploited by many researchers (Rastogi et al. 2019). Slow-release formulations of 
pesticides, e.g., avermectin and pyoluteorin, were prepared by encapsulation with 
porous silica NPs enabling their slow release over a period of approx. one month. 
The process also results in high loading of these pesticides with added advantages 
of pesticide resistance against UV-light degradation and better antifungal activity 
against Phytophthora capsici (Chen et al. 2010; Li et al. 2007). Some investigation 
have pointed out that release behavior is governed by electrostatic interactions as 
was the case in diquat dibromide (a herbicide) encapsulated by sulfonate- 
functionalized mesoporous silica NPs, while ionic strength was found to impact the 
bioactivity (Shan et  al. 2019). Chitosan functionalized with alginate and tripoly-
phosphate loaded with weedicides, i.e., imazapic and imazapyc, showed a release 
percentage of 30 and 20%, respectively, in comparison to the unencapsulated ones, 
i.e., 55 and 97%. Release percentages of both herbicides vary, owing to the different 
modes of interaction between nanoparticles and herbicides. This slow release of 
herbicides has fostered the soil bacterial community, owing to the enhanced avail-
ability of nitrogen as a result of the destruction of target weed (Bidens pilosa) 
(Maruyama et al. 2016). Likewise, the loading of paraquat (herbicide) on chitosan/
tripolyphosphate has shown no toxicity on Allium cepa (onion) seeds as against 
LD50 of 0.12 mg/mL of unloaded herbicide. Enhanced herbicidal activity of NPs 
loaded with herbicide was noticed in Brassica sp. (Fig. 18.6c) and Zea mays leading 
faster necrosis in plants in contrast to free paraquat owing to its less decomposition 
and better adhesion of NPs with plant leaves (Grillo et al. 2014).

In addition to NPs, other systems have also been used to encapsulate these agro-
chemicals like atrazine-loaded poly(ε-caprolactone) nano-capsules and metsulfuron 
methyl-loaded pectin NPs have same inhibitory effective against Amaranthus viri-
dis (Díaz-Blancas et  al. 2016), Bidens pilosa, and Chenopodium album in much 
lower dosages as compared to the commercial formulation applied at standard dos-
ages (Kumar et al. 2017b; Sousa et al. 2018).
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Nano-formulations are also found effective in comparison to the bulk counter-
parts. Nano-emulsions of pesticides (permethrin, bifenthrin) (Kumar et  al. 2013; 
Liu et al. 2011), fungicides (tebuconazole) (Díaz-Blancas et al. 2016), herbicides 
(glyphosate isopropylamine) (Jiang et al. 2012), etc. were prepared and found to 
perform better. Nano-form of azomethine was reported to have two times higher 
fungicidal activity against different strains of fungi (i.e., Rhizoctonia solani, 
Rhizoctonia bataticola, and Sclerotium rolfsii) (Mondal et al. 2017).

18.4.3  Sensors

Nano-sensors, available in a variety of forms (Fig. 18.7), offer fast detection with 
high sensitivity, low detection limits, and response factor enabling early detection of 
the many of the physiochemical and biological aspects. It had vast applications in 
the field of soil quality, disease management, detection of contaminants and other 
molecules, detection of DNA and proteins, etc. (Omanović-Mikličanin and 
Maksimović 2016).

Nano-sensors generally consist of three main parts (Fig. 18.7). Nanomaterials 
usually enhance the sensitivity, while the recognition elements help in developing 
the specificity enabling the detection of analyte of interest based on different signal 
transduction techniques, i.e., electrical, mechanical, optical, or chemical detection 
functions (Munawar et al. 2019; Willner and Vikesland 2018).

18.4.3.1  Pesticidal Residues Determination
Conventional protocols of residual pesticides’ detection are tedious, but recent 
advances in the field of nano-sensors enabled early and low-level on-field detection 
of pesticides in agriculture produce. Table 18.2 presents few of the developments 
done in this field.

Optical sensors owing to their colorimetric detection have gained the attention of 
researchers and led to various developments by the use of 

Fig. 18.7 Components and classification of nano-sensors (Saini et al. 2017; Willner and Vikesland 
2018)
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acetylcholinesterase- based inhibition activity by employing gold, silver, and mag-
netite NPs. The low detection limits were noticed for organophosphate pesticides 
when using these NPs, i.e., Au (LODs: 0.1 μg/L for carbaryl and diazinon, 0.3 μg/L 
for malathion, and 1.0 μg/L for phorate), Ag (0.18 ng/mL for dipterex), and Fe3O4 
(1 nM for acephate, 10 nM for methyl paraoxon, and 5 μM for sarin) (Xia et al. 
2015). Florescent nano- sensors owing to their high sensitivity and rapid analysis 
have gained preference over the colorimetric detection approach, and the use of 
quantum dots, metal NPs, and surface plasmon resonance has really enabled fast 
detection of pesticides (Pacioni and Veglia 2007; Xia et al. 2015; Zhao et al. 2011). 
Fluorescent liposome- based NPs were also prepared to detect organophosphorus 
pesticides, e.g., dichlorvos and paraoxon (Liu et al. 2008).

In an effort to further enhance sensitivity and selectivity, the new class of nano- 
sensors, i.e., apta-nano-sensors, is being developed which utilized aptamers as 
chemical artificial receptor (recognition element). Aptamers are small nucleic acid 
sequences of RNA or DNA that can bind to different ligands with high binding 
affinity (Jokar et al. 2016; Willner and Vikesland 2018; Yan et al. 2018). Apta-nano-
sensors have been extensively used for the determination of residual pesticides, i.e., 
acetamiprid (Jokar et al. 2016; Qi et al. 2016; Verdian 2018; Yang et al. 2015).

18.4.3.2  Diagnosis of Plant Pathogens
Diagnostic measurement of plant diseases is another milestone of the nano-sensors 
that enable early detection of plant pathogens and initiation of respective treatment 

Table 18.2 Nano-sensors developed for pesticides/herbicides detection

Pesticide/herbicide detection Sensing material Detection limit References
Carbaryl and methomyl 
(carbamate pesticides)

Polyaniline and multi-walled 
carbon nanotube core-shell 
modified glassy carbon 
electrode

1.4 μmol L−1 Cesarino et al. 
(2012)0.95 μmol L−1

Paraoxon 
(organophosphorus 
pesticide)

Acetylcholinesterase/gold 
NPs (Au NPs)/graphene 
oxide nanosheets

0.1 pM Wang et al. 
(2011)

Paraoxon 
(organophosphorus 
pesticide)

Organophosphate hydrolase- 
gold NPs

20 μM Simonian et al. 
(2005)

Methyl parathion 
(organophosphorus 
pesticide)

ZrO2NPs deposited on gold 
electrode

3 ng/mL Liu and Lin 
(2005)

VX, soman, sarin, and 
paraoxon-ethyl 
(organophosphorus 
pesticides)

Lipoic acid-capped Au NPs 2.51 pM Sun et al. 
(2011)15.0 pM

28.2 PM
4.52 × 104pM

Sulfurazon-ethyl 
(herbicide)

Humic acid-capped Ag NPs 100 ppm Dubas and 
Pimpan (2008)

Triazinic pesticides Surface plasmon resonance- 
based polymeric material

Yılmaz et al. 
(2017)

18 Green-Nanotechnology for Precision and Sustainable Agriculture



332

at early stages, thereby saving the spread and damage of the crops that earlier 
accounted for almost 20–30% crop loss. Recent advancement in nano-diagnostic 
measurements and development of tailored nanomaterials that can establish cova-
lent linkages to biological molecules (i.e., proteins, enzymes, peptides, nucleic 
acids) enabled rapid, sensitive, accurate on-site detections of these pathogens with 
added advantage of avoiding stringent sample preparation protocols (Kashyap et al. 
2017). NPs are either directly used with or without modification to directly detect 
the pathogens, or they can detect the compounds released by plants in the disease 
condition (Khot et al. 2012). Such techniques hence exploit different approaches, 
e.g., antibody-antigen, adhesion receptor, antibiotic, and complementary DNA 
sequence recognitions (Khiyami et al. 2014) permit much lower detection limits as 
compared to the earlier used techniques like ELISA. These techniques also pro-
moted the development of briefcase-sized kit or smart dust that can help farmers to 
determine the disease attack and consequently the controlled spray use and its 
related measures (Ali et al. 2014; Khiyami et al. 2014).

Pantoea stewartia, bacteria causing Stewart’s wilt in sweet corn, was success-
fully diagnosed with the help of lanthanide chelate-loaded silica NPs that are able 
to offer very low detection limits, i.e., 103 cfu/ml (Zhang et al. 2014b). Similarly, 
conjugation of silica NPs with organic dye (tris-2,2′-bipyridyl dichlororuthenium 
(II) hexahydrate) resulted in a fluorescent biomarker helped in early detection of 
Xanthomonas axonopodis bacteria that cause spot disease in Solanaceae plant (Yao 
et al. 2009). Colorimetric determination of various bacterial strains (S. typhimurium, 
S. enteritidis, Staph. aureus, and Campylobacter jejuni) available in food was made 
possible by preparing the cocktail of surface-modified nanobeads that on interaction 
with different bacterial strains generate different colors (Alamer et al. 2017).

Among the different plant pathogenic-based diseases, viral-based diseases are 
the most difficult one to tackle, and once started, the use of pesticides is not much 
effective. Hence, their early detection before the symptomatic appearance is really 
advantageous for saving the crop. One such viral attack is Cucumber mosaic virus 
which, with its high transmission rate and susceptibility to a wide variety of crops, 
is considered a dangerous plant virus. Polypyrrole nanoribbon-based nano-sensor 
planted with the virus antibodies is able to detect this virus in broad range of 10 ng/
ml to 100 μg/ml (Chartuprayoon et al. 2013). Another lethal vector, Polymyxa betae, 
that transmits beet necrotic yellow vein virus which causes sugar beet crop damage 
can be easily detected by quantum dots (QD)-based nano-sensors (Safarpour et al. 
2012). A similar kind of QD-based setups was able to detect plant virus Citrus 
tristeza with much lower detection limits as compared to ELISA (Shojaei et  al. 
2016a, b).

Ganoderma boninense is a fungal strain causing great damage to palm oil indus-
try by causing basal stem rot infection and having no significant treatment known 
since its symptomatic appearance. The said pathogen was successfully diagnosed at 
earlier stages of attack by the use of CdSe QD by its high interaction with DNA of 
G. boninense with reported LOD of 3.55 × 10−9 M (Bakhori et al. 2013). Ochratoxin 
A was detected in a concentration range of 0.3–10 mg/mL in grape juice and red 
wine using black phosphorene nanosheets-based sensor (Xiang et al. 2018).
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Salicylic acid is a plant hormone released in stressed plants that are under attack 
by insects or pathogenic diseases owing to their defense mechanism. The determi-
nation of these signaling molecules accurately and in low amounts can significantly 
save the crop losses. One such study carried out using nano-Cu/Au electrode 
allowed salicylic acid detection in oilseed rape infected with the fungal pathogen 
Sclerotinia sclerotiorum (Wang et al. 2010). Another such detection system based 
on aptamer nano-sensor resulted in lower detection limits (0.1 μM) and early detec-
tion (30 min) with very small sample size (1 μL plant extract) in Arabidopsis and 
rice (C. Chen et al. 2019). p-Ethylguaiacol is a compound released by plant when it 
is infested by Phytophthora cactorum, a pathogenic fungus attacking crops belong-
ing to the gourd family. This phytohormone can be electrochemically detected using 
carbon electrode screen printed by TiO2 or SnO2NPs in the range of 0.2 μM–0.1mM 
using differential pulse voltammetry with LOD of 35 nM for TiO2 and 62 nM for 
SiO2 (Fang et al. 2014).

18.4.4  Nano-barcodes

Barcodes, either overt (visible) or covert (invisible), are like fingerprint used to 
uniquely encode the materials in order to provide error-free identification. The NPs 
unique sequence is created by multiple types and multiple layers of different materi-
als with varied properties like shape, color, and size (Fig. 18.8). In some cases, these 
nano-barcodes are supported on carrying materials (Shikha et al. 2017; Wang et al. 
2015a). These identification codes have found their implications in agricultural field 
in biological and nonbiological applications. In biological applications, nano- 
barcodes are used as tags for carrying out multiplexed bioassay and encoding 
enabling better plant resistance against environmental stresses. In nonbiological 
applications, tagging is found helpful in developing authentication and tracking of 
agriculture produce (Ditta 2012). The nano-barcodes are detected under UV-light, 
resulting in different color combinations detectable by computer scanner (Bowles 
and Lu 2014).

18.4.5  Soil Management

18.4.5.1  Soil Analysis
Soil conditions like pH, moisture level, nutrient composition, salinity, etc. can be 
viably measured with the help of nano-sensors, thereby helping farmers with timely 
analysis that in turn can effectively utilize the information to control inputs and 
undergo site-specific treatment (Kaushal and Wani 2017).

18.4.5.2  Water Retention/Absorption Holding Capacity
The development of nanomaterials that enable water absorption and retention pro-
motes sustainable agriculture by provision of water as and when needed. Such 
materials are valuable in areas of drought and also in the future considering the 
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scarcity of water and regular downfall of water table. Superabsorbent polymers are 
the example of such materials that have the capacity to hold large amounts of water 
and can desorb it under specified conditions of temperature and pressure for longer 
periods of time. Silver-coated nanoclay/polymer composites act as hydrogels and 
are able to absorb 161 g/g of tap water in 68 h. The gel favored the soil water hold-
ing capacity that helped in retention of rain/agriculture water by 130–190 times its 
weight. On the other hand, the water desorption ratio of soil treated with hydrogel 
reached 78.6 wt% on the 30th day which is much improved as compared to the 
untreated (90.2  wt%) (Vundavalli et  al. 2015). Another hydrogel based on 
poly(acrylamide-co-acrylic acid)/AlZnFe2O4 nanocomposite helped in significantly 
enhancing the water holding capacity of sandy loam soil, i.e., 471 g/g. In addition 
to that, the said treatment also improved the wheat seed germination and growth 
(Shahid et al. 2012). In addition to hydrogels, other materials are also exploited by 
researchers to enhance the water holding capacity of soil, e.g., nanocarbon (Zhou 
and Chen 2017), zeolite nanocomposite (Lateef et al. 2016), biochar nanocomposite 
(Lateef et al. 2019), agar/clay nanocomposite (Rhim 2011), etc.

18.4.5.3  Soil Decontamination
Soil remediation from toxic materials has always been a challenge especially in 
respect of their cost-effectiveness and ease of application. Nanotechnology has 
offered a better approach than the conventional techniques to remove their hazard-
ous inorganic as well as organic contaminants from the soil.

Fig. 18.8 Schemas for different barcoded nanostructures of different geometries. Encoded (a) 
nanobeads with encoding elements (i) encapsulated inside and (ii) decorated on the surface; (b) 
nanoclusters, where NPs are assembled as super-particles and stabilized by polymers; (c) nanowire 
array which has nanoscale diameter and length up to several microns; (d) nanorods with different 
metal compositions in a striped pattern; (e) nanotube cross section showing NPs encapsulated 
inside; (f) nanosheets with NPs loaded inside; (g) nanostars that are branched nanostructures with 
small cores prepared from metal NPs; (h) nanodisks with disk-shaped structures; (i) nanopillars 
with pointed top ends and tapered bases; (j) nanometal organic frameworks consisting of coordina-
tion bonds between metal ions and organic linkers with fluorescent NPs encapsulated inside; and 
(k) sequence barcodes made of oligonucleotide (or peptides) sequences as encoding elements 
(Shikha et al. 2017)
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18.4.5.3.1 Organic Contaminants’ Removal
NPs have played an important role in removing the pollutants from the soil which 
otherwise requires complicated, expensive, and lengthy procedures. These pollut-
ants, i.e., pesticides, organic solvents, polychlorinated biphenyls (PCBs), pharma-
ceutical and personal care products (PPCPs), polycyclic aromatic hydrocarbons 
(PAHs), etc., can be fastly reduced, photodegraded, or adsorbed from the soil after 
it’s being injected with NPs (Fig. 18.9). Mostly used nanomaterials are zero-valent 
iron NPs (nZVI), TiO2, and CNTs (Li et al. 2016). Table 18.3 details the list of pol-
lutants removed from the soil by the use of NPs.

Agricultural soil systems are most vulnerable to pesticides contamination. The 
use of nZVI in soil-water system has shown some remarkable results in decontami-
nating the soil from pesticides. Atrazine – a pesticide that sticks in the environment 
for a very long time and needs reducing conditions to degrade. The presence of 
nZVI facilitated its degradation from soil at pH less than 7. Even better and faster 
degradation rates were observed by the use of bimetallic system (Fe/Pd) and addi-
tion of sulfate of Fe(II), Fe(III), and Al(III) (Satapanajaru et al. 2008). In soil, DDT 
on its contact with nZVI is degraded to DDD in 20 days which results in its accu-
mulation till it is microbially degraded. Among HCHs, the degradation of β-HCH is 
much faster with nZVI as compared to α-HCH, δ-HCH, and γ-HCH. The reason 

Fig. 18.9 (a) Soil remediation approaches of NPs from different contaminants and (b) its sche-
matic diagram (Li et al. 2016)
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was attributed to their different mechanisms of degradation. Anaerobic degradation 
of HCH leads to different degradation products, i.e., tetrachlorocytetrachlorocyclo-
hexene, 5,6-dichloro-1,3-cyclohexadiene, monochlorobenzene, and benzene, which 
is prevalent in all the HCHs. The aerobic pathway, followed by all HCHs except 
β-HCH, results in the formation of pentachlorocyclohexene, 1,3,4,6-tetrachloro- 
1,4-cyclohexadiene, and 1,2,4-trichlorobenzene followed by its aromatic ring cleav-
age (Yang et  al. 2010). The degradation efficacy is dependent on soil aging; the 
DDT degradation was much faster in freshly spiked soils as compared to the ones 
that are historically polluted (age > 50 yrs) and are rich in organic matter (El-Temsah 
and Joner 2013).

The high concentrations of the nZVI enable longer degradation of the DDT 
(El-Temsah and Joner 2013) as low concentration can be easily removed from the 
system owing to their high reactivity, agglomeration, and oxidation in the soil moist 
environment. To combat this, the stabilization of NPs was tried by various means 
like the use of biochar as support, CMC as stabilizer, and incorporation of other 
metals – all these enabled higher degradation rates. The stabilized CMC Pd/FeNPs 
was able to degrade 46% γ-HCH, while the nonstabilized nZVI was only 13% effec-
tive (Singh et  al. 2013). Employing biochar as support of Ni/Fe bimetallic NPs 
(BC@Ni/Fe) reduced the agglomeration of NPs, facilitated high dispersion of NPs 
and high adsorption potential, and reduced bioavailability in the soil system. BC@
Ni/Fe successfully decontaminated the soil from decabromodiphenyl (DBD) in just 
24 h. The high degradation rate was attributed to multiple effects imparted by bio-
char in conjunction with NPs, i.e., (1) hydrogen bonding of BC with DBD, (2) π-π 
aromatic interactions between NPs and DBD, (3) aromatic structure of BC promot-
ing electron transfer to DBD and enhancing catalytic degradation by bimetallic NPs 
(Wu et al. 2016). In some cases, the degradation rates were enhanced by the use of 
oxidizing agents like persulfate (Yang and Yeh 2011).

In spite of the positive impact, the use of nZVI has shown enhanced toxicity 
toward soil-residing Collembola and ostracods in terms of their mortality as well as 
growth inhibition (El-Temsah and Joner 2013). To overcome the negative impacts 
of these NPs, the concurrent treatments were experimented that make use of NPs 
and microbial degradation, enabling the exploitation of both biotic and abiotic phe-
nomena. The use of such integrated systems, e.g., NPs (CMC-PD/Fe) and 
Sphingomonas sp. (bacterial strain), was observed to be highly effective and able to 
degrade γ-HCH almost completely in just 6 days, while at the same time span deg-
radation achieved by independent systems is much lower, i.e., 40% with 
Sphingomonas sp. and 20% with NPs. In addition to that, a few degradation prod-
ucts (1,2,3,4,5-pentachlorocyclohexene, 2,4-trichlorobenzene) resulted from this 
combined system are anaerobically degraded by bacteria to benzene indicating the 
high ratio of dichlorination in this system as compared to the independent ones. 
Such systems are found to operate best at neutral pHs and optimal temperature of 
30 °C (Singh et al. 2013).

R. Nazir et al.



339

18.4.5.3.2 Inorganic Contaminants’ Removal
NPs are also found quite effective in the decontamination of soil from heavy metals. 
The nZVI in this case as well have remained the material of choice for many 
researchers. The removal mechanism depends on the standard redox potential, E°, 
of the contaminant metal (E°M) and that of nZVI (E°Fe = −0.41 V); based on this, the 
metals are removed by utilizing one of these or both mechanisms:

 1. E°M ≤ E°Fe – Removal by adsorption
 2. E°M > E°Fe – Reduction and precipitation

The examples of the first case are Cd and Zn and that of second are Cr(VI), As, Cu, 
etc. There is a third category as well which involves both the phenomena, e.g., Pb 
and Ni. As a result of high involvement of E° in the removal of heavy metals, the 
interference effects from other metals are very phenomenal. In a study carried out to 
remove Cr(VI) from the soil, the presence of metals like Ni and Pb impacted the 
reduction of Cr(VI) owing to their higher E°. Other factors like soil organic matter 
have strong influence on the removal of Cr(VI) (Gueye et al. 2016). The phenome-
non results in the reduction of Cr(VI) to (III), the E° of which are 1.36  V and 
− 0.74 V. Therefore, the Cr(VI) removal takes place through reduction and precipi-
tation followed by removal of Cr(III) via adsorption (Singh et al. 2011).

The effect of combined systems in the case of heavy metal removal is very 
advantageous. In this context, the NP and organic acid system was used considering 
their natural source and easy biodegradability. The percentage removal of Pb(II) by 
the use of these systems obeyed the order: (citric acid + nZVI) – 60–80% > (malic 
acid + nZVI) – 50–60% > nZVI – 5–10%, while overall removal is higher in farm-
land soil as compared to mine soil (Wang et al. 2014). Another study has shown that 
different metals have different affinity with organic acids, resulting in their variable 
removal capacity, but generally citric acid has better affinity as compared to tartaric 
acid which in turn is better than oxalic acid for the three metals used in the study, 
Pb, Cd, and Zn (Cao et al. 2018).

Considering the difficulty of removing the metals from the soil, various research-
ers have used immobilization as a way forward. This will result in making the met-
als less mobile and hence bioavailable and hence reducing their negative impacts. 
Various materials are used in this aspect (Table 18.3). Nano-hydroxyapatite (nHA) 
has fast absorption capacity for heavy metals like Pb and Cd; hence its utilization 
for immobilization of these metals can give a way forward. nHA-injected soil sedi-
ments can bind these metals with high affinity, resulting in irreversible surface com-
plexation followed by their diffusion into the nHA structure (Zizhong Zhang et al. 
2010). The reduced bioavailability of heavy metals (Pb) as a result of inoculation of 
contaminated soil with different concentrations of nHA was depicted by the reduc-
tion in the uptake of Pb by ryegrass grown in the soil. The values of Pb concentra-
tion in aboveground portion of ryegrass reduced from 6.60–119.82  mg/kg in 
untreated soil to 31.85–155.09  mg/kg in nHA-treated soil (Jin et  al. 2016). The 
implication of iron phosphate NPs suspicion on Cu(II) contaminated soil was stud-
ied by using three different kinds of soils and two NPs dosages. Results hence 
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obtained confirmed the immobilization of the Cu(II) by the use of NPs which is 
directly related to their concentration and time of contact. The leachability of Cu 
varies with soil nature and follows the order: calcareous < neutral < acidic (Liu and 
Zhao 2007).

18.4.6  Water Management

The agriculture water management is also a critical aspect especially if the water 
used is contaminated with different pollutants and has poor quality as per require-
ments of the crop. For this purpose, various techniques and materials are available 
that can help in improving the water quality as defined in Fig. 18.10. Considering 
water treatment itself a very broad aspect, the chapter will just present a brief over-
view of the contaminants dealt using nanomaterials (nano-adsorbents and nanocata-
lysts) as outlined in Table  18.4. In relation to particularly irrigation system 
modernization and sustainability, three important approaches have really marked 
the revolution: (1) water aquifers or groundwater remediation using nanoparticle 
injection wells, (2) irrigation water with micro-nano bubbles for saving water con-
sumption, and (3) irrigation through wireless sensor network.

In the first case, the contamination of groundwater aquifers was tackled by NPs 
injection into the water table through a well system (Fig. 18.11a). In this regard, 
nZVI had always remained a material of choice that is injected in “free form,” i.e., 

Fig. 18.10 Applications of nanotechnology in water management for the removal of various pol-
lutants ( ) using different types ( ) and shapes ( ) of nanomaterials
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Table 18.4 Overview of the water treatment using nanomaterials

Nanomaterial Contaminant References
Microbes
TiO2/ceramic E. coli He et al. (2018)
ZnO/ceramic E. coli Huang et al. 

(2018)
Fe3O4@Ba3(PO4)2 E. coli Song et al. (2018)
Heavy metals
Graphite oxide (GO) Ni, Zn, Pb, Cd, Cr Sheet et al. (2014)
Silica
Silica/GO
Functionalized Fe3O4/polyacrylic acid Cu(II), Cr(VI) Huang and Chen 

(2009)
Ag (0) Cd(II) Al-Qahtani (2017)
nZVI Cd(II) Boparai et al. 

(2011)
nZVI/activated carbon As(III), As(V) Zhu et al. (2009)
nZVI/biochar As(V) Wang et al. (2017)
Organic ligand modified mesoporous 
silica

Pb(II) Shahat et al. 
(2015)

nZVI Pb(II) Arancibia- 
Miranda et al. 
(2014)

nZVI/graphene Pb(II) Jabeen et al. 
(2013)

nHA Pb(II) Mousa et al. 
(2016)

Calcium-based nHA Sn(II) Ghahremani et al. 
(2017)

nHA Pb(II), Cd(II), Ni(II) Mobasherpour 
et al. (2012)

nHA Cu(II) Joshi and 
Manocha (2017)

Mercaptoamine-functionalized 
silica-coated magnetic (Fe3O4) 
nano-adsorbents

Hg(II), Pb(II) Bao et al. (2017)

2-Hydroxyethylammonium sulfonate 
immobilized on γ-Fe2O3

Pb(II) Khani et al. 
(2016)

Zirconium silicate Cu(II), Cd(II), Pb(II) Mahmoud et al. 
(2015b)

Chitosan Cu(II), Cd(II), Hg(II), Pb(II) Mahmoud et al. 
(2015a)

Chitosan-acetophenone
Nanofiltration Cr(VI) Hafiane et al. 

(2000)
Nanopolyaniline/nanosilica Cu(II), Pb(II), Hg(II), Cd(II) Mahmoud et al. 

(2016)

(continued)
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Table 18.4 (continued)

Nanomaterial Contaminant References
Radioactive anions and cations
nZVI Cs Shubair et al. 

(2018b)
Fe/Cu Cs
Protein-based nano-traps scaffolds U Sun et al. (2018)
Iron oxide-urea-activated carbon U Mahmoud et al. 

(2017)
Fe/sludge carbon nanoflakes U Kong et al. (2016)
Cu2O/Cu I−1 Zhang et al. 

(2017)
Oxyanions
Fe-Ti oxide F−1 Chen et al. (2012)

Fe-Al-Ce nano-adsorbent Chen et al. (2009)
nHA/chitosan Sundaram et al. 

(2008)
Cellulose@hydroxyapatite Yu et al. (2013)
Fe-Ti bimetallic oxide/Fe3O4 Zhang et al. 

(2014a)
FeOOH-graphene oxide Kuang et al. 

(2017)
GO/poly-amidoamines dendrimers NO3

−1 Alighardashi et al. 
(2018)

nZVI/sand multilayer system Shubair et al. 
(2018a)

(Fe/Cu)/sand multilayer system
nZVI/biochar Wei et al. (2018)
Chitosan/zeolite Y/nano ZrO2 Teimouri et al. 

(2016)
nZVI PO4

−3 Wen et al. (2014)

nZVI/starch Chen et al. (2016)
Fe-Ti Lu et al. (2015)
Hydrated Fe-Zr binary oxide Zhou et al. (2018)
nZVI/activated carbon NO3

−1, PO4
−3 Khalil et al. 

(2017)
Fe3O4/ZrO2/chitosan Jiang et al. (2013)
Chitosan/Al2O3/Fe3O4 nanofibers Bozorgpour et al. 

(2016)
Chitosan/Al2O3/Fe3O4 beads
Pesticides
TiO2 2,4-dichlorophenoxyacetic acid Abdennouri et al. 

(2016)
TiO2 pillared clay 2,4-dichlorophenoxypropionic 

acid
Magnetic-silica core-shell NPs Imidacloprid Karimi et al. 

(2018)

(continued)
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Table 18.4 (continued)

Nanomaterial Contaminant References
CNT Fenuron Ali et al. (2019)
MWCNT Diazinon Dehghani et al. 

(2019)
Zirconium carbide Emodin, physcion Zhang et al. 

(2019)
GO nanosheets Ametryn Khoshnam et al. 

(2019)
TiO2/ZnO Butachlor, diazinon Nozhat et al. 

(2018)
Carbon NPs Trifluralin, glyphosate, 2,4-D Yousefi (2018)
Dyes
Cobalt ferrite Reactive Red 195 Nassar and 

Khatab (2016)
Clay hydrogels Congo red, methyl violet Bhattacharyya and 

Ray (2015)

Surfactant modified nano-γ-alumina Brilliant green and crystal violet Zolgharnein et al. 
(2015)

ZnO Kataria and Garg 
(2017)

CuO/meso-silica Crystal violet, methylene blue Liang et al. (2017)

Activated carbon/γ-Fe2O3 Alizarin Red S Fayazi et al. 
(2015)

Cuprous iodide-cupric oxide 
nanocomposite loaded on activated 
carbon

Malachite green Nekouei et al. 
(2016)

Organic contaminants – others
ZnSe-WO3 Bisphenol A Kumar et al. 

(2017a)
Fe0/Fe3C@carbon spheres Phenol Wang et al. 

(2015b)
Cu/zeolite 2-Chlorophenol Huong et al. 

(2016)
Zeolite Nitrophenols Pham et al. (2016)
MWCNT/TiO2 Tetracycline Ahmadi et al. 

(2017)
WO3-TiO2 @g-C3N4 Acetylsalicylate, 

methyl-theobromine
Tahir et al. (2019)

Carbon nano-onions Phenanthrene, benzopyrene Sakulthaew et al. 
(2015)

NZVI/alginate polymer Naphthalene and its related 
compounds

Abdel-Gawad 
et al. (2016)nZVI

Multiple nature contaminants
Al/Fe-doped polymeric beads F−1, As(V) Kumar et al. 

(2011)
Zr-MOF (metal organic framework) PO4

−3, As(V) Shahat et al. 
(2018)

MgO E. coli, Cd(II) Cai et al. (2017)
Fe@MgO Pb(II), methyl orange Ge et al. (2018)
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either as powder or slurry (Fig. 18.11c), but this suffers from the disadvantage that 
these make them a part of the system and can lead to hazardous impacts. 
Consequently, the researchers opted for the use of static NPs (Fig. 18.11b) that are 
bound or stabilized using some support materials or surfactants, e.g., membranes, 
mats, beads, porous structures, supported NPs, etc., that lead to a much improved 
way of decontaminating water from different targeted contaminants (Tesh and 
Scott 2014).

The second and interesting case of saving water consumption in irrigation sys-
tem is the use of modified dip technologies that rely on the generation of small 
bubbles that fall in the size range of 200 nm to 50 μm and named as micro-nano 
bubble (MNB). The technique is now being synergistically used with the applica-
tion of fertilizers for enhancing the crop production by water management. The 
technique helps in improving the irrigation system by enhancing the water quality 
through the provision of micro-nano bubble-rich water. MNB, produced by using 
bubble generator (Fig. 18.11d), promotes the increase in soil oxygen level to approx. 
2.4–23.6% and aids the supply of oxygen to crop root zone and hence facilitates 
root respiration, photosynthetic activity, crop water absorption, fertilizer consump-
tion, N accumulation, soil microbial count, and soil enzyme activity. The studies 
have shown the positive impact of using this MNB irrigation water on the growth of 
various crops like rice, tomato, and cucumber (Dahrazma et  al. 2019; Liu et  al. 
2019; Sang et al. 2018; Zhou et al. 2019).

The third innovation in water management comes through the use of wireless 
sensor network (WSN)  – these sensors can determine the soil moisture level or 
water level in the fields and are usually placed at the root level to have an idea about 
the moisture level of soil near the roots. The sensor gives analogue command to the 
control system which can then manage water content in the soil by on/off water sup-
ply mechanism (Fig. 18.12) (Ambika et al. 2019; Sadiq et al. 2019). WSN systems 
in conjunction with drip irrigation have resulted in positive impacts on the potato 
(Martinez et al. 2019), tomato (Pandey et al. 2018), and plum trees (Millán et al. 

Fig. 18.11 Nanoparticle injection process for groundwater treatment representing (a) injection 
well, (b) injection of immobile NPs, and (c) injection of mobile particles (Tesh and Scott 2014). 
(d) Schematic representation of MNB technology showing water oxygenation for bubble genera-
tion and related plant cropping protocol (Zhou et al. 2019)
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2019) growth. Such systems are found effective in drought stress management 
(Ortiz et al. 2018).

18.5  Conclusion

Nano-agrotechnology can rightly be considered as a deliberation toward sustain-
ability via precision agriculture approaches. It encompasses in it multitudinous dis-
ciplines that can give a new direction and essence to agronomic practices. Till today, 
nano-agrotechnology developments and achievements are quite promising in the 
fields of development of smart agrochemicals with controlled delivery options, 
plant disease diagnosis and pathogen detection, crop yield enhancement, crop pro-
tection, and soil and water management. In addition to that, these techniques are 
carrying with them the positive elements of less materials utilization, especially the 
toxic agrochemicals, and hence these techniques are more environment-friendly 
than their counterpart (conventional) techniques. In spite of great innovations and 
developments, the field is still enjoying its infancy because of its inability to capture 
the market and attract the attention of multinationals as well as consumers. The 
major reason of this can be attributed to the cost-effectiveness of large-scale nano-
materials’ preparations and the element of toxicity attached with these small struc-
tures. Thus the need is to establish protocols and design a roadmap for enhancing 
the benefits of these nanotechnologies and address the issues that have hampered 
their way to technological success.

Fig. 18.12 (a) Water level sensor, (b) soil moisture sensor, (c) wireless sensor working principle 
(Sadiq et al. 2019)
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Abstract
The rising popularity and attractive applications of nanotechnologies have 
impacted all areas of research, including science, agriculture, and health care. 
Nanoparticles are finding great potential as delivery systems to specific targets in 
living organisms. Recent advances in food science have revealed that food- 
derived bioactives significantly influence changes in the genome, epigenome, 
proteome, and metabolome. This concept is termed “nutrigenomics.” The 
research in nutrigenomics is fast emerging and explored for the prevention or 
therapy of various lifestyle-associated disorders such as diabetes, cardiovascular 
diseases, cancer, and others. The major obstacle in achieving the efficacy from 
the bioactives is their bioavailability in the plasma and/or at the target site follow-
ing consumption. The advent of various nanotechnology methods have contrib-
uted to promising tools such as nanodelivery systems, including nanocapsules, 
nanospheres, and biogenic nanoparticles that can enhance the bioavailability of 
bioactive compounds. This chapter focuses on applications of nanotechnologies 
in nutrigenomics with a particular focus on their applications for prevention or 
treatment of certain metabolic disorders.
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19.1  Introduction

The concept of nanotechnology was first introduced by a Nobel laureate Richard 
P. Feynman during his famous lecture “There’s Plenty of Room at the Bottom” in 
the year 1959 (Feynman 1960). Since then, there have been revolutionary advances 
in the field of science that have demonstrated Feynman’s concepts of manipulating 
matter at the nanoscale. Nanotechnology refers to engineering matter on an atomic, 
molecular, as well as supramolecular scale (Mansoori 2002). It can be defined as the 
creation of functional materials, devices, and systems through the manipulation of 
matter at a length scale of ∼1–100 nm, which can either be produced using synthetic 
or biological means (Singh 2016). The science underlying is referred to as nanosci-
ence. Although nanotechnology is considered as one of the most exciting fields to 
work in recent times, the existence of functional devices and nanostructures have 
existed on the earth as long as life itself (Poole and Owens 2003). Thus, nanotech-
nology is inspired by the processes of nature, which is further being exploited to 
improve the quality of life, on an application level. Nanometer ranged materials 
have been manufactured for numerous decades. One of the best examples is the use 
of carbon black in the manufacture of tires. In the area of food and medicine, this 
technology has the capability of introducing novel functionalities through new 
interfacial phenomena (Chen et al. 2006). Nanotechnology comprises various tech-
niques such as manipulation, modeling, measuring, and imaging of matter at 
nanoscale dimensions. This unique capacity has led to a vast range of new technolo-
gies that influence every aspect of science, environment, industry, and economy. 
Nanotechnology also has several applications in other technologies such as solar 
cells, batteries, electronics, water purification, smart materials, fabrics, paints, and 
chemical sensors. Nanotechnology helps in observing individual cells at molecular 
level by offering a variety of tools; it also helps in obtaining exact spatial informa-
tion about the location of food components (nutrient or bioactive) in a tissue, cell, 
or even in cellular component and also increasing bioavailability of hydrophobic 
compounds (Srinivas et al. 2010).

Nutrigenomics is the integration of genomic science, nutrition, and the environ-
ment (Mead 2007). The study is concerned with the influence of dietary compo-
nents on the genome, proteome, and metabolome. A number of questions regarding 
the bioavailability of dietary components (bioactives), optimal intake levels, devel-
opment of food delivering matrix, product formulations, and the effect of these 
components on the genome are addressed in the study of nutrigenomics. Research 
in nutrigenomics has the potential for innumerable innovations. The field of nutrig-
enomics and nanotechnology has generated enormous interest in the development 
of functional foods as therapeutic candidates as well as delivery of drugs, but the 
consequences of this coalescence are not limited to the former. This chapter will 
focus on well-known nanotechnologies and their applications to nutrigenomics in 
the context of treatment of metabolic disorders.
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19.2  Different Types of Nanotechnology

Nanotechnology includes a wide range of technologies such as nanobots, nanosen-
sors, nanomaterials, nanoplasmonics, nanocoatings, nanoelectronics, and also 
nanoparticles (NPs) (Laurent et  al. 2008). The synthesis of NPs with controlled 
particle size, shape, and crystalline nature is one of the major objectives in chemis-
try that could be used for many applications, such as biomedical, biosensor, the 
catalyst for bacterial biotoxin elimination, and lower cost electrode (Sharma et al. 
2015). Nanoparticles can be mainly classified into three types based on dimensions, 
that is, one-dimension (1–100 nm thin film sized), two-dimension (carbon nano-
tubes), and three-dimension (dendrimers, quantum dots, fullerenes) (Bhatia 2016). 
They can also be categorized depending on their morphology, size, and chemical 
properties. Carbon-based, metal, ceramics, semiconductor, polymeric, and lipid- 
based NPs are some of the well-known classes of NPs (Khan et al. 2017). Various 
methods are used for synthesizing NPs, and these methods are broadly classified 
into two main classes, i.e., a bottom-up approach and a top-down approach (Wang 
and Xia 2004). Based on the adopted protocols, reaction condition, and operation, 
these are further divided into several subclasses. A top-down approach is a destruc-
tive approach, i.e., larger molecules are decomposed into smaller, and then these 
molecules are changed into suitable NPs. Examples of this method are mechanical 
milling, chemical etching, sputtering, laser ablations, and electro-explosion (Iravani 
2011). In the bottom-up approach, NPs are made from comparatively simpler sub-
stances. Examples of this method are reduction and sedimentation techniques which 
include green synthesis, sol-gel, spinning, and biochemical synthesis (Iravani 2011). 
In some of the techniques, e.g., the chemical reduction method uses various hazard-
ous chemicals such as ethylene glycol, dimethylformamide, polyol, sodium borohy-
dride, hydrazine hydrate, sodium citrate, and N,N-dimethylformamide for the 
production of NPs. These chemicals later become liable for numerous health risks, 
also risking the environment (Gokulakrishnan et  al. 2012). Thus, green and bio-
genic synthesis of NPs has attracted many researchers and is gaining popularity due 
to the feasibility and less toxic nature of methods. It is not just a choice but is essen-
tial for the current environmental scenario as these processes are environment- 
friendly as well as cost-effective.

19.3  Biogenic Nanoparticles - The Green Nanoparticles 

In green and biogenic synthesis, biological systems such as plant parts including the 
leaf, bark, flower, peel, and seed are used for the synthesis of NPs. Microorganisms 
such as bacteria, yeast, and fungi are used for the production of NPs. Human cells 
are used as well. Biological sources are known to be green, precise, more effective, 
and convenient nanofactories. Biogenic NPs have better stability and stabilizing 
agents such as proteins, and other biomolecules are used for stabilization which is 
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again from the organism itself. The additional advantage of biogenic nanoparticles 
includes uniform size, shape, and better stability at physiological pH, unlike that of 
synthesized NPs. The biomass of wheat and oat are used for the synthesis of Au NPs 
(Parveen et al. 2016) along with the plant extracts and microorganisms as a reducing 
agent (Ahmed et al. 2016). The reducing agents such as polysaccharides, proteins, 
enzymes, amino acids, phenolics, flavones, terpenoids, and alkaloids are signifi-
cantly harmless (Salouti and Derakhshan 2019). Metals can be transformed into 
nanoparticles by essential biological sources such as microorganisms and plants, 
which are being extensively studied in recent years (Nakajima 2005). Soluble 
nanoscale organic compounds such as liposomes, micelles, and vesicles in plants 
and animals also fall into the category of nanoparticles.

19.4  Synthesis of Biogenic Nanoparticles – The Factory 
Within

Nanoparticles are not just synthesized from modern technologies but are also pro-
duced by natural methods such as forest fires or volcano eruptions as well as in all 
living organisms. Ultrafine sand grains of mineral origin are a simple example of 
naturally occurring nanoparticles (e.g., oxides, carbonates). The biogenic NPs may 
be synthesized inside the cell that will be isolated in separate intracellular compart-
ments, and these are known as intracellular biogenic NPs. Thus, disruption of cells 
is essential in order to separate these NPs. On the contrary, many organisms produce 
NPs outside the cell or send the NPs outside post-synthesis. Such NPs are known as 
extracellular biogenic nanoparticles. There are several reports showing that gold 
and silver NPs are produced using Aloe vera plant (Chandran et al. 2006), Geranium 
(Shankar et al. 2004), sundried Cinnamomum camphora, and Azadirachta indica 
leaf extracts (Patil et  al. 2012). Bacteria such as Pseudomonas stutzeri AG259 
(Slawson et  al. 1994), Marinobacter pelagius (Sharma 2012) and Lactobacillus 
strains (Prasad et al. 2007) have been used in the synthesis of silver, gold, and tita-
nium NPs, respectively. The silver producing Pseudomonas stutzeri AG259 bacteria 
was isolated from the silver mines as they exhibit the accumulation of silver 
nanoparticles. The fungus Trichoderma viride is used for the synthesized spherical 
NPs (Thakkar et al. 2010). In recent days biogenic NPs by fungi are exploited since 
they have higher detoxification capacity, bioaccumulation, easy synthesis method, 
economic, and simple downstream processing. It is reported that fungi such as 
Fusarium solani (Ingle et  al. 2009), Aspergillus niger (Gade et  al. 2008), and 
Aspergillus oryzae produce silver nanocrystals (Binupriya et al. 2010). Yeast is not 
an exception, where the synthesis of cadmium NPs was done using Candida gla-
brata and Schizosaccharomyces pombe (Dameron et  al. 1989). Mourato et  al. 
(Mourato et al. 2011) investigated the biosynthesis of silver and gold NPs using an 
extremophilic yeast strain from acid mine drainage. Stable lead sulfide NPs were 
synthesized intracellularly using marine yeast Rhodosporidium diobovatum 
(Seshadri et al. 2011). Other biological particles, such as enzymes, proteins, pep-
tides, and viruses, have also been used for the biosynthesis of NPs (Ingale and 
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Chaudhari 2013). Peptides are capable of nucleating nanocrystal growth for which 
they have been screened, and M13 bacteriophage was used to demonstrate the same 
(Mao 2003). Viruses such as Cowpea chlorotic mottle virus and Tobacco mosaic 
virus have been used for the mineralization of inorganic materials and sulfide, 
respectively (Douglas et al. 2002; Shenton et al. 1999).

19.5  Nanotechnology for Delivery of Bioactives or Drugs

Nanoencapsulation
Encapsulating a substance with another secondary material in the nanoscale is 
nanoencapsulation. This technology is used in pharmaceutical, food, and cos-
metic industries. Nanoencapsulation of bioactive compounds has versatile advan-
tages for targeted site-specific delivery and efficient absorption through cells 
(Ezhilarasi et al. 2013). It also ensures the stability of bioactive compounds (poly-
phenols, micronutrients, enzymes, antioxidants, and nutraceuticals). Nanocarriers 
(NCs) protect compounds from premature degradation in the biological system, 
enhance the bioavailability, and prolong their presence in the blood, thus better 
cellular uptake (Kumari et al. 2010). There are several varieties of encapsulations 
for the delivery of bioactive compounds such as liposomes, micelles, carbon 
nanotubes, dendrimers, magnetic NCs, and nanoemulsions, some of which are 
described below.

Liposomes Liposomes are mainly composed of amphiphilic molecules that have a 
hydrophilic head and two nonpolar hydrophobic chains. The amphiphilic nature 
allows liposomes to encapsulate and protect sensitive bioactive compounds, both 
hydrophilic and hydrophobic alike. This flexibility enables targeted delivery of 
potentially bioactive compounds (Sharifi et al. 2019). In a study, folate-conjugated 
poly(L-histidine)-poly(L-lactic acid) micelles were effective in killing cancer cells 
(Lee et al. 2003). Feng et al. (Feng et al. 2017) demonstrate that low soluble bioac-
tive compounds like curcumin in combination with a cancer drug encapsulated in 
liposomal nanoparticles could sensitize cancer cells, such as CUR and C6 ceramide 
in OS cell line. Liposomes mimic lipid vesicles and exist naturally in living organ-
isms and thus have broad applications. Further, amphiphilic nature makes them eco-
nomically attractive and environmentally sustainable.

Polymeric Micelles (PICM) Polymeric micelles  are supramolecular structures 
produced as a result of self-assemblage via hydrophobic and hydrophilic effects, 
electrostatic interactions, hydrogen bonding, and metal complexation of amphi-
philic block polymers (polymeric micelles consisting of poly(ethylene oxide)-b- 
poly(propylene oxide), poly(ethylene oxide)-b-poly(ester)s, and poly(ethylene 
oxide)-b-poly amino acids) (Aliabadi and Lavasanifar 2006). This method has gained 
popularity in the field of drug delivery due to their biocompatibility, low toxicity, 
enhanced blood circulation time of the drug, and ability to solubilize a large number 
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of drugs in their micellar core (Mourya et al. 2011). Nishiyama and Kataoka (2006) 
demonstrate the ability of polymeric micelles to cause pH-sensitive release. Liu et al. 
(2003) described the use of poly(N-isopropyl  acrylamide-co- acrylamide)-b-poly 
(D, L-lactide) copolymer in tumor targeting of docetaxel. They observed that hyper-
thermia greatly enhanced the targeting efficacy of drug-loaded micelles and also 
helped in the reduction of toxicity of the drug.

 Carbon Nanotubes (CNTs) A Carbon nanotube is like a sheet of graphite that is 
rolled into a cylinder, with a distinctive hexagonal lattice work making up the 
sheet. Two main types of CNTs can have high structural perfection: single-walled 
nanotubes, consisting of a single graphite sheet seamlessly wrapped into a cylin-
drical tube; multi-walled nanotubes, comprising an array of nanotubes one concen-
trically placed inside another like rings of a tree trunk (Qian et al. 2002). Different 
kinds of drugs can be encapsulated into the hollow structure or inner cavities of 
CNTs to improve their efficacy. The nature of the functional groups attached to the 
surface of CNTs plays a significant role in deciding the mechanism of interaction 
with the cellular machinery. Thus, these principles can be studied and used to tar-
get nutraceuticals to target and to acquire effective results in gene modifications. 
Some of the methods used for the formation of carbon nanotubes are arc discharge 
(Zeng et al. 1998), laser ablation (Ma et al. 2000), carbon monoxide disproportion-
ation, chemical vapor deposition (Benito et al. 1998), and hydrothermal method 
(Gogotsia and Libera 2000). Examples such as folic acid and polyethylene glycol 
were directly adsorbed onto the surface of CNTs to make a water-soluble and can-
cer cell targeting drug delivery system. The drug delivery system released the 
doxorubicin at a reduced pH value particular for the environment of cancerous 
cells and to lysosomes/endosomes. This is effectively able to induce the transcrip-
tion of genes leading to cell death (Niu et al. 2013). Thus, CNTs make an efficient 
drug delivery system.

Dendrimers Dendrimers are the emerging polymeric architectures that are 
known for their defined structures, versatility in drug delivery, and high function-
ality whose properties resemble biomolecules (Madaanet al. 2014). These nano-
structures have shown their potential abilities in entrapping and conjugating the 
high molecular weight hydrophilic as well as hydrophobic entities by host-guest 
interactions and covalent bonding (prodrug approach), respectively. Unlike tradi-
tional polymers, dendrimers have received considerable attention in biological 
applications due to their high-water solubility, biocompatibility, polyvalency, 
and precise molecular weight. Dendrimers are usually synthesized using the 
three techniques: (1) divergent approach (Klajnert and Bryszewska 2001), (2) 
convergent approach (Hawker and Frechet 1990), and (3) double-stage conver-
gent approach (Crespo et al. 2005). Despite their extensive applications, their use 
in biological systems is limited due to toxicity issues associated with them 
(Madaan et al. 2014).
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Nanoemulsions Nanoemulsions; also referred to as mini emulsions, ultrafine 
emulsions, and submicron emulsions are another novel drug delivery form with 
droplet size 10–100 nm. They are single-phase and thermodynamically stable iso-
tropic systems that consist of emulsified oil, water, and amphiphilic mole-
cules (Grumezescu 2017). Nanoemulsions are composed off oil droplets dispersed 
in an aqueous medium and stabilization by surfactants. Nanoemulsions have a 
higher loading capacity and bioavailability for lipophilic active ingredients and thus 
have added advantage over their bulkier counterparts which makes them one of the 
supramolecular vehicles to the effective delivery of drugs and nutraceuticals. 
Nanoemulsion can be formulated with a variety of techniques such as high-pressure 
homogenization, ultrasonication, self-emulsification, phase inversion, microfluidi-
zation, and titrimetric method. Creams, liquids, sprays, and foams are some of the 
examples of the dosage form in which nanoemulsion can be molded (Mohapatra 
et al. 2019). Encapsulated lipophilic bioactive components in pharmaceutical prod-
ucts, functional food, and personal care oil-in-water nanoemulsions are used as 
delivery systems, but only few water-in-oil emulsions are used as nanoemusion as 
they are very unstable (Basri et al. 2013 and Rahman et al. 2009). Better gastroin-
testinal tract (GI) absorption, 15–250-fold higher uptake efficiency of particles in 
the range of 100 nm by the GI tract, was noted, compared to that of the micrometer- 
sized particles (Francis et al. 2005). Nanoemulsions are used as carriers for brain 
delivery of risperidone which is prominently used to treat bipolar disorders, schizo-
phrenia, and irritability associated with autism (Đorđević et al. 2015).

The small size of the droplets in nanoemulsion causes better penetration and also 
provides uniform distribution of nutraceuticals or drugs on the target. No creaming 
or sedimentation occurs on storage. The small droplets also prevent their coales-
cence. Since these droplets are elastic, surface fluctuations are also avoided 
(Matalaniset al. 2013). But like any technology, nanotechnology comes with demer-
its as very little is known about the absorption and excretion of nanoparticles by 
experimental animals or in humans. Studies are being conducted on the use of bio-
genic nanoparticles over synthetic ones as bioactive or drug delivery system 
(Ju-Nam and Lead 2008).

19.6  Advances in Nutrigenomics

Nutrigenomics, along with other “omic” sciences, aims to clarify the interaction 
between genes and bioactive compounds from food sources (Costa and Rosa 2011). 
Bioactives from food can interfere with genes in several ways and at several pro-
cesses of gene modulation, for example, during transcription as transcription factors 
(Sales et al. 2014). There are foods that can influence the genetic changes leading to 
early onset and hastened progression of diseases and disorders. On the other hand, 
there are also food and food-derived bioactives that have potential to prevent, atten-
uate, or revert these changes.
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Some components of food contain anti-inflammatory bioactives, such as caffeic 
acid, tyrosol, quercetin, and lycopene. These molecules inhibit the expression of 
COX2 and iNOS genes by reducing the translocation of  nuclear factor kappa-
B (NF-κB) from the cytoplasm to the nucleus (Dalmiel et al. 2012). α-Tocopherol 
in green tea is also known to decrease the chronic inflammatory process that occurs 
in obese individuals and thus can be used as a treatment for the same (Cozzolino and 
Cominetti 2013). Deficiency of micronutrients, such as folic acid; vitamins B12, 
B6, C, and E; selenium; niacin; and zinc, can cause alterations in the DNA similar 
to what is seen after radiation exposure (Cozzolino and Cominetti 2013). Molecules 
present in contaminated food can produce toxic metabolites that may interact with 
DNA, modifying their structure and inducing mutations (Moraeset al. 2009).

Furthermore, dietary compounds modulate epigenomic changes associated with 
age-related disorders such as diabetes, cardiovascular disease, and cancer. In the 
context of diabetes, several polyphenolic phytochemicals have been found to influ-
ence the expression of genes involved in processes such as glucose transport, insulin 
secretion, antioxidant effects, inflammation, vascular functions, and lipid metabo-
lism. Resveratrol activates p-AKT, p-eNOS, TRX-1, HO-1, and VEGF and increases 
MnSOD activity in the myocardium of STZ-induced diabetic rats. Resveratrol ele-
vates GLUT4 expression in muscle via the PI3K-AKT pathway. Quercetin regulates 
gene expression through NF-κB activation. Beta-carotene is used to treat patients 
with type 2 diabetes mellitus (T2DM). Dietary bioactives, such as genistein, cur-
cumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate, regulate 
HDAC and histone acetyltransferase activities, suggesting that the health benefits 
of these compounds stem from these epigenetic mechanisms (Carlos-Reyes et al. 
2019). Further, it is reported that long time consumption of trans fatty acid (TFA) 
and saturated fatty acid (SFA)-rich diet increases the expression of 
11B-Hydroxysteriod Dehydrogenase Type-1 (11b-HSD1) gene in retroperitoneal 
adipose tissue of rat when compared to diet rich in polyunsaturated fatty acid 
(PUFA). Increased expression of 11b-HSD1 gene leads to increase conversion of 
inactive glucocorticoids to active form in adipose tissue increasing the possibility 
of developing obesity and insulin resistance (Prasad et al. 2010). Arteriosclerotic 
factors such as total cholesterol and low-density lipoprotein (LDL) cholesterol can 
be reduced and anti- atheroscleotic factor like high-density lipoprotein (HDL) cho-
lesterol can be increased by consuming mustered oil that is rich in diacylglycerol 
(DAG). Thompkinson et al. (2014) have reported that omega-3 fatty acids-rich diets 
are helpful for cardiovascular health. Fish protein and fish oil-enriched diet decreases 
serum triacylglycerol and cholesterol as well as liver triacylglycerol and cholesterol 
along with the changes in composition of liver lipid fatty acid (Hosomi et al 2013). 
Diet rich in trans fatty acids is proven to have direct effect on many diseases such as 
breast cancer, colon cancer, diabetes, obesity, allergy risks of preeclampsia, cardio-
vascular diseases, shortening of pregnancy period, and disorders of nervous system 
(Dhaka et al. 2011). It is proven that plant-based ayurvedic medicines helps in can-
cer prevention (Sinha et al. 2003). Wherein, turmeric is proven to be a promising 
chemo-preventive agent has it possess potent antioxidant and anti-inflammatory 
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property. Genomics and proteomics studies have also helped in better understanding 
of male infertility. The review by Singh and Jaiswal (2011) has revealed the use of 
nutrigenomics in male Infertility. Vitamin B12, folate, and zinc-rich diets were 
found to have a beneficial effect on spermatozoa motility as well as number (Dhillon 
et al. 2007). However, there is inadequate evidence to demonstrate that dietary bio-
actives modulate metabolic diseases-associated epigenetic alterations and prevent 
or delay the onset of metabolic memory-induced development of these complica-
tions. Moreover, the bioavailability of these bioactive compounds following con-
sumption limits their efficacy in preventive or therapeutic applications. The advent 
of nanotechnology has contributed promising tools such as nanodelivery systems, 
including nanocapsules and nanospheres, which can enhance the bioavailability of 
bioactive compounds (Bajpai et al. 2018).

19.7  Nanotechnology and Nutrigenomics – The Combined 
Perspective

Though various bioactives have been found to be effective in correcting the aberrant 
gene expression involved in various disease conditions, their bioavailability limits 
their efficacy. Nanotechnology has the capacity to transport these bioactive com-
pounds in a way that they are more bioavailable to a cell, and they can be potent 
chemical messengers and transcription factors that lead to alteration in gene expres-
sion. Nanotechnology also allows creating synthetic molecules or the use of bio-
genic particles that can alter the specific gene expression. A wide variety of 
encapsulation platforms, including nanoemulsions, liposomes, and biogenic pro-
duction of such nanoparticles which possesses both diagnostic and therapeutic 
potential owing to their outstanding properties compared to their bulk counterparts, 
can help achieve the reverie of targeted drug delivery system. This may further solve 
many of the limitations faced due to hydrophobic molecules by improving their 
bioavailability and also help in providing tailored therapies according to the patient’s 
genetic makeup.

Successful targeting and movement of nutraceuticals/drugs across barriers can 
be achieved, and this technology can bring about a revolutionary change in the field 
of drug targeting and delivery. It also possesses the potential to transform the food 
industry by changing the way food is produced, processed, packaged, transported, 
and consumed. Nutrigenomics is the persuasive future of health care that can be 
achieved through the applications of nanotechnologies.
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Abstract
Modern-day agriculture is evolving from the traditional production of raw food 
products to advances in novel food engineering technologies that ensure purity 
and functionality including health-specific products. Plants are the ultimate 
source of food and nutrition. Nutraceuticals are the functional foods which can 
provide health and medicinal benefits or can be used for prevention and treat-
ment of various diseases along with providing basic nutrition. Nutraceuticals can 
be purified food nutrients, dietary supplements, herbs, cereals, milk, soups, or 
herbal products to genetically engineered foods enriched with vitamins and 
essential minerals. The components may also include phytochemicals, probiot-
ics, vitamins, antioxidants, and essential minerals that are derived from plant 
and/or microbial sources. Recently, nanoparticle pharmaceutical drug delivery 
systems came into picture. These nanocarriers can also be used to enhance the 
potential of nano-formulated nutraceuticals. Presently, many nanocarrier sys-
tems have been developed such as micelles, liposomes, polymeric nanoparticles, 
and nanoemulsions. Some of these pharmaceutical carriers have already made 
their way to clinical development, while others are still under the process of pre-
clinical development. The development of multifunctional nutraceutical nano-
carriers combining several useful properties in one particle can boost up the 
efficacy of many therapeutic and diagnostic protocols.
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20.1  Introduction

Let food be thy medicine and medicine be thy food – Hippocrates

The saying by Hippocrates around 2500 years ago highlights the importance of food 
as medicine. Agriculture products and human health go hand in hand. In the present 
scenario, there is a pressing need for precise and health-based, value-added food 
products. Ayurveda, an ancient Indian science of medicine, also lays a lot of empha-
sis on the role of herbal nutrition in health and treatment of various diseases. Plants 
contain lots of phytochemicals. Phytochemicals are the bioactive compounds, gen-
erally used as additives or nutraceuticals in food and medicine. The term “nutraceu-
ticals” was coined by Stephen DeFelice in 1989. This term originated from words 
“nutrient” and “pharmaceuticals.” These are also known as “functional foods” as 
there is huge amount of nutrients as compared to pharmaceuticals due to their 
expected health and medicinal benefits. The term is intended for a nutritional sup-
plement that is sold with the intent to treat or prevent disease and does not have any 
regulatory definition. Thus “nutraceutical” is defined as “any substance that may be 
considered a food or part of a food which provides medical or health benefits, 
encompassing, prevention and treatment of diseases” (Dudeja and Gupta 2017).

Phytochemical nutraceuticals or functional foods are currently in the lime-
light as a source of alternative medicine (Chung et  al. 2009). Nutraceuticals 
range from isolated nutrients, dietary supplements, purified food, specific diets, 
and herbal products such as vitamins, cereals, minerals, herbals, milk, soups, and 
beverages to genetically engineered foods (Zhao 2007). Recently, these have 
been proposed as a powerful tool in maintaining health and to act against acute 
and chronic diseases, thereby promoting optimal health, longevity, and quality of 
life (Wing Shing Ho et al. 2012).

20.2  Classification of Nutraceuticals

Nutraceuticals have been chemically classified on the basis of their nature into vari-
ous classes including phytochemicals (such as flavonoids, phenols, carotenoids, tan-
nins), probiotics, and dietary fibers. A compilation of various types of nutraceuticals, 
their sources, and benefits is presented in Table 20.1.

20.3  Commercial Nutraceuticals

While the terms “nutraceuticals,” “dietary supplements,” “pharmaceuticals,” and 
“functional foods” are used almost interchangeably, there seems to be a thin line 
distinguishing these terms. “Pharmaceuticals” are used to treat diseases just like 
drugs, while “nutraceuticals” provide inherent protection and hence prevent dis-
ease. Pharmaceuticals are generally patent protected, while many nutrients may not 
be essentially protected by patent laws (Dudeja and Gupta 2017). Recent years have 
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witnessed a great amount of research on phytochemical nutraceuticals. Many nutra-
ceuticals which were found to be safe for human consumption are commercially 
available in the market (Table 20.2).

20.3.1  Nanocarriers

The field of food nanotechnology has experienced remarkable growth over the last 
few years. Such growth has been fueled up by the potential of harnessing the large 
surface area to volume ratio of these materials, increase in bioavailability of active 
ingredients, introduction of controlled target release, and improvement of sensory 

Table 20.1 Different chemical classes of nutraceuticals and their sources and benefits

Class Components Sources Benefits
Flavonoids Anthocyanidins, 

catechins, flavanones, 
flavones

Fruits, tea, citrus and 
fruits/vegetables

Neutralizes free 
radicals, reduces risk of 
cancer

Phenols Caffeic acid, ferulic 
acid

Citrus, fruits, and 
vegetables

Reduces heart & eye 
disease

Carotenoids Carotene, lutein, 
lycopene, zeaxanthin

Carrots, various fruits 
and vegetables, green 
vegetables, tomato, 
eggs, citrus, and corn

Neutralizes free 
radicals, maintains 
healthy vision, reduces 
prostrate cancer

Collagen 
hydrolysate

Collagen hydrolysate Gelatin Improves osteoarthritis

Dietary fibers Beta glucan, soluble/
insoluble fibers, whole 
grain

Wheat bran, oats, 
psyllium, and cereal 
grain

Reduces risk of breast 
and colon cancer & 
CVD

Fatty acids Omega-3 fatty 
acid-DHA/EPA, 
linoleic acid

Fish and marine oils Reduces CVD & 
certain cancer, improves 
mental & visual 
function

Prebiotics/
probiotics

Fructo- 
oligosaccharides, 
Lactobacillus

Onion powder, yogurt, 
and other dairy 
products

Improves 
gastrointestinal health

Glucosinolates, 
indoles

Isothiocyanate, 
sulforaphane

Cruciferous vegetables Induces detoxification 
enzymes, reduces risk 
of cancer

Tannins Proanthrocyanides Cranberries, cranberry 
products, and cocoa

Improves urinary tract 
health, reduces risk of 
CVD

Sulfides/thiols Diallyl sulfides, Allyll 
methyl trisulfide, 
Diathiolthiones

Onion, garlic, and 
cruciferous vegetables

Lower LDL cholesterol, 
maintain immune 
system

Plant sterols Stanol ester Corn, soy, wood oils, 
and wheat

Lower blood 
cholesterol level

Phytoestrogens Isoflavones-daizein, 
genistein, lignans

Soybeans and 
soy-based products

Lower blood 
cholesterol level

Based on Chauhan et al. (2013) and Sharma et al. (2019)
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Table 20.2 Marketed nutraceutical products

Product Category Contents Manufacturer
Calcirol D-3 Calcium supplement Calcium and vitamins Cadila Healthcare 

Limited, Ahmedabad, 
India

GRD Nutritional supplement Proteins, vitamins, 
minerals, and 
carbohydrates

Zydus Cadila Ltd., 
Ahmedabad, India

Proteinex® Protein supplement Predigested proteins, 
vitamins, minerals, and 
carbohydrates

Pfizer Ltd., Mumbai, 
India

Coral calcium Calcium supplement Calcium and trace 
minerals

Nature’s Answer, 
Hauppauge, NY, 
USA

Chyawanprash Immune booster Amla, ashwagandha, 
pippali

Dabur India Ltd.

Omega woman Immune supplement Antioxidants, vitamins, 
and phytochemicals 
(e.g., lycopene and 
resveratrol)

Wassen, Surrey, UK

Celestial 
Healthtone

Immune booster Dry fruit extract Celestial Biolabs 
Limited

Amiriprash (Gold) Good 
immunomodulator

Chyawannprash 
Avaleha, 
Swarnabhasma, and 
RasSindur

Uap Pharma Pvt. Ltd.

Kellogg’s Muesli, 
cornflakes, oats

Immune supplement Antioxidants, vitamins, 
and phytochemicals

Kellogg

PediaSure Nutritious supplement, 
supports the immune 
system

Antioxidants (vitamins 
C & E and selenium), 
DHA, omega-3†

Abbott

Horlicks Nutrition for growth 
and development

Calcium, vitamin, 
iodine, and protein

GlaxoSmithKline 
Consumer Healthcare

ActiPlus Dahi, 
CEREGROW, 
MILO, Baby & 
Me

Growth and 
development immune 
supplement

Antioxidants, vitamins, 
minerals, and proteins

Nestlé

Soya Industries 
Nutrela

Nutritious supplement Carbohydrate, proteins, 
fibers, vitamins

Ruchi

Amul Nutritious supplement Skimmed milk, 
sucrose, carbohydrates, 
minerals

Gujarat Co-operative 
Milk Marketing 
Federation

NutriFit Improve body 
composition, boost 
your energy

Carbohydrate, proteins, 
fibers, lipids, vitamins 
minerals, etc.

Mother Dairy Fruit & 
Vegetable

Yakult Probiotics, immunity 
booster

Lactobacillus casei 
Shirota

Yakult

(continued)
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aspects (Chau et al. 2007; Chen et al. 2006a, b; Sanguansri and Augustin 2006). 
Many research groups have developed production methods for pharmaceutical drug 
delivery systems. Recent technological advances that make use of proteins, lipids, 
and polysaccharides as additives have opened the door to new applications and 
functionalities for nanoparticle delivery systems (Acosta 2009). To depict the next 
generation of nanoparticle vehicles, it is essential to optimize as well as modify the 
properties of these nanoparticles to enhance the bioavailability of different 
ingredients.

Over the past decade, both in research and clinical setting, nanoparticulate phar-
maceutical carriers have been used to enhance the in vivo efficiency of many drugs. 
Surface modification of pharmaceutical nanocarriers is generally done to control 
and enhance their biological properties, resulting in prolonged half-life and biodis-
tribution as well as precise active or passive targeting. Additionally, these can be 
engineered as “multifunctional pharmaceutical nanocarriers,” having multiple 
chemical moieties assembled on the surface of nanoparticles (Rolland 1993; 
Gregoriadis 1988; Müller 1991; Alonso 2004) or for pH- and temperature- dependent 
controlled release.

Nanocarriers possess one or more of the following set of desired properties 
(Bernkop-Schnurch and Walker 2001; van Vlerken and Amiji 2006):

Table 20.2 (continued)

Product Category Contents Manufacturer
Quaker oats Nutritious supplement Salt, guar gum, calcium 

carbonate (thickener), 
vitamins, and minerals

Pepsi Co

Bournvita malt 
drink

Nutritious supplement Malt extracts, cocoa, 
carbohydrates, 
emulsifiers, vitamins, 
minerals, and salt

Mondelez

Nutrilite – range 
of products

Essential supplement All plant protein 
powder, calcium, 
co-enzymes, iron 
tablets, etc.

Amway

Dabur 
Glucose – D

Energy supplement Dextrose, vitamin D, 
calcium, phosphorous, 
and energy

Dabur India Ltd

Calcium Sandoz Dietary supplement Calcium lactate- 
gluconate, calcium 
carbonate, and calcium

Novartis

Herbalife protein 
powder

Nutritious (protein) 
supplement

Soy protein, plant- 
based protein powder, 
and fructose

Herbalife 
International

Himalaya Pure 
Herbs

Healthcare Medical 
Equipment Personal 
Care Sports

Pure herbs: organic 
ashwagandha, amla, 
neem, turmeric, etc.

Himalaya Drug 
Company

Based on: Chauhan et al. (2013) and Sharma et al. (2019)
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 (a) Delivers drugs to specifically targeted cells or tissues
 (b) Enhanced prolongevity in blood circulation
 (c) Capability to accumulate specifically or nonspecifically in the required area
 (d) Allows effective intracellular drug delivery
 (e) Possesses surface modifications (the presence of functional groups for targeted 

drug delivery systems)
 (f) Responsiveness toward local stimuli, such as pH and temperature changes
 (g) Bears magnetic sensitivity which is helpful for oral and/or tumoral delivery

Moreover, these nanocarriers also display enhanced permeation and retention (EPR) 
effect through active as well as passive targeting (Blanco et al. 2015). These nano-
carriers have been shown to possess the capability to administer the encapsulated 
agent(s) to the target specific site, in leaky vasculature of tumor endothelial cells, by 
binding to the suitable ligands, through “active targeting” (Saneja et al. 2014a, b; 
Thanki et al. 2013). Moreover, through “passive targeting,” these nanocarriers can 
effectively penetrate targeted cells. A wide range of ligands such as folic acid, hyal-
uronic acid, and RGD peptides (arginylglycylaspartic acid) have been used for tar-
geted drug delivery toward tumor site because of overexpression in cancer cells 
(Allen 2002; Sutradhar and Amin 2014; Zhong et al. 2014).

20.4  Classification of Nanocarriers

There are many nanosystems which can be used as carriers for nutraceuticals as 
indicated in Fig.  20.1. The nanocarriers can be broadly classified into three 
categories:

 (i) Polymeric nanocarriers
 (ii) Lipid-based nanocarriers
 (iii) Inorganic nanocarriers

20.4.1  Polymeric Nanocarriers

Polymeric nanocarrier systems are developed from biodegradable and biocompati-
ble polymers that are interestingly used for controlled and targeted based delivery 
of nutraceuticals. They are made up of colloidal particles having the diameter pref-
erably less than <200 nm to exhibit EPR effect. Various biodegradable polymers 
have been used for nutraceutical delivery including poly (D,L-lactic acid) (PLA), 
poly(D,L-lactic-co-glycolic acid) (PLGA), poly (Ɛ-caprolactone) (PCL) as well as 
their copolymers with poly(ethylene glycol) (PEG) d-α-tocopheryl polyethylene 
glycol 1000 succinate (TPGS) (Kumari et  al. 2010). Moreover, polysaccharide- 
based polymers as alginate, pectin, or chitosan may also be used to encapsulate 
nutraceuticals (Arora et  al. 2016; Saneja et  al. 2016). Additionally, some of the 
polymers such as chondroitin sulfate and hyaluronic acid have the ability to target 
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CD44 glycoprotein due to their overexpression in the cancer cells (Platt and Szoka 
2008; Lo et al. 2013). Several targeting moieties such as folic acid, peptides, aptam-
ers, RGD, bombesin, or antibodies have been used to deliver the nutraceuticals to 
tumor-specific sites. For example, folate-functionalized nanoparticles of quercetin 
have been developed by El-Gogary et al. (2014) for its targeted delivery to folate- 
overexpressing cancer cells. Live fluorescence imaging in tumor-bearing mice 
exhibited altered intra-tumoral distribution with increased folate-functionalized 
nanoparticles uptake (El-Gogary et al. 2014). A recent study showed cytotoxicity 
enhancement due to the efficient cellular uptake of the nanoparticles via caveolar 
endocytosis (Jiang et al. 2016).

20.4.1.1  Polymeric Micelles
Encapsulation methods as micelles, layer-by-layer self-assembled capsules, nano-
gels, liposomes, and polymersomes have been used for drug delivery. To ensure 
further effective targeted drug delivery, these capsules are coated with specific anti-
gen. One of the most promising encapsulation methods is electrostatic layer-by- 
layer (LbL) self-assembled procedure, in which the opposite-charged components 
are adsorbed on the surface to form nanoshells. These charged components may be 
enzymes, linear antibodies, polyelectrolytes, or inorganic nanoparticles. For tar-
geted release, the core of these charged particles should be soluble in specific condi-
tions such as low pH which prevail in target cells only (Ai et al. 2003; Sutton et al. 
2007).

Nanocarriers

Polymeric
nanocarriers
/hydrogels
/micelles

Nanoemulsions

Inorganic
nanocarriers

Liposomes Hybrid
nanoparticles

Conjugates

Plasmonic
Nanoparticles

Fig. 20.1 Nanosystems used as carriers for nutraceuticals
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An alternative encapsulation approach in drug delivery is drug loading into 
micelle nanocarriers (Deng et al. 2012; Owen et al. 2012). Micelles are amphiphilic 
macromolecules having two distinctive block domains, i.e., hydrophilic and hydro-
phobic. While encapsulating the nutraceuticals in these micelles, hydrophilic blocks 
hold at the interior hydrophobic domain which was composed of the hydrophobic 
segments, forming the micellar corona. They are formed by the copolymeric amphi-
philes and their self-aggregation above a certain concentration, which is known as 
critical micellar concentration (CMC) (Talelli et al. 2015).

20.4.1.2  Polymeric Hydrogels
These are cross-linked hydrophilic polymer networks which provide sustained, 
local delivery of nutraceuticals. These polymeric networks have a large affinity 
toward water and are prevented from dissolving by covalent cross-linkages, by non- 
covalent attractions, or by physical entanglements (Hoare and Kohane 2008; Ladet 
et al. 2008). Polymeric hydrogels can also be modified using active targeting ligands 
and made thermo-reversible, i.e., they can change their phase as per the environ-
mental temperature (Saneja et  al. 2016), for example, folate-functionalized PEG 
cross-linked acrylic polymer (FA-CLAP) hydrogel for site-specific delivery of cur-
cumin (Pillai et  al. 2014), which demonstrated higher uptake in HeLa cell lines 
compared to non-functionalized hydrogels. In an another study, curcumin hydrogels 
have being developed using gelatin, chitosan, and hyaluronan which showed 
increased in vitro cytotoxicity against A549 lung adenocarcinoma cells than native 
curcumin (Teong et al. 2015).

Beta-glucans are the vital component of cell wall in various organisms includ-
ing mushrooms, yeast, oats, barley, and Candida which are polymeric carbohy-
drates with a glucose units having beta-(1, 3) linkages and an occasional beta-(1, 
6) branches (Buckeridge et al. 2004; Bohn and Miller 1995). Beta-glucans boost 
up the innate immune system and pharmacologically classified as a biological 
response modifiers (Bohn and Miller 1995). These have also been granted the 
“generally recognized as safe (GRAS)” status by USFDA. β-glucans act like a 
pathogen- associated molecular pattern (PAMP), and they are mainly recognized 
by dectin-1 and complement receptors 3 (CR3) that are present on immune cells 
such as dendritic cells, macrophages, and neutrophils (Goodridge et  al. 2011; 
Huang et al. 2012).

The particulate beta-1, 3 and 1, 6 glucan preparations are porous, 2–4 μm parti-
cles derived by alkaline and acidic extraction from the cell walls of Saccharomyces 
cerevisiae (Baker’s yeast). The porous nature of the glucan enables encapsulation 
and targeted delivery of several types of cargo molecules including proteins (Yu 
et al. 2015), siRNA (Aouadi et al. 2009), DNA (Soto and Ostroff 2008), and drugs 
(Soto et al. 2010, 2012). Small molecules such as rifabutin and rifampicin have been 
encapsulated in GPs by using hydrogels to seal pores of glucan (Soto et al. 2010; 
Upadhyay et al. 2017) where the encapsulation has shown to enhance the antimyco-
bacterial effectiveness of these antibiotics (Upadhyay et al. 2019).

Glucan particles have shown better efficacy by enhancing the immunotherapy in 
carcinoma models (mouse mammary gland), by inducing a protective Th1 cellular 
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response (IFN-γ and IL-12) (Baran et al. 2007). β-glucans also have been shown to 
possess anti-inflammatory effects (Du et al. 2015).

The diffusion properties and dispersion stability of glucan particles with hydro-
philic molecules of different nature as well as molecular weight, including vitamin 
B12, bovine serum albumin, (BSA) and caffeine, have been studied (Saloň et al. 
2016). In vitro encapsulation of curcumin in yeast-derived glucan particles has been 
shown to promote its anti-inflammatory potential (Plavcová et  al. 2019), while 
in vivo systemic suppression of inflammation was achieved by siRNA encapsulated 
GPs delivery (Aouadi et al. 2009).

20.4.1.3  Polymeric Conjugates
Polymeric conjugates have been designed for nutraceuticals delivery. These are not 
encapsulated but attached covalently to a macromolecular polymeric carrier via 
hydrolyzable bond which is generally stable in the systemic circulation and breaks 
at the target-specific site due to specific stimuli, such as change in pH, temperature, 
enzymes, or light (Luo et al. 2014; Pang et al. 2014). Many different types of spac-
ers including adipic dihydrazide, succinic anhydride, and disulfide have been used 
to connect the nutraceuticals with the help of polymeric conjugates functionalized 
with targeting ligands as hyaluronic acid (Chang et al. 2016).

Glucan particles that are derived from yeast have also been used as an antigen- 
targeted delivery systems by their conjugation with the monoclonal antibodies for 
the treatment of diseases including enteric infections (Baert et al. 2015) and cancer 
(Yan et al. 2005).

20.4.2  Lipid-Based Nanocarriers

Many solid lipid nanoparticles, liposomes, self-emulsifying systems, and nano-
emulsions have been used as lipid-based drug delivery systems for enhancing the 
efficacy and bioavailability of nutraceuticals.

20.4.2.1  Liposomes
Liposomes consist of a lipid bilayer membrane surrounding an aqueous interior 
compartment (Perche and Torchilin 2013). Their precursors are usually from natu-
rally occurring phospholipids and cholesterol, which make them biodegradable. 
These liposomes can be surface modified with specific ligands such as aptamers, 
sialic acid, folic acid, etc. (Sercombe et al. 2015) and made to persist for long in 
circulation by incorporating polyethylene glycol (PEG) on their surface. For exam-
ple, a recent study demonstrated ursolic acid (modified PEG liposome) which 
enhanced in vitro cytotoxicity in EC-304 cells as compared to native ursolic acid 
(Zhao et al. 2015b).

20.4.2.2  Solid Lipid Nanoparticles
These are lipids consisting colloidal carriers (e.g., cholesterol, glyceryl monostea-
rate, stearic acid), which are dispersed in an aqueous surfactant solution or water. 
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These nanoparticles have the ability to bypass P-glycoprotein (P-gp)-mediated 
efflux and inhibit P-gp (Saneja et al. 2014a; Weber et al. 2014). Recently, Chen et al. 
demonstrated the aloe-emodin encapsulation into solid lipid nanoparticles which 
enhanced its in  vitro cytotoxicity against human breast cancer MCF-7 cells and 
human hepatoma HepG2 cells and increased the cellular uptake of solid lipid 
nanoparticles as compared to native aloe-emodin solution (Chen et al. 2015).

20.4.2.3  Nanoemulsions
Nanoemulsions are made up of two or more immiscible heterogeneous mixtures in 
which one phase is dispersed while the second phase is partially immiscible/misci-
ble (Blanco et al. 2015), widely used for delivering nutraceuticals with poor solubil-
ity. These nanoemulsions have numerous advantages including small globule size, 
thermodynamic stability, improved solubilizing capacity, and the use of GRAS 
(generally recognized as safe) excipients. They enhance the bioavailability of these 
systems through their protective effect in the gastrointestinal tract (GIT) and 
improve solubilization (Porter et al. 2008; Porter et al. 2007). Further, due to their 
small size of these droplets, they increase the aqueous medium of the gut and the 
interfacial area between the lipophilic droplet facilitating the homogenous distribu-
tion of the administered nutraceutical in the GIT. Recently, there has been substan-
tial interest toward an isotropic mixture of a surfactant(s), oil, and cosurfactant 
(modified form of nanoemulsions) known as self-emulsifying drug delivery systems 
(Gursoy and Benita 2004) which enhances the bioavailability of nutraceuticals. 
2-iminothiolane-modified chitosan coated with curcumin nanoemulsions exhibited 
33-fold improvement in the bioavailability as compared to native curcumin 
(Vecchione et al. 2016).

20.4.2.4  Self-Assembled and Polymeric Nanocarriers
Since the early work of Sessa and Weissmann in 1970, the self-assembled lipid- 
based nanocarriers such as liposomes have been the tremendous amount of object 
work. Polymeric micelles, an important class of self-assembled drug nanocarriers, 
are also currently undergoing innovative clinical trials. As reviewed by Torchilin, 
many biocompatible amphiphilic polymers have also been explored (Bromberg 
2008; Torchilin 2007; Matsumura 2007; Matsumura 2008). During the self- 
assembly process, the poorly water-soluble drugs are physically entrapped within 
the hydrophobic core of micellar nanocarriers. Polymeric nanoparticles have been 
widely used toward the design of novel drugs nanocarriers which are composed of 
either biopolymers including chitosan, dextran, gelatin, hyaluronan, or synthetic 
ones such as poly(D,L-lactic-co-glycolic acid) (PLGA), albumin, N-(2- 
hydroxypropyl)methacrylamide (HPMA), and polyglutamate. An albumin-based 
paclitaxel nanocarrier, i.e., Abraxane, has received FDA approval and has been cur-
rently used for metastatic breast cancer treatment (Gradishar 2006).
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20.4.3  Inorganic Nanocarriers

Inorganic nanocarriers include magnetic nanomaterials, carbon nanotubes, nano-
silica, quantum dots, and gold nanoparticles (Anselmo and Mitragotri 2015; Santos 
et al. 2015). These find the application in nutraceutical delivery due to their unique 
physiochemical properties, such as the ability for surface fictionalization, size, 
shape, higher surface to volume ratios, and chemical composition. Gold nanoparti-
cles (AuNPs) have been widely studied for nutraceuticals delivery due to well- 
defined surface chemistry, excellent biocompatibility, and their ease of synthesis 
(Zhao et al. 2015a).

20.4.3.1  Carbon Nanotubes
Carbon atoms which are composed of tubular hydrophobic networks having length 
and diameter of approximately 1–4 nm and 1–100 nm, respectively, explored for 
their nutraceutical delivery (Bianco et al. 2011; Nagai et al. 2011). While nanotubes 
are practically insoluble in all solvents and are associated with toxicity, they can be 
chemically modified to make them water-soluble carriers, decreasing their toxicity 
and enhancing their biocompatibility (Pérez-Herrero and Fernández-Medarde, 
2015). Many other nanoparticles (magnetic nanoparticles) have also been demon-
strated in nutraceuticals delivery due to their magnetic properties and small size. 
Recently, magnetic nanoparticles of curcumin (MNP-CUR) were developed which 
increase the serum bioavailability by 2.5-fold as compared to native curcumin in 
order to improve its bioavailability and efficacy (Yallapu et al. 2013). Furthermore, 
the nanoparticle formulation suppressed pancreatic tumor growth, delaying tumor 
growth, and enhanced the survival of mice in an HPAF-II xenograft mouse model 
(Yallapu et al. 2013).

20.4.3.2  Other Inorganic Nanocarriers
Other inorganic nanoparticles such as calcium phosphate silicon and silica with or 
without internal porosity, present an interesting substitute to the more conventional 
organic ones, such as liposomes and micellar systems, for their targeted based deliv-
ery of therapeutic agents which are biocompatible with little or no toxic products 
toward immune response (Slowing et al. 2008; Kester et al. 2008; Morgan et al. 
2008) where the drugs can be physiosorbed either loaded within the inorganic 
matrix of the nanocarriers. For example, a therapeutic molecule such as hexanoyl- 
ceramide and a range of small organic diagnostic can retain their activities by incor-
porating it within calcium phosphate nanoparticles (Morgan et al. 2008).

The striking surface area increase associated with the use of colloidal nanosized 
materials has also been put upon/used to prepare therapeutically active nanoparti-
cles. The large surface area enables the conjugation of a high payload of molecules. 
The excellent biocompatibility of gold colloids and existence of well-established 
synthetic routes have been exploited to design nontoxic drugs and gene carriers.
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20.4.4  Functional Therapeutic Nanoparticles (Hybrid 
Nanocarriers)

20.4.4.1  Plasmonic Nanoparticles
Plasmonic colloidal nanostructures, including nanoparticles nanoholes, nanoshells, 
and nanorods, are arguably the most promising nanomaterials in the medicine field 
because of their ability to support localized surface plasmons as they have coherent 
oscillations of electrons conduction on a metal surface that are excited by electro-
magnetic radiation (Atwater 2007; Ozbay 2006; Maier and Atwater 2005). In oncol-
ogy, plasmonic nanoparticles-based sensing approaches are being widely 
investigated (Qian et al. 2008). These nanoparticles can dramatically increase the 
fluorescence of organic fluorophores,which are located within an inorganic or 
organic shell surrounding the metal core, which can be used in designing novel 
fluorescence-based biosensing approaches (Aslan et  al. 2007). Alternatively, the 
gold nanoparticles have intrinsic properties that can be used to design various novel 
in vivo and in vitro biosensing/imaging strategies. In recent years, therapeutic appli-
cations involving gold colloids have come up. Thus, the optical properties of the 
plasmonic nanoparticles are indeed strongly investigated for designing of novel 
light-activated therapeutic applications (Yu et al. 2007; Durr et al. 2007; Popovtzer 
et al. 2008).

20.4.4.2  Chemotherapeutic Drugs Combination 
with Nutraceuticals Using Nanocarriers

In recent years, nanomedicines have been used for a variety of cancer therapies 
including hyperthermia, tumor-targeted drug delivery, and photodynamic therapy 
(Rezvantalab et al. 2018). Co-encapsulation of nutraceutical with chemotherapeutic 
agent is combination strategy, where a single nanocarrier has achieved wide recog-
nition because of its synergistic effect, reduced toxicity, and enhanced bioavailabil-
ity. The combination of both the agents is useful in preclinical studies to address 
solubility problem associated with nutraceutical and chemotherapeutic agent. 
However, targeted drug delivery can be achieved by these nanocarriers through sur-
face modification with targeting ligands which results in lower adverse effects 
(Parhi et al. 2012; Saneja et al. 2014a). Presently, combinatorial nanoparticles of 
epigallocatechin gallate (EGCG) and paclitaxel (Ptx) in a targeted core/shell 
poly(lactic-co-glycolic acid) (PLGA) nanoparticle were developed to address the 
adversities by Ptx chemotherapy (Narayanan et al. 2015).

The co-delivery of curcumin and doxorubicin using lipid-coated PLGA nanopar-
ticles was investigated against human osteosarcoma (cell lines) (Wang et al. 2016). 
The co-encapsulation of aspirin and curcumin into methoxy poly(ethylene glycol)-
poly (lactide-co-glycolide) (mPEG-PLGA) nanoparticles has demonstrated syner-
gistic anticancerous effects in human ovarian carcinoma cells as well as in activation 
of the mitochondrial apoptosis pathway (Zhou et al. 2015). In order to maximize the 
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therapeutic efficacy of daunorubicin (DNR) and to reverse multidrug resistance 
(MDR), Xu and his coworkers developed the co-encapsulation of polyethylene gly-
col–polylactic-co-glycolic acid–poly-L-lysine (PEG-PLGA-PLL) delivery system 
for the co-delivery of DNR and gambogic acid (GA) (Xu et al. 2015).

20.5  Mechanism of Action

20.5.1  Typical Nanocarriers for Encapsulation

For drug delivery, many encapsulation methods have been used; some of the typical 
types are micelles, layer-by-layer self-assembled capsule, nanogels liposomes, and 
polymersomes that are covered as the nanocarriers. To ensure further effective tar-
geted drug delivery, these capsules are coated with specific antigen.

One of the most promising encapsulation methods is electrostatic layer-by-layer 
(LbL) self-assembled procedure, where the opposite-charged components are 
adsorbed on the surface to form nanoshells. These charged components may be 
enzymes, linear antibodies, polyelectrolytes, or inorganic nanoparticles (Ai et al. 
2003), but the core should be soluble in conditions where controlled release is 
needed as well as insoluble in certain conditions such as low pH.

Another alternative encapsulation approach in drug delivery is drug loading into 
nanocarrier micelles. They are amphiphilic macromolecules having two distinctive 
block domains that are hydrophilic and hydrophobic as well as copolymers.

20.5.2  Factors Controlling Release from Nanocarriers

Pores size in the nanocarriers is one of the most important mechanisms that controls 
the release of drug molecules. The duration of drug release depends upon the pore 
size as well as the effective volume. The change in effective volume of nanocarrier 
through external stimuli enables control over the opening and closing mechanism as 
well as change in internal permeability and effective volume of the nanocarriers that 
allow controlled drug delivery (Gao et al. 2011; Kommareddy and Amiji 2007). The 
nonprotein nanocarriers like polymer nanoparticles, polymeric micelles, and stabi-
lized liposomes may be designed to contain pH responsive block copolymers, which 
undergo conformation changes due to pH changes. In another aspect, nanocarriers 
like polymer vesicles and nanoemulsion droplet use ultrasound to control the drug 
release mechanism, whereas the release rate is related to the ultrasound’s ability 
toward physically stimulate of the nanocarrier (Rapoport et  al. 2009). Similarly, 
liposomes that are responsive toward temperature can be used as nanocarriers for 
the thermally stimulated drug release mechanism, as they allow different types of 
molecules such as thermal responsive ones to be concurrently encapsulated (Chen 
et al. 2012).
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20.5.3  Basic Property of Pharmaceutical Nanocarriers: Longevity 
in the Blood

The “basic” property for any multifunctional nanocarrier is its longevity, as well as 
long-circulating pharmaceuticals and pharmaceutical carriers (Torchilin 1998; 
Lasic and Martin 1995; Cohen and Bernstein 1996; Moghimi and Szebeni 2003). 
Since for body defense system, pharmaceutical nanocarriers usually represent for-
eign particles, as they become easily opsonized and removed from the circulation 
before the completion of their function.

The important reason for producing such long-circulating drugs and drug carri-
ers is to maintain a required level of pharmaceutical agent in the blood for a longer 
time intervals, as long-circulating drugs contain microparticulates or large macro-
molecules that can slowly accumulate in pathological sites with leaky and affected 
vasculature including inflammations, tumors, and infarcted areas and facilitate drug 
delivery in those areas (Maeda et al. 2000; Maeda 2001; Gabizon 1995). Thus, the 
prolonged circulation can be helpful in achieving a desirable targeting effect for 
specific ligand-modified drugs and the drug carriers for allowing more time for 
interaction with the target (Torchilin 1996).

In addition, there are other polymers that have been suggested as alternative ste-
ric protectors for nanoparticle drug carriers (Torchilin and Trubetskoy 1995) and are 
expected to be biocompatible, hydrophilic, soluble, and possess a highly flexible 
main chain. The single-end lipid-modified poly(acryl amide) and poly(vinyl pyr-
rolidone) (Chonn et al. 1992; Lasic et al. 1991; Torchilin et al. 2001), together with 
other amphiphilic polymers which possess fairly soluble and flexible hydrophilic 
moiety, such as phospholipid(PE)-modified poly(2-methyl-2-oxazoline) or poly(2- 
ethyl- 2-oxazoline) (Woodle et al. 1994), poly(acryloyl morpholine) (PAcM), phos-
phatidyl polyglycerols, and polyvinyl alcohol, have been successfully used as a 
liposome steric protectors. The surface modification of hydrophobic polymeric 
nanoparticles may be performed by chemical grafting of polymer chains onto a 
particle or physical adsorption of a protecting polymer on a particle surface.

Recently, a lot of research has been performed for surface modification of super-
paramagnetic nanoparticles, which are now contemplated as promising agents for 
drug delivery into targeted site and for diagnostic imaging purposes (Torchilin 
2006).

20.5.4  Nanoparticle Vehicles in Nutrient and Nutraceutical 
Delivery

Nanoparticle systems can be generated by

 1. “Top-down” approach: Different mechanical size reduction processes are used to 
make small particles.
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 2. “Bottom-up” approach: A chemical processes where the nanoparticle is pro-
duced by the self-assembly of the smaller molecules such as proteins and lipids 
(Shimomur and Sawadaishi 2001; Whitesides and Grzybowski 2002; Inoue et al. 
2007).

However, there is a leading trend to combine bottom-up and top-down approaches 
to develop nanoparticle systems (Horn and Rieger 2001).

20.6  Bioavailability Enhancement with Nanoparticles

The term bioavailability indicates the dose segment that is available at the site where 
drug acts. On the other hand, the uptake (or intestinal absorption) refers to fraction 
of the dose which is absorbed through the intestinal walls. Although the entire dose 
is related to both definitions, it is necessary to understand and design the effective 
nutraceuticals, active ingredients, and nanoparticle delivery systems for nutrients in 
the biological processes that regulate the nutrient uptake and bioavailability.

Thus, drug delivery system based on nanocarriers has emerged as an effective 
vehicle due to favorable physicochemical characteristics, high surface-to-volume 
ratio, and nanoscale size. Nanoscale drug delivery enhances the shelf life, protects 
the food components against moisture, enables controlled release and aqueous solu-
bility, and influences texture and flavor. Further, nanocarriers have the ability to 
modulate pharmacodynamic as well as pharmacokinetic profiles of nutraceuticals 
(Díaz and Vivas-Mejia 2013). Many nanocarriers such as micelles, liposomes, poly-
meric nanoparticles, etc. have been used to enhance the efficacy of nutraceuticals 
and the bioavailability in recent years. So, it is beneficial to develop phytochemical- 
based nanocarriers which help in nutraceutical delivery for various purposes such as 
cancer chemotherapy and thus enhance their pharmacokinetics as well as pharma-
codynamics outcomes.

20.7  Future Prospective and Challenges

The applications of nanocarriers in the therapeutic delivery systems make it feasible 
for proper delivery and release of nutraceuticals inside the targeted cells. Thus, to 
achieve effective controlled nutraceutical/drug delivery, specific molecules and 
ligands can play an important role in assisting the process of cell targeting and con-
trolled drug release. For a therapeutic delivery system, inappropriate drug release 
leads to failure of the drug in disease mitigation. Furthermore, if the therapeutic 
system requires different stages to be synthesized, then the large-scale production of 
the medication may be difficult.
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20.8  Conclusion

In recent years, the explosion of research and development in the field of functional 
nanoparticles and nanocarriers has drastically increased the knowledge required for 
their advancement in the clinical practice. There are many therapeutic nutraceutical 
nanomaterials that have been already proposed, and it is not easy to predict which 
of these will be most successful, but the future looks bright for several of these 
applications, including that of nanocarriers for drugs or molecules.
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Abstract
The potential applications of nanomaterial and nanotechnologies in modern agri-
culture can provide state-of-the-art solutions to improve the quality of human life 
in the near future. The impending applications of nanotechnology in the fields of 
food and agriculture, viz., nano-fertilizer, plant nutrition, plant protection, and 
agrifood, have been reviewed. Nevertheless the indiscriminate use of nanoparti-
cles due to their changed physicochemical properties may be toxic and risky to 
biological systems and the environment. The benefits of advances in nanotech-
nology and probable risks have been reviewed and future approaches 
highlighted.

Keywords
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Environment · Biological system

Besides utilizing various technological interventions for improvement of crop pro-
duction, researchers are now exploring nanotechnology for increasing agricultural 
production (Parisi et al. 2015). Nanotechnology is the science and technology which 
deals with very minute material in nanometer scale. A nanoparticle (NP) is a minute 
particle with at least one dimension that ranges between 1 and 100 nm. They are 
different from bulk particles in terms of their physical, chemical, and biological 
properties and have been used in improving agriculture (Khandelwal and Joshi 
2018). The NPs have tremendous scope of novel applications in all walks of life due 
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to unique functional physicochemical properties acquired with increased large sur-
face to volume ratio, surface area, and higher catalytic activity and reactivity (Yang 
and Watts 2005; Adhikari et al. 2010; Fakruddin et al. 2012; Siddiqui et al. 2015; 
Raliya et al. 2017). Due to acquired novel chemical, physical, or biological proper-
ties different from those of their bulk counterparts, NPs have tremendous opportuni-
ties on the one hand but may create safety issues on the other (Agrawal and Rathore 
2014; Mukhopadhyay 2014; Prasad et al. 2017).

Various metal NPs have been synthesized by numerous workers using two basic 
approaches, i.e., “top-down and bottom-up” using different physical, chemical, and 
biological methods. The physical and chemical synthesis of NPs is being widely 
used due to their specificity and formation of monodispersed NPs (Iravani et  al. 
2014) using various techniques like reducing agent, sol-gel, solvo-thermal, micro-
wave assisted, ion sputtering, laser ablation (Papp et  al. 2007; Wani et  al. 2011; 
Ramesh 2013; Dar et al. 2014), etc. However, these processes of NPs synthesis are 
less preferred and having disadvantages for high cost of production and the use of 
hazardous chemicals and radiations. Therefore biological synthesis of NPs is 
increasingly gaining popularity as a rapid, eco-friendly, and easily scaled-up tech-
nology (Singh et al. 2016).

Biological synthesis of NPs is highly preferred over physical and chemical syn-
thesis due to multiple advantages like simple, rapid, stable, cost-effective, biocom-
patibility, and eco-friendly production methodologies, and there is no need for 
external stabilizing agent and safe applicability without any hazardous effects on 
plants and animals (BegümKarakoçak et  al. 2016). The capping agents play an 
important role in functionalization and stabilization of NPs which are not externally 
required in biologically synthesized NPs. The biomolecules and polysaccharides 
produced in the biological systems would work as capping and stabilizing agents. 
Though, despite all these advantages for biologically synthesized NPs, the polydis-
persity of the NPs has to be controlled by improving factors affecting NPs formation 
like reaction conditions, pH, temperatures, mixing ratio, etc. (Gurunathan et  al. 
2014). Microorganisms and plants have been considered as an effective and poten-
tial source for biological synthesis of NPs. The biological synthesis of NPs involves 
the use of biological system which includes various agents like bacteria (Raliya 
et al. 2014a; Das et al. 2014; Wang et al. 2016), fungi (Jain et al. 2013; Ottoni et al. 
2017), actinomycetes (Karthik et  al. 2014; Waghmare et  al. 2014), algae (Azizi 
et al. 2013; Rajeshkumar et al. 2014), yeast (Moghaddam et al. 2015), organic waste 
material (de Barros et al. 2018), plant extract (Ramesh et al. 2014; Zahir et al. 2015; 
Naseem and Farrukh 2015; Suresh et al. 2015), etc. Various plant parts like roots, 
stems, fruits, leaves, and their extracts are being used for synthesis of NPs.

Pestovsky and Antonio (2017) reviewed the potential applications of silica, sele-
nium, silver, copper, gold, palladium, manganese, zinc oxide, ferric oxide, titanium 
dioxide, hydroxyapatite, sulfur, nickel, chitosan, calcium alginate, polyethylene 
glycol, and zeolite NPs as nanofertilizers, growth stimulants, nanopesticides, pesti-
cide carriers, and antimicrobial agents and nanoformulations in agriculture. Prasad 
et al. (2017) reviewed the recent developments of nanotechnology in sustainable 
agriculture; future challenges and perspectives with reference to applications of 
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NPs as nanobiosensors, nanofertilizers, nanopesticides, and nanotechnologies in 
food industry; and their ecotoxicological implications.

The European Commission has recognized nanotechnology as “Key Enabling 
Technologies” for sustainable competitiveness and growth in several industrial sec-
tors (Parisi et al. 2015). Several experimental studies reveal that nanotechnology 
will have potential long-term impact on agriculture and food production. The pros 
and cons of nanotechnology in the field of agriculture need to be taken into account 
before releasing any such technology, and its impacts have been comprehensively 
reviewed (Agrawal and Rathore 2014). Nanomaterials can have remarkable usages 
in precision and sustainable agricultural production (Abobatta 2018; Ali et al. 2018; 
Rawat et al. 2018). NPs having enhanced activity different from corresponding bulk 
materials have positive morphophysiological effects in crop plants, plant disease 
resistance, plant growth, etc. (Sharon et al. 2010; Misra et al. 2013; Abd-elsalam 
2013) but at the same time may have deleterious effects on biological systems and 
the environment due to the toxicity of free radicals which may result into lipid per-
oxidation and DNA damage (Moore 2006; Lin and Xing 2007; Xingmao et al. 2010; 
Rathore et al. 2012).

Nanotech materials have been developed for slow release and efficient dosages 
of fertilizers for the plant (Chinnamuthu and Boopathi 2009; Singh 2012; Suppan 
2013). The nanoencapsulated fertilizers have been widely used to minimize fertil-
izer consumption and environmental pollution (Chinnamuthu and Boopathi 2009; 
DeRosa et al. 2010). The germination and growth of Glycine max enhanced using 
nanometer materials (Lu et  al. 2002). The chlorophyll contents in cluster bean 
leaves increased by spraying biologically produced magnesium oxide (MgO) NPs 
(Raliya et al. 2014b). Zinc nanofertilizer improved crop production in pearl millet 
(Tarafdar et al. 2014). Application of zinc oxide (ZnO) NPs of 25 nm at 1000 ppm 
concentration promoted seed germination and seedling vigor and showed early 
flowering and higher leaf chlorophyll content. Pod yield per plant was 34% higher 
compared to bulk zinc sulfate (ZnSO4), but at higher concentration of 2000 ppm, 
ZnO NPs showed inhibitory effects (Prasad et al. 2012). The studies carried out on 
influence of ZnO NPs on onion showed that plants treated with NPs at the concen-
tration of 20 and 30 μg m L−1 showed better growth and flowered 12–14 days earlier 
than the control. Treated plants also showed significantly higher values for seeded 
fruit per umbel, seed weight per umbel, and 1000 seed weight over control plants 
(Laware and Raskar 2014). Biosynthesized NPs based Zn NPs were developed to 
enhance crop production in pearl millet (Pennisetum americanum) (Tarafdar et al. 
2014).

The NPs of ZnO exhibited greater reactivity and were found to be more soluble 
and available source of Zn to plant in Zn fertilizers as compared to the bulk particles 
(Milani et  al. 2015). Studies on the effect of iron oxide (FeO) and ZnO NPs on 
growth and yield of carrot showed that among various concentrations of ZnO NPs 
at 100 ppm + FeO NPs at 50 ppm was the best combination resulting in maximum 
vegetative growth and yield (Elizabath et al. 2017).

The TiO2 NPs have been shown to have enhanced the germination and growth of 
Brassica napus (Mahmoodzadeh et  al. 2013). Studies on the effect of titanium 
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dioxide (TiO2) NPs on the growth of spinach seeds showed that plants produced by 
seed treatment of TiO2 NPs had 73% more dry weight, increase in chlorophyll-a 
formation, and three folds higher photosynthetic rate compared to the control 
(Zheng et  al. 2005). Treatment of Canola seeds with different concentrations of 
TiO2 NPs of ~20 nm showed that 2000 mg L−1 concentration promoted both seed 
germination and seedling vigor when compared with control (Mahmoodzadeh et al. 
2013). Different concentrations from 10 to 50 μg m L−1 of TiO2NPs used for the 
treatment in onion seeds indicated that lower concentrations 10  μg  m  L−1 to 
40 μg m L−1 enhance seed germination, promptness index, and seedling growth, 
while concentration of 50 μg m L−1 and above can be inhibitory for seed germina-
tion and seedling growth (Raskar and Laware 2013). Application of TiO2NPs at 
60 mg L−1 promoted sage (Salvia officinalis) seed germination percentage, increased 
vigor index, and lowest mean germination time, but higher concentrations did not 
improve mean germination time (Feizi et al. 2013). Mung bean production enhanced 
when TiO2NPs were used as plant fertilizer (Raliya et al. 2015). Foliar application 
of nanomicronutrient fertilizers and TiO2 NPs significantly enhanced both growth 
and yield in barley (Janmohammadi et al. 2016).

Studies on the influence of metal NPs using 3-aminopropyl functionalized silica 
(Si) NPs, palladium (Pd) NPs entrapped in an aluminum hydroxide matrix, dodec-
anethiol functionalized gold (Au) NPs, and copper (Cu) nanosize activated powder 
on germination of lettuce seeds showed that NPs (Pd, Au at low concentrations; Si, 
Cu at higher concentrations; and combination of Au and Cu) had a positive influ-
ence on seed germination (Shah and Belozerova 2009). The effect of Cu NPs at 
different concentrations on growth of Phaseolus radiates and Triticum aestivum 
showed that seedling lengths of test species were negatively related to the exposure 
concentration of Cu NPs (Lee et al. 2008). The effect of Cu NPs on germination and 
growth of seeds of Glycine max L. and Cicer arietinum showed that germination 
occurred up to 2000 ppm of CuO NPs, but the root growth was prevented above 
500 ppm Cu (Adhikari et al. 2012). Treatment with Cu NPs under controlled labora-
tory conditions showed plant growth inhibition for Raphanus sativus, perennial 
Lolium perenne, and annual Lolium rigidum (Atha et al. 2012). The effect of Cu 
NPs on Arabidopsis thaliana showed a significant reduction in plant biomass and 
total chlorophyll content on exposure to 2, 5, 10, 20, 50, and 100 mg L−1Cu NPs, but 
there was an increase in anthocyanin content at 10, 20, 50, and 100 mg L−1; lipid 
peroxidation at 5, 10, and 20 mg L−1; and amino acid proline content at 10 and 
20 mg L−1 concentrations of Cu NPs (Nair and Chung 2014).

From the review of the literature on impact of various NPs on plants, it is clear 
that both positive and negative effects of NPs on germination and growth of plants 
were observed in living plants (Aslani et al. 2014). Metal NPs, under low concentra-
tions, play a key role at the limit of plant tolerance in the development of plants. If 
plants absorb an excess of metals, toxic effects can obviously occur resulting in 
decrease of growth and irregularities in cell division. But in some cases, the excess 
metal NPs can act as cofactor for enzymes, which are involved in the formation of 
intermediate metabolites and hence help in plant growth promotion. However, the 
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response of plants to metal NPs varies with the nature of the metal, the type of plant 
species, and the stage of growth.

The application of nanofertilizers can help in discharging nutrients in soil in a 
controlled way and avoid water pollution (Naderi and Abedi 2012). The use of 
nanofertilizers results in increased elemental efficiency and reduced soil toxicity 
(Naderi and Shahraki 2013). The use of nanosensors in developing nanofertilizers is 
a step forward in developing smart agriculture (Rameshaiah et al. 2015). Combined 
application of biochars and chemical fertilizers improved wheat productivity and 
soil quality (Sadaf et al. 2017).

Plant diseases cause about 40% losses in crop production (Flood 2010). A large 
number of bacterial and fungal pathogens attack various agricultural and horticul-
tural crops resulting in huge yield losses. The most common bacterial pathogens 
belong to genera Erwinia, Pseudomonas, Corynebacterium, Xanthomonas, 
Ralstonia, Pectobacterium, Agrobacterium, and Xylella, while fungal pathogens 
causing spoilage of crops are the species belonging to genera Alternaria, Aspergillus, 
Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, 
Phytophthora, Pythium, Rhizopus, Botrytis, Ceratocystis, Rhizoctonia, Sclerotinia, 
etc. (Mansfield et al. 2012; Chowdappa and Gowda 2013).

Various nanoparticles exhibit antibacterial and antifungal activities (Aziz et al. 
2015; Patra and Baek 2017; Singh et al. 2019). The use of TiO2 has been found to 
have certain yield attributing effects in crops such as promotion of plant growth, 
enhancement of photosynthetic rate, and reduction in disease severity. TiO2 as a 
growth promoter was found to play the function of antibiotics in Vigna unguiculata 
production (Owolade and Adenekan 2008). The TiO2 NPs reduced Curvularia leaf 
spot and bacterial leaf blight disease incidence and severity in maize (Owolade et al. 
2008). The silicate and water-soluble polymer upon exposure to radioactive rays 
have been demonstrated with antifungal activity against phytopathogenic fungi 
(Park et al. 2006). Silicon is absorbed into plants and increases disease resistance by 
promoting growth of plants but has no effect on pathogenic microorganisms. 
Nevertheless nanosized silica-silver particles are quite effective against certain plant 
diseases (Sharon et al. 2010). Gold nanoparticles (Au NPs) have been shown to act 
as delivery systems of DNA and pesticides in plant cells of rice and tobacco plants 
(Ghormade et  al. 2011). The nano-ZnO synthesized from zinc nitrate checked 
conidiophores and conidial development and showed cell wall deformity of a fungal 
pathogen Aspergillus fumigatus due to de novo synthesis of hydroxyl and superox-
ide radicals and eventually killed the fungal hyphae (Patra and Goswami 2012). 
Studies on antifungal activities of ZnO NPs with size of 70 ± 15 nm against two 
postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) showed 
that ZnO NPs at concentrations greater than 3 mmol L−1 can significantly inhibit the 
growth of B. cinerea and P. expansum and P. expansum was more sensitive to the 
treatment with ZnO NPs than B. cinerea (He et al. 2011).

Studies on using TiO2NPs formulation containing zinc for management of bacte-
rial leaf spot on red rose showed that field applications of TiO2/Zn at 500–800 ppm 
significantly reduced disease severity compared with the untreated control and the 
activity was better or at par with other standards used for management of rose 
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diseases (Paret 2013). ZnO NPs inhibited the fungal growth of Botrytis cinerea and 
conidia of Penicillium expansum (Abd-elsalam 2013). Controlled release matrices 
of chitosan NPs exhibited antimicrobial potential which is one of the least exploited 
areas and has allowed new opportunities for microbial control in agriculture and 
food areas for the sustainable management of viruses, bacteria, and fungi (Cota- 
Arriola et  al. 2013). The Cu NPs demonstrated a significant inhibitory activity 
against plant pathogenic fungi, Fusarium culmorum, Fusarium oxysporum, and 
Fusarium graminearum (Shende et al. 2015).

Green synthesis of Ag NPs and their application in management of fungal patho-
gens have been summarized (Nair et al. 2010; Krishnaraj et al. 2012; Rafique et al. 
2017). The antibiotic activities of a nanosized silica-silver exhibited cent per cent 
growth inhibition of several pathogens, namely, Pythium ultimum, Magnaporthe 
grisea, Colletotrichum gloeosporioides, Botrytes cinerea, and Rhizoctonia solani at 
3 ppm concentration causing various plant diseases (Park et al. 2006). In agriculture 
Ag NPs have been applied as antimicrobial coatings in seeds and woods. For 
instance, Ag NPs exhibited antifungal effect against Raffaelea sp. causing wilt in 
oak trees (Kim et  al. 2009). The effect of Ag NPs on the growth of sclerotium- 
forming species Rhizoctonia solani, Sclerotinia sclerotiorum, and S. minor revealed 
that Ag NPs effectively inhibit the hyphal growth and the value of hyphal growth 
rate for R. solani, S. sclerotiorum, and S. minor was 12%, 36%, and 41% at 7 ppm 
of Ag NPs supplemented medium, respectively, compared to control (Min et  al. 
2009). Studies on the effect of Ag NPs against six Colletotrichum species associated 
with pepper anthracnose under different culture conditions showed that the applica-
tion of 100 ppm concentration of Ag NPs inhibited the growth of fungal hyphae as 
well as conidial germination in vitro when compared to the control (Lamsal et al. 
2011a). Studies on the effect of Ag NPs against powdery mildew at various concen-
trations showed that the application of 100  ppm Ag NPs resulted in the highest 
inhibition rate for both before and after the outbreak of disease on cucumbers and 
pumpkins (Lamsal et al. 2011b). Silver-doped TiO2 NPs as fertilizer possess bacte-
ricidal properties and can inactivate viruses (Liga et al. 2011). The silver nanopar-
ticles exhibited a dose-dependent fungistatic activity on Colletotrichum 
gloeosporioides, the causal agent of anthracnose disease in many fruit plants with 
inhibition of the fungus reaching almost 90% with a low Ag NPs concentration of 
56 μg silver m L−1 in potato dextrose agar (Aguilar-Méndez et al. 2011). The anti-
fungal activity of silver and Cu NPs nanoparticles against two plant pathogenic 
fungi Alternaria alternata and Botrytis cinerea was checked, and it was found that 
the application of 15 mg L−1 concentration of Ag NPs produced maximum inhibi-
tion of the growth of fungal hyphae (Ouda 2014). The foliar spray of Ag NPs 
resulted in complete suppression of sun hemp rosette virus in bean and bean yellow 
mosaic virus in faba bean (Jain and Kothari 2014; Elbeshehy et al. 2015). During 
the ex vitro assays carried out to assess antifungal activity of the IAA- and IBA- 
stabilized AgNPs against pathogenic fungal strains, the IBA-AgNPs show better 
activity with various growth inhibition rates against Curvularia lunata, Rhizoctonia 
solani, and Colletotrichum gloeosporioides compared to the controls (Thangavelu 
et al. 2018).
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The potential of NPs as modern approaches in insect pest management has been 
reviewed by Rai and Ingle (2012). The nano-silica as NPs to control a range of agri-
cultural insect pests (Ulrichs et al. 2005; Barik et al. 2008), polyethylene glycol- 
coated NPs to control Tribolium castaneum insect (Yang et al. 2009), applications 
of Ag, aluminum oxide (Al2O3), ZnO and TiO2 in the control of rice weevil and 
silkworm (Bombyx mori) and baculovirus are some of the examples of insect pest 
management (Goswami et al. 2010). Pesticides are often used to reduce yield losses 
due to pest attack. The potential of NPs in insects and their use in pest control have 
been reported (Bhattacharyya et  al. 2010). The efficiency of pesticides has been 
improved by the use of Ag ions, Au NPs, and iron oxide (Fe2O3) NPs to manage 
plant pests (Jo et al. 2009; Al-Samarrai 2012; Vinutha et al. 2013; Nuruzzaman et al. 
2016).

The nanoencapsulated formulation of pesticide is released slowly and is more 
soluble, specific, and stable (Bhattacharyya et al. 2016). The nanosized particles of 
active ingredients of pesticides with protective coating are environmentally safe and 
require reduced dosage (Nuruzzaman et al. 2016). Elmer and White (2018) reviewed 
the future of nanotechnology in plant pathology highlighting the use of engineered 
NPs as bactericides, fungicides, nanofertilizers, and biosensors for plant disease 
diagnostics. The NPs as protectants, carriers for pesticides, and RNA interference- 
mediated protection have been reviewed (Balaure et  al. 2017; Sinha et  al. 2017; 
Worrall et  al. 2018). Nanoencapsulation enhanced the postemergence herbicidal 
activity of atrazine against mustard plants. The mechanisms of interaction of the 
effect of atrazine NPs system on mustard, nontarget organisms, maize, and risk 
assessment were studied to address the safety issues (Oliveira et al. 2015a, b).

Nanotechnology-based hybridized microarrays, nanopore sensors, and metal 
oxide semiconductor chip for rapid detection of biological entities have been 
reviewed (Bhattacharya et al. (2007). The carbon nanotubes have shown to regulate 
seed germination and plant growth. The application of multiwalled carbon nano-
tubes in tomato seeds resulted in an increase in the rate of seed germination to 90% 
compared to control which showed 71% seed germination (Khodakovskaya et al. 
2009). Multiwalled carbon nanotubes enhanced the growth of tobacco cell culture 
as compared to control at 5–500 μg/ml concentrations (Khodakovskaya et al. 2012). 
The applications of nanotechnology in frontier areas such as biocompatible nano-
tubes (BNTs) (Sadeghi et al. 2013), entrapped bioactive compounds in nanodelivery 
systems (Sadeghi et al. 2014), nanocrystals (Tzoumaki et al. 2015), and bioconjuga-
tion of quantum dots to antibodies for detection of proteins, DNA, oligopeptides, 
and nucleotides (Sozer and Kokini 2014; Bonilla et al. 2016) are of great signifi-
cance in food and agriculture sectors. The new perspective of nanotechnology as 
precision agricultural techniques might promote increased crop yields and reduced 
leaching and emissions thereby reducing loss of nutrients (Duhan et al. 2017).

Biosynthesized ZnO NPs enhanced exopolysaccharide production by Bacillus 
subtilis strain JCT1 for arid soil applications. The amelioration of exopolysaccha-
ride was stable and resulted in enhanced soil aggregation, moisture, and soil organic 
carbon (Raliya et al. 2014a). Synthesized NPs of Au improved water purification by 
improving the efficiency of membrane filters (Bharathi et al. 2016).
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The positive impact of nanotechnology in agrifood sector by way of nanomateri-
als for controlled release of nutrients, pesticides, and fertilizers and application of 
pesticide and nanosensors have been reviewed (Dasgupta et al. 2015; Parisi et al. 
2015; Fraceto et al. 2016; Rawat et al. 2018; Singh et al. 2019). Yata et al. (2018) 
reviewed the potential applications of nanomaterial in agrifood sector, industrializa-
tion, and patented technologies. The European Food Safety Authority presented an 
inventory of current and potential future applications of nanotechnology in the agri-
food sector to review the regulation of nanomaterials in the EU as well as in non-EU 
countries (RIKILT and JRC 2014).

Substantial production and utilization of nanomaterial are likely to cause con-
tamination of air, water, and/or soil (Das et al. 2009; Bernhardt et al. 2010; Meetoo 
2011; Gottschalk and Nowack 2011). The indiscriminate use of NPs due to its 
changed physicochemical properties is risky to biological systems and the environ-
ment (Warheit et al. 2008; Mukhopadhyay 2014). Nanomaterial is almost similar in 
size to cellular structures, and it can easily enter the cell and may alter vital cellular 
functions or enter the bloodstream and may be transported to organs, and accumu-
late and may result in toxicity (Shvedova et al. 2010; Bertrand and Leroux 2012). 
Toxicity of NPs applied in the field to the ecosystem and human is a major concern. 
Studies conducted with Ag NPs have reported that the citrate-coated colloidal Ag 
NPs were not genotoxic (genetic), cytotoxic (cell), and phototoxic (toxicity through 
photodegradation) to humans; however, citrate-coated Ag NPs in powder form were 
toxic (Khot et al. 2012). Another interesting observation was that the phototoxicity 
of the powdered Ag NPs was repressed by coating them with biocompatible polyvi-
nylpyrrole. Such biocompatible coatings should be explored to reverse the toxicity 
of nanomaterials to increase the chances of applying nanomaterials in plant germi-
nation and growth of plants (Khot et al. 2012). Studies are also required to be con-
ducted to investigate the adverse effect of such coatings on the desired seeds and 
plants properties and the effectiveness of nanomaterial. The benefits and risks of 
advances in nanotechnology relevant to food and agriculture have been reviewed 
(Agrawal and Rathore 2014; Sadeghi et al. 2017).

21.1  Conclusions

The indiscriminate and extensive application of fertilizers and pesticides for boost-
ing agricultural production to feed ever-increasing human population has greatly 
contributed in polluting air, water, food, and soil. The use of NPs as pesticides and 
fertilizers with sustained slow release is anticipated to reduce the dosage of agro-
chemicals that has given expectation as the future technology. Continuous innova-
tions are required to meet the challenges of increasing global food security and to 
mitigate climate change. However the changed physicochemical properties of nano-
material provide easy excess to biological systems and environment which raises 
safety issues. The assessment of the probable hazards by the interaction of NPs with 
biological systems and the environment needs to be considered before adopting 
particular nanomaterial for the application in the field. The potential applications of 
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nanomaterial in the fields of food and agriculture with probable risks have been 
reviewed as future perspectives of nanotechnology.
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22A Missing Dilemma on Nanoparticle 
Producer Microorganisms
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Abstract
The development of eco-friendly biological methods in material synthesis has been 
reported with chemically well-defined variety of inorganic nanoparticles (NP) that 
are produced by using various microorganisms. In last decades, lots of research 
articles have suggested required conditions to control and particle stability on bio-
synthesized nanoparticles, besides their applications in a wide spectrum of poten-
tial fields including target oriented drug delivery, cancer therapy, gene therapy and 
DNA based diagnosis, using of antimicrobial agents, biosensors, enhancing enzy-
matic reaction capacity with advanced medical visualization technology. Even the 
present limitations and future prospects for the production of inorganic nanoparti-
cles by microorganisms are dramatically studied, their disadvantages in practice 
concerning their negative effects on micro- and macroorganisms are attracting the 
attention of researchers. As another concept, the behaviours of microorganism 
change depending on available concentration of nanomolecules containing inor-
ganic chemical structures in environment affecting their antibacterial compounds 
secretion. The review highlights particularly ignored or missed cases on the usage 
of nanoparticle producer microorganisms. We briefly discuss here, as an another 
concept; enhancing anti- phytopathogen potential capacity of soil can negatively be 
affected by NP synthesizing microorganisms that may drastically impair micro-
flora balance and its own biocontrol capacity besides in contrary to their expected 
positive advantages in purpose of their antimicrobial property.
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22.1  Introduction

Nanoparticles—particles having one or more dimensions and a ranging width of 
100 nm or less—have attracted attention due to their useful properties and advantages 
for easy application (Kato 2011). Different types of nanoparticles are synthesized via a 
large number of physical, chemical and biological methods (Luechinger et al. 2010; 
Liu et al. 2011). Even though physical and chemical methods are more popular in the 
synthesis of nanoparticles, the use of toxic chemicals restricts their applications. 
Therefore, development of safe, non-poisonous, and eco-friendly methods for the syn-
thesis of nanoparticles is of importance to expand their application areas. One of the 
ways in purpose of this goal is to synthesize nanoparticles by microorganisms to dimin-
ish their possible negative impact on the environment in the long term.

22.2  Biological Synthesis of Nanoparticles by 
Microorganisms

In earlier years, union of nanoparticles utilizing microorganisms has expanded thor-
oughly because of its enormous practice. Bacillus species has portrayed to use of metal 
nanoparticles; analysts demonstrated the capacity of microorganisms to diminish silver 
and create extracellularly, reliably circled nanoparticles, with 10–20 nm in size (Sunkar 
and Nachiyar 2012). A new Bacillus subtilis (EU07) strain (Baysal et al. 2008, 2013; 
Baysal and Silme 2018) shows also similar property on nanoparticle production 
(unpublished data). The silver delivering microscopic organisms detached from the 
silver mine show the silver nanoparticles collected in the periplasmic side of 
Pseudomonas stutzeri AG259 (Slawson et al. 1994). Microbes are additionally familiar 
with blending gold nanoparticles. Sharma et al. (2012) revealed that a novel strain of 
Marinobacter pelagius has been acknowledged as appropriate for durable, monodis-
perse gold nanoparticle arrangement. Prasad et  al. (2007) have been accounted for 
utilization of Lactobacillus strains to blend the titanium nanoparticles.

22.3  Soil Property and Condition Affecting Nanoparticle 
Production

In light of the previously mentioned reports and our previous studies, we accept that 
a comprehension of the natural effect of nanoparticles discharged in agrobiological 
system that must be incorporated into the examination of essential hazard appraisal 
factors during the tripartite associations of nanoparticles with plant, soil, and soil 
microbial network (Table 22.1). We assume that decomposing inorganic elements in 
soil have active function on microbial balance, particularly on anti-phytopathogen 
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Table 22.1 The possible interactions and effect of nanomaterials on soil microbes and plant 
under varying soil physico-chemical properties (Mishra et al. 2017)

Soil 
parameters Nanomaterials Major findings References
Soil types
Silty clay TiO2 Significantly lowered carbon 

mineralization
Simonin et al. 
(2015)

Sandy 
loam

TiO2 Adverse impact on soil microbial 
community

Simonin et al. 
(2015)

CuO, Fe3O4 Negative effect on soil microbial 
community

Frenk et al. (2013)

ZnO No toxicity on Cucumis sativus with soil 
pH 5.5 and at concentration of 2000 mg/
kg

Kim et al. (2011)

CuO, ZnO Toxic effect on Triticum aestivum Dimkpa et al. 
(2013)

AgNPs Reduced microbial biomass Hänsch and 
Emmerling (2010)

Reduced soil enzymatic activities and 
substrate induced

Colman et al. 
(2013)

CeO2, Fe3O4, 
SnO2

No effect on microbial biomass C and N Vittori Antisari 
et al. (2013)

TiO2 Reduced bacterial diversity Ge et al. (2013)
TiO2 and ZnO Reduced microbial biomass and 

substrate-induced respiration
Ge et al. (2011)

TiO2; ZnO Altered soil bacterial community with 
reduced taxa

Ge et al. (2012)

Loamy 
clay

ZnO Toxic effect on Triticum aestivum in soil 
pH 7.36 and at concentration of 
45.45 mg/kg

Du et al. (2011)

pH
Acidic AgNPs, ZnO Enhanced toxicity towards Eisenia fetida 

adverse effect on ammonification, 
respiration, and dehydrogenase activity of 
soil microbes

Shoults-Wilson 
et al. (2011) and 
Shen et al. (2015)

Alkaline TiO2 Significant reduction in soil microbial 
community

Simonin et al. 
(2015)

AgNPs Declined toxicity towards soil microbial 
activity

Schlich and 
Hund-Rinke (2015)

Organic matter
High AgNPs Reduced toxicity towards biofilm-forming 

communities
Sheng and Liu 
(2011) and Wirth 
et al. (2012)

TiO2 Toxic effect on microbial activity, i.e. 
carbon mineralization

Simonin et al. 
(2015)

ZnO Positive impact on Zea mays when 
alginate added at concentration of 
400–800 mg/kg

Zhao et al. (2013)

(continued)
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potential changes and limit the growth of pathogenic invasion. Without a doubt, the 
main soil factors are soil type, pH, natural balance, and contamination quantity of 
discharged nanoparticles towards plants and microorganisms.

22.4  Efficiency of Biocontrol Agents Through Nanoparticle 
Production for Crop Protection

22.4.1  Nano-pesticides

Pesticides are chemical compounds that generally used to dispose and control the 
harmful organisms causing huge financial losses in crop production. The plant irri-
tations influencing the refined items lead to smart  misfortunes by restricting the 
item yield. Auxiliary metabolites (alkaloids, phenolics, terpenoids, etc.) discharged 
by plant as self-conservation instrument of nature give safeguard and defensive 
capacity against plant pathogens. In control strategies, use of too much pesticide 
causes noteworthy financial loses (Sharon et al. 2010). In spite of the fact that there 
are a few advantages of pesticide using, that can also cause serious issues on abiotic 
and biotic conditions, nature and human wellbeing because of potential contamina-
tion  efficiency (environmental and water resources pollution, toxicological rem-
nants etc.).

In this way, researchers are taking efforts to comprehend and investigate the 
degree of these significant cases to increase utility of learning about untargetted 
contamination effect and the likely effect of discharged nanoparticles on soil condi-
tion and crop management. The plant-soil communication is the primary main 
thrust for agricultural activities, which is affected by any adjustment in physico- 
chemical properties of soil framework. Strikingly, soil is really the fundamental 
flora of discharged nanoparticles, and thus, their resulting communication with 
diverse soil segments could have a significant effect on the targeting, transporting, 
and conducting of nanoparticles. For example, previous reports about antimicrobial 
property of the most prominent and most concentrated silver nanoparticles (AgNPs) 
have plainly shown the significance of soil pH, natural issue substance, and cation 

Table 22.1 (continued)

Soil 
parameters Nanomaterials Major findings References
Low CuO, Fe3O4 Enhanced toxicity towards microbial 

community
Frenk et al. (2013)

Cation exchange capacity
High AgNPs Reduced toxic impact on soil bacterium 

Pseudomonas chlororaphis O6
Calder et al. (2012)

ZnO Non-toxic effect on Lepidium sativum Jośko and 
Oleszczuk (2013)

Low AgNPs Enhanced toxicity towards soil microbes Calder et al. (2012)
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trade limit in controlling their destiny, lethality, and bioavailability (Shoults-Wilson 
et al. 2011).

As noted above, nanoparticles present on earth eventually give rise to contamina-
tion; once the convenient conditions have not been appropriate for decomposing, 
these transported soil particles accumulate on plants. Moreover, the vast majority of 
the current studies have additionally focused on the immediate effect of discharged 
nanoparticles on soil microbial network structure (Simonin and Richaume 2015). In 
such manner, at first, Ge et al. (2012) imagined the possible effect of TiO2 and ZnO- 
NPs on soil bacterial network in a portion subordinate way. Utilizing from DNA- 
based fingerprinting examination, they watched bacterial assorted variety decreasing 
taxa of Rhizobiales, Bradyrhizobiaceae, and Bradyrhizobium (identified with nitro-
gen obsession) in light of these nanoparticle treatments. In any case, some positive 
effects on the growth of Sphingomonadaceae and Streptomycetaceae was noted. It 
is intriguing to note here that TiO2 and ZnO-NPs have together changed the bacte-
rial network structure with unmistakable effect on ecological procedures. For exam-
ple, the declining population are intently connected with nitrogen obsession process 
though expanding of community that is probably going to affect the deterioration 
procedure of natural poisons and biopolymers. Further, Shahrokh et al. (2014) addi-
tionally uncovered portion subordinate effect of AgNPs on nitrate reductase move-
ment of Rhizobium and Azotobacter, where low portion of AgNPs (0.2  ppm) 
encouraged to decrease of nitrate action in Azotobacter. In view of such examina-
tions, it has been foreseen that the denitrifying bacterial network is thought to be 
very powerless to nanoparticles harmfulness (VandeVoort and Arai 2012). 
Regardless of the obviously known effect of nanoparticles on soil microbial net-
work, there exists a lack of research findings giving clear association between soil 
factors and dangerous conduct of nanoparticles towards soil biota (Chunjaturas 
et al. 2014; Shah et al. 2014; Mishra and Singh 2015). In this specific situation, 
Frenk et al. (2013) prove the effect of copper oxide (CuO) and magnetite (Fe3O4) 
nanoparticles on soil bacterial network in two different soil types (sandy topsoil and 
sandy dirt soil). Curiously, increasingly antagonistic effects of both nanoparticles in 
sandy soil with CuO show generally solid impact on network synthesis and bacterial 
action. Hence Rhizobiales and Sphingobacteriaceae, being the most focused genus 
in microbial community, were adversely affected by CuO in sandy soils. Still con-
strained effects were also seen in sandy soil where 1% CuO diminished oxidative 
potential and Fe3O4 nanoparticles did not change the bacterial community structure 
(Schlich and Hund-Rinke 2015). Shen et  al. (2015) exhibited ecotoxicological 
effects of ZnO-NPs on soil organisms based on parameters including ammonifica-
tion, O2 consumption, dehydrogenase movement, and fluorescein diacetate hydro-
lase action. The negative effects of ZnO-NPs on soil microorganisms were observed 
to be progressive in acidic and non-decomposed soil than that of ZnO, which had 
generally low harm in soluble soil. Likewise, danger of TiO2 NPs was observed to 
be principally affected by soil pH and  its natural impact has been reported  by 
Simonin et al. (2015). The researcher observed remarkable decrease on carbon min-
eralization (parameter to contemplate microbial community) in soil with high pH 
and natural issue content. Above all, increasing our knowledge on the correct 
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information on nanomaterial contamination level would help us to understand of 
nanoparticles contamination in the soil supporting its harmfulness.

Smart methodology on powerful control techniques and solutions in the yield 
by possibility of these conventions are vague and petulant because of natural dan-
gers of contamination and dispersing of  dangerous synthetic compounds (Singh 
et al. 2016a). Thus, picking eco-accommodating, non-poisonous, and maintainable 
techniques for manufacturing a horde of nanoparticles is the present zone of world-
wide intrigue. Along these lines, a few organic operators, for example, microbes, 
parasites, actinomycetes, plants, and green growth, have been misused for the bio-
synthesis of nanoparticles (Mishra et al. 2014).

The prevalence of natural strategy for nanoparticle combination could be evalu-
ated by how fast and stable is the entire procedure of combining, which requires a 
wide scope of non-dangerous biomolecules of minimal effort and above all it gives 
rise to increase of stable nanoparticles (Singh et al. 2016a; Hussain et al. 2016). In 
addition, shape and size of the nanoparticles can likewise be managed by altering 
the pH and temperature of the response blend (Gericke and Pinches 2006). 
Nanoparticles present an incredibly dazzling stage for a different scope of natural 
applications, as it draws more attention on the single-step procedure to biosynthe-
size nanoparticles for future improvements in the territory of electrochemical sen-
sor, biosensors, medication, and agrobiotechnology.

In this survey, we combine beneficial side of nanoparticles as natural techniques. 
These techniques are condition well-disposed and financially monetary. Relationship 
of different combination strategies, to be specific physical, complex and biological 
techniques seems valid here. Further advances are alluring to spin the impression of 
nanoparticle innovation into a judicious reasonable methodology. The misuse of 
nanoparticles in beautifying agents and drug covering is generally expanded step by 
step. The metal oxide content in nanoparticle, for example, zinc oxide and titanium 
dioxide, is presently recorded on different items, as varied as cosmetics, sunscreens, 
toothpaste, and prescription drugs (Yu and Li 2011).

22.4.2  Nanoparticles in Horticulture

Nanotech conveyance frameworks for bugs, supplements, and plant hormones: In 
the capable utilization of agrarian regular resources like water, supplements, and 
synthetic compounds during accuracy cultivating, nanosensors and nano-based 
savvy conveyance frameworks are easy to use. Through utilizing nanomaterials and 
worldwide situating frameworks with satellite imaging of fields, farmers may now 
indirectly recognize pests  or reasons for  stress, especially during dry season. 
Nanosensors dispersed in the field can detect the presence of plant infections and 
the dimension of soil supplements. To set aside manure utilization and to limit eco-
logical contamination, nanoencapsulated moderate discharge composts have addi-
tionally turned into a style (DeRosa et al. 2010). To check the nature of horticultural 
production, nanobarcodes and nanoprocessing could be utilized. Li et  al. (2005) 
utilized the possibility of basic food item standardized identifications for 
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conservative, capable, fast, and easy unravelling and acknowledgment of maladies. 
They made infinitesimal tests or nanobarcodes that may maybe label various patho-
gens in a ranch, which may essentially be identified utilizing any fluorescent-based 
apparatuses (Li et al. 2005). Right through nanotechnology, researchers are skilled 
to concentrate plant’s guideline of hormones, for example, auxin, which is respon-
sible for root development and seedling association. Nanosensors have been 
invented  to follow the  respond to auxin. This is a stage forward for auxin, as it 
enables researchers to realize how plant roots adjust to their condition, especially to 
negligible soils (McLamore et al. 2010).

Nanotechnology for yield biotechnology: Nanocapsules can encourage effective 
attack of herbicides, permitting moderate and ordinary release of the dynamic effec-
tive substances. This can go about as “enchantment shots”, containing herbicides, 
synthetics, or qualities which target demanding plant parts to free their substance 
(Pérez-de-Luque and Rubiales 2009). Torney et al. (2007) have abused a 3 nm mes-
oporous silica nanoparticle in conveying DNA and synthetic substances into 
detached plant cells.

The biomaterial is a substance or combination of substances other than medica-
tion mixes which might be engineered or common in inception that can be utilized 
for any time allotment, which increments or replaces for the most part or completely 
any tissue, organ, or capacity, to keep up or improve the personal satisfaction. The 
word “biomaterial” limits any substance thought to cooperate with the biotic frame-
work on living organism. The origin of biomaterials started in 1950, under the idea 
that the biomaterials ought to be idle or diminish negative response (side effects) of 
host tissue when embedded (Zavaglia and Prado da Silva 2016). From that point 
forward, there has been significant innovative work in the field of biomaterials 
prompting the creation of second- and third-age biomaterials. Moreover, the conver-
gence of various research fields, for example, natural science, immunology, materi-
als science, physical science, and building has opened a totally new measurement 
and innovation which is called “nanotechnology” (Prasad 2016).

Fast progression in the field of nanotechnology has reformed each part of sci-
ences, including the biomaterials prompting the discovery of bionanomaterials. 
Improved physical systems like helium particle and electron infinitesimal strategies 
and nanofabrication have permitted nanosized gadget generation and investigation. 
They can be portrayed as atomic materials made out of natural mixes (e.g. antibod-
ies, proteins, lipids, DNA, RNA, infections, and cell segments). The produced bion-
anomaterials may impact as novel strands and sensors. These sorts of structures may 
take into consideration of manufacturers as complex tools independent from known 
and ones previously used under delicate exploratory conditions (Honek 2013).

The expanding desire for sustainable condition is getting attention by researchers 
on biodegradable and biocompatible materials with the idea of “green” materials; in 
this specific circumstance, nanobiomaterials from horticultural waste might be con-
sidered as an alluring option having biodegradable, sustainable, or biocompatible 
properties other than being precisely solid, hardened, and profoundly crystalline 
with extraordinary warm dependability. Biodegradability, basic openness, and 
remarkable mechanical property of nanocellulose have pulled in a great deal of 
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interest as a novel wellspring of nanometre-sized materials. Planned studies of 
nanocellulose for biodegradable materials and wide utilizations of nanocellulose in 
especially ecological field make nanocellulose as a key player in contamination. 
Nanocellulose extraction from agrarian squanders, similar to citrus and orange, is 
by all account promising substitutes for waste treatment. Moreover, a successful 
method for extraction and a couple of all the more wide utilizations of nanocellulose 
in organic science are greatly expected sooner rather than before. The high surface 
region, the rich wealth of practical gatherings, and other amazing properties make 
graphene oxide as one of the first class carbon mixes. The potential utilization of 
graphene oxide (GO) in different fields of science has been investigated. 
Composites of GO from sugarcane and rice remains has made eminent improve-
ment in large-scale manufacturing of GO. Hence, accessible conventions for the 
combination of GO from agrowastes are in the earliest reference point of produc-
tion; further, the cutting edge techniques for composites  of eco-accommodating, 
financially savvy, agrowaste cause GO mixes  that should be grown adequately. 
Creation of formless silicon nanoparticles has been discovered utilizing diverse 
agrowastes, for example, corn centre point, rice husk, and other plant sources. The 
upgrade in the harvest yield by diminishing the utilization of manure and pesticides 
(SiO2NP) is one of the first class components for the improvement of crops.

Carbon being a crucial segment has been investigated for its potential use in the 
field of restorative and mechanical purposes. The wrong use of manufactured crude 
materials for the generation of nanostructured materials like carbon nanotubes and 
carbon nanofibers are of essential significance, and the use of characteristic sub-
stances that are of auxiliary or lesser significance is largely supported. At recent 
studies, one such methodology is by the usage of agricultural waste for the creation 
of carbon nanomaterials, which has been clarified previously. The discourse like-
wise underlines the significance of sorts of carbon and their uses in the field of 
therapeutics and nanoscience. The dialog likewise manages the segments of rural 
waste that could be used as promising instruments for the development of carbon 
nanoparticles, along these lines getting the most ideal of yield out of waste from 
farming area. Disregarding these potential focal points, combination of bionanoma-
terials from agrarian squanders is still equivalently overlooked and has not yet made 
it to the market segment to any degree in the examination with other present-day 
modern divisions. The deluge of research disclosures is by all account mostly 
declared by the little undertakings or the scholarly area; thus, there should be some 
positive contemplation to follow later on for the commercialization of these tip-top 
bionanomaterials in enormous scale.

22.5  Outlook

Noteworthy, the literature sources show some microorganisms causing plant disease 
and economical yield losses on crops. They are also capable of synthesizing NP and 
form new alloy components. (Please check ones showing with asterisk in Tables 
22.2, 22.3, 22.4, and 22.5.) In these circumstances, we should consider the capacity 
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of pathogenic microorganisms in view of NP production that may lower the benefi-
cial microorganism community directing anti-phytopathogen potential of the soil in 
farming areas. As known there is no detailed information on network existing within 
NP producers-pathogenic microorganisms and beneficial (conferring the control of 
pathogenic species) microorganism profiles. In our previous review, a requirement 
of a detailed metagenomics data is emphasized to understand the complexity of soil 
microbial interactions occurring between NP concentration and microbial viability 
that is required for sustainable soil property (Baysal and Silme 2018). Additionally, 
NP concentration changing in soil does not depend on remnants source of NP appli-
cation in purpose of plant protective implementations based on fungicides, insecti-
cides and herbicides, residue of NP are processed by metallophilic microorganisms 
that converts to another form that is able to uptake by bacterial cells. As noted, sul-
phide and miscellaneous and oxide nanoparticles synthesized by microorganisms 
have been acknowledged. Within these microorganisms, major soilborne pathogens, 
Fusarium oxysporum, Aspergillus spp. and Verticillium spp. are producing NP 
by using heavy metals (Tables 22.2, 22.3, 22.4, 22.5). These properties have shown 
moderate approaches and microorganisms consist of  numerous metal resistance 
gene clusters, which are able to cell detoxification via a number of mechanisms at 
high concentrations of mobile heavy metal ions. However, heavy metal ions, Hg2+, 
Cd2+, Ag+, Co2+, CrO4

2+, Cu2+, Ni2+, Pb2+ and Zn2+ cause toxic effects, which is det-
rimental to the survival of beneficial microorganisms in soil that help us protecting 
our crops from phytopathogenic microorganisms as well. Treatments of NPs on 
soil lead to these negative effects that can be taken into account for diminishing of 
soil microflora capacity which should not be missed/ ignored playing major role in 
maintainable ecological balance. While NPs are suggested as an effective control of 
plant pathogens, in a long period introduction of NPs on soil microflora might pre-
pare convenient deployment for emerging aggressive / resistant pathogenic strains 
against to known and registered chemical compounds commonly used in plant pro-
tection. Non-target application of NPs causing constraints on microflora in favour of 
pathogen might be the reason of uncontrolled dissemination of nanoparticles in the 
environment that create adversely possibility  for the pathogens attacking to host 
plants. Inversely, the pathogenic growth occurs very rapidly that suppresses benefi-
cial community of soil microflora since they have much easier ability to cell detoxi-
fication of metal ions compared to non-pathogenic individuals of soil microflora. 
The potential side effect of NP residues in soil varies according to  soil physico-
chemicals depending on microflora profile. In case of emerging this conveni-
nent microflora, the pathogenic behaviour will take over the control making favour 
condition for its own growth independently. Therefore, in Table 22.1, the soil types 
and organic content affecting soil microflora are summarized.
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22.5.1  A Possible Induction of Bacterial and Fungal Resistance 
by NPs

In recent studies, the positive effect of metallic nanoparticles (silver, copper, tita-
nium, zinc, and iron) that are used against multiple drug resistance (MDR) of micro-
organisms has been underlined due to their antimicrobial nature (Huh and Kwon 
2011; Fernandez-Moure et  al. 2017). The mechanisms behind the antimicrobial 
effect of these nanoparticles are well-known (Fig. 22.1; Singh et al. 2018). There are 
several green metallic nanoparticles obtained from microorganisms, which have 
been suggested for antimicrobial treatments against many pathogenic microorgan-
isms (Singh et  al. 2015a, b, 2016b; Sathiyavimal et  al. 2018). These prominent 
nanoparticles showed increase of antimicrobial efficacy by conventional antibiotics 
such as lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and 
rifampicin. The findings on zinc oxide displayed very effective antibacterial activity 
against S. aureus, E. coli, and P. aeruginosa (Pasquet et al. 2014). Even comparative 
studies between biological and chemical nanoparticles demonstrated higher antimi-
crobial effect of synthesized nanoparticles; they do not seem an alternative indis-
pensable method for struggling with bacterial pathogens alone. Suggesting silver 
NPs and nanocomposites is too early whether they might be recommended to 
enhance the effectiveness of antibiotics or fully replace them to control local and 
systemic infections. Recent data show potential development of bacterial resistance 
to silver NPs that should be considered (Panáček et al. 2018). On the other hand, the 
ABC is the biggest protein transporter superfamily existing in all organisms. 

Fig. 22.1 Various mechanisms of antimicrobial activity of biogenic metallic nanoparticles. (ROS 
reactive oxygen (Singh et al. 2018))
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Different proteins related to transduction cases of micromolecules and signals are 
encoded for translocation of various substrates with primary and secondary metabo-
lites in cell (sugars, amino acids, ions, peptides, proteins, etc.) (Benadiba and Maor 
2016). They are also valid in both prokaryotes and eukaryotes. In prokaryotes, they 
carry nutrients into cells, as well as efflux proteins, exhausting toxins and drugs out 
of the cell. In eukaryotes, they play a role in expressing efflux transporter proteins 
protecting the cell from toxins (Videira et al. 2014).

Recent data has shown unfavourable results related to growth of antibiotic resis-
tance strains in n-ZnO and n-TiO2 particle producer Bacillus subtilis. This case 
strongly correlated with physiological adaptation of bacterial strains to antibiotics 
besides expected positive inhibitory effect of nanoparticles such as death or oxida-
tive stress. Interestingly, nanoparticles may alter bacterial physiology and lead to 
dissemination of antibiotic resistance in bacteria (Eymard-Vernain et al. 2018).

In fungi, ABC transporters have been reported as target point of many patho-
genic fungi-causing diseases on human and agricultural products. But it seems to be 
sceptic, because there are some fungi causing plant diseases (such as F. oxysporum, 
Verticillium) that are able to synthesize of NPs (Tables 22.2, 22.3, 22.4, and 22.5). 
On the contrary to findings of Yang et al. (2016), we should also be aware of rais-
ing  of resistant-pathogen  individuals to systemic fungicides  consisting NPs 
and development of new drug delivery systems in pathogenic cells that may bypass 
the ABC family of transporters system on the cell wall such as the way of remnant 
non-target nanoparticles.

22.6  Conclusion

Nature comprises amazing mysterious waiting for us to explore and microorgan-
isms  that have tremendously genomic capacity ready for easily stress regulation. 
Therefore, it will be not wrong to say that any microorganism can overcome all neg-
ative issues and convert ongoing cases into favour of its own benefit. In this review, 
we have tried to imply that even we have new synthesized nanoparticles that will be 
used for different purposes, it does not mean there will be no any negative effect on 
environment. That is also possible accidentally introducing of nanoparticles onto 
non-target individuals and to be the reason for unexpected negative effect on bal-
anced biological cycles of micro-/macro organisms. Because if we ignore the sur-
vival  effort and    quickly  adaptation capacity  of microorganism in inconvenient 
conditions, we may encounter with unexpected cases such as high antimicrobial 
resistance and dynamic population of harmful pest out of our control and we may 
create favourable conditions for these pathogens. In brief, we should say “let’s not 
break one side while doing other side”.

R. S. Silme and Ö. Baysal
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Abstract
Pesticides are those chemical substances which are meant to kill pests. 
The use of pesticides has become so common these days that this term is 
often treated as synonymous with plant protection product. Pesticides are 
commonly used to eliminate or control different agricultural pests that 
can damage crops and livestock and reduce the productivity of farm. The 
assessment of the risks of pesticides cannot be easily monitored as adverse 
effects of a pesticide may take a long time after exposure or after repeated 
or prolonged exposure. Such effects are chronic in nature and may cause 
cancer, impaired immune defense, lower reproductive ability, and reduced 
growth. Such factors can affect the size of population and entire ecosys-
tem in the long term. Pesticides are meant to kill a particular pest, but 
quite a large percentage of pesticides reach some other destination than 
their basic target because they enter the air, water, soil, or sediments and 
ultimately in our food. Pesticides are known to have some human health 
hazards, short-term impacts like headaches and nausea to chronic impacts 
like cancer, loss of reproductive ability, etc. The uses of pesticides also 
adversely affect the general biodiversity in the soil. If there are no harm-
ful chemicals in the soil, then that soil is of higher quality. Hence, the 
chapter focuses on the use of nanoparticles in the detection and degrada-
tion of pesticides.
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23.1  Introduction

Pesticides are not a newer development. Many ancient civilizations were using pes-
ticides to protect their crops from insects and pests. Commonly used pesticides at 
that time include sulfur, oil, ash, mercury, arsenic, lead, etc. on common crops. In 
the nineteenth century, more focus was there on compounds made with the roots of 
some tropical vegetables and chrysanthemums. Dichlorodiphenyltrichloroethane 
(DDT) was discovered in 1939, which proved to be an extremely effective pesticide, 
and it was frequently used as the insecticide all over the globe. However, DDT was 
banned in most of the developed and developing countries later due to biological 
effects and human safety.

These are grouped according to the types of pests, which they usually kill. These 
are:

• Insecticides – insects
• Herbicides – plants
• Rodenticides – rodents (rats and mice)
• Bactericides – bacteria
• Fungicides – fungi
• Larvicides – larvae

23.1.1  Biodegradable Pesticides

The biodegradable pesticides are those which can be broken down by microbes and 
other living beings into harmless or almost harmless compounds, while there are 
some persistent pesticides also, which may take months or sometimes even years to 
break down.

The major advantage of pesticides is that they can help farmers in protecting 
their crops from insects and other pests. Some major benefits are:

• Controlling pests and plant disease vectors
• Controlling human/livestock disease vectors and nuisance organisms
• Controlling organisms that harm other human activities and structures

Pesticides may have a different mechanism of action. Foliar pesticides are taken 
up by leaves or green plant parts, while soil-acting pesticides normally act via the 
soil on growing seeds, shoots, or roots. Contact pesticides are used to affect those 
parts of a weed or pests that directly come in contact with spray liquid. Systemic 
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pesticides usually affect the entire target organism (weed or insect) through some 
active ingredient, which is transported in the plant’s vascular system following 
uptake by the roots or other parts of the plant treated with the compound. It ensures 
that the pesticide has reached all parts of the plant.

The studies on the effects of pesticides are based on laboratory experiments car-
ried out under controlled conditions (e.g., a temperature of 25 °C), often with one 
experimental organism and one pesticide at a time. It is difficult to decide the con-
sequences of the results available on the laboratory scale to possible consequences 
in natural environments, because a more complex system exists in the actual 
environment.

Several pesticides may occur together in agricultural streams as evident from 
environmental monitoring. Sometimes two or more chemicals can interact synergis-
tically, and the ultimate effect is more than double. Pesticides may also interact 
antagonistically. That is the best scenario, when they counteract each other in 
environments.

23.2  Insecticides

Insecticides are formulated to kill, harm, repel, or mitigate one or more species of 
insects. Some insecticides disrupt the nervous system, while others may damage 
their exoskeletons, repel them, or control them by some other means.

23.2.1  Atrazine

Atrazine belongs to the triazine class. It is used to prevent pre- and post-emergence 
broadleaf weeds in crops like maize (corn) and sugarcane and on turfs, such as golf 
courses and residential lawns. It is the most commonly detected pesticide contami-
nating drinking water. It is also an endocrine disruptor. Death of plants results from 
starvation and oxidative damage caused by a breakdown in the electron transport 
process. Atrazine remains in the soil for months (although in some soils, it can per-
sist for years also). It can migrate from the soil to groundwater. It degrades in the 
soil basically by the action of microbes.

Nsibande and Forbes (2019) used quantum dots (QDs) as sensitive fluorescent 
probes, because QDs have attractive and unique optical properties. The coupling of 
QDs to molecularly imprinted polymers (MIPs) was used to develop QD@MIPs- 
based fluorescence sensors, which provide monitoring atrazine in water. Here, highly 
fluorescent CdSeTe/ZnS QDs were fabricated using the conventional organometallic 
synthesis approach, and these were then encapsulated with MIPs. The sensor showed 
a good response time (5 min) upon interaction with atrazine, and the fluorescence 
intensity was quenched linearly within the range of 2–20 mol L−1. This sensor was 
applied in real water samples, which showed satisfactory recoveries (92–118%).

Zhao et  al. (2019) reported a novel dual-chemosensor coupling, a separation 
(molecularly imprinted polymers), an instrumental-free detection (gold 
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nanoparticle-based colorimetric assay), and an instrument-based quantification 
(surface-enhanced Raman spectroscopy, SERS) method for sensitive determination 
of atrazine in apple juice. MIPs were used to effectively extract atrazine from apple 
juice with high recoveries (∼93%). It was reported that large AuNPs provided the 
highest sensitivity in colorimetric analysis (< 0.01 mg L−1) as compared to medium 
and small AuNPs. On the other hand, medium AuNPs achieved the lowest limit of 
detection (0.0012 mg L−1) and quantification (0.0040 mg L−1) in SERS analysis.

A novel and efficient photocatalyst (Ag@Mg4Ta2O9 nanoparticles) was prepared 
by Alkayal and Hussein (2019) via hydrothermal technique. The percentage of Ag 
in the Ag@Mg4Ta2O9 nanoparticles has been investigated on the properties of 
Mg4Ta2O9 (physical and chemical). It was indicated that pore size distribution 
around 24 nm for 2.0 wt% Ag@Mg4Ta2O9 nanocomposite was there. These nanopar-
ticles were then applied for atrazine degradation photocatalytically. The 2.0 wt% of 
Ag@Mg4Ta2O9 displayed the best photocatalytic efficiency for the degradation of 
atrazine, which may be due to the high BET surface area and low band gap. It was 
also reported that this nanocomposite can be reused for atrazine degradation many 
times without any significant loss of efficiency.

Truca et al. (2019) incorporated Cu into ZnO lattice so as to reduce its band gap 
and also to extend its response to visible radiation. As-obtained Cu-ZnO was con-
tinuously integrated with g-C3N4 to prepare Cu-ZnO/g-C3N4 Z-direct scheme photo-
catalyst. Cu-ZnO utilized the h+ only for atrazine degradation (direct and indirect 
through formation of hydroxyl radicals), while dissolved g-C3N4 utilized only gen-
erated e− (indirectly via reaction with dissolved O2 to form superoxide anion, which 
continuously reacts with H2O to form •OH). It was also reported that photocatalytic 
degradation of atrazine by synthesized Cu-ZnO material was greater than that by 
synthesized g-C3N4 material. Cu-ZnO/g-C3N4 utilized both: generated e− and h+ for 
degradation of atrazine. Recycling experiments also indicated greater stability of 
as-synthesized Cu-ZnO/g-C3N4 during long-term atrazine degradation.

23.2.2  Dichlorvos

Dichlorvos is an organophosphate, which is widely used as an insecticide to control 
household pests and also in protecting stored products from insects. Dichlorvos is 
effective against mushroom flies, aphids, spider mites, caterpillars, thrips, and white-
flies in greenhouses and also in outdoor crops. It has become controversial because of 
its prevalence in urban waterways and due to the fact that its toxicity extends well 
beyond insects. It acts against insects as both a contact and a stomach poison.

Hou et al. (2016) reported an ultrasensitive fluorescence resonance energy transfer 
(FRET) biosensor of dichlorvos (organophosphorus insecticide). This sensor is based 
on carbon dots and the traditionally colorimetric Ellman’s test. 5-Thio-2- nitrobenzoic 
acid anion (TNB−) was used as energy acceptors to construct a FRET sensing system 
of acetylcholinesterase (AChE) and its inhibitor. Here, quaternized carbon dots 
(Q-CDs) were chosen as energy donors to form an effective FRET system. It was 
revealed that TNB− can quench the fluorescence of Q-CDs to a larger extent. Dichlorvos, 
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which is also an inhibitor of AChE, can be detected using this sensing system. Linear 
range of dichlorvos was reported to be 5.0 × 10−11 to 1.0 × 10−7 M under optimal condi-
tions. As this sensing system has high sensitivity and green fluorescent material with 
high quantum yield, it can be used for rapid determination of dichlorvos.

Dong et  al. (2016) constructed a simple and sensitive fluorescent sensor for 
dichlorvos, which was based on carbon dots-Cu(II) system. They obtained these 
carbon dots by simple hydrothermal reaction of feather. It was reported that fluores-
cence of these carbon dots can be selectively quenched by Cu2+ ion, which was 
restored on introducing acetylcholinesterase and acetylthiocholine in the system, 
because there thiocholine is produced, which reacts with Cu2+ ion. As dichlorvos is 
one kind of acetylcholinesterase inhibitor, it can be detected with a linear range of 
6.0 × 10−9 to 6.0 × 10−8 M. This type of sensor can be successfully used for the 
analysis of cabbage and fruit juice samples.

Rao et al. (2012) synthesized undoped and magnesium doped samples of TiO2 by 
sol-gel method with magnesium weight percentages in the range of 0.75–1.5 wt%. 
It was revealed that there is a red shift for doped TiO2. The doped catalyst had 
smaller particle size and higher surface area than its undoped counterpart. The pho-
tocatalytic efficiency of as-synthesized catalysts was investigated by the photocata-
lytic degradation of aqueous dichlorvos in the presence of visible light irradiation. 
Better catalytic activity was found with Mg2+-doped catalysts than undoped TiO2, 
which may be attributed to more efficient electron-hole creation in Mg2+-TiO2 in 
visible light.

Senthilnathan and Philip (2011) prepared N-doped TiO2. Different organic com-
pounds such as triethylamine, urea, ethylamine, and ammonium hydroxide were 
used as source of nitrogen. It was revealed that nitrogen doped TiO2 from triethyl-
amine precursor had better photocatalytic activity for the degradation of dichlorvos 
under visible and solar radiation. N-doped TiO2 showed better photocatalytic activity 
under solar radiation as compared to UV and visible light. It was reported that com-
mercial grade dichlorvos produced intermediates such as 2,2-dichlorovinyl-O- methyl 
phosphate and O,O,O-trimethyl phosphonic ester during the photocatalytic degrada-
tion. However, no intermediates remained present at the end of the reaction.

23.2.3  Endosulfan

Endosulfan is an off-patent organochlorine insecticide and acaricide. It has two iso-
mers, endo and exo, which are known popularly as I and II or α and β. Endosulfan 
became a highly controversial agrichemical. It has been used in agriculture to con-
trol insect pests such as whiteflies, aphids, leafhoppers, Colorado potato beetles, 
and cabbage worms.

A glassy carbon substrate was covalently modified by Liu et al. (2012) with a 
mixed layer of 4-aminophenyl and phenyl in situ electrografting of their aryldiazo-
nium salts in acidic media. Single-walled carbon nanotubes (SWCNTs) were cova-
lently and vertically anchored on the surface of electrode via the formation of amide 
bonds. These bonds are formed by the reaction between the amines present on the 
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modified substrate and the carboxylic groups at the ends of the nanotubes. Then 
ferrocenedimethylamine (FDMA) was attached to the ends of SWCNTs through 
amide bonding followed by the attachment of an epitope, i.e., endosulfan hapten to 
which an antibody would bind. Antibody-complexed electrodes were exposed to 
samples containing spiked endosulfan (unbound target analyte) in water and ana-
lyzed it using the square-wave voltammetry (SWV) technique. As-fabricated elec-
trochemical immunosensor was successfully used for the detection of endosulfan in 
the range of 0.01–20  ppb. The lowest detection limit of this immunosensor was 
found to be 0.01 ppb endosulfan in 50 mM phosphate buffer at pH 7.0.

Li et al. (2014) reported a modified rapid, easy, low-cost, effective, rugged, and 
safe sample preparation method with magnetic nanoparticles (Fe3O4; MNPs). They 
established a new method for the determination of multiple pesticides present in 
vegetables and fruits. Recoveries were evaluated in four representative matrices 
(tomato, cucumber, orange, and apple) under optimum conditions, with three spiked 
concentrations of 10, 50, and 200 μg kg−1 for all. It was revealed that the recovery 
of pesticides ranged between 71.5% and 111.7%.

Thomas et al. (2011) prepared silver nanoparticles doped anatase TiO2 nanocrys-
tals through a low-temperature hydrothermal route. As-synthesized nanocrystals 
were found to be highly efficient solar photocatalysts, and they had higher photo-
catalytic activity as compared to pure nano-TiO2 and commercial photocatalyst 
Degussa P25, in the presence of sunlight. Silver nanoparticles were prepared by a 
single-step chemical reduction and stabilization employing L-Dopa. It was revealed 
that nanosilver doping on TiO2 induces a red shift of absorption edge due to the nar-
rowing of band gap. As-synthesized photocatalysts were used for the degradation of 
the organochlorine pesticide, endosulfan, and they could achieve almost complete 
degradation with highly active calcined nanosilver doped TiO2 catalyst.

The removal of multi-pesticides was studied by Shabeer et al. (2015) via a com-
bined treatment process with coagulation-adsorption on nano-clay. Different nano- 
clays (nano-bentonite, nano-halloysite, and organically modified 
nano-montmorillonite) were used as the adsorbent, while alum and polyaluminium 
chloride (PAC) were used as coagulants. It was observed that only the coagulation 
method was not sufficient to purify water, whereas a combination of coagulation with 
adsorption provided better purification. Out of the nano-clays used, organically mod-
ified nano-montmorillonite gave the best result for the removal of pesticides from 
water. Freundlich isotherm indicated that adsorption of pesticides on different nano-
clays depends on its type, presence and absence of coagulants, as well as the proper-
ties of pesticides. They observed that alum-PAC coagulation aided by nano- clay as 
an adsorbent was the superior process for the removal of many pesticides simultane-
ously (atrazine, aldrin, metribuzin, β-endosulfan, α-endosulfan, endosulfan sulfate, 
lindane, chlorpyrifos, pendimethalin, DDT, and cypermethrin) from water.

23.2.4  Parathion

Parathion or methyl parathion is an organophosphate insecticide and acaricide. It is 
highly toxic to nontarget organisms, including humans. Methyl parathion is 
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somewhat less toxic than parathion. It is often applied to cotton, rice, and fruit trees. 
Parathion is a cholinesterase inhibitor. It generally disrupts the nervous system by 
inhibiting acetylcholinesterase. It is absorbed via the skin and mucous membranes 
and also orally. Parathion (after metabolic activity gets converted into paraoxon) 
exposure can result in headaches, convulsions, poor vision, vomiting, abdominal 
pain, severe diarrhea, unconsciousness, tremor, dyspnea, and finally lung edema as 
well as respiratory arrest.

Tang and Xiang (2016) prepared surface molecularly imprinted CdTe nanopar-
ticles via a reverse microemulsion polymerization. Parathion was selected as tem-
plate molecule, 3-aminopropyltriethoxysilane and tetramethoxysilane as the 
polymerization precursors, and cross-linkers. As-synthesized materials show distin-
guished selectivity and high binding affinity to parathion as compared to chlorpyri-
fos, diazinon, and pyrimithate. It was observed that the relative fluorescence 
intensity of polymers decreased with the increase in concentration of parathion in 
the range 0.05–1000 μmol L−1. The proposed method was used for the detection of 
parathion in water samples, where recoveries were in the range of 97.72–100.59%.

A selective and sensitive novel electrochemical sensor was developed by Prasad 
et al. (2015) for the detection of methyl parathion. They used carbon dots (C-dots)/
ZrO2 nanocomposite. This was fabricated using electrochemical deposition onto a 
glassy carbon electrode. The C-dots/ZrO2 modified glassy carbon electrode could 
rapidly and selectively determine methyl parathion in rice samples using adsorptive 
stripping voltammetry. It was reported that stripping response was highly linear for 
concentrations of methyl parathion in the range of 0.2–48 ng mL−1 having a detec-
tion limit of 0.056 ng mL−1.

Hou et al. (2015) developed a simple and sensitive fluorescent sensor for methyl 
parathion, which is based on L-tyrosine methyl ester functionalized carbon dots 
(Tyr-CDs) and tyrosinase system. These carbon dots were obtained via a simple 
hydrothermal route using citric acid as a carbon resource and L-tyrosine methyl 
ester as modification reagent. It was revealed that tyrosinase can catalyze the oxida-
tion of tyrosine methyl ester on the surface of carbon dots to corresponding quinone 
products, which are responsible for the quenching of fluorescence of carbon dots. 
When methyl parathion was introduced in the system, they decrease the enzyme 
activity, resulting in the decrease of fluorescence quenching rate. It was reported 
that the enzyme inhibition rate was proportional to the logarithm of the methyl para-
thion concentration in the range 1.0 × 10−10 to 1.0 × 10−4 M with detection limit of 
4.8 × 10−11 M (S/N = 3). The present method had a low detection limit, wide linear 
range, good selectivity, and high reproducibility. This sensing system has been suc-
cessfully applied for the analysis of samples of cabbage, milk, and fruit juice.

The degradation of parathion (PTH) was investigated by Liu et al. (2019) using 
ferrate (VI). It was reported that the removal of PTH (5 mg L−1) could reach 99% 
only in 300 s under the optimum conditions as [Fe(VI)]:[PTH] = 15:1; T = 25 °C 
and pH = 7.0. They also used real water samples to evaluate the feasibility of this 
Fe(VI) oxidation method. Fe(VI) may attack PS double bond and the PO single 
bond connecting the nitrophenol or the ethyl group in PTH molecule. Six products 
were identified; the major ones are paraoxon, thiophosphates, and phosphates.
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Ag-TiO2 nanoparticulate film was synthesized by Ramacharyulu et al. (2015) via 
dip coating. It was indicated TiO2 (anatase) particles were in size ranging from 5 to 
15 nm, while Ag nanoparticles were in size 10–20 nm. They carried out photocatalytic 
degradation of methyl parathion in aqueous solution using this Ag-TiO2 nanoparticu-
late film, and results were compared with TiO2 nanoparticulate film. Methyl parathion 
was first degraded initially to paraoxon, which on further degradation gives p-nitro-
phenol, trimethyl ester of phosphoric acid, and finally phosphate ion; however, minute 
amounts of carbon dioxide and acetaldehyde were also detected.

Nano-sized titanium dioxide (rutile) powders were used by Wang et al. (2007) as 
the catalysts for sonocatalytic degradation of methyl parathion. It was observed that 
the degradation of methyl parathion was more rapid sonocatalytically in the pres-
ence of TiO2 particles than without TiO2 catalyst. They also evaluated the effect of 
reaction parameters, such as species of TiO2 particles, concentration of methyl para-
thion, different amounts of TiO2, pH, intensity, and frequency of ultrasonics and 
temperature. It was revealed that methyl parathion in aqueous solution was com-
pletely mineralized to ions, like NO2

−, NO3
−, PO4

3−, SO4
2−, etc. The kinetics of the 

degradation was found to follow the first-order reaction. It was reported that more 
than 95% degradation of methyl parathion could be achieved within 80 min under 
optimal conditions.

23.2.5  Chlorpyrifos

Chlorpyrifos is an insecticide, which is used to control many kinds of pests, includ-
ing termites, mosquitoes, and roundworms. It is also used on golf courses and crops 
such as cotton, corn, almonds, and fruit trees (oranges, bananas, and apples). Its 
exposure may lead to acute toxicity, with symptoms such as runny nose, tears, and 
increased saliva or drooling. More serious exposures can cause vomiting, abdomi-
nal muscle cramps, muscle twitching, tremors, weakness, difficulty in breathing, 
and paralysis.

Capoferri et al. (2018) reported that electrochromic behavior of iridium oxide 
nanoparticles (IrOx NPs) as physicochemical transducer together with a molecu-
larly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient 
translation of the detection event. They fabricated a sensor using screen-printing 
technology with indium tin oxide as a transparent working electrode. IrOx NPs 
were electrodeposited onto this electrode followed by thermal polymerization of 
polypyrrole in the presence of chlorpyrifos. Direct visual detection and smartphone 
imaging were used to detect and quantify this pesticide. It was observed that the 
application of different oxidation potentials for 10 s resulted in color changes, which 
is directly related to the concentration of the chlorpyrifos. Its concentration was 
found to be dependent on the color intensity of the electrode for smartphone imag-
ing, at fixed potential. The proposed electrochromic sensor detects chlorpyrifos, a 
highly toxic compound with a 100 fM and 1 mM dynamic range.

Hunde et  al. (2017) developed sensitive, cost-effective, and selective electro-
chemical sensor iron oxide nanoparticles as modifier in the paste of graphite pow-
der. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used 
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for the determination of chlorpyrifos from its aqueous solutions. Both these tech-
niques were used to know the electrochemical interactions between chlorpyrifos 
and modified carbon paste sensor. It was revealed that the peak current varies 
directly to the pesticide concentration in lower concentration range of chlorpyrifos 
(1.0–100 μM) with detection limit of 2.8 × 10−6 mol L−1. The relative stability of the 
modified sensor was found to be fine, and the reproducibility of the results was up 
to 98%, even after a period of 2 months. This proposed method is quite successful, 
when applied for the quantification of chlorpyrifos from its aqueous samples.

A highly sensitive piezoelectric biosensor was developed by Halamek et  al. 
(2005) for the detection of cholinesterase inhibitors. It was reported that the regen-
eration of the sensor surface could be achieved with 1 mol L−1 formic acid, which 
enabled 40 measurements with one sensor. The total measurement time (binding + 
regeneration) was only 25  min, and the detection limit for chlorpyrifos was 
10−10 mol L−1 (0.02 μg L−1). The present sensor was used for the determination of its 
levels in river water samples.

23.2.6  Pirimicarb

Pirimicarb is a carbamate insecticide and it is used on a broad range of crops, which 
includes vegetable, cereal, and orchard crops. This acts by inhibition of acetylcho-
linesterase activity. It causes reproductive and developmental toxicity, neurotoxic-
ity, and acute toxicity. It is also known to cause severe respiratory irritation, 
pulmonary edema, and slower heartbeat.

An electrochemical study of the pirimicarb (PMC) was performed by Selva et al. 
(2017) using a boron-doped diamond working electrode. Cyclic, differential pulse, 
and square-wave voltammetry experiments were carried out over a wide range of 
pH (2.0–8.0), which showed three irreversible oxidation processes. It was reported 
that the two first processes were pH-dependent, while the third was independent of 
pH. These three oxidation processes were found to be independent of each other, 
involving the transfer of one electron each. They proposed an analytical method for 
PMC quantification in water samples using differential pulse (DP) voltammetry. An 
analytical curve was obtained from 2.0 to 219 μmol L−1 with a detection limit of 
1.24 μmol L−1. The accuracy of this method was evaluated with recoveries ranging 
between 88.6% and 96.3%. Some advantages of this method are its simplicity, reli-
ability, and portability.

23.2.7  Cyhalothrin

Cyhalothrin is a pyrethroid class of insecticides. It is used to control insects in cot-
ton crops, and pyrethroids have been developed also for the control of household 
and agricultural insects and human lice. Some major toxic effects are paresthesia, 
nausea, headache, vomiting, dizziness, fatigue, CNS depression, fever, blurred 
vision, coma, respiratory failure, etc.
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Wang et al. (2017) prepared a novel core-shell fluorescence probe for pyrethroids 
by precipitation polymerization. Here, ZnO quantum dots and cyhalothrin were 
used as the substrate and template, respectively. Such polymer microspheres were 
used sensitively and selectively to determine cyhalothrin. It was observed that a 
linear relationship was there between the concentration of cyhalothrin 
(0–80 μmol L−1) and the fluorescence intensity. This method was used for the deter-
mination of cyhalothrin in milk.

23.2.8  Carbaryl

Carbaryl belongs to the carbamate family of insecticides. It is normally used to 
control aphids, ticks, fire ants, spiders, fleas, and many other pests. Carbaryl is used 
as an insecticide on cotton, corn, fruit, soybean, nut, vegetable, etc. crops and also 
in home yards and gardens. Carbaryl is a cholinesterase inhibitor. It causes head-
ache, cramps, muscle weakness, memory loss, and anorexia.

Wang et al. (2014) developed a novel nonenzymatic sensor based on cobalt (II) 
oxide (CoO)-decorated reduced graphene oxide (rGO). It was then used for the 
detection of carbofuran (CBF) and carbaryl (CBR). It was reported that two separate 
differential pulse voltammetric peaks for these pesticides were obtained in a mixed 
solution, thus making their simultaneous detection possible. This nonenzymatic sen-
sor shows a linear relationship over a wide concentration range of 0.2–70 μM for 
CBF and 0.5–200 μM for CBR. It was revealed that the lower detection limit of this 
sensor was 4.2 and 7.5 μg L−1 for CBF and CBR, respectively. This sensor was used 
to detect these pesticides in fruit and vegetable samples with satisfactory results.

An original and versatile dual-readout (colorimetric and fluorometric) protocol 
has been proposed by Zhao et al. (2016) using silver nanoparticles (Ag NPs) and 
fluorescent carbon dots (CDs), which can be used for the assay of acetylcholinester-
ase (AChE) activity and its inhibitors. The first dual-mode proposal has been made 
for assessing AChE activity using a CDs-based IFE sensing strategy, where the 
detection limit was found to be as low as 0.021 and 0.016 mU mL−1 by colorimetric 
and fluorometric measurements, respectively. The proposed assay is useful to screen 
AChE inhibitors such as tacrine and carbaryl. It has advantages such as simplicity, 
rapidity, flexibility, and diversity. This method was used successfully for the quanti-
tative detection of spiked carbaryl in apple juice samples.

23.3  Herbicides

Herbicide is an agent, which is commonly used for killing or inhibiting the growth 
of unwanted plants, like residential or agricultural weeds and invasive species.
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23.3.1  2,4-Dichlorophenoxyacetic Acid

2,4-Dichlorophenoxyacetic acid is a systemic herbicide, which selectively kills 
most broadleaf weeds by causing uncontrolled growth in them. On the other hand, 
cereals, lawn turf, and grassland are relatively unaffected. It is also called 2,4-D. It 
is one of the oldest and most widely available herbicides and defoliants. It is widely 
used as a weedkiller on cereal crops, pastures, and orchards.

A fluorescent optosensor containing a molecularly imprinted polymer (MIP) in 
combination with electrospinning was fabricated by Limaee et al. (2019) and then 
used for selective recognition of 2,4-dichlorophenoxyacetic acid. The first free radi-
cal polymerization was carried out on the surface of polyethersulfone (PES) nano-
fibers using a monomer, initiator, template, and a polymerizable 1,8-naphthalimide 
derivative as the fluorogenic monomer. PES nanofiber@fluorescent molecularly 
imprinted polymer (PES nanofiber@FMIP) was then produced by UV curing. It 
was reported that as-developed sensor was able to selectively determine 2,4-D in a 
linear range of 1 × 10−7 to 1 × 10−3 M with limit of detection (LOD) 1.01 × 10−8 M. It 
was indicated that PES nanofiber@FMIP could satisfactorily determine even trace 
concentrations of 2,4-D.

The effect of pH (3–9), contact time (3–90  min), amount of adsorbent (0.1–
0.4 g), and herbicide initial concentration (0.5–3 ppm) was evaluated by Dehghani 
et al. (2014) on 2,4-D removal efficiency in the presence of granular activated car-
bon. It was reported that pH 3 and contact time of 60 min were found to be optimal 
for 2,4-D removal. The removal rate of 2,4-D increased rapidly on adding adsor-
bent, but it decreased by herbicide initial concentration (63%). It was also signifi-
cantly enhanced by decreasing pH and increasing the contact time. It was revealed 
that adsorption of 2,4-D onto the granular activated carbon is best fitted to type II 
Langmuir model, and this reaction follows the second-order kinetics.

Cai et al. (2020) observed the degradation of 2,4-dichlorophenoxyacetic acid 
using anodic oxidation (AO) with a boron-doped diamond (BDD) anode, and it 
was found to be greatly enhanced by the combination with electro-Fenton (EF) 
using carbon black modified graphite felt (CB-GF) as cathode. It was reported that 
a high current density, low initial pH, and high concentration of Na2SO4 favored 
the degradation of 2,4-D by AO. In EF reaction, the degradation rate of 2,4-D was 
increased eightfold after using CB-GF cathode with a higher mineralization cur-
rent efficiency (53%) and a lower energy consumption (71.8 kWh kg−1 TOC) due 
to the higher generation of H2O2. It was indicated that the major oxidizing radicals 
responsible for 2,4-D degradation by AO were ●OH (57.5%) radicals, while its 
contribution improved to 92% in the case of EF. EF was more efficient as com-
pared with AO for 2,4-D degradation. It was suggested that EF using BDD anode 
and high-performance CB-GF cathode was efficient for the degradation of 2,4-D, 
and it could be a promising electrochemical advanced oxidation process for organic 
wastewater treatment.

Highly efficient hetero-assemblies were prepared with acidified g-C3N4 (ACN), 
polyaniline (PANI), reduced graphene oxide (rGO), and biochar. Kumar et  al. 
(2019) used these organic semiconductors to synthesize g-C3N4/ACN/RGO@
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Biochar (GARB), g-C3N4/PANI/RGO@Biochar (GPRB), and ACN/PANI/RGO@
Biochar (APRB) nano-assemblies. As-synthesized catalysts were used for the visi-
ble light assisted degradation of 2,4-dichlorophenoxyacetic acid. It was reported 
APRB was the best to degrade 99.7% of 2,4-D on the exposure to Xe lamp within 
50 min. It also retained high activity in natural sunlight. Here, rGO acts as an elec-
tron mediator and it protects higher positioned bands of PANI and ACN in APRB 
for its significant photocatalytic activity. It was observed that 42% of total organic 
carbon was removed in 2 h for 2,4-D.

Cymbopogon nardus (C.N) was first extracted via simultaneous ultrasonic- 
hydrodistillation (UAE-HD) extraction method, and then it was used to synthesize 
silver nanoparticles (Kamarudin et al. 2019). It was confirmed that spherical shape 
Ag nanoparticles were formed with size ranging between 10 and 50  nm. It was 
proven that a large number of phenolic compounds were greatly involved in the 
nanoparticle synthesis process. They also observed the catalytic activity of as- 
synthesized Ag nanoparticles toward the degradation of 2,4-dichlorophenoxyacetic 
acid with higher degradation performance (98%).

A photocatalyst was prepared by Mehrabadi and Faghihian (2019) via doping of 
titanium dioxide on clinoptilolite nanoparticles, and it was used for simultaneous 
degradation of 2,4-dichlorophenoxyacetic acid and 2-methyl-4- chlorophenoxyacetic 
acid (MCPA) mixture in the presence of ultraviolet and sunlight irradiations. It was 
indicated that the efficiency of photocatalyst was significantly increased by the 
immobilization of titanium dioxide on the clinoptilolite surface. It was also found 
that the band gap of photocatalyst shifted to the visible region, and the recombination 
of electron hole was also significantly reduced. They estimated the degradation effi-
ciency by the determination of total organic carbon and the degradation products.

Hydrothermal synthesis of TiO2 was carried out by Sandeep et al. (2018) using 
the sol-gel method, which resulted in material with good crystallinity and particle 
size. It was reported that hydrothermal catalyst (H-TiO2) showed 96% degradation 
under UV light and 83% under sunlight.

Jia et al. (2017) constructed a novel molecular imprinting fluorescence sensor by 
anchoring mesoporous structured imprinting microspheres on the surfaces of quan-
tum dots (QDs) surface. It was used for selective and sensitive detection of 
2,4-dichlorophenoxyacetic acid (2,4-D). This sensor exhibited a satisfactory linear-
ity within 0.66–80 μM, with a low detection limit of 2.1 nM within 20 min, under 
optimized conditions. It was successfully applied for the detection of 2,4-D in bean 
sprout samples. High recoveries at three spiking levels of 2,4-D ranging from 95.0% 
to 110.1% with precisions below 4.9% were attained. It exhibited high sensitivity 
and good selectivity for the separation, enrichment, and detection of 2,4-D in real 
food samples and ensuring food safety.

23.3.2  Clopyralid

Clopyralid is a selective herbicide used for the control of broadleaf weeds, especially 
thistles and clovers. Clopyralid belongs to the picolinic acid family of herbicides. It 
controls creeping thistle, Cirsium arvense, a noxious, perennial weed. It is 
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particularly damaging to peas, tomatoes, and sunflowers and can render potatoes, 
lettuce, and spinach inedible; however, it does not affect grasses of the family 
Poaceae.

A solid-phase extraction (SPE) based on a dummy molecularly imprinted poly-
mer (MIP) and liquid chromatography-tandem quadrupole mass spectrometry (LC- 
MS/MS) was developed by Tan et al. (2019) for the selective determination of four 
pyridine carboxylic acid herbicides (aminopyralid, picloram, fluroxypyr, and clopy-
ralid) in samples of milk. They used adsorption isotherms and kinetics to determine 
the adsorption performance and specific recognition mechanism of both: MIPs and 
non-molecularly imprinted polymers (NIPs). It was reported that recovery at three 
spiking levels of 10, 20, and 50 μg·L−1 ranged between 75.3% and 89.8% with rela-
tive standard deviations (RSDs) <14.3%. The limit of detection (LOD) was also 
estimated to be 0.124 μg·L−1. The feasibility of this method was successfully applied 
to quantify clopyralid in milk.

Celis et al. (2019) prepared montmorillonite (SWy-2)-chitosan bionanocompos-
ites (SW-CH) following different methodologies and used as an adsorbent for the 
removal of clopyralid in aqueous solution and soil/water suspensions. They assessed 
the potential of these materials to prevent and remediate soil and water contamina-
tion by anionic pesticides. The SW-CH bionanocomposites were found to be good 
adsorbents for the herbicide at pH level, particularly where anionic form of the 
herbicide (pKa = 2.3) and the cationic form of CH (pKa = 6.3) predominated. The 
performance of this bionanocomposites as adsorbents of clopyralid depends on the 
amount and arrangement of chitosan in the samples. It was observed that clopyralid 
adsorption was rapid and linear up to herbicide concentrations of 0.5 mM. High salt 
concentrations (0.1 M NaCl) promoted desorption of the adsorbed clopyralid from 
SW-CH, which strongly suggests that its adsorption occurred mainly through an ion 
exchange mechanism on positively charged CH sites at the surface of montmoril-
lonite. An acidic soil (pH = 4.5) with SW-CH at rates of 5% and 10% led to a signifi-
cant increase in clopyralid adsorption, but this effect was found negligible in the 
case of alkaline soil (pH = 8.0). It reflects the absence of positively charged sites in 
SW-CH at higher pH values.

23.3.3  Glyphosate

Glyphosate is a broad-spectrum systemic herbicide. It acts by inhibiting the plant 
enzyme 5-enolpyruvylshikimate-3-phosphate synthase, and it is normally used to 
kill weeds, particularly annual broadleaf weeds and grasses that compete with 
crops.

Mirmohseni et  al. (2019) used a mixture of polydimethylsiloxane and poly-
acrylic resins as adsorbent for the detection of glyphosate (GLY). They developed a 
simple and cost-effective analysis method, which was based on quartz crystal nano-
balance technique (QCN) to detect the presence of GLY. A thin layer of mixture 
(polydimethylsiloxane/acrylic resins) was coated on the surface of gold-coated 
quartz crystal electrodes. The frequency shifts were found to be linear for the 
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concentration of 0.2–8.6 mgL−1 with sensitivity factor of 70.73 Hz mg−1 L−1. It was 
reported that no major interference was observed in the performance of the sensor 
with some possible interferences tested (NaCl, CaSO4, MgSO4, and NaHCO3).

A photoelectrochemical (PEC) sensor based on hierarchically porous Cu-BTC/g-
C3N4 nanosheet (Cu-BTC/CN-NS, BTC = Benzene-1,3,5-tricarboxylic acid) mate-
rial was constructed by Cao et  al. (2019a). Hierarchically porous Cu-BTC is a 
composite material, which can help to efficiently capture suitable pesticide mole-
cules and accelerate signal transmission. The CN-NS had a good optical perfor-
mance. The Cu metal center can coordinate with added glyphosate to form 
Cu-glyphosate complexes on exposure to visible light, which leads to increased ste-
ric hindrance of electron transfer, and as a result, a decrease in photocurrent was 
observed. This sensor can realize the detection of glyphosate from non-electroactive 
to electroactive. It was indicated that this photoelectrochemical sensor has a lower 
detection limit of 1.3 × 10−13 mol L−1 and a wide range of detection (1.0 × 10−12 to 
1.0 × 10−8 mol L−1 and 1.0 × 10−8 to 1.0 × 10−3 mol L−1). Apart from this, Cu-BTC/
CN-NS-based sensor has the characteristics of short detection time and easy opera-
tion and, therefore, can find potential applications in photoelectrochemical analysis.

Magnetic BiOBr/Fe3O4 nanocomposite photocatalysts were successfully pre-
pared by Cao et al. (2019b) via a facile solvothermal process. As-prepared catalysts 
exhibited excellent photocatalytic activity toward glyphosate degradation in water 
in the presence of visible light. It was observed that the rate of glyphosate degrada-
tion reached up to 97% within 60 min, which was higher than that of pure BiOBr 
(85%). Photogenerated holes (h+) were confirmed to be the major reactive oxidizing 
species in the photodegradation of glyphosate. As-prepared BiOBr/Fe3O4 photo-
catalysts have magnetic properties and also good recyclability. It was reported that 
after five repeated trials, the percentage of degradation of glyphosate was still more 
than 90%, which indicates that nanocomposites have excellent reusability as well as 
great potential in the treatment of industrial wastewater.

Eliana et al. (2019) prepared SBA type nanostructured catalysts modified with 
iron and cobalt. These catalysts were used for the degradation of glyphosate through 
catalytic wet air oxidation at atmospheric pressure and room temperature. The reac-
tion products were analyzed as acetate, nitrate, nitrite, and phosphate ions. The sta-
bility of catalyst and possibility of its recycling were also studied. It was found that 
both Fe and Co ions can form complexes with glyphosate, but only Fe-SBA(20) 
catalyst could lead to the oxidative degradation of the herbicide. It was reported that 
Co-SBA(20) material acts as an adsorbent of herbicide, but it was not found to be 
active in its degradation. It was revealed that this complex was capable of activating 
O2 from an airflow and generates oxoiron intermediates, which promoted the degra-
dation of the glyphosate into short chain ions, and less toxic and more biodegrad-
able products at ambient conditions.
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23.3.4  Paraquat

Paraquat is one of the most widely used herbicides. It is quick-acting and nonselec-
tive and kills green plant tissue on contact. It is also toxic to human beings and 
animals due to its redox activity. It kills a wide range of annual grasses, broadleaf 
weeds, and the tips of established perennial weeds. Paraquat is highly toxic to mam-
mals on ingestion including humans and leads to acute respiratory distress syn-
drome (ARDS).

Photocatalytic degradation of paraquat was investigated by Sorolla et al. (2012) 
using mesoporous-assembled Cu-TiO2/SBA15  in the presence of UV and visible 
light. This catalyst was prepared by impregnation of Cu-TiO2 colloids onto SBA-15. 
Colloids of Cu-TiO2 were obtained via sol-gel method, but its mesoporous support 
was prepared via hydrothermal route. It was revealed that Cu-doped TiO2 had a 
small crystalline size and it was well dispersed on SBA-15. The TiO2/SBA-15 had 
the highest degradation of paraquat for all pH under UV illumination. It was also 
observed that 2 wt% Cu-TiO2/SBA-15 show the highest activity under visible light.

The N,S/TiO2 thin films were prepared by Zahedi et al. (2015) via sol-gel dip 
coating method. The 84.39% of decomposition was achieved in 5 h at optimum 
pH 5.8. It was revealed that nanostructure of N,S/TiO2 thin films can be recycled, 
and this is stable, with a good potential for practical application.

The TiO2 nanoparticles were synthesized by Phuinthiang and Kajitvichyanukul 
(2018) from the extract of Coffea arabica L. (TiO2/C). These were used for the 
removal of paraquat from contaminated water photocatalytically. As the value of 
pHpzc of TiO2/C was 2.9, the surface of catalyst was highly acidic. Paraquat is easily 
removed in alkaline medium because of the adsorption ability of paraquat on its 
surface. This degradation followed the pseudo-first-order model, and the order of 
the rate in the presence of ultraviolet (UV) and H2O2 was:

 TiO C TiO without TiO2 2 2/ > >  

It was reported that using combined TiO2/C, a maximum of 66.3% degradation 
was achieved within 90 min at pH 10.

23.3.5  Mesotrione

Mesotrione is a herbicide which is a member of the class of 4- hydroxyphenylpyruvate 
dioxygenase (HPPD) inhibitors. It prevents carotenoid from being made, so chloro-
phyll degrades and the plant dies. It is a herbicide used on field corn, seed corn, 
sweet corn, yellow popcorn, and grain sorghum. The major adverse effects are ocu-
lar lesions and liver and kidney effects.

A new, simple, sensitive, and fast analytical method was developed by Deroco 
et al. (2017) for the estimation of the mesotrione (MST). They used square-wave 
voltammetry (SWV) and a modified glassy carbon electrode with carbon black (CB/
GCE) in the presence of the cationic surfactant cetyltrimethylammonium bromide 
(CTAB) for this purpose. It was reported that MST exhibited three well-defined 
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irreversible reduction peaks, at −242, −710, and −1105 mV. An electrocatalytic 
effect was observed for the first peak, and the apparent heterogeneous electron- 
transfer rate constant obtained using electrochemical impedance spectroscopy for a 
5.0  mmol  L−1 K3[Fe(CN)6]/5.0  mmol  L−1 K4[Fe(CN)6] (1:1) solution was 
9.77 × 10−3 cm s−1, which was almost two orders of magnitude greater than the rate 
constant obtained for the GCE electrode (2.15 × 10−4 cm s−1). It was reported that 
analytical curve for MST was linear in the MST concentration range from 0.040 to 
7.2 μmol L−1 with a limit of detection of 0.026 μmol L−1. The proposed method was 
used to determine the concentration of MST in natural lake and tap water samples 
and also in sugarcane juice samples, satisfactorily.

23.4  Rodenticides

Rodenticides are heterogeneous group of compounds exhibiting different toxicities 
to humans and rodents. They are among the most toxic substances found in homes. 
Earlier, only heavy metals (arsenic, thallium) were the often-used rodenticides.

23.4.1  Warfarin

Coumarins are used as rodenticides for controlling rats and mice in residential, 
industrial, and agricultural areas. Warfarin is both odorless and tasteless, and it is 
effective, when mixed with food bait, because the rodents will return to the bait and 
continue to feed over a period of days until a lethal dose is accumulated (considered 
to be 1 mg kg−1 day−1 over about 6 days). The use of warfarin as a rat poison is now 
declining, because many rat populations have developed resistance to it. People can 
be exposed to warfarin in the workplace by breathing it in, swallowing it, skin 
absorption, and eye contact.

Poly(MImEO8BS)-Ni nanocomposite was synthesized by Molaakbari et  al. 
(2017). They applied it to modify a glassy carbon electrode along with conductive 
polymeric ionic liquids. It was observed that oxidation of warfarin at the surface of 
modified electrode occurs at a potential of about 230 mV, which is relatively less 
positive than that of an unmodified glassy carbon electrode. Square-wave voltam-
metry (SWV) showed a linear dynamic range from 1.0 × 10−6 to 1.0 × 10−4 M with 
a detection limit of 1.5 × 10−7 M for warfarin. This modified electrode was success-
fully used for the simultaneous determination of warfarin and tramadol in pharma-
ceutical compounds.

A simple and sensitive electrochemical sensor based on magnetic Fe3O4 nanopar-
ticles modified carbon paste electrode (CPE) was developed by Gholivand et  al. 
(2015) to detect warfarin at low level of 0.21 μM. The curve obtained was linear for 
the concentration of warfarin ranging between 0.5 and 1000 μM with a limit of detec-
tion of 0.21 μM. Such sensor showed excellent stability, and it can be used for the 
determination of warfarin in tablet, human serum, and urine with satisfactory results.

Gholivand and Solgi (2017) also developed a new sensor by electrodepositing 
cobalt oxide nanoparticles on multi-walled carbon nanotubes modified glassy carbon 
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electrode (MWCNTs/GCE). The presence of cobalt oxide nanoparticles on the elec-
trode surface was found to enhance the accumulation of warfarin experimentally and 
resulted in improved electrochemical response. The effects of different parameters 
such as pH, scan rate, accumulation potential, time, and pulse amplitude on the sen-
sor response were evaluated. Under optimal conditions, differential pulse adsorptive 
anodic stripping voltammetric (DPASV) response of such modified electrode was 
linear in a wide range of 8 nM–50 μM with a limit of detection of 3.3 nM. This sen-
sor was successfully applied to determine warfarin in urine and plasma samples.

A chemically modified electrode was prepared by Taei et al. (2016). They incor-
porated MnFe2O4 into multi-walled carbon nanotubes paste matrix (MWCNTs/
MnFe2O4/CPE). The electrochemical behavior of warfarin was studied at chemi-
cally modified electrode. The MWCNTs/MnFe2O4/CPE had higher electrocatalytic 
activity for oxidation as it produces a sharp oxidation peak current at about +0.91 
vs. Ag/AgCl reference electrode at pH 4.0. It was found that peak current depends 
linearly on the concentration of warfarin over the range of 0.10–447.0 μmol L−1 
with the detection limit of 0.08 μmol L−1. This method can be used as a rapid, highly 
selective, simple, and precise method for the determination of warfarin in biological 
fluids.

It was reported by Vadaei and Faghihian (2018) that the ability of SnTe photocata-
lyst was enhanced in the degradation of warfarin, while difficulties in the separation 
of used photocatalyst from solutions were also overcome by the immobilization of 
the photocatalyst on a suitable porous support. They prepared a novel nano-sized 
photocatalyst by coupling of SnTe on the surface of SBA-15 support. It was indicated 
that the activity of SnTe photocatalyst was improved significantly after the immobi-
lization on the support. On the other hand, only a lower catalyst dose was needed. 
The visible light irradiation was found to be more effective than UV irradiation. The 
equilibrium was also established within 10 min. The separation of as- synthesized 
photocatalyst from the solution was much easier than the bulk SnTe, and the regener-
ated photocatalyst was retaining more than 90% of its initial efficiency.

Murgolo et  al. (2017) deposited new supported catalyst composed of a nano-
structured TiO2 film on a stainless steel mesh (nanoTiO2-SS) via metal organic 
chemical vapor deposition (MOCVD) technique. It was reported that the rate of 
removal of warfarin with this new catalyst was found almost twofold than that of 
TiO2 Degussa P25.

23.4.2  Bromadiolone

A highly sensitive and specific fluorescence immunoassay was developed by Li 
et al. (2019) for the rapid detection of bromadiolone (BRD). It is a widely used 
second-generation rodenticide, and poisoning due to this in humans is relatively 
common. Two novel BRD haptens were first synthesized, and a sensitive and spe-
cific mAb for BRD (15C1) was produced. Then mAb 15C1 was incorporated as a 
detection reagent and gold nanoclusters (AuNCs) as a fluorescent probe into an 
alkaline phosphatase-based competitive fluorescence immunoassay. The fluores-
cence immunoassay exhibited high specificity and achieved a limit of detection of 
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0.047 ng mL−1 for BRD, which was almost more than tenfold better than earlier 
methods. It was reported that recoveries in spiked human serum were found to be 
in the range between 77.9% and 85.6%. They claimed that this fluorescence immu-
noassay could provide a good clinical tool for the rapid diagnosis of BRD 
poisoning.

23.5  Bactericides

A bactericide or bacteriocide (biocidal) is a substance that kills bacteria. These are 
disinfectants, antiseptics, or antibiotics. These can be used to control sulfate- 
reducing bacteria, slime-forming bacteria, iron-oxidizing bacteria, etc.

23.5.1  Bismerthiazol

Bismerthiazol is a fungicide for the control of a plant’s bacterial diseases. It is used 
to control bacterial leaf blight, cercospora spot on rice, and canker on orange. Cheng 
et  al. (2018) assayed bismerthiazol by a rapid and portable method employing 
protein- capped gold nanoclusters as probes. It was reported that the luminescent 
intensity of the nanoclusters showed a correlative response toward bismerthiazol 
from 5 to 4000 μg mL−1 with a linear relation in the range of 5–100 μg mL−1. Even 
5 μg mL−1 of bismerthiazol could be detected using this method. A high affinity of 
bismerthiazol to interact with the soybean protein-capped gold nanoclusters is 
responsible for the excellent selectivity of this method. They could quantify bismer-
thiazol in several cabbage samples, which indicated its good performance in practi-
cal applications. This method has several advantages such as simple operation, fast 
response, visual readout, and good selectivity.

23.6  Fungicides

Fungicides are pesticides which are used to kill or prevent the growth of fungi and 
their spores. They can control fungi, damaging plants, including rusts, mildews, and 
blights, or control mold and mildew.

23.6.1  Captan

Captan belongs to the phthalimide class of fungicides. It is a nonsystemic fungicide, 
which is used to control diseases of many fruit, ornamental, and vegetable crops. 
Captan is used as a preservative for awnings, leather, and draperies and as a root dip 
and seed treatment. It is also incorporated into paints, wallpaper pastes, plastic, and 
leather goods. Captan residues in apples cause eye and skin irritation, dermatitis, 
conjunctivitis, and vomiting in humans. Phthalimide fungicides include captan and 
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captafol, which are skin sensitizers and can cause cancer and liver, reproductive, 
and developmental toxicity to human health.

Composite nanoparticles were synthesized by Khan et al. (2014) using an eco- 
friendly hydrothermal process. It was reported that well crystalline optically active 
composite nanoparticles were there with an average diameter of 30  nm. 
As-synthesized nanoparticles were utilized for the development of chemical sensor, 
which was fabricated by coating the nanoparticles on silver electrode. The proposed 
sensor exhibited high sensitivity (1.7361  mA.mM−1.cm−2), lower detection limit 
(8.0 mM), and a long range of detection (77.0 mM–0.38 M). It was observed that 
the resistance of composite nanoparticles based sensor was found to be 2.7 MV, 
which changed from 2.7 to 1.7 on changing fungicide concentration. As-designed 
sensor has advantages such as simple technique, low cost, lower detection limit, 
high sensitivity, and long range of detection. It can detect phthalimide (captan and 
captafol) even at the trace level and sense over a wide range of concentrations.

Nesakumar et al. (2015) developed an electrochemical biosensor based on ace-
tylcholinesterase (AChE) immobilized on ZnO nanorod interface. The Pt/ZnO/
AChE bioelectrode exhibited a high sensitivity of 0.538 μA cm−2 μM−1 in the linear 
range between 0.05 and 25.0 μM with a limit of detection of 107 nM. The recovery 
results were appreciable (98.4% and 102.4%) in apple. The present work has a great 
potential for the detection of captan in apple samples.

The removal of captan from aqueous solution was observed by Tiwari and Bind 
(2014) using super-paramagnetic nano-iron oxide loaded poly(styrene-co-acrylic 
acid) hydrogel (as adsorbent) by batch as well as column method. Adsorption equi-
librium was investigated as a function of initial pH, adsorbent dose, time, concentra-
tion, bed height, and flow rate. It was reported that equilibrium data fitted well to 
Langmuir equilibrium model. As-synthesized copolymer was magnetized in situ, 
and the size, structure, and coating of magnetic nanoparticles were characterized.

23.6.2  Carbendazim

Carbendazim is a member of the class of benzimidazoles. It is a broad-spectrum 
systemic fungicide with protective and curative action. It controls ascomycetes, 
fungi imperfecti, and basidiomycetes on a wide variety of crops. The main crops are 
cereals, fruits (banana, pome, citrus, strawberries, stone, pineapples, mangoes, avo-
cados, etc.), vegetables, vines, mushrooms, cotton, hops, ornamentals, pasture, and 
turf. It produces reproductive and developmental toxic effects at high oral doses, 
which include decreased sperm count and histopathological changes.

Gao et al. (2019) selected nanoporous gold (NPG) with unique structural and 
functional properties as a recognition element to fabricate an electrochemical sen-
sor. The simultaneous electrochemical detection of methyl parathion (MP) and car-
bendazim (CBM) could be achieved using NPG having a large peak potential 
separation of 0.70 V. It was reported that good linear responses were observed for 
the detection of MP and CBM, in large concentration range 3.0–120 μΜ, high sen-
sitivity of 484.51 μA mM−1 cm−2, and low detection limit of 0.24 μM for CBM. This 
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NPG/GCE electrode exhibited strong specificity, selectivity, and anti-interference 
capability in the simultaneous detection of MP and CBM. Satisfactory results were 
obtained for the analysis of environmental water sample.

Cyclodextrin-graphene hybrid nanosheets (CD-GNs) have been used by Guo 
et  al. (2011) for the ultrasensitive detection of carbendazim by electrochemical 
method. It was reported that peak currents of carbendazim on the GNs modified 
glassy carbon electrode (GNs/GCE) and the CD-GNs/GCE were increased by 11.7 
and 82.0 times as compared to the bare GCE, respectively. Nanocomposite film not 
only exhibited the excellent electrical properties of GNs, but it also showed the high 
supramolecular recognition capability of CDs. It was observed that the peak currents 
increase linearly with the concentration of carbendazim in the range of 5 nM–0.45 μM 
at the CD-GNs/GCE. It was found that the limit of detection for carbendazim was 
2 nM (S/N = 3) and recoveries were ranging from 98.9% to 104.5%. As-developed 
electrochemical sensor exhibited good stability and reproducibility for the detection 
of carbendazim. The proposed CD-GNs-based electrochemical sensor was also suc-
cessfully used for the detection of carbendazim in water samples.

Santana et al. (2019) synthesized a new nanocomposite based on ZnCdTe semi-
conductor nanocrystals (NCs) in situ on reduced graphene oxide (rGO). It was indi-
cated that nanocrystals grow onto the rGO matrix. Carbon paste electrodes modified 
with the nanocomposite (QD-rGO/CPE) were prepared to evaluate the electrochem-
ical performance, which showed high sensitivity in the electroanalytical detection 
of the carbendazim. A linear curve was obtained in the range of 9.98  ×  10−8 to 
1.18 × 10−5 mol L−1 under optimal conditions. The limit of detection (LOD) and the 
limit of quantification (LOQ) for carbendazim were reported to be 9.16 × 10−8 and 
2.78 × 10−7 mol L−1, respectively. The present electrode was successfully used for 
the determination of carbendazim in orange juice samples.

Zeng et al. (2010) studied the photocatalytic degradation of carbofuran solution 
(0.2, 0.4, 0.8 g L−1) Re3+-doped nano-TiO2. They could achieve a highest degrada-
tion rate of 54.89% after 4 h degradation keeping the concentration of nano-TiO2 
0.4 g L−1. Carbendazim residues on tomato leaves were determined. The photocata-
lytic degradation of carbendazim in tomato leaves and soil was studied with differ-
ent concentrations of catalyst (0, 0.2, 0.4, 0.6, and 0.8 g L−1). It was observed that 
the degradation rate of pesticide residues could be increased by 20–30% on the 
tomato leaves and 15–20% in soil, where best concentration of photocatalytic deg-
radation required was 0.2–0.4 g L−1.

Kaur et al. (2014) used a batch-type photoreactor for the degradation of carben-
dazim. The effects of catalyst loading, initial concentration, area/volume ratio, pH, 
and light conditions on the rate of degradation were studied. It was reported 
Aeroxide P25 exhibited better degradation efficiency than LR grade TiO2 in the 
presence of both UV and sunlight. The degradation was negligible with TiO2 under 
UV without catalyst. The addition of H2O2 did not show an appreciable increase in 
the rate of degradation for both the catalysts. The optimal parameters for the degra-
dation of carbendazim are catalyst loading 1 g L−1, area/volume ratio 0.919 cm2 
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m L−1, intensity 30 W m−2, and pH 6.5, where around 85% mineralization of carben-
dazim could be achieved.

Iron doped TiO2 nanoparticles were synthesized by Kaur et al. (2016a) via sur-
face impregnation method. It was revealed that the size of crystallite was in the 
range of 25–34 nm. A narrowing of band gap from 3.2 to 2.8 eV was observed. The 
photocatalytic efficiency of as-prepared catalyst was evaluated for the degradation 
of carbendazim. Fe improved the photocatalytic activity of TiO2 synergistically in 
the presence of sunlight. The optimum Fe loading in doped TiO2 was found to be 
2 wt%, which gives 98.5% degradation of carbendazim.

Iron and silica doped TiO2 nanoparticles were also synthesized by Kaur et  al. 
(2016b) via surface impregnation method. They varied the concentration of dopants 
Fe (1%, 2%, 3%, and 4%) and Si (3%, 5%, 7%, and 9%). It was reported that the 
particle size was in the range of 25–35 nm for these doped TiO2. The 2% Fe or 5% Si 
doped TiO2 showed about 98% degradation of carbendazim under sunlight. It was 
indicated that the absorption band edge of Fe and Si dopants were red shifted toward 
visible wavelength. It was also revealed that Fe and Si doped TiO2 degrades the fun-
gicide much faster than the undoped TiO2 at optimum catalyst loading of 1 g L−1.

23.6.3  Mancozeb

Mancozeb is a dithiocarbamate fungicide, which shows multisite protective action 
on contact. It is a combination of two other dithiocarbamates. This mixture controls 
many fungal diseases in a wide range of field crops, fruits, nuts, vegetables, and 
ornamentals. Mancozeb reacts with the sulfhydryl groups of amino acids and 
enzymes, resulting in the disruption of lipid metabolism, respiration, and produc-
tion of adenosine triphosphate. It has a potential to cause goiter, a condition in 
which the thyroid gland is enlarged and can produce birth defects. It has also been 
classified as a probable human carcinogen.

The use of dopamine dithiocarbamate functionalized silver nanoparticles 
(DDTC-Ag NPs) has been reported by Rohit et al. (2014). They used it as a colori-
metric probe for the detection of mancozeb in environmental water as well as fruit 
juice samples. It was observed that mancozeb induces the aggregation of DDTC-Ag 
NPs via Michael addition and enamine formation between DDTC-Ag NPs and 
mancozeb, which resulted in a color change from brownish orange to bluish. It was 
revealed that the response is linearly dependent on the concentration of mancozeb 
in the range from 5  ×  10−5 to 3  ×  10−4  M, and its limit of detection was 
21.1 × 10−6 M. The proposed method is a very fast and efficient procedure to detect 
mancozeb in various samples of water (tap, canal, and river) and fruit juice (apple, 
grape, and tomato).

A novel and economical electrochemical sensor was developed by Kumar et al. 
(2016) to detect and remove mancozeb from soil and vegetable samples. They use 
superparamagnetic iron oxide nanoparticles (SPIONs) and molecularly imprinted 
star polymers. The SPIONs were synthesized via a hydrothermal method, and then 
these were coated with vinyl silane, using it as a platform for the synthesis of 
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mancozeb- imprinted polymers (MISPs). The resulting MISPs exhibited a specific 
recognition ability and high adsorption capacity, and it can be easily extracted from 
complex matrices using an external magnetic field. The proposed sensor presented 
good electrochemical response for mancozeb in the range from 5.96 to 257.0 μg L−1 
under optimal experimental conditions. Its detection limit was calculated as 
0.96 μg  L−1 (S/N  =  3). As-fabricated MISPs have a great potential to become a 
selective and sensitive approach for the detection of mancozeb even at the trace 
level as well as its removal.

Nanomaterials are widely used in the detection of different pesticides even at 
lower concentrations using various types of sensors. These nanostructured materials 
are also able to degrade a variety of pesticides to almost harmless or less harmful 
compounds. These will provide a pathway of the detection and degradation of pes-
ticides to keep our earth clean and green for years to come.
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Abstract
The current global population is nearly 6 billion; due to this rapid population 
growth, there is a need to produce food in a more efficient, safe, and sustainable 
way, and it should be safe from the adverse effects of pathogenic organisms. A 
large proportion of population living in developing countries face daily food 
shortages as a result of environmental impacts or some other reasons like politi-
cal instability, etc., while in the developed countries, food is surplus. For devel-
oping countries, the objective is to develop drought- and pest-resistant crops, 
with maximized yield. In developed countries, the food industry depends on con-
sumer’s demand for fresher and healthier foodstuffs. The present chapter 
describes the use of nanoparticles in food science.
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24.1  Introduction

The food market demands new technologies, which are essential to keep market 
leadership in the food processing industry to produce fresh, authentic, convenient, 
and flavorful food products, prolonging the product’s shelf life and freshness with 
improved quality food (Alfadul and Elneshwy 2010). The new materials, products, 
and applications are anticipated to bring lots of advancements and improvements to 
the food and relevant sectors, impacting agriculture and food production, food pro-
cessing, distribution, storage, nanoadditives, cleaning, and sensors for the detection 
of contaminants and developments of innovative products. Nanotechnology is an 
area of rising attention and unwraps new possibilities for the food industry. 
Nanotechnology integrates several disciplines, including physics, chemistry, bio-
technology, and engineering.

There is a public opinion in general about nanotechnology applications, and it 
ranged from neutral to slightly positive one. There are suggestions that consumers 
should remain cautious about using nanofoods. The application of nanotechnology 
to the agricultural and food industries was first addressed by the US Department of 
Agriculture road map in September 2003 (Rashidi and Khosravi-Darani 2011). It 
has been predicted that nanotechnology will transform the complete food industry, 
changing all the way food is produced, processed, packaged, transported, and con-
sumed. Food undergoes a variety of modifications in postharvest and processing 
that are likely to affect its biological and biochemical features, and here, nanotech-
nology developments could eventually also influence the food industry.

According to a definition in a report by the European Nanotechnology Gateway, 
a food is called nanofood when nanoparticles, or nanotechnology techniques, are 
used during cultivation, production, processing, or packaging of the food (Nanowerk 
2019). It should be made clear here that it does not mean that it is atomically modi-
fied food or produced by nanomachines.

Applications of nano include smart packaging, on-demand preservatives, and 
interactive foods. Building on the concept of on-demand food, the idea of interac-
tive food was to allow consumers to modify food depending on their own nutritional 
needs or tastes. There are many positive impacts of nanotechnology in the food 
industry, and these are expected to grow in the near future. Applications of nanoma-
terials will continue to affect the food industry commercially because of their unique 
and novel properties. New nanomaterials are developed that will make not only a 
difference in the taste of food but also safety and the health benefits that food is 
bound to deliver. This rapidly developing technology is concerned about every 
aspect of the food system starting from growth, packaging, processing, transporta-
tion, shelf life, and availability of nutrients. Therefore, nanotechnology may play a 
potential role in promoting the food industry.
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24.2  Applications of Food Nanotechnology

Nanotechnology is the science of very small materials, and it can have a big impact 
in the food industry. Nanotechnology possesses a great potential in ensuring modi-
fication of color and flavor and nutritional values, increasing the shelf life of food, 
and monitoring the integrity of food via barcodes such as cold chain, i.e., whenever 
there is a slight change in food storage conditions because of its submicroscopic 
nature (Aigbogun et al. 2017). It is an emerging area of science with potentials to 
generate radical new products and processes in the food sector. It is commonly dis-
tinguished between two forms of nanofood applications:

• Food additives (nano inside)
• Food packaging (nano outside)

Concepts in nanotechnology provide a sound framework for better understand-
ing of the interactions and assembly behavior of food components into microstruc-
tures, which is likely to affect food structure, rheology, and functional properties at 
the submicroscopic scale (Sanguansri and Augustin 2006). It can also modify per-
meation of materials by the incorporation of synthesized nanoparticles (zinc, silver, 
gold, etc.) for improved packaging system (Fig. 24.1).

Fig. 24.1 Application of food nanotechnology
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24.2.1  Food Processing

Food processing deals with transformation of agricultural/animal products into 
food. It also includes many forms of processing foods ranging from grinding grain 
to make raw flour for home cooking to complex industrial methods used to make 
convenience foods. Food processing can be improved much in the aspects of smart 
delivery of nutrients, nanoencapsulation of nutraceuticals, bioseparation of pro-
teins, rapid sampling of biological and chemical contaminants, solubilization, deliv-
ery, and color in food systems. These are some of the emerging uses of nanotechnology 
in food science (Ravichandran 2010). Nanotechnology can assist in the develop-
ment of functional or interactive foods, which respond to requirements of the human 
body and can deliver these nutrients more efficiently. Various research groups are 
also developing new on-demand foods, which will remain dormant in the body and 
deliver nutrients to cells as and when needed. The concept is that thousands of nano-
capsules containing flavor or color enhancers, or added nutritional elements (such 
as vitamins), would remain dormant in the food and these will be released only, 
when triggered by the consumer (Amin et al. 2015). A key element in this sector is 
the development of nanocapsules that can be incorporated into food to deliver nutri-
ents timely. Other developments in food processing include the addition of nanopar-
ticles to existing foods to enable increased absorption of nutrients. One of the 
bakeries in Western Australia is quite successful in incorporating tuna fish oil (a 
source of omega-3 fatty acids) in nanocapsules in their top-selling product “Tip- 
Top” Up bread (Bund 2008). The microcapsules are designed to break open only 
when they have reached the stomach, thus avoiding the unpleasant taste of the fish 
oil.

In this aspect, food and cosmetic companies are already working together to 
develop newer mechanisms to deliver vitamins directly to the skin. Nestlé, having 
49% stake in L’Oréal, is developing transparent sun creams so that vitamin E is 
delivered directly to the skin. The major objective is to manufacture a cream which 
is first absorbed by the skin and then releases vitamin E slowly, apart from providing 
protection against UV. While Estée Lauder is manufacturing antiaging formulations 
making use of nanoparticles (Joseph and Morrison 2006), Unilever is developing 
ice creams with low fat by decreasing the size of emulsion particles, which is 
responsible for its texture. It is hoped that up to 90% less of the emulsion will be 
used and that will decrease fat content from 16% to about 1% (Verma and Gupta 
2017).

24.2.1.1  Nanosensors
Nanosensors are devices that can measure physical quantities and convert those 
quantities to respective signals that can be detected and analyzed. These nanosen-
sors are diagnostic devices to monitor the quality of food processes and also safety 
of food. Such nanosensors are used for the detection of very minute amounts of any 
chemical pollutant, virus, or bacteria in food systems. There is a possibility of com-
bining biology with nanoscale technology in fabrication of sensors with a great 
potential of higher sensitivity and reduced response time. Nanoparticles may 
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selectively attach themselves to food pathogens, and even traces of harmful patho-
gens could be detected with sensors using either infrared light or magnetic materi-
als. It is advantageous that numerous nanoparticles can be placed on a single 
nanosensor so as to detect the presence of different bacteria and pathogens rapidly 
and accurately also. Another advantage is that nanosensors can gain access into the 
tiny crevices because of its small size, where the pathogens often used to hide, and 
nanotechnology will reduce the time taken for this detection from days to a few 
hours, minutes, or even seconds (Choudhury and Goswami 2012). Nanotechnology 
utilizes biological molecules like sugars or proteins as target-recognition groups for 
nanostructures as biosensors (Charych et al. 1996). These biosensors could serve as 
detectors of food pathogens and other contaminants and also to track food 
products.

Nanosensors may play a significant role in detection of any traces of pesticide 
available in various food products, providing a potent solution to food safety. These 
are of significant importance as such devices are capable for finding out and detect 
very minute quantity of organic compounds, very low concentration of pathogens, 
and other harmful chemicals. These devices show extraordinary sensitivity, quick 
response, and rescue (Otles and Yalcin 2010; Yalcin and Otles 2010). Mostly, nano-
sensors are used in recognition of pesticide as organophosphate in plants, fruits, and 
aquatics. It is known that pesticides are highly permeable and soluble and these are 
harmful. These are extensively used in agronomy. There is significant importance in 
analysis of residue of highly sensitive pollutants (Mclaren et al. 2009). Nanosensors 
devices have benefits over other techniques like gas/liquid chromatography and 
mass spectroscopy, because they contain high surface to volume ratios, primarily 
loading of more antibody/enzymes (great sensitivity interface), less recognition 
limits, exceptional selectivity with small size, and quick response. It has been 
known that the use of these nanosized materials is likely to enhance the sensitive 
transducer indication or signals. Carbon nanotubes semiconductor and metal nano-
structures have exceptional electrical or optical characteristics (Hwang et al. 2011). 
Intelligent packing is another aspect, where covering a nano-biosensor makes these 
to fluoresce in various colors on interaction with different pathogens of food materi-
als. Various types of devices have been developed to identify contaminants, chemi-
cals, and pathogens in food materials. Such device is highly sensitive in identifying 
E. coli and Salmonella (Chen et al. 2008).

Traditional methods to screen food to find disease-causing microbes can take as 
long a day, which are normally very slow so that they may or may not be able to 
efficiently catch tainted products. However, some faster methods are known, but 
they have their own limitations. Magnetic resonance can detect extremely low levels 
of bacteria, but it is almost ineffective at higher bacteria concentrations, while fluo-
rescence is opposite. A hybrid nanosensor incorporating magnetic resonance and 
fluorescence has been developed to rapidly detect the presence of E. coli (Banerjee 
et al. 2016). It has been reported that detector could sense different concentrations 
of a pathogenic strain of E. coli known as O157: H7 during test of milk in less than 
an hour. Such sensors will find the use in detecting environmental contamination 
control in the food sectors.
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24.2.1.2  Interactive “Smart” Food Using Encapsulation
Nanoencapsulation is a technology to pack substances in miniature using techniques 
like nanocomposite, nanoemulsification, and nanostructuration providing final 
product functionality that includes controlled release of the core (Sekhon 2010). 
Nanocapsules can be incorporated into food to deliver any nutrient. Addition of 
nanoparticles to existing food can also enable increased absorption of these nutri-
ents (Jampilek et al. 2019). Nanoparticle additives could easily be absorbed by the 
body, and these could increase shelf life of the product. Nanosized dispersions, 
emulsions, and filled micelles have an advantage that they are not subjected to sedi-
mentation resulting in better life span and storage of the product. As size of these 
nanoadditives is much smaller as compared to wavelength of light, they can be eas-
ily incorporated even in clear and transparent foods without causing problems of 
colors. Substances, which are difficult to dissolve by the body, can more easily be 
absorbed in nanoscale size, because of their larger surface area. If any active sub-
stance is to be protected during storage or its passage through the intestines, the 
nanotechnology can provide perfect protective layers. It is also possible to tailor 
these protective layers so as to release active substances in an intelligent way 
(caused by a change of pH value).

It may also be useful in protection against environmental factors and used in the 
design of food ingredients flavors and antioxidants (Imafidon and Spanier 1994). 
The main aim is to improve the functionality of such ingredients and keeping their 
concentration minimum. As the requirement of novel ingredients into foods is gain-
ing popularity, better delivery and controlled release systems for nutraceuticals will 
be needed (Haruyama 2003; Lawrence and Rees 2000).

Bioactives, like coenzyme Q10 (CoQ10), vitamins, iron, calcium, curcumin, 
etc., have been widely tested in nanodelivery systems (He and Hwang 2016). 
Different nanodelivery vehicles have been developed such as association colloids, 
lipid-based nanoencapsulators/nanocarriers, nanoemulsions, biopolymeric nanopar-
ticles, nanolaminates, nanofibers, etc. These nanodelivery systems can increase the 
bioavailability of bioactives by different pathways. Nanoencapsulation can enhance 
bioavailability of bioactive compounds after oral administration through targeted 
delivery systems. Such nanoencapsulation enables to control the release of flavors 
at the desired time and also to protect the degradation of these flavors during pro-
cessing and storage (Yu et al. 2018).

Nowadays people are requiring more nutritional supplements because of the fact 
that many nutrients in food are being destroyed in the digestive tract. Each part 
presents a completely different environment, from oral cavity to the colon. In other 
words, there are a number of factors which decide the absorption of food in the body 
for infants, children, adults, old people, and those who are suffering from any type 
of gastrointestinal diseases. A nutrition delivery system is a system or nanocarrier 
that delivers nutrition to specific places. Chitosan is such a nanocarrier (Maestrelli 
et al. 2006). Although a delivery system has numerous functions, one of them is to 
transport a functional ingredient to its desired site. Just like taste, texture, and shelf 
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life, major functions of a delivery system for a food product are that it should protect 
an ingredient from chemical or biological degradation, such as oxidation, and con-
trolling the rate of release of functional ingredient under specific environmental 
conditions. Nanodispersions and nanocapsules are ideal mechanisms for delivery of 
functional ingredients because they can effectively perform all these tasks.

One of important part of the food industry is extracting nutrition from raw mate-
rials. Conventional methods for food processing are being replaced by newer tech-
niques like nanotechnology, which will play a major role here. These techniques 
may improve food processing yields and decrease waste or spoilage of nutrition. 
Nutrition delivery systems must be prepared with biodegradable materials to pre-
vent adverse effects on health of consumers. Some of the nanodelivery vehicles are 
as follows.

24.2.1.2.1 Association Colloids
A colloid system of a substance contains small particles dispersed throughout. An 
association colloid is the colloid, when particles are made up of even smaller mol-
ecules. It is already used to deliver polar, nonpolar, and amphiphilic functional 
ingredients (Golding and Sein 2004). The size of association colloids ranges 
between 5 and 100 nm, and there are usually transparent solutions. Vesicles, bilay-
ers, micelles, reverse micelles, and liquid crystals are some of the examples of asso-
ciation colloids. The major disadvantages of such colloids are that they may 
compromise with the flavor of the ingredients and these can spontaneously dissoci-
ate on dilution.

24.2.1.2.2 Nanoemulsions
An emulsion is a mixture of two or more liquids (such as oil and water) that are 
immiscible and, as such, do not easily combine. A nanoemulsion is an emulsion, 
when the diameters of the dispersed droplets is about 500 nm or even less than that. 
Nanoemulsions can encapsulate functional ingredients within their droplets facili-
tating a reduction in their chemical degradation (McClements and Decker 2000). 
Different types of nanoemulsions having more complex properties such as nano-
structured multiple emulsions or nanostructured multilayer emulsions have multiple 
encapsulating abilities from a single delivery system that can carry several func-
tional components. Here, a functional component is encased within one component 
of a particular multiple emulsion system, which could be released in response to a 
specific environmental trigger.

24.2.1.2.3 Biopolymeric Nanoparticles
Food-grade biopolymers like polysaccharides or proteins can be used to produce 
nanosized particles (Tak et al. 2015). A single biopolymer separates into smaller 
nanoparticles with aggregative (net attraction) or segregative (net repulsion) interac-
tions. Nanoparticles can then be used to encapsulate functional ingredients and 
release them in response to particular environmental triggers. Most common 
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components used biodegradable biopolymeric nanoparticles such as polylactic acid 
(PLA). PLA is quite commonly used to encapsulate and deliver drugs, vaccines, and 
proteins, but it has certain limitations:

• It is quickly removed from the bloodstream.
• It remains isolated in the liver and kidneys.

Therefore, PLA needs an associative compound such as polyethylene glycol to 
be successful in delivering active components to other areas of the body (Taylor 
et al. 2005).

24.2.1.2.4 Nanolaminates
Apart from nanodispersions and nanocapsules, nanolaminate is also a nanoscale 
technique, which is commercially used in the food industry. It consists of two or 
more layers of material with nano-dimensions, and it is an extremely thin food- 
grade film (1–100 nm per layer), which has physically bonded or chemically bonded 
dimensions (Ravichandran 2010). A nanolaminate has a number of important appli-
cations in the food industry due to these advantages in the preparation of edible 
films. Such edible films are present on wide range of foods such as chocolate, can-
dies, fruits, vegetables, meats, baked goods, French fries, etc. (Pavlath and Orts 
2009). These films protect foods from gases, humidity, and lipids. They can also 
improve the textural properties of foods and serve as carriers of colors, flavors, 
nutrients, antioxidants, and antimicrobials.

Presently, these edible nanolaminates are prepared from polysaccharides, pro-
teins, and lipids. Polysaccharide and protein-based films provide good protection 
against oxygen and carbon dioxide, but these are poor to protect against moisture. 
While lipid-based nanolaminates are significantly good to protect food from mois-
ture, they have limited resistance to gases and show poor mechanical strength. 
Neither polysaccharides and proteins nor lipids provide all the properties in an edi-
ble coating and identify additives. Newer additives are searched that can improve 
these properties, e.g., polyols. Foods can be coated with nanolaminates either by 
dipping them into a series of solutions containing substances or by spraying sub-
stances onto the food surface (Shit and Shah 2014). The degree of adsorption of any 
substance depends on the nature of surface of food as well as on the nature of the 
adsorbing substance. Various adsorbing substances can form different layers of a 
nanolaminate; some of these are polyelectrolytes (proteins and polysaccharides), 
charged lipids, and colloidal particles. Different nanolaminates include varying 
functional agents such as flavors, colors, antimicrobials, anti-browning agents, anti-
oxidants, enzymes, etc.

24.2.1.2.5 Nanofibers and Nanotubes
Nanotechnology has two more materials, which are likely to have an impact on the 
food industry. These are nanofibers and nanotubes. Nanofibers are usually not com-
posed of food-grade substances; therefore, nanofibers have only fewer applications 
in the food industry. Nanofibers have small diameters in the size from 10 to 1000 nm, 
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which makes them ideal to serve as a platform for bacterial cultures (Guo 2015). 
These could also serve as the structural matrix for artificial foods and food packag-
ing material, which are eco-friendly. As the efforts are growing in the area of pro-
ducing nanofibers from food-grade materials, their use is likely to increase in the 
future. Similar to nanofibers, the use of nanotubes is mainly for nonfood applica-
tions. Carbon nanotubes are commonly used as low-resistance conductors and cata-
lytic reaction vessels. Certain globular milk proteins can self-assemble into similarly 
structured nanotubes in some appropriate environmental conditions (Graveland- 
Bikker and de Kruif 2006).

24.2.1.3  Antimicrobial Properties
Microbial contamination is there due to pathogenic infections and poor nutrition 
associated with major types of food, but in particular weaning foods. Bacterial dete-
rioration is one of the most discussed subjects as far as the production, processing, 
transport, and storing of food are concerned. Newer nano-antimicrobials have 
shown potential in safeguarding deterioration of food, and as a result, the shelf life 
of food is extended (Mitura and Zarzycki 2018). A number of metal and metal oxide 
nanomaterials have been reported to be effective as antimicrobials. Their physico-
chemical properties are considered responsible for excessive formation of reactive 
oxygen species (ROS), which leads to oxidative stress and subsequent cell damage 
(Fu et al. 2014; Wu et al. 2014).

Release of metal ions at all the places can affect cellular structure or function, 
whether it is outside the cell, at the cell surface, or within the cell. Metal or metal 
oxide-based nanocomposites are used in food packaging and coating or sometimes 
even as ingredients of food. Silver nanoparticles and its nanocomposites are most 
commonly used nanomaterials as antimicrobials in the food industry (He and 
Hwang 2016). The use of a number of silver-containing zeolites or similar sub-
stances as food contact materials has been approved by the USFDA for the purpose 
of disinfection (Duncan 2011). These nanoparticles are used as a source of Ag+ 
ions, which binds to membrane proteins, forming pits and/or causing other mor-
phological changes (Morones et al. 2005). These also catalyze the generation of 
ROS in bacterial cells, which, in turn, leads to cell death through oxidative stress 
(Kim et al. 2007). It has been suggested that silver nanocomposites are quite safe 
for packaging of food, as no detectable or negligible levels of silver nanoparticles 
are released, which migrate from containers to actual food samples and food stimu-
lants (Ntim et al. 2015). Nanocomposites have an advantage of enhanced stability, 
which is very much required for sustaining antimicrobial activity and reducing the 
possibility of migration of metal ions into stored foods. Some polymers are 
designed to form nanocomposites with metal/metal oxide nanomaterials for vari-
ous applications in food science. Polymers most widely used in nanocomposites 
include gelatin, polylactic acid, isotactic polypropylene, and low-density polyeth-
ylene (LDPE). Nanocomposites of LDPE with metals (Ag/LDPE) and metal oxide 
(CuO/LDPE, TiO2/LDPE, and ZnO/LDPE) are used in some food applications. 
Apart from these ZnO/gelatin, ZnO/polylactic acid, and ZnO/graphene oxide/poly-
lactic acid, ZnO/polycarbonate, ZnO/isotactic polypropylene, Ag/OMteLDPE, and 
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 Ag/poly(3-hydroxybutyrate-co-18 mol%-3-hydroxyvalerate) are also used specifi-
cally for food packaging applications (He and Hwang 2016). Polystyrene, polyvi-
nylpyrrolidone, and poly(vinyl chloride) are also reported along with chitosan, as 
nanocomposite films, which binds to Cu or ZnO nanomaterials to control the 
growth of food pathogens or inactivate these (Li et al. 2009).

24.2.1.4  Protection Against Chemical Ingredients

24.2.1.4.1 Antioxidants
As some metal/metal oxide nanomaterials cause oxidative stress through the forma-
tion of ROS (Manke et al. 2013), therefore, efforts were made to develop less reactive 
nanomaterials so that they can act as antioxidant carriers. Polymeric nanoparticles 
are considered suitable for the encapsulation of bioactive compounds such as flavo-
noids and vitamins, which are released in the stomach having acidic environments 
(Pool et al. 2012). SiO2-gallic acid nanoparticles were also developed, and these were 
tested as antioxidant with its scavenging capacity of DPPH (2,2-diphenyl-1-picryl-
hydrazyl) radicals (Deligiannakis et al. 2012). Browning of fresh-cut fruits is another 
problem, which can be controlled by the application of antioxidant treatments in 
association with edible coating, because browning of fresh-cut fruits is an undesir-
able effect due to conversion of phenolic compounds into some dark-colored pig-
ments in the presence of oxygen (air), during storage and marketing (Garcia and 
Barrett 2019). But only some applications of nanomaterials directly as anti-browning 
agents have been known. The shelf life of Fuji apples (as a fresh-cut product) was 
enhanced using nano-ZnO-coated active packaging (Li et al. 2011).

24.2.1.5  Enhancement of Physical Properties

24.2.1.5.1 Color Additives
A wide range of nanoscale color additives has been prepared and studied. These 
additives must be approved by the Office of Cosmetics and Colors in the Center for 
Food Safety and Applied Nutrition and the USFDA and used only for approved 
purpose, specifications, and of course restrictions (He and Hwang 2016). Certain 
such nanomaterial products have been duly approved to be used as food color addi-
tives. TiO2 is approved as a food color additive with the limit that it should not 
exceed 1% w/w (Shi et al. 2013). It has also been permitted to use color additive 
mixtures made with TiO2 containing SiO2 and/or Al2O3 as dispersing aids, but their 
limit should not be more than 2% of the total.

24.2.1.5.2 Flavors
Flavors provide sensory perception of taste along with smell to stimulate appetite 
and eating experience, and therefore, it is one of the most important parts of the food 
system. Nanoencapsulation technique has been quite commonly used to improve 
release and retention of flavor and to deliver dietary balance (Nakagawa 2014). SiO2 
nanomaterials can also act as carriers of these fragrances or flavors in food as well 
as nonfood products (Dekkers et al. 2011).
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24.2.1.5.3 Anticaking Agents
SiO2 is also used for thickening of pastes (as an anticaking agent) so as to maintain 
flow properties in powdered products along with as a carrier of fragrances or flavors 
in food and nonfood products. As a result, it has been used in food products and is 
registered within the EU as a food additive E551. However, still there is a debate 
regarding the health and safety issues related to the use of such engineered nanopar-
ticles in consumer products (Athinarayanan et al. 2014).

24.2.2  Packaging and Food Safety

Food is a perishable item. It can be contaminated and/or degraded at any stage of the 
food chain. The process may be chemical, physical, or biological. The introduction/
presence of any pathogen in food can result in its poisoning, which can be deadly. 
Therefore, it is of utmost importance that the food must be protected at all levels. A 
good-quality packaging material is thus required, which is safe, nontoxic, and cost- 
effective. Packaging using nanomaterial controls pH, temperature, moisture, and 
freshness of the material kept inside the packet. It also contains information for 
consumers, along with controlling the environment to enhance the shelf life of the 
food material. It provides smart packaging and extends the shelf life of a product so 
that food material can be transported to a long distance also. Nanosensors are devel-
oped for smart packaging so as to detect spoilage of food and release nano- 
antimicrobials as and when required, to extend shelf life. It helps markets and in 
keeping the food fresh and that too for a longer period. There is a great demand for 
nano-enabled packaging for food, beverage, and pharmaceutical industries due to 
the regularly changing consumption patterns. Such nanopackaging systems can 
repair small losses like holes/tears because of environmental conditions (tempera-
ture and moisture) and make the customer alert if the food is being contaminated 
due to some or the other reasons. Nanoscience can provide solutions for such prob-
lems, change in permeation behavior of foils, enhancing barrier properties (like 
thermal, chemical, mechanical, and microbial), improving upon mechanical and 
heat resistance properties, introducing active antimicrobial and antifungal surfaces, 
and sensing/signaling any microbiological and biochemical changes that have 
occurred (Alfadul and Elneshwy 2010). Not only this, the cost of food additive 
ingredients can be lowered and the shelf life of food products can be increased using 
this technology. It is potential frontier of material science in packaging using nano-
materials. It has been estimated that advancement in nanotechnology supported by 
increased global investments has thrusted the nano-enabled packaging market all 
over the world in the past few years (Nano-enabled Packaging Market 2019).

About 400 companies and more than 400,000 scientists in the world are develop-
ing different nanotechnology applications in food and food packaging (Neethirajan 
and Jayas 2011). It has been estimated that nanotechnologies are projected to make 
use of nanomaterials of about US dollar 3 trillion by the year 2020 (Wesley et al. 
2014). Here, smart packaging industry is growing relatively faster than predicted 
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and is reaching maturity. The demand of consumer today is much more from pack-
aging, particularly from protecting the quality, freshness, and safety of foods as well 
as convenience.

Several organizations have developed smart packaging systems. Researchers of 
Rutgers University have developed an electronic tongue for inclusion in packaging 
for Kraft Foods, which consists of an array of nanosensors extremely sensitive to 
gases released by spoiling food. They make sensor strip to change its color giving a 
clear signal, whether the food is fresh or not (World Bank 2017). A packaging film 
was developed by the Durethan KU2–2601, which is relatively lighter, stronger, and 
more heat resistant than those available currently in the market (Rani et al. 2017; 
Hamad et al. 2018). The main purpose of these food packaging films is to protect 
contents from drying out, moisture and oxygen. Such film is known as a hybrid 
system that contains number of silicate nanoparticles, thus reducing the entrance of 
oxygen and other gases and the exit of moisture, preventing food from spoiling.

Plastic bottles are normally used by breweries in shipping of beer, as these bottles 
are lighter than glass and low cost than metal cans. But, alcohol in beer reacts with 
the plastic of the bottles, which shortens the shelf life of alcohol to a great extent. 
Voridan has developed a nanocomposite in association with Nanocor, containing 
clay nanoparticles and named as Imperm (Srinivas 2016). These bottles are having 
both the qualities; these are lighter and stronger than glass and also less likely to shat-
ter. It has been suggested that such nanocomposites structure minimizes the loss of 
carbon dioxide from the beer and the ingress of oxygen to the bottle, so as to keep the 
beer fresh up to a 6-month shelf life (Lua and Bowles 2013). Whatever may be the 
impacts of nanotechnology on the food industry and products entering the market, as 
the safety of food is the main concern, there is an urgent need to find new sensors, 
which will not only ensure food safety and security, but they will make customers 
and shopkeepers alert that a food is going to reach the end of its shelf life. 
Antimicrobial coatings and dirt repellent plastic bags are used ensuring the safety 
and security of packaged food. This will solve food shortage crises by ensuring that 
food reaches to masses in time and with good qualities (Hamad et al. 2018).

Nanosensors used in different food packaging industries include time- temperature 
integrator and gas detector (Pradhan et  al. 2015). Nanoparticle in solution, 
nanoparticle- based sensors, array biosensors, electronic noses, nano-test strips, and 
nanocantilevers are among the different types of nanosensors used (Tang et  al. 
2009). Electronic noses are the type of sensor, which uses several chemical sensors 
attached to a data processing system (Vidhyalakshmi et  al. 2009). Such sensor 
behaves just like our human nose, and therefore, this sensor is termed as electronic 
nose (e-nose). There are also reports of electronic tongue (e-tongue) sensors that are 
based on the principle of an electronic nose. The color is changed in contact with 
any sign of spoilage in the food material indicating that the food does not remain fit 
for consumption (Yuan et al. 2008). Packaging with such nanosensors can identify 
conditions of food and containers (internal and external) throughout the supply 
chain. Nanosensors can also detect gases in food, spoiled in plastic packaging, 
where a change in color of packaging alerts the consumer.
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A number of types of packaging materials are used in food sectors, which include 
active packaging, smart/intelligent packaging, edible coating, and biobased (biode-
gradable) polymeric films (Rai et al. 2018). Nanotechnology-driven food packaging 
has been categorized as follows.

24.2.2.1  Active Packaging
Active packaging means the use of active nanomaterials like antimicrobials and 
oxygen scavenging materials. The use of such nanomaterials is beneficial to interact 
directly with food to provide better protection to the product. Some nanomaterials 
can provide antimicrobial properties to food packaging. Some of them are nanosil-
ver, nano-titanium dioxide, nano-magnesium oxide, nano-copper oxide, carbon 
nanotubes, etc. Active packaging utilizes the packaging materials, which interact 
with the environment, and food also and plays an active role in increasing the shelf 
life of products. It allows packages to play a dynamic role in food preservation. 
Advances made in active packaging leads to delayed oxidation, controlled respira-
tion rate, microbial growth, and moisture migration (Brody 2006).

These packaging technologies include absorbers of carbon dioxide, odor, and 
ethylene and emitters of CO2 and aroma. But purging moisture control and oxygen 
removal remain prominent in active packaging, and out of these, purge control has 
been most successful on commercial scale. Best example is the use of drip- absorbing 
pad in the poultry industry (Suppakul et al. 2003). Active packaging technology also 
involves change in permselectivity (selective permeation) of package materials to 
different gases. Some nanocomposite materials have been used in active packaging 
so as to prevent oxygen, carbon dioxide, and moisture from reaching the food 
(Brody et al. 2008). An active system involving moisture scavenging has been quite 
commonly used particularly for packaging of dried and moisture-sensitive foods, 
while oxygen scavengers are normally inserted into the package in the form of small 
sachets just to reduce the oxygen level within the package, because an environment 
free from oxygen prevents oxidation of food as well as the growth of aerobic bacte-
ria and mold. Ethylene-absorbing material is incorporated in packaging materials 
with the object of slowing the process of ripening and senescence of fruits and 
vegetables triggered by ethylene (Brody 2009).

Different antimicrobial agents are also incorporated in packaging so as to prevent 
the growth of spoilage and pathogenic microorganisms, which can directly influ-
ence the shelf life of products. It is more advantageous compared to direct addition 
of some antimicrobial agents onto foods either by sprays or drips. This packaging 
permits slow but a continuous release of antimicrobial agent from this packaging 
material to food surfaces, so that a high concentration of these agents is not there 
over a long period (Quintavalla and Vicini 2002). Different enzymes, bacteriocins, 
essential oils, anhydrides, and weak organic acids have also been investigated in 
terms of antimicrobial activity of food packaging systems (Corrales et al. 2014).

Improved packaging by nanomaterials involves mixing them into the polymer 
matrix, so as to improve the gas barrier properties and also resistance of the packag-
ing against temperature and humidity. The US Food and Drug Administration has 
also approved the use of these nanocomposites in contact with food.
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24.2.2.2  Smart/Intelligent Packaging
Smart packaging is designed to sense any microbial or biochemical changes in the 
food products as it can detect the growth of any pathogens in the food. Some such 
smart packaging has been developed to be used as a tracking device for food safety. 
Presently, British Airways, MonoPrix supermarket, and Nestlé are using chemical 
sensors, which can quickly detect any color change (Pehanich 2006).

Nanotechnology has been used to manufacture a “smart” packaging, which can 
extend the shelf life of food dramatically, which permits it to be transported to a 
longer distance. Intelligent or smart packaging has been designed to monitor and 
communicate information about quality of food. It includes time-temperature indi-
cators (TTIs), ripeness indicators, biosensors, and radio frequency identification. 
Such smart devices may be either incorporated in package materials itself or these 
are attached inside or outside of a package (Kerry et al. 2006; Yam et al. 2005; Kerry 
and Butler 2008). Smart packaging either responds to change in environmental con-
ditions, repairs, or alerts the consumer about such contamination and/or the pres-
ence of some harmful pathogens. It is capable of detecting spoilage of food and 
release nanoantimicrobes to extend shelf life of food, so that supermarkets can keep 
their food materials even for a longer time periods before it is sold. Nanosensors are 
used as tiny chips invisible to the human eye, embedded into food products that act 
as electronic barcodes (Sekhon 2010).

Intelligent packaging is also developed, with specific preservative, which starts 
releasing preservatives as soon as food starts spoiling. Such “release on command” 
preservative packaging is based on a bio-switch. These are “smart” food packaging, 
which will warn, when oxygen has got inside or if food is being spoiled. These 
packaging are already in use in brewing and dairy industries. These consist of nano-
filters, which can filter microorganisms and sometime even viruses. In some experi-
ments, color was successfully removed from beetroot juice, but the flavor is not 
affected. Similarly red wine was turned into colorless or white in color. Lactose can 
also be filtered from milk, and it is replaced with some other sugar so that milk can 
be used by the lactose intolerant also. Nanoceramic particles are used for clustering 
of dirt molecules, so as to keep cooking oil fresh (Llobet et al. 2007; Wooster 2010). 
Nanotechnology has proved it worth in food safety by developing highly sensitive 
and low-cost nanosensors, which can respond to changes in environmental condi-
tions during storage, degradation products, or contamination by microbes. Such 
nanosensors can be effectively used in packaging materials (Bouwmeester et  al. 
2014; Liao et al. 2005).

Time-temperature indicators (TTIs nanosensors) have been designed to monitor, 
record, and translate the safety of food. These TTIs allowed consumers to know 
about the quality of purchased materials. They also allow manufacturers to locate 
their foods along the supply line. A system based on gold nanoparticles for chilled 
foods has been developed by Timestrip. The system looks red above freezing tem-
perature, but red color is lost because of agglomeration of the gold nanoparticles, 
when accidental freezing occurs (Robinson and Morrison 2010).

Gas sensors are also used for identification and quantification of various micro-
organisms, because they emit gas. Metal oxide gas nanosensor is most commonly 
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used due to their high sensitivity and stability (Setkus 2002). Conducting polymers 
based nanosensors are also used because of their capability for identification and 
quantification of such microorganisms based on their gas emissions (Ahuja et al. 
2007). Nontoxic and irreversible oxygen sensors were developed to assure the 
absence of oxygen in oxygen-free food packaging systems. Here, a UV-activated 
oxygen indicator was used, which is almost colorless on UV exposure, but blue 
color is restored in the presence of oxygen (Lee et al. 2002). Rapid, sensitive, and 
relatively low-cost diagnostic methods for detection of pathogens are being devel-
oped making use of unique magnetic, electrical, luminescent, and catalytic proper-
ties of nanomaterials (Merkoci 2010; Ayala-Zavala et al. 2014).

An electronic tongue or nose device has been fabricated, which consists of an 
array of nanosensors. Electronic nose (e-nose) has been developed for detecting 
freshness of fish (Oconnell et al. 2001), dairy products (off-flavor and rancidity of 
milk) (Ampuero and Bosset 2003; Marsili 1999, 2000; Capone et al. 2001), spoilage 
of red wine (Berna et al. 2008), red meat (El Barbri et al. 2008; Längkvist et al. 
2013; Musatov et al. 2010), wine aging (Lozano et al. 2008), classification of differ-
ent brands of coffee (Pardo et al. 2000), etc. These are extremely sensitive to gases 
released by spoiling microorganisms and produce change in color, indicating that 
the food is deteriorated. Such nanosensors could be placed directly into the packag-
ing material (Liu et al. 2007; Lange et al. 2002). An electronic tongue developed by 
Kraft Foods (Smart Packaging systems, Glenview, IL, USA) may be incorporated in 
packaging. It also consists of an array of nanosensors, which are sensitive to gases 
released by spoiling food, and in that case, the sensor changes its color, giving a 
visible signal about freshness or adulteration of food (Momin et al. 2013). Electronic 
tongue (e-tongue) has been fabricated for determination of concentration of nitrite, 
nitrate, and chloride in minced meat (Campos et  al. 2010), ripening of grapes 
(Campos et  al. 2013), quality of tea (Kumar et  al. 2016), polyphenols in wine 
(Andrei et al. 2016; Cetó et al. 2012; Magro et al. 2016), etc.

Silicate nanoparticles-packed films can control flow of oxygen into the pack as 
well as leakage of moisture out of the packings. It protects the package from being 
spoiled. The amount of packaging waste associated with processed food can also be 
reduced by using nanotechnology assisting in the preservation of fresh food.

24.2.2.3  Carbon Nanotubes
Food packaging materials are available ranging from films, carbon nanotubes, to 
waxy nano-coatings. Carbon nanotubes (CNTs) are available in both forms, single- 
walled nanotube (SWCNT) and multiwalled nanotube (MWCNT). SWCNT is gen-
erally one atom thick, while MWCNT comprises of several concentric tubes with 
very high aspect ratios and elastic modulus. Asgari et al. (2014) reported that CNTs 
infused with polyethylene films can be used for the packaging of Mazafati dates, 
which can prevent fungal invasion up to 90 days. Carbon nanotubes have also been 
developed in packaging to pump out carbon dioxide or absorb undesirable flavors 
(Sinha et al. 2006). It has been known that CNTs also have antibacterial properties, 
which may be due to their direct penetration through microbial cells (Sharma et al. 
2017). It has been reported that antimicrobial activity of silver nanoparticles against 
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E. coli and B. cereus spores is significantly enhanced in combination with titanium 
dioxide and carbon nanotubes, respectively (Krishna et al. 2005). Ionic nanocom-
posites of carbon ceramic electrode with multiwalled carbon nanotubes may be 
used for the electrochemical determination of the adulterants in food and beverages 
such as food dyes, like sunset yellow, tartrazine, etc. In addition, carbon nanotubes 
have many other properties that may be exploited later on to develop the next gen-
eration of nanosensors. An important role is played by CNTs in food packaging and 
processing, but there may be some pitfalls, like these may migrate into food and 
contaminate it and can lead to toxic effects in human beings. The toxicity levels of 
CNTs are considerably high, and therefore, their use is limited.

24.2.2.4  Biobased Packaging
Nanotechnology can also be used for improving plastic substance barrier, incorpo-
ration of bioactive, sensing and signaling of important information about the food, 
for the change of the pervasion action of foils, growing different barrier characters 
(microbial, chemical, thermal, and mechanical), enhancing heat resistance and also 
mechanical characters (Berekaa 2015). It may also decrease the environmental con-
tamination by making use of decomposable packaging based on biodegradable 
plastics.

These biodegradable plastics are basically polymeric materials, where at least 
one step in the degradation process is through metabolic process in the presence of 
some naturally occurring organisms. Disintegration or fragmentation of the plastics 
leads to biodegradation under desired conditions of moisture, temperature, and oxy-
gen availability, without producing toxic or environmentally harmful materials 
(Chandra and Rustgi 1998). Such biodegradable polymers can be classified depend-
ing upon their source:

• Polymers, which are directly extracted or removed from biomass (i.e., polysac-
charides, polypeptides, proteins, polynucleotides, etc.)

• Polymers, which are produced by classical chemical synthesis using some 
renewable biobased monomers or mixed sources of biomass and petroleum 
(polylactic acid or biopolyester)

• Polymers, which are produced by microorganism or genetically modified bacte-
ria (polyhydroxybutyrate, bacterial cellulose, xanthan, curdian, pullan)

Various kinds of biodegradable polymer nanocomposites have been prepared 
with desired properties for a wide range of applications (Ray and Bousmina 2005). 
At present, the most commonly used biodegradable nanocomposites include starch 
and derivatives, polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxy-
butyrate (PHB), and aliphatic polyester polycaprolactone, which are suitable for 
packaging purpose.

24.2.2.4.1 Starch and Their Derivatives
Starch is a potential raw material, because it is available from many plants. Its large 
production may fulfill current requirements, and it is low cost (Gonera and Cornillon 
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2002), but it cannot form films with appropriate mechanical strength for a packag-
ing material. So, it is first plasticized or chemically modified. It is converted to a 
thermoplastic material on treating in an extruder by application of both thermal and 
mechanical energy. Plasticizers play an important role in efficiently reducing intra-
molecular hydrogen bonds and also provide stability to properties of product, when 
thermoplastic starches are produced. Hence, there are ample opportunities that ther-
moplastic starches may be used as packaging material (Kim and Pometto 1994).

24.2.2.4.2 Polylactic Acid (PLA)
A wide range of biopolyesters can be prepared by conventional chemical synthesis. 
Presently, polylactic acid is the polymer, which has the highest potential as renew-
able packaging material, and it is commercially produced on major scale because 
lactic acid, a monomer of PLA, is easily produced by fermentation of carbohydrate 
feedstock (biomass). This feedstock can be obtained from a variety of agricultural 
products like wheat, maize, molasses, and whey. Biodegradable polylactic acid 
(PLA) polymer was evaluated for its use as a material for antimicrobial food pack-
aging (Jin and Zhang 2008). They incorporated nisin in PLA films for controlling 
foodborne pathogens. Antimicrobial activity of PLA/nisin films was evaluated in 
liquid foods (orange juice and liquid egg white) against Listeria monocytogenes, 
Escherichia coli O157:H7, and Salmonella Enteritidis. Ramos et  al. (2014) pre-
pared nano-biocomposite films based on polylactic acid by incorporating thymol (as 
the active additive) and modified montmorillonite (D43B) at two different concen-
trations. It was observed that thermal stability was not significantly affected by the 
addition of thymol, but the incorporation of D43B improved its mechanical proper-
ties and reduced the oxygen transmission rate by the formation of intercalated struc-
tures. It was suggested that the formulated nano-biocomposites could be considered 
a potential antioxidant active packaging material.

24.2.2.4.3 Polyhydroxybutyrate (PHB)
Polylactic acid and polyhydroxybutyrate both offer a lot of opportunities in food 
packaging applications, because they are compatible with many foods, including 
dairy products, beverage, ready meals, and fresh meat products. It is accumulated 
by a large number of bacteria in the form of energy and carbon reserves. This bio-
polyester may also find industrial applications easily because of its biodegradability 
and biocompatibility (Van der Walle et  al. 2001). Poly(lactic acid) and 
poly(hydroxybutyrate) were blended and plasticized by Arrieta et al. (2014) with a 
natural terpene D-limonene (LIM) so as to increase PLA crystallinity and to also 
obtain flexible films for food packaging applications. As-prepared materials were 
melt-blended and processed in transparent films. Disintegrability under composting 
conditions was also worked out, and it was reported that PHB delays the PLA dis-
integrability, but on the contrary, D-limonene speeds it up. Ma et al. (2018) devel-
oped poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) based films containing 
bioactive elements and prepared seven formulations containing different contents of 
plasticizers (mono-caprylin glycerate (GMC) or glycerol monolaurate (GML)). 
Two formulations (PLA-PHB-based films with 0.5% GMC or GML) were selected, 
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and 5% cinnamaldehyde was added into each of these. It was revealed that PLA- 
PHB- based films possessed better mechanical properties and better active proper-
ties on application to high lipid food simulant. This study showed that it is possible 
to use biodegradable active packing as an alternative to replace nonbiodegradable 
packaging for chilled salmon.

24.2.2.4.4 Polycaprolactone (PCL)
It is a biodegradable polyester having a low melting point around 60 °C only. It has 
some interesting applications in the fields of medical and agricultural areas 
(Nakayama et al. 1997). It has high elongation at break and low modulus. Apart 
from it, its physical properties and availability on commercial scale made it very 
attractive material for commodity applications. An antimicrobial nanopackaging 
was developed by Ahmed et al. (2019) for food application by incorporating zinc 
oxide nanoparticles and clove essential oil (CEO) into polylactide/polyethylene gly-
col polycaprolactone (PLA/PEG/PCL) blend. Here, CEO acts as an efficient plasti-
cizer, which facilitates the chain mobility in the blend, as evident from tensile and 
thermal properties. The efficacy of these composite films was confirmed by using 
Staphylococcus aureus and Escherichia coli inoculated in scrambled egg. It was 
indicated that the PLA/PEG/PCL/ZnO/CEO film exhibited the highest antibacterial 
activity during 21 days storage at 4 °C. Cesur et al. (2018) prepared antimicrobial 
and biodegradable food packaging films with polycaprolactone (PCL). The 0.4 wt% 
of organo nanoclay (C) and 25, 50, 75 wt% chitosan (K) and glycerol monooleate 
(GMO) or oleic acid (OA) as a plastifier (5, 10, 20, and 30 wt%) were added, and 12 
polymeric composite films were prepared. The samples were coded as PCL (P), 
organo nanoclay (C), oleic acid (O), and glycerol monooleate (G). The antimicro-
bial properties of these films were evaluated against Escherichia coli, Pseudomonas 
aeruginosa, Bacillus cereus, and Candida albicans. Polycaprolactone (PCL)/starch/
pomegranate rind (PR) hybrids were developed by Khalid et al. (2018) for antimi-
crobial packaging applications. PR was used as an antimicrobial compound, and it 
was incorporated directly in PCL matrix, without the extraction of any active com-
pound from the fruit rind. It was revealed that PCL/PR films show reasonably good 
antimicrobial activity at higher concentrations. Addition of starch was found to 
enhance the antimicrobial activity of PR. As all the materials used here are biode-
gradable and food contactable, it has been suggested that the as-developed material 
could be used as food-grade antimicrobial packaging material.

Newer and newer nanomaterials have also been regularly developed, so that their 
physical and mechanical properties of packaging are improved, particularly in terms 
of tensile strength, water resistance, gas permeability, rigidity, flame resistance, etc. 
Due to such interesting properties, polymer nanocomposites are emerging as prom-
ising materials with a large capability for their applications in the active food pack-
aging industry (Youssef 2013).
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24.2.3  Types of Nanomaterials in Food

Nanoparticles present in foods can be easily categorized based on their composi-
tion, (organic or inorganic), as this factor has a major impact on their gastrointesti-
nal fate and potential toxicity (McClements and Xiao 2017).

24.2.3.1  Inorganic Nanoparticles
A number of nanoparticles used in food materials are mainly composed of some or 
the other inorganic materials, such as silver, silicon dioxide, iron oxide, titanium 
dioxide, or zinc oxide (Pietroiusti et al. 2016). These nanoparticles are either crys-
talline in nature or amorphous solids at ambient temperature. These may be spheri-
cal or nonspherical with different surface characteristics and sizes depending on 
precursor materials and conditions of preparation while these were fabricated. Such 
inorganic nanoparticles have different tendencies to dissolve under specific solution 
conditions (pH and ionic strength) and also chemical reactivities, which have a 
major impact on their gastrointestinal fate and toxicity.

24.2.3.1.1 Silver Nanoparticles
Silver nanoparticles (AgNPs) are commonly used as antimicrobial agents in food 
packaging, chopping boards, storage containers, refrigerators, and health supple-
ments. Silver nanoparticles are used for their antimicrobial effects in certain types 
of food containers by some manufacturer in the United States such as Kinetic Go 
Green basic nanosilver food storage container, Oso fresh food storage container, 
and FresherLonger™ Plastic Storage bags. It is also possible that some of these 
silver nanoparticles may migrate into foods from these containers and they could be 
ingested by humans (Echegoyen and Nerin 2013). Emamifar et al. (2011) prepared 
nanocomposite LDPE films containing Ag and ZnO nanoparticles via melt mixing 
in a twin screw extruder. Orange juice was sterilized and then inoculated with 8.5 
log cfu/mL of Lactobacillus plantarum. They filled packages prepared from nano-
composite films with orange juice and then stored at 4 °C. Microbial stability of the 
juice was evaluated after 7, 28, 56, 84, and 112 days of storage. It was reported that 
microbial growth rate significantly reduced on using this nanocomposite packaging 
material. A potential role of quantum sensors (QS) in food spoilage and food safety 
has been indicated (Naik and Kowshik 2014). Anti-QS materials like ATNPs were 
proposed as efficient models for controlling spoilage of food. Incorporation of 
ATNPs in food packaging materials could play an important role in preservation of 
food and ensure its safety by prolonging their shelf life. They proposed ATNPs as 
QS inhibitors with their potential use as an antipathogenic but nontoxic bioactive 
material. Ag/TiO2-SiO2-coated food packaging film was developed also (Peter et al. 
2015). Its ability to inactivate Botrytis cinerea was evaluated during the storage of 
fresh lettuce. Packaging film was prepared by coating the Ag/TiO2-SiO2 ethanol 
suspension on polyethylene film. As-prepared packaging film was used for storage 
of green lettuce in a vegetation room. It was revealed that the shelf life of the lettuce 
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stored in single- and double-layer film modified with TiO2 was extended by 4 and 
2 days, respectively. It was revealed that the spoilage of the lettuce in double-layer 
film modified with Ag/TiO2-SiO2 was lower after 5 days of storage than that of the 
lettuce stored in film modified with ethanol and unmodified film. Microbiological 
and chemical characteristics of white bread during storage in paper packages modi-
fied with Ag/TiO2–SiO2, Ag/N–TiO2, or Au/TiO2 have been investigated (Peter et al. 
2016). The whiteness and the water retention of the modified packages were found 
to be slightly superior. The water retention was also observed to be very good, espe-
cially for the Ag/TiO2–SiO2 paper. These improvements can be associated with the 
high specific surface area and with the low agglomeration tendency of Ag nanopar-
ticles in comparison with the Au ones. Their use extends the shelf life of bread by 
2 days except Au/TiO2 as compared with the unmodified paper package.

24.2.3.1.2 Zinc and Zinc Oxide Nanoparticles
Zinc and zinc oxide nanoparticles may be used as an additive in supplements and 
functional foods for nutrition, because this is an essential trace element required to 
maintain human health and well-being. ZnO nanoparticles can also be used in food 
packaging as antimicrobial agents so that contamination of foods with harmful bac-
teria can be prevented (Sirelkhatim et al. 2015). These are also used as ultraviolet 
(UV) light absorbers to protect foods from UV light exposure, if food is sensitive 
toward it. The preparation of ZnO nanoparticles loaded starch-coated polyethylene 
film was reported (Tankhiwale and Bajpai 2012). This ZnO-loaded film was tested 
for its biocidal action against E. coli. As-developed material has a great potential to 
be used as food packaging material to prevent foodstuff from bacterial contamina-
tion. TiO2 and ZnO are biocompatible nanomaterials, and their biocompatibility 
was established through toxicity studies on cell lines (Venkatasubbu et al. 2016). 
Titanium dioxide and zinc oxide nanoparticle were synthesized by wet chemical 
process. The antibacterial activities of these materials were evaluated as food pre-
servatives against Salmonella typhi, Klebsiella pneumoniae, and Shigella flexneri, 
and it was indicated that TiO2 and ZnO nanoparticles inhibited the growth of 
Salmonella, Klebsiella, and Shigella. It was revealed that the mode of their action is 
through generation of ROS in the case of Salmonella and Klebsiella, but it is still 
unclear in the case of Shigella.

24.2.3.1.3 Titanium Dioxide Nanoparticles
TiO2 nanoparticles are used as ingredients in foods to provide its characteristic opti-
cal properties, so that lightness and brightness are enhanced (Weir et al. 2012). It is 
widely used as food additive and antimicrobial agent for food packaging and stor-
age containers. TiO2 ingredients utilized in the food industry as lightening agents 
should have particle sizes in the range of 100–300 nanometers, so that their light- 
scattering properties are increased. Six different coating suspensions were prepared, 
through mixing TiO2 (Aeroxide®P-25) nanoparticles (NPs) with three different 
types of binders [Shellac (A), polyuretahne (B), and polycrylic (C)] at a 1:4 to 1:16 
NP to binder weight ratio (Yemmireddy and Hung 2015). They evaluated bacteri-
cidal activity of these TiO2 coatings against Escherichia coli O157:H7 at three 
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different UV-A light intensities. TiO2 coatings with binder polyuretahne showed 
highest adhesion strength and scratch hardness as compared to coatings with other 
binders. It was found that TiO2 coatings with binder polycrylic were found to be 
physically more stable and able to retain their original bactericidal property on 
repeated use experiments (1, 3, 5, and 10 times).

24.2.3.1.4 Silicon Dioxide Nanoparticles
Silicon dioxide nanoparticles are used in certain powdered foods as anticaking 
agents. Silicon dioxide and carbon having particle size in the range of a few hundred 
nm are used as food additives and for food packaging.

24.2.3.2  Organic Nanoparticles
These nanoparticles are basically composed of organic substances, like carbohy-
drates, proteins, or lipids. These substances are liquids, semisolids, or solids (crys-
talline or amorphous) at ambient temperatures, which depends on their composition 
and processing conditions.

24.2.3.2.1 Lipid Nanoparticles
Lipid nanoparticles are present in a wide range within many commercial food prod-
ucts. These lipids and lipid nanoparticles are mostly used as oral delivery systems 
for different drugs and other active ingredients. Lipids usually increase drug absorp-
tion in the gastrointestinal tract (GIT). These molecules in the form of nanoparticles 
improve mucosal adhesion because of their small particle size and increase their 
residence time in GIT. Lipid nanoparticles will also protect the loaded drugs from 
different degradations (chemical as well as enzymatic) and release drug molecules 
from the lipid matrix gradually into blood, thus resulting in enhanced therapeutic 
profiles as compared to free drug (Severino et al. 2012).

24.2.3.2.2 Protein Nanoparticles
Protein nanoparticles and other protein assemblies have shown a great potential 
recently in the field of catalysis, materials synthesis, drug and gene delivery, and 
bio-imaging (Rong et al. 2011). Protein nanoparticles are also found in foods in the 
form of casein micelles, which are available in bovine milk and other dairy prod-
ucts. These are nothing but small clusters of casein molecules and calcium phos-
phate ions.

24.2.3.2.3 Carbohydrate Nanoparticles
Carbohydrate nanoparticles are either digestible or indigestible polysaccharides, 
like starch, cellulose, xanthan, carrageenan, alginate, and pectin.

24.2.3.2.4 Complex Nanoparticles
Nanoparticles utilized in foods are many a time fabricated using combinations of 
these three ingredients, such as lipids, proteins, and carbohydrates. Coacervates are 
formed by electrostatic complexation of oppositely charged proteins and 
polysaccharides.
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24.2.4  Role in Tracking, Tracing, Nanolithography, and Brand 
Protection

Nanotechnology is also helping food industries in providing authentication and 
track and trace features of a food product so that adulteration and diversion of prod-
ucts can be prevented (Nam et  al. 2003). It is simply done by generating some 
complex invisible nanobarcodes with desired information, and it can be encrypted 
onto the food products and packaging. Such a nanobarcode detection system was 
created by Li et  al. (2005) that produced fluorescence on exposure to ultraviolet 
light in a combination of color, which can be read by a computer scanner. This sys-
tem has been tested on the food and some biological samples containing various 
pathogens like E. coli, anthrax, tularemia bacteria, and Ebola SARS viruses. These 
are also clearly indicated simultaneously by different color codes. Different codes 
can be created in the technology by altering the stripe orders, where every food item 
is assigned brand so that food batches can be traced.

24.2.5  Implication and Safety Concerns

Although there had been a rapid development in food nanotechnology using 
nanoparticles, little is known about the toxicity due to nanoparticles. Nanomaterials 
have some unique properties like high surface area, which makes them more active 
chemically than their bulk counterparts, and therefore, they could participate in 
most of the biological reaction having harmful effects on human health and/or envi-
ronment. It is very much desired that nanostructures in food or related industries 
should not damage them directly or indirectly. Food and related industries have seen 
major changes due to unique properties of nanomaterials. But these unique proper-
ties may occasionally lead to dangerous side effects to ecosystems and even in peo-
ple. There are two main safety concerns on using nanoparticles, and these are 
allergies and heavy metal release. At present, they are being used into food products 
at a relatively faster rate without desired knowledge and regulations, which can 
affect health and environment (Ranjan et al. 2014). It is necessary to take extra care 
while using nanomaterials as they may have potential toxic effects and their use in 
food science is increasing day by day. A report by the British Royal Society notes 
that we may face a nanotoxicity crisis in the future (Amini et al. 2014). Only with a 
proper detailed understanding of the properties of nanomaterials like size, solubil-
ity, surface chemistry, composition, etc., we will be in a position to find useful and 
safe food products. Of course, some of these unique properties of nanomaterials are 
making them wonderful materials, but sidewise, their use is also questionable at 
some or the other side.

24.2.5.1  Size
The size of nanoparticles is a very important feature for its unique properties as the 
surface area of nanoparticles depends upon its size. The effect of surface area on the 
respiration has been known as some nanoparticles are reported to cause pulmonary 
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inflammation (Qiao et al. 2015). The toxicity of these nanoparticles not only depends 
on its chemical component, but it also depends on the quantity as well as position of 
the deposition. The size of particles is an important factor, which can be deciding 
for observing dermal-cell cytotoxicity in vitro. Such absorbed nanoparticles in dif-
ferent absorption routes could trigger an immune system response. The smaller size 
of these nanoparticles permits them to pass through different biological barriers. 
They can then settle in tissues like the central nervous system (CNS). Thus, the size 
of the nanoparticles is very important for safety purpose, whether such nanomateri-
als can be used in food and food-related industries or not.

24.2.5.2  Chemical Composition
Reagents used in the production of nanoparticles may be toxic. Some may remain 
in the final product and result in exposure to toxins that are unrelated to the nano-
materials themselves. For instance, some observed toxic effects of carbon nano-
tubes and semiconductor nanoparticles are related to residual reagents during 
synthesis. The remaining reagents and impurities may hinder our understanding of 
possible side effects of carbon nanotubes. Iron ions and impurities can accelerate 
the oxidative stress in cells. Crystallinity is another important aspect of chemical 
composition. Titanium oxide has three different levels of crystallinity that each has 
different cytotoxic effects (Suker and Albadran 2013).

24.2.5.3  Surface Structure
Cytotoxicity may also be affected from surfaces of nanostructures. Roughness, 
charge, hydrophobicity, and surface chemistry are the major factors that could affect 
the toxicological nature of absorbed nanoparticles in the human body (Kirchner 
et al. 2005). The toxic effects of nanoparticles can be controlled to some extent by 
coating nanoparticles with hydrophilic polymer like polyethylene glycol (PEG). It 
was indicated that positively charged nanoparticles were found to be more toxic as 
compared to negative or neutral nanoparticles.

24.2.5.4  Solubility
Solubility is also important in the toxicity of nanoparticles. Soluble titanium oxide 
nanoparticles (hydrophilic) are more toxic as compared to insoluble titanium oxide 
nanoparticles (Oberdörster 2001). Solubility of the toxicity of oxide nanoparticles 
has also been reported (Brunner et al. 2006).

24.2.5.5  Routes of Nanoparticle Exposure
There are different entry routes on exposure to nanoparticles such as dermal, respi-
ratory, and digestive routes. These nanoparticles may enter the bloodstream after 
absorption and settle in different tissues like the brain or trigger some immune 
responses. Some genetic alteration has been also reported due to nanoparticles in 
food or nanoengineering of food (Bowman and Fitzharris 2007). Although there had 
been a long debate and it will go on, nanotechnology has entered into food packag-
ing and food processing, so some safety measures are also required from govern-
ments and food producers.
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Some nanoparticles may be dispersed in the air during the production of nanopar-
ticles used in food and related industries. This should be taken into consideration, 
and workers’ health must be protected from respiratory tract uptake of nanoparti-
cles. The digestive path is another major route of uptake of nanoparticles. Some 
nanoparticles may also enter in the respiratory tract and then the digestive system 
through mucociliary clearance. The skin is an alternate main route of contact 
between human and nanomaterials.

There are several diseases that are associated with exposure to nanoparticles due 
to their accumulation or contact with cells and its internal parts like the mitochon-
drion, nucleus, cytoplasm, membrane, and lipid vesicle (Buzea et al. 2007). Various 
diseases may be caused by nanoparticles, and these are

• Through inhalation
 – Parkinson’s disease
 – Alzheimer’s disease
 – Asthma
 – Bronchitis
 – Cancer
 – Arteriosclerosis
 – Vasoconstriction
 – Thrombus
 – High blood pressure
 – Heart disease
 – Disease of unknown etiology in the kidneys and liver
 – Podoconiosis
 – Kaposi’s sarcoma

• Through ingestion
 – Crohn’s disease
 – Colon cancer

• Through skin contact
 – Autoimmune diseases
 – Dermatitis
 – Urticaria
 – Vasculitis

24.3  Emerging Challenges and Potential Solutions

With the developments in nanotechnology, its applicability to the food industry is 
likely to increase in the future. Of course, the success will depend on consumer 
acceptance. Various nanostructured materials (NSMs) ranging from inorganic 
metal, metal oxides, and their nanocomposites to nano-organic materials with bio-
active agents have been applied in a wide range of food materials (Bajpai et  al. 
2018). Human exposure to these nanomaterials is regularly increasing, and its 
impact on health of the human and environment has become a point of public 
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concern and interest. Although huge benefits are being offered by nanotechnology, 
the accumulation of nanostructured materials in human bodies and also in the envi-
ronment has aroused several health and safety issues. This will require a uniform 
international regulatory framework for nanotechnology.

Different preparation technology could produce nanoparticles with different 
physical properties for their application in food. But, public perception regarding 
this new technology is still uncertain. Multiple guidelines of potential risks posed 
by nanomaterials have been released by different regulatory bodies like the US 
Environmental Protection Agency (USEPA), International Organization for 
Standardization and the Organization for Economic Cooperation and Development 
(IOSOECD), National Institute for Occupational Safety and Health (NIOSH), 
Health and Consumer Protection Directorate of the European Commission 
(HCPDEC), and Food and Drug Administration (FDA). It has been reported that 
these nanomaterials can improve food safety by increasing the efficacy of food 
packaging, shelf life, and nutritional value of food using additives without affecting 
the taste and physical characteristics of food products.

Nanotechnology is regularly gaining momentum; thus, it has become a very 
important tool for the food and bioprocessing industry to meet demands of increas-
ing population growth all over the world. It has almost revolutionized conventional 
food science and food industry (He and Hwang 2016). It is also important to ascer-
tain the toxicity of nanoparticles and the possible environmental and health hazards 
it may cause. Improvement in inorganic nanosubstance and microfluid manufactur-
ing has permitted the preparation of effective and competent sensors to quickly 
detect/identify pathogens, microbes, or pesticides. The nanosensor or nanobiosen-
sor should also be used in environmental contamination control in the food sectors. 
Functionalized food and nanosubstance should improve food value and protection 
as flavor and nutrient transporter.

It is still challenging to develop a healthy and sustainable food industry making 
use of nanoparticles in some or other forms. A large strength of the public is having 
a fear in using food engineered and genetically modified materials. Of course, one 
should be cautious in using nano-based materials in food science and the food 
industry but not afraid of its application. Although the fate and potential toxicity of 
nanomaterials are not fully known at this stage and such concerns require the educa-
tion of public, ultimate success of such products will depend on acceptance by con-
sumer. Time is not far off when nanofood technology will become a new frontier of 
this century, provided its harmful effects are fully controlled so that health and the 
environment are not adversely affected.
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Abstract
Nanotechnology leads as a pioneer technology in all science areas. It opens up a 
broad range of possibilities in different areas such as medicine, pharmaceuticals, 
electronics, and farming. Nanotechnology’s potential for revolutionizing health-
care, textiles, equipment, data and communication technology, and energy indus-
tries has been well publicized. Attention is also being paid to the implementation 
of nanotechnology to agriculture and food industries nowadays. A convergence 
has been taking place in latest years between biological techniques, green chem-
istry, and nanotechnology. The aim of this convergence is to produce new nano-
materials and procedures of production that decrease or prevent the use of toxic 
materials. Recently, extensive study has been carried out to synthesize metal 
nanoparticles using microorganisms and crops and has been acknowledged as a 
green and effective manner to further exploit microorganisms as useful nanofac-
tories. Here, we discuss a thorough summary of the prospective uses of distinct 
biological sources for the synthesis of nanoparticles, types, physiochemical 
properties, and nanoparticle characterization which exist in multiple forms in 
agriculture. In addition, we highlight latest milestones accomplished by monitor-
ing critical parameters for the biogenic synthesis of nanoparticles, including bio-
logical source selection, incubation period, pH, and temperature. We also define 
opportunities for future growth of biological nanoparticles and their applications 
in agriculture.
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25.1  Introduction

Since the last century, nanotechnology has been a recognized field of many studies. 
Nanotechnology is a mixture of biological, physical, and chemical principles that 
create nanosized particles with specific functions (Kumar et al. 2014). At nanoscale 
level, nanotechnology generated materials of different kinds, and the term nano is 
modified from the Greek word meaning “dwarf.” A nanometer (nm) is about one 
billionth of a meter, or about three atoms in length side by side (Thakkar et  al. 
2010). Nanoparticles (NPs) are a broad class of materials that include particulate 
matter having at least one dimension below 100 nm (Laurent et al. 2010).

Nanomaterials can be widely categorized into two kinds in terms of structure, 
namely, organic and inorganic. Organic nanomaterials are based on carbon, while 
noble metal (e.g., gold, platinum, silver, titanium, zinc, cerium, iron, and thallium), 
magnetic materials, and semiconductors such as titanium dioxide and zinc oxide are 
inorganic nanomaterials. The physiochemical characteristics of large-scale materi-
als are mainly known, and latest findings have concentrated on materials between 
the atomic scale and the much bigger bulk scale that exist in the region. The greatest 
contributing factor that affects the physiochemical characteristics is the bigger sur-
face area to volume ratio observed in nanometer-scale products (Mansoori et  al. 
2007). Thus, important modifications in surface chemistry as well as chemical reac-
tivity occur at the nanometer scale (Jefferson 2000). Reports on the characteristics 
of nanoparticles and other nanostructured materials are sometimes founded on 
insufficient characterization (Grainger and Castner 2008).

There are two basic methods to synthesize metal nanoparticles: “bottom-up” and 
“top-down.” Both of the abovementioned fundamental approaches to nanoparticle 
synthesis were accomplished through various physical, chemical, and biological 
techniques (Golinska et al. 2014). Nanoparticles have been physically and chemi-
cally generated for a long time, but latest advances demonstrate that microorgan-
isms and biological systems play a critical role in nanoparticles in manufacturing 
(Ankamwar et al. 2005). Because of their increasing achievement and easy forma-
tion of nanoparticles, the use of bacteria in this region is evolving quickly. The 
organisms used in the synthesis of nanoparticles range from simple bacterial pro-
karyotic cells to higher eukaryotes (Korbekandi et  al. 2009). In fact, organisms’ 
capacity to produce metal nanoparticles has opened up a fresh interesting strategy 
to the growth of these natural nanofactories. However, different physiochemical 
approaches to metal nanoparticle synthesis are restricted by the pollution induced 
by heavy metals. In addition, metal nanoparticle biosynthesis is an eco-friendly 
technique (green chemistry) without harsh, poisonous, and costly chemicals being 
used (Huang et  al. 2007). Thus, biologically synthesizing nanoparticles with the 
benefits of nontoxicity, reproducibility in manufacturing, simple scaling-up, and 
well-defined morphology has become a fresh trend in the manufacturing of nanopar-
ticles (Baker et al. 2013; Makarov et al. 2014; Iv et al. 2015).

Accordingly, in latest years, study has concentrated on producing nanomaterials 
through nanotechnology-based procedures that encourage green chemistry values 
and decrease or eliminate the use of dangerous chemicals altogether. Thus, 
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eco-friendly green nanotechnology-based nanoparticles manufacturing procedures 
have drawn significant global interest (Kulkarni and Muddapur 2014; Shah et al. 
2015). Recent studies have concentrated on using biological entities to synthesize a 
broad range of nanoparticles to emphasize this alternative method. Biosynthesis via 
biological unicellular and multicellular entities such as actinomycetes (Ahmad et al. 
2003), bacteria (Lengke and Southam 2006), fungi (Ahmad et  al. 2005), marine 
algae (Rajathi et al. 2012), plants (Philip 2010), viruses (Lee et al. 2002), and yeast 
(Kowshik et al. 2003) gives alternative, environmentally friendly routes to nanopar-
ticle production. All of these biological organisms can act as biological factories to 
produce specific nanoparticles to varying degrees. Each biological entity has active 
substances which act as reduction agents and stabilizers to produce nanoparticles of 
various shapes, sizes, physicochemical properties, and compositions (Mohanpuria 
et al. 2008).

In the process of generating extremely stable and well-characterized nanoparti-
cles, the significant aspects that could be regarded are:

 (i) Selection of the best organisms: Researchers focused on the significant inher-
ent characteristics of organisms such as enzyme operations and biochemical 
pathways to select the best applicants for the manufacturing of metal 
nanoparticles.

 (ii) Optimum conditions for cell growth and enzyme activity: It is very essential to 
optimize development circumstances. It is necessary to optimize nutrients, 
inoculum size, light, temperature, pH, mixing velocity, and buffer power.

 (iii) Optimal conditions for response: Concentration of the substrate, concentration 
of the biocatalyst, donor and concentration of the electron, pH, exposure time, 
temperature, buffer strength, mixing velocity, and light must be regulated and 
optimized. We must therefore optimize the circumstances for bioreduction in 
the mixture reaction (Ahmed et al. 2003; Korbekandi et al. 2009).

Nanotechnology is now becoming an allied science that has been used most fre-
quently for many years in other areas of science such as physics, electronics, and 
engineering. This multidisciplinary science also includes a number of applications 
in other fields, including molecular biology, biophysics, and biotechnology (Bhatia 
2016). Nanoparticles have been promoted for a broad spectrum of applications due 
to the distinctive and novel size-dependent characteristics. Some of these applica-
tions are in agriculture (Prasad et  al. 2014), as catalysts (Akhavan and Ghaderi 
2010), biosensors (Miller et al. 2002), labeling for immunoassays (Liu et al. 2008), 
environmental remediation (Njagi et  al. 2011; Mahdavi et  al. 2013), and vector 
delivery of cancer therapeutic drugs (Wen et al. 2011).

The following phase of hereditarily altered yield development, contributions 
from creature generation, synthetic pesticides, and accuracy cultivating methods is 
probably going to be advanced and confined by nanotech innovative work in the 
agrarian segment. The utilization of nanotechnology has been for the most part 
hypothetical in agribusiness; however, it has started and will keep on significantly 
affecting the development of new practical materials, item improvement, and 
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procedure plan and instrumentation for sanitation and biosecurity in the principle 
nourishment industry (Joseph and Morrison 2006). The consequences for society all 
in all will be emotional. Ongoing advances in materials science have delivered dom-
inance in the innovation of nanoparticles, with wide implications in farming. One 
territory specifically is the cotton area where current strategies of turning cotton are 
very inefficient. Over 25% of cotton fiber is lost to scrap or waste from the develop-
ment of cotton to the finish of its texture (Kumar 2009).

Present-day farming has been impacted as a significant factor by adjustments in 
rural innovation. Nanotechnology plays a conspicuous position among the most 
recent line of mechanical developments in the transformation of farming and suste-
nance generation. The development of nano-gadgets and nanomaterials could open 
up new applications in plant biotechnology and agribusiness. Nanotechnology stud-
ies are concentrating principally on applications in the zones of hardware, vitality, 
drug, and life sciences (Scrinis and Lyons 2007), since horticulture is not viewed as 
a solid part. While nano-compound pesticides are as of now being used, different 
applications are still in their beginning periods, and showcasing or contacting the 
normal individual may take years. These applications are principally expected to 
address a portion of the confinements and difficulties looked by huge-scale, sub-
stance, and capital-serious cultivating frameworks. This incorporates better soil 
executives including: i) focused utilization of information sources, ii) effective con-
trol of poisons, iii) new yield and creature attributes, iv) broadening and separation 
of cultivating strategies and items with regards to huge scale (Prasad et al. 2014).

This review summarizes the various kinds of nanomaterials using plants and 
microorganisms and the characterization and biogenic synthesis of metal and metal 
oxide nanoparticles. It also describes the factors affecting the process of synthesis 
and prospective applications for nanoparticles in agriculture.

25.2  Classification and Types of NPs

Depending on their size, morphology, and chemical characteristics, NPs are widely 
split into different classifications. A review of the most notable NPs is provided as 
follows based on physical and chemical features.

25.2.1  Carbon-Based NPs

Carbon nanotubes (CNTs) and fullerenes are two principle classes of carbon-based 
NPs. Fullerenes comprise nanomaterials delivered from empty globular enclosures, 
for example, allotropic sorts of carbon. They have additionally made noteworthy 
organization enthusiasm for nanocomposites for some organization applications, 
for example, fillers (Saeed and Khan 2016), proficient gas adsorbents for ecological 
remediation (Ngoy et al. 2014), and as a help vehicle for numerous inorganic and 
natural impetuses (Mabena et al. 2011).
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25.2.2  Metal NPs

Metal NPs are produced by the precursors of metals. These NPs have distinctive 
optoelectrical characters because of notable localized surface plasmon resonance 
(LSPR) features. Alkali and noble metal NPs, that is to say, Au, Ag, and Cu, have an 
absorption band in the electromagnetic energy spectrum’s visible area overseas. 
Metal NPs regulated size, facet, and shape synthesis is essential in state-of-the-art 
products today (Dreaden et al. 2012). Metal NPs have multiple uses in various study 
fields due to their sophisticated optical characteristics.

25.2.3  Ceramic NPs

Earthenware production NPs are nonmetallic inorganic solids that are combined by 
warmth and cooling. In shapeless, polycrystalline, thick, permeable, or empty struc-
tures, they can be found (Sigmund et al. 2006). These NPs are along these lines 
getting amazing consideration from researchers because of their utilization in, for 
example, photocatalysis, catalysis, imaging, and shading corruption (Thomas et al. 
2015).

25.2.4  Semiconductor NPs

Because of this property, semiconductor materials have characteristics between 
metals and nonmetals; they have discovered different applications in the literature 
(Ali et al. 2017). Semiconductor NPs have broad bandgaps and thus showed impor-
tant changes with bandgap tuning in their characteristics. In photocatalysis, picture 
optics, and electronic devices, they are therefore very significant materials (Sun 
2000).

25.2.5  Polymeric NPs

They are organic NPs and a collective of special polymer nanoparticles (PNPs) used 
for them in the literature. Most of them are nanospheres or nanocapsules (Mansha 
et al. 2017). Nanospheres are matrix particles which general mass is usually strong, 
and at the outer limit of the spherical surface, the other molecules are adsorbed. In 
nanocapsular, the solid mass is completely encapsulated in the particle (Rao and 
Geckeler 2011).

25.2.6  Lipid-Based NPs

They comprise lipid molecules which are used in various biomedical applications 
efficiently. A lipid NP with a diameter varying from 10 to 1000  nm is typically 
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spherical. Like polymeric NPs, lipid NPs have a strong lipid nucleus and a matrix 
which includes lipophilic molecules that are soluble. The internal core of these NPs 
has been stabilized by surfactants or emulsifiers (Rawat et al. 2011). A unique field 
that centers on lipid NP synthesis and design for different uses such as drug carriers 
is lipid nanotechnology (Puri et al. 2009).

25.3  Various Approaches in Nanoparticle Synthesis

Several techniques such as chemical, physical, biological, and enzymatic are applied 
for the production of nanoparticles (NPs). Physical methods include heat evapora-
tion, spray pyrolysis, plasma arcing, ball milling, ultrathin films, layer-by-layer 
development, lithographic techniques, sputter deposition, pulsed laser desorption, 
epistaxis of molecular beams, and synthesis of nanoparticles with diffusion flame 
(Joerger et al. 2000). So also, concoction techniques are utilized to integrate NPs by 
electro-testimony, sol-gel process, synthetic arrangement affidavit, compound vapor 
statement (Oliveira et  al. 2005), delicate synthetic strategy, Langmuir-Blodgett 
technique, reactant pathway, hydrolysis (Pileni 1997), coprecipitation technique, 
and wet concoction technique (Gan et  al. 2012). In physical and synthetic tech-
niques, high radiation and profoundly focused diminishing specialists and balanc-
ing out operators that are unsafe to the air and human well-being have been utilized. 
In this way, natural nanoparticle blend is a solitary advance bioreduction technique, 
and less vitality is utilized to integrate earth inviting NPs (Sathishkumar et al. 2009).

25.3.1  Toxicology of Nanoparticles and Advantage of Biological 
Nanoparticles

The toxicological effects of nanoparticles have developed anxiety and concerns in 
the wider society for human health and the environment. For instance, parameters 
such as morphology, particle size, structure, chemical reactivity, concentration, 
aggregation, and dispersion can all directly affect nanoparticles’ conduct and rela-
tions with particular settings. It was shown that particles of around 10 nm can cause 
higher mortality rates of human cells compared to bigger particles varying from 50 
to 100 nm (Carlson et al. 2008; Gorth et al. 2011). Hazardous chemicals such as 
surfactants tend to be used in conventional chemical and physical manufacturing 
procedures. These surfactants function as agents of sculpture that guide the develop-
ment of particles, while usually capping agents are used to stabilize and stop aggre-
gation of nanoparticles. Toxicity problems occur because the removal of all chemical 
toxic materials from the nanoparticle surface is highly hard (Gautam and Van Veggel 
2013). Thus toxicity appears to result not only from the morphology, size, structure, 
and surface reactivity of nanoparticles but also from the presence of toxic materials 
on the surface. This added problem requires understanding the relations between 
different chemicals during the production of NPs and eventually the relations that 
occur in the setting to know future toxicity problems (Nel et al. 2009).
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Nanoparticles acquired from biogenic courses are free of dangerous side effects 
appended to nanoparticles during physiochemical synthesis contrasted with physi-
cochemically inferred nanoparticles, which thus limits the biomedical uses of the 
resulting nanoparticles (Baker et al. 2013). Nanoparticles’ biological synthesis has 
a few advantages, including quick and eco-friendly assembling approaches and 
manufactured nanoparticles’ cost-effective and biocompatible nature. Furthermore, 
extra stabilizing agents are not required since microorganism and plant components 
themselves carry on as topping and balancing out operators (Makarov et al. 2014). 
Moreover, the surfaces of biogenic nanoparticles continuously and specifically 
adsorb biomolecules when reaching complex natural liquids, shaping a crown that 
connects with organic frameworks. These crown layers give extra adequacy over 
bare biological nanoparticles (Monopoli et  al. 2012). In this way, biological 
nanoparticles are progressively viable on the grounds that they are joined to the 
outside of combined nanoparticles by naturally dynamic parts from natural sources, 
for example, plants and microorganisms. There are bottomless pharmacologically 
dynamic metabolites, especially in restorative plants, which are conjectured to be 
associated with combined nanoparticles, giving extra advantage by improving the 
adequacy of nanoparticles (Mukherjee et al. 2012; Makarov et al. 2014). The extra 
advantage of nanoparticles’ biological blend is that it can lessen the quantity of 
steps required, including connecting certain useful gatherings to the nanoparticles’ 
surface to make them naturally dynamic (Baker et al. 2013). When thinking of bio-
logical synthesis, there is a long list of microorganisms and plants to do the job.

25.3.2  Synthesis Mechanism of Nanoparticles

Different techniques may be used to synthesize NPs, but these techniques are widely 
split into two primary groups, i.e., (1) bottom-up approach and (2) top-down 
approach (Wang and Xia 2004), as shown in Fig. 25.1. These methods further split 
according to the procedure, response condition, and adopted protocols into different 
subclasses.

25.3.2.1  Top-Down Syntheses
The top-down approach is to mill or attribute big macroscopic particles, and it is 
also called destructive approach. Starting from a bigger molecule, which is reduced 
to nanoscale level and then the produced units are changed to specific NPs. This 
procedure includes the synthesis by self-assembly of nanoparticles from nuclear 
parts that are already miniaturized. This involves physical and chemical formation 
(Imtiaz et al. 2017). It is a strategy that is relatively inexpensive. The imperfection 
of the surface structure is a significant drawback of the top-down strategy. Such 
surface structural failures can have an important effect on metallic nanoparticles’ 
physical characteristics and surface chemistry owing to the high aspect ratio 
(Thakkar et al. 2010). Examples of this technique include grinding/milling, chemi-
cal vapor deposition (CVD), deposition of physical vapor (PVD), and other meth-
ods for decomposition (Iravani 2011). To synthesize coconut shell (CS) NPs, this 
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method is used. The milling technique was used for this purpose, and the raw CS 
powders were finely milled with the assistance of ceramic balls and a well-known 
planetary mill for distinct intervals (Bello et al. 2015).

25.3.2.2  Bottom-Up Syntheses
The nanostructured construction blocks (nanoparticles) are first formed by the bot-
tom- up strategy of nanomaterial synthesis and then assembled into the final prod-
uct; hence this method is also called the build-up approach. Sedimentation and 
decrease methods are examples of this situation. It involves sol-gel, green synthesis, 
spinning, and synthesis of biochemical (Iravani 2011). A separate benefit of the 
bottom-up strategy is the increased ability to obtain metallic nanoparticles with 
relatively smaller defects and more homogeneous chemical composition(s).

25.3.3  Biogenic or Green Synthesis Using Plants 
and Microorganisms

25.3.3.1  Plants
Phytonanotechnology has created new avenues for nanoparticle synthesis and is an 
environmentally friendly, easy, fast, cost-effective, and stable technique. 
Phytonanotechnology has benefits, including scalability, biocompatibility, and the 
medical applicability of synthesizing nanoparticles using as a reduction medium the 
universal solvent, water (Noruzi 2015). Thus, plant-derived nanoparticles generated 
from easily accessible plant products and plant nontoxicity are appropriate to meet 

Fig. 25.1 Scheme of different synthetic approaches for nanoparticles: (a) top-down and (b) bot-
tom- up approaches
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the increased requirements for NPs in the environmental and medical fields. What’s 
more, different plant segments were utilized for the combination of metal nanopar-
ticles, including stems, leaves, roots, and products of the soil extricated. The exact 
system and parts in charge of plant-intervened engineered nanoparticles stay to be 
explained. Proteins, amino acids, natural acids, nutrients, and optional metabolites, 
for example, polyphenols, flavonoids, terpenoids, alkaloids, heterocyclic mixes, and 
polysaccharides, have been proposed to have a critical influence in decreasing metal 
salt and, likewise, to go about as topping and balancing out specialists for manufac-
tured nanoparticles (Duan et al. 2015). Philip et al. (2011) demonstrated the amal-
gamation and steadiness of biomolecule connection of silver and gold nanoparticles 
in Murraya koenigii leaf extract. Reports likewise demonstrate that particular com-
ponents for incorporating nanoparticles exist in independent plant species (Baker 
et al. 2013). For instance, explicit components, for example, emodin, a laxative gum 
with quinone mixes found in xerophyte crops (plants adjusted to get by in deserts or 
low-water situations), are in charge of the union of silver nanoparticles: cyperoqui-
none, dietchequinone, and remirin in mesophyte crops (earthly plants not adjusted 
to especially dry or wet conditions) (Makarov et al. 2014).

25.3.3.2  Nanoparticle Synthesis Using Microorganisms
Microorganisms have been demonstrated to be significant nanofactories with tre-
mendous potential as eco-agreeable and financially saving instruments, maintaining 
a strategic distance from harmful, brutal synthetic compounds and the intense inter-
est for physiochemical amalgamation. The component and exploratory strategies 
utilized in microorganisms to blend nanoparticles are portrayed in Fig. 25.2. In the 
course of recent years, microorganisms, including microbes, actinomycetes, para-
sites, and yeasts, have been extra and intracellularly ready for blend of metal 
nanoparticles. A scope of organic conventions utilizing bacterial biomass (superna-
tant) has been uncovered. Extracellular union has gotten a great deal of consider-
ation among the different systems as it disposes of the downstream preparing 
advances required to recuperate nanoparticles in intracellular techniques, including 
sonication to separate the phone divider, a few centrifugations and washing steps 
required to clean nanoparticles, and others. Moreover, metal-safe qualities, proteins, 
peptides, chemicals, diminishing of cofactors, and natural materials assume critical 
jobs by going about as declining specialists. These components help to give regular 
topping to nanoparticle amalgamation, hence preventing nanoparticles from con-
glomerating and helping them balance out for a long minute (Singh et al. 2016).

25.3.3.2.1 Bacteria
The production of nanoparticles has been demonstrated in latest studies using sev-
eral Bacillus and other species, including Bacillus amyloliquefaciens, Bacillus 
licheniformis, Rhodobacter sphaeroides (Singh et al. 2011; Elbeshehy et al. 2015), 
Bacillus subtilis, Streptomyces anulatus, and Listeria monocytogenes (Elbeshehy 
et al. 2015; Soni et al. 2015). Different genera of microorganisms were recorded for 
the synthesis of metal nanoparticles, including Bacillus, Streptomyces, Klebsiella, 
Weissella, Enterobacter, Rhodopseudomonas, Corynebacterium, Lactobacillus, 
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Pseudomonas, Escherichia, Pyrobaculum, Aeromonas, Brevibacterium, Shewanella, 
Trichoderma, Sargassum, Desulfovibrio, Plectonema boryanum, Rhodococcus, 
Rhodobacter, and others (Li et al. 2011a, b). These studies indicate that the primary 
mechanism for synthesizing nanoparticles using bacteria depends on enzymes 
(Zhang et al. 2011); for example, it has been discovered that the nitrate reductase 
enzyme is accountable for the synthesis of silver nanoparticles in B. licheniformis.

25.3.3.2.2 Fungi
Most organisms with significant metabolic substances with higher accumulation 
capacity and straightforward downstream preparing are anything but difficult to cre-
ate for proficient, minimal effort generation of nanoparticles (Alghuthaymi et al. 
2015). Besides, parasites have higher resistances and capacity to ingest metals in 
respect to microscopic organisms, especially as to the high divider restricting limit 
of contagious biomass metal salts for the generation of high return nanoparticles 
(Castro-Longoria et  al. 2011; Alghuthaymi et  al. 2015). Three potential systems 
were suggested to clarify the production of metal NPs from fungi: nitrate reductase 
activity, electron transport quinones, or both (Alghuthaymi et al. 2015). Contagious 
compounds, for example, Penicillium and Fusarium oxysporum reductase catalysts, 

Fig. 25.2 Schematic presentation of the mechanism of biogenic nanoparticle synthesis from vari-
ous sources (plants and microorganisms) and the parameters affecting the process
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nitrate reductase, and NADPH-subordinate reductases, have been found to assume 
a huge job in nanoparticle blend (Anil Kumar et al. 2007), tantamount to the system 
found in organisms.

25.3.3.2.3 Actinomycetes
Nanoparticles dependent on actinomycetes have not been all around looked into, in 
spite of the fact that actinomycetes-interceded nanoparticles have extraordinary 
mono-dispersibility and solidness, just as noteworthy biocidal movement against 
different pathogens (Golinska et al. 2014). Numerous examinations for the combi-
nation of zinc, copper, and silver nanoparticles utilizing Streptomyces sp. have been 
revealed. Numerous examinations for combination of zinc, copper and silver 
nanoparticles utilizing Streptomyces sp. have been revealed by reductase compound 
which assumes a key job in the decrease of metal salt (Karthik et al. 2014). Like 
different microorganisms, yeasts have likewise been broadly examined with simple 
downstream preparing for the extracellular blend of nanoparticles on a huge scale 
(Apte et al. 2013; Waghmare et al. 2015).

25.3.3.2.4 Algae
Algae are amphibian eukaryotic oxygenic photoautotrophs and can aggregate dif-
ferent substantial metals in some of them. In any case, there are not very many 
reports of respectable metal nanoparticles utilizing organic blend to utilize green 
growth. The dried alga Chlorella vulgaris, a solitary cell green alga, was shown to 
be a solid restricting capacity to frame algal-bound gold to tetrachloroaurate parti-
cles, which was in this manner diminished to Au(0). Roughly 88% of algal-bound 
gold was metallic and gold precious stones were amassed in the inward and external 
pieces of the cell surfaces with icosahedral, decahedral, and tetrahedral structures 
(Luangpipat et al. 2011). The dried green growth of Spirulina platensis; palatable 
blue-green algae; was used for extracellular amalgamation of silver and gold 
nanoparticles (Govindaraju et al. 2009). Singaravelu et al. (2007) and Rajasulochana 
et al. (2010) utilized Kappaphycus alvarezii and Sargassum wightii to record the 
combination of extracellular metal bionanoparticles. Senapati et al. (2012) addition-
ally announced the intracellular creation of gold nanoparticles utilizing Tetraselmis 
kochinensis.

25.3.3.2.5 Viruses
Viruses can be utilized to combine nanowires with utilitarian parts for various appli-
cations, for example, battery terminals, photovoltaic gadgets, and super capacitors.  
The amalgamation and recuperation of nanoparticles based on viruses were delayed 
with low profitability. What’s more, the issues related with microorganism- based 
nanoparticle amalgamation likewise incorporate entangled estimates, for example, 
microbial examining, segregation, development, and support (Nam et al. 2006).
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25.4  Critical Parameters and Stabilization for the Biological 
Synthesis of Nanoparticles

In spite of several merits for nanoparticles from an approach of biological produc-
tion, the polydispersity of the formed NPs remains an encounter. Consequently, 
many researchers attempted to create a relatively stable scheme for generating 
homogeneous size and morphology nanoparticles. The control of metal nanoparti-
cles’ form and size has been demonstrated either by restricting their environmental 
development or by modifying functional molecules (Kathiresan et al. 2009; Singh 
et al. 2015). For example, Ganoderma spp. were used to synthesize monodispersed 
(20 nm) and biocompatible gold nanoparticles. Improved reaction conditions 
include temperature, pH, incubation time, aeration, salt concentration, redox condi-
tions, irradiation and mixing ratio (Gurunathan et al. 2014).

25.4.1  Temperature

For the union of nanoparticles utilizing microorganisms, developing microorgan-
isms at the most astounding conceivable temperature is proposed as the catalyst in 
charge of nanoparticle combination is progressively dynamic at raised temperatures 
(Gurunathan et al. 2009).

25.4.2  pH

pH is one of the critical factors which affects NPs production. Changes in pH change 
the charge of characteristic phytochemicals for harvests and further influence their 
coupling capacity and diminish metal particles during nanoparticle amalgamation. 
This thusly can influence the yield of nanoparticles and morphology. For instance, 
the Avena sativa concentrate shaped various little estimated gold nanoparticles at 
pH 3.0 and 4.0, while the nanoparticle collection was seen at pH 2.0. Thus, it was 
recommended that conglomeration of nanoparticles commands the decrease strat-
egy at corrosive pH esteems. This impact might be identified with the way that 
increasingly utilitarian gatherings are open at pH 3.0 and 4.0 contrasted with pH 2.0 
official and nucleating metal particles. On the other hand, in the blend of Curcuma 
longa tuber powder silver nanoparticles at basic pHs, concentrates may include all 
the more contrarily stacked utilitarian gatherings that are able to do adequately offi-
cial and diminishing silver particles, bringing about the union of more nanoparticles 
(Sathishkumar et al. 2010). Soluble pH (for Isaria fumosorosea), (Banu et al. 2014) 
and acidic pH (for Fusarium acuminatum) have been demonstrated to be reasonable 
for nanoparticle combination. Additionally, different conditions are subject to spe-
cies and concentrates, for example, terms, salt focuses, and places of blend of 
nanoparticles (Pereira et al. 2015).
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25.5  Characterization of Nanoparticles

For the assessment of different physicochemical characteristics of NPs, different 
characterization methods have been performed. These include methods such as 
X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), assessment of 
particle size, and scanning electron microscope (SEM), transmission electron 
microscope (TEM), and Brunauer-Emmett-Teller (BET) (Table 25.1, Fig. 25.3).

25.5.1  Morphological Characterizations

The characteristics of morphology of NPs are of excellent concern as morphology 
always affects most of the NPs characteristics. Different characterization methods 
are the most significant methods for morphological research such as TEM and 
SEM. The SEM method is based on the concept of electron scanning and offers all 
accessible nanoscale data on the NPs. There is a wide literature available, where 
individuals used this method not only to study the morphology of their nanomateri-
als but also the dispersion of NPs in the bulk or matrix. The morphological charac-
teristics of ZnO altered metal-organic frameworks (MOFs) have been explored 
using SEM method, indicating the dispersion of ZnO NPs and the morphologies of 
MOFs under distinct circumstances of reaction (Mirzadeh and Akhbari 2016). 
Likewise, TEM is based on the concept of electron transmission, so it can provide 
data from very small to greater magnification on the bulk material. Bar et al. (2009) 
used aqueous Jatropha curcas seed extract to synthesize silver nanoparticles 

Table 25.1 Nanoparticle parameter and the consistent characterization techniques

Parameter 
characterized Characterization techniques
Size (structural 
properties)

TEM, XRD, DLS, NTA, SAXS, HRTEM, SEM, AFM, EXAFS, FMR, 
DCS, ICP-MS, UV-vis, MALDI, NMR, TRPS, EPLS, magnetic 
susceptibility

Shape TEM, HRTEM, AFM, EPLS, FMR
Crystal structure XRD, EXAFS, HRTEM, electron diffraction, STEM
Size distribution DCS, DLS, SAXS, NTA, ICP-MS, FMR, DTA, TRPS, SEM
Elemental-chemical 
composition

XRD, XPS, ICP-MS, ICP-OES, SEM-EDX, NMR, MFM, LEIS

Magnetic properties SQUID, VSM, MFM, FMR, XMCD, magnetic susceptibility
Optical properties UV-vis-NIR, PL, EELS-STEM
Density DCS, RMM-MEMS
Agglomeration state Zeta potential, DLS, DCS, UV-vis, SEM, Cryo-TEM, TEM
Single-particle 
properties

Sp-ICP-MS, MFM, HRTEM, liquid TEM

Concentration ICP-MS, UV-vis, RMM-MEMS, PTA, DCS, TRPS
Growth kinetics SAXS, NMR, TEM, cryo-TEM, liquid-TEM
Surface charge Zeta potential, EPM
Surface area BET, liquid NMR
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without any toxic chemicals used to stabilize the produced NPs. For the reddish- 
yellow colored silver nanoparticles synthesized from 10−3 M AgNO3, the surface 
plasmon absorption bands are characteristic at 425 nm. The particles in HRTEM are 
predominantly spherical in form varying from 15 to 25 nm in diameter. It also pro-
duces larger and irregular particles with a diameter of 30–50 nm.

25.5.2  Structural Characterizations

In studying the structure and nature of bonding materials, the structural features are 
of main significance. It offers various data about the subject material’s bulk charac-
teristics. The popular methods used to study structural characteristics of NPs are 
energy-dispersive X-ray (EDX), XRD, IR, XPS, BET, Raman, and Zeta size ana-
lyzer. XRD is one of the most significant methods for characterizing the structural 
characteristics of NPs. It provides sufficient data on the crystallinity and stage of 
NPs (Ullah et al. 2017).

Generally fixed with field outflow examining electron microscopy (FE-SEM) or 
TEM gadget, EDX is often utilized with a harsh thought of percent to appreciate the 
fundamental structure. The electron shaft concentrated by SEM or TEM on a soli-
tary NP through the program accelerates to procure the knowledge data being con-
templated from the NP. NP involves parts, every one of which radiates attributes of 
vitality X-beams by illuminating electron bars. The particular force of X-beams is 
straightforwardly relative to the grouping of the particular segment in the molecule. 
This strategy is much of the time utilized by specialists to help SEM and different 
methods check their parts in arranged items (Iqbal et al. 2016). Also, the essential 
affirmation and graphene impregnation of In2O3/graphene heterostructure NPs 

Fig. 25.3 Various methods for nanoparticle characterization: (a) morphological, (b) structural, (c) 
optical
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were completed utilizing comparable techniques that demonstrated C, In, and O as 
contributing components (Mansha et al. 2016).

XPS is the most sensitive method and is used to know the exact elementary ratio 
of the elements in NP materials and the exact bonding nature. It is surface-sensitive 
method and can be used to determine the general composition structure and depth 
variation of the structure in profiling research. XPS is based on the fundamental 
values of spectroscopy, and the typical XPS spectrum consists of the Y-axis plot 
amount of electrons versus the X-axis electron binding energy (eV). Each compo-
nent has its own fingerprint of binding energy value and therefore provides specific 
XPS peaks (Lykhach et al. 2015). The characterization of nanoparticle vibration is 
usually researched through spectroscopies of FT-IR and Raman. These techniques 
are the most advanced and viable compared to other elementary analytical methods. 
The fingerprint region is the most significant range for NPs, which provides data on 
the material signature (Dablemont et al. 2008).

Due to its signal-enhancing ability via SPR phenomenon, Raman’s recently 
enhanced surface spectroscopy (SERS) is evolving as a vibration-conforming tool 
(Muehlethaler et al. 2016). One study disclosed SERS’ technique of studying nano-
structured and quantum dots vibrational features with phonon modes in TiO2, ZnO, 
and PbS NPs. They discovered that plasmonic resonances in semiconductor devices 
could be attributed to the enhanced range (Ma et al. 2011).

25.5.3  Particle Size and Surface Area Characterization

It is possible to use various methods to assess the size of the NPs. TEM, SEM, 
AFM, XRD, and dynamic light scattering (DLS) are included. AFM, TEM, SEM, 
and XRD may offer a better concept of particle size (Kestens et al. 2016), but it is 
possible to use the zeta prospective size analyzer/DLS to discover the NP size at 
exceptionally low levels. In addition, the analysis of nanoparticle tracking (NTA) is 
a relatively new and special procedure that can be useful in DNA and proteins (bio-
logical systems). In the NTA technique, we can see and evaluate the NPs in liquid 
media related to the particle size of the Brownian motion rate. This method enables 
us to discover in a liquid medium the size distribution profile of NPs with a diameter 
between 10 and 1000 nm. This method generated some excellent outcomes relative 
to DLS and was discovered to be very accurate for sizing both monodisperse and 
polydisperse samples with significantly better maximum resolution (Filipe et  al. 
2010).

25.5.4  Optical Characterizations

In photocatalytic applications, optical properties are of great concern and photo-
chemists have therefore gained excellent understanding of this method to show the 
mechanism of their photochemical processes. These characteristics are based on the 
well-known Beer-Lambert law and principles of fundamental light (Swinehart 
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1962). These methods provide data on the characteristics of NPs in terms of absorp-
tion, reflection, luminescence, and phosphorescence. NPs, particularly metallic and 
semiconductor NPs, are best suited for apps related to photography due to their 
distinct colors. Thus, to understand the mechanism for each use, it is important to 
know the reflection and absorption of these materials. The well-known optical tools 
are photoluminescence (PL), ultraviolet-visible (UV-vis), and null ellipsometer, 
which are used to study the optical characteristics of NPs. The UV/vis diffuse 
reflectance spectrometer (DRS) is a fully equipped tool for measuring optical 
absorption, transmittance, and reflectance. PL also believes in useful method for 
studying photoactive NPs (optical properties) and other nanomaterials in relation to 
UV. This method provides extra data on the materials’ absorption or emission abil-
ity and their impact on the photoexciton’s general excitation moment. It therefore 
offers important data on the load recombination and half-life of the excited materi-
als in their conductance band, which are helpful for all apps linked to photography 
and imaging. Depending on the nature of the study, the PL spectrum can be recorded 
as emission or absorption (Yu et al. 2013).

25.6  Applications of Nanoparticles in Agriculture

In recent years, nanotechnology had entered every aspect of life. In recent agricul-
tural research works, nanotechnology proved to transform conventional farming to 
precision farming methods. The following lines will address recent applications of 
nanotechnology in agriculture.

25.6.1  Nanomaterials as Nanofertilizers

There is a significant increase in the use of nanotechnology in agriculture and crop 
science agriculture. As a consequence of advances in nanotechnology, new tech-
niques are being suggested for producing large-scale nanoparticles of physiologi-
cally significant metals. These techniques are used to alter fertilizer formulations in 
order to improve plant cell uptake to minimize nutrient loss (Abdel-Aziz et  al. 
2019). Some distinctive characteristics of nanoparticles are the ability of controlled 
release kinetics to specific locations. These make these materials considered as 
“smart delivery system.” Mechanisms such as slow or controlled release and tar-
geted delivery can upturn the efficacy of nutrient use by using nanostructured fertil-
izers. It has been noted that in reaction to environmental triggers and biological 
requirements, their active ingredients are exactly released. According to the 
laboratory- scale studies, the improvement of crop productivity by enhancing seed 
germination rate, seedling development, photosynthetic activity, nitrogen metabo-
lism, and carbohydrate and protein synthesis is regarded as a consequence of 
nanofertilization (Rai et al. 2016; Abdel-Aziz et al. 2019).
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25.6.1.1  Different Types of Nanofertilizers

25.6.1.1.1 Nitrogen Nanofertilizers
There are many commercial plant fertilizers that can supply the three components 
(nitrogen, phosphorus, and potassium – NPK) that are needed. NPK numbers show 
each element’s quantity. Many sources of nitrogen, including ammonia (NH3), are 
used in fertilizers such as ammonium nitrate (NH4NO3), phosphate of diammonium 
((NH4)2HPO4), calcium cyanamide (CaCN2), ammonium sulfate ((NH4)2SO4), 
sodium nitrate (NaNO3), calcium nitrate (Ca(NO3)2) and urea (N2H4CO). Phosphorus 
is usually provided as a phosphate such as diammonium phosphate ((NH4)2HPO4) 
or calcium dihydrogen phosphate (Ca(H2PO4)2). Potassium comes from potassium 
chloride (KCl) or potassium sulfate (K2SO4) (Shakhashiri 2010).

25.6.1.1.2 Potash Nanofertilizers
The crops can take potash fertilizer as a natural substance as K+, and it can assist in 
the process of photosynthesis, the control of storage of water, and the stomatal 
opening in leaves. Pellet-based polyacrylamide coating was used slowly to release 
potash fertilizer. For an hour, a mixture of potash and clay was dried and toothpaste 
was used to coat it, so that the polymer was properly bonded. This polymer has been 
plunged into polyacrylamide (Rameshaiah et al. 2015).

25.6.1.1.3 Zinc Nanofertilizers
Micronutrient zinc inadequacy has been accounted for as a difficult issue in the 
globe. Day by day sustenance can supply substantially less zinc; accordingly, 
there is less shot of backhanded supply to people utilizing zinc-containing manure 
on the grounds that the equivalent nanoparticles can be utilized to coat zinc for 
dispersion and solvency of zinc (Milani et al. 2010; Rameshaiah et al. 2015). As 
indicated by studies, zinc dissolvability diminishes by expanding the pH (Bickel 
and Killorn 2001). Similar proportions between their surface zones ought to be 
considered for the structure of nanoparticles; if not, it can negatively affect the 
all-out solvency of zinc.

25.6.1.1.4 Nanoporous Zeolites
Zeolites and nano clays are used to improve the effectiveness of fertilizer use. They 
are a group of naturally minerals with a honeycomb-like crystal layered framework 
(Chinnamuthu and Boopathi 2009a, b). It can be used to fill its network with nitro-
gen, potassium, phosphorus, calcium, and a full collection of minor and trace nutri-
ents. They are like slowly released nutrients “according to nutrient demand.” The 
primary use of zeolites in agriculture is the storage, capture, and release of nitrogen. 
There are many contamination factors in groundwater, including the use of soluble 
N fertilizers. The ionic form’s nitrogen release dynamics is much quicker than (in 
zeolites) the absorbed form (Abdel-Aziz et al. 2019).
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25.6.2  Nanoherbicides

First, nanotechnology has only been used in the areas of medicine and pharmacol-
ogy, and its implementation has only evolved in crop protection afterward. 
Technologies linked to the release of herbicides and pesticides have essentially 
altered in a controlled and encapsulated way. “Smart Seed” refers to crops that are 
immersed in nanoencapsulations of specific bacterial strain. Nanoparticles play a 
significant role in targeting and uploading substances across plants in specific areas 
as intelligent delivery systems (González-Melendi et al. 2008; Corredor et al. 2009). 
Pérez-de-Luque and Rubiales (2009) revealed the control of nanocapsulated herbi-
cide parasitic weeds lowering phytotoxicity. Different formulations of herbicides 
are discerned, with special reference to slow release herbicides, systemic applica-
tion, and microencapsulation, in order to enhance their various methods of action, 
including in combination with parasitic weed nanoparticle carrier (Dhillon and 
Mukhopadhyay 2015).

25.6.3  Nanopesticides

Nanosized pesticides may contain either small-scale structures with useful pesticide 
properties or very small particles of pesticide active ingredients (Bergeson 2010a). 
Nanopesticides can increase the diffusion of agricultural formulations and the 
unwanted motion of pesticides (Bergeson 2010b). Nanomaterials and biocompos-
ites have revealed many exclusive characteristics. Permeability of rigidity, thermal 
stability, crystallinity, biodegradability, and solubility (Bouwmeester et  al. 2009; 
Bordes et al. 2009) required for the formulation of nanopesticides are regarded as 
some of these significant benefits. Another characteristic of nanopesticides is the 
high specific surface, and thus the affinity to the goal can be improved with the use 
of these materials (Jianhui et al. 2005).

25.7  Environmental Toxicity of Nanoparticles

Different examinations on the natural poisonous quality of nanoparticles have been 
performed. Nanotypes of realized inorganic metals practically identical to nano- 
titanium dioxide (TiO2) and different nanometals were made as the primary seg-
ments for the assembling of ecological uneasiness. A few government studies of 
nanotoxicology are accessible (Ma et al. 2010; Li et al. 2011a, b). In spite of the fact 
that nanomaterial transmission systems are not comprehended crosswise over cell 
dividers and layers, nanomaterials may change the layers and other cell structures 
inside cells (Chomoucká et al. 2010). For the viability of their accumulation, the 
surface portrayal of designed nanomaterial is of significant essentialness, prompting 
watery development and transport. Ecotoxicology study on designed nanomaterials 
uncovered poisonous impacts on spineless creatures and fish (Handy et al. 2008). 
Little data on common plant species are available (Panda et al. 2011). Nanotechnology 
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advancements and continuous development of nanoparticles were seen in the previ-
ous decade. Another examination by Klaine et al. (2008) found that there was a need 
for a database of the creation, attitude, and lethality of engineered nanomaterials in 
plants. Lin and Xing (2007) detailed an investigation of five sorts of nanoparticles 
in six diverse plant species. The phytotoxicity effects of multi-walled carbon nano-
tubes (MWNTs); which resemble zinc, zinc oxide, aluminum and alumina nanopar-
ticles; have been tested on seed germination and root development of corn, lettuce, 
radish, ryegrass and cucumber. Most nanoparticles demonstrated low results in 
these species, except for Zn NPs and ZnO NPs (Lin and Xing 2007). There was no 
self-important draw of seed, except for 2000 mg/L Zn NPs sway on ryegrass and 
ZnO nanoparticles on corn. Around 20 mg/L were unsurprising inhibitory focuses 
(IC50) of Zn NPs and ZnO nanoparticles for ryegrass and 50 mg/L for radish. These 
outcomes recommended that significant natural operators could result from the 
unseemly use and expulsion of such built nanoparticles. Contrasted with their mass 
material, an ongoing overview played out a broad examination of a few nanoparti-
cles (Lin and Xing 2007). So as to assess some data from five conventional nanopar-
ticles, this examination utilized three unmistakable trial types of gear to assess 
harmfulness. Both the nanoparticles and the subsequent mass materials (Stampoulis 
et al. 2009) assessed the impacts of the contribution or absence of association of test 
blends on the germination of zucchini seeds. A raised variety was seen when the 
nanomaterials were segregated through a surfactant. The sodium dodecyl sulfate 
surfactant seemed, by all accounts, to be more productive in water- insoluble exam-
ple materials than the edifices tried and troubled. The subsequent test contained 
impacts of test materials on root advancement, with little effect on any material 
being perceived. The last trial utilized biomass in general to assess the impacts of 
plant development. As a result of the issue of characterizing levels of nanoparticles 
with respect to metal particles, these preliminaries were somewhat quantitatively 
troublesome. A fascinating outcome – the impact of carbon nanotubes on the gen-
eral biomass of zucchini seedlings – was evaluated. Carbon nanotubes defer the 
development of seedling as indicated by data (De La Torre-Roche et al. 2013).

25.8  Conclusion

The capacity to utilize nanoparticles in particular fields builds the need to deliver 
them on a mechanical scale and in stable plans with naturally well-disposed proce-
dures. A lot of exertion is in this way being made to use characteristic assets and 
execute organic amalgamation techniques with demonstrated favorable circum-
stances, for example, being eco-accommodating, simple to scale up, and financially 
saving; along these lines, the potential for green nanoparticles utilizing natural 
assets is exceptional. The natural way of incorporating nanoparticles has numerous 
advantages, for example, the steady assembling of nanoparticles with directed mea-
surements and structures, the nonattendance of resulting confused synthetic combi-
nation, the nonappearance of dangerous contaminants, and the ability to orchestrate 
quickly utilizing different therapeutic plants and microorganisms. Significantly, the 
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yield of orchestrated nanoparticles comparing to the grouping of metal salt and 
accessible organic assets stays to be clarified, and the parameters that can defeat the 
issues of polydispersity of natural nanoparticles in various natural frameworks still 
require enhancement. Moreover, the absence of learning of the suitable synthetic 
segments and the fundamental components for the amalgamation, activity, and 
soundness of natural nanoparticles stay open issues for the union of nanoparticles in 
the misuse of plants and smaller-scale creatures. In this way, the bounty of microor-
ganisms and plants proficiently utilized for metal nanoparticles’ organic union 
prompts higher investigation of natural nanofactories to address the issue for nano-
products in particular fields. The biogenic nanoparticles produced in agroecosys-
tems have various applications, including nanofertilizers, nanoherbicides, and 
nanopesticides.
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Abstract
There is a big demand for fast, reliable, and low-cost systems for the detection, 
monitoring, and diagnosis of pollutant in the environment and agriculture. 
Quantitative analysis of environmental samples is usually carried out using tradi-
tional analytical methods such as chromatographic and spectroscopic techniques 
to identify various environmental contaminants. These methods, although accu-
rate and sensitive, require sophisticated and expensive instrumentation, expert 
personnel for their operation, and multistep and complicated sample preparation. 
These techniques are also labor-intensive and time-consuming, and it is hard to 
monitor contaminants on site, in real time, and at high frequency. To overcome 
the issues associated with current diagnostic techniques, a wide range of new 
biosensors (an analytical device for the quantitative detection of analyte with a 
biologically active element) are being developed. Several of these biosensors 
rely on nanotechnological platforms. Hence, in this chapter, an emphasis has 
been given on the deployment of nanobiosensor in detection of pollutant in the 
environment.
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26.1  Introduction

The detection of pollutants, heavy metals, and toxic intermediates from waste 
streams and the monitoring of soil, water conditions, and many other vital features 
are highly detailed and comprehensive tasks (Malik et al. 2013; Bellan et al. 2011; 
Long et al. 2013a; Shahbazi et al. 2018). However, nanobiosensors are revolution-
izing this field with prospective solutions by minimizing the load of conventional 
laboratory techniques and protocols and by enhancing sensitivity, robustness, and 
point-of-use portability (Amini et  al. 2017; Kaushal and Wani 2017; Khan and 
Fatima 2014; Tripathi et al. 2017). A nanobiosensor is able to detect any biophysical 
and biochemical signal associated with a particular analyte (molecule) (Kabariya 
and Ramani 2017). The long-term use of nanobiosensors is to assess the existence 
and concentration in soil, water, and wastewater of toxic chemicals and pollutant 
(Srivastava et al. 2018). The applications of nanobiosensors were also extended for 
environmental monitoring of pollutants, toxicants, microorganisms and detection 
and prevention of bioterrorism in military, the net soil contaminant such as pesti-
cides, herbicides, and heavy metals (Amini et al. 2018; Girigoswami and Akhtar 
2019). Because of their submicron size, nanosensors have revolutionized in the 
fields of chemical and biological analysis, to enable the rapid analysis of multiple 
substances in  vivo and environment samples (Steffens et  al. 2017). This chapter 
emphasizes various applications of biosensors and nanobiosensors in the environ-
mental and agriculture area. The major implication in the area of agriculture is 
physical monitoring of soil quality and fertility; indicator for seed viability; preci-
sion agriculture; detection of residual pesticides and herbicide, fertilizers, and tox-
ins; and detection of microbiological pathogens in plants (Álvarez et  al. 2016; 
Antonacci et  al. 2018; Bagde and Borkar 2013; Choudhary et  al. 2015; DeRosa 
et al. 2010; Duhan et al. 2017; Kaushal and Wani 2017). Biosensors and nanobio-
sensors can provide quick and specific information on contaminated locations for 
environmental control (detection of heavy metals, pesticides, organic compounds, 
biochemical oxygen demand (BOD), toxicity, and tracking (Álvarez et  al. 2016; 
Antonacci et  al. 2018; Bagde and Borkar 2013; Choudhary et  al. 2015; DeRosa 
et al. 2010; Duhan et al. 2017; Kaushal and Wani 2017; Long et al. 2013a; Rajkumar 
et al. 2017; Salgado et al. 2011; Suresh and Periasamy 2014; Touhami 2014; Turdean 
2011; Wan Jusoh and Ling Shing 2014; Yildirim 2016)). In this regard, some of the 
recent biosensor and nanobiosensor configurations are presented here.

26.2  Biosensors

Biosensors are analytical devices that convert a biological sensing element in close 
proximity or integrated with a signal transducer in order to quantify a compound condi-
tion. Biosensor is a probe that integrates an abiological one with a physicochemical 
transducer component to yield a measurable signal (Suresh and Periasamy 2014).

Researchers from various fields such as physics, chemistry, biology, engineering, 
and medicine are interested in developing, constructing, and manufacturing new 
sensing devices to get more efficient and reliable information. Biosensors are being 
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developed for different applications, including quality control of food, environmen-
tal and bioprocess control, agriculture, medical applications, and military 
(Rodríguez-Mozaz et al. 2004).

For environmental control and monitoring, biosensors can provide fast and spe-
cific data of contaminated sites (biological/ecological quality or for the chemical 
monitoring of inorganic/organic priority pollutants). They give other benefits over 
present analytical methods, such as portability and on-site operation, and the capac-
ity to measure pollutants in complicated matrices with minimal sample preparation 
(Salgado et al. 2011).

Traditional analytical methods employed for the environmental monitoring of 
pollutants include various chromatographic techniques, enzyme-linked immunosor-
bent assay, capillary electrophoresis, and surface-enhanced Raman scattering spec-
troscopy; although these methods have low limits of detection and good selectivity, 
they require expensive reagents, time-consuming sample pretreatment, expensive 
equipment, and professional technicians (Lang et al. 2016). Traditional methods are 
not effective for in situ measurements as in the case of accidental release of pesti-
cides or acute poisoning (and so on) and limit their application in on-site analysis, 
where rapid, miniaturized, and portable equipment is needed such as environmental 
monitoring biosensors (Guo et al. 2017). For example, harmful algal blooms (HABs) 
are global phenomena throughout the world’s oceans that have led to increased 
concerns in terms of human health, environmental preservation, and economic chal-
lenges. Six major marine biotoxin groups are associated with HABs. Biosensors 
have been developed to detect such biotoxins produced from algae and other micro-
organisms in the harvested fish/shellfish from oceans (McPartlin et al. 2016).

26.2.1  Components of a Biosensor

The working of any biosensor can be explained with the following example. In a 
biosensor, a particular “bio” element can recognize a particular analyte followed by 
the “sensor” element which can transduce the change of the biomolecule into a 
measurable signal in the form of electrical, optical, piezoelectric, calorimetric sig-
nals, and so on (Girigoswami and Akhtar 2019). A typical biosensor construct has 
three main features: a cognition element (enzyme, antibody, DNA, microorganisms, 
tissues, or even synthetic molecules), a signal-transducing structure (electrical, opti-
cal, piezoelectric, or thermal), and an amplification/processing element, the same 
models including also a permselective membrane which controls transport of ana-
lyte to the bioreceptor (Turdean 2011). The work of any biosensor can be explained 
as follows:

 1. Bioreceptors that bind the specific form to the sample: The bioreceptor must be 
highly specific for the purpose of the analysis, stable under normal storage con-
ditions, and show a low variation between assays.

 2. An electrochemical interface where specific biological processes occur giving 
rise to a signal: Most commonly, in a biosensor, a biorecognition phase (e.g., 
enzyme, antibody, receptor, and single-stranded DNA) interacts with the analyte 
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to produce a signal, which may be due to (i) a change in proton concentration, 
(ii) a release or uptake of gases such as ammonia or oxygen, (iii) a release or 
uptake of electrons, (iv) a light emission, absorption, or reflectance, (v) a heat 
emission, or (vi) a mass change and so forth.

 3. A transducer that converts the specific biochemical reaction in an electrical sig-
nal: The function of the transducer is to convert the signal into an appropriate 
measurable response (e.g., current, potential, or temperature change).

 4. A signal processor for converting the electronic signal into a meaningful physi-
cal parameter.

 5. A proper interface to display the results to the operator (Girigoswami and Akhtar 
2019; Pandit et al. 2016). The complete biosensor should be cheap, small, por-
table, and simple enough to be used by semiskilled operators (Di Lorenzo 2016).

26.2.2  Types of Biosensors

Biosensors were developed in the 1960s by the pioneers Clark and Lyons. Biosensors 
are categorized based on how the signals are transmitted from samples to different 
groups such as electrochemical, optical, thermal, physiometric, immunochemical, 
magnetic, enzyme, and DNA base (Mehrotra 2016).

For classifications, several approaches can be utilized:

 (a) Depending upon the used transduction principle, biosensors could be distrib-
uted into groups of electrochemical, mass-dependent, optical, radiation- 
sensitive, and so on (Thevenot et al. 2001).

 (b) Enzyme, nucleic acid, proteins, saccharides, oligonucleotides, ligands, etc., are 
the various sets of biosensors which could be acquired if bioelement is consid-
ered as the basis of categorization (Mohanty and Kougianos 2006).

 (c) Biosensors could be achieved based on DNA, toxins, glucose, mycotoxins, 
enzymes, or drugs according to the type of analyte to be detected (Turner 2000).

Biosensors are generally classified based on the bioreceptor element involved in 
the biological recognition process (enzymatic, nucleic acid-based, antibody-based, 
whole cell–based) or y the physicochemical transducer used (electrochemical, opti-
cal, acoustic, piezoelectric, thermal, colorimetric). This classification is described 
below.

26.2.2.1  Enzyme-Based Biosensors
Enzyme-based biosensors have emerged as a valuable technique for qualitative and 
quantitative analysis of a variety of target analytes in the biomedicine, environmen-
tal control, food quality control, and agricultural and pharmaceutical industries 
(Ispas et al. 2012). Enzymatic biosensors are used to measure food ingredients (sug-
ars, acids, amino acids, inorganic ions, alcohols, and carbohydrates), contaminants 
(pesticide residues and heavy metals), food additives (sorbitol, benzoic acid, 
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sulfites), and food freshness indicators (such as biogenic amines). Biosensors are 
also used in medical fields to detect glucose, urea, cholesterol, etc. (Economou et al. 
2017; Girigoswami and Akhtar 2019). The problem with biosensors based on enzy-
matic inhibition is that only a few enzymes are sensitive to heavy metals (Turdean 
2011). The first enzyme-based sensor was reported by Updike and Hicks in 1967 
(Mehrotra 2016). The majority of existing enzymatic biosensors are based on either 
electrochemical or optical transduction, while other types of transducers are less 
frequently used. The two most important classes of electrochemical transducers for 
biosensing are the amperometric and potentiometric/ion-selective field effect tran-
sistor devices (Economou et  al. 2017; Ispas et  al. 2012).The commonly used 
enzymes for this purpose are peroxidases, oxidoreductases, aminooxidases, poly-
phenol oxidases, L-lactate dehydrogenase, tyrosinase, and nitrate reductase 
(Economou et al. 2017).

Adsorption, covalent binding to solid surfaces and supported films, entrapment 
in polymer hydrogels, and microencapsulation have been used for a long period to 
immobilize enzymes (Turdean 2011). The choice of enzyme/analyte system is 
based on the fact that these toxic analytes inhibit normal enzyme function. In gen-
eral, the development of these biosensing systems relies on a quantitative measure-
ment of the enzyme activity before and after exposure to a target analyte. Typically, 
the percentage of inhibited enzyme (I%) that results after exposure to the inhibitor 
is quantitatively related to the inhibitor (i.e., analyte) concentration and the incuba-
tion time. Consequently, the residual enzyme activity is inversely related to the 
inhibitor concentration. Given that pollutant compounds selectively inhibit the 
activity of certain enzymes, their activity and the resulting product concentration 
are affected (Amine et al. 2006).

26.2.2.2  DNA-Based Biosensors
DNA biosensors, based on nucleic acid recognition methods, are being developed 
toward the assay of rapid, simple, and economical testing of genetic and infectious 
diseases. Moreover, the detection of specific DNA sequence is of significance in 
numerous areas including clinical, environmental, and food analysis (Kavita 2017). 
These sensors offer advantages as better compatibility with micro-fabrication tech-
nology and can be constructed with a broad spectrum of conducting/semiconduct-
ing matrices such as gold, platinum, conducting polymers, etc. (Uniyal and Sharma 
2018). Major types of DNA biosensors include electrochemical, optical, acoustic 
and piezoelectric ones (Zhai et al. 1997).

Nucleic acid biosensors are either based on the highly specific hybridization of 
complementary strands of DNA/RNA molecules or play the role of a highly specific 
receptor of biochemical/chemical species (DNA hybridization, SPR-DNA, electro-
chemical DNA, label-based or indirect detection, label-free or direct detection). The 
interaction is due to the formation of stable hydrogen bonds between the two nucleic 
acid strands. Nucleic acid biosensors are of major interest owing to their great 
promise for obtaining sequence-specific information in a faster, simpler, and cheaper 
manner compared to the traditional ones (Kavita 2017; Mehrotra 2016).
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26.2.2.3  Immunosensors
Immunosensors are affinity ligand-based biosensor solid-state devices in which the 
immunochemical reaction is coupled to a transducer. The fundamental basis of all 
immunosensors is the specificity of the molecular recognition of antigens by anti-
bodies to form a stable complex. Immunosensors can be categorized based on the 
detection principle applied. The main developments are electrochemical, optical, 
and microgravimetric immunosensors (Shofiul Azam et  al. 2014). Immunoassay 
technique performs a fast, simple, reliable, and sensitive analysis of different com-
pounds being applied in several areas of interest such as clinical analysis for medi-
cal diagnosis, as well as in environmental analysis, and food quality control 
(Balahura et al. 2019).

The most widely used immunosensors apply three different kinds of signal and 
transduction methods, following the formation of the complex antigen–antibody: 
optical, in which changes of the optical properties of the surrounding media are 
produced (e.g., color, luminescence, changes in refractive index); electrochemical, 
based on electrical signals (current, voltage differences, resistance); or piezoelec-
tric, which relies on the changes in mass detected by piezoelectric devices (Lara and 
Perez-Potti 2018; Ricci et al. 2012). Generally, the basic principles of immunosen-
sors with regard to the different transducer systems included electrochemical, mass 
detecting, heat detecting, and optical immunosensors (Morgan et al. 1996). However, 
the low chemical/physical stability limits the application of antibodies in harsh 
environments such as acids, organic solvents, and high temperature (Uniyal and 
Sharma 2018).

26.2.2.4  Whole-Cell-Based Biosensors
A whole-cell-based biosensor is an analytical device which integrates whole cells or 
organelles, which are responsible for its selectivity, with a physical transducer to 
generate a measurable signal proportional to the concentration of analytes (Turdean 
2011). The cells are cheaper, have longer active lifetime, and are less sensitive to 
inhibition, pH, and temperature variations than enzymes (Bagde and Borkar 2013). 
While entire cell-based biosensors are not as sensitive to environmental changes as 
molecular-based ones, these biosensors can be modified using simple genetic engi-
neering methods to detect a series of complex responses within a living cell (Gui 
et al. 2017). According to the classical definition, the whole cell must be integrated 
with a transducer (photometer, luminometer, charge-coupled device, and liquid 
scintillation counter) to function as a true biosensor (Turdean 2011). The main 
mechanism of a typical whole cell biosensor is the detection and amplification of a 
particular type of analyte into an electrical and optical signal via a processor. This 
process can be detected by immobilization and the use of living cells or bacteria as 
a unit providing molecular recognition elements. In contrast to a standard biosensor, 
whole-cell-based biosensors can detect a wider variety of substances, making them 
more susceptible to changes in a sample’s electrochemical state (Gui et al. 2017). 
Whole-cell biosensors often are less costly than the corresponding enzymatic bio-
sensors because some microorganisms can be cultivated and isolated rather easily, 
which is not the case for many enzymes. On the other side, they often lack the 
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specificity for the respective analytes. Whole-cell biosensors mostly are self- 
contained, do not require the addition of cofactors, and are the biorecognition ele-
ments of choice when the total amount of hazardous substances or pollutants is to 
be determined (Damborský et al. 2016).

Microbial biosensors are generally defined as analytical devices composed of a 
microorganism that detects a target substrate and converts the detected signal to a 
quantifiable response in a physiological, electrical, or biochemical manner. 
Microbial biosensor sensing and recognition mechanisms include different kinds of 
standard optical, electrochemical, and sensory-regulated systems. Cell behavior 
regulation or metabolic pathways can be detectable because microorganisms not 
only detect environmental variables including nutrients, temperature, and pH but 
also sense their own metabolic status (Lim et al. 2015a). Whole-cell bacterial bio-
sensors consist of genetically engineered bacteria containing a contaminant-sensing 
gene capable of detecting the presence of an analyte, coupled with a reporter gene 
capable of producing a detectable response (Strosnider 2003). For example, 
Pseudomonas diminuta or Flavobacterium sp. is usually used for organophospho-
rus hydrolase (direct organophosphate determination) isolation only in specialized 
laboratories.

The pigments present in the chlorophylls convert the light absorbed into energy 
(photons), and a small amount of energy is emitted as fluorescence. Currently, there 
are a few studies that utilize cyanobacteria for the development of whole-cell bio-
sensor. Algal biosensors are commonly used for the detection of heavy metals, bio-
cides, and BOD (Aisyah et al. 2014). An algal biosensor for toxicity assessment of 
estuarine waters is proposed by Campanella et al. in 2001. The sensor was obtained 
by coupling a suited algal bioreceptor (Cyanobacterium Spirulina subsalsa) to an 
amperometric gas diffusion electrode. The analytical device allows the monitoring 
of the evolution of photosynthetic O2 and the detection of alterations due to toxic 
effects caused by environmental pollutants (heavy metals, triazine herbicides, car-
bamate insecticides) present in the medium (Campanella et al. 2001).

26.2.2.5  Electrochemical Biosensors
Electrochemical biosensors combine the sensitivity of electroanalytical methods 
with the inherent bioselectivity of the biological component. The biological compo-
nent in the sensor recognizes its analyte resulting in a catalytic or binding event that 
ultimately produces an electrical signal monitored by a transducer that is propor-
tional to analyte concentration. The two classes of electrochemical biosensors are 
biocatalytic devices and affinity sensors (Ronkainen et al. 2010). The sensor sub-
strate usually contains three electrodes: a reference electrode, an active electrode, 
and a sink electrode. An auxiliary electrode may also be present as an ion source. 
The target analyte is involved in the reaction that takes place on the active electrode 
surface, and the ions produced create a potential which is subtracted from that of the 
reference electrode to give a signal (Bagde and Borkar 2013). The basic principle 
for this class of biosensors is that chemical reactions between immobilized biomol-
ecule and target analyte produce or consume ions or electrons, which affects mea-
surable electrical properties of the solution, such as electric current or potential. The 
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electrochemical signal produced is then used to relate quantitatively to the amount 
of analyte present in a sample solution. Potentiometry (which measures the poten-
tial of the biosensor electrode with respect to a reference electrode), amperometry 
(which measures the current produced during oxidation or reduction of electroac-
tive product or reactant), conductometry (which measures the change in conduc-
tance arising due to the biochemical reaction), and, more recently, electrochemical 
impedance spectroscopic measurements are among the electrochemical detection 
techniques often used in conjunction with immunoassay systems and immunosen-
sors, leading to their respective categories according to the type of signal measured 
(Sawant 2017; Touhami 2014). The types of electrochemical biosensors are as 
follows:

 (a) Amperometric biosensors are self-contained integrated devices based on the 
measurement of the current resulting from the oxidation or reduction of an elec-
troactive biological element providing specific quantitative analytical informa-
tion. Generally speaking, amperometric biosensors work by producing a current 
when a potential is applied between two electrodes and the analyte undergoes 
or is engaged in a redox reaction which can be followed by evaluating the cur-
rent in an electrochemical cell. The analyte being measured or the biomolecule 
involved with it changes its oxidation state at the electrode. The electron trans-
fer signal is then measured which is proportional to the amount of the redox- 
active species at the electrode (Sadeghi 2013). In wastewater oxygen monitoring, 
organophosphate detection, and phenol, cyanide, and heavy metal ion detec-
tion, amperometric biosensors have been commonly used (Tsopela et al. 2014). 
The disadvantages of these biosensors are they require a reference electrode, 
multiple membranes, or enzymes (Giannoudi et al. 2006).

 (b) A potentiometric biosensor can be described as a device that incorporates a 
biological sensing element linked to a potential electrochemical transducer. 
Potentiometric biosensors usually rely on a biochemical reaction leading to a 
simpler chemical specie and its subsequent electrochemical detection (NH4OH, 
CO2, pH, H2O2, etc.). The analytical signal generated by a potentiometric bio-
sensor is an electrical potential (Yunus et  al. 2013). Potentiometry is widely 
used for pH monitoring, and glass membrane electrodes are commonly used. 
However, glass fragility and size limitation impede in situ measurement in com-
plex configurations and mediums (Shitanda et al. 2009; Tsopela et al. 2014). 
The main types of potentiometric sensors are membrane-based ion-selective 
electrodes, screen-printed electrodes (SPE), ion-selective field effect transis-
tors, solid-state devices, and chemically modified electrodes (e.g., used as sen-
sitive layers of metal oxides or electrodeposited polymers) (Yunus et al. 2013). 
Although pH electrodes have been widely used for detection of pesticides in 
agriculture, other ion-selective electrodes, such as chloride ion-selective elec-
trode, have also generated major interest in wastewater treatment domain 
(Tsopela et al. 2014). The disadvantages of potentiometric biosensor are that 
they require reference electrode, have limited linear range, and are often pH- 
sensitive (Giannoudi et al. 2006).
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 (c) The conductometric biosensors are based on the fact that almost all enzymatic 
reactions involve either consumption or production of charged species and, 
therefore, lead to a global change in the ionic composition of the tested sample. 
Biosensors based on the conductometric principle present a number of advan-
tages: transducers are not light-sensitive, thin-film electrodes are suitable for 
miniaturization and large-scale production using inexpensive technology, they 
do not require any reference electrode, large spectrum of compounds of differ-
ent nature can be determined on the basis of various reactions and mechanisms, 
and the driving voltage can be sufficiently low to decrease significantly the 
power consumption (Jaffrezic-Renault and Dzyadevych 2008). Conductometric 
biosensors were used to detect heavy metal ions and pesticides for multiple 
applications in environmental monitoring (Tsopela et al. 2014).

 (d) Voltammetry is the most versatile technique in electrochemical analysis. 
Voltammetry belongs to a category of electroanalytical methods, through which 
information about an analyte is obtained by varying a potential and then mea-
suring the resulting current. It is, therefore, an amperometric technique 
(Touhami 2014). Differential pulse voltammetry was applied to screen the inhi-
bition effect of different concentrations of fisetin in the micromolar range. 
Voltammetry can detect multiple compounds, which have different peak poten-
tials, in a single electrochemical experiment (or scan), thus offering the simul-
taneous detection of multiple analytes (Grieshaber et al. 2008).

26.2.2.6  Optical Biosensors
Optical biosensors represent the most common type of biosensor. Optical biosen-
sors consist of a light source, as well as numerous optical components, to generate 
a light beam with specific characteristics and to beeline this light to a modulating 
agent, a modified sensing head along with a photodetector (Mehrotra 2016). Optical 
biosensors widely use the principle of surface plasmon resonance (SPR), biolumi-
nescent optical fiber, evanescent wave fluorescence, interferometry, ellipsometry, 
reflectrometric interference spectroscopy, and surface-enhanced Raman scattering 
(Girigoswami and Akhtar 2019). Optical detection is performed by taking advan-
tage of the interaction between the optical field and the biorecognition element. 
Optical biosensing can be widely divided into two general modes: label-free and 
label-based. In short, the detected signal is generated directly in a label-free mode 
by the interaction between the analyzed material and the transducer. In contrast, 
label-based sensing involves the use of a label, and the optical signal is then gener-
ated by a colorimetric, luminescent, or fluorescent method. The optical biosensor 
can use various biological materials, including nucleic acids, enzymes, antibodies, 
whole cells, and tissues, as biorecognition elements (Damborský et  al. 2016). 
Optical-based transduction systems encompass a wide variety of sensors based on 
the change in a property of light upon interaction of the recognition molecule and 
the target analyte. These properties include amplitude (adsorption), wavelength 
(fluorescence, surface plasmon), polarization, and time dependence (time-resolved 
fluorescence). Modern optical biosensors have distinct properties and advantages 
such as high sensitivity, easy adaptation to multiplexed systems, and portable opera-
tion capability (Biran and Walt 2002).
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The main components of fiber-optic biosensors (FOBs), which influence sensi-
tivity and detection limit, are light source, optical transmission medium (fiber, wave 
guide, etc.), immobilized biological recognition element (nucleic acid, enzymes, 
antibodies, or microbes), optical probes (such as fluorescent markers) for transduc-
tion, and an optical detection system. One of the main benefits of using optical 
biosensors in combination with optical fibers is that it allows long-distance sample 
assessment, and this has significant consequences for field monitoring (Narsaiah 
et al. 2012).

The fluorescent sensing technique is based on the measurement of fluorescence 
intensity which is proportional to the concentration of the target analyte. Fluorescent 
biosensors have been widely applied in analytical chemistry due to their easy con-
struction using standard molecular biology techniques. Fluorescent biosensors can 
probe ions, metabolites, and protein biomarkers with great sensitivity and can also 
report the presence, activity, or status of the target (serum, cell extracts) in complex 
solution (Su et al. 2011). There are three types of fluorescence biosensing. The first 
is direct sensing when a specific molecule is detected before and after a change or 
reaction takes place. The second form is indirect biosensing when a dye is added 
that will optically transduce the presence of a specific target molecule such as green 
fluorescent protein (GFP). A third type of fluorescence biosensing, called fluores-
cence energy transfer (FRET), can be used, and it generates a unique fluorescence 
signal (Touhami 2014). This type of biosensor is user-friendly – easy to engineer, 
manipulate, and transfer into cells. Single-chain FRET biosensor is another exam-
ple. They consist of a pair of AFPs, which are able to transfer fluorescence reso-
nance energy between them when brought close together. Different methods may be 
used to regulate changes in FRET signals based on intensity, ratio, or lifetime of 
AFPs (Mehrotra 2016).

Surface plasmon resonance (SPR) biosensors can directly sense biomolecular 
interactions without labeling, allowing real-time measurements of analyte concen-
tration and kinetics as well as thermodynamic binding parameters. SPR has been 
used in interaction studies and the screening of a variety of moieties, including 
proteins, carbohydrates, cells, and nucleic acids, leading to applications in areas 
such as military defense, clinical diagnostics, and pharmaceutics (Abdulhalim et al. 
2008). A practical SPR instrument combines an optical detector part, usually mea-
suring intensity shift, a sensor chip with a gold surface and a layer enabling ligand 
immobilization, which is integrated with a fluidics system enabling a flow-through 
operation (Damborský et al. 2016). Depending on the size of the target sample, four 
distinct assay formats were illustrated with SPR: direct assay, competitive assay, 
sandwich assay, and inhibition assay formats (Abdulhalim et al. 2008).

FOBs are based on the transmission of light along silica glass fiber or plastic opti-
cal fiber to the site of analysis. FOBs can be used in combination with different types 
of spectroscopic technique, e.g., absorption, fluorescence, phosphorescence, SPR, 
etc. (Touhami 2014). FOBs have the potential to detect bacteria in aerosolized form 
with greater speed and specificity than current microbiological methods. In 1999, 
Ferreira et al. demonstrated one of the first applications of FOBs to the detection of 
aerosolized bacteria, a common cause of nosocomial infections (Hayman 2008).
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Bioluminescent biosensors use enzyme-catalyzed exothermic biochemical reac-
tions to generate excited-state emitters based on the principle of light emission by 
viable bacteria in response to any chemical, biological, or physical changes in the 
analyte (Axelrod et al. 2016).

The simplest form of biosensor is the colorimetric test strips. Colorimetric tech-
niques have demonstrated excellent potential for cheap daily-life apps due to their 
apparent benefits of simplicity, low cost, and no need for any costly tools. Besides, 
it measures the change in color or optical density of the test sample upon a chemical 
reaction, and the color change of substrates can be observed easily by naked eyes 
(Aldewachi et al. 2018). Colorimetric biosensor for detection of toxicant in water 
can be used as an early warning sign to monitor water toxicity in the environment 
(Wasito et al. 2019).

26.2.2.7  Mass Spectrometry Biosensors (Piezoelectric Biosensors)
Mass spectrometry (MS) is an analytical technique that can be used by ionizing 
chemical compounds to assess the mass-to-charge ratio of charged particles, the 
particle mass, the elemental structure of a sample, and the chemical structures of 
molecules. MS is generally composed of three fundamental parts: the ionization 
source (a small sample is ionized, usually to cations, by loss of an electron), the 
mass analyzer (the ions are sorted and separated according to their mass and charge), 
and the detector (which registers the number of ions at each m/z value). The MS can 
be used to identify and, progressively, accurately quantify thousands of proteins 
from complicated samples, which is thought to have a wide effect on biology and 
medicine. But, in particular, the size of these systems is big, making them unfeasi-
ble for field applications requiring portable devices, particularly for biosensors 
(Sang et al. 2013).

26.2.2.8  Acoustic Biosensors
Acoustic wave sensors operate by monitoring the change in the physical proper-
ties of an acoustic wave in response to the measure. In acoustic detectors, piezo-
electric materials are frequently used to produce acoustic waves in strong metals 
using suitably tailored electrical areas and to detect the acoustic waves by the load 
produced by the mechanical deformation caused (Fogel et  al. 2016). Acoustic 
biosensors can be made with piezoelectric crystals such as quartz, lithium niobate, 
or lithium tantalate since they are robust and environmentally stable. In addition, 
such sensors are versatile and can detect, in principle, various biomolecules 
(Durmuş et al. 2015). The gravimetric nature of the signal will ensure that this 
will remain a routine method of characterizing layer–layer interactions in a label-
free fashion, which lends itself very well to investigation of biorecognition immo-
bilization, particularly for the design of other biosensors (Fogel et  al. 2016). 
Acoustic wave sensors, such as bulk or surface acoustic waves, can be classified 
according to the waves they produce. Bulk acoustic wave biosensors use either 
longitudinal or shear waves, although the latter are often preferred in the medium 
of interest to decrease acoustic radiation. Surface acoustic wave sensors have been 
used for years in measuring temperature, viscosity, pressure, concentration, 
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acceleration, and chemical/biological entities. They are also used for signal pro-
cessing activities and are environmentally delicate (Durmuş et al. 2015).

26.2.2.9  Thermal Biosensors
Thermal biosensors are based on measurement of the thermal changes occurring on 
biochemical recognition. Most of the biochemical reactions involve a change in 
enthalpy, and the heat changes can be measured by sensitive thermistors. Thermal 
biosensors were developed in the early 1970s and, by the end of the decade, were 
used for continuous measurements and enzyme reactor control. Another enhanced 
version of the thermal biosensor, the enzyme thermistor, has been created for ana-
lytical assays, and this instrument has been used to analyze roughly distinct analytes 
(Ramanathan et al. 1999). There has been less consideration for thermal biosensors. 
In addition, negative remarks such as complex thermostating, very weak sensitivity, 
or nonspecific heating impacts led to bad reputation. However, the enzyme thermis-
tor has enhanced our knowledge of immobilized multi-enzyme systems for signal 
amplification and the use of immobilized coenzymes and various immobilization 
techniques (Lammers and Scheper 1999). Enzyme thermistors are biosensors that 
use thermal resistors to measure the heat change caused by an enzymatic reaction. 
They combine the selectivity of enzymes with the sensitivity of biosensors and 
allow continuous analysis in a flow-injection mode. They can be used to monitor 
fermentation systems, biocatalysis, enzyme-catalyzed synthesis, and clinical and 
food technology (Sawant 2017). There are several advantages and disadvantages 
associated with the enzyme thermistors as an online biosensor (Ramanathan et al. 
1999). Thermal biosensors have numerous advantages: (a) thermistors have very 
excellent long-term stability due to no chemical interaction between transducer and 
sample; (b) thermistors are goods of inexpensive bulk; (c) different optical or ionic 
sample features do not disturb measurements; (d) thermal biosensors operate in 
some instances without complex and interference-prone multienzyme systems, e.g., 
analysis of disaccharides; and (e) multiple applications were discovered for thermal 
biosensors (Lammers and Scheper 1999; Ramanathan et al. 1999).

26.2.3  Biosensors Environmental Applications

Environmental safety is the key requirement of our well-being. Rapid urbanization 
and industrialization have greatly contributed several pollutants such as heavy met-
als, inorganic and organic compounds, pesticides, toxins, endocrine-disrupting hor-
mones, etc. to the environment. Such pollutants are becoming a significant global 
challenge for the safety of the environment and human health (Gui et al. 2017). The 
elevated cost and slow turnaround times typically associated with controlled pollut-
ant measurement obviously indicate a need for quick, portable, and cost-effective 
environmental screening and surveillance techniques (Andrea Medeiros Salgado 
et al. 2011).

In latest years, the development of biosensors for pollutant identification has 
gained significant attention. Such sensors offer a huge benefit in detecting the 
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minimal contaminant amount in complicated matrices, such as river, wastewater, 
and solid (Ejeian et  al. 2018). Biosensors can be used as environmental quality- 
monitoring tools in the assessment of biological/ecological quality or for the chemi-
cal monitoring of both inorganic and organic priority pollutants (Andrea Medeiros 
Salgado et al. 2011). Several biosensor developments for marine measurements of 
eutrophication, pesticides, anti-biofouling agents, polycyclic aromatic hydrocar-
bons (PAHs), endocrine disruptors, trace metals, organism detection, and algal tox-
ins have been reported in literature (Moro et  al. 2018). For example, the use of 
photosynthetic material and in particular the photosystem II (PSII) sub-membrane 
fraction as the biological receptor in a biosensor provides an excellent tool for the 
detection of toxic metal cations. Copper (Cu) has become a widespread pollutant 
due to its use as algaecide and fungicide in agriculture, the sensitivity of PSII to this 
metal could be exploited for the development of sensors and assays. Different pho-
tosynthetic biosensors are used to detect heavy metals (Rouillon et  al. 2006). 
Photoelectrochemical cell using thylakoid membranes (immobilized in a cross- 
linked albumin-glutaraldehyde matrix) isolated from spinach leaves was used to 
elaborate a phytotoxicity biosensor to detect PbCl2 and CdCli in solution. It is 
shown that the photocurrent generated in the cell is linearly correlated with the 
electron transport activity of the photosynthetic membranes. Measurements with tin 
biosensor are performed rapidly (< 5 min) and require only small volumes (80 μl) 
(Carpentier et al. 1991).

26.2.3.1  Biosensors in Agriculture
Agriculture, food, and natural resources are a part of those challenges like sustain-
ability, susceptibility, human health, and healthy life. Agricultural production also 
constrained by a number of abiotic and biotic factors like insect pests, diseases, and 
weeds causes substantial damage to agricultural production. These biosensors may 
have a huge impact on the precision farming methods (Sekhon 2014).

Due to the fast development of the population, the use of pesticides in agriculture 
has increased to satisfy the increasing demand for food (Martinazzo et al. 2018). 
Pesticides have become essential in modern agriculture, but pesticides can contami-
nate foods, soil, air, and water. Pesticides enter into the aquatic environment in 
several ways: through the use in agricultural, industrial, and municipal sewage when 
applied to the control of aquatic herbs and insects, by accident in warehouses, dur-
ing transport, or even by the improper disposal of packaging (Steffens et al. 2017). 
Pesticides may be classified according to the following criteria:

 (a) Target pests: herbicides (simazine, alachlor, cybutryne, atrazine, etc.), fungi-
cides (pentachlorobenzene, hexachlorobenzene, etc.), insecticides (chlorpyri-
fos, endosulfan, dichlorvos, etc.), and acaricides (dicofol)

 (b) Chemical nature of the active ingredients: pyrethroids, organochlorines, organo-
phosphates, etc.

 (c) Action spectra: selective and nonselective
 (d) Action mode: systemic and nonsystemic or contact

26 Biosensors and Nanobiosensors in Environmental Applications



528

 (e) Toxicity: extremely hazardous, highly hazardous, moderately hazardous, 
slightly hazardous, Unlikely to present acute hazard

 (f) Timing of application: before plantation, preemergence, and postemergence 
(Martinazzo et al. 2018)

In agriculture, the use of insecticides is strictly regulated by complicated and 
contradictory laws for each compound (Bucur et al. 2018). Biosensors can be used 
to measure the levels of pesticides and herbicide in the soil, food, air, and 
groundwater.

Parathion and chlorpyrifos (CP) are broad-spectrum organophosphate (OP) pes-
ticides having a wide range of applications against numerous insect species on sev-
eral crops. These contaminants are widely spread in different environmental 
matrices and are highly toxic causing human fatalities if exposed by any routes such 
as ingestion, skin adsorption, and inhalation (Salgado et  al. 2011). The toxicity 
mechanism of the neurotoxic insecticides is based on the inhibition of acetylcholin-
esterase (AChE; EC 3.1.1.7), and the reproduction of this inhibition in vitro can be 
used for multianalyte selective monitoring. Numerous biosensors are reported to be 
built for the identification of neurotoxic OP and CP based on cholinesterase inhibi-
tion that have been examined with regard to their overall characteristics, the param-
eters affecting the enzymatic inhibition. Strategies for the building of biosensors 
using different techniques of immobilization and the roles of different matrices 
were used. In the case of biosensors based on AChE, the use of chemometric tech-
niques is based on two facts: (a) the inhibition of AChE produced by insecticide 
mixtures is higher than the individual inhibition percentages produced by each indi-
vidual inhibitor and (b) the enzymes extracted from various organisms or geneti-
cally engineered have variable sensitivities for different insecticides (Bucur et al. 
2018).

Double-stranded calf thymus deoxyribonucleic acid (DNA biosensor) entrapped 
polypyrrole-polyvinyl sulfonate films fabricated onto indium-tin-oxide-coated glass 
plates have been used to detect CP. CP detection strategy was based on the change 
in voltammetric patterns of the modified electrode due to oxidation of guanine. 
These biosensing electrodes have a response time of 30  s, are stable for about 
5 months when stored in desiccated conditions at 25 °C, and can be used to ampero-
metrically detect chlorpyrifos and malathion (Prabhakar et al. 2007).

Various enzyme (AChE, organophosphorus hydrolase (OPH) enzymes, methyl 
parathion hydrolase (MPH), and organophosphorus acid anhydrolase (OPAA))-
based biosensors have been reported with slight modifications in immobilization 
method to ensure sensitive CP detection such as self-assembled monolayer-based, 
polymer-based, graphene-based, carbon nanotube-based, gel-based, and metal- and 
metal oxide-based biosensors (Uniyal and Sharma 2018Pogačnik and Franko (1999) 
used a photothermal sensor (based on thermal lens spectrometry) to determine OP 
and carbamate pesticides in spiked drinking water and fruit juices. Pesticide detec-
tion in a single sample by the biosensor consisting of the AChE (placed in a flow 
injection analysis (FIA)) was performed within 15 min (Pogačnik and Franko 1999). 
A solid-phase fluoroimmunoassay (labeled antiparaquat antibodies) combined with 
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an optical transducer chemically modified with an analyte derivative coupled to a 
FIA system was reported by Mallat et al. in 2001. The fluorescence signal was indi-
rectly related to the paraquat concentration in the sample. Although the immunosen-
sor achieved a lower paraquat detection limit of 0.06  mg  l−1 in river water (in 
15 min), the procedure was quite elaborate, requiring labeling of antiparaquat anti-
bodies (Mallat et al. 2001).

Crew et al. described a biosensor array based on six AChE for use in an auto-
mated instrument incorporating a neural network program (electrochemical analy-
sis using chronoamperometry) to detect the OPs (dichlorvos, malaoxon, 
chlorpyrifos-oxon, chlorpyrifos-methyl-oxon, chlorfenvinphos, and pirimiphos- 
methyl- oxon) in water and food samples. The biosensor arrays and automated 
instrument were evaluated in situ in field experiments where the instrument was 
successfully applied to the analysis of a range of environmental samples (Crew et al. 
2011). Istamboulie et al. is a bi-enzymatic amperometric sensor designed by immo-
bilizing both AChE (Drosophila melanogaster AChE) and phosphotriesterase in a 
polyvinylalcohol matrix. The biosensor was shown to be able to discriminate 
between chlorpyrifos and chlorfenvinphos inhibitions in real water samples 
(Istamboulie et al. 2009).

On the other side, different biosensors based on amperometric, potentiometric 
and fiber-optic AChE were recorded. Potentiometric AChE biosensors detect the pH 
change in the presence of OP pesticides arising from a reduction in the acid pro-
duced during the enzyme-catalyzed hydrolysis of the cholinesters. The amperomet-
ric AChE biosensors are based on measuring the shift in concentration of the 
thiocholine electroactive product generated as a consequence of acetylthiocholine 
hydrolysis (Songa and Okonkwo 2016). The fiber-optic biosensor monitors the pH 
change using a fluorescein label attached to AChE or dextran, or chemilumines-
cence (Mulchandani et al. 2001). Although these biosensors are highly sensitive, 
they often lack selectivity because they respond with any inhibitor of cholinesterase, 
and scientists investigate enzymes that are capable of direct and selective recogni-
tion and hydrolysis of ops such as OPH, MPH, and OPAA (Songa and Okonkwo 
2016). The enzyme was used to detect OPs in microbial structures as well as a puri-
fied enzyme using methods such as optical, acoustic, potentiometric, and ampero-
metric (Songa and Okonkwo 2016). A pH electrode modified with an immobilized 
purified OPH layer formed by cross-linking OPH with bovine serum albumin and 
glutaraldehyde with pH meter was the basic element of the potentiometric OPH 
biosensor, a measuring cell placed on a mixing magnetic stirrer and a chart recorder. 
Two distinct biosensors based on OPH were built. The first is based on measuring 
the decline in fluorescence intensity of isothiocyanate fluorescein, which is cova-
lently immobilized into the enzyme. Second, the assessment was based on the con-
nection between the hydrolyzed quantity of OP and the quantity of chromophoric 
product created by the catalyzed hydrolysis enzyme. Screen-printed thick-film car-
bon electrodes have been modified by amperometric OPH-enzyme which has been 
deposited on the electrode in Nafion film (Mulchandani et al. 2001).

A significant drawback is also the complicated, long-lasting, and costly opera-
tion conducted in dedicated microbiological laboratories for the extraction and 
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purification of OPH (to note that these enzymes are not accessible commercially). 
Another disadvantage which limits the application of the developed biosensors is 
the long response time (2–3 min) (Margarita et al. 2016).

The MPH-specific substrate, methyl parathion, is still widely used as a potent 
insecticide and acaricide in agriculture. The MPH catalytic hydrolysis of methyl 
parathion produces dimethyl phosphate and 4-nitrophenol with a high turnover rate, 
and the latter is an electroactive compound that makes the construction of an 
amperometric biosensor possible (Songa and Okonkwo 2016).

Among the most widespread pesticides is photosynthesis-inhibiting herbicides, 
such as atrazine, metribuzin, diuron, bromacil, ioxynil, and dinoseb. Chromatographic 
methods (high-performance liquid chromatography, gas chromatography, gas chro-
matography–mass spectrometry, and capillary electrophoresis) are the most com-
monly reliable and sensitive methods used to monitor the presence of herbicides. 
Nevertheless, the requirement for expensive equipment, organic solvents, and labo-
rious sample preparation prevents the use of chromatography for rapid screening 
and prescreening of a large number of samples (Scognamiglio et al. 2009).

They all belong to distinct families but have a prevalent mode of action: binding 
specifically to the chloroplast D1 protein with subsequent electron and proton flow 
disruption through photosystem II (Piletska et al. 2006). Several detection systems 
were tested in combination with D1 protein: electrochemical (amperometry and 
cyclic voltammetry) and optical (surface plasmon resonance and ellipsometry). The 
main mechanisms of Dl action are either on the ability of herbicides to replace the 
plastoquinone molecule in Dl protein and in this way change the electrochemical 
and optical properties of the system (Piletska et al. 2006). PSII is the supramolecu-
lar pigment–protein complex in the chloroplast (located in the thylakoid membrane 
of algae, cyanobacteria, and higher plants), which catalyzes the light-induced trans-
fer of electrons from water to plastoquinone (PQ) in a process that evolves oxygen. 
The PSII complex is also known to bind some groups of (photosynthetic) herbi-
cides, heavy metals, and other chemical substances that affect its activity (Giardi 
et al. 2001). Several groups of pesticides and herbicides are also known to bind the 
PSII complex. PSII drives electron transmission under illumination that is inhibited 
by herbicides. Approximately 30% of herbicides target the PSII plant. Thus, the 
immobilized and stabilized photosynthetic membrane will serve as the biomediator 
for the biosensor. Amperometric or optical systems can then translate and monitor 
the impact of compounds that change or inhibit photosynthetic activity, measured as 
oxygen evolution, electron transport, or fluorescence. One of the benefits of using 
PSII-based biosensors is the simplicity of biological transduction, which can be 
monitored directly without requiring additional markers or molecules for trans-
ducer. Another benefit of herbicide binding is its extreme susceptibility and selectiv-
ity (Giardi and Pace 2006). Rizzuto et al. in 2000 tested a biosensor consisting of 
PSII particles of the cyanobacterium Synechococcus elongatus for detection of her-
bicides in samples for three rivers. By washing the sensor, they were able to reuse it 
for several assays after removal of the toxic agent (Rizzuto et al. 2000). Naessens 
et al. (2000) detected a response to atrazine, simazine, and diuron using a Chlorella 
vulgaris biosensor. A fluorescence biosensor based on mutants resistant to various 
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herbicide subclasses was developed; it makes possible to distinguish between sub-
classes of herbicides (Rizzuto et al. 2000).

Biosensors based on photosynthetic enzymes have low selectivity; while some 
PSII-based biosensors can detect phenylurea and phenolic herbicides at ppb con-
centrations, other biosensors are much less susceptible in accordance with present 
European regulations on peak concentrations of pesticide residues in water. In addi-
tion, to this day, the amount of practical apps for surface and groundwater assess-
ment continues to be very restricted. Their performance recommends these 
biosensors as a “complete toxicity” screening tool and indicator. Photosynthetic 
biosensors were combined with other enzyme biosensors to broaden the purpose of 
the assessment and address the detection of various analytes (Bucur et al. 2018). 
Scognamiglio et al. (2013) reported a biosensor was based on microelectrode array 
technology and employed an array of biological recognition elements intimately 
integrated to an electrochemical–optical transduction system. The modification of 
gold microelectrode transducer surface allowed the simultaneous determination of 
selected target analytes by means of amperometric and fluorescence signal variation 
of immobilized enzymes and microorganisms able to recognize various food com-
ponents, like sugars and phenols, and contaminants, like pesticides (Scognamiglio 
et al. 2013).

As illustrated by the literature reports compiled in Table 26.1, the development 
of biosensors for pesticides is the subject of considerable interest, particularly in the 
areas of food and environment monitoring.

Plant diseases are responsible for major economic losses in the agricultural 
industry worldwide. Monitoring plant health and detecting pathogen early are 
essential to reduce disease spread and facilitate effective management practices. 
Although DNA-based and serological methods have revolutionized plant disease 
detection, they are not very reliable at asymptomatic stage, especially in case of 
pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, 
processing, and analysis. New technologies offer opportunity to assess disease with 
greater objectivity. The practical application of each traditional or innovative 
method depends on the cost and availability of instruments, specialization level 
(plant, field, farm, or agricultural district), rapidity of analysis, and the stage of dis-
ease at which detection is possible (Martinelli et  al. 2015). The first report of 
biosensor- based plant pathogen detection deals with epitope mapping of mAbs on 
tobacco mosaic virus (TMV) and cowpea mosaic virus (CPMV). Individual virus- 
specific mAbs were immobilized via an Fc-specific rabbit anti-mouse pAb on a 
CM5 surface after which viral solutions were injected and captured using a Biacore 
system. Boltoverts and coworkers used a plasmon SPR sensor and a pAb for the 
detection of TMV.  The authors tested different ways of immobilizing pAb and 
found protein A-based immobilization to be superior (Skottrup et al. 2008). A quartz 
crystal microbalance (QCM) immunosensor was developed for the detection of 
both Cymbidium mosaic virus and Odontoglossum ringspot ovirus by pre-coating 
the QCMs with virus-specific antibodies. The QCM was able to detect as low as 
1 ng each of the two orchid viruses (Eun et al. 2002). Skuttrop et al. describes a 
biosensor for detection of fungal spores using SPR and a mouse monoclonal 
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Table 26.1 Examples of biosensors developed for the detection of pesticides and herbicides

Bioreceptor Components Pesticide/herbicide References
AChEdma 
(incorporate six 
histidine tails.)

Nickel-modified thick-film 
electrodes

Paraoxon, dichlorvos, 
chlorpyrifos 
ethyl-oxon

Andreescu 
et al. (2001)

AChE and six 
mutants (B03; 
B03-23; B05; 
B06-23; B07, 
B08-23.29.44)

Amperometric- 
tetracyanoquinodimethane 
graphite layer and Ag/AgCl

Methamidophos Nunes et al. 
(2001)

dmAChE (E69Y 
Y71D), eeAChE

Amperometry-FIA, carbon 
pellet

Dichlorvos Sotiropoulou 
et al. (2005)

AChE (Dm, E69W 
mutant)

PVA-SbQ polymer- FIA Neurotoxic 
insecticides

Bucur et al. 
(2005)

AChE (B349 
mutant)

Magnetic microbeads Ni–His, 
polyvinyl alcohol-based

Chlorpyriphos-oxon, 
chlorfenvinphos

Istamboulie 
et al. (2007)

AChE Electrochemical, 
amperometric, gold screen 
printed electrode and 
cysteamine SAM, 
ferricyanide

Paraoxon Arduini et al. 
(2013)

AChE and choline 
oxidase (ChO)

Optical, colorimetric, iodine 
starch

Paraoxon Guo et al. 
(2017)

AChE Electrochemical, 
amperometric, graphite, and 
macroalgae Cladophoropsis 
membranous

Methyl parathion Nunes et al. 
(2014)

AChE Electrochemical, 
impedimetric carbon paste 
electrode, and reticulated 
sphere structures of NiCo2S4

Methyl parathion Peng et al. 
(2017)

AChE Electrochemical, 
impedimetric, interdigitated 
array microelectrodes with 
chitosan

Carbaryl Gong et al. 
(2014)

AChE Electrochemical, 
amperometric, porous glassy 
carbon electrode with 
graphene oxide network

Carbaryl Li et al. 
(2017a)

OPH Amperometric probe, carbon 
paste

Paraoxon, methyl 
parathion

Wang et al. 
(1999)

OPH Amperometric-FIA-thin-film 
gold

Paraoxon, methyl 
parathion

Wang et al. 
(2003)

OPH Amperometric/
potentiometric- FIA-thin-film 
gold

Paraoxon, parathion, 
dichlorvos, diazinon

Schöning 
et al. (2003)

Multienzyme OPH/
AChE

Amperometric- FIA, 
layer-by-layer multi walled 
CNT_DNA

Paraoxon, non-OP 
Pesticide carbaryl

Zhang et al. 
(2015)

(continued)
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Table 26.1 (continued)

Bioreceptor Components Pesticide/herbicide References
OPAA pH-FETb - silica gel- Ag/

AgCl
Diisopropyl 
fluorophosphate, 
paraoxon, demeton-S

Simonian 
et al. (2001)

PSII Synechococcus 
bigranulatus

Amperometry, gold 
screen-printed electrodes 
(AuSPE)

Diuron Maly et al. 
(2005)

PSII Synechococcus 
elongatus

Amperometry, dialysis 
membrane, Teflon membrane 
of the Clark oxygen electrode

Diuron, atrazine, 
simazine, ioxynil, 
bromoxynil, dinoseb

Koblizek et al. 
(1998)

PSII isolated from 
Synechococcus 
elongatus

Amperometry, SPE-graphite- 
working electrode, Ag/AgCl

Diuron, atrazine, 
simazine ioxynil, 
bromoxynil, dinoseb

Koblížek et al. 
(2002)

Thylakoid from 
Spinacia oleracea 
L., Senecio vulgaris 
mutant resistant to 
atrazine

Amperometry, SPE-graphite 
graphite-working electrode, 
Ag/AgCl, bovine serum 
albumin/glutaraldehyde

Diuron, atrazine, 
simazine terbuthyl- 
azine, 
diethylterbuthylazine

Touloupakis 
et al. (2005)

PSII-enriched 
thylakoid fractions 
from spinach

Colorimetry, quartz 
substrates, layer by layer, 
poly ethylenimine

Terbutryn Ventrella et al. 
(2011)

Mutant strains of 
Chlamydomonas 
reinhardtii with 
engineered D1 
protein

Fluorescence, silicon septum Atrazine prometryne 
terbuthyl-azine diuron 
linuron

Giardi et al. 
(2009)

“BBY”-crude PSII 
preparation from 
spinach leaves

Amperometry, AuSPE Diuron Bhalla et al. 
(2011)

Thylakoids from 
spinach

Biosolar cell, air-breathing 
platinum cathode

Atrazine bromacil 
diuron

Rasmussen 
and Minteer 
(2013)

Thylakoids from 
spinach

Amperometry, carbon-based 
SPE, one shot system

Diuron atrazine 
ioxynil

Bettazzi et al. 
(2007)

C. reinhardtii 
mutants

Fluorescence Atrazine, prometryn, 
diuron

Scognamiglio 
et al. (2009)

Pure PS II cores 
and BBY particles 
from spinach

Amperometry, SPE, 
mercaptopropionic acid

Atrazine, picric acid Bhalla and 
Zazubovich 
(2011)

PSII complex from 
Synechococcus 
elongatus f. 
thermalis

Amperometry Atrazine, isoproturon, 
diuron

Masojídek 
et al. (2011)

Thylakoids from 
spinach

Amperometry, SPE, laser 
printing

Diuron, linuron Touloupakis 
et al. (2012)

AChE/BChE whole 
cells of 
Chlamydomonas 
reinhardtii

Optical- amperometric, 
multi-array, SPE

Atrazine, diuron, 
paraoxon, chlorpyrifos

Scognamiglio 
et al. (2012)

(continued)
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antibody (Pst mAb8) for label-free detection of urediniospores from the model 
organism Puccinia striiformis f. sp. tritici. Assay conditions were optimized, and a 
detection limit of 3.1 × 105 urediniospores/ml was achieved (Skottrup et al. 2007). 
The antibody-based biosensors provide several advantages such as fast detection, 
improved sensitivity, real-time analysis, and potential for quantification. Antibody- 
based biosensors hold great value for agricultural plant pathogen detection (Fang 
and Ramasamy 2015). Zezza et al. used a Biacore X SPR sensor for detection of 
Fusarium culmorum DNA and found a detection limit of 0.06 pg DNA. The draw-
back of this system is that nucleotide extraction is needed prior to analysis, thereby 
making it less attractive for point-of-care analysis (Fang and Ramasamy 2015). But 
et al. designed four molecular beacons specific to the RNA-dependent RNA poly-
merase and coat protein genes of two orchid viruses, namely, Cymbidium mosaic 

Table 26.1 (continued)

Bioreceptor Components Pesticide/herbicide References
Whole cells of C. 
reinhardtii

Fluorescence-amperometric, 
micro-electrodes array,

Atrazine, prometryn, 
diuron

Scognamiglio 
et al. (2013)

Whole-cell E. coli 
ATCC 25922, 
Bacillus subtilis, S. 
cerevisiae

Electrochemical, entrapment 
in calcium alginate on a 
polyethylene terephthalate 
sheet

Ametryn, acephate Gao et al. 
(2016)

Synechocystis sp. 
PCC6803 
cyanobacteria

Photo-amperometry, platinum 
electrodes, poly(vinylalcohol) 
bearing styrylpyridinium 
groups,

Diuron Avramescu 
et al. (1999)

Thylakoids from 
mutant spinach 
plants

Fluorescence, silicio septum 
inside a series of flow cells

Urea, diamine, 
triazine, phenols

Giardi et al. 
(2005)

Chlorella mirabilis 
algae

Fluorescence Diuron, simazine 
irgarol

Moro et al. 
(2018)

Thylakoids from 
spinach

Biosolar cell, carbon paper 
electrodes

Diuron Rasmussen 
et al. (2014)

Anabaena 
variabilis

Amperometric, carbon felt 
electrode, p-benzoquinone, 
alginate

Atrazine, diuron Tucci et al. 
(2019)

C. reinhardtii 
(green algae)

Electrochemical, silicon chip, 
platinum, platinum black, 
tungsten/tungsten oxide, 
iridium oxide

Diuron Tsopela et al. 
(2014)

C. reinhardtii Optical, fluorescence, glass 
based microfluidic chip

Diuron, simazine, 
atrazine

Tahirbegi 
et al. (2017)

Dictyosphaerium 
chlorelloides strain 
Dc1M

Fiber-optics luminescent O2 
transducer, Adsorption on 
ImmobaSil™ porous silicone 
disks

Simazine Haigh-Flórez 
et al. (2014)

adm Drosophila melanogaster, ee Electric eel, be Bovine erythrocytes, he Human erythrocytes, 
FIA flow injection analysis
bField effect transistor

M. Salouti and F. Khadivi Derakhshan



535

virus (CymMV) and Odontoglossum ringspot virus (ORSV). CymMV and ORSV 
have been detected (as low as 0.5 ng of viral RNA in 100 mg orchid leaves) with 
specific oligonucleotide probes with a fluorescent moiety attached to one end of the 
DNA, while a quenching moiety is attached to the opposite end (Eun and Wong 
2000). The constraints of DNA-based biosensors incorporate the necessity for the 
blend of explicit DNA test, intensification of DNA, surprising expense (DNA-based 
subatomic reference points), and unsuitability for real-time detection (DNA-based 
piezoelectric biosensor) (Fang and Ramasamy 2015). Enzymatic biosensors could 
be used for plant pathogen identification if the target VOC could be obtained as a 
liquid sample. Past examinations have shown that several phytohormones are catab-
olized by redox enzymes and offer opportunities to use these enzymes to develop 
extremely selective enzyme-based biosensors for the detection of plant chemicals 
(Thomas et al. 1999). Many of the volatile organic compounds (VOCs) generated 
by infected plants are alcohols and aldehydes that can be catalyzed by alcohol dehy-
drogenase enzymes, such as cis-3-hexen-1-ol and trans-2-hexanal. These enzymes 
can therefore be used to develop biosensors for the identification of VOCs based on 
alcohol or aldehyde that are specific to the infection. Oxidases could also deactivate 
prevalent phytohormones such as auxin, cytokinins, and gibberellins that are indica-
tive of plant health in relation to these particular volatile organic compounds. 
Gibberellin is deactivated by GA-2-oxidases providing the potential for plant dis-
ease prediction for gibberellin detection. Although enzyme-based biosensors usu-
ally provide high sensitivity and specificity for the detection, stability of enzymes is 
of major concern. In addition, the enzyme catalysis varies with factors such as tem-
perature and pH which compromise the accuracy of the biosensor (Fang and 
Ramasamy 2015; Kulagina et  al. 1999; Thomas et  al. 1999). Biophotonic-based 
sensors have three strengths: (a) they can effectively detect early stages of infection, 
(b) results are rapid and presented directly in the orchard, and (c) they could be 
highly integrated with other systems, providing good spatialization. The major 
weakness is low availability (Martinelli et al. 2015).

26.2.3.2  Environmental Monitoring
In the past, nutrients, heavy metals, bacteria, and priority pollutants (compounds 
such as industrial chemicals, pesticides, steroids, hormones, and known health 
impacts of petroleum hydrocarbons) were the focus of water and soil pollution. 
These compounds are discovered in small levels (microgram per liter and nanogram 
per liter) but with potential damaging effects on human health and the surrounding 
environment. Because they are not biodegradable and can accumulate in organisms, 
heavy metals (lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni)) are toxic 
and carcinogenic, even at low levels. Hormones (natural and synthetic) are derived 
from national effluents, which can trigger some impacts in humans, such as sperm 
decrease, enhanced breast, testicular and prostate cancer, and endometriosis 
(Steffens et al. 2017). Requirements for applying most traditional analytical meth-
ods to analyze environmental pollutants are often a major impediment to their fre-
quent implementation. The need for disposable devices or instruments for 
environmental applications has motivated the creation of fresh techniques and more 
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appropriate methodologies, particularly for environmental monitoring. In this con-
text, biosensors appear as a suitable alternative or as a complementary analytical 
tool (Salgado et al. 2011). In this section we provide an overview of biosensor sys-
tems for environmental applications, and in the following sections, we describe the 
various biosensors that have been developed for environmental monitoring, consid-
ering the pollutants and analysis that are usually mentioned in the literature.

The most frequently observed heavy metal contaminants in the setting are Pb, 
chromium, Zn, Hg, Cd, and copper (Cu). Biosensors are being created and used in 
environmental samples to monitor heavy metal levels. In addition, their biological 
foundation makes them suitable for measuring heavy metal toxicologically, while 
standard methods can only measure levels (Salgado et al. 2011). For the inhibitive 
determination of trace Hg in electrochemical biosensor based on enzyme, a large 
number of enzymes have been used: horseradish peroxidase (HRP), urease, glu-
cose oxidase, alcohol oxidase, glycerol 3-phosphate oxidase, and invertase (Amine 
et al. 2006).

Urease has been entrapped in both PVC and cellulose triacetate layers on the 
surface of pH-sensitive iridium oxide electrodes and used for determination of Hg 
(Amine et al. 2006). Other enzymes such as invertase and HRP are used for detec-
tion of phenyl Hg and methyl Hg, respectively (Han et al. 2001; Mohammadi et al. 
2005). Moreover, the whole-cell biosensor detection Hg makes use of lux genes 
from Vibrio fischeri. This lux gene is fused with a Hg-inducible mergene and is 
introduced in Escherichia coli (CM2624) (Gayathri and Braganca 2009).

Cd ion could be tracked by enzyme sensors since several enzymes such as urease 
and BChE were discovered to be inhibited (Amine et al. 2006). The binding of Cd 
to urease and the consequent changes of the enzyme structure are the basis of the 
SPR biosensing system reported by Lee and Russel in 2003. To facilitate the forma-
tion of a SAM of the urease on gold-coated glass SPR sensor disks, the enzyme has 
been modified with N-succinimidyl 3-(2-pyridyldithiol) propionate and which is 
detected Cd ion concentration in the range of 0–10 mg l−1(Lee and Russell 2003). 
Mourzina et al. (2004) immobilized urease and BChE on the insulator surface of a 
laser-scanned semiconductor transducer (LSST). This biosensor was then tested and 
compared for the development of an enzyme-based light-addressed potentiometric 
sensor (LAPS). The enzyme LAP sensors with photocurable membranes demon-
strate a degree of sensitivity close to the theoretical value and working ranges of 
6.3·10−5–1.1·10−2 and 1·10−4–1·10−1  mol  L−1 urea for acrylamide- and acrylate- 
based membrane matrices, respectively, and 2.5·10−4–2·10−1 mol L−1 BChE for an 
acrylamide membrane matrix (Mourzina et  al. 2004). A screen-printed three- 
electrode amperometric biosensor based on urease and the glutamic dehydrogenase 
system was developed by Rodriguez et al. and applied to the screening of heavy 
metals (Cu, Hg, Cd, and Pb) in water and soil samples. Immobilization of urease on 
the surface of SPE was performed by entrapment in alginate gel and adsorption on 
the electrode in a nafion film. Analysis of water and soil samples with the developed 
nafion-based sensor produced inhibition on urease activity according to their metal 
contents (Rodriguez et al. 2004). Recently, an array-based urease optical biosensor 
based on the sol–gel (urease and AChE) immobilization has been used for heavy 
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metal determination in tap and river water. The analytical ranges of Cd(II), Cu(II), 
and Hg(II) were between 10 nM and 100 Mm (Tsai and Doong 2005).

Whole-cell biosensors showed promising results in detecting various pollutants 
in the areas that were affected. These reactions may be due to interactions between 
living cells in the biosensors with organic substances such as xenobiotics, heavy 
metals, changes in pH, or radiation in water and soil. For the identification of Cu, 
Zn, Ag, Hg, Cd, Pb, etc., with the resistance characteristics to these metals, some of 
the bacterial structures have been assessed as feasible. Some biosensors were built 
by fusing the resistance mechanism genes with the genes responsible for expressing 
bioluminescent proteins such as luciferin to detect metals in samples (Wan Jusoh 
and Ling Shing 2014). Due to their quick reaction, high growth rate, and low price, 
bacteria are preferable as sensing components. Bacterial biosensors are dependent 
on promoter–reporter expression systems consisting of a transcription regulator and 
promoter or operator and an open reading frame for measurable activity proteins 
(Arias-Barreiro et al. 2010; Tecon and Van der Meer 2008). Filamentous fungi and 
yeast in the setting occupy a broad variety of niches, and it would be sensible to 
expect them to react jointly to a broad range of substrates. The use of yeast can 
provide distinct benefits over other eukaryotic cells: (a) ease of cultivation and 
manipulation, (b) open to distinct methods of transducer (Farré and Barceló 2009). 
For instance, naturally occurring filamentous fungi such as Mycena citricolor and 
Armillaria mellea have demonstrated their potential by producing luminescent light 
in evaluating environmental toxicity. They demonstrated a strong reaction to Cu, 
Zn, and pesticides (Hollis et al. 2000). Table 26.2 summarizes the characteristics of 
various biosensors for heavy metal ion and organic waste sensing.

BOD or BOD5 is a parameter widely used to indicate the amount of biodegrad-
able organic material in water (Andrea Medeiros Salgado et al. 2011). The BOD 
assessment is an empirical test in which the oxygen demand in analyzed water sam-
ples is determined by a standardized laboratory procedure. The BOD test is also 
widely used for assessing the biodegradation efficiency in wastewater purification 
processes at wastewater treatment facilities. The traditional BOD test has some 
advantages; it is a universal way of testing most wastewater samples and water bod-
ies; it also requires no expensive equipment. However, in terms of analytical time, 
the test has serious limitations. This traditional technique is largely devalued by its 
low responsiveness. Operational analysis is made possible by developing BOD 
assessment methods based on the use of biosensor analyzers (Reshetilov et  al. 
2013). Most BOD sensors rely on the measurement of the bacterial respiration rate 
in close proximity to a transducer, commonly of the Clark type (an amperometric 
sensor developed by Clark in 1956 for measuring dissolved oxygen) (Andrea 
Medeiros Salgado et al. 2011). The receptor element of the biosensor may contain 
one or several cultures. Therefore, the oxidation of organic compounds by the cul-
ture occurring in the receptor element will always be lower than by activated sludge 
cultures (Reshetilov et al. 2013).

Most BOD sensors described are film-type microbial sensors based on whole 
cells and some BOD sensor based on bioreactor-type sensor systems. The principle 
of film-type microbial system operation is based on the measurement of oxygen 
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Table 26.2 Examples of biosensors developed for the detection of heavy metals

Bioreceptor Transduction method Analyte References
Urease Optical, SAM on the 

AuSPR
Cd Lee and 

Russell (2003)
Urease Optical fiber, 

immobilization in Ultra 
Bond membrane

Hg, Ag, Cu, Ni(II), 
Zn, Co, Pb

Kuswandi 
(2003)

Urease Optical, alginate beads Hg Prakash et al. 
(2008)

Urease Electrochemical, 
amperometric, three- 
electrode screen-printed

Hg, As, Cd Pal et al. 
(2009)

Urease Conductometric, sol gel, 
cellulose swab

Cr Nepomuscene 
et al. (2007)

Alcohol oxidase (AlOx) 
and horseradish 
peroxidase (HRP)

Optical, 
chemiluminescence

Hg Deshpande 
et al. (2010)

Alkaline phosphatase 
(ALP)

Conductometry; Au/
ALP-glutaraldehyde- 
bovine serum 
albumin-glycerol

Cd, Zn, Co, Ni, Pb Berezhetskyy 
et al. (2008)

ALP Amperometry; SPE/ALP, 
sol-gel/chitosan film; Ag/
AgCl

Hg, Cd, Ag, Zn, Cu Shyuan et al. 
(2008)

Luciferase Optical, luminescent, 
silicon photomultiplier

Cu Lukyanenko 
et al. (2019)

Sol–gel-immobilized- 
urease

Electrochemical, 
conductometric, 
thick-film interdigitated 
electrode

Cd, Cu, Pb Ilangovan 
et al. (2006)

Single-stranded DNA Electrochemical, 
voltammetric, Au 
electrode

Cd Wong et al. 
(2007)

DNA (direct metal 
binding DNA sequence)

Optical, fluorescent Cd Zhu et al. 
(2017)

DNA/exonuclease III 
(triple-helix molecular 
switch)

Optical, fluorescent, 
label-free

As Pan et al. 
(2018)

Aptamers Optical, fluorescence, 
micro-spin column

Pb Chen et al. 
(2018)

Aptamer (T−Hg2+−T) Optical, fluorescence, 
magnetic beads

Hg Sun et al. 
(2018)

Aptamer (double-stranded 
DNA)

Optical, fluorescence, 
SYBR green I

Cd Zhou et al. 
(2019)

DNA hybrid system Optical, fluorescence, 
metal organic framework 
(UiO-66-NH2)

Hg Wu et al. 
(2016)

Guanine-rich sequence 
and N-methyl 
mesoporphyrin

Optical, fluorescence Hg, Pb Zhu et al. 
(2018)

(continued)
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Table 26.2 (continued)

Bioreceptor Transduction method Analyte References
Nucleic acids 
(NH2-(CH2)6- 
GTACAAACAA- 3)

Optical, evanescent-wave 
optical fiber, optical fiber 
platform

Hg Long et al. 
(2013b)

DNA probes with eight 
T-T mismatches

Optical, luminescence, 
Ru(phen)(2)(dppz)](2+)

Hg Zhang et al. 
(2010)

DNAzymes Optical, fluorescence, 
carboxylated magnetic 
beads

Pb Ravikumar 
et al. (2017)

DNAzyme Optical, fluorescence, 
graphene oxide,

Pb Zhao et al. 
(2011)

Cell-based Shewanella 
oneidensis MR-1

Electrochemical, 
solid-state thin-film Ag/
AgCl

3,5-dichlorophenol 
(DCP)

Yang et al. 
(2016)

Whole cell, E.coli Colorimetric, calcium 
alginate beads, Prussian 
blue

Hg, Pb, Cd, As, Wasito et al. 
(2019)

Whole-cell E.coli 
RBE23-17, Cd-responsive 
promoter

Electrochemical Cd Biran et al. 
(2000)

Whole-cell E. coli ATCC 
25922, Bacillus subtilis, 
S. cerevisiae

Electrochemical, 
entrapment in calcium 
alginate on a 
polyethylene 
terephthalate sheet

Cd, Cu, Phenol Gao et al. 
(2016)

Pseudomonas sp. B4251, 
Bacillus cereus B4368, 
and E. coli 1257

Electrochemical, 
electrolyte-dielectric- 
semiconductor, and an 
ion-sensitive layer of 
silicon nitride

Zn, Co, Cu Gruzina et al. 
(2007)

Shewanella oneidensis 
(transformed with 
plasmid-encoded mtrB 
integrated with arsenic- 
inducible promoter)

Bioelectrochemical, 
biofilm formation

As Webster et al. 
(2014)

Whole-cell E. coli 
TV1061 (luxCDABE 
integrated with heat-shock 
grpE promoter)

Optical, 
bioluminescence, 
calcium alginate matrix

Hg, formaldehyde 
and ammonium 
hydroxide

Axelrod et al. 
(2016)

Whole-cell E. coli DH5α 
(plasmids pHK194 and 
pHK200 expressing GFP)

Optical, fluorescence, 
chemostat-like 
microfluidic platform

Cd, Pb Kim et al. 
(2015)

Whole-cell E. coli 
(CadC-controlled T7 
RNA transcription 
systems)

Optical, fluorescence, 
microbial culture in a 
microfluidic device 
immobilized

As, Cd, Pb, Zn Kim et al. 
(2016)

(continued)
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Table 26.2 (continued)

Bioreceptor Transduction method Analyte References
Whole-cell S. cerevisiae 
(purine synthesis)

Colorimetric, entrapment 
in alginate beads 
modification of AMP 
pathway

Cu Vopálenská 
et al. (2015)

Whole-cell E. coli (lacZ 
with arsenic-responsive 
promoter)

Colorimetric, change in 
pH

As de Mora et al. 
(2011)

Whole-cell Deinococcus 
radiodurans (lacZ, 
Cd-inducible 
genesDR_0659, crtI)

Colorimetric, red 
pigment

Cd Joe et al. 
(2012)

Whole-cell E. coli (zraP 
and cusC promoters were 
fused to reporter proteins, 
GFP and RFP)

Optical, fluorescence, 
monitoring bacterial 
system

Zn, Cu Ravikumar 
et al. (2012)

Pseudomonas 
fluorescens10586s 
pUCD607 with c the lux 
insertion on a plasmid

Optical, bioluminescence 
(luminometer)

Zn, Cu, Cd, Ni McGrath et al. 
(1999)

Alcaligenes eutrophus 
(AE1239), pMOL 90 + 
Tn4431/luxCDABE

Optical, bioluminescence Cu Leth et al. 
(2002)

Tetraselmis chui Electrochemical, 
voltammetric non-living 
biomass in carbon paste 
electrodes

Cu Alpat et al. 
(2007)

Rhodotorula 
mucilaginosa

Electrochemical, 
voltammetric carbon 
paste electrode, 
differential pulse 
stripping voltammetry

Cu Yüce et al. 
(2010b)

Rhizopus arrhizus Electrochemical, 
voltammetric carbon 
paste electrode, 
differential pulse 
stripping voltammetry

Pb Yüce et al. 
(2010a)

Aptamers Optical, evanescent-wave 
optical fiber, optical fiber 
surface

Bisphenol A Yildirim et al. 
(2014)

Whole-cell E. coli 
(plasmid pColD-C23, cda 
promoter, luxAB)

Optical, bioluminescence Benzene, toluene, 
xylene

Whole-cell (toluene- 
benzene utilization (tbu), 
promoter PtbuA1, GFP)

Optical, fluorescence Benzene, toluene, 
ethylbenzene

Stiner and 
Halverson 
(2002)

Whole-cell E. coli DH5α 
(xylR binds a subset of 
toluene-like compounds 
from the TOL plasmid, 
reporter geneLuc)

Optical, 
bioluminescence,

Benzene, toluene, 
xylene

Willardson 
et al. (1998)
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consumption by microorganisms immobilized on the surface of the transducer, and 
bioreactor-type sensor systems have found wide use at wastewater treatment facili-
ties for continuous control of the extent of purification. A feature of film-type micro-
bial biosensors is that there is a layer of microbial film forming the biological 
recognition element between the porous (most commonly, cellulose) membrane and 
the gas-permeable membrane of the oxygen electrode. The oxidation of organic 
compounds contained in the sample consumes part of the oxygen that occurs in the 
layer of immobilized microorganisms. Oxygen remaining penetrates the gas- 
permeable Teflon membrane and is reduced in the oxygen electrode cathode. The 
current strength in the system is directly proportional to the electrode’s reduced 
oxygen magnitude. The equilibrium (background) current is recorded after a bal-
ance is established between the diffusion of oxygen to the layer of immobilized 
microorganisms and the endogenous respiration rate of immobilized microorgan-
isms. Other BOD biosensors include optical (Pang et  al. 2007; Sakaguchi et  al. 
2007), biofuel cell (Chang et al. 2004; Moon et al. 2004), and calorimetric BOD 
biosensor (Reshetilov et al. 2013). In 1977, Karube developed the first BOD sensor 
which consisted of a dissolved oxygen electrode and a membrane impregnated with 
omnivorous yeast, Trichosporon cutaneum. By using luminescent bacteria, a photo-
luminescence BOD biosensor has been developed and produced by Ishikawa 
Seisakusho and has been developed by Yang et al. for on-site monitoring. However, 
responses of these sensors were influenced by the limited amount of dissolved oxy-
gen in the sample solution. To overcome this problem a new type of BOD sensor 
using Pseudomonas fluorescens Biovar V, with ferricyanide as mediator was uti-
lised. To determine low-BOD samples (below 5  mg  L−1) such as river water, or 
secondary effluents from industry or sewerage plants, highly sensitive BOD sensors 
have been developed using Pseudomonas putida. This type of sensor has also been 
used with an optical fiber system, using an optode (Nakamura and Karube 2003). 
The cyanobacteria Anabaena torulosa entrapped on a cellulose membrane and fixed 
into a cylindrical well connected to a fluorescence spectrometer with OF indicated 
the presence of heavy metals (Cu, Pb, and Cd), 2,4-dichlorophenoxyacetate, and 
chlorpyrifos. When the organisms are exposed to toxicants, major photosynthetic 
transport pathways are inhibited. Thus, the fluorescence emission will increase as a 
way to diffuse the energy, which has been absorbed. The presence of the toxicants 
was indicated by the change of fluorescence emission, before and after the exposure 
(Pospíšilová et al. 2015). Table 26.3 summarizes the characteristics of various bio-
sensors for BOD sensing. In conclusion, biosensor BOD analyzers are robust, sim-
ple, and inexpensive analytical tools that can be used with traditional BOD 
determination methods to successfully control aqueous ecosystems.

The important areas of H2O2 application include industrial (pharmaceutical, 
food, clinical) and environmental analyses. Its use as an antibacterial agent added to 
milk, and the environmental need to avoid halogenated substances for disinfection 
purposes makes H2O2 an important substance in the food and beverage industry. It 
plays an important role in natural oxidation processes as it is found in air, solids, and 
water (Chen et al. 2012; Rouillon et al. 2006). Various materials such as Prussian 
blue (PB), heme proteins, carbon nanotubes (CNTs), and transition metals have 
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been used for the construction of H2O2 sensors. PB also possesses good catalytic 
specificity to H2O2 due to the polycrystal structure of PB that can allow only small 
molecules to penetrate its lattice. Screen printing technology and enzyme-based 
electrochemical biosensor were also used to manufacture PB-based biosensors. 
Other metal hexacyanoferrate (Cu, Ni, Co, chromium, vanadium, ruthenium, and 
manganese)-based sensors have similar or lower electrocatalytic reduction capabili-
ties for H2O2 but have more electrochemical stability over a wide range of pH com-
pared to PB-based electrodes (Chen et al. 2012; Giannoudi et al. 2006).

The most efficient practice of producing electrochemical H2O2 biosensors based 
on redox enzyme–protein (heme proteins) is to establish direct transmission of 
electrons between the protein and the electrode. The enzymes that are used inten-
sively in development of hydrogen peroxide sensors are horseradish peroxidase 
(HRP), catalase (CAT), hemoglobin (Hb), microperoxidase (MP), myoglobin 
(Mb), and cytochrome c (Cyt c). Various strategies such as silica sol–gel, conduct-
ing polymer ionic liquid, self-assembly monolayer, and layer-by-layer assembly 
have been successfully proved to be effective in building this hydrogen peroxide 
sensor. (Chen et al. 2012; Giannoudi et al. 2006). A variety of compounds have 

Table 26.3 Examples of biosensors developed for BOD detection

Bioreceptor Transduction method Sample References
Microbial Immobilized on a nylon membrane Beverage 

wastewater
Dhall et al. 
(2008)

Yeast Microbial membrane on an oxygen 
electrode; inorganic Al2O3 sol–gel 
matrix

River waters Chen et al. 
(2002)

Activated sludge Electrochemical, glucose glutamic 
acid, MB, chitosan-bovine serum 
albumin Cryogel

Wastewater Niyomdecha 
et al. (2017)

Activated sludge and 
Bacillus subtilis

Optical, luminescence, oxygen sensing 
film tris(4,7-diphenyl-1,10- 
phenanthroline) ruthenium(II) dye 
(Ru(dpp), glass sample

Artificial 
wastewater

Kwok et al. 
(2005)

Mixed-culture 
16S-rRNA gene 
(including 
Geobacter)

Electrochemical, biofilm formation Wastewater, 
non-aerating 
conditions

Yamashita 
et al. (2016)

Chromobacterium 
violaceum R1

Electrochemical, amperometric, 
entrapment in calcium alginate 
(enclosure with polyamide 
membrane), ferricyanide

Wastewater, 
real water

Khor et al. 
(2015)

S. cerevisiae – 
(sequential injection 
analysis)

Optical, chemiluminescence, 
ferricyanide, quinone

Ionic liquids Costa et al. 
(2018)

S. cerevisiae Optical, spectrophotometry, 
2,6-dichlorophenolindophenol, 
ferricyanide

Sea and river 
water

Nakamura 
et al. (2007)

Klebsiella 
pneumoniae cells,

Amperometric, ferricyanide mediator Wastewater Bonetto et al. 
(2011)
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been used as mediators for the detection of hydrogen peroxide. These compounds 
are phenothiazine molecules such as methylene blue, methylene green, Meldola’s 
Blue (MDB), thionine, toluidine blue, ferrocene carboxylic acid, aminoethyl fer-
rocene, and phenothiazines. Mediators are able to shuttle electron between elec-
trodes and enzymes in several configurations such as soluble matrices, associated 
in monolayer or multilayer, or incorporated in porous matrices (Chen et al. 2012; 
Rouillon et al. 2006).

26.2.3.3  Microbial Biosensors for Environmental Detection
Microbial and cellular biosensors play an important role among the analytical meth-
ods used to monitor the environment. In ecotoxicity testing, microbial biosensors 
have numerous advantages. Microorganisms are generally cheaper for cultivation 
than higher organisms and can be produced in large lots, subjected to strict quality 
control procedures, and dried for storage freezing. They react quickly to toxic com-
pounds and indicate the bioavailability of compounds in a manner that is impossible 
for chemical analysis. (1) The use of engineered variants of microorganisms, like 
algae and bacteria, and macromolecules, like enzymes and proteins, represents a 
crucial approach in multi-response biosensing system design (Scognamiglio et al. 
2013).

Many of the bacterial biosensors developed in environmental samples for the 
analysis of heavy metals make use of specific genes, such as biological receptors, 
responsible for bacterial resistance to these elements. Bacterial strains resistant to a 
number of metals such as Zn, Cu, tin, Ag, Hg, and Co have been isolated as possible 
biological receptors. These genes’ metal resistance is caused only when the element 
hits the cytoplasm of the bacteria. The specificity of this resistance mechanism adds 
to the building of metal detection cell biosensors from the fusion of these resistance 
genes with genes, such as luciferin, which encode bioluminescent proteins (Salgado 
et  al. 2011). On the other hand, most BOD sensors are described as whole-cell 
microbial sensor and luminescent bacterial optical sensor. Whole cells of bacteria 
(Pseudomonas putida, Bacillus polymyxa, B. subtilis) or yeasts (S. cerevisiae, 
Hansenula anomala, Candida, Trichosporon, Arxula adeninivorans, Serratia marc-
escens) are known to be used as biocatalysts in BOD sensors (Reshetilov et  al. 
2013).

Immobilization is a technique that allows the microorganism (special bacteria) to 
be used in the long term without reducing its ability as a bioreceptor. In most cases, 
microbial cells on the physicochemical transducer surface are retained by simple 
adsorption, i.e., cells are mostly placed on a porous membrane by hydrogel suction 
or water retention, a polyvinyl alcohol aqueous solution, or polycarbonyl sulfonate 
(Reshetilov et al. 2013). Three methods can be used to immobilize microorganisms 
in a biosensor: (a) covalent binding on a support, (b) physical adsorption on a 
membrane- like cellulose (hydrogen bonds, van der Waals links, etc.), and (c) encap-
sulation or inclusion of the microorganisms in a reticulated neutral and biocompat-
ible aqueous matrix (Charrier et  al. 2011b). Moreover, trapping method is one 
method which can be used for cell immobilization. In this method, the bacteria will 
be in a trap in the form of a matrix polymer, for example, in the form of a bead. 
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Polymers commonly used are agarose, acrylamide, chitosan, and alginate (Wasito 
et al. 2019). Immobilization of whole-cell microbial in sol–gel matrices is a promis-
ing modern trend of making biorecognition elements (Chen et al. 2002). For ana-
lyzed samples, these components are extremely permeable and have excellent 
strength and stability as well as low toxicity for immobilized microorganisms 
(Reshetilov et al. 2013).

In recent times, microbe-based sensors have been used in the diagnosis of heavy 
metals and toxicity in soils and water samples (Kanjana 2017). In chromate whole- 
cell biosensor and Hg whole-cell biosensors, a number of promoter regions have 
been identified as sensing elements, sequenced as luxCDABE reporter system, and 
cloned as promoter cassettes of the Alcaligenes eutrophus (Gayathri and Braganca 
2009).

As far as biological identification components are concerned, algae are often 
used for trace identification of environmental toxic compounds in biochemistry 
because they are susceptible to modifications in their surroundings caused by the 
presence of toxicants and can therefore provide data on the toxic effects of pollut-
ants on living organisms. In the biosensor industry, microalgae and photosynthetic 
cyanobacteria are used as they provide data on pollution concentrations based on 
changes in photosynthetic or metabolic activity. Monitoring of species such as reac-
tive oxygen species, H2O2 (the concentration of which is related to potential stress 
exerted on algae), and pH-related ions that participate in algae’s metabolism and 
photosynthesis can indicate the presence of herbicides, heavy metals, pathogens, 
and pollutants (Tsopela et al. 2014).

Two types of amperometric environmental sensors incorporating whole-cell 
eukaryotic algae (Chlorella, Scenedesmus, Selenastrum) were investigated for use 
in monitoring pollution of aquatic systems by Pandard et al. in 1993. Both sensors 
permitted photosynthetic events to be monitored, one by evaluating the decrease 
rate of a redox mediator by the illuminated biocatalyst and the other by tracking its 
output of photosynthetic oxygen using a semi-protected oxygen electrode. The oxy-
gen electrode-based biosensor provided good sensitivity with long operating life 
and proved to be a better approach than the mediator system for monitoring algal 
biocatalysts for the detection of Hg (nitrate salt) or Cu (sulfate salt) showing toxic-
ity to photosynthetic organisms, but this method took a long time (Giardi et  al. 
2001; Koblizek et al. 1998). Durrieu and Tran-Minh developed an optical biosensor 
which is constructed to detect Pb and Cd from inhibition of AP present on the exter-
nal membrane of C. vulgaris microalgae. The microalgal cells are immobilized on 
removable membranes placed in front of the tip of an optical fiber bundle inside a 
homemade microcell. C. vulgaris was cultivated in the laboratory, and its AP activ-
ity is strongly inhibited in the presence of heavy metals (Durrieu and Tran-Minh 
2002). On the other hand, a biosorption-based biosensor using Tetraselmis chui 
microalgae was developed for the voltammetric measurement of Cu2+ in real sam-
ple. Cu2+ was accumulated, at open circuit, on the algal biosensor, and the voltam-
metric measurements were carried out by differential pulse cathodic stripping 
voltammetry (Alpat et al. 2007).
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The relatively poor sensitivity and selectivity of microbial biosensors are still 
critical issues, and this can be attributed to the nature of biological sensing mecha-
nisms. Another intrinsic limitation of microbial biosensors is the slow response 
caused by decelerated diffusion of substrates and products through the cell wall 
(Lim et al. 2015b). Gravimetric, nuclear-based, electromagnetic, tensiometer-based, 
and hygrometric methods have been developed for measuring soil moisture content 
in the field (Dwevedi et al. 2017). In the next subparagraphs, the newly developed 
biosensors based on these recognition elements will be described.

26.2.3.3.1 In-site and Online Monitoring
Efficient tools for online and in situ monitoring of environmental pollutants are 
required to provide early warning systems. Currently, a large spectrum of microbial 
biosensors have been developed that enable the monitoring of pollutants by measur-
ing light, fluorescence, color, or electric current (Paitan et al. 2003). Biosensors for 
determining pollutants have been shown to be delicate, low cost, and readily 
adjusted for internet surveillance. Furthermore, biosensors using whole cells are of 
concern in ecotoxicity because many toxics target these bioreceptors. Online bio-
sensors that use bioluminescent bacteria for measuring have also been developed 
with an objective of detecting pollutants, and it has been possible to observe a tech-
nological approach (Charrier et al. 2011a).

The promoter-based whole-cell biosensor can identify nanomolar levels of cad-
mium in water, seawater, and soil samples within minutes and can be used for online 
and in situ tracking continuously. This electrochemical biosensor has a cadmium- 
responsive promoter from Escherichia coli fused to a promoter-less lacZ gene, 
which was monitored using an electrochemical assay of β-galactosidase activity 
(Biran et al. 2000). In addition to Cd, this biosensor can detect the presence of a 
variety of heavy metals such as Hg, Zn, and Cu (Paitan et al. 2003).

Some biosensing systems for herbicide detection use isolated chloroplasts or 
intact cells of algae to measure changes in chlorophyll fluorescence. Unicellular 
microalgal strains, Selenastrum, Desmodesmus, and Chlorella, with a cell size of 
3–10 mm, have frequently been used in bioassays (estimating the toxicity of liquid 
sample surface waters, soil extracts, etc.) due to their fast growth (a doubling time 
of several hours) in liquid growth media, where tested samples can be easily added. 
Biosensors, based on PSII complex, have been used for the detection of photosyn-
thetic herbicides within the last two decades (Masojídek et al. 2011). These reagent-
less biosensors are compatible for in-field use or online monitoring. An optical 
whole-cell biosensor using Chlorella vulgaris microalgae entrapped on a quartz 
microfiber filter and placed in a five-membrane homemade flow cell was designed 
by Védrine et al. (2003) for determination of herbicides as aquatic contaminants. C. 
vulgaris cell biosensor designed for monitoring herbicides in drinking water was 
developed by Rodriguez et al. (2002). It has also been shown that the reaction cen-
ters of photosynthetic microorganisms bind herbicide and could possibly be used as 
part of sensing equipment based on Langmuir–Blodgett monolayer movies or lipo-
some-forming artificial membrane. Even isolated Dl protein has been embedded on 
a working electrode for the potentiometric monitoring of the specific interaction 
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between a protein and an herbicide. A fluorescence biosensor based on mutants 
resistant to various herbicide subclasses was developed; it makes possible to distin-
guish between subclasses of herbicides (Giardi et al. 2001; Giardi and Pace 2006; 
Piletska et al. 2006).

Multicell devices incorporating various photosynthetic biorecognition elements 
are increasingly tested with real samples and in in-field conditions (Bucur et  al. 
2018). For example, BOD sensors based on the original principle, using T. cuta-
neum, have been developed by Yang et al. for on-site monitoring (Nakamura and 
Karube 2003). A lab-on-chip device for water toxicity analysis consists in a portable 
system for onsite detection composed of three-electrode electrochemical micro-
cells, integrated on a fluidic platform constructed on a glass substrate by Tsopela 
et al. in 2016. The basic detection principle consisted in electrochemically monitor-
ing disturbances in metabolic photosynthetic activities of algae induced by the pres-
ence of Diuron herbicide. Superior sensitivity results (limit of detection of around 
0.1 μM) were obtained with an organic light-emitting diode, having an emission 
spectrum adapted to algal absorption spectrum and assembled on the final system 
(Tsopela et al. 2016).

26.2.3.3.2 Reporter Genes
A reporter gene is fused to another gene or a promoter so that the expression of that 
gene or promoter may be assayed. The product of the reporter gene is typically more 
stable and easier to detect than the gene to which it is fused (Charrier et al. 2011b). 
A reporter gene encodes a mechanism that generates a cellular reaction that can be 
detected. It determines the biosensor’s sensitivity and detection limits. For the 
reporter gene to be used in a biosensor, specific features are required. The gene 
needs an expression or activity that can be measured using a straightforward assay, 
reflecting the quantity of chemical or physical change. The biosensor must also be 
free from any gene expression or activity comparable to the gene expression or 
activity being evaluated. Ensuring that the biosensor is free from any comparable 
gene expression or activity protects the reaction from being misinterpreted and 
ensures that the measurement represents the required chemical or physical change 
directly (Strosnider 2003). Some bacterial biosensors (such as whole cell) are 
designed by combining a reporter gene that produces a signal with a contaminant- 
sensing element that reacts to chemical or physical changes, such as exposure to a 
particular analyte. The sensing element stimulates the reporter gene through a bio-
chemical pathway in the cell when the biosensor is subjected to such a shift. The 
reporter gene then generates a measurable reaction, such as emitting visible light, 
indicating the degree of chemical or physical change (Strosnider 2003). The most 
commonly used reporter gene is the luc operon from the firefly Photinus pyralis. 
There are some commonly used genes of reporters that have been shown to be effec-
tively incorporated into whole biosensors based on cells. These include lux (bacte-
rial luciferase), luc (firefly luciferase), lacZ (β-galactosidase), and GFP. GFP is a 
GFP reporter gene coding and autofluorescence, so it does not need to emit a sub-
stratum or an ATP. But with this reporter, the intrinsic fluorescence of certain host 
cells generally increases the background fluorescence, and this can cause signal 
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interference. Another reporter, β-galactosidase (lacZ), a well-characterized bacterial 
enzyme, was also frequently used in molecular biology as it is an excellent monitor 
of transfection efficiency. LacZ has some distinctive detection benefits, using either 
colorimetric or fluorescent techniques, as it is easy and quick to use with a sample. 
Fujimoto and coworkers have created a novel reporter gene, crtA, which is account-
able for carotenoid synthesis, in another reporter scheme. The crtA-based entire 
cell-based biosensors, when applied to a sample, change the color of the culture 
media from yellow to red without adding a supporting substratum and are therefore 
considered a good choice for rapid detection in emergency situations (Gui et  al. 
2017). For example, the bacterial biosensors for the detection of arsenic are engi-
neered by pairing a luc operon reporter gene from firefly P. pyralis encoding the 
enzyme luciferase, which produces a detectable cellular response and a contaminant- 
sensing gene that detects the contaminant and in turn triggers the reporter gene 
(Gayathri and Braganca 2009).

Biosensors based on fusion of responsive promoters to reporter genes are sensi-
tive and specific. Several such biosensors were constructed that can detect heavy 
metals and hydrocarbons. The use of reporters whose activity can be monitored 
electrochemically offers several advantages: monitoring is rapid and can be per-
formed online and in situ with high sensitivity and reproducibility, monitoring in 
crude or turbid solutions, simultaneous measurements of several samples and com-
patibility with other types of reporter genes using color, and light of fluorescence; 
moreover, the sensitivity of electrochemical measurements can also be used for 
amperometric determination of target bacteria in water (Paitan et al. 2003).

26.2.3.3.3 Luminescent Bacteria and Fluorescence Microbial Biosensors
Currently, the most commonly used reporter proteins for optical detection in micro-
bial systems are GFP for fluorescence and bacterial luciferase for luminescence. 
Bioluminescence is the light produced by some organisms mediated by the enzyme 
luciferase (luciferase genes luxCDABE) or a photoprotein mediated by an oxidation 
reaction (Charrier et al. 2011b).

Like bioluminescent reporter lux gene, gfp gene coding for the GFP has also 
been widely applied as reporters and fused to the host gene that allows reporter 
activity to be examined in individual cells. Because GFP is very stable and not 
known to be generated by microorganisms that are native to terrestrial habits, it 
offers excellent benefit and flexibility in assessing reporter activity. GFP as a 
reporter protein’s main disadvantage is the delay between protein manufacturing 
and protein fluorescence (Su et  al. 2011). Fluorescent proteins may continue to 
accumulate for many hours and enable detection even after cell death due to their 
elevated stability. Furthermore, GFP does not involve a substrate or ATP, thus reduc-
ing the cell burden (Woutersen et al. 2011).

Most lux strains have sensitivities varying from milligrams per liter to micro-
grams per liter with detection limits, generally with greater sensitivities in 
compound- specific strains. Although multiple molecular manipulations may 
enhance the sensitivity of lux strains, most reported detection thresholds are still too 
large to identify concentrations of individual contaminants as they happen in 
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European drinking water today. However, lux strains sensing specific toxic effects 
have the advantage of being able to respond to mixtures of contaminants inducing 
the same effect and thus could be used as a sensor for the sum effect, including the 
effect of compounds that are as yet not identified by chemical analysis (Woutersen 
et al. 2011). Biosensors using microorganisms such as luminescent and florescent 
bacteria have short life cycles and can provide an excellent response to pollution or 
toxins that can be used within the scope of health research related to ecosystem or 
environment (Wasito et  al. 2019). Assays using bioluminescent bacteria can be 
divided into two groups: constituent expression systems and inducible expression 
systems. Normally, bacteria with constitutive expression have an elevated lumines-
cence expression that reduces under toxic circumstances. They are generally natural 
bioluminescent bacteria, such as Aliivibrio fischeri, and are often used to detect 
acute cytotoxicity because the reaction is not specific to compounds. By compari-
son, inducible devices have a small baseline luminescence that improves after expo-
sure to particular compounds (“lights on”). Both promoter and reporter genes can be 
inserted from other bacteria in these systems to provide an ideal reaction to interest-
ing compounds (Woutersen et al. 2011).

On the other hand, luminescent bacteria are used as optical BOD sensor to mea-
sure BOD for water and wastewater. Optical BOD detectors can be designed using 
two methods: by using luminescent bacteria in the sensor’s biorecognition compo-
nent and by using a luminescent biomaterial assistance. In the former situation, the 
principle of measurement is based on the relationship between the luminescence 
intensity generated by bacteria and the cell assimilation of organic compounds from 
samples of wastewater. The optical biosensors of the luminescent bacteria have a 
high sensitivity and therefore allow the determination of low BOD values. An 
important advantage of such systems is that they enable microprinted circuit boards, 
microsensors, and on-chip biosensors (Reshetilov et al. 2013).

The potential for detection of heavy metals with fluorescent and luminescent 
bacterial biosensors based on promoter fusion to a reporter gene has been dem-
onstrated (Paitan et al. 2003). Maderova et al. measured bioavailability and tox-
icity of Zn in soil (laboratory soil amended and field samples) using the 
luminescence marked constitutively expressed Escherichia coli HB101 
(pUCD607) and the Zn-specific E. coli MG1655 (pZNT-lux) sensors. Zn is a 
metal ubiquitous in the environment and essential to biological systems. Elevated 
concentrations of Zn in soil, however, can pose a threat to biota (Maderova and 
Paton 2013). A Zn-specific fluorescent biosensor, Pseudomonas putida X4 
(pczcR3GFP), was constructed by fusing a promoterless enhanced GFP gene 
with the czcR3 promoter in the chromosome of P. putida X4 by Liu et al. in 2012. 
In water extracts of four different soils amended with Zn, the reporter strain 
detected about 90% of the Zn content of the samples. The authors concluded that 
the biosensor constitutes an alternative system for the convenient evaluation of 
Zn toxicity in the environment (Liu et al. 2012).

Biosensor strategies for pesticide detection in marine ecosystems are mainly 
based on the use of enzymes, antibodies, or microorganisms, such as bacteria (Moro 
et  al. 2018). A whole-cell luminescent cyanobacterial (Synechocystis sp. strain 
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PCC6803) biosensor which responds to a range of compounds, including different 
herbicide types and nonherbicide toxicants, has been developed by Shao et al. in 
2002. The full-cell luminescent cyanobacterial biosensor has been shown to be eas-
ier, quicker, more precise, and more economical than other techniques for identify-
ing herbicide toxicity, such as photosystem-based whole-cell and tissue biosensors 
(Shao et al. 2002). Frense et al. (1998) reported the use of an optical biosensor that 
incorporated the green alga Scenedesmus subspicatus living cell (immobilized on 
filter paper and covered with alginate) for detection of herbicides in wastewater. The 
measuring principle was the determination of chlorophyll fluorescence by fiber- 
optic electronic tools depending on the load of water samples with toxic compounds 
(Frense et al. 1998).

26.2.4  Advantages of Biosensors

The greatest advantage is the ability of biosensors to detect the bioavailable fraction 
of the contaminant, as opposed to the total concentration. Knowing the bioavailable 
fraction allows a more accurate assessment of the site and the potential risks 
involved. Biosensors create a clearer picture by providing physiologically relevant 
data in response to a contaminant. This response, usually luminescence, is quick 
and easy to measure, resulting in real-time data. Biosensors are also quick, cheaper, 
and less labor-intensive than other traditional techniques such as atomic absorption 
spectrometry, inductively coupled nuclear electron spectrometry, and sequential 
extraction. The results obtained from biosensors are compatible with and compara-
ble to chemical analysis, while being free of chemical extractions and analytical 
procedures. Biosensors can also be more sensitive than chemical methods (Kaushal 
and Wani 2017; Strosnider 2003).

26.3  Nanobiosensor

Nanotechnology refers to a nanoscale technology, which has promising applica-
tions in day-to-day life. This technology emphasizes the implications of individ-
ual atoms or molecules or submicron dimensions in terms of their applications to 
physical, chemical, and biological systems and eventually their integration into 
larger complex systems (Dehnad et  al. 2015; Khadivi Derakhshan et  al. 2012; 
Patel et al. 2014). According to the different components, engineered nanomateri-
als can be generally grouped into four types: (a) carbon-based materials such as 
CNTs and fullerenes; (b) metal-based materials such as Au, Ag, metal oxides, and 
quantum dots (QD) like TiO2, ZnO, and Fe2O3; (c) dendrimers or nanosized poly-
mers; and (d) composites combining nanoparticles with other nanoparticles and/
or larger bulk- type materials (He and Feng 2017). When biosensors are investi-
gated using nanoscale, such devices are then call nanobiosensors. With the pro-
gression in sciences, nanobiosensors with superbly dedicated miniature sensors 
with high miniaturization were designed and developed in the twenty-first century 
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based on the ideas of nanotechnology (Rai et al. 2012). The use of nanotechnol-
ogy and nanoscience in biosensors has led to the production and introduction of 
mechanisms of new signal converter that greatly increases the sensitivity of their 
identification. With the increasing advances in nanoscience and the ability to pro-
duce very small electrodes, the production of new types of nanobiosensors is pos-
sible (Mohammadi- Aloucheh et al. 2018). By miniaturizing such devices and/or 
using nanomaterials as sensing layers, the sensitivity and performance of nano-
biosensors can be increased. Nanobiosensors work on the size of the nanoscale 
and can trace analytes with fast and accurate biological identification. (Steffens 
et al. 2017). Ideally, nanobiosensors should possess the following characteristics: 
(a) high stability, (b) specificity for particular analytes of interest in the intended 
environment of use, (c) fast dynamics, and (d) accuracy and reproducibility over 
the useful analytical range. Recent advances in nanotechnology have led to the 
development of nanoscale sensors that have exquisite sensitivity and versatility 
(Kwak et al. 2017). By adding biomaterials and converters that work with nano-
materials, we can identify new, high-quality biosensors that can be used to iden-
tify biomolecules, and these biosensors can detect environmental contamination 
at high speeds and high levels of pollution (Mohammadi-Aloucheh et al. 2018).

Engineered nanomaterials are materials between 1 and 100 nm and exist as met-
alloids, metallic oxides, nonmetals, and carbon nanomaterials and as functionalized 
dendrimers, liposomes, and QD. Their small size, large surface area, and high reac-
tivity have enabled their use as bactericides/fungicides and nanofertilizers. 
Nanoparticles can be designed as biosensors for plant disease diagnostics and as 
delivery vehicles for genetic material, probes, and agrichemicals (Wade Elmer and 
White 2018).

26.3.1  Constituents of Nanobiosensors

In terms of the conceptual and fundamental mode of operation, these components 
are, namely, bioreceptor, transducer, and detector. Bioreceptor (antibodies, proteins, 
enzymes, immunological molecules, and so on) is that component of a biosensor 
which serves as a template for the material to be detected. The second component is 
the transducer system. The main function of this device is to convert the interaction 
of bioanalyte and its corresponding bioreceptor into an electrical form. The third 
component is the detector system. This receives the electrical signal from the trans-
ducer component and amplifies it suitably so that the corresponding response can be 
read and studied properly (Malik et al. 2013).

Nanobiosensors are classified based on thefollowing: (a) method used to identify 
required interactions, (b) type of interaction between the sensor component and the 
analyte element, (c) transduction system, and (d) nature of compound recognition 
(biological or nonbiological) (Steffens et al. 2017).
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26.3.2  Types of Nanobiosensors

Nanobiosensor is a compact analytical device/unit and called as modified version of 
a biosensor in which the immobilized layer of biological material like proteins, 
DNA/RNA, viruses, cellular lipid bilayers, microbial cells, and others are in contact 
with the sensor that analyzes the biological signal and converts it into electrical 
signal (Kanjana 2017).

26.3.2.1  Mechanical Nanobiosensors
The biomolecular interaction is measured using mechanical nanoscale biosensors. 
Based on the modifications in surface stress produced by the relationships between 
the probe and target molecules on their surfaces, chemical vapors at very small lev-
els can be identified. The magnitude of the shift in surface stress relies on the sort of 
interaction that occurs, including the forces of hydrogen bonding, electrostatic, van 
der Waals, etc. There are three mechanisms for transforming the recognition of the 
interest analyte into the cantilever’s micromechanical bending: (a) bending in 
response to a surface stress, (b) bending in response to a mass loading, and (c) bend-
ing as a result of a temperature change (Choudhary et al. 2015). The advantage of 
nano-mechanical devices is that they are highly mass-sensitive. The more the size 
decreases, the more the mass reduces, and hence the addition of bound analyte mol-
ecules results in an increased relative change to the main mass (Rai et al. 2012). 
Because these nanobiosensors are instruments that allow particular molecules to be 
immobilized, they also provide a concentrated and specific recognition to avoid 
cross-connections that are not specific. They also have the advantage of detecting 
multiple analytes and can be reused depending on the design of the nanobiosensor 
and mimic organic environments (Steffens et al. 2017).

26.3.2.2  Optical Nanobiosensors
Optical nanobiosensors are commonly used for the detection of pathogen based on 
fluorescence and surface plasmon resonance (SPR). Generally speaking, this 
method is based on tracking the shift in the optical signal between the functional-
ized pathogen and nanomaterial. The biggest benefit of this method is that with 
negligible cell disruption, the sensor can integrate into the deeper portion of the cell 
(Kabariya and Ramani 2017).

Optical transducers are mostly appealing to develop a powerful, user-friendly, 
portable, and cost-effective device (Kabariya and Ramani 2017).

26.3.2.3  Nanowire Nanobiosensors
One of the nanobiosensor classes is nanowire biosensors. Nanowires are cylindrical 
arrangements having lengths in the order of few micrometers to centimeters and 
diameters within the nanorange. Nanowires are the one-dimensional nanostructures 
with very good electron transport properties (Malik et al. 2013). The nanowire con-
sists of sensing elements and is coated by biomolecules like DNA, proteins, 
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polypeptides, filamentous bacteriophages, and fibrin (Kabariya and Ramani 2017). 
This is a hybrid of two molecules that are highly susceptible to external signals: 
single-stranded DNA (which serves as the “sensor”) and a nanotube of carbon 
which serves as the transmitter. Using chemical or biological molecular ligands, the 
surface properties of nanowires can be easily modified, making them independent 
analysts. This translates the chemical binding event on their surface into an intense 
sensitivity, real-time, and quantitative fashion shift in the conductance of the nanow-
ire (Choudhary et al. 2015).

26.3.2.4  Electronic Nanobiosensors
Electronic nanobiosensors work by electronically detecting a target DNA binding 
which actually forms a bridge on a microchip between two electrically separated 
wires. Each chip contains multiple sensors that can be addressed independently 
with capture samples from the same or different organisms for different target DNA 
molecules (Choudhary et al. 2015).

26.3.2.5  Nanoshell Biosensors
Due to the specific compound coated into the core, i.e., shell or outer coating layer, 
the shell shape is spherical or round cores, and the shell thickness is a few nanome-
ters (Kabariya and Ramani 2017).

26.3.3  Environmental Application of Nanobiosensors

For environmental applications, the main advantages offered by nanobiosensors over 
conventional analytical techniques are the possibility of portability, miniaturization, 
and work. Nanobiosensors can be used as environmental quality monitoring tools in 
the assessment of biological/ecological quality or for the chemical monitoring of 
both inorganic and organic priority pollutants (Andrea Medeiros Salgado et al. 2011).

The main advantages offered by nanobiosensors are the possibility of continuous 
monitoring, work on-site, and the ability to measure pollutants in complex matrices 
with minimal sample. Nanobiosensors can be effectively used for sensing a wide 
variety of fertilizers, herbicide, pesticide, insecticide, pathogens, moisture, soil, pH, 
and their controlled use can support sustainable agriculture for enhancing crop pro-
ductivity (Sekhon 2014). Furthermore, crop productivity is daily endangered by 
pests, weeds, and pathogens that influence the relative farm economy; therefore, 
plants need to be protected by proper action. In this sense, nanostructured biosen-
sors can contribute to intelligent farming not only by tracking soil conditions and 
plant development across large fields but also by identifying infectious diseases in 
crops before noticeable symptoms happen (Antonacci et  al. 2018).The 
nanotechnology- based biosensors are at the early stage of development.

26.3.3.1  Role of Nanobiosensors in Agriculture
Using nanobiosensors, farmers can monitor environmental conditions closely for 
plant growth and protection. Nanobiosensors can be effectively used in agriculture 
for sensing a wide variety of fertilizers, herbicides, pesticides, pathogen, moisture, 
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soil pH, and others for enhancing the crop productivity (Kanjana 2017). In parallel 
with typical chromatography, nanobiosensors were employed as an alternative for 
pesticide measurement by virtue of its high selectivity, sensitivity, excellent detec-
tion, and reliability as well as its rapidity. Nanobiosensors showed great capabilities 
on the recognition of biomolecular interactions through changes in their surface 
stress or mass (Álvarez et al. 2016; Wade Elmer and White 2018). Nanosensors can 
be connected to a GPS and spread across the field to monitor disease, plant health, 
soil conditions, and potential issues such as depletion of soil nutrients and water 
deficit in real time. Such data and signals include the optimum times for planting 
and harvesting plants and the time and amount of water, fertilizers, pesticides, her-
bicides, and other treatments required considering the particular physiology, pathol-
ogy, and environmental circumstances of the plant (Kanjana 2017).

At present, several methods for plant pathogen detection are available, but some 
of them are time-consuming like traditional culture-based methods; others are spe-
cific of reactions, such as the high cost of nucleic-acid-based PCR methods (time- 
consuming and unable to detect early infections), the ELISA (time-consuming and 
low potential for spatialization), DNA fingerprinting, and amplification of the inter-
nal transcribed spacer region from rRNA gene increase specificity of identification. 
Intelligent nanobiosensors can assist, identify, and treat nutrient deficiencies in soils 
and plants by providing macro- and micronutrients in accordance with the growing 
season’s temporal and spatial nutrient demands (Duhan et al. 2017; Kanjana 2017).
The detection technology based in nanobiosensor is a novel microbial detection that 
starts to revolutionize agriculture (Álvarez et al. 2016).

26.3.3.1.1 As an Agent to Promote Sustainable Agriculture
New nutrient delivery systems that exploit the nanoscale porous domains on plant 
surfaces can be developed. A nanofertilizer relates to a product which in one of 
three respects supplies nutrients to plants. The nutrient can be encapsulated in nano-
materials such as nanotubes or nanoporous materials, covered with a thin protective 
polymer film or delivered as nanoscale particles or emulsions. Ideally, nanotechnol-
ogy could provide devices and mechanisms to synchronize the release of nutrient 
(from fertilizers) with its uptake by crops; the nanofertilizers should release the 
nutrients on demand while preventing them from prematurely converting into 
chemical/gaseous forms that cannot be absorbed by plants (DeRosa et al. 2010). To 
achieve this, biosensor could be attached to this nanofertilizer that allows selective 
nitrogen release linked to time, environmental, and soil nutrient condition (Rai et al. 
2012). Smart nanofertilizer delivery platforms have been developed for micronutri-
ents such as Zn and Fe, where the primary nutrient release mechanism is based on 
the recognition and binding of a particular plant signal by a nanobiosensor occurs in 
a polymer film that coats nanoparticles or salts of micronutrients (Zn, Fe, Cu, and 
Mn) (Duhan et al. 2017; Kanjana 2017).

Nanobiosensors can promote more sustainable practices through precise track-
ing of fertilizers in water and soil, thereby encouraging farmers to acquire data on 
spatial and temporal differences in field fertilizer levels. In fact, in recent years, 
sensors have demonstrated their strong potential for assessing soil organic matter or 
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complete carbon content, soil salinity, potassium content, residual nitrate, phos-
phate, and urea (Antonacci et al. 2018). Mura et al. developed a rapid colorimetric 
assay using cysteamine-modified AuNPs for the direct detection of nitrates in water 
samples. AuNPs stabilized with citrate have been modified with cysteamine, which 
has an excellent affinity to nitrates, and its ability to capture nitrates has been evalu-
ated and quantified by naked eye color variations at a concentration of 35 ppm 
(Mura et al. 2015). Ali and coworkers reported nitrate detection in soil with micro-
fluidic impedimetric sensor using graphene oxide nanosheets and poly(3,4 ethyl-
enedioxythiophene) nanofibers. The oxygenated functional groups available at GO 
allows an increased charge transfer resistance of the electrochemical electrode. The 
sensor provides a sensitivity of 61.15 Ω/(mg/L)/cm2 within a wide concentration 
range of 0.44–442 mg/L for nitrate ions in agricultural soils (Ali et al. 2017).

Urea is also mainly utilized in agriculture as a nitrogen fertilizer, but being 
quickly hydrolyzed to ammonium carbonate creates many dangerous impacts such 
as harm to germinating seedlings and young crops or toxicity to nitrite. For these 
reasons, the availability of satisfactory methods to quantify urea in soils becomes 
essential (Antonacci et al. 2018). AuNP-catalyzed 3,3′,5,5′-tetramethylbenzidine- 
H2O2 reporting system is used as an ultrasensitive pH indicator as reported by Deng 
and coworkers. This nanobiosensor with HRP enzyme sensing platform is used to 
detect urea, urease, and urease inhibitor. The limit of detection for urea and urease 
was 5 μM and 1.8 U/L, respectively (Deng et al. 2016a).

Aptamer-based nanobiosensors appear as a helpful instrument for studying the 
origin and responses of metabolites in plant rhizospheres generated by living cells 
and for investigating the controlled released materials used in agriculture. The 
inclusion of nanodevices such as aptamers in layer-by-layer polymer movies may 
have potential for targeted apps (Kanjana 2017).

GreenSeeker is an excellent indicator of biomass. This tiny device makes plants 
speak up for their nitrogen needs. GreenSeeker calculates the normalized difference 
in vegetative index using red and near-infrared light. It is based on the simple prin-
ciple that plant chlorophyll absorbs red light as an energy source during photosyn-
thesis (Duhan et al. 2017).

26.3.3.1.2 Nanobiosensors for Seed Storage
Stored grain bulks are ecological systems where communities of insects, mites, and 
microflora interact with abiotic variables to cause spoilage. The survival and repro-
duction of biological agents in grain are dependent on the temperature and moisture 
levels. Increased levels of CO2 indicate that insects, mold, or excessive respiration 
is present. During spoilage, volatile carbon dioxide and odor from biological pests 
rise and can be used as a reliable indicator of incipient spoilage of grain. Analysis 
of volatile compounds in the headspace above the bulk of grain is a promising and 
quick method for identifying fungal spoilage (Neethirajan and Jayas 2007).

Seeds emit several volatile aldehydes during storage that determine the aging 
degree. Even other seeds are detrimental to these gases. Such volatile aldehydes can 
be identified, and seeds with indications of decay can be separated and reinforced 
before use (Choudhary et al. 2015).
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26.3.3.1.3 Nanobiosensors for Fungal Plant Pathogen Detection
Plant disease prediction is a technique of management used to predict plant disease 
opportunities or severity and to assist farmers make cost-effective disease control 
choices. Research is currently being conducted using nanosensors in crop systems 
to enhance pathogen detection techniques. (Khiyami et al. 2014). The full use of 
nanobiosensor in plant disease diagnostics research has only begun to be realized.

Fungal diseases (majority Ascomycetes and Basidiomycetes) cause significant 
economic agricultural losses around the world. Fungal plant diseases are generally 
managed with the applications of chemical fungicides. Chemical control has been 
found very effective for some fungal diseases, but it leaves several nonspecific 
effects that destroy beneficial organisms along with pathogens. Such ecological dis-
turbances open the route to undesirable health, safety, and several environmental 
risks (Patel et al. 2014). For biosensing application in plant diseases management, 
the limit of detection and the overall performance of a biosensor can be greatly 
improved by using nanomaterials for their construction (Fang and Ramasamy 
2015). Nanobiosensor as a novel tool could improve actual delivering techniques to 
manage common plant diseases (Álvarez et al. 2016). NPs can provide early disease 
detection diagnostic instruments and can be used in the part of the plant that has 
been assaulted by disease or pest. Different methods have been found for particular 
identification between target phytopathogenic cells and biofunctionalized nanoma-
terials, such as antibody–antigen, adhesion–receptor, antibiotic, and complemen-
tary sequence DNA.  These techniques of detection include polymer conductive 
nanowires, nanoporous silicon, CNTs, and AuNP (Khiyami et al. 2014).

AuNPs are excellent markers for use in biosensors as multiple optical or electro-
chemical procedures can be modified to identify pathogens. A number of studies 
based on NPs have been conducted to create biomolecular detection with AuNPs 
functionalized with DNA or protein, which are used as target-specific samples 
(Khiyami et al. 2014). AuNPs-based optical immunosensors (using anti-teliospore 
antibodies) have been developed for onsite testing and detection of Karnal bunt 
(KB) disease (Tilletia indica) in wheat using SPR (Singh et al. 2010). CuONP and 
nanolayers were synthesized by sol–gel and spray pyrolysis methods, respectively. 
Both CuONP and nanostructural layer biosensors were used for detecting the A. 
niger fungi (Etefagh et al. 2013). NPs of TiO2 or SnO2 on screen-printed carbon 
(SPC) electrodes have been developed for evaluating their potential application in 
the electrochemical sensing of p-ethylguaiacol, a fingerprint compound present in 
the volatile signature of fruits and plants infected with a pathogenic fungus 
Phytophthora cactorum. The electroanalytical data obtained using cyclic voltam-
metry and differential pulse voltammetry showed that both SnO2 and TiO2 exhibited 
high sensitivity (174–188 μA cm−2 mM−1) and low detection limits (35–62 nM) for 
p-ethylguaiacol detection. These results demonstrate that metal oxides are a reason-
able alternative to expensive electrode materials such as gold or platinum for 
amperometric sensor applications (Fang et al. 2014). The genus Trichoderma is a 
soil-borne fungi which in numerous reports has been successfully used as a biologi-
cal control agent against various plant pathogens. The identification of Trichoderma 
species worldwide is currently deduced from micromorphological descriptions 
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which are tedious and prone to error. Siddiquee et  al. successfully developed an 
electrochemical DNA biosensor based on ionic liquid, ZnO nanoparticles, and a 
chitosan (CHIT) nanocomposite membrane on a modified gold electrode (AuE). A 
single-stranded DNA probe was immobilized on this electrode. Methylene blue 
(MB) was used as the hybridization indicator to monitor the hybridization reaction 
of the Trichoderma harzianum target DNA. This nanobiosensing system was capa-
ble of detecting the target analyte at concentration ranges of 1.0  ×  10-18- 
1.82 × 10−4 mol L−1, with a LOD of 1.0 × 10−19 mol L−1 (Siddiquee et al. 2014). 
Hashimoto et al. constructed a system for the rapid diagnosis of soil-borne diseases 
(Ralostonia and Fusarium), consisting of two biosensors. The system was con-
structed using equal quantities of two different microbes, each individually immo-
bilized on an electrode. When microbial respiration increased with the assimilation 
of organic compounds in the sample, the decrease of the dissolved oxygen concen-
tration was measured with an oxygen electrode (Hashimoto et al. 2008).

26.3.3.1.4 Nanobiosensors for Viral and Bacterial Plant Pathogen 
Detection
Plant pathogenic bacteria, phytoplasmas, viruses, and viroids are difficult to control, 
and preventive measures are essential to minimize the losses they cause each year in 
different crops (Lopez et al. 2009). In addition to single probe sensors, nano-chips 
made of microarrays which contain fluorescent oligo probes were also reported for 
detecting single nucleotide change in the bacteria and viruses with high sensitivity 
and specificity based on DNA hybridization (Fang and Ramasamy 2015). The bio-
conjugated NPs provide an extremely high fluorescent signal for bioanalysis and 
can be easily incorporated into an antibody specific to a surface antigen of the 
microbe of interest; the method is sensible for the detection of bacterial plant patho-
gens. For a bacterium, there are many surface antigens available for specific recog-
nition by using antibody-conjugated nanoparticles (Zhao et  al. 2004). Several 
reports have established the capability of antibody-based biosensors for detection of 
plant pathogens. A fiber-optic particle plasmon resonance immunosensor is devel-
oped for label-free detection of orchid viruses that use Au nanorods as the sensing 
material. The Au nanorods are employed to create a near-infrared sensing window 
to solve the color interference problem of sample matrix for direct sensing of target 
analyte. The Au nanorods are immobilized on the unclad fiber core surface and 
functionalized by antibodies which can specifically recognize the corresponding 
Cymbidium mosaic virus or Odontoglossum ringspot virus for rapid (in 10 min) 
viral infection diagnosis (Lin et al. 2014). In addition, quantum dot (QD) has been 
reported to have capabilities to overcome the limitations of organic dyes. 
QD-immunofluorescence resonance energy transfer-based sensors have been devel-
oped to detect witches’ broom disease of lime caused by Phytoplasma aurantifolia. 
The immunosensor developed showed a high sensitivity, specificity of 100%, and a 
detection limit of 5 ca. P. aurantifolia per Μl (Rad et al. 2012). QD biosensors were 
useful in detecting rhizomania in Polymyxa betae. Rhizomania is the most destruc-
tive disease in sugar beet caused by beet necrotic yellow vein virus. Polymyxa betae 
(Keskin), the only known vector of beet necrotic yellow vein virus, for transmission 
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of the virus to the plants was successfully detected by QD-immunofluorescence 
resonance energy transfer-based sensor (Safarpour et al. 2012). Oil palm has become 
an important source for vegetable oil in Asia, especially for Malaysia and Indonesia. 
This valuable resource is facing a serious problem on infection called basal stem rot 
caused by a species known as Ganoderma boninense. If not detected at early stage, 
the plants will end up dying. Bakhori et al. developed an optical DNA biosensor 
based on fluorescence resonance energy transfer (FRET) utilizing synthesized QD 
(5–8 nm) for the detection of specific sequence of DNA for G. boninense, an oil 
palm pathogen. The FRET signal that can be observed after hybridization with the 
target DNA can be a marker for the existence of G. boninense. The developed nano-
biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M (Bakhori 
et al. 2013).

Silica-based NPs (60 nm) were filled with a fluorescent dye and conjugated to an 
antibody specific to a surface antigen of the microbe of interest. Detection of a sin-
gle bacterial cell was possible using this technique by Zhao et  al. in 2004. This 
method has potential for sensitive detection of plant pathogens (Jatav and Nirmal 
2013). Moreover, the fluorescent silica NPs were conjugated with the secondary 
antibody of goat anti-rabbit immunoglobulin G (IgG) and successfully detected 
plant pathogen such as Xanthomonas axonopodis pv. vesicatoria that causes bacte-
rial spot disease in tomatoes and peppers. These results demonstrated that the fluo-
rescent silica nanoprobe biomarker will have been potential for rapid diagnosis 
applications on plant diseases (Yao et al. 2009).

Seo et  al. in 2008 reported the fabrication process of a SEPTIC (SEnsing of 
Phage-Triggered Ion Cascades) chip, consisting of two Ti contact pads and a 150-nm-
wide Ti nanowell device on LiNbO3 substrate. The use of this chip as nanoscale 
electric field probe was demonstrated by detecting the transitory ion efflux from 
bacteria being infected by phage. When the bacteria were resistant to the phages 
(uninfected bacteria), small voltage fluctuations were observed in the nanowell dis-
playing a power spectral density. This technology could prove invaluable veterinary 
and agriculture practice, as well as in applications to microbiological threat detection 
and reduction in biodefense applications (Seo et al. 2008). In addition to single bio-
sensors directed at one pathogen, research has been ongoing to develop nano-chip 
microarrays that contain multiple fluorescent oligo probes to detect small nucleotide 
changes in plant pathogenic bacteria and viruses (Elmer and White 2018).

Pantoea stewartii-NCPPB 449 is urgently required for international shipments 
due to tremendous agricultural economic losses. Zhao and colleagues presented an 
electrochemical enzyme-linked immunoassay using AuNPs tags with antibodies of 
HRP to detect P. stewartii subsp. stewartii plant bacterial pathogen, reaching a detec-
tion limit of 7.8 × 103 CFU/ml (Zhao et al. 2014). AuNPs have been also largely 
employed for sensor functionalization in sensing systems for pathogen detection 
thanks to their high surface-to-volume ratios, offering lower detection limits and 
higher specificity in comparison with conventional strategies (Antonacci et al. 2018). 
Firrao et al. reported the use of a diagnostic probe made of a specific DNA bearing a 
fluorescein at its 5′ end and a 2 nm AuNP at its 3′ end, which acts as a quencher. The 
nanobiotransducer performs as a molecular beacon and emits a stronger fluorescence 
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signal when hybridized to target DNA and in the diagnosis of the phytoplasma asso-
ciated with the flavescence dorée of grapevine (Firraro et al. 2005).

26.3.3.1.5 Nanobiosensors for Herbicide Detection
Herbicides are widely used in agriculture for weed control based on different modes 
of action. Herbicides belonging to phenylurea (e.g., diuron and linuron), triazine 
(atrazine, simazine cyanazine, etc.), diazine (bromacil, lenacil, etc.), and phenol 
chemical groups (dinoseb, ioxynil, bromoxynil, etc.) inhibit photosynthesis in 
plants, cyanobacteria, algae, and diatoms (Bucur et al. 2018). Nanobiosensors for 
herbicide residue detection have several benefits, such as compact models, sensitiv-
ity, low range of detection, super selectivity, and quick reactions. Nanotubes, 
nanowires, nanoparticles, or nanocrystals are mostly used to determine the trans-
duction of the signal as they have distinctive heat, electrical, and optical character-
istics and are useful in increasing sensitivity, decreasing response time, and changing 
the detection variety (Kaushal and Wani 2017).

Some nanobiosensors have created the very mode of action of these herbicides to 
detect photosynthesis-inhibiting herbicides. PSII activity is inhibited not only by 
some herbicides but also by disruptive endocrine compounds, heavy metals, explo-
sives such as TNT, or ionizing radiation. Herbicide sensitivity depends not only on 
the particular interaction between a particular herbicide and photosynthetic enzymes 
but also on the photosynthetic component type and preparation. Isolated PSII struc-
tures have been shown to be more susceptible than thylakoid membranes or whole 
cells, as cells possess protective intracellular processes, in relation to the cell mem-
brane acting as a diffusion barrier, that assist to prevent the impact of herbicides to 
some extent (Bucur et al. 2018). Table 26.4 summarizes some of the most represen-
tative examples of herbicide detection nanobiosensors.

Inkjet printing of feasible photosynthetic cyanobacteria has been proved, maintain-
ing their photosynthetic activity on CNT-modified paper, while intensive study is being 
undertaken in the field of biosolar cells and self-powered biosensors, concentrating in 
particular on effective cabling of photosynthetic enzymes to various supports. This 
stands as proof of the interest in photosynthetic enzymes and the huge potential of 
combining all these new ideas toward herbicide detection (Bucur et al. 2018).

Monitoring of H2O2 in the metabolism and photosynthesis of algae, the concen-
tration of which is associated with potential stress on algae, may be a helpful mea-
sure of herbicide presence (Tsopela et al. 2014). Shitanda et al. in 2009 described 
screen-printed/CNTs-sodium alginate algal (Chlorella vulgaris cells) biosensor 
which was fabricated for evaluation of 6-chloro-N-ethyl-N-isopropyl-1,3,5-atrazine 
and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU). The concentrations that gave 
50% inhibition of the oxygen reduction current (IC50) for atrazine and DCMU were 
12 and 1 μmol dm−3, respectively. In comparison with the conventional algal biosen-
sors, in which the algal cells were entrapped in an alginate gel and immobilized on 
the surface of a transparent indium tin oxide electrode, the present sensor is much 
smaller and less expensive, with the shorter assay time (Shitanda et al. 2009).

Fluoroimmunoassay based on the fluorescent property of cadmium telluride 
(CdTe) QD was used along with immunoassay to detect 
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herbicide2,4- dichlorophenoxyacetic acid (2,4-D). The detection of 2,4-D was car-
ried out by fluoroimmunoassay- based biosensor using competitive binding between 
conjugated 2,4-D–alkaline phosphatase–CdTe and free 2,4-D with immobilized anti 
2,4-D antibodies in an immunoreactor column. It was possible to detect 2,4-D up to 
250  pg  mL−1(Vinayaka et  al. 2009). Nanobiosensor based on an atomic force 
microscopy tip functionalized with the acetolactate synthase enzyme was success-
fully detected for the herbicide metsulfuron-methyl (an acetolactate synthase inhib-
itor) through the acquisition of force curves.

26.3.3.1.6 Nanobiosensors for Pesticide Detection
In view of the alarming levels of pesticides being used in agriculture practices, there 
is a need for their rapid, sensitive, and specific detection in food and environmental 
samples, as pesticides are harmful to living beings even in trace levels (Vinayaka 
et al. 2009). A big amount of food and environmental samples contaminated with 
minute amounts of distinct insecticides/metabolites in complicated matrices need to 
be screened quickly and sensitively (Bucur et al. 2018). Currently unimolecular and 
array type of nanomaterial-based biosensors are being developed for the detection 
of pesticides. However, the format of biosensors varies, from free biomolecules to 
those conjugated to a substrate such as NPs, nanowires, nanotubes, and thin films. 
Interaction of the target with the biosensor can be measured either directly or indi-
rectly by recording the changes in color, fluorescence, or electrical potential (Jatav 

Table 26.4 A summary of different types of nanobiosensors for the detection of herbicides

Transduction method Bioreceptor Herbicide References
Electrochemical, amperometry, 
alginate gel, screen-printed 
electrode CNTs

C. reinhardtii cells Linuron, 
imazine

Husu et al. 
(2013)

Electrochemical, amperometry, 
magnetic NP, SPE

Chlorella pyrenoidosa 
microalgae whole-cell

Atrazine, 
propazine

Zamaleeva et al. 
(2011)

Electrochemical, impedimetric, 
microwires platinum NP

Aptamers Atrazine Madianos et al. 
(2018)

Electrochemical, amperometric, 
complex magnetic beads 
functionalized with protein G

M13 phage/antibody 
anti-atrazine 
monoclonal

Atrazine González- 
Techera et al. 
(2015)

Electrochemical immunosensor, 
biotinylated-fab fragment

K47 antibody Atrazine Hleli et al. 
(2006)

Electrochemical, voltammetric, 
AuNP

Antibodies anti- 
atrazine monoclonal

Atrazine Liu et al. (2014)

Electrochemical, field effect 
transistor, single-walled CNT

Antibodies anti- 
atrazine monoclonal

Atrazine Belkhamssa 
et al. (2016b)

Piezoelectric immunosensor, 
self-assembled layer of cysteamine

Monoclonal antibody 
D6F3

Atrazine Přibyl et al. 
(2003)

Conductimetric immunosensor, 
antibodies labeled with AuNP

Antiprostate-specific 
antigen

Atrazine Valera et al. 
(2008)

Cantilever sensor, antibody–antigen Hapten-specific 
anti-atrazine 
antibodies

Atrazine Suri et al. (2008)
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and Nirmal 2013). Organophosphorus pesticides such as dichlorvos and paraoxon, 
at very low levels could be monitored by liposome, nanoparticles, CNTs, and 
iMono-based nanobiosensors.

Enzyme nanobiosensors are created to verify pesticide presence on the enzyme 
inhibition computation included in the enzyme response. Some biosensors are 
developed on the basis of the AChE inhibition and chemometric result calculations 
utilizing artificial neural networks (Kaushal and Wani 2017). An electrochemical 
biosensor for the determination of methyl parathion and chlorpyrifos is described 
by Viswanathan et  al. Used to prepare nanosized polyaniline matrix for AChE 
enzyme immobilization, the SAMs of single-walled CNT wrapped in thiol termi-
nated single-strand oligonucleotide (ssDNA) on Au were used. The main phase of 
this biosensor was the enzymatic reaction of AChE-acetylcholine that causes small 
changes in local pH in the vicinity of an electrode surface and which is to determine 
carbamate pesticides in chicken, broccoli, and apple specimens without any spiking 
operation (Viswanathan et al. 2009).

Nanobiosensors use QD as recognition elements for fluorescence detection of pes-
ticides in different media. Luan et  al. demonstrated that the presence of OPs can 
inhibit the AChE activity and thus change the fluorescent intensity of layer-by-layer 
microarrays of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE micro-
scopic dot arrays were used for the sensitive visual detection of OPs. Linear calibra-
tion for parathion and paraoxon was obtained in the range of 5–100 μg L−1 under the 
optimized conditions with the limit of detection (LOD) of 10 μg L−1. The arrays have 
been successfully used for detection of OPs in fruits and real water samples (Luan 
et al. 2016). Based on AChE inhibition, a biosensing electrode involving reduced gra-
phene oxide (RGO) which supported zirconium oxide (ZrO2/RGO) nanoparticles is 
fabricated for chlorpyrifos detection. Mogha et al. indicated that AChE/ZrO2/RGO is 
an efficient and biocompatible electrode that can be used for chlorpyrifos detection in 
ultralow concentrations (Mogha et al. 2016). DNA aptamers that selectively bind to 
acetamiprid have been recently used for detection of this insecticide with QDs as 
signal reporters. However, screening and selecting the appropriate aptamer for the 
target pesticide can be challenging which may limit their application as recognition 
elements (Nsibande and Forbes 2016). Nucleic acid sensor has been fabricated via 
immobilization of single-standard calf thymus deoxyribose nucleic acid (ssCT-DNA) 
onto chitosan (CH)-iron oxide (Fe3O4) NPs-based hybrid nanobiocomposite film 
deposited onto indium-tin-oxide (ITO)-coated glass for pyrethroids [cypermethrin 
(CM) and permethrin (PM)] detection by Kaushik et al in 2009. This disposable ssCT-
DNA/CH- Fe3O4 nanobiocomposite/ITO bioelectrode is stable for about 2 months 
under refrigerated conditions and can detect CM (0.0025–2 ppm) within 25 s and PM 
(1–300 ppm) within 40 s using DPV technique (Kaushik et al. 2009).

NP-based biosensors are particularly attractive because they can be easily syn-
thesized in bulk using standard chemical techniques and do not require advanced 
fabrication approaches (Suresh and Periasamy 2014). AuNPs (30 nm)-based dip-
stick competitive immunoassay (anti-DDT antibodies (IgY)) was developed to 
detect organochlorine pesticide such as DDT at nanogram level (ppb) by Lisa et al. 
in 2009. The lowest detection limit of DDT was determined to be 27 ng mL−1 with 
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the optimized conditions. AuNPs have the property of agglomeration associated 
with color production, and AuNPs nanobiosensor can be suitable for the detection 
of organochlorine pesticide in food and environmental samples and applied for 
rapid onsite testing of pesticides (Lisa et al. 2009). Fluorine-doped tin-oxide (FTO)- 
based electrochemical nanosensor was developed for chlorpyrifos detection with 
AuNPs and anti-chlorpyrifos antibodies (immunosensors). The FTO-AuNPs sensor 
was successfully employed for the detection of chlorpyrifos in standard as well as 
in real samples up to 10 nM for apple and cabbage and 50 nM for pomegranate. The 
proposed FTO-AuNPs nanosensor can be used as a quantitative tool for rapid, onsite 
detection of chlorpyrifos traces in real samples when miniaturized due to its excel-
lent stability, sensitivity, and simplicity (Talan et al. 2018). Chen et al. (Charrier 
et al. 2011a, b) reported the fabrication of a nanocomposite biosensor for the sensi-
tive and specific detection of methyl parathion. The nanocomposite sensing film 
was prepared via the formation of AuNPs on silica particles, mixing with multi-
walled CNTs and subsequent covalent immobilization of MPH. The composite of 
the individual materials was finely tuned to offer the sensing film with high specific 
surface area and high conductivity. A significant synergistic effect of nanocompos-
ites on the biosensor performance was observed in biosensing methyl parathion. 
The square wave voltammetric responses displayed well-defined peaks, linearly 
proportional to the concentrations of methyl parathion in the range from 
0.001 μg mL−1 to 5.0 μg mL−1 with a detection limit of 0.3 ng mL−1. The application 
of this biosensor in the analysis of spiked garlic samples was also evaluated. The 
proposed protocol can be used as a platform for the simple and fast construction of 
biosensors with good performance for the determination of enzyme-specific elec-
troactive species (Chen et al. 2011b).

Carbon materials have received great attention in the last two decades with the 
emergence of nanoscience. These include the modification of electrodes with differ-
ent nanocarbons, such as carbon powder, CNTs, graphene sheets, and carbon cap-
sules (Suresh and Periasamy 2014). The nanocomposite consisting of CuO 
nanoflowers (NFs) and carboxyl-functionalized single-walled CNTs was prepared 
to improve the sensing performance for chlorpyrifos detection. Changes in the dif-
ferential pulse voltammetric patterns of the fabricated biosensor were used to detect 
CP (7 × 10−5 μg mL−1). This aptasensor also exhibited good selectivity and out-
standing repeatability and was successfully applied to the determination of chlorpy-
rifos in spiked apple and celery cabbage with satisfactory recoveries (Uniyal and 
Sharma 2018; Xu et al. 2018). Despite the high sensitivity for CP detection, aptamer-
based biosensors still require more exploration of immobilization strategies to 
increase the ease of biosensor fabrication (Uniyal and Sharma 2018).

The contemporary approach used to improve the analytical performance of the 
amperometric sensors based on OPH is based on the functionalization of the inter-
face of the biosensors using nanomaterials. Data reported in the studies show that 
electrode-reducing capacity is accomplished owing to the electrocatalytic charac-
teristics of the nanostructures and electrode fouling is prevented, while big surface- 
to- volume ratio, structural robustness, and nanomaterial biocompatibility favor the 
sensitivity and stability improvement of biosensors. The CNTs are appropriate for 
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alteration of transducers because they combine chemical inertia and mechanical 
strength and rigidity with elevated transfer rate characteristics (Margarita et  al. 
2016). Table 26.5 summarizes some of the most representative examples of pesti-
cide detection nanobiosensors.

26.3.3.2  Environmental Monitoring
Many physical–chemical properties of nanoscale materials are used in the field of 
biosensor development. The nanomaterials such as metal NPs (gold, silver, cobalt, 
etc.), CNT, magnetic NPs, and QDs have been actively investigated for their appli-
cations in biosensors which have become a new interdisciplinary frontier between 
biological detection and material science (Prasad et  al. 2017). It is an extremely 
thorough and comprehensive task to determine pollutants, toxic intermediate, and 
heavy metals from waste streams and to monitor weather conditions such as humid-
ity assessment and many other essential characteristics (Sekhon 2014).

26.3.3.2.1 Nanobiosensors to Detect Contaminants in Soil
Protection of the soil health and the environment requires the rapid, sensitive detec-
tion of pollutants and pathogens with molecular precision (Choudhary et al. 2015). 
Diagnosis of soil with this biosensor was based on the concept of calculating the 
relative activity of favorable and unfavorable soil microbes chosen during respira-
tion on the basis of differential use of oxygen. Biosensors incorporating NPs are 
defined as nanobiosensors/nanosensors. The presence of NPs boosts the overall effi-
ciency of biosensors probably due to the increased surface for reaction (Kaushal and 
Wani 2017). Metal and metal oxide NPs are widely used nanomaterials due to their 
high electroactivity and electronic conductivity for electron transfer (Fang and 
Ramasamy 2015). Electrochemical sensing of methyl salicylate, a key plant volatile 
(released by plants during infections), has been achieved by Umasankar et al., using 
a AuNP-modified screen-printed carbon electrode (SPCE) (Umasankar and 
Ramasamy 2013).

Ralstonia solanacearum, the devastating causal agent of potato bacterial wilt, is a 
soil-borne bacterium that can survive in the soil for a long time. The development of 
sensitive on-field detection methods for this pathogen is highly desirable due to its 
widespread host range and distribution. A nanobiosensor used AuNPs functionalized 
with single-stranded oligonucleotides to detect as little as 15 ng of R. solanacearum 
genomic DNA in farm soil. The advantages of this strategy include rapidity, facile 
usage, and being a visual colorimetric method (Khaledian et al. 2017).

During the past decade, several publications have demonstrated the capability of 
antibody-based biosensors for detection of plant pathogens (Elmer and White 2018). 
A fiber-optic particle plasmon resonance immunosensor based on Au nanorods is 
developed for label-free detection of orchid viruses. The AuNRs are immobilized 
on the unclad fiber core surface and functionalized by antibodies which can specifi-
cally recognize the corresponding Cymbidium mosaic virus (48  pg/mL) or 
Odontoglossum ringspot virus (42 pg/mL) for rapid viral infection diagnosis (in 
10 min) (Lin et al. 2014).
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Table 26.5 The recently reported nanobiosensors for pesticide detection

Transduction method Pesticide Bioreceptor References
Cantilever sensor, 
polyethyleneimine

Paraoxon, 
diisopropyl 
fluorophosphates, 
parathion

OPH Karnati et al. 
(2007)

Fluorescence, liposomes Paraoxon, 
dichlorvos

AChE Vamvakaki and 
Chaniotakis (2007)

Fluorescence, n(CdSe)ZnS 
core–shell QD

Paraoxon OPH Ji et al. (2005)

Optical, fluorescence, QD and 
acetylcholine

Dichlorvos AChE, choline 
oxidase

Meng et al. (2013)

Fiber-optic, AuNPs covalently 
coupled with

Paraoxon AChE Lin et al. (2006)

Optical, cells microplate with 
silica NPs and PEi hybrid

Methyl parathion Sphingomonas 
sp.

Mishra et al. 
(2017)

Optical, colorimetric, AuNP Acetamiprid Artificial 
antibody 
acetamiprid- 
binding aptamer

Shi et al. (2013)

Electrochemical, 
voltammetric, carbon paste 
electrode with multiwalled 
CNT

Pirimicarb Laccase

Electrochemical, 
voltammetric, screen-printed 
electron with carbon black 
nanoparticles

Paraoxon BChE Arduini et al. 
(2015)

Electrochemical, 
impedimetric, SPCE, IrOx 
NP

Chlorpyrifos Tyrosinase Mayorga-Martinez 
et al. (2014)

Electrochemical, 
impedimetric, ionic liquids- 
AuNP porous carbon 
composite

Dichlorvos AChE Wei and Wang 
(2015)

Electrochemical, 
impedimetric, Au electrode 
nanostructured monolayer of 
fourth-generation poly 
amidoamine with a cystamine 
core

Carbaryl AChE Santos et al. (2015)

Electrochemical, 
impedimetric, AuNP, 
multiwalled CNT, reduced 
graphene oxide nanoribbons

Acetamiprid Aptamers Fei et al. (2015)

Electrochemical, 
impedimetric, AgNP and 
nitrogen-doped graphene 
oxide

Acetamiprid Aptamers Jiang et al. (2015)

(continued)
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Table 26.5 (continued)

Transduction method Pesticide Bioreceptor References
Electrochemical, 
impedimetric, microwires 
platinum NP

Acetamiprid and 
atrazine

Aptamers Madianos et al. 
(2018)

Electrochemical, 
impedimetric, screen-printed 
electron with Fe3O4 and 
AuNP

Methyl parathion Hydrolase Zhao et al. (2013)

Electrochemical, carbon paste 
electrode with chitosan, 
AuNP, nafion

Methyl parathion AChE Deng et al. (2016b)

Electrochemical, 
voltammetric, boron-doped 
diamond electrode with 
AuNP, carbon spheres

Chlorpyrifos AChE Wei et al. (2014)

Electrochemical, 
voltammetric, platinum 
electrode with ZnO 
nanospheres

Dichlorvos AChE Sundarmurugasan 
et al. (2016)

Electrochemical, 
voltammetric, carbon black 
and graphene oxide/Fe3O4 
nanocomposite, chitosan

Chlorpyrifos Aptamers Jiao et al. (2017)

Electrochemical, 
voltammetric, IrOx-chitosan 
nanocomposite with glassy 
carbon electrode

Carbofuran AChE Jeyapragasam and 
Saraswathi (2014)

Electrochemical, 
amperometric, glassy carbon 
electrode with graphene oxide 
and multiwalled CNT

Carbofuran AChE Li et al. (2017b)

Electrochemical, 
amperometric, glassy carbon 
electrode with NiONP- 
carboxylic graphene-Nafion 
composite

Carbofuran AChE Yang et al. (2013)

Electrochemical, 
amperometric- single-walled 
CNT

Paraoxon, methyl 
parathion, 
nitrophenol

OPH Deo et al. (2005)

Electrochemical, 
amperometric, PB 
multiwalled CNT, SPE

Pirimicarb AChE Chai et al. (2013)

Electrochemical, 
amperometric, glassy carbon 
electrode, Au nanorods

Paraoxon AChE Lang et al. (2016)

Electrochemical, 
amperometric, glassy carbon 
electrode with NiO 
NP-carboxylic 
graphene-nafion

Chlorpyrifos AChE Yang et al. (2013)

(continued)
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KB of wheat incited by Tilletia indica is an economically important quarantined 
fungal pathogen. Similarity in teliospore configuration makes it difficult to differen-
tiate KB teliospores from the teliospores of other bunt fungi using conventional 
approaches. In order to determine the correct identity of KB teliospore as an infec-
tious entity, it is essential to develop specific diagnostic probes and high quality of 
immunological reagents against infectious entities. For onsite testing of KB, Singh 
et al. developed SPR electrochemical immunosensor (using anti-teliospore antibod-
ies) based on a modified AuNP for rapid detection of Karnal bunt in the field (Singh 
et al. 2010, 2014).

26.3.3.2.2 Nanobiosensors to Detect Heavy Metals in Soil and Water
The pollution of natural water and soil environment by heavy metals and respective 
ions can cause severe hazards to human health, and portable, low-cost, and fast 
heavy metal analyses are a priority issue worldwide (Campanella et al. 2001).

Integrating the electrochemical biosensors with nanomaterials such as nanopar-
ticles could significantly improve the device performance for detection of heave 
metals (Ejeian et al. 2018). Domínguez-Renedo et al. developed urease amperomet-
ric biosensor-modified SPC electrodes and AuNPs for the measurement of Hg+2. 

Table 26.5 (continued)

Transduction method Pesticide Bioreceptor References
Electrochemical, 
amperometric, single and 
multiwalled CNT, FIA

Paraoxon OPH Pedrosa et al. 
(2010)

Electrochemical, 
amperometric, Fe3O4/Au/
CNTs/ZrO2/Prussian blue/
Nafion membrane screen- 
printed carbon electrodes 
(SPCE)

Dimethoate AChE Gan et al. (2010)

Electrochemical, 
amperometric, multiwalled 
CNT and graphene oxide 
nanoribbons structure

Carbaryl AChE Liu et al. (2015)

Electrochemical, 
amperometric, multiwalled 
CNT, cellulose acetate 
composite on a SPCE

Carbaryl AChE Cai and Du (2008)

Electrochemical, 
amperometric, Au–Pt 
bimetallic NPs, glassy carbon 
electrode, glutaraldehyde

Paraoxon ethyl, 
aldicarb, sarin

AChE-choline 
oxidase

Upadhyay et al. 
(2009)

Electrochemical, 
chronoamperometry, 
polyaniline, multiwalled 
CNT, glassy carbon electrode

Carbaryl, methomyl AChE Cesarino et al. 
(2012)

Electrochemical, graphene 
QD, glassy carbon electrode

Paraoxon Pralidoxime Dong et al. (2015)
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The amperometric response of urea was affected by the presence of Hg (II) ions 
which caused a decrease in the current intensity (Domínguez-Renedo et al. 2009). 
Recent studies have established the fact that CNT can enhance the electrochemical 
reactivity of important biomolecules and can promote the electron transfer reactions 
of proteins (Suresh and Periasamy 2014). An electrochemical single-walled CNT 
biosensor was developed for Hg2+detection in water and serum samples (limit of 
detection 0.84 pM). An efficient Hg2+ recycling strategy was designed using exo-
nuclease III (Shi et  al. 2017). Taking into account the fine progress made in the 
fields of DNA-based devices and nanotechnology, the development of high- 
precision nanobiosensor based on the FRET is an effective method for multiplexed 
heavy metal detection (Ejeian et al. 2018). Wu and coworkers designed a new inno-
vative FRET sensor based on QDs and DNAzyme. The QD−DNAzyme nanobio-
sensors were constructed by conjugating quencher-labeled DNAzymes onto the 
surface of carboxyl-silanized QDs. In the presence of Pb and Cu, the emission is 
restored due to the cleavage of DNAzymes. The detection could be completed 
within 25 min with a single laser excitation source (Wu et al. 2010). Against various 
metal ions, the QD reflected different fluorescence signals and exhibited differen-
tials between various metal ions (Ejeian et al. 2018). An ultrasensitive method for 
surface-enhanced Raman scattering (SERS) detection of Hg2+ was developed 
based on the AuNPs chain induced by single-stranded DNA to form double helical 
DNA by T–Hg2+–T base pairs. This method could achieve a low limit of detection 
of 0.45 pg mL−1 in the range of 0.001–0.5 ng mL−1. The practicability of the devel-
oped method was favorable in the analysis of real samples (Xu et al. 2015). The 
selectivity of the biosensor was tested for other metal cations such as Zn2+, Cu2+, 
Ni2+, Pb2+, and Cr2+ at concentrations up to 20 μM, and no significant response 
(lower than 15% in comparison to the response to Hg2+) was observed. Recently, a 
SERS biosensor was proposed for simple and sensitive detection of Hg2+ between 
1 pM and 100 nM using magnetic substrate (CoFe3O4@Ag) conjugated with single- 
stranded DNA and single-walled CNT. The SERS-based biosensor exhibited good 
performance of the detection of Hg2+ (Yang et al. 2017).

Pb2+ detection technologies are quite important in environment monitoring and 
human health protection. The fabrication and evaluation of a glassy carbon elec-
trode (GCE) modified with self-doped polyaniline nanofiber mesoporous carbon 
nitride and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by 
square wave anodic stripping voltammetry was reported by Zhang et al. (2016). The 
fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for 
Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM 
for Pb2+ (Zhang et al. 2016). Recently, optical florescent biosensors with DNAzyme 
based on graphene QDs and AuNPs for Pb2+  detection have been reported by Niu 
et  al. 2018. The nanobiosensor possesses an extremely broad detection range of 
Pb2+ from 50 nM to 4 μM, with a detection limit of 16.7 nM (Niu et al. 2018). 
Table 26.6 summarizes the recently reported nanobiosensors in the literature for the 
detection of heavy metals.
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26.3.3.2.3 Nanobiosensors for the Detection of Toxin, Pollution, 
and Pathogens in Water
The presence of pathogens in environmental matrices, and mainly in water compart-
ments, could constitute a serious danger for human health, and some bio- and nano-
biosensors were recently proposed for their environmental monitoring. The 
nanobiosensor allows various procedures to be integrated into a single device to 
design various components in real time tracking, which is very helpful for tracking 
water and wastewater structure (Ejeian et al. 2018). For example, rapid and specific 
optical biosensors based on SPR were proposed for the detection of metabolically 
active Legionella pneumophila in complex environmental water samples (Justino 
et al. 2017). Nanobiosensor effectiveness relies on the selectivity interaction of tiny 
biomolecules as components of biorecognition and the hypersensitivity of nano-
structures when subjected to pollutants (Ejeian et al. 2018). An amperometric mag-
netoimmunoassay, based on the use of core–shell magnetic (Fe3O4) NPs and 
screen-printed carbon electrodes, was developed for the selective determination of 
L. pneumophila SG1 by Martín et al. (2015). A specific capture antibody was linked 
to the poly (dopamine)-modified magnetic NPs and incubated with bacteria, and 
bacteria were sandwiched using the antibody labeled with HRP. The possibility of 
detecting L. pneumophila at 10 CFU mL−1 level in less than 3 h, after performing a 
membrane-based preconcentration step, was also demonstrated (Martín et al. 2015). 
Park et  al. in 2010 reported that multiwalled CNT electrode functionalized with 
oxygen plasma treatment was prepared and characterized, and its DNA-sensing 
ability for L. pneumophila detection was examined using electrochemical measure-
ment (Park et al. 2010). This DNA nanobiosensor has limitation in the environmen-
tal samples. An ultrasensitive electrochemical immunosensor based on a ZnO 
nanorod matrix electrode was developed for detecting L. pneumophila. The 
peptidoglycan- associated lipoprotein of L. pneumophila, as a component of 
Legionella antigen, was bound to the primary antibody, and secondary antibody 
conjugated to HRP was then bound to the antigen. This nanobiosensor detection 
limit is ∼1 pg/mL with excellent selectivity (Park et al. 2014).

Escherichia coli (E. coli) is a typical inhabitant in the intestinal tracts of humans 
and warm-blooded animals, which is often preferred as an indicator organism 
because it is specific for water pollution and reliably reflects fecal contamination. 
Some strains of E. coli such as E. coli 0157:H7 can cause diarrhea, urinary tract 
infections, inflammations, and peritonitis in immunosuppressed patients such as 
children and elderly people. Most biosensors for E. coli detection used antibodies as 
recognition elements. Electrochemiluminescence biosensor was developed for E. 
coli O157:H7 quantitative detection based on a polydopamine surface imprinted 
polymer (SIP) and nitrogen-doped graphene QDsin water sample. The linear rela-
tionships between the electrochemiluminescence intensity and E. coli O157:H7 
concentration were obtained from 101 colony-forming units (CFU) mL–1 to 
107 CFU mL–1 with a limit of detection of 8 CFU mL–1 (Chen et al. 2017). Micro- 
and nanoscale sensors are suitable for detecting waterborne pathogens, and com-
mon nanoscale materials such as CNTs and QD are now extensively applied for 
quantitative detection of microorganisms including bacteria and protozoa (Samendra 
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et al. 2014). Recently, nucleic acid biosensor-based researches have been increas-
ingly focused. Nucleic acid biosensors offer desirable sensitivity for detecting par-
ticularly waterborne pathogens even at low levels (Koedrith et al. 2015).

Harmful toxins such as brevetoxins and microcystins are produced from the algal 
blooms of cyanobacteria provided by the eutrophication of aquatic systems, and 
reliable and cost-effective systems are thus needed for the early detection of such 
toxins (Justino et al. 2017). Molybdenum disulfide and Au nanorod nanocomposites 
were employed to provide a large surface area, and excellent biocompatibility in 
electrochemical immunosensor (HRP-labeled anti-microcystin-LR antibody) was 
developed for the detection of microcystin-LR in water. The immunosensor exhib-
ited a linear response to MC-LR ranging from 0.01 to 20 μg L−1 with a detection 
limit of 5 ng L−1 (Zhang et al. 2017). Okadaic acid (OA) is a representative diar-
rhetic shellfish poisoning toxin which is highly toxic and carcinogenic to human 
and rich in polluted shellfish. Sensitive fluorescence immunosensor (anti-OA mono-
clonal antibody) based on magnetic beads and QDs had been developed for OA 
detection. The limit of detection was 0.05 μg/L with a linear range of 0.2–20 μg/L 
for OA detection, which was far lower than traditional id-ELISA technique, and OA 
detection for the real sample could be completed within 1  h (Pan et  al. 2017). 
Domoic acid associated with amnesic shellfish poisoning was also detected in sea-
water samples with an effect of transistor immunobiosensors based on CNTs. Good 
reproducibility (0.52–1.43%) and low limit of detection (10 ng mL−1) were found in 
a working range between 10 and 500 ng mL−1 (Marques et al. 2017).

Bisphenol is a key monomer in the production of polycarbonate plastic and 
epoxy resins, which has been widely used in a variety of common consumer goods, 
e.g., water bottles, food cans, and medical devices. However, bisphenol A is an 
endocrine-disrupting compound especially found in water that can mimic the func-
tions of estradiol and may have negative effects on human health (He et al. 2017). 
Aptamer (fluorescein amidite)-based “turn-off” fluorescent biosensor with AuNP 
for ultra- sensitive detection of small molecules such as bisphenol A in water sam-
ples was developed by Ragavan et al. 2013. Another aptasensor (anti-bisphenol A) 
based on fluorescence with molybdenum carbide nanotube (label-free) for detection 
of bisphenol A in real water sample was developed by He et al. in 2017. This method 
shows a linear range of 2–20 nM with a detection limit of 2 nM for detecting bisphe-
nol A (He et al. 2017). Another endocrine-disrupting chemical, the 4-nonylphenol, 
was recently analyzed in seawater samples by electrochemical lable-free immuno-
sensors based on field effect transistors (FET), with single-walled CNTs. The 
immunosensor show an excellent analytical performance with reproducibility of 
0.56±0.08%, repeatability of 0.5±0.2%, limit of detection for 4-nonylphenol as low 
as 5 μg L−1, and average recovery between 97.8% and 104.6% (Belkhamssa et al. 
2016a).

Estrogen is considered to be carcinogenic and has a tumor promotion effect. Its 
level related to the risk of breast cancer is evident. It is well documented that estro-
gen pollution causes death and deformation in birds, fishes, animals, as well as 
human beings. It should be noted that 17 β-estradiol is considered a key estrogen 
pollution (Dai and Liu 2017). 17-Estradiol was detected in lake water by 
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photoelectrochemical sensing platform based on anti-E2 aptamer as the biorecogni-
tion element was developed onto CdSe nanoparticle-modified TiO2 nanotube arrays. 
The designed PEC aptasensor exhibits excellent performances in determining E2 
with a wide linear range of 0.05–15 pM (Fan et al. 2014). Table 26.7 provides a 
summary of recent nanobiosensors for environmental monitoring, whose applica-
tions and analytical performances are discussed and compared in this section.

Table 26.7 Summary of recent designed biosensors for detect toxin, pollution, and pathogen in 
water

Analyte 
detected Transduction method

Recognition 
element References

L. 
pneumophila

Optical, SPR, Au substrate with 
streptavidin-conjugated QD

Nucleic acids 
(16s rRNA)

Foudeh et al. 
(2015)

L. 
pneumophila

Electrochemical, voltammetric, 
immunosensor based on a ZnO nanorod 
with Au working electrode

Antibody Park et al. 
(2014)

L. 
pneumophila

Electrochemical, amperometric, screen- 
printed carbon electrodes with Fe3O4@
polydopamine complex

Antibody 
(polyclonal)

Martín et al. 
(2015)

L. 
pneumophila

Electrochemical, well-patterned 
multiwalled CNT, oxygen plasma 
treatment prior

Nucleic acids 
(DNA)

Park et al. 
(2010)

E. coli Optical, electrochemiluminescence, glassy 
carbon electrode with polydopamine 
imprinted polymer and nitrogen-doped QD

Antibody 
(polyclonal)

Chen et al. 
(2017)

Bacillus 
subtilis

Electrochemical, amperometric, Au 
electrode with single-walled CNT

Antibodies 
(polyclonal)

Yoo et al. 
(2017)

Bisphenol A Optical, fluorescence, AuNP Aptamers Ragavan et al. 
(2013)

Bisphenol A Optical, fluorescence, molybdenum carbide 
nanotubes

Aptamers He et al. 
(2017)

Phenol, 
m-cresol, 
catechol

Electrochemical, amperometric, glassy 
carbon (GC) electrode, multiwalled CNT

DNA Zheng et al. 
(2009)

Phenol Electrochemical, core shell magnetic 
MgFe2O4 NPs, carbon paste electrode

Tyrosinase Liu et al. 
(2005)

Nonylphenol Electrochemical, field effect transistor, 
single-walled CNT

Antibodies 
(monoclonal)

Belkhamssa 
et al. (2016a)

17 -estradiol Photo-electrochemical, CdSe NPs and TiO2 
Nanotubes

Aptamers Fan et al. 
(2014)

Nitrate Electrochemical, amperometric, 
polypyrrole/CNT film,

Nitrate 
reductase

Can et al. 
(2012)

Nitrate, nitrite Electrochemical, Cyclic voltammetry, Cu, 
Zn superoxide dismutase, CNT–
polypyrrole nanocomposite modified 
platinum electrode

Nitrate 
reductase

Madasamy 
et al. (2014)
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26.4  Future Perspectives

Biosensors have versatile applications in the field of medicine, engineering, bio-
medical engineering, toxicology, ecotoxicology, etc., and their miniaturization 
becomes useful for a cost-effective, rapid, and sensitive detection. Nanobiosensors 
have now captured the field of biosensors as the different nanostructures at ultralow 
size exhibit novel properties which are not shown by their bulk counterpart. 
Although environmental biosensors can be constructed using the improved charac-
teristics of nanomaterials and novel nanocomposites, an increased attention has 
been focused on the in situ and real-time monitoring of pollutants by other technolo-
gies. Biosensors cover well-established bioanalytical techniques, while nanobiosen-
sors with nanotechnology inclusion are revolutionizing this field with prospective 
solutions by minimizing the load of conventional laboratory methods and protocols, 
combined with rapid response time, enhanced sensitivity, robustness, and point-of- 
use portability. Nanobiosensor can measure more variables with greater sensitivity 
and less sample material is required. The use of biosensors is simple and the tech-
nique is rapid and cost-effective. Because nanobiosensors work on an atomic scale, 
they have the highest multianalyte and high-throughput efficiency, and so they can 
be readily used to detect pathogens, pollutants, and environmental toxicity. The 
main limitation of recent environmental biosensors is due to the lack of application 
in real environmental samples since the majority of identified “environmental bio-
sensors” have been applied to tap water samples or synthetic samples. There is a 
high demand for quick, reliable, and low-cost technologies to detect, monitor, and 
diagnose pollutants and toxins in the setting. However, several limitations still ham-
per the wide use of this technology in the real field, including, for example, the low 
storage capacity and working stability of the biocomponents.

New exciting approach of using nano-enabled biosensors can be coupled with 
robotics and GPS systems to create smart delivery systems that detect, map, and 
treat specific areas in a field prior to or during the onset of symptoms. This technol-
ogy could reduce agrochemical inputs and increase yield and profits. Growers and 
scouts could perform diagnostics in situ once portable devices with biosensors are 
developed. An extremely valuable use for fast and sensitive biosensors is at ports of 
entry, where quarantined pathogens could be intercepted with greater efficiency. 
The value of rapid analysis in detecting food pathogens and mycotoxins is obvious. 
One of the important trends in nanobiosensors is to develop biosensors for applica-
tions in extreme conditions, such as highly acidic, alkaline, saline, extreme tempera-
ture, and organic solvent environment because more and more detections will 
involve such unfriendly conditions, particularly important for the growing nanobio-
sensor industry because of the great need for low-cost, sensitive, selective, and fast 
response biosensor in the market. The numerous advances in nanotechnology- based 
biosensor technology have generated tremendous technology push, as evident from 
the exponentially increased number of publications, patent applications, projects, 
and focused nanotechnology initiatives/themes.
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Abstract
Progressing in time proved development in technology that showed the ability of 
metals of nanoscale to perform specific utilities better than the bulk form of met-
als. Nanotechnology by means of specific traits of nanoparticles can be an identi-
cal valuable knowledge in various industry and science divisions. The noble 
metals like silver, gold, platinum, palladium, copper, zinc, selenium, titanium, 
and iron were used in synthesis of particles of nano-size. Chemical, physical, and 
biological ways have been used toward synthesis of various types of metal 
nanoparticles. The extensive potential applications of these nanoparticles made 
the green (biological or biogenic) synthesis by using bacteria, algae, actinomy-
cetes, fungi, and plants. In the plant-based synthesis, several extracts (leaves, 
bark, stem, shoots, seeds, latex, secondary metabolites, roots, twigs, peel, fruit, 
seedlings, essential oils, tissue cultures, gum) are used. Therefore, the current 
review especially focuses on synthesis particularly plant-intermediated biosyn-
thesis of metal nanoparticles and their classification.
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27.1  Introduction

27.1.1  Definition of Nanotechnology and Its Background

The term “nano” in the Greek language means small and dwarf. Each nanometer is 
numerically 10−9 or 1 billionth or as large as the three atomic widths that lie next to 
each other. In comparison, the size of DNA is over 2, proteins 50, influenza virus 
100, and human hair diameter 10,000  nm. Nanotechnology is the foundation of 
many new technologies and innovations in the twenty-first century. New science of 
nanotechnology with Richard Feynman’s famous speech, entitled “There are plenty 
of spaces around it” at the annual conference of the Physics Society of America in 
1959, was established. Over the past few years, nanotechnology has come into vari-
ous research areas and even human lives. Research and development is growing 
rapidly around the world. Nanotechnology refers to the ordering of atoms and mol-
ecules to the extent that new buildings form and lead to the production of materials 
and tools with new or even completely different properties.

Nanotechnology promotes the living standards of human beings and has great 
effects on the improvement and development of human security, welfare, and human 
health. Increasing the productivity using limited resources and energy sources will 
be the result of the application of this knowledge. Nanotechnology will discourse 
issues at the scale of disease causation and has a great potential for identifying and 
eliminating pathogens. Nanotechnology allows the use of drug release systems that 
can remain active over a period of time. Nanotechnology as a powerful technology 
enables humans to have a molecular and atomic attitude and can build nanoscale 
structures. Given the potential of nanotechnology, most countries use this technol-
ogy as a tool for advancement in the world and taking the ground for “development 
leap” and counting it in line with their economic and national interests (Solgi et al. 
2009, 2011; Dubey et al. 2010; Kaushik et al. 2010; Solgi 2012, 2014; Mukhopadhay 
2014).

The income produced through worldwide nanotechnology increased quickly, 
presently around $39.2 billion, and is estimated to reach $90.5 billion in 2021 
(McWilliams 2016; Rai et al. 2018). Nanotechnology has developed one of the most 
favorable technologies functional in all areas of knowledge. Metal nanoparticles 
created by nanotechnology have established universal attention as a result of their 
widespread applications in the physiochemical and biomedical grounds. Lately, 
producing metal nanoparticles by plants and microorganisms has been widely stud-
ied and has been documented as a green (biological) and competent way for addi-
tional using of microorganisms as suitable nano-factories (Singh et al. 2016).

27.1.2  Type of Nanostructures

Nanotechnology includes various subunits like nanotubes such as carbon nanotubes 
(CNTs), nanosensors, and nanomaterials. Each of them has many applications in 
industry, medicine, biosciences, agriculture, and natural resources. Nanomaterials 
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(NMs) also include subunits, one of the most important and most practical ones 
being metal nanoparticles. In fact, nanoparticles of metals are the most important 
product of nanotechnology. Nanoparticles are called the particles which have all the 
same dimensions, and their sizes are less than 100 nm. Metal nanoparticles have 
been very much considered for optical, catalytic, magnetic, and electrical properties 
(Dubey et al. 2010; Kaushik et al. 2010; Solgi et al. 2011; Solgi 2012).

Nanometals like gold, silver, platinum, copper, zinc, palladium, and iron were 
used in synthesis of particles of nano-size. The nanoparticle properties such as 
shape, size, structure, and crystalline nature determine their applications. The 
nanoparticles (NPs) are metal atom clusters with a range of 1–100 nm, extremely 
favorable due to their extensive range of requests in profitable products. The metal 
nanoparticles are synthesized by physical, chemical, and biological approaches. 
The biological synthesis of nanoparticles involves plants, bacteria, fungi, algae, and 
actinomycetes (Haleemkhan et al. 2015).

27.1.3  Nanoparticle Synthesis

27.1.3.1  Physical Procedures
Laser ablation, condensation evaporation, diffusion, electrolysis, pyrolysis, and 
high-energy ball milling are the components of metal nanoparticle manufacturing 
(Iravani et al. 2014). In laser ablation, colloidal nanoparticles are commonly pro-
duced using several solvents. The pulsed laser ablation in liquid (PLAL) is done 
within the chamber under vacuum along with a number of inert gases (Khodashenas 
and Ghorbani 2014). The lack of chemical reagents in solutions is the main benefit 
of PLAL than other methods for production of metal colloids (Iravani et al. 2014). 
Many nanoparticles, including Au and Ag, have been produced by evaporation- 
condensation method. However, it is associated with several disadvantages; for 
example, it occupies a huge space and takes time to gain thermal stability and also 
consumes a large amount of energy while raising the environmental temperature 
around the source material (Hong and Han 2006; Korbekandi et al. 2015).

Spray pyrolysis for the production of nanoparticles has been developed recently, 
and its flexibility in synthesis of particles with different appearances, sizes, and 
compositions has been approved (Hongwang and Swihart 2007). High-impact col-
lisions are applied in high-energy ball milling for reducing macroscale or microscale 
materials into nano-crystalline structures with no chemical changes (Vijayaraghavan 
and Ashokkumar 2017).

27.1.3.2  Chemical Methods
Chemical reduction, micro-emulsion/colloidal, and electrochemical and thermal 
decomposition are the available chemical systems to manufacture nanoparticles. 
Chemical reduction using organic and inorganic reducing agents has been shown as 
the commonly used method for producing colloidal metal particles, since it is 
equipped with simple tools and also its simple function. Potassium bitartrate, 
sodium borohydride, methoxy polyethylene glycol, trisodium citrate dihydrate, 
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ascorbate, and elemental hydrogen are the most commonly used reducing mediators 
(Tan et al. 2003; Kim et al. 2007; Mallick et al. 2004; Rivas et al. 2001; Iravani et al. 
2014; Merga et al. 2007). Such chemical materials can reduce metallic ions like 
gold, silver, and lead for producing corresponding metallic nanoparticles.

Micro-emulsion technique is an adaptable and repeatable technique to manage 
particle’s feature, including shape, size, surface area, and homogeneity (Malik et al. 
2012). Size and morphology of the nanoparticles have been widely tried to be con-
trolled via micro-emulsion method (Martínez-Rodríguez et al. 2014). Electricity is 
employed as a controlling force to produce nanoparticles via electrochemical meth-
ods. Accordingly, passing an electric current among two electrodes divided by an 
electrolyte and also nanoparticle production occurred at the electrode/electrolyte 
interface (Starowicz et  al. 2006). Electrochemical method was employed by 
Rodríguez-Sánchez et al. (2000) according to the dissolution of a metallic anode in 
an aprotic solvent for preparing Ag nanoparticles (2–7 nm). In addition, they stated 
that different Ag particle sizes can be obtained via changing the current density. 
Thermal decomposition technique is widely used for synthesis of stable monodis-
perse suspensions with self-assembly (Simeonidis et al. 2007).

In general, size and the composition of the obtained nanoparticles are associated 
with temperature, reaction time, and surfactant molecule length. Although chemical 
synthesis technique has many advantages, using extreme surfactants, solvents, and 
other chemicals prevents the application aspects of produced nanoparticles 
(Vijayaraghavan and Ashokkumar 2017).

27.1.3.3  Biological Methods
Biological resources have been considered to produce metallic nanoparticles for 
developing cost-effective and eco-friendly method. Green (biological) synthesis 
includes the reduction of metal ions by biological mass/extract as the resultants. 
Moreover, eco-friendliness and cost-effectiveness as the advantages of biological 
method than the traditional chemical and physical methods indicate its efficacy for 
catalyzing reactions in aqueous media at a standard temperature and pressure and 
also the flexibility of the process (Schrofel et al. 2014). The reduction occurred by 
components available in biological materials, and it is mostly activated by several 
compounds seen in the cell, like carbonyl, phenolic, amine, proteins, amide groups, 
pigments, flavonoids, terpenoids, alkaloids, and other reducing materials 
(Asmathunisha and Kathiresan 2013). Due to the varied structure in these groups, 
the exact mechanism for biosynthesis of nanoparticles is not easy to explain and has 
not yet been entirely identified. Bacteria, fungi, yeast, virus, algae, and plant extract/
biomass are crucial biological compounds applied to form metallic nanoparticles 
(Lombardi and Garcia Jr 1999).

Bacteria are the main group of unicellular living organisms (from prokaryotes), 
found in water and soil (Vijayaraghavan and Yun 2008; Vijayaraghavan and 
Balasubramanian 2015). Different bacterial genera (Bacillus and Pseudomonas) 
have been studied for biosynthesis of nanomaterials (Kalishwaralal et  al. 2009; 
Phadke and Patel 2012). Nanometals Au and Ag were obtained by Nair and Pradeep 
(2002) through the reaction of the corresponding metal ions within cells of lactic 
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acid bacteria found in buttermilk. In addition, Husseiny et  al. (2007) evaluated 
extracellular production of Au nanoparticles by Pseudomonas aeruginosa. 
Kalimuthu et al. (2008) also produced Ag nanoparticles through Bacillus lichenifor-
mis. Inactive and/or dead bacterial biomasses have been found to reduce metal ions 
to nanoparticles due to the certain organic functional groups on the cell wall.

Fungi are eukaryotic and non-phototrophic microorganisms characterized by a 
firm cell wall. Their cell wall contains polysaccharides and glycoproteins, in which 
chitin and glucan are commonly found (Yadav et  al. 2015). Production of metal 
nanoparticles is done extracellularly or intracellularly by fungi (Mukherjee et al. 
2001). Extracellular synthesis is much rapid compared to the intracellular route 
(Narayanan and Sakthivel 2010a). Several studies have demonstrated fungi synthe-
sizing nanoparticles extracellularly, namely, Fusarium solani (Ingle et  al. 2009), 
Penicillium fellutanum (Kathiresan et  al. 2009), Phoma glomerata (Birla et  al. 
2009), Aspergillus oryzae (Binupriya et al. 2010), Aspergillus terreus (Baskar et al. 
2013), and Rhizopus nigricans (Ravindra and Rajasab 2013). On the contrary, lim-
ited investigations have been done on the intracellular synthesis of nanoparticles by 
fungal species (Mukherjee et al. 2001).

Algae are simple organisms, in which several specific structures and organs in 
earthly plants cannot be found. Using algae for production of metal nanoparticle has 
not widely been considered. Application of microalgae in producing nanoparticles 
has been negligibly reported (Sudha et al. 2013; Jena et al. 2014). The brown marine 
algae (Sargassum wightii) have shown useful for synthesizing gold nanoparticles 
extracellularly. Additional brown seaweeds, including Turbinaria conoides, green 
seaweeds, as well as red seaweeds have also been investigated for nanoparticle pro-
duction (Rajeshkumar et al. 2013; Sangeetha et al. 2013; Priyadharshini et al. 2014).

27.1.3.3.1 Advantage of Biological Nanoparticles
Reducing metal cytotoxicity is crucial for metal nanoparticles for biomedical uses. 
Metal nanoparticles obtained by green (biogenic) routes are free from toxicity of 
by-products than the physicochemical-derived nanoparticles (Solgi and Taghizadeh 
2012; Baker et al. 2013).

The green or biological production of nanoparticles is associated with several 
advantages, such as eco-friendly and rapid production methods and the cost- 
effective and biocompatible type of produced nanoparticles. In addition, there is no 
need for more stabilizing agents, since microorganism and plant components act as 
stabilizing agents (Makarov et al. 2014). Biological nanoparticles are more active 
due to the binding of biologically active components on the surface of synthesized 
nanoparticles from the biological sources, like microorganisms and plants. Many 
abundant metabolites with pharmacological effects are available and found to bind 
to the synthesized nanoparticles, providing supplementary profit through the 
increased effectiveness of the nanoparticles, especially in medicinal plants (Makarov 
et al. 2014; Singh et al. 2016). Moreover, by biological synthesis the needed steps 
can be reduced, for example, the attachment of some functional groups to the 
nanoparticle surface for making them biologically active, which is an additional 
step for physiochemical production (Baker et  al. 2013). Time of biosynthesizing 
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nanoparticles is also lower than that of the physiochemical methods. High-speed 
synthetic methods have developed with high yields via development of different 
plant sources. For example, silver nanoparticles (SNPs) have been synthesized via 
different plant extracts through 2, 5, and 45 min. Gold nanoparticles have also been 
shown to be produced within 3 and 5 min, indicating the simple and fast synthesis 
of nanoparticles by plant extracts (Lombardi and Garcia Jr 1999; Vijayaraghavan 
and Yun 2008; Priyadharshini et al. 2014; Singh et al. 2016).

27.1.3.3.2 Plant-Mediated Synthesis (Phytosynthesis) of Nanoparticles
Using plants or their extracts for synthesis of nanoparticles has been considered in 
nanotechnology as an environmentally friendly method. The basic green (biologi-
cal) chemistry principles make cleaner synthesis of nanoparticles. Biological syn-
thesis (phytosynthesis) applies molecular tolerance mechanisms and metabolomics 
to form nanoparticles (Rai et al. 2018).

Phytonanotechnology has recently offered new methods to synthesize nanopar-
ticles, which are cost-effective, simple, high speed, eco-friendly, and stable. 
Biological synthesis using plants is associated with several benefits, including scal-
ability, biocompatibility, and the medical use of synthesizing nanoparticles using 
the water, common solvent, as a reducing medium (Noruzi 2015). Therefore, plant- 
mediated nanoparticles derived from readily accessible plant materials and the 
plants’ safety are both effective to achieve the high demand for nanoparticles to use 
in the environmental and biomedical settings. Accordingly, it has been tried to 
investigate various plant species to assess their potential to synthesize nanoparticles. 
Different plant parts, such as roots, stems, leaves, fruits, flowers, and their extracts, 
have been applied to produce metal nanoparticles. Table 27.1 shows some of these 
sections/extracts. The underlying mechanism and the components essential for 
plant-mediated synthetic nanoparticles have not yet been demonstrated. Proteins, 
amino acids, organic acid, and vitamins and also secondary metabolites, including 
flavonoids, alkaloids, polyphenols, terpenoids, heterocyclic compounds, and poly-
saccharides, have been shown effective in metal salt reduction. They also act as 
capping and stabilizing factors to form nanoparticles (Duan et  al. 2015). In this 
regard, Solgi (2014) found that saffron petal extract includes phenolic compounds, 
including flavonoids (kaempferol) and anthocyanins (anthocyanidin, delphinidin, 
and pelargonidin). In addition, Solgi indicated that pomegranate peels have pheno-
lic compounds, including ellagic acid and quercetin, quercitrin, rutin, luteolin, gal-
lic acid, and myricetin, found in fresh flowers of Damask rose (Solgi and Taghizadeh 
2012). Their hydroxyl groups are able to attach silver ions and affect the biosynthe-
sis of SNPs and also act as reducing agent for the reduction of silver ions (Ag+) to 
SNPs (Ag0) (Solgi and Taghizadeh 2012; Solgi 2014). Furthermore, El-Kassas and 
El-Sheekh (2014) reported that the hydroxyl functional group of the polyphenols as 
well as the carbonyl group of proteins of Corallina officinalis extract are associated 
with producing and stabilizing gold nanoparticles. Philip et al. (2011) demonstrated 
formation and stabilization of silver and gold nanoparticles via biomolecule attach-
ment in leaf extract of Murraya koenigii. It has stated that various mechanisms to 
synthesize nanoparticles are found in several plant species (Baker et  al. 2013). 
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Table 27.1 Biological synthesis of several metal/metal-oxide nanoparticles by different plant 
parts

Plant name Plant section
Nanoparticle 
name Size (nm) References Year

Geranium 
graveolens

Leaves Silver 27 Shankar et al. 2003

Aloe vera Leaves Silver and gold 15–20 Chandran et al. 2006
Carica 
papaya

Fruits Silver 15 Jain et al. 2009

Rosa rugosa Leaves Silver and gold Silver, 11; 
gold, 12

Dubey et al. 2010

Coleus 
amboinicus

Leaves Gold 4.6–55 Narayanan and 
Sakthivel

2010a, 
b

Capsicum 
annuum

Fruits Silver 2–6 Jha and Prasad 2011

Rosa 
damascena

Petals Silver 13–28 Solgi 2012

Punica 
granatum

Peel Silver 19–29 Solgi 2012

Anogeissus 
latifolia

Gum powder Silver 5.5–5.9 Kora et al. 2012

Banana Peel Cadmium sulfide 1.48 Zhou et al. 2014
Crocus 
sativus

Petals Silver 2–3.5 Solgi 2014

Euphorbia 
prostrata

Leaves Silver and 
titanium dioxide 
(TiO2)

Silver, 
10–15; 
TiO2, 
81.7–84.7

Zahir et al. 2015

Ginkgo 
biloba

Leaves Copper 15–20 Nasrollahzadeh 
and Sajadi

2015

Panax 
ginseng

Root Silver and gold Silver, 
10–30; 
gold, 10–40

Singh et al. 2015

Azadirachta 
indica

Leaves Silver 41–60 Poopathi et al. 2015

Cocos 
nucifera

Leaves Lead 47 Elango and 
Roopan

2015

Pistacia 
atlantica

Seeds Silver 27 Sadeghi et al. 2015

Citrus 
medica

Fruits Copper 20 Shende et al. 2015

Lawsonia 
inermis

Leaves Iron 21 Naseem and 
Farrukh

2015

Origanum 
vulgare

Leaves Titanium dioxide 
(TiO2)

2–15 Shiak et al. 2018

Thymus 
vulgaris

Waste 
extract 
(leaves and 
stems)

Zinc oxide (ZnO) 10–35 Abolghasemi 
et al.

2019
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Eugenol as the certain terpenoid in Cinnamomum zeylanisum plays a crucial role in 
the synthesis of gold and SNPs (Makarov et al. 2014). It should be noted that dicot 
plants have different secondary metabolites possibly effective for nanoparticle syn-
thesis (Singh et al. 2016).

27.2  Characterization of Nanoparticle

Several experimental methods have been employed to observe, form, and character-
ize metallic nanoparticles.

27.2.1  UV-VIS Spectroscopy

UV-visible spectroscopy (UV-Vis) method is applied to quantify the light absorbed 
or scattered by a sample. It has widely accepted that UV-Vis spectra can be applied 
for evaluating the size and shape of the controlled nanoparticles in aqueous suspen-
sions. UV-Vis is employed for determining the concentration of the elements in 
solutions, namely, silver, gold, and copper. In this respect, it is used for detecting 
and evaluating the possibility of producing nanoparticles of metals, including silver, 
and its concentration in a watery environment. A wavelength of 200–700  nm is 
commonly applied for determination of the nanoparticle production from metals. 
For example, the exact wavelength peak for absorption of silver and gold is 450 and 
550 nm, respectively. Indeed, UV-Vis is a tool for measuring the absorption spectra 
of the samples (Jain et al. 2009; Jha et al. 2009; Dubey et al. 2010; Bankar et al. 
2010; Krishnaraj et al. 2010; Solgi and Taghizadeh 2012; Solgi 2014).

27.2.2  FTIR Spectroscopy

Fourier-transform infrared (FTIR) spectroscopy is developed for measuring the 
chemical bonds in surface atoms of plant samples and functional atoms involved in 
the recovery of nanomaterials and their production as well. FTIR with infrared light 
irradiation makes the molecular bands vibrate leading to design the graph. The 
obtained graph includes different absorption peaks, each of them shows specific 
chemical bonds. The infrared spectroscopy (IR spectroscopy) device to detect 
chemical groups is involved in the formation of SNPs. For instance, the chemical 
carbonyl group has a peak of approximately 11,700 cm (Jain et al. 2009; Jha et al. 
2009; Dubey et  al. 2010; Bankar et  al. 2010; Krishnaraj et  al. 2010; Solgi and 
Taghizadeh 2012; Solgi 2014).
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27.2.3  Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) method is the commonly used procedure 
for measuring the morphology, size, and size distribution of the metal 
nanoparticles.

27.2.4  Scanning Electron Microscopy(SEM)

A scanning electron microscope is applied for determining the shape or precision 
for evaluating the size of nanomaterials formed in the nanometer size and also for 
assessing their shapes. For TEM, nearly 25 μl of the samples is removed coating on 
copper rod, followed by transmitting SNPs using an electron microscope (Jain et al. 
2009; Jha et al. 2009; Dubey et al. 2010; Bankar et al. 2010; Krishnaraj et al. 2010; 
Solgi and Taghizadeh 2012; Solgi 2014).

27.2.5  X-Ray Diffraction (XRD)

XRD system is a useful tool for analyzing the crystal structure as well as mean par-
ticle size of the nanoparticles. It is used for the quantitative and qualitative measure-
ment of the solid and liquid phases. Accordingly, dried SNPs are covered on the roll 
of the apparatus, and the spectrum is then set at 40 kV voltages and 30 mAh current 
and the element’s radiation is transmitted. Scherrer equation was developed for cal-
culation of the crystallite size from XRD diffraction pattern for nanoparticles:

 d B= Kλ θ/ cos  

where

D = mean dimension of crystallites (nm)
λ = X-ray radiation wavelength
K = Scherrer constant (morphology, commonly 0.94)
B = the line full width at half maximum (FWHM) height in radians
θ = Bragg angle (the position of the diffraction peak maximum)

(Jain et al. 2009; Jha et al. 2009; Dubey et al. 2010; Bankar et al. 2010; Krishnaraj 
et al. 2010; Solgi and Taghizadeh 2012; Solgi 2014).

27.2.6  Energy Dispersive X-Ray Spectroscopy (EDS or EDX)

EDX spectroscopy is an appropriate method for identification, purity, and the elemen-
tal composition of the formed nanoparticles. The shape and chemical composition of 
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the resulted nanoparticles are assessed through scanning electron microscopy (SEM), 
which is equipped with an energy-dispersive X-ray spectrometer (EDX or EDS) (Jain 
et al. 2009; Jha et al. 2009; Dubey et al. 2010; Bankar et al. 2010; Krishnaraj et al. 
2010; Solgi and Taghizadeh 2012; Solgi 2014).

27.3  Nanoparticles and Their Applications

Nanotechnology has known as one of the most crucial technologies in all academic 
fields. Nanomaterials have been applied unknowingly for a long period of time. For 
instance, gold nanoparticles used for staining drinking glasses also have treated 
several disorders. In recent years, the different uses of metal nanoparticles have 
been considered in many fields, including biomedical, agricultural, environmental, 
and physiochemical fields (Solgi et al. 2009, 2011; Solgi 2014). Gold nanoparticles 
have shown to be used for the specific delivery of mediations, like methotrexate. 
They have also been found effective to diagnose genetic disorders, detect tumors, 
and also use for photoimaging. It has been shown that iron oxide nanoparticles are 
useful for drug delivery, treatment of cancer, tissue repair, cell labeling, targeting 
and immunoassays, detoxification of biological fluids, magnetic resonance imag-
ing, and magnetically responsive drug delivery therapy (Singh et al. 2016). SNPs 
recently have been extensively considered due to their increasing application in 
various areas, including textiles, electronics, pharmaceutics, cosmetics, and envi-
ronmental remediation. They have also been employed for many antimicrobial 
applications. Anticancer, anti-inflammatory, and wound healing are other uses of 
SNPs (Solgi et al. 2009, 2011; Ahamed et al. 2010). Considering their nontoxic, 
biocompatible, self-cleansing, skin-compatible, antimicrobial, and dermatological 
effects, zinc and titanium nanoparticles have been applied in cosmetic, biomedical, 
and ultraviolet (UV)-blocking agents (Zahir et al. 2015; Singh et al. 2016). In addi-
tion, metal nanoparticle has been used in the spatial analysis of different biomole-
cules, such as peptides, nucleic acids, lipids, fatty acids, glycosphingolipids, and 
molecules of drug to image these molecules with higher sensitivity and spatial reso-
lution (Nasrollahzadeh et al 2014).
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