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Abstract In this paper, an overview of recent advances in the research on train
platforming problem (TPP) is presented. The TPP is usually the last problem
encountered in planning a railway system which occurs after a schedule of trains in
a railway network (train timetable) has been determined. It aims to map a given
train timetable to an existing station infrastructure. This process is critical as it
determines the feasibility of an optimally generated train timetable along a railway
line at station(s) to be visited by trains on the timetable. This optimization problem
is in most stations solved manually, and it is a time consuming and error-prone
process. Several computer programs are now being developed to aid infrastructure
managers and train operators as decision support systems in solving this problem.
This paper presents some of these solutions. However, due to variations in oper-
ating policies of railway industries in different countries, several variants of this
problem exist in the literature. These variations could be seen in the solution
approach through the importance attached to level of service, safety of operations,
capacity utilization, etc. These variations and the various optimization techniques
adopted by researchers are also discussed in this paper. Currently, most models and
algorithms presented in literature are not ready for use as commercial systems.
Integrating such systems into real-life planning and operations is crucial for efficient
use of railway systems.
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1 Introduction

In railway operations, trains operate in a railway network following a systematic
predetermined schedule. One of such schedules is the train platforming plan. This
essential component of railway operations planning provides information on the
routing of trains at stations and platform each train will occupy for a definite period
of time. Hence, the train platforming problem aims to solve, for a given train
timetable and station topology, the allocation of platform and route to (and from)
such platform for each train. This plan is crucial as it validates the feasibility of an
optimal train timetable since most macroscopic-modelled timetables only contain
an upper bound of the maximum number of trains that can simultaneously be
present in a station.

The solution to such problem is usually an easy task when the station has fewer
number of tracks and less traffic. However, the problem becomes complicated as the
number of platforms and traffic increases; which is mostly the case, as many
countries are promoting railway transport over other modes of transportation. As a
result, using computer algorithms in solving the TPP becomes necessary as the
conventional manual method is tedious and, in some cases, yielding infeasible
solutions. Cardillo and Mione [1] highlighted how in a particular case, platforming
242 trains in a station with 16 platforms require 15 working days for an expert
planner.

Capacity of stations to handle the TPP is usually determined by the number of
platforms, station tracks, and the trains operations (coupling and uncoupling of
trains, frequency, arrival and departure times, headway, dwell times, etc.). All these
factors are known a priori and are considered in coming up with a station plat-
forming plan. However, the occurrence of a disturbance in real-life railway oper-
ations is inevitable and when such happens, an existing platforming plan in most
cases becomes infeasible. Hence, the TPP is a problem encountered at three levels
of a railway system [2, 3]. The first level (strategic level) involves analysis of future
infrastructural capacity requirements of station. The second level (tactical level) is
during the timetabling stage; where the feasibility of a generated timetable at sta-
tions is determined. Lastly, during real-time operations (operational level) when a
rescheduled timetable invalidates an existing train platforming plan.

This paper focuses only on recent optimization models and algorithms for
solving train platforming problems at strategic, tactical, and operational levels.
However, discussions on what the authors believe are fundamental older models
and algorithms are included.

The paper is structured as follows; Sect. 2 gives a background on train time-
tabling and train platforming and how the two are related. Section 3 presents the
different variants of TPP models and algorithms with their performances. Finally,
Sect. 4 contains conclusions and suggestions on future research paths.
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2 Background

2.1 Train Timetable and Station Infrastructure

In railway transportation, trains move along a network of rail lines (sections) and
stations in a systematic way using a series of coordinated signals and communications
systems.Due to capacity limitation and the need for a safe operation, these trainsmove
along the network through predetermined schedule defined in a timetable. The
timetable provides information such as arrival and departure times at stations to be
visited by trains, direction of travel, etc. This information helps in providing a
conflict-free operation across the railway network. The train timetable could be cyclic;
in which it repeats itself every hour of a day or acyclic; in which trains are operated as
per demand period and also repeats itself every day. Because transportation is a
derived demand, demand for transportation could be low during some periods of the
day and exceptionally high during other periods (peak demand). This makes the latter
method of timetabling more accommodating to real-life situations. However, in many
countries, the train timetable is periodic [4] technically because it makes the operation
and management easier and is also easier for passengers to remember.

An optimum timetable (which is one of the two inputs in a train platforming
plan) ensures that there are no conflicts along the sections in a railway network
while making efficient use of available resources. This timetable is usually obtained
after frequency and stopping patterns (line planning) have been defined [5].
Researchers developed several computer programs to generate these timetables
while others provide a conflict-free timetable in the event of a perturbation in the
system [6–8]. Because this paper is not focused on train timetabling, we will refer
the reader to a review on mathematical models and algorithms involved in railway
timetable scheduling [3] and railway timetable rescheduling [9].

The second input in a train platforming plan is the station infrastructure, usually
presented in a form of station topology. The optimum train timetable ensures a
conflict-free operation across the railway sections. The next task is to ensure a
conflict-free operation at station. This is determined with the aid of the station
topology. The station topology is a diagrammatical representation of physical
elements in the station (platforms, turnouts, switches, track sections, etc.) with
nodes and directional lines (Fig. 1).

Fig. 1 Topology of a typical passenger railway station
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2.2 General Train Platforming Problem and Mathematical
Formulation

The assignment of trains to platforms in a station as per timetable schedule is what a
platforming problem entails. This assignment has to also define the path that each
train will follow to such platform while maintaining operational constraints.
Usually, such problem requires the planner (either manual or automatic) to map the
train traffic in a given train timetable unto station infrastructure. Over the years,
computer programs have been developed to aid dispatchers solve such problem,
some of which have been incorporated into real-train operations, example, RFI-Italy
[10] and Ocapi-Belgium [11]. Like other railway operations, the platforming
problem is mostly solved as a periodic event scheduling problem (PESP) since most
train timetables are cyclic. In such problem, event times are confined within [0, C),
where “C” represents the cycle length.

Different mathematical formulations were provided by researchers; which will
be discussed briefly in section three. However, as a representative example, we will
present a description of a general and encompassing mathematical formulation
similar to that in Caprara et al. [10]. The station to be considered here (Fig. 1) has
(one-way) double lines and a single (two-way) line, 6 platforms (or 3 shared
platforms) with several arrival and departure paths. An arrival path, here, is a set of
interconnected sections of track and switches a train will follow upon entering the
station to its assigned platform. A departure path in this paper, defines the set of
interconnected sections of track and switches a train will follow when leaving the
station from its assigned platform. In the general version of the problem, we are
given a set B of platforms and a set T of trains to be routed to a platform every day
of a given time horizon. Moreover, for each train t 2 T, we are given a collection Pt

of possible patterns. Each pattern corresponds to a feasible route of train t within
the station, including a stopping platform, an arrival path and an arrival time, a
departure path and a departure time. Each train must be assigned a pattern that will
be repeated every day of the time horizon.

Operational constraints forbid the assignment of patterns to trains if this implies
occupying the same platform at the same time, or also using arrival/departure path
that intersects at the same time or too close in time. In the general version, this is
represented by defining a pattern-incompatibility graph with one node for each
train-pattern pair (t, p) with p 2 Pt, and an edge joining each pair (t1, p1), (t2, p2) of
incompatible patterns. This graph models “hard” incompatibilities that must be
forbidden in a feasible solution. However, in the general version, there are also
“soft” incompatibilities, generally associated with the use of arrival/departure paths
close in time that are admitted but penalized in the objective function.

In case not all trains could be assigned to regular platforms, it is customary to
make use of dummy platforms; which are fictitious platforms that we will penalize
their use (in the objective function) but may be necessary to obtain a feasible
solution. For a strategic train platforming plan, the use of a dummy platform
suggests enlarging the station, whereas for a tactical and operational train
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platforming plan, the use of a dummy platform suggests that not all trains can be
platformed at the given instance. When such happens, the options are either to
cancel trains, queue-up trains or relax some hard constraints imposed in the model.

The TPP requires the assignment of a pattern p 2 Pt to each train t 2 T so that no
two incompatible patterns are assigned and the objective function defined by the
following coefficients is minimized. There is a cost cb for each platform b 2 B that
is used in the solution, a cost ct,p associated with the assignment of pattern p 2 Pt to
train t 2 T, and a cost ct1, p1, t2, p2 associated with the assignment of pattern p1 2
Pt1 to train t1 and the assignment of pattern p2 2 Pt2 to train t2 for (t1, t2) 2 T2, in
case these two patterns have a “soft” incompatibility. Here, T2 � {(t1, t2): t1, t2 2 T,
t1 6¼ t2} denotes the set of pairs of distinct trains whose patterns may have a “hard”
or “soft” incompatibility.

3 Train Platforming Models and Algorithms

3.1 Strategic Level Optimization Models and Algorithms

The TPP at this level is typically a station’s infrastructure capacity assessment, with
a view of determining the adequacy or otherwise of station infrastructure.
Zwaneveld et al. [2] approached the routing of trains through stations based on a
node-packing approach following their proof of the problem as NP-complete. The
algorithm developed, which is based on the formulation of the problem as a
node-packing problem, and on the application of preprocessing techniques,
heuristics and a branch-and-cut procedure was implemented into the planning
system, STATIONS.

Zwaneveld et al. [12] improved on the model and algorithm presented in
Zwaneveld et al. [2]. Specifically, the model was improved by incorporating
shunting decisions and preferences to allocation of trains to certain desired plat-
forms and routes. The algorithm was improved by extending the preprocessing
techniques and also investigating their characteristics with respect to propagation.
These improvements proved promising as all the problem instances studied were
resolved to optimality within an average computing time of about 1 min.

3.2 Tactical Level Optimization Models and Algorithms

At the tactical stage, it is believed that the platformer has all the organizational
details of the railway system to plan for. These details include the train timetable,
layout of stations along the line and other enterprises’ policies that exist.

While Zwaneveld et al. [12] considered the general routing of trains through
stations (which assigns trains to a complete path through a station; platform
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allocation being part of the task) other researchers solved the problem while putting
emphasis on the allocation of platforms to arriving trains. One of such works was
carried out by Cardillo and Mione [1]. They modelled the TPP as a graph coloring
problem (the k L-list s coloring problem).

An algorithm was developed based on the formulation of the problem as a graph
coloring problem and application of a backtracking and heuristic technique to solve
the problem. In one of their reported case studies, a station with 13 tracks (plat-
forms) and 177 trains on a 24-hour cycle took a Linux Pentium at 166 MHz, 115 s
of CPU time to yield a solution.

Billionet [13] suggests integer programming as an alternative solution approach
to the TPP as formulated by De Cardillo and Mione [1]. The two ILP formulations
he described aim to find at each time, whether an integer solution exists or not.
These solutions, however, do not provide an optimization result of the TPP. To
obtain that, Billionet [13] introduced into the more effective ILP an objective
function which maximizes the assignment of trains to a particular platform.
A station with up to 200 trains and 14 platforms could be solved using standard and
commercially available ILP solver software.

Carey and Carville [14] presented a greedy heuristic solution to the TPP which
aims to simulate the practical process of train operations in countries where there
are competing train operating companies (TOCs) operating on common lines and
stations. To overcome the difficulty in adding up the costs or penalties imposed on
deviations from preferred train arrival and departure times and cost of choosing less
preferred platform, Carey and Carville [14] introduced “lexicographic” cost func-
tions or decision rules. To resolve conflicts, Carey and Carville [14] delay the trains
rather than advance them in an effort to imitate the practice of traditional manual
planners (especially in Britain).

The algorithm (which they call A1) proves promising when tested on the busy
and complex Leeds station (in the North of England) with 12 main platforms (or 34
sub platforms) and 491 trains daily. The work of Carey and Crawford [15] extends
the problem to consider a network of busy complex stations. This is particularly
essential because a change in the planned arrival and/or departure time (s), dwell
time at a station for a train will propagate to subsequent stations the train will visit
especially when adequate buffer time is not available.

Caprara et al. [10] considered minimizing the number of dummy platforms used
in the objective function. The model contains a quadratic term which results from
the “soft” incompatibility constraints. This complexity in the model is relieved by
using a novel linearization method that requires smaller number of variables and
leads to a stronger linear programming relaxation instead of the conventional
approach of introducing additional variables to represent the product of the original
binary variables.

To assess the performance of their branch-and-cut-and-price method, they
compared it with the current heuristic method used by Rete Ferroviaria Italiana. In
the four cases they studied, their algorithm proved superior at all possible values of
dynamic threshold (p) tested.
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The ability of a train platforming plan to absorb the inevitable disturbances in
railway operations is crucial. This led Dewilde et al. [16] to introduce an approach
to improve the robustness in a complex station zone. To do that, they focused on
three aspects of the planning; the routing of the trains through the station zone, the
timetable at the stations within this zone, and the platform assignments. The
algorithm developed has three modules, each to tackle an aspect of the planning.

In the platforming module, platform assignment of all trains is assumed to be
fixed, as is the usual approach in solving platforming problems. To save compu-
tation time, only relevant candidate platforms are evaluated for a train (when
assumption of a fixed platform assignment could not be made). A dominance rule is
used to limit the number of candidate new routes and a restriction is placed on the
amount of conflicts associated with the new route in comparison with the old one.
The process described will yield for each candidate platform change, a solution for
all the train platforming at all the stations within the zone. The impact of each
change is evaluated using the internal timetabling module and the best platform
change is selected if it leads to an improved solution. Such cycle is repeated until
the overall algorithm is not able to find an improved version of route, timetable, and
platform assignment anymore.

Contrary to De Cardillo and Mione [1] and Billionet [13], Sels et al. [11]
dropped the assumption that all routes in the station will require the same time to be
traversed by trains. This assumption is impractical, considering the variation in
speed limit at different switches, length of routes, train length and speed, etc.
Optimality in the mixed-integer linear programming (MILP) model is attained by
minimizing the total cost function, which comprises of penalty for assignment of a
non-preferred (real) platform and an even higher penalty for assignment of a
dummy platform. In the goal function, all hard constraints are forbidden. This is
necessary so that more platforming options could be obtained when a preferred
platform assignment could not be made.

The authors compared three solvers (CPLEX, Gurobi, and XPRESS) to deter-
mine which best solves the MILP model within a reasonable time. The computation
times obtained are all satisfactory even without the use of variable reduction
techniques. For the 10 station’s one-day traffic tested, and results showed that about
30 s are required to platform all trains at the tactical level and below 9 min at the
strategic level.

Petering et al. [17] modeled the train timetabling and platforming problems
together by a mixed-integer linear programming (MILP) model and consider a
single track, unidirectional rail line consisting of an origin, destination, intermediate
stations laying between the origin and destination, and a set of parallel sidings
(platforms) in each station that accommodate trains stopping in that station.

The MILP model has two parts objective function. The first aims at minimizing
the cycle length, while the second minimizes the total journey time of all train-types
using linear constraints and a linear objective function. The effectiveness of the
model was demonstrated when it solved a large problem instance inspired by the
Japanese Shinkansen train in less than an hour using IBM ILOG CPLEX 12.5
solver on a desktop computer with eight 3.4 GHz cores and 16 GB RAM. Due to
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the complexity of the model and the importance attached to computing times,
preprocessing technique is used and this helps in reducing computing time.

3.3 Operational Level Optimization Models and Algorithms

The solution of TPP at the operational level is the most sought-after, since it is at
this level that real-time management of operations is involved. To enhance the
stability of a train platforming model, Miao et al. [18] present a model that omits the
compatibility constraints of resource occupations. This restricts the assignment of
only one resource to every operation. Stability according to Miao et al. [18] could
be achieved by making the headway times among potential conflicting tasks as
rationale as possible. In the two-component objective function, they propose, the
first component (which is the primary objective) ensures the stability of the train
platforming plan by maximizing the time interval between two adjacent occupations
of track and the second component (secondary objective) ensures compatibility of
the platform allocation plan in the station. The overall objective function aims to
minimize the cost of changing arrival and departure times of trains to return a
feasible solution. The stability enhancing train platforming model (SETPM) is
solved using an ant colony optimization algorithm.

The assess of the effectiveness of the SETPM, they compared its performance
with a model for minimizing resource allocation costs. This is comparison of cost
minimization; therefore, the component of the SETPM objective function that
measures stability is dropped and a penalty is introduced to ensure a feasible
solution. The results of an experiment carried out on a high-speed train station in
Changsha reveals that the SETPM is capable of increasing the stability of the train
platforming plan by about 37%.

Chakroborty and Vikram [19] presented an optimum solution approach to TPP to
take care of the uncertainties that occur during real-life operations. This according to
them is necessary as most long-distance trains are often delayed by an hour or more
(in their case study, India). This situation leads to some trains queuing up at the
station entrance due to unavailability of platforms. They presented a model which
takes into account the delay (that happens in real-life operations) and subsequent
queuing up of trains as a result of such delays. The model is capable of resolving
such problems provided the arrival of trains to stations is known at least an hour in
advance. Because this is a solution at operational level, the authors do not want any
adjustments to the arrival times of trains (since this will translate to even more delays
or impractical advancement) and hence, arrival times of trains are direct inputs in the
model (not variables). The key decision variables are the times trains (queue at the
station entrance) will enter the station and the allocated platform for each train.

To obtain an optimum assignment, the costs on time a train spent waiting at
station entrance, a non-preferred platform assignment and last-minute change to
previously (announced) assigned platform are minimized. The MILP formulation
using ILOG CPLEX 9.0.0 on a 400 MHz processor and 1 GB RAM is used to
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solve to optimality various problems related to a busy station in India; with 9
platforms and an average arrival rate of 55 trains per hour (specifically, 110 trains in
2-hour time horizon). In the 10 min computation time, all trains were platformed
without any queue at the station entrance.

4 Conclusions and Further Research

In this paper, we discussed the train platforming problem, which is a problem of
assigning platforms to arriving trains in a station while satisfying various con-
straints encountered in railway operations. We presented a general mathematical
description of the problem and the various levels of railway system at which this
problem is encountered. A great number of papers on TPP tackled the problem at
the tactical level with an aim to provide an optimum (or at least a feasible)
assignment of platforms to trains. Most models considered the optimum assignment
of as many trains as possible to platforms and the unassigned trains will either be
rescheduled or cancelled. Other models considered preferences in allocation of
certain platforms to certain trains. In formulating such models, it is believed that
some operations (in real time) will overlap and lead to infeasibility. Hence, buffer
times are introduced to absorb such small discrepancies. However, perturbations in
real-life railway operations are unpredictable and, in most cases, render an existing
train platforming plan infeasible. This problem is addressed in TPP at operational
level. This is perhaps the most demanding, since real-time management of train
operations is involved and in the event of a disturbance which invalidates an
existing train platforming plan, solutions will be required within short period of
time. Unlike in the strategic and tactical levels, computing time for solving TPP at
operational level is very important.

The use of combined approach in tackling the problem of perturbations at
operational level is seen in most recent works on railway operations planning. This
combined approach could involve incorporating the timetabling and platforming
plans into one problem and solving the problem all together. Although, most TPP
models and algorithms are developed as stand-alone solutions, others could be used
as components for a more general system in scheduling a railway network. This
approach makes the whole process much efficient and easier to manage.

In further research, more attention should be focused on improving the robust-
ness of railway stations by considering an integrated approach of timetabling and
platforming for even larger network of stations. This will ensure the stability of
train timetabling and platforming plans to effects of disturbances and disruptions.

Also, the use of some hard constraints limits usable capacity in a station. This
could be seen in models where a hard constraint is imposed on the occupation of a
route in a station by two trains irrespective of the clearance between them. This is
indeed not always true, as liberation points exist in real stations that allow two trains
to occupy the same route at a time especially during peak periods or periods where
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the timetable is rescheduled. Subsequent research should explore the use of these
flexible constraints that could improve the capacity of a station while maintaining
safety of operations.
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