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Abstract. With the arrival of big data and the improvement of
computer hardware performance, deep neural networks (DNNs) have
achieved unprecedented success in many fields. Though deep neural net-
work has good expressive ability, its large model parameters which bring
a great burden on storage and calculation is still a problem remain to be
solved. This problem hinders the development and application of DNNs,
so it is worthy of compressing the model to reduce the complexity of
the deep neural network. Sparsing neural networks is one of the meth-
ods to effectively reduce complexity which can improve efficiency and
generalizability. To compress model, we use regularization method to
sparse the weights of deep neural network. Considering that non-convex
penalty terms often perform well in regularization, we choose non-convex
regularizer to remove redundant weights, while avoiding weakening the
expressive ability by not removing neurons. We borrow the strength of
stochastic methods to solve the structural risk minimization problem.
Experiments show that the regularization term features prominently in
sparsity and the stochastic algorithm performs well.
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1 Introduction

Deep neural networks (DNN) have achieved unprecedented performance in a
number of fields such as speech recognition [1], computer vision [2], and natural
language processing [22]. However, these works heavily rely on DNN with a huge
number of parameters, and high computation capability [5]. For instance, the
work by Krizhevsky et al. [2] achieved dramatic results in the 2012 ImageNet
Large Scale Visual Recognition challenge (ILSVRC) using a network containing
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60 million parameters. A convolutional neural network, VGG [27], which wins
the ILSVRC 2014 consists of 15M neurons and 144M parameters. This challenge
makes the deployment of DNNs impractical on devices with limited memory
storage and computing power. Moreover, a large number of parameters tend to
decrease the generalization of the model [4,5]. There is thus a growing interest
in reducing the complexity of DNNs.

Existing work on model compression and acceleration in DNN can be cat-
egorized into four types: parameter pruning and sparsity regularizers, low-rank
factorization, transferred/compact convolutional filter and knowledge distilla-
tion. Among these techniques, one class focuses on promoting sparsity in DNNs.
DNNs contain lots of redundant weights, occupying unnecessary computational
resources while potentially causing overfitting and poor generalization. The net-
work sparsity has been shown effective in network complexity reduction and
addressing the overfitting problem [24,25].

Sparsity for DNNs can be further classified into pruning and sharing, matrix
designing and factorization, randomly reducing the complexity and sparse opti-
mization. The pruning and sharing method is to remove redundant, non-
information weights with a negligible drop of accuracy. However, pruning stan-
dards require manual setup for layers, which demands fine-tuning of the param-
eters and could be cumbersome for some applications.

The second methods reduce memory costs by structural matrix. However,
structural constraint might bring bias to the model. On the other hand, how to
find a proper structural matrix is difficult. Matrix factorization uses low-rank
filters to accelerate convolution. The low-rank approximation was done layer by
layer. However, the implementation is computationally expensive and cannot
perform global parameter compression.

The third methods randomly reduce the size of network during training. A
typical method is dropout which randomly removes the hidden neurons in the
DNNs. These methods can reduce overfitting efficiently but take more time for
training.

Recently, training compact CNNs with sparsity constraints have achieved
more attention. Those sparsity constraints are typically introduced in the opti-
mization problem as structured and sparse regularizers for network weights. In
the work [26], sparse updates such as the ¢; regularizer, the shrinkage operator
and the projection to £y balls applied to each layer during training. Neverthe-
less, these methods often results in heavy accuracy loss. Group sparsity and the
£y norm are integrated in the work. [3,4] to obtain a sparse network with less
parameters. Group sparsity and exclusive sparsity are combined as a regulariza-
tion term in a recent work [5]. Experiments show that these method can achieve
better performance than original network.

The key challenge of sparse optimization is the design of regularization terms.
£y regularizer is the most intuitive form of sparse regularizers. However, mini-
mizing ¢y problem is NP-hard [15]. The ¢; regularizer is a convex relaxation
of ¢y, which is popular and easy for solving. Although ¢; enjoys several good
properties, it may cause bias in estimation [8]. [8] proposes a smoothly clipped
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absolute (SCAD) penalty function to ameliorate ¢, which has been proven to
be unbiased. Later, many other nonconvex regularizers are proposed, including
the minimax concave penalty (MCP) [16], ¢, penalty with p € (0,1) [9-13], £1_2
[17,18] and transformed ¢;(TL1) [19-21].

The optimization methods play a central role in DNNs. Training such net-
works with sparse regularizers is a problem of minimizing a high-dimensional
non-convex and non-smooth objective function, and is often solved by simple
first-order methods such as stochastic gradient descent. Consider that the prox-
imal gradient method is a efficient method for non-smooth programming and
suitable for our model, we choose this algorithm and borrow the strengths of
stochastic methods, such as their fast convergence rates and ability to avoid
overfitting and appropriate for high-dimensional models.

In this paper, we consider non-convex regularizers to sparsify the network
weights so that the non-essential ones are zeroed out with minimal loss of per-
formance. We choose a simple regularization term instead of multiple terms
regularizer to sparse weights and combine dropout to remove neurons.

2 Related Work

2.1 Sparsity for DNNs

There are two methodologies to make networks sparse. A class focuses on induc-
ing sparsity among connections [3,4] to reinforce competitiveness of features.
The ¢, regularizer is applied as a part of regularization term to remove redun-
dant connections. An extension of ¢; o norm adopted in [5] not only achieve the
same effect but also balance the sparsity of per groups.

Another class focuses on the sparsity at the neuron level. Group sparsity is
a typical one [3,4,6,7], which is designed to promote all the variables in a group
to be zero. In DNNs, when each group is set to denote all weights from one
neuron, all outgoing weights from a neuron are either simultaneously zero. Group
sparsity can automatically decide how many neurons to use at each layer, force
the network to have a redundant representation and prevent the co-adaptation
of features.

2.2 Non-convex Sparse Regularizers

Fan and Li [8] have discussed about a good penalty function that it should result
in an estimator with three properties: sparsity, unbiasedness and continuity. And
regularization terms with these properties should be nonconvex. The smoothly
clipped absolute deviation (SCAD) [8] and minimax concave penalty (MCP)
[16] are the regularizers that fulfil these properties. Recent years, nonconvex
metrics in concise forms are taken into consideration, such as ¢1_o [17,18,31]
and transformed ¢; (TL1) [19-21] and ¢, p € (0,1) [9-13,32].
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3 The Proposed Approach

We aim to obtain a sparse network, while the test accuracy has comparable or
even better result than the original model. The objective function can be defined
by

min L(f(W), D) + () (1)

where f is the prediction function which is parameterized by W and D =
{xi,y;} is a training set which has N instances, and x; € R? is a p-dimensional
input sample and y; € {1,..., K} is its corresponding class label. £ is the loss
function and {2 is the regularizer. A is the parameter which balances the loss
and the regularization term. In DNNs, W represents the set of weight matrices.
As for the regularization term, it can be written as the sum of regularization on
weight matrix for each layer.

£, regularization (0 < p < 1) is studied in the work [9-13]. The ¢, quasi norm
of RY for a variable z is defined by

N

lll, = > (Ja:) (2)

i=1

which is nonconvex, nonsoomth and non-Lipschitz.

And we use an extension of ¢; o called exclusive sparse regularization to pro-
mote competition for features between different weights, making them suitable
for disjoint feature sets. The exclusive regularization of R™*™ is defined by

n m

EL(X) =Y (> (i) 3)

i=1 j=1

The ¢; norm reaches the sparsity within the group, and the ¢5 norm reaches
the balance weight between the groups. The sparsity of each group is relatively
average, and the number of non-zero weights of each group is similar.

In this work, we define the regularizer as follows,

QW) =L =) Y O lwgal)® + u|Vee(W) (4)

g (3

[V

where Vec(W) denotes vectorizing the weight matrix.

4 The Optimization Algorithm

4.1 Combined Exclusive and Half Thresholding Method

In our work, we use proximal gradient method and combine the stochastic
method to solve the regularized loss function, a solution in closed form can
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be obtained for each iteration in our model. Considering that a minimization
problem

min L(F(W), D)+ (1= ) Y (3 lwiil)”
=1 1

When updating Wy, as the regularizer consists of two terms, we first compute an
intermediate solution by taking a gradient step using the gradient computed on the
loss only, and then optimize for the regularization term while performing Euclidean
projection of it to the solution space. Select a batch of samples D;, d; € D;}

[SIE NI

+ UA Z HVec(Wl)H
1=1

(5)

size(D
Wt - Wt SZZC Z dZ) (6)

then do proximal mapping of weights after current iteration, compute the opti-
mization problem as follows,

W1 = pTOSC(l—,u)EL(Wt)
7
= argmm ||W Wt”g + 2(W) "

One of the attractive points of the proximal methods for our problem is that
the subproblem can often be computed in closed form and the solution is usually
shrinkage operator which can bring sparsity to models. The proximal operator for
the exclusive sparsity regularizer, proxz g L(W), is obtained as follows:

AL =) [[Wil

|wl’i )+ wy 4
= sign(wei)(Jwg,i| — AL — ) [[Wi] [1)+

Now we consider how to compute the proximal operator of half regularization

pTOI(l—M)EL(W) = (1 -

(8)

Wipr = proxue, o (Wt—i-l)

+ QW) ©)

= argmm HW Wit

The combined regularizer can be optimized by using the two proximal operators
at each gradient step, after updating the variable with gradient. The process is
described in Algorithm 1. When training process terminates, some weights turn to
zero. Then, these connections will be removed. Ultimately, a sparse architecture is
yielded.

5 Experiments

5.1 Basilines

We compare our proposed method with several relevant baselines:
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Algorithm 1: Combined Exclusive and Half Thresholding Regularization
Method for DNN
Input :
initial learning rate 7 , initial weight Wy ,
regularization parameter A , balancing parameter p;
for each layer, mini batch size n, training dataset D ;
output:
the solution w*

=

repeat

until some stopping criterion is satisfied,
n samples randomly selected from D ;
for layer ! do
for {x;,y:} in the samples selected do
L = ve(w? {zo i)
end

N0 s WN

1
wi=w —p, > i1 Lé) ;
Wi := proxa—pyan.eL(Wh);
10 Wi = proxan,ue, ,,(We);

11 end

12 t:=t+1

®

©

[ ] él

e Sparse Group Lasso (SGL) [4]

e Combined Group and Exclusive Sparsity (CGES) [5]
e Combined Group and TL1 Sparsity (IGTL) [28]

5.2 Network Setup

We use Tensorflow framework to implement and evaluate our models. In all cases,
we choose the ReLLU activation function for the network,

o(x) = max(0, ) (10)

One-hot encoding is used to encode different classes. We apply softmax function
as activation for the output layer defined by
pxi) = Zni (11)
where = denotes the vector that is input to softmax, the i;h denotes the index.
We initialize the weights of the network by random initialization according to a
normal distribution. The size of the batch is depending on the dimensionality of

the problem. We optimize the loss function by standar cross-entropy loss, which is
defined as

L= —Zyilog(f(xi)) (12)



164 A. Tang et al.

5.3 Measurement

We use accuracy to measure the performance of the model, floating-point opera-
tions per second (FLOPs) to represent the computational complexity reduction of
the model and parameter used to represent the percentage of parameters in the
network compare to the fully connected network. The results for our experiments
are reported in Table 1.

Table 1. Performance of each model on mnist

Measure 2 SGL | CGES |IGTL |El{, o
Accuracy 0.9749 | 0.9882 | 0.9769 | 0.9732 | 0.9772
FLOPs 0.6859 1 0.8134 1 0.6633 | 0.1741 | 0.1485
Parameter used | 0.2851 | 0.4982 | 0.2032 | 0.1601 | 0.1513

6 Conclusion

We combine exclusive sparsity regularization term and half quasi-norm and use
dropout to remove neurons. We apply £, /» regularization to the neural network
framework. At the same time, the sparseness brought by the regularization term
and the characteristics suitable for large-scale problems are fully utilized; We also
combine the stochastic method with the optimization algorithm, and transform
the problem into a half thresholding problem by proximal method, so that the cor-
responding sparse problem can be easily solved and the complexity of the solution
is reduced.
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