
Nebula: A Blockchain
Based Decentralized Sharing

Computing Platform

Bin Yan, Pengfei Chen(B), Xiaoyun Li, and Yongfeng Wang

School of Data Science and Computing, Sun Yat-sen University, Guangzhou, China
{yanb25,chenpf7,lixy223,wangyf226}@mail2.sysu.edu.cn

Abstract. Nowadays, there is a considerable amount of idle computers
whose computing resources are partially wasted. On the other hand, the
demand of resources is rapidly growing, since the explosion of data and the
complexity of algorithms. To settle the contradictions, we develop Neb-
ula, a decentralized platform based on blockchain for sharing computing
resources. Nebula leverages blockchain to gather the scattered computing
resources and provide a secure and vibrant computation trading market.
Compared to traditional cloud platform, Nebula guarantees extra security
because all transactions in this platform are validated by smart contracts.
No one can tamper the transaction orders which are recorded by a widely
distributed ledger. In Nebula, the resource consumer can order resources
from resource providers with a very simple declarative script. When a deal
is done, consumers can submit jobs to suppliers with a docker instance.
Moreover, we model the order matching procedure of users’ requests into
a global maximum matching problem in a bipartite graph. We adopt the
Hungarian algorithm to find an order matching policy, bringing an 10%
increase to the matching rate in our best case. Moreover, we leverage the
Proof of Authority (PoA) consensus algorithm called Clique, rather than
Proof of Work (PoW) to increase the efficiency of Nebula, which provides
nearly no less security but requires negligible computation on reaching
consensus. To our best knowledge, we are the first to propose a general
blockchain based platform for sharing computing resources, which fully
utilizes the features of blockchain to achieve the scalability, the optimal
order matching and a high performance.

Keywords: Blockchain · Cloud computing · Smart contract ·
Ethereum · Resource sharing

1 Introduction

Last decade has witnessed the growing demand of computational resources, as
researchers have to deal with larger data and more complex algorithms. Especially
with the advent of Big Data and Artificial Intelligence (AI), massive computa-
tion resources are needed including CPU and GPU. On the contrary, a consider-
able amount of devices, such as PC and servers in the data center are always run-
ning under low utilization [5,6,14]. For example, as stated by [5], 80% of servers
c© Springer Nature Singapore Pte Ltd. 2020
Z. Zheng et al. (Eds.): BlockSys 2019, CCIS 1156, pp. 715–731, 2020.
https://doi.org/10.1007/978-981-15-2777-7_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2777-7_58&domain=pdf
https://doi.org/10.1007/978-981-15-2777-7_58


716 B. Yan et al.

in Google’s data center are running under 20% utilization. These computers show
a great potential to fill the requirement gap but fail to gather together and being
scheduled. Highly distributed devices around the world currently are not reliably
connected and arranged to meet the requirement of the users.

As for organizing the public computing resource, some systems such as
BOINC [1], SETI [18] are successful pioneers. However, the computing resources
are joined in a volunteer way which makes them are unstable. Moreover, they
are designed for some specific jobs especially for science computing. People need
a long-time learning curve to run their jobs in such a platform. Recently, the
blockchain technology has been proposed and widely studied in both of academic
world and industry world [2–4,12,15,16,21,22]. From one survey [23], we can see
there are many fields where Blockchain can be applied.

Due to the tamper-resistant, security, and token based ecology of Blockchain,
it has been widely used in many fields such as food tracking, currency exchange
and so on. Recently, a novel kind of cloud computing named decentralized cloud
computing driven by Blockchain emerges such as Golem [10], iEXEC [11], SONM
[19], UChain [20]. Although they are capable to run decentralized applications
on their chains, they are not sufficient to support general computing. SONM [19]
is the most similar to our paper. However, it does not provide an global optimal
order matching policy, which leads to a low efficiency. To integrate the idle
resources and overcome the drawbacks of existing systems, we develop Nebula,
a decentralized platform based on Ethereum [7] for computational resources
sharing.

Two main problems should be resolved for any sharing platform like Nebula.
The first one is security. In our implementation, smart contract, as a validator,
ensures every attempt to modify the system (e.g. a user’s request) is legal and
all the data accepted by the system is consistent. The blockchain technique itself
further makes sure that data is unmodified and trusty.

The second one is stimulation. Nebula, like an ecosystem of Sharing Econ-
omy, should fairly reward suppliers and charge consumers. Nebula leverages a
cryptocurrency called Nebula Token as a payment of computational resources.
Nebula Token is free to transfer to/from Ether (i.e., Ethereum Token) [7] and
for every transaction an indicative price will be proposed, which both reduce the
fluctuation of its value.

Nebula has a specially designed architecture. It fully utilizes the feature of
blockchain technique. All the business logic functions of the system are written in
smart contracts [13], which are mainly deployed in our customized blockchain,
the sidechain. The sidechain connects with Ethereum, or the mainchain, by
a smart contract called channel. Other peripheral components including Data
Cache (DC), NAT-service (Network Address Transformation service), etc, pro-
vide extra features or support to the system, as described in detail in Sect. 3.

In the matching step between suppliers and customers’ orders, we model
orders into a bipartite graph and apply Hungarian algorithm to promote the
matching rate. After the optimization, the matching procedure costs nearly the
same time but gets an increase of 10% matching rate in our case.



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 717

The contributions of this paper are summarized as follows. First, we intro-
duce Nebula, the blockchain based decentralized platform for sharing computing
resources. We present the components, their functions and the utilization of the
blockchain technique in detail. Second, we show the optimization of the order
matching procedure and the performance gain by experiments.

The rest of the paper is organized as follows. In Sect. 2 we discuss the moti-
vation and show the overview. In Sects. 3 and 4, we talk about the detailed
implementation of the system. Then we evaluate our system in Sect. 5, including
the cost of matching procedure and the throughput of the system. At last, we
conclude the paper in Sect. 6.

2 Motivation and System Overview

Our motivation is around the contradictions between current requirements of
computing and the idle computing resources. In recent years, data has been
growing explosively fast and the algorithm has become much more complex.
They bring great challenges to researcher’s available computing resources. It is
not practical for individuals or organizations to purchase machines infinitely to
come up with the demand.

On the other hand, a considerable amount of devices around the world are
idle, indicating great potential to fill the requirement gap. The solution to the
contradiction is a platform which gathers and schedules idle devices, regardless of
their locations, types and performance. Next, we introduce Nebula in a nutshell,
a decentralized platform based on Ethereum [7] for sharing computing resources.

2.1 Decentralization

Decentralization is an important feature of Blockchain. It allows trading between
peers without centralized organizations. The decentralization presents in two
ways. (i) The backend. Nebula sits on Ethereum, a distributed peer-to-peer
platform. It provides a high availability and reliability and maintains the validity
of data. (ii) The resources. Nebula is more of an agency than a provider because
the resource Nebula provided is owned by end users from all over the world. Some
of users, called suppliers, contribute their devices into the system with Nebula
Token as a reward, while other users, called customers, pay for the usage of
devices with Nebula Token.

2.2 Ethereum Based System

As a Ethereum-backed system, Nebula fully utilizes the feature of Ethereum,
such as the smart contract technique, the digital currency and its immutability
of data.

Smart Contract. The smart contract is a major component of Ethereum,
intended to digitally enforce the performance of codes. It is deployed to the



718 B. Yan et al.

blockchain by the administrator after the initialization of the blockchain. The
deployed contract is stored as a transaction in the system, hence it is immutable
and transparent. In Nebula, the smart contract implements almost all the business
logic. The Market contract especially accepts users’ orders and validates requests.
Other contracts support, for example, the persistent storage of orders, the valida-
tion of deals and a channel for token circulation as described in Sect. 3, etc.

Digital Currency. Ether is a fundamental token for the operation of Ethereum.
Based on Ether, Nebula introduces Nebula Token as a payment for transactions
between buyers (i.e., customers) and sellers (i.e.,suppliers). Nebula proposes an
indicative price for every transaction and fix the exchange rate between Ether
and Nebula Token to avoid fluctuation. The indicative price is given by a regres-
sion model based on our history transaction prices. We leave it as a future work
to build a more sophisticated and accurate model. Nebula Token will be the
main stimulation for device owners to join the system.

Immutability. All transactions on the Ethereum blockchain are immutable.
Any manipulated transaction invalidates the PoW (Proof of Work) and thus
will be rejected. Nebula utilizes this kind of immutability and stores all the
transaction data in the blockchain.

3 Detailed Design of Nebula

In this section, we demonstrate the design of the system in detail. We show the
architecture of the system and introduce important smart contracts, especially
the market and channel contracts. Then, we describe the workflow of token
circulation. Lastly, we show the optimization of the order matching procedure
and then describe and analyze the Hungarian algorithm.

Fig. 1. An example of declarative script for resource demand.



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 719

3.1 Architecture

We describe how the user interacts with the system before introducing the step
to launch the system and the function of peripheral services.

Usage. Here we introduce the typical workflow of users. Firstly, (a) the customer
should describe his demand of resources with a declarative script. The script
expresses as a YAML file shown in Fig. 1. After scripts being parsed by the client,
the order is placed to the system with the help of the node service, which hides
the complex interaction. Then, (b) the supplier can join his machine by running
the worker service, which benchmarks the device and establishes a connection to
Nebula. The supplier is required to explicitly confirm his devices, and sends his
request of provision the same way as the customer does. Finally, if the supplier’s
provision is satisfactory to the customer’s demand, a deal is done and each side
will be notified. Then the customer can submit tasks to the supplier’s worker
machine with a docker instance.

Launch of Nebula. Launching Nebula includes building the blockchains,
deploying the contracts and starting the significant services.

Nebula is built on top of two blockchains, a mainchain and a sidechain.
The mainchain essentially is the Ethereum. The sidechain is a Nebula-specific
blockchain where our contracts are deployed. A separated sidechain isolates a
stable and controllable environment to operate and maintain the system. To
allow token to circulate between blockchains, a channel contract is deployed
onto both blockchains as a connector. Other indispensable peripheral services
serve differently as described below in detail.

Figure 2 shows the main architecture of Nebula. To launch Nebula, (1) we
firstly build the sidechain and deploy the smart contracts in the sidechain. Par-
ticularly, the channel contract is also deployed and the circulation between the
mainchain and the sidechain is thus established. Then, (2) the DC (Data Cache)
service and (3) the NAT-service are launched in sequence and the system is now
ready to response to users’ request.

Peripheral Services. Here we introduce other building bricks of Nebula, DC
and the NAT-service. Every peer in the sidechain is required to maintain a cache
service called DC (Data Cache), in order to reduce the response delay. DC is
essentially a server with a database, which caches and tracks the state of the
sidechain, responses the query from users and asynchronously sends requests to
the sidechain on behalf of the users.

Nebula also contains NAT-service for users across different subnets to connect
with each other. The service also allows the supplier to control their worker
machines in a different subnet.



720 B. Yan et al.

Fig. 2. Nebula architecture. Mainchain stands for Ethereum. Sidechain is a Nebula-
specific blockchain where contracts are deployed. Two blockchains are interacted by a
channel.

3.2 Networking

In practice, the customer and the supplier may not locate in the same subnet.
Even worse, the machine owner and his cluster are likely to be separated in the
network, which prevents the owner from managing his devices. To support the
cross-network communication, Nebula provides an NAT-service to establish a
tunnel, by which the real-time communication can be performed.

3.3 Consensus Algorithm

We leverage PoA rather than the traditional PoW algorithm to achieve consensus
in the sidechain, achieving a much less mining delay and reducing the waste of
resources. We choose the Clique PoA algorithm as it is used stably for years in
the famous Rinkeby testnet [17].

In Clique, a block is authored if it is signed by a peer from the list of authorized
signers. The cost of signing is negligible compared to the PoW computation. Every
signer is only allowed to sign one out of SIGNER-LIMIT consecutive blocks to
protect the network from being damaged by the malicious user. The authorized
user list is set in the genesis block, and changes as users being voted in or out.

3.4 Smart Contract

Computation Market. The smart contract Market implements the market
of the system, where orders are accepted, validated, stored and finally matched
one-to-one. Various functions are defined in the Market contract that handle the
creation, cancelation and modification of the orders, as well as the joining and
exiting of devices.



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 721

Listing 1.1. Pseudocode Code of function PlaceOrder

contract Market {

2 ...

function PlaceOrder(

4 UserType userType ,

uint duration ,

6 uint price ,

uint[] benchmarks

8 ) returns (uint) {

/* omit validation codes here */

10 if (userType == UserType.CUSTOMER) {

uint lockedSum = calculate payment for an hour;

12 if (fail to transfer lockedSum token to msg.sender) {

error (" failed to prepay a unit of token ");

14 }

}

16

ordersAmount = ordersAmount + 1;

18 uint orderId = ordersAmount;

orders[orderId] = Order(

20 userType , msg.sender ,

duration , price , benchmarks ,

22 );

emit OrderPlaced(orderId );

24 return orderId;

}

26 }

Listing 1.1 shows the function PlaceOrder as an example, the handler for
the creation of orders. The function accepts parameters like a user type (one
of supplier or customer), the duration of the task, the bid price and a set of
benchmarks specifying the amount of resources. After the place-order request is
sent to the system, the validation will be performed at the earliest (omitted in
the listing codes). Then a unit of token is prepaid to the intermediate account
as an advance fee (Line 10–14). Otherwise the request will be rejected if the
transfer fails. Next, the order is persistently stored into the system (Line 18–24).
Lastly, the function call succeeds, as an event is emitted and the index of the
order (orderId) is returned.

Channel and Nebula Token. A special method named channel is applied
to allow token circulation between mainchain (Ethereum) and our sidechain. A
token circulation from Ethereum to the sidechain takes the following steps, as
illustrated by Fig. 3.

– The user transfers his Ether to the channel account on Ethereum.
– The Nebula administrator(a privileged daemon) notifies the channel on the

sidechain.



722 B. Yan et al.

– The sidechain channel, with a nearly infinite amount of Nebula Token
obtained on deployment, finally transfers the equivalent Nebula Token to
the user.

The user is free to get his Ether back to Ethereum in the opposite way, or
exchange between Nebula Token and Ether on the sidechain.

Fig. 3. Demonstration of token circulation between Ethereum and our sidechain.

3.5 Order Description

Users can buy or sell the resources by sending an order to the system. An order
consists of a plenty of fields including the user type, the duration, the bid price
and the specification of the resources, such as the number of CPU cores, the
capacity of the memory and the storage device, etc. We generally embed the
order into a vector in the order assigning procedure (see Sect. 3.6), with the user
type discarded.

3.6 Order Assigning

Order assigning is the procedure to assign a satisfactory supplier’s order to a
customer’s one. We say a supplier’s order is satisfactory, if the duration and
the resources offered by the supplier is no less than what the customer requests.
Moreover, the price from the supplier is lower than that from the customer.

The orders arrive in the system continuously. To simplify the design of the
matching step, orders are buffered before issued to the matching algorithm batch
by batch. The order which fails to find his counterpart by the algorithm will be
recalled to the buffer and wait for the next try.

To obtain the maximum matching rate, we transform the batch of orders
into a bipartite graph and adopt the Hungarian algorithm to find the perfect
(maximum) matching.



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 723

Order Embedding and Graph Construction. A customer’s or supplier’s
order is turned into a vector VC ∈ R

n(VS ∈ R
n), with the duration, the bid price

and the resources included.
Our ultimate goal is to match orders between two groups of users, namely

customers and suppliers. It is equivalent to find a maximum matching of a bipar-
tite graph between two vertex sets, the customer’s vector set and the supplier’s
vector set.

Here we show Algorithm 1 to construct the bipartite graph. Initiate the graph
with empty edge and vertex (line 1). For each vector provided as input, add a
corresponding vertex to the graph representing the vector (line 2–7). For each
vertex pair (V i

C , V
j
S ) from customer’s vertex set and supplier’s vertex set, we

examine whether V j
S is satisfactory to V i

C , i.e. V i
C ≺ V j

S . The partial order is
defined over the vector as Definition 1. The returned result by Algorithm 1 is a
bipartite graph.

Definition 1. For any two vectors V , U ∈ R
n, we define V ≺ U ⇐⇒ ∀i ∈ Z,

Vi < Ui, 0 ≤ i < n

Algorithm 1. Graph Construction
Data: customer’s order embedding matrix MC = [V 1

C · · ·V n
C ] and supplier’s one

MS = [V 1
S · · ·V m

S ]
Result: a constructed bipartite graph

1 G ← (V,E) ; // G is an empty Graph denoted by empty vertex V and

edge E

2 for V i
C in MC do

3 V.add(V i
C);

4 end

5 for V i
S in MS do

6 V.add(V i
S);

7 end

8 for V i
C in MC do

9 for V i
S in MS do

10 if V i
C ≺ V j

S then

11 E.add((V i
C , V

j
S ));

12 end

13 end

14 end
15 return G

Hungarian Algorithm. Finally, we adopt Hungarian algorithm (Algorithm 2)
to find the maximum matching. Figure 4 shows a tiny example for the algorithm.
The idea behind it is simple. For every vertex in a part, we try to find its



724 B. Yan et al.

Fig. 4. Hungarian algorithm example. (a) Initially “a” matches “A”, “b” matches “B”.
“c” is left over and to be matched. (b) There is no available counterpart for “c”, so “c”
preempts “b” and gets its counterpart “B”. (c) There is no available counterpart for
“b”, so “b” preempts “a” and gets its counterpart “A”. (d) “a” has another available
counterpart “C”, so “C” is assigned to “a”. (e) The final result of the matching.

counterpart in the other part. If there are available counterparts, assign one
of them to the vertex. If all of its candidate counterparts have been assigned,
we “grab” one of the unavailable counterpart and recursively try to find a new
counterpart for the unlucky grabbed one. Figure 4(b)–(d) illustrates the process
in detail.

Algorithm 2. Hungarian algorithm
Data: adjacency matrix of a bipartite graph G ∈ {True,False}n×n

Result: a counterpart array C ∈ Z
n

1 C ← [−1 · · · − 1]; // -1 means counterpart not found

2 V ← [False · · · False]; // V[i] represents whether the i-th node has been

visited

3 i ← 0;
4 while i < n do
5 V ← [False · · · False];
6 Find(i);
7 i ← i + 1;

8 end
9 return C

Here we calculate the time complexity of the matching step. The graph
construction step compares every pair of orders from two sets, thus it costs
O((n2 )2) = O(n2), where n is the total number of orders. It is easy to show that
the complexity of the Hungarian algorithm is O(V · E), noting that for every
vertex in the graph, Find costs no more than O(E) and Find is invoked for
every vertex. Thus the overall complexity of the matching is O(V 2+V E), where
O(n) = O(V ).



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 725

The complexity of the matching step is almost the same as the naive First Fit
algorithm, especially when the number of order is under a couple of thousands.
However, the Hungarian algorithm raises the matching rate by 10% in the best
case, as shown in Sect. 5.

Deal Opening. When two orders are matched, a corresponding deal is opened
to record the matching relationship of the orders. Listing 1.2 shows the imple-
mentation of function OpenDeal, which handles the validating and recording of
the deal. The function firstly checks the consistency of the opening deal, such
as the user types, the constraint of price, duration and the benchmarks (Line
7–13). The constraint of the numeric fields should be trivially satisfied, since
the order assigning procedure only matches satisfactory ones. After passing all
the requirement check, the deal is recorded on the blockchain and an event is
emitted to mark the success.

3.7 Delivery of Computing Resources

The computing resources are delivered by means of running the customer’s task
on the supplier’s working machine. To get his working machine ready, the sup-
plier (1) binds the address of the working machine with his personal account, and
(2) places a selling request to the system. After the orders are matched between
the customer and supplier, both users are able to query their counterpart and
the status of the order from the command line.

To assign a task to the working machine, the customer (1) builds a docker
image which contains the code and its corresponding data, and (2) uploads the
image to a public image repository like Docker Hub. Then, the customer (3)

Algorithm 3. Find
Data: index i ∈ Z

+ of a node to look for its counterpart
Result: True if succeed, False otherwise

1 for t ← 0; t < n; t ← t + 1 do
2 if G[i][t] and !V [t] then
3 V [t] ← True;
4 if C[t] == −1 or Find(C[t]) then
5 C[i] = t;
6 C[t] = i;
7 return True

8 end

9 end

10 end
11 return False



726 B. Yan et al.

informs the working machine to run the task by providing the image reposi-
tory and the image tag. Notified by the request, a piece of script in the work-
ing machine pulls and runs the image and sends the execution log back to the
customer.

The following reasons make us choose docker to deliver tasks. First, docker
provides stable operation. A docker image packs up the code with the supportive
environment, which conceals the uncertainty of the counterpart machine. Sec-
ond, docker has negligible run-time overhead compared to the virtual machine.
The containers share the machine’s OS system kernel and therefore do not require
an OS per application. Third, the cgroups technique allows controllable deliv-
ery of resources. cgroups is a Linux kernel feature that limits and isolates the
resource usage of a collection of processes. Every task launched by Nebula is
limited to what written in the supplier’s provision order.

3.8 Payment Strategy

The payment strategy mainly focuses on credibility and fairness. Credibility is
obviously realized, since Nebula is built upon Ethereum and mainly implements
its business logic in smart contracts. We will talk about achieving fairness in
detail. Here we define fairness as nobody is able to earn an extra benefits (token
or computing resources) by any means.

When a customer places an order to the system, an advance charge will
be paid to an intermediary address. If the prepay fails, the transaction will
be reverted by the sidechain and thus the request is rejected. After the task
begins, tokens will be continuously transferred from the customer to the supplier
with the intermediary address as an agent. Only after the working machine
finishes his round, the token will be transferred to the supplier’s account. If the
order is illegally canceled, the prepaid token will be sent to his counterpart as
a compensation. Because of this prepaying strategy, a dishonest user is not able
to steal tokens/resources by any means.

4 Implementation of Nebula

Nebula is a complicated system. The implementation of Nebula involves various
programming languages like Go and Python and open source tools. The compo-
nents are interacting by gRPC, a language-neutral framework with high perfor-
mance to perform remote procedure calls. The number of code has exceeded 50
thousands of lines.



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 727

Listing 1.2. Pseudocode Code of function OpenDeal

contract Market {

2 ...

function OpenDeal(uint buyID , uint sellID) {

4 Order buy = orders[buyID];

Order sell = orders[sellID];

6

require(buy.userType == UserType.COSTUMER );

8 require(sell.userType == UserType.SUPPLIER );

require(sell.price <= buy.price);

10 require(sell.duration >= buy.duration );

for (i = 0; i < sup.benchmarks.length; i++) {

12 require(sell.benchmarks[i] >= buy.benchmarks[i]);

}

14

dealAmount = dealAmount + 1;

16 deals[dealAmount] = Deal(

sell.benchmarks , _sellID , _buyID , buy.duration , sell.price

18 );

emit DealOpened(dealAmount );

20 }

}

4.1 Services

Most components in Nebula are designed as services to make it accessible by the
third-part software. For example, the node service, the DC service and the worker
service are shown in Sect. 3. All services in Nebula are implemented in Golang.
The reason we prefer it to other languages like C++, Java is that it is efficient
and it naturally supports multi-threading, which is convenient for asynchronous
communication. Golang proves to be a good language to implement a service in
practice.

4.2 Smart Contract

The smart contracts are written in solidity [7] with version ˆ0.4.20. In the pro-
duction environment, we use Geth [9] to build a blockchain and use Truffle to
compile and deploy the contract.

We choose a mature solution called Truffle Suite, a group of open-source
tools for the blockchain developer. Included in Truffle Suite, Ganache [8] is used
to build the mock blockchain, Truffle is used to compile, deploy and debug the
contracts, and Dizzle is used to develop the frontend of the web interface.

4.3 Web Interfaces

Nebula provides a GUI interface based on web to help non-programmers to
interact with Nebula. The backend for the website is essentially some of the
services or components mentioned in Sect. 3, such as DC and sidechain.



728 B. Yan et al.

5 Experimental Validations

5.1 Throughput of Sending Orders

The major delay of sending an order comes from mining in the blockchain.
Besides, other factors affect the delay, including the state of the network, the
performance of the machine and so on. To avoid the influence and reveal the
standard performance of Nebula, we instead show the relationship between the
block interval and the average delay of placing an order.

We build the blockchain using Ganache with the parameter blockTime set
ascendingly from 0 s to 16 s, which simulates the various mining delay in practice.
As a comparison, the mining delay is 10 s–20 s in the Rinkeby testnet.

We sequentially place orders and record the average response time. To test the
throughput, we concurrently send orders to the system and record the average
delay. Figure 5 shows the experiment result. It is obvious that the response time
approximates to the block interval, since a request is acknowledged only after
the corresponding block has been signed. The throughput is much higher than
the serial case, with an increase of 43% in the best case.

Fig. 5. Throughput of Nebula.

5.2 Matching Rate of Hungarian Algorithm

We design experiments to compare the successful matching rate of Hungar-
ian algorithm against two benchmarks, the First Fit algorithm and Best Fit
algorithm.



Nebula: A Blockchain Based Decentralized Sharing Computing Platform 729

We firstly show the implementation of the benchmarks. The First Fit algo-
rithm assigns the first satisfactory supplier’s order to the customer’s one. The
Best Fit algorithm assigns the closest order among the satisfactory ones to the
customer. The distance between orders is measured by the euclidean distance
between two corresponding embedded vectors.

Fig. 6. Matching rate of the customers’ order. ratio = number of suppliers/number of
customers

Figure 6 shows the matching rate of customers’ order under the variety of
the number of supplier’s order. The matching rate of the Hungarian algorithm
is always the highest among any other algorithms, as it is capable to find the
maximum matching.

When the number of customer’s orders is about four times than the supplier’s,
the matching rate (for the supplier’s order) among the algorithms is nearly the
same, since its counterpart’s number is adequate and the naive algorithm could
perform just as well. However, when the number of supplier’s orders exceeds the
customer’s, the Hungarian algorithm shows huge performance improvement com-
pared to the naive algorithms. Inspired by the result, Nebula will automatically
choose between the Hungarian algorithm and Best Fit algorithm, according to
the ratio of the orders. A higher matching rate avoids the rematch of the orders
and thus can highly speed up the matching step.

6 Conclusion

This paper introduces Nebula, a blockchain based decentralized platform for
sharing computing resources. To our best knowledge, Nebula is the first platform



730 B. Yan et al.

that fully utilizes the features of blockchain and avoids the weakness by periph-
eral services, such as data cache and the NAT-service. We emphasize on the novel
architecture with two blockchains, i.e., the Ethereum and the sidechain. We also
show how other peripheral services are deployed upon the sidechain. Lastly, we
examine the throughput of placing orders and shows the average delay. We also
present the adoption of the famous Hungarian algorithm and the 10% improve-
ment of matching rate in our best case. The system is still in an initial stage.
The design of the system will be improved in the future work. For example,
we can apply an enhancement of the Hungarian algorithm, the Kuhn-Munkres
algorithm, to the order matching procedure.

Acknowledgments. The work described in this paper was supported by the National
Natural Science Foundation of China (61802448, U1811462) and the Program for
National Natural Science Foundation of Guangdong (2019A1515012229). The corre-
sponding author is Pengfei Chen.

References

1. Anderson, D.: BOINC: a system for public-resource computing and storage, pp.
4–10, December 2004. https://doi.org/10.1109/GRID.2004.14

2. Chen, W., Wu, J., Zheng, Z., Chen, C., Zhou, Y.: Market manipulation of bitcoin:
evidence from mining the Mt. Gox transaction network. In: IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pp. 964–972. IEEE (2019)

3. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting Ponzi
Schemes on Ethereum: towards healthier blockchain technology. In: Proceedings of
the 2018 World Wide Web Conference, pp. 1409–1418 (2018)

4. Dai, H., Zheng, Z., Zhang, Y.: Blockchain for Internet of Things: a survey. CoRR
abs/1906.00245 (2019). http://arxiv.org/abs/1906.00245

5. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster
management. In: 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2014)

6. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heteroge-
neous datacenters, vol. 41, pp. 77–88, May 2013. https://doi.org/10.1145/2490301.
2451125

7. Ethereum. https://www.ethereum.org/
8. Ganache. https://www.trufflesuite.com/ganache
9. Geth website. https://github.com/ethereum/go-ethereum/wiki/Geth

10. Golem. https://golem.network/
11. Iexec. https://iex.ec/
12. Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium blockchain for

secure energy trading in industrial Internet of Things. IEEE Trans. Industr. Inf.
14(8), 3690–3700 (2017)

13. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2016, pp. 254–269. ACM, New York (2016).
https://doi.org/10.1145/2976749.2978309

14. Mars, J., Tang, L., Skadron, K., Soffa, M.L., Hundt, R.: Increasing utilization
in modern warehouse-scale computers using bubble-up. IEEE Micro 32(3), 88–99
(2012). https://doi.org/10.1109/MM.2012.22

https://doi.org/10.1109/GRID.2004.14
http://arxiv.org/abs/1906.00245
https://doi.org/10.1145/2490301.2451125
https://doi.org/10.1145/2490301.2451125
https://www.ethereum.org/
https://www.trufflesuite.com/ganache
https://github.com/ethereum/go-ethereum/wiki/Geth
https://golem.network/
https://iex.ec/
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/MM.2012.22


Nebula: A Blockchain Based Decentralized Sharing Computing Platform 731

15. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
16. Qiu, X., Liu, L., Chen, W., Hong, Z., Zheng, Z.: Online deep reinforcement learning

for computation offloading in blockchain-empowered mobile edge computing. IEEE
Trans. Veh. Technol. 68(8), 8050–8062 (2019)

17. Rinkeby testnet. https://www.rinkeby.io/#stats
18. Seti@home. https://setiathome.ssl.berkeley.edu/
19. Sonm. https://sonm.com/
20. Uchain. https://uchain.world/
21. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus

zones. In: 16th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19), pp. 95–112 (2019)

22. Zheng, P., Zheng, Z., Luo, X., Chen, X., Liu, X.: A detailed and real-time perfor-
mance monitoring framework for blockchain systems. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering: Software Engineering in Prac-
tice Track (ICSE-SEIP), pp. 134–143. IEEE (2018)

23. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and
opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

https://www.rinkeby.io/#stats
https://setiathome.ssl.berkeley.edu/
https://sonm.com/
https://uchain.world/

	Nebula: A Blockchain Based Decentralized Sharing Computing Platform
	1 Introduction
	2 Motivation and System Overview
	2.1 Decentralization
	2.2 Ethereum Based System

	3 Detailed Design of Nebula
	3.1 Architecture
	3.2 Networking
	3.3 Consensus Algorithm
	3.4 Smart Contract
	3.5 Order Description
	3.6 Order Assigning
	3.7 Delivery of Computing Resources
	3.8 Payment Strategy

	4 Implementation of Nebula
	4.1 Services
	4.2 Smart Contract
	4.3 Web Interfaces

	5 Experimental Validations
	5.1 Throughput of Sending Orders
	5.2 Matching Rate of Hungarian Algorithm

	6 Conclusion
	References




