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Abstract. Differential privacy is a rigorous standard for protecting data privacy
and has been extensively used in data publishing and data mining. However,
because of its vulnerable assumption that tuples in the database are in-dependent,
it cannot guarantee privacy if the data are correlated. Kifer et al. proposed the
Pufferfish Privacy framework to protect correlated data privacy, while till now
under this framework there is only some practical mechanism for protecting cor-
relations among attributes of one individual sequence. In this paper, we extend
this framework to the cases of multiple correlated sequences, in which we protect
correlations among individual records, as well as correlations of attributes. Appli-
cation scenarios can be different people’s time-series data and the objective is to
protect each individual’s privacy while publishing useful information. We firstly
define privacy based on Pufferfish privacy framework in our application, and when
the data are correlated, the privacy level can be assessed through the framework.
Then we present a multi-dimensional Markov Chain model, which can be used to
accurately describe the structure of multi-dimensional data correlations. We also
propose a mechanism to implement the privacy framework, and finally conduct
experiments to demonstrate that our mechanism achieves both high utility and
privacy.

Keywords: Pufferfish privacy · Multi-dimensional Markov Chain · Time series ·
Data correlations

1 Introduction

Big data era has come and it is called the “fourth paradigm” of scientific research. More
and more databases are used in various fields such as healthcare, education, finance,
population, transportation, science and technology, and have created huge social bene-
fits. However, privacy concerns hinder the wildly use of these data. People would refuse
to provide their sensitive information such as salary, diseases and user behavioral infor-
mation. To this end, how to release useful information without revealing the individual’s
privacy has become a hot issue.

Dwork proposed the concept of differential privacy [2–5], which is still the state-
of-the-art standard notion in data privacy. It provides a rigorous privacy guarantee that
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it will not influence the outcome of any analysis when removing or adding a single
database item. However, The initial framework of differential privacy is only effective
for independent data records.

In practice, tuple correlation occurs naturally in datasets. User activity streams like
time-series data, GPS trajectories and social networks typically generate records which
are correlated. It has been shown that the data correlations can be utilized by attackers
to improve their inferences about individuals and cause privacy leakage [7]. Group
differential privacy has been proposed to solve this problem [5], which extends the
privacy protection on individual to a group of correlated individuals. But the required
noise may greatly destroy data utility.

Pufferfish was proposed by [8], which is based on differential privacy but can accom-
modate more situations. There are 3 important components in Pufferfish, a set of poten-
tial secrets S, a set of discriminative pairs Spairs , and a set of data evolution scenarios
D(θ ∈ D). It promises that the secret pairs are indistinguishable to the adversary. D
captures how much knowledge the potential attackers have and then it can take the
correlation of data into consideration. But the framework did not propose any specific
perturbation algorithm to handle the correlation. Song et al. adopted the framework and
used it to protect the privacy of time-series data such as physical activity measurements
and power consumption data [11].

However, the prior work focuses on the correlations among individuals with only
one attribute [14], or multiple attributes but only for one individual [12]. In this paper,
we consider the correlations among individuals as well as the correlations among mul-
tiple attributes inside each sequence, such as different people’s time-series data. These
databases havewide applications, including stockmarkets, disease surveillance and real-
time traffic monitoring. For example, in a database which records physical activities of
members from the same family or company across time, there are different individual’s
records, and each record is a data sequence. Our goal is to publish aggregate statistics
on individuals’ activities without leaking the privacy of a specific individual, and here
privacy is the activity at any given moment.

The contributions of our paper can be summarized as follows:

• We consider the simultaneous privacy protection for two types of correlations among
categorical data sequences. One is the correlations among individuals, and the other
is correlations inside each sequence.

• We propose a protection mechanism based on Pufferfish privacy by modelling
correlations among variables employing the multi-dimensional Markov Chain.

• We conduct experiments on simulated data and demonstrate that our privacy
mechanism provides both high privacy and utility guarantees.

2 Related Work

In the past decade, a growing body of work has been published on differential privacy
[2–5]. As we explain earlier, differential privacy assumes that records are independent
so it is not the right framework for the scenarios where records are correlated.
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Correlated differential privacy has emerged to solve this problem. Kifer [7] was the
first to raise the issue that differential privacy may not guarantee privacy without consid-
eration of data correlations, and then proposed Pufferfish privacy [8], a generalization
of differential privacy. It provides some specific instances of Pufferfish framework but
is lack of specific mechanisms for many practical applications.

Existing privacymechanisms for correlated data publishing can be classified into two
types. The first one replaces the global sensitivity with new correlation-based param-
eters, such as dependence coefficient [9] and correlated sensitivity [15], and [10] used
Maximal Information Coefficient to measure the correlations and achieved correlated
differential privacy for big data publication. The other one uses appropriate models
to describe the correlations between variables. [14] uses a modification of Pufferfish
and proposed Bayesian differential privacy, which represents the data correlations by
a Gaussian correlation model. Song proposed Markov Quilt Mechanism representing
data correlation via a Bayesian Network [11]. There are also some efforts on time-series
release such as [13] and high-dimensional data releasing based onMarkov network [12].
However, these efforts only considered one-dimensional correlations of data. Therefore,
they cannot be applied to simultaneously protect the two types of correlations. One type
is the correlations among various sequences, and the other is the correlations inside each
sequence.

3 Preliminaries

We will introduce some basic concepts in this section, including Pufferfish privacy
mechanism, Multi-dimensional Markov Chain models, global sensitivity and Laplace
mechanism. To start with, Table 1 lists notations and their explanations used across this
paper.

3.1 Pufferfish Privacy Mechanism

We use Pufferfish framework as our privacy definition and extend it to apply in our
cases. A Pufferfish framework consists of three parts, a set of potential secrets S, a set of
discriminative pairs Spairs , and a set of data evolution scenarios D(θ ∈ D). S captures
what is protected, which is the set of secrets that refer to individual’s private data. Spairs
captures how to protect, which means that the attackers cannot distinguish between the
secret pairs. Finally,D captures howmuch knowledge the potential attackers have, which
is a collection of plausible data generating distributions. In this paper, the correlations of
data are controlled. Each θ ∈ D represents an adversary’s belief about how to generate
the data, and we should promise the indistinguishability.

Definition 3.1 (ε-Pufferfish(S, Spairs, D) Privacy). Given set of potential secrets S, a
set of discriminative pairs Spairs

((
si , s j

) ∈ Spairs
)
, a set of data evolution scenarios

D(θ ∈ D), and a privacy parameter ε > 0,M satisfies ε-Pufferfish(S, Spairs, D) privacy
if

P(M(X) = ω|si , θ) ≤ eεP(M(X) = ω|s j , θ) (1)

P(M(X) = ω|s j , θ) ≤ eεP(M(X) = ω|si , θ) (2)
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Table 1. Table of notations

Symbol Description

X A database instance
{
xkn , k = 1, 2, . . . , s

}

y(k)
n The state probability distribution vector of the kth sequence at time n

S Set of potential secrets

Spairs Discriminative pairs. Spairs
(
si , s j

) ⊂ S × S

D The set of evolution scenarios: a conservative collection of plausible data generating
distributions

M A privacy mechanism over X

P( jk) The transition probabilities from the state of kth sequence at time n to the state of jth
sequence at time (n + 1)

λ jk The weights between columns

F A query function on X

GS f The global sensitivity of a query function on X

ε The privacy budget

Equivalently,

e−ε ≤ P(si |M(X) = ω, θ)

P(s j |M(X) = ω, θ)
/
P(si |θ)

P(s j |θ)
≤ eε (3)

when si and s j are such that P(si |θ) �= 0, P(s j |θ) �= 0.

3.2 Multi-dimensional Markov Chain Models

MarkovChainmodels arewidely used in themodeling of data sequences [1]. In ourwork,
we use a multi-dimensional Markov Chain model for correlated data sequences such as
sales demand data, stock index data and physical activities of a group individual. We

assume that there are s sequences
{
y(k)
n , k = 1, 2, . . . , s

}
, and y(k)

n is the state probability

distribution vector of the kth sequence at time n. Each sequence has m possible states
in M. If the kth sequence is in state j with probability one at time n then we write

P
{
y(k)
n = j

}
= 1 or

y(k)
n =

⎛

⎝0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0

⎞

⎠

T

(4)

The following conditions are satisfied in a multivariate Markov Chain model:

y( j)
n+1 =

∑s

k=1
λ jk P

( jk)y(k)
n , ( j = 1, 2, . . . , s) (5)
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where
∑s

k=1 λ jk = 1, λ jk ≥ 0, 1 ≤ j, k ≤ s. P( jk) are the transition probabilities from
the state of kth sequence at time n to the state of jth sequence at time (n + 1), and λ jk

are the weights between columns.
The state probability distribution of the jth Chain at time (n + 1) is related to the

state distribution of the s sequences at time n, but independent of the state before time
n, which only hinges on the weighted average of P( jk)y(k)

n . The following is the matrix
notation:

⎛

⎜
⎜⎜⎜
⎝

y(1)
n+1

y(2)
n+1
...

y(s)
n+1

⎞

⎟
⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

λ11P(11) λ12P(12) · · · λ1s P(1s)

λ21P(21) λ22P(22) · · · λ2s P(2s)

...
...

...
...

λs1P(s1) λs2P(s2) · · · λss P(ss)

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜⎜
⎝

y(1)
n

y(2)
n
...

y(s)
n

⎞

⎟
⎟⎟⎟
⎠

(6)

Let yn =
(
y(1)
n , y(2)

n , . . . , y(s)
n

)T
, then yn+1 = Qyn .

Lemma 1. For 1 ≤ j, k ≤ s, if λ jk ≥ 0, then the matrix Q has a eigenvalue that is equal
to 1, and the eigenvalues of Q are smaller than or equal to 1.

Lemma 2. For 1 ≤ j, k ≤ s, assume that λ jk ≥ 0 and P( jk) is irreducible. Then there

exists a stable vector y = (
y(1), y(2), . . . , y(s)

)T
such that y = Qy and

∑m
i=1

[
y( j)

]
i =

1, 1 ≤ j ≤ s.

In order to obtain the values of parameters, the transition probability matrix of each
data sequence must be determined. Let f ( jk)

i j ik
represent the transition matrix from the

state ik in the sequence
{
y(k)
n

}
to the state i j in the sequence

{
y( j)
n

}
. Then the transition

frequency matrix can be written as follows:

F ( jk) =

⎛

⎜⎜⎜⎜
⎝

f ( jk)
11 · · · · · · f ( jk)

1m

f ( jk)
21 · · · · · · f ( jk)

2m
...

...
...

...

f ( jk)
m1 · · · · · · f ( jk)

mm

⎞

⎟⎟⎟⎟
⎠

(7)

And the following rule:

p̂( jk)
i j ik

=

⎧
⎪⎨

⎪⎩

f ( jk)
i j ik

∑m
ik=1 f ( jk)

i j ik

,
∑m

ik=1 f ( jk)
i j ik

�= 0

0, in the other cases

(8)

Using this transition frequency matrix F ( jk) and the normalized rule, one obtains
the estimations of the matrix of transition probabilities P( jk):

P
∧( jk) =

⎛

⎜⎜⎜⎜
⎝

p̂( jk)
11 · · · · · · p̂( jk)

1m

p̂( jk)
21 · · · · · · p̂( jk)

2m
...

...
...

...

p̂( jk)
m1 · · · · · · p̂( jk)

mm

⎞

⎟⎟⎟⎟
⎠

(9)
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We also need to obtain the parameters λ jk . There is a stable probability vector y in
the multi-dimensional Markov Chain. We can estimate the vector y by calculating the

probability of each state in each sequence, and is denoted as y
∧ =

(
y
∧(1)

, y
∧(2)

, . . . , y
∧(s)

)T
,

then y
∧ = Qy

∧

. The values of λ jk can be obtained by solving the following optimization
problem:

{
min

λ
max
i

∣∣∣
[∑m

k=1 λ jk P
∧( jk)

y
∧(k) − y

∧( j)
]

i

∣∣∣

subject to
∑s

k=1 λ jk = 1, and λ jk ≥ 0, ∀k
(10)

This problem can be formulated as a linear programming problem. Let B be

the condition-B =
[
P
∧( j1)

y
∧(1)

∣∣∣P
∧( j2)

y
∧(2)

∣∣∣ . . . |P
∧( js)

y
∧(s)

]
, the model can be written as

follows. For each j:

min
λ

w j

Subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜
⎜
⎝

w j

w j
...

w j

⎞

⎟⎟
⎟
⎠

≥ y
∧( j) − B

⎛

⎜⎜
⎜
⎝

λ j1

λ j2
...

λ js

⎞

⎟⎟
⎟
⎠

,

⎛

⎜
⎜⎜
⎝

w j

w j
...

w j

⎞

⎟
⎟⎟
⎠

≥ −y
∧( j) + B

⎛

⎜
⎜⎜
⎝

λ j1

λ j2
...

λ js

⎞

⎟
⎟⎟
⎠

,

w j ≥ 0,∑s
k=1 λ jk = 1, and λ jk ≥ 0, ∀ j

(11)

3.3 Additional Notion

We introduce some additional definitions and notation to conclude this section.

Definition 3.4 (global sensitivity). Let f be a function that maps a dataset into a fixed-
size vector of real numbers (i.e.X → Rd ). For any two neighboring databases X and
X ′, the sensitivity of f is defined as

GS f = max
X,X ′

∥∥ f (X) − f
(
X ′)∥∥

p (12)

Where p denotes L p norm used to measure � f , and we usually use L1 norm.
For any query function F: X → Rd , the privacy mechanism M

M(X) = f (X) + Z (13)

Satisfies ε-differential privacy, where Z ∼ Lap(� f/ε). We use Lap(σ ) to denote
a Laplace distribution with mean 0 and scale parameter σ . Recall that this distribution
satisfies the density function: h(x) = 1

2σ e
−|x |/σ .
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4 A Mechanism for 2-Dimensional Correlated Data

4.1 Problem Statement

We consider a more restricted setting when the database X are several categorical data
sequences. We assume that there are s categorical sequences and each has m possible
states in M. Their dependence can be described by multi-dimensional Markov Chain
model, and the goal is to keep the value of each xki private. We next use two examples
to illustrate the problem.

Example 1: A Group Physical Activity Measurement. A is the set of activities such
as {walking, sleeping, working} and sk∗at denotes the event that the kth person’s state
is activity a at moment t, i.e., xkt = a. In the Pufferfish framework, we set S as {sk∗at :
k = 1, . . . , s, t = 1, . . . , T, a ∈ A}, so the activity at any specific moment t of each
person is a secret. Spairs is the set of all pairs (sk∗at , sk∗bt ) for a, b in A and for all t and
each person; in other words, for all pairs a and b, the attackers cannot tell whether this
person is doing activity a or activity b at any time. D is a set of possible distributions
to generate the data, which captures how people switch between activities and how
people influence each other. A plausible belief is to set D be a set of multi-dimensional
Markov Chains where each state is an activity in A. Each multi-dimensional Markov
Chain can be represented by an initial distribution y1 which represents the initial state of
each sequence, the transition probabilities P( jk) and the weights between columns λ jk .
For example, we have two activities {walking, working} and use (1, 0)T to represent
walking. There are two sequences in the dataset. Thus, a distribution θ ∈ D is represent
by a tuple

{
y1,

[
P11 P12

P21 P22

]
,

[
λ11 λ12

λ21 λ22

]}

Then such D can be the set:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜
⎝

[
(0, 1)T

(1, 0)T

]
,

⎡

⎢⎢
⎣

[
1 0.5
0 0.5

] [
0.7 0.6
0.3 0.4

]

[
0.8 0.5
0.2 0.5

] [
0.9 0.6
0.1 0.4

]

⎤

⎥⎥
⎦,

[
0.5 0.5
0.5 0.5

]
⎞

⎟⎟
⎠,

⎛

⎜
⎜
⎝

[
(1, 0)T

(0, 1)T

]
,

⎡

⎢
⎢
⎣

[
0 0.5
1 0.5

] [
0.5 0.5
0.6 0.4

]

[
0.4 0.3
0.6 0.7

] [
0.9 0.6
0.1 0.4

]

⎤

⎥
⎥
⎦,

[
1 0
0 1

]
⎞

⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Example 2: Sales Demand Data Sequences. The database consists of a soft-drink
company’s sales demand data. The company has 5 products {A, B, C, D, E} and each
product is labeled as its moving rate of sales volume - {very fast-moving, fast-moving,
standard, slow-moving, very slow-moving, no sales volume}. Each customer of the
company has 5 sales demand data sequences. We can use the database to reduce the
company’s inventory and maximize the needs of each customer, but we cannot reveal
customer’s privacy which means the adversary cannot infer the customer’s demand for
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all products at a specific time. Let M be the moving states set and let sk∗mt denote the
event that the kth product’s state ism at time t, namely, xkt = m. In the Pufferfish frame-
work, we set S as {sk∗mt : k = 1, . . . , 5, t = 1, . . . , T,m ∈ M}, so the state at each time
t of each product is a secret. Spairs is the set of all pairs (sk∗mt , sk∗nt ) for m, n in M and
for all t and each product. Similarly, D can also be a set of multi-dimensional Markov
Chains.

4.2 Our Mechanism

In our mechanism, we first use multi-dimensional Markov Chains to describe the 2-
dimensional correlation and get the set of all possible distributions which can generate
the data. Then we adopt the Pufferfish framework and customize our privacy definition
for our application. At last, we use the concept of interpretation by adding appropriate
noise to the result and then achieve both utility and privacy.

Our mechanism is based on the Laplace mechanism in differential privacy which
adds noise to the result of F proportional to the global sensitivity. In our mechanism, we
use the worst-case distance between the distribution P(F(X)|si , θ) and P

(
F(X)|s j , θ

)

for a secret pair (si , s j ). First, we use the idea of Earth Mover’s Distance (EMD) to
represent two probability distributions’ distance.

Definition 4.1. Let μ, ν be two probability distributions on R, and let Γ (μ, ν) be the
set of all joint distributions. The distance between μ and ν is defined as:

Distance∞(μ, ν) = in fγ∈�(μ,ν) max
(a,b)∈support(γ )

|a − b| (14)

The Earth mover’s distance is the minimum shift probability mass between μ and
ν which in our mechanism is P(F(X)|si , θ) and P

(
F(X)|s j , θ

)
. To guarantee the

Pufferfish privacy, we add Laplace noise to the result of the query F proportional to
the Distance∞

(
P(F(X)|si , θ), P

(
F(X)|s j , θ

))
. We describe the full mechanism in

Algorithm 1.

For given Database X, query F, Pufferfish framework (S, Spairs, D), and privacy
parameter ε, we find the supremum of the distance (EMD) betweenμi,θ andμj,θ through
all Spairs and D. Then, we add the Laplace noise to the result of F proportional to the
distancewefind.Themechanism for 2-dimensional correlateddata satisfies the pufferfish
privacy.
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5 Experiments

Weapply ourmechanism to the simulated datawhich is generated by amulti-dimensional
Markov Chain of two sequences (s = 2) and each sequence with length T = 100 and
states {0, 1}. We employ this prototype simulation in order to achieve an efficient
implementation of our algorithm.

First, we generate the database X which is determined by initial distribution for two
sequences with two parameters q10 = P

(
X1
1 = 0

)
and q10 = P

(
X2
1 = 0

)
, the transition

probabilities P( jk) and the weights between columns λ jk which are equal to 0.5 in our
setting. The transition probabilities are determined by four transition matrices and each
matrix such as P(11), P(12), P(21), or P(22) is determined by parameters p jk

0 and p jk
1 , in

which p jk
0 = P(X j

i+1 = 0|Xk
i = 0) and p jk

1 = P(X j
i+1 = 1|Xk

i = 1).

The query F(X) = 1
T∗s

∑s
k=1

∑T
i=1 X

k
i . Then we calculate the conditional prob-

ability P(F(X) = ·|si , θ) and P
(
F(X) = ·|s j , θ

)
and measure the distance between

them by Earth Mover’s Distance. The privacy budget ε varies in {0.2, 0.5, 1, 2, 5}. We
compare the actual F(X) with our output result and show the average L1 error between
them. We use group differential privacy as our baseline which assumes that all variables
are correlated and adds Lap(1/ε) noise to each bin. Table 2 shows the result of our
experiments.

Table 2. L1 error of frequency of state 1

ε 0.2 0.5 1 2 5

Our mechanism 3.1498 1.4735 0.4326 0.1252 0.0243

Group DP 4.3157 2.3584 0.6324 0.1432 0.1025

FromTable 2, we can see that ourmechanism ismore accurate than group differential
privacy.As expected, the L1 error decreases as the private budget ε increaseswhich shows
that smaller ε means more privacy. The experiments show that our mechanism achieves
both higher utility and privacy than group differential privacy.

6 Conclusion

We propose a Pufferfish privacy mechanism for correlated categorical data sequences,
such as a group of physical activity measurements, sales demand data sequences, and
other time-series datasets. We use the multi-dimensional Markov Chain model to rep-
resent the correlations among individuals and inside each sequence. Experiments with
simulated data show that our mechanism achieves both high utility and privacy.

There are still some aspects for our work to be improved in the future. The com-
putational efficiency can be improved by exploiting structural information of multi-
dimensional Markov Chains. Experiments also need to be conducted on real-world
datasets. Some other types of correlated data, such as semi-structured data, graph data
and large-scale data, also requires novel models and privacy mechanisms.
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