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Abstract An ant colony optimization approach for partitioning a set of objects is
proposed. In order to minimize the intra-variance, or within sum-of-squares, of the
partitioned classes, we construct ant-like solutions by a constructive approach that
selects objects to be put in a class with a probability that depends on the distance
between the object and the centroid of the class (visibility) and the pheromone trail;
the latter depends on the class memberships that have been defined along the iter-
ations. The procedure is improved with the application of K-means algorithm in
some iterations of the ant colony method. We performed a simulation study in order
to evaluate the method with a Monte Carlo experiment that controls some sensi-
tive parameters of the clustering problem. After some tuning of the parameters, the
method has also been applied to some benchmark real-data sets. Encouraging results
were obtained in nearly all cases.

1 Introduction

Cluster analysis, or clustering, is one of the main tools in Data Analysis andMachine
Learning, since it intends to discover groups or classes in large data sets of objects
described by observed variables, simplifying this way the set with a small number
of clusters. Most clustering methods are based on dissimilarities, graphs, models, or
densities. In our case, we will deal with dissimilarities or distances for numerical
data sets. There are two main families in this case: partitioning methods and hier-
archical ones, being K-means and agglomerative hierarchical methods, respectively,
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the most widely used in practice. Both have local optimality problems: local min-
ima that depend on initialization for K-means, greedy procedure for agglomerative
hierarchical clustering.

Several combinatorial optimization metaheuristics have been used for cluster par-
titioning (Handl & Knowles [14]; Ng &Wong [21]; Sarkar, Yegnanarayana, & Khe-
mani [23]; Trejos, Murillo, & Piza [27]). In this article, we deal with partitioning for
numerical data sets, using an ant colony optimization (ACO) approach in order to
overcome the local optima problem.

According toHandl andKnowles [14], published in 2006, “a few implementations
of ACO have been proposed for data clustering, with the construction graph typically
employed to directly represent cluster assignments (Handl & Meyer [15]; Runkler
[22])”.

In 2004, we published a first paper on clustering using an ant colony optimization
approach (Trejos, Murillo, & Piza [28]) for the minimization of the within sum-
of-squares criterion. In that method, ants were associated with partitions that were
modified during the iterations, according to a probability of selection that depends on
the visibility (proportional to the distance between the objects) and the pheromone
trail (which depends on the fact that the objects have been classified together in
the partitions). The pheromone matrix measured relation intensity between pairs of
objects.

By that time, Shelokar, Jayaraman, andKulkarni [24] published another clustering
method based on ACO for minimizing the same criterion as in Trejos, Murillo, and
Piza [28], with a pheromone trail but no local heuristic. The pheromonematrix relates
objects and clusters, and it is defined by the inverse of the objective function. The
matrix is used as a kind of adaptive memory that contains information provided by
the previously found superior solutions, and is updated at the end of each iteration
(Shelokar et al. [24]). This information is considered by the other ants to continue the
clustering process. However, it is not clear how the authors selected the parameters to
execute the ACO algorithm. They indicate that several simulations were performed
to find the algorithm parameters (Shelokar et al. [24]), but they do not present details
about the process. They also present a comparison among their ants algorithm and
other heuristic methods such as genetic algorithm, simulated annealing, and tabu
search.

Later on, Kao and Cheng in a short paper [17] improved Shelokar’s algorithm
introducing a local heuristic or visibility based on the inverse of the distance between
objects and class centers. The pheromone trail is also defined by the inverse of the
criterion and the algorithm follows almost the same steps as Shelokar algorithm
(Shelokar et al. [24]), with the difference that visibility is introduced.

Neither Shelokar et al. [24] nor Kao and Cheng [17] give a detailed analysis on
the choice of parameters for their methods.

In the present article, we use ACO with ants constructing partitions. The strategy
is based on the traveling salesman problem (TSP) in a similar way as it was tackled
in Bonabeau, Dorigo, and Therauluz [4] with ACO, in our case for the clustering
problem. It is a constructive method, in which each ant builds a partition. This part
of the process is similar to the ideas presented in Kao and Cheng [17] and Shelokar
et al. [24], which were previously presented; but this paper deals with three different
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aims: first, developing a fitting parameters analysis studying the algorithm behavior
in the clustering problem according to its parameters. Second, we introduce a local
searchprocedure basedon theK-means algorithm, to improve thebasicACO(BACO)
algorithmperformance. And finally, to develop a performance comparison among the
K-means algorithm (KM), the BACO algorithm and the BACOK (BACO improved
with the local search procedure) algorithm.

The article is organized as follows. Section2 contains the mains concepts of
clustering we use in the article, introducing the main notation we need. In Sect. 3 the
artificial ant concept is explained and the ACO classical algorithm is presented. In
Sect. 4we introduce the proposedACOalgorithm. Section5 describes the experiment
performed. Sections6 and 7 present the results and some remarks.

2 Clustering

Cluster analysis, or clustering, deals with finding homogeneous groups of objects
such that similar objects belong to the same class and it is possible to distinguish
betweenobjects in different classes.Cluster analysis canbedefinedas anoptimization
problem in which a given function consisting of within cluster similitary and among
clusters dissimilarities need to be optimized (Jafar & Sivakumar [16]; Xavier &
Xavier [30]). In the numerical case, there is a set of objects � = {x1, x2, . . . , xn}
such that xi ∈ R

p, for all i , that is, the objects are described by p numerical or
quantitative variables. The most widely used criterion (Everitt, Landau, Leese, &
Stahl [9]) is the minimization of the within sum-of-squares, also known as within
inertia or variance:

W = 1

n

K∑

k=1

∑

xi∈Ck

‖xi − gk‖2, (1)

where K is the number of classes or clusters (number fixed a priori), P =
(C1,C2, . . . ,CK ) is a partition of �, and gk is the barycenter or mean vector of
Ck . Minimizing W (P) is equivalent to maximizing the between sum-of-squares
(between inertia and variance):

B =
K∑

k=1

|Ck |
n

‖gk − g‖2,

where g is the overall barycenter and |Ck | is the cardinality of class Ck , since the
sum I = W (P) + B(P) is a constant (the total inertia) (Everitt, Landau, Leese, &
Stahl [9]).

TheW (P) function is not a convex function, thusW (P) could have several local
minima (Ng & Wong [21]; Sarkar et al. [23]). This feature causes the traditional
clustering algorithms based on local search, such as K-means, to find mostly local
minima (Trejos et al. [27]). Furthermore, the global optimization algorithms (such
as linear programming, interval methods, branch, and bound methods) present a
high sensitivity to relatively high-dimensional data tables, in which the algorithms’
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probability for finding the optimal partition is very low. In those cases, algorithms
report solutions that differ significantly from the optimum clustering (Bagirov [2]).
Those features represent a challenge to try to find alternative optimization strategies,
and combinatorial optimization heuristics are a viable option.

In recent years heuristic algorithms have been used to solve complex optimization
problems, since their random nature is useful to efficiently avoid the convergence
to local minima (Babu & Mutry [1]; Klein & Dubes [19]; Trejos et al. [27]). As
particular examples of optimization heuristics used in clustering it is possible to cite
simulated annealing, tabu search, genetic algorithms, particle swarm optimization,
and ant colony optimization.

In the particular case of ant colony optimization, there are several contributions,
as the already mentioned (Kao & Cheng [17]; Shelokar et al. [24]; Trejos et al. [28]),
and some other more recent (Handl & Meyer [15]; Handl & Knowles [14]; Runkler
[22]; Zhe et al. [31]).

3 Artificial Ant Colonies

The optimization approach based on ant colonies (ACO) is part of a large group
based on swarm intelligence. It was proposed by Marco Dorigo in 1992, to solve
several discrete optimization problems (Dorigo, DiCaro, & Gambardella [6]; Jafar
& Sivakumar [16]), and since then it has been applied to several combinatorial opti-
mization problems. This method, like every metaheuristic, depends on parameters
which control several decisions taken in the process. There are several papers which
develop parameters analysis for the ACO algorithm. In Gaertner and Clark [13] an
empirical analysis of the sensitivity of the ACO algorithm to variations of some
parameters for different instances of the TSP (traveling salesman problem) is pre-
sented. Similarly, in Wei [29] an experiment with parameter combinations is shown,
in order to improve the speed of convergence of the ACO algorithm in the TSP. Also,
this author indicates that at present the parameter settings and properties research
of basic ant colony algorithm are mostly still in the experimental stage (Wei [29])
Meanwhile, Stützle et al. [25] provides an extensive review of available research
results on parameter adaptation in ACO algorithms. They mention that ACO algo-
rithms involve a number of parameters that need to be set appropriately, in particular
α, β (both used to weigh the relative influence of the pheromone) and ρ (evaporation
rate parameter, 0 ≤ ρ ≤ 1). A parameter selection in the TSP context is developed
in Dorigo, Maniezzo, and Colorni [8], in three different experiments. They tested
the ranges: α ∈ {0, 0.5, 1, 2, 5}, β ∈ {0, 1, 2, 5}, ρ ∈ {0.3, 0.5, 0.7, 0.99, 0.999} and
Q ∈ {1, 100, 10000}. The numbers α = 1 and β = 5, were selected as the best val-
ues for these parameters. Parameter ρ was fixed, depending on the experiment, in
0.99, 0.99 or ρ = 0.5. And finally, parameter Q was found to be negligible.

In nature, the optimization developed by ants while they look for food consists
basically of minimizing the distance between the nest and food. For this reason, the
first application of ACO was to the TSP (Bonabeau et al. [4]). In that problem the
agent should visit n cities, all interconnected, visiting all cities just one time and then
returning to the departure city, minimizing the distance.
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In this paper, the TSP idea is used to study the clustering optimization problem.
Thus, it is necessary to introduce artificial ants; that is, agents in charge of finding a
feasible solution in the search space. During this process the ant will drop artificial
pheromones so that other ants can rebuild the same solution. Pheromones should be
volatile (disappear in time on the trails that have not been intensified) and have to
increase on the shortest trails while the number of iterations increases (Dorigo et al.
[6]).

The pheromone update formula applied in the TSP is given by τuv = (1 − ρ)τuv +
ρ�τuv (Barcos, Rodríguez, Álvarez, & Robusté [3]; Dorigo, Birattari, & Stützle [5];
Dorigo & Gambardella [7]), where τuv is the pheromone present on the trail from u
to v, ρ is the evaporation rate, and

�τuv =
M∑

m=1

�τm
uv,

where M is the number of ants, and �τm
uv is the pheromone dropped by the m-th ant

on the trail (u, v), normally given by

�τm
uv =

{
Q/dm if ant m walks across (u, v)

0 otherwise;

where Q is a parameter to be fitted and dm represents the total distance walked by
ant m.

An alternative way to deal with pheromones is to make local updatings, that is,
every time an ant goes from node u to node v, a local pheromone update is applied
on the trail (u, v) (Dorigo & Gambardella [7]). A possible local update formula is

τuv = τuv + Q

duv
, where Q is a parameter to be fitted and duv is the distance between

u and v. When all ants finish their trips, the pheromone is updated by applying the
evaporation rate.

On the other hand, each ant has to decide to which node it goes from the current
node. In that choice three factors are fundamental: visibility, pheromone trail, and a
probabilistic factor. Thus, if Tm represents the route built by the ant m while it is on
the node u, then the probability of going to the node v is given by

pmuv =

⎧
⎪⎪⎨

⎪⎪⎩

[τuv]α · [ηuv]β∑
s /∈Tm

[τus]α[ηus]β if v /∈ Tm

0 if v ∈ Tm;

where ηuv is the visibility, defined by ηuv = 1/duv, with duv the distance from the
node u to node v; τuv is the pheromone on the trail (u, v), and α and β are parameters
to be fitted (Barcos et al. [3]; Dorigo et al. [6]; Kennedy & Eberhart [18]).

To stop the algorithm, Bonabeau et al. [4] proposed using a maximum iteration
number. The disadvantage of this procedure is that it could stop the algorithm while
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it is still improving the solutions. Also, Dorigo et al. [8] considered investigating
a stagnation behavior of all ants traveling the same path. A stagnation process is
present if a percentage of the ants has the same distance in their paths. Thus, it is
almost certain that those ants are traveling the same path, or at least, that they are
traveling paths with the same cost value.

In Algorithm 1, the classical ACO algorithm is shown.

Algorithm 1 ACO algorithm
Require: Initial parameters.
1: Set parameters and initialize pheromone trails.
2: while stop criterion is not satisfied do
3: for t ← 1 to total of nodes do
4: for m ← 1 to M do
5: Move ant m to a new position.
6: Update Tm .
7: Update the local pheromones (optional).
8: end for
9: end for
10: Update the global pheromones.
11: Keep the best solution in this iteration if it improves the best in memory.
12: end while
13: return The best solution built.

4 Description of the Proposed ACO Algorithm

Themethod starts by defining a list ofM artificial ants h1, h2, . . . , hM , that will build
a data clustering in K classes (or clusters). At the beginning, it is possible to define
the best ant in the colony, denoted by h∗, equal to hm for some m = 1, 2, . . . , M ,
because in that moment there is no comparison parameter among them; thus the
assignment could be random.

For ant hm , with m = 1, 2, . . . , M , K random points in the space of individ-
uals (a hyperrectangle that contains all individuals) are considered, denoted by
gm
1 , gm

2 , . . . , gm
K . These points are interpreted as the initial centroids. Cm

k denotes
the class k, with centroid gm

k , which has been built by ant m. Also, hm has a tabu
list Lm , which is a short term memory that contains the objects classified by hm . In
each iteration, in order to complete the tour, ant m has to classify the objects not in
Lm . When the iteration is done, all objects should be in Lm , this guarantees that the
clustering process is complete.

During the clustering process, each ant randomly chooses an object that is not
in its tabu list. Then, the ant should randomly select a class in which to classify
the object. If ant m selects object i , then the process to choose the class uses a
probabilistic roulette (see Talbi [26]). The probability that hm assigns object i to
class Cm

k is denoted by pmik . To calculate this probability it is necessary to consider
the following factors:
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• Visibility: This factor is denoted by ηm
ik , and it consists of the visibility of hm ,

located on object xi , to “see” class Cm
k . The visibility is defined as the recip-

rocal of the distance from object xi to gm
k , the centroid of class Cm

k . Thus,

ηm
ik := 1

dm
ik
, where dm

ik = d2(xi , gm
k ) = ∥∥xi − gm

k

∥∥2
. If the visibility which hm has

of class Cm
k is large, then the probability of classifying xi in class k is also large.

• The pheromone trail: The pheromone trail perceived by hm on the arc from xi to
gm
k is denoted by τik . It quantifies pheromones that have been dropped by all ants
which have classified the same object xi in its respective class k. If τik is large,
then the probability of assigning class k to cluster xi is going to increase.

Equation (2) shows the formula used to calculate pmik , considering visibility and
the pheromone trail, inspired by the corresponding formula used by the agent in the
TSP:

pmik := [τik]α · [ηm
ik]β

K∑
r=1

[τir ]α · [ηm
ir ]β

, (2)

where α and β are parameters to be fitted.
On the other hand, when hm chooses class Cm

k for object xi , the ant will regis-
ter index i in the respective tabu list Lm . Futhermore, hm should do the following
processes related to the assignment.

• Local pheromone update: Ant hm should drop a pheromone trail between object
xi and class Cm

k . To do this, an auxiliary pheromone matrix was defined, denoted
by 	aux with size n × K , such that entry ik of 	aux contains pheromones between
xi and class k. This matrix has the format presented in Table1.

Ant hm will drop �τm
ik pheromones. This quantity is defined by �τm

ik := Q

dm
ik

,

where Q is a parameter to be fitted. Finally, the local pheromone update is done
by adding �τm

ik with the current entry ik of 	aux .
• Centroid update: The final step in this process is to update the centroid gm

k of

classCm
k .Onepossibility is using its definitiongm

k := 1|Cm
k |

∑

x∈Cm
k

x. This option is not

advisable because there are several unnecessary calculations. If fact, it is possible
to update gm

k recursively using its value in the previous iteration in case object xi

Table 1 Auxiliary pheromone matrix 	aux

C1 C2 C3 · · · CK

x1
x2
x3
.
.
.

xn
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is transferred to class Cm
k . In Trejos et al. [27] the following formula is proven and

is used to update the centroids more efficiently: gm
k := 1|Cm

k |
[(∣∣Cm

k

∣∣ − 1
)

gm
k + xi

]
.

After each ant has clustered one object, it should randomly select a new object that
is not in its tabu list. Next, the ant should follow the process previously described.
This process is done n times, clustering all objects by all ants.

When the process ends, each ant has a complete clustering of objects with the
respective barycenters. Also, matrix 	aux contains pheromones that were dropped
by ants. Entry ik of 	aux contains pheromone �τik , which has been dropped by all
ants that classified object i in its respective class k. This quantity is represented by

�τik =
M∑

m=1

�τm
ik .

The next step is to calculate, for each ant, the within inertia. To do this, the
classification done by each ant, and the respective barycenters, should be considered.
Also, if one of the ants has a within inertia less than W (h∗) (the best inertia so far in
memory), then h∗ (the best ant in memory) is required to be updated.

Global pheromones are stored in a matrix 	 with the same structure as 	aux .
At the beginning, this matrix is initialized with values close to zero (indicating
pheromone absence). When the travels of all ants finish, 	 is updated in entry ik by
	ik := (1 − ρ)	ik + ρ�τik, where ρ is the pheromone evaporation rate.

When the pheromone updating process is done, matrix 	aux is initialized, to be
used in the next iteration. Also, tabu lists (one per ant) are initialized, to start a new
classification process.

As the final step to conclude the current iteration, an intensification process done
by the best ant (the ant with lowest within inertia, denoted by h∗) is developed. h∗
repeats her path dropping extra pheromones in arcs it visited. The intensification
follows the following rule:

	ik :=
⎧
⎨

⎩

	ik + Q
W (h∗) if the object i is in the class k of h∗,

	ik otherwise;

whereW (h∗) denotes the within inertia of the classification done by h∗. This ends the
current iteration and a new clustering process is started, considering the following
information: the global pheromone matrix 	, the barycenters of ants, which will be
used as the initial centroids for the new classes, and the best ant h∗.

Algorithm 2 presents a detailed pseudocode of the BACOK. The K-means algo-
rithm was applied (see line 19 in Algorithm 2) to each ant. The method is applied
after all ants have built their respective classifications, and until the absolute differ-
ence between current inertia and previous inertia is less than 0.0001. Algorithm 3
shows how the local search strategy based on K-means works. If lines from 19 to
22 are eliminated from Algorithm 2, then BACO algorithm pseudocode is obtained.
Finally, in the event that there has been no improvement, Algorithm 2 uses an itera-
tion number (10 iterations) as stopping criterion (see line 4). Consider that, Counter
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is increments in line 5, but its value must be returned to zero every time a better
solution (comparing with the best in memory) is found. This stopping criterion is
based on the stagnation behavior concept presented in Dorigo et al. [8].

Algorithm 2 BACOK algorithm.
Require: n (number of individuals), p (number of variables), K (number of clusters), M (number

of ants), and the parameters α, β, Q and ρ.
1: Build the initial colony with m ants: h1, h2, . . . , hM .
2: For each m = 1, 2, . . . , M define Lm = ∅, and randomly choose gm1 , . . . , gmK .
3: Counter ← 0
4: while Counter ≤ 10 do
5: Counter ← Counter + 1
6: for I := 1 to n do
7: for m := 1 to M do
8: Ant hm chooses a random individual xi , such that i /∈ Lm .

9: Ant hm chooses k := Roulette(pmik), where pmik := [τik ]α ·[ηmik ]β
K∑

r=1
[τir ]α ·[ηmir ]β

.

10: Individual xi and index i are assigned to Cm
k and Lm , respectively.

11: Let 〈	aux 〉ik := 〈	aux 〉ik + �τmik , where �τmik = Q
dmik

.

12: Let gmk := 1|Cm
k |

[(∣∣Cm
k

∣∣ − 1
)

gmk + xi
]
.

13: end for
14: end for
15: Let h∗ := BestAnt(h1, . . . , hM , h∗).
16: For i = 1, . . . , n and k = 1, . . . , K let 〈	〉ik := τik ,

where τik := (1 − ρ) 〈	〉ik + ρ 〈	aux 〉ik .
17: Intensify the best trail. For all i(i = 1, . . . , n), if individual i in h∗ was classified in cluster

k do 〈	〉ik = 〈	〉ik + Q/W (h∗)
18: If the inertia of h∗ improves the best inertia keeped in memory, reset Counter.
19: for m := 1 to M do
20: Apply K-means to hm .
21: Update h∗ if there was an improvement from the K-means application.
22: end for
23: end while
24: return h∗

5 Parameter Analysis

To develop the parameter analysis three data tables (T105, T525, and T2100) were
built, with randomly generated normal variables. The data sets T105 (n = 105 and
p = 6) and T525 (n = 525 and p = 6) consists of 105 and 525 objects, respectively.
Both sets have seven clusters (K = 7), such that six classes have variance equal to
σ 2 = 1, and the seventh class has σ 2 = 3. The data set T105 has a “big” class with
51 objects, and the remaining six groups with 9 objects. Meanwhile, T525 has a
class with 265 objects, and the remaining objects are equitably distributed in the
other groups. The W (P) reference values for T105 and T525 were calculated using
the Eq. (1), thereby 7.62467183 and 7.45610263 were obtained for these tables,
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Algorithm 3 Local search strategy based on K-means applied in BACO.
Require: One ant h.
1: PreviousInertia← −1.
2: while |PreviousInertia − W (hm)| > 0.001 do
3: PreviousInertia← W (hm)

4: For h, build clusters C1,C2, . . . ,CK , using barycenters g1, . . . , gK . To do that, assign each
individual xi to the class with its barycenter closest to xi .

5: Recalculate the barycenters g1, g2, . . . , gK with:

gk = 1

|Ck |
∑

xi∈Ck

xi , for all k = 1, 2, . . . , K .

6: end while
7: return A new ant ĥ.

respectively. Table T2100 has 2100 objects, seven clusters with the same cardinality
and all classes have different variances. The W (P) reference value for this set is
22.56959210.

The Algorithm 2 has four parameters that should be fitted, with the aim of achiev-
ing good performance. Parameters α and β control the relative weights assigned
to pheromone concentration and ant visibility, respectively. Meanwhile, ρ repre-
sents the pheromone evaporation rate, used to update the pheromone matrix. Finally,
parameter Q is a pheromone amplification constant.

To develop the parameter analysis tables T105 and T525 were used, and for each
table, and for each parameter combination, 200 multistart runs were done. Based
on the ranges presented in Dorigo et al. [8], in the current experiment a further
analysis was developed, using ρ ∈ {0.1, 0.2, . . . , 0.9},α, β ∈ {0, 0.5, 1, 1.5, . . . , 6},
and Q ∈ {50, 100, 150, . . . , 500}. In total 9 × 13 × 13 × 10 = 15210 combinations
were run for each table. This analysis used M = 10 (the number of ants).

The pictures in Fig. 1 show some examples of the 90 contour maps built with the
performance percentages (each percentage represents howmany times the algorithm
scores the W (P) reference value, in the 200 runs) obtained with table T105, for
the different parameter combinations. For example, Fig. 1a shows the contour map
for ρ = 0.1, Q = 50 and α, β ∈ {0, 0.5, 1, 1.5, . . . , 6}. This analysis showed that
ρ = 0.5 was the best option, because the best performance zone for ρ = 0.5 (the
darker red zone in Fig. 1b) is better (largest area) than those of the remaining ρ

values.
On the other hand, very similar contourmapswere obtainedwhen ρ was fixed, and

Q varied from 50 to 500 (10 contour maps per each ρ value). This showed evidence
that Q was not an important parameter in this experiment. And this coincides with
the observation presented in Dorigo et al. [8], which indicates that Q has a negligible
influence in the algorithm. Therefore, the parameter Q was fixed at 250 (the range
middle value), but also could be fixed at 100, as they did.

Next, an analysis forα andβ was developedwith tables T105 andT525, usingρ =
0.5, Q = 250, and α, β ∈ {0, 0.25, 0.5, 0.75, . . . , 6}. Figure2 shows the contour
maps obtained in this process. This analysis was not enough to determine optimum
values for α and β. Figure2a and b only suggest that the best performance is probably
obtained when 1.5 ≤ β ≤ 5 and 0 < α ≤ 2.5. For this reason, an extra analysis was
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Fig. 1 Some examples of
contour maps created with
the performance percentages,
for Q = 50,
ρ = 0.1, 0.5, 0.9, and
variants values for α and β.
Analysis done with table
T105

(a) Contour map for = 0.1 and = 50

(b) Contour map for = 0.5 and = 50

(c) Contour map for = 0.9 and = 50
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(a) Results obtained with table T105 (b) Results obtained with table T525

Fig. 2 Contour maps created with the performance percentages, with the fixed values ρ = 0.5 and
Q = 250

Fig. 3 Contour maps
created with the performance
percentages, with the fixed
values ρ = 0.5 and
Q = 250, in table T2100

developed with table T2100. Figure3 shows that any combination for α and β in
the dark red region could be taken. Therefore, for this experiment the combination
β = 2.5 and α = 0.25 was selected. Summarizing, the parameters were chosen as
α = 0.25, β = 2.5, ρ = 0.5, and Q = 250.

6 Extra Data Sets, Results, and Discussion

A personal computer with 8 GB of RAM memory and an Intel Core i7-4712MQ
CPU@2.30 GHz processor, was used in this experiment. In order to develop a com-
parison among the algorithms BACO, BACOK and KM, five real-life data sets were
downloaded from the website of UCI repository of machine learning databases (UCI
[20]): iris (n = 150, K = 3 and p = 4), wine (n = 178, K = 3 and p = 13), glass
identification (n = 214, K = 6, p = 9), redwine quality (n = 1599, K = 3, p = 11)
andwhitewine quality (n = 4898, K = 3, p = 11) data sets. In glass data set the first
attribute was not considered as a variable, because it is an identification number (for
this reason p = 9). Furthermore, K was fixed at 6 because the type of glass number 4
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is not present in this data set (in total, there are 7 types of glass). Inwine quality (both
tables), the attribute number 12 was not considered because it is an output variable.
Additionally, two groups (A and S) of bidimensional synthetic data sets were consid-
ered (downloaded from Fränti & Sieranoja [12]), which are described on Fränti and
Sieranoja [11]. Group A (3 sets) varies the number of clusters, and the group S varies
the overlapping among the clusters (4 sets). All cases use p = 2. Table2 summarizes
the main features of these sets and Fig. 4 shows a bidimensional representation for
each set. Also, the ground truth centroids for these data sets are available on Fränti
and Sieranoja [12]; hence, it was possible to analyze if the proposed BACOK algo-
rithm was generating a reasonable clustering for the data. The centroid index (CI)
presented in Fränti, Rezaei, and Zhao [10] is a cluste- level similarity measure, based
on the cluster centroids, which can be used to compare one clustering against other
solution or the ground truth, if is available. The algorithm BACOKwas executed 100
times on sets A1, A2, A3, S1, S2, S3, and S4, and the best solution found, in each
case, was compared with the ground truth solution, using the CI value. In all cases,
the CI value was equal to zero, therefore according to Fränti and Sieranoja [11],
our algorithm is properly clustering those datasets. This experiment was made with
20 ants (M = 20) and the parameters α = 0.25, β = 2.5, ρ = 0.5, and Q = 250.
Finally, using for each set the centroids of the best solution and the definition of
W (P) (see Eq.1), the best within inertia for each set (Wbest ) was calculated (see
column number 4 on Table2).

Table3 summarizes the results obtained with the three algorithms. The perfor-
mance of each algorithm is represented by a percentage, and this corresponds to the
number of times in which the algorithm scored theWbest value in 100 multistart runs.
The algorithmBACO also usedM = 20, α = 0.25, β = 2.5, ρ = 0.5, and Q = 250.
Meanwhile, the KM algorithm iterates until the difference between two consecutive
within inertias is less than 0.001. The symbol “-” used in Table3means the algorithm
did not attend the Wbest reference value in any of the 100 runs. Also, the standard
deviation of inertia, the average time and the standard deviation of time, in those 100
executions, are presented in Table3.

Table3 shows how the algorithm BACOK performed very good on the available
data sets. This final comparison is valuable because it reinforces one of the princi-

Table 2 Main features for sets on group A ans S

Data set n K W (P) reference value

A1 3000 20 4048752.50

A2 5250 35 3864140.31

A3 7500 50 3858322.01

S1 5000 15 1783523123.37

S2 5000 15 2655821898.14

S3 5000 15 337791436.87

S4 5000 15 3140628447.25



278 J. Chavarría-Molina et al.

(a) A1

(b) A2 (c) A3

(d) S1 (e) S2

(f) S3 (g) S4

Fig. 4 Two-dimensional representation for the datasets on groups A and B
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pal contributions of this paper: the BACO and KM algorithms did not show good
results in most all data sets, but our algorithm uses the potential of K-means to
improve the algorithm BACO, and then significantly better results were obtained.
That hybridization process presented in algorithmBACOK reveals how the K-means
algorithm itself could not work well, but it can be used to improve other heuristic
algorithms. Finally, the lowest performance reported by algorithm BACOK was in
the set S4, which has the highest level of overlap (see Fig. 4).

7 Conclusions

We have presented a hybrid clustering method based on the ant colony optimization
metaheuristic and the K-means algorithm. The method is based on some features
developed for ACO in the traveling salesman problem and it is improved by the
K-means algorithm in each iteration. The adaptation to the clustering problem takes
into account the representation of clusters by barycenters, and therefore the distance
between objects and barycenters is used for defining visibility and the pheromone
trail.

After an extensive parameter fitting, an experimentationwas implemented in order
to evaluate the method. It performed very well, attaining the reference value for the
inertia in each data table, in reasonable time. Furthermore, the method showed very
good results when it was applied to other benchmark data sets, where the ground
truth for each set was available.

Finally, the experiment revealed the parameter Q does not have a relevant role in
the ACO algorithm, but the algorithm is very sensitive to the values assigned to the
parameters α, β and ρ. The parameter fitting process was necessary to improve the
algorithm performance and it gave the combination α = 0.25, β = 2.5 and ρ = 0.5.
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