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Abstract Co-clustering means the simultaneous clustering of the rows and columns
of a two-dimensional data table (biclustering, two-way clustering), in contrast to sep-
arately clustering the rows and the columns. Practical applicationsmaybemet, e.g., in
economics, social sciences, bioinformatics, etc. Various co-clustering models, crite-
ria, and algorithms have been proposed that differ with respect to the considered data
types (real-valued, integers, binary data, contingency tables), and also themeaning of
rows and columns (samples, variables, factors, time,...). This paper concentrates on
the case where rows correspond to (independent) samples or objects, and columns
to (typically dependent) variables. We emphasize that here, in general, different
similarity or homogeneity concepts must be used for rows and columns. We propose
two probabilistic co-clustering approaches: a situation where clusters of objects and
of variables refer to two different distribution parameters, and a situation where clus-
ters of ‘highly correlated’ variables (by regression to a latent class-specific factor)
are crossed with object clusters that are distinguished by additive effects only. We
emphasize here the classical ‘classification approach’, where maximum likelihood
criteria are optimized by generalized alternating k-means type algorithms.

1 Co-Clustering

Clustering methods are well-known tools for analyzing and structuring data, inten-
sively investigated in statistics, machine learning and data science, and broadly used
in many application domains such as as market and consumer research, psychology
and social sciences, microbiology and bioinformatics. The basic problem consists in
grouping a given set of objects into homogeneous classes (clusters) on the basis of
empirical data that allow to quantify the ‘similarity’ or ‘dissimilarity’ of the objects
and so to define the homogeneity within, or the separation between, the classes.
In the most simple case there is an n × p data matrix X = (xi j ), where values xi j
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are recorded for n objects and p variables and we look for an appropriate partition
A = (A1, ..., Ak) of the set of objects O = {1, ..., n} (the rows of X ) with classes
A1, ..., Ak such that similar row vectors (objects) are united in the same class while
row vectors from different classes are hopefully quite dissimilar. Depending on the
context, the detected or constructed clusters will be interpreted as (personality) types,
consumer groups, music styles, families of plants, gene clusters, etc. Since the early
1960s when clustering methods came up, a large variety of clustering models and
clustering algorithms have been developed for different data types, see, e.g., Bock
[7, 9], Jain and Dubes [26], Miyamoto, Ichihashi, and Honda [32], McLachlan and
Krishnan [31], Basu, Davidson, and Wagstaff [5], Aggarwal and Reddy [1], and
Hennig, Meila, Murtagh, and Rocci [25].

Co-clustering (biclustering, two-way clustering, block clustering) means the
simultaneous (i.e., not separate) clustering of the rows and columns of a data matrix
by determining an appropriate partition A = (A1, ..., Ak) of the rows together with
an appropriate partition B = (B1, ..., B�) of the set of columnsM = {1, ..., p} such
that both row and column clusters are ‘homogeneous’ and reflect the hidden interplay
between row and column effects. Biclustering provides an aggregated view on the
similarity structurewithin the setsO andM of objects and columns, respectively, and
also can serve in order to reduce a large data table with n · p entries to a manageable
size with only k · � blocks Ak × Bt together with their characterizations (data com-
pression). Often the aggregated view on the blocks will provide a better insight into
the latent relationships and interactions that may exist between objects and variables
than a detailed analysis of the numerous entries xi j . Many applications underline
the usefulness of co-clustering methods, e.g., in marketing (Arabie, Schleutermann,
Daws, & Hubert [3]; Gaul & Schader [18]; Baier, Gaul, & Schader [4]), psychology
and social sciences (Kiers, Vicari, & Vichi [27]; Schepers, Bock, & Van Mechelen
[38]), bioinformatics and gene analysis (Cheng & Church [16]; Madeira & Oliveira
[28]; Turner, Bailey, Krzanowski, & Hemmingway [39]; Alfò, Martella, & Vichi [2];
Martella, Alfò, & Vichi [30]; Cho & Dhillon [17]; Martella & Vichi [29]; Pontes,
Giràldez, & Aguilar-Ruiz [33]), and text mining (Dhillon [19]).

A range of co-clusteringmethods have been proposed in the past, see, e.g., the sur-
veys in VanMechelen, Bock, and De Boeck [40],Madeira and Oliveira [28], Charrad
and BenAhmed [14], Govaert andNadif [23, 24] andmethodological articles such as
Bock [8, 10–12], Govaert [20], Vichi [41], Govaert and Nadif [21, 22, 24], Rocci
and Vichi [34], Salah and Nadif [35], Schepers, Bock, and Van Mechelen [38] and
Schepers and Hofmans [36]. These methods differ, e.g.,

– By the type of observed data values xi j , e.g., real-valued, integer, categorical,
binary, mixed, etc.

– by the meaning of the entries xi j , e.g., association values, measurements, frequen-
cies, etc.

– by the classification structure, e.g., hierarchical versus nonhierarchical, hard versus
fuzzy classifications, and mixtures.
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– by the modeling approach using, e.g., probabilistic models, empirical concepts,
optimization criteria, and algorithms, etc.

– by the practical meaning of the rows and columns.

Concerning this latter issue, we may distinguish between cases where rows and
columns denote the categories of two given nominal factors (e.g., the crop variety i
with the fertilizer j yields xi j tons of cereals), and cases of the object× variable type
mentioned in the first paragraph above (e.g., object i realizes the value xi j for variable
j).While the two-factor case is typically symmetric insofar as clustering of both rows
and columns is (or may be) based on the nearness of corresponding entries in the
rows and columns, respectively, this may be misleading in the second unsymmetric
case since, differently from the objects (rows), the similarity of variables (columns) is
typically expressed in terms of mutual dependencies or interrelationships. Insofar, in
the object×variable case, clustering of rows and columns should typically be based
on different distance or similarity indices that must be integrated into a joint two-way
clustering model.

In this paper, we consider two situations of this latter type and provide, as a
paradigm for more complex situations, suitable probabilistic co-clustering models
and corresponding k-means type algorithms: In Sect. 2 we describe a two-way two-
parameter biclustering model where the row partitionA refers to the first parameter
(cluster means) while the column partition B is induced by the values of the second
one (class-specific variances). Amore sophisticated and novel co-clusteringmodel is
described in Sect. 4, where object classes are characterized by a class-specific mean
value (main effect) while additionally each class of variables is characterized by a
class-specific latent factor that is estimated together with the column partition. As a
prelude for this latter two-way model we consider in Sect. 3 a (one-way) clustering
algorithm for variables only, proposed by Vigneau and Qannari [43] that is related
to correlation and latent factor concepts, and show that it can be derived from a
probabilistic one-way clustering model. In Sect. 4 this model will be integrated in
the two-way clustering case. Section5 concludes with some remarks and possible
extensions.

2 Co-clustering with Class-Specific Variances
in the Variable Clusters

We have emphasized in Sect. 1 that for an object × variable matrix X = (xi j ), clus-
tering of variables (columns of X ) may be inspired by other purposes or charac-
terizations than when clustering objects (rows of X ). In this section, we consider a
simple example for such a co-clustering problem and describe a model where object
clusters are characterized by cluster means (main effects) while clusters of variables
are distinguished by different variability of the data. More specifically, we consider
the following probabilistic co-clustering model for independent normally distributed
random variables Xi j :
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Xi j ∼ N (μs, σ
2
t ) for i ∈ As, j ∈ Bt , s = 1, ..., k, t = 1, ..., � (1)

with the k-partitionA = (A1, ..., Ak) of the n rows, the �-partition B = (B1, ..., B�)

of the p columns of the matrix X = (Xi j ), where row clusters As are characterized
by cluster-specific expectations μs while column classes Bt are characterized by
class-specific variances σ 2

t . In this situation, maximum likelihood estimation of the
unknown parameters A,B, μ = (μ1, ..., μk), and σ = (σ 2

1 , ..., σ 2
� ) (for fixed k and

�) is equivalent to the minimization of the co-clustering criterion

Q(A,B, μ, σ ; X) :=
k∑

s=1

�∑

t=1

∑

i∈As

∑

j∈Bt

[
(xi j − μs)

2

σ 2
t

+ log σ 2
t

]
→ min

A,B,μ,σ
. (2)

Equating to zero the partial derivatives w.r.t.μs and σ 2
t yields the (implicit) formulas

for the estimates μ̂s and σ̂ 2
t :

μs =
[

�∑

t=1

|Bt |
σ 2
t

x̄ As ,Bt

]
/

[
�∑

t=1

|Bt |
σ 2
t

]
(3)

σ 2
t = 1

n · |Bt | ·
∑

j∈Bt

k∑

s=1

∑

i∈As

(xi j − μs)
2 (4)

= 1

n · |Bt | ·
∑

j∈Bt

k∑

s=1

⎡

⎣
∑

i∈As

(xi j − x̄ As , j )
2 + |As | · (x̄ As , j − μs)

2

⎤

⎦ .

Here |As |, |Bt | are the class sizes, and we use largely self-explanatory notations such
as

x̄ As , j :=
∑

i∈As

xi j/|As |, x̄i,Bt :=
∑

j∈Bt

xi j/|Bt |

x̄ As ,Bt :=
∑

i∈As

∑

j∈Bt

xi j/(|As | · |Bt |), x̄·,· :=
n∑

i=1

n∑

j=1

xi j/(n · p).

So the estimate μ̂s = μs is a weightedmean of the � blockmeans x̄ As ,Bt (withweights
inversely proportional to σ 2

t /|Bt |, the variance of the mean X̄i,Bt in the class Bt ) and
the estimate σ̂ 2

t = σ 2
t comprises terms that measure the variability within As (for

the variables j ∈ Bt ) and the distance between the individual means x̄ As , j from the
class-specific estimated expectations μs .

Since it is impossible to obtain explicit formulas for both estimates we propose
to resolve the co-clustering problem (2) by the following iterative algorithm of the
k-means type:

1. Beginwith two initial partitionsA andB and an initial estimate for σ (e.g., with σ 2
t

the empirical variance of the data values in the |Bt | columns of X corresponding
to Bt );
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2. Estimate the object-class-specific expectations μs by (3) (i.e., minimize Q
w.r.t. μ);

3. Estimate the variable-class-specific variances σ 2
t by (4) (i.e., minimize Q

w.r.t. σ );
4. For given B, μ, and σ minimize Q w.r.t. the k-partition A of the set of objects

O = {1, ..., n}. An elementary argumentation shows that theminimum is obtained
by the generalized minimum-distance partition Ã with object (row) clusters

Ãs := { i ∈ O | s = argmins ′=1,...,k d(i, μs ′ |B, σ ) } s = 1, ..., k,

where the distance d is defined by

d(i, μs ′ |B, σ ) :=
�∑

t=1

∑

j∈Bt

(xi j − μs ′)2/σ 2
t .

5. Update the parameter estimates μ, σ by repeating Steps 2. and 3. for the current
partitions Ã and B.

6. Given Ã,μ, and σ , minimize Q w.r.t. the �-partitionB of the set of variablesM =
{1, ..., p}; the solution is given by the generalized minimum-distance partition B̃
with variable (column) clusters

B̃t := { j ∈ M | t = argmint ′=1,...,� δ( j, σ 2
t ′ |Ã, μ) } t = 1, ..., �,

where the distance δ is defined by

δ( j, σ 2
t ′ |Ã, μ) :=

k∑

s=1

∑

i∈ Ãs

(xi j − μs)
2/σ 2

t ′ + n · log σ 2
t ′ .

7. Iterate 2. to 6. until convergence.

Obviously this algorithm decreases successively the criterion Q, (2), and insofar
approximates a solution to the stated co-clustering problem. Note that ties, empty
classes, local optima, and oscillating partitions may be possible and must be consid-
ered or avoided in a corresponding computer program.

3 Clustering of Variables Around Latent Factors

In this section, we describe a method for one-way clustering of the p variables
(columns) of a data matrix X = (xi j ) that has been proposed by Vigneau and
Qannari [43] and uses squared correlations for measuring the similarity between
two variables. In fact, we show that this method and the related clustering criterion
can be derived, as a special case, from a relatively general probabilistic clustering
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model that characterizes each cluster of variables by a class-specific latent factor. In
the following Sect. 4 this model will be integrated in our co-clustering models (12)
and (13) for the objects and variables of X .

In many practical contexts, the similarity of two random variables Y j ,Y j ′ is
measured by their squared correlation r2(Y j ,Y j ′) := Corr2(Y j ,Y j ′). Similarly, in
case of a n × p data matrix X = (xi j ) = (y1, ..., yp), where the j-th column y j =
(x1 j , ..., xnj )� represents the j-th variable, the similarity of y j and y j ′ (or j and j ′)
is measured by the square of the empirical correlation

r(y j , y j ′) := sy j ,y j ′√sy j ,y j sy j ′ ,y j ′

with

sy j ,y j ′ := (1/n)

n∑

i=1

(xi, j − x̄·, j )(xi, j ′ − x̄·, j ′) = (1/n) y�
j y j ′ ,

where x̄·, j := (
∑n

i=1 xi j )/n is the mean of the n entries in the column j of X and the
last equality sign holds for centered columns y j (i.e., x̄·, j = 0).

Vigneau and Qannari have integrated this similarity concept into the search for
an optimal �-partition B = (B1, ..., B�) of the set M of variables (columns of X ).
In order to formulate a corresponding clustering criterion, they define, for each class
Bt , a suitable ‘prototype variable’ or ‘class representative’. Instead of choosing one
of the observed variables (columns) y j from Bt (medoid approach), they construct a
synthetic one, i.e., a virtual column c ∈ �n in X . More specifically (and for centered
columns y j ), they define the prototype vector cBt := (ct1, ..., ctn)� ∈ �n to be the
vector c ∈ �n that is most ‘similar’ to the variables in Bt in the sense

S(c; Bt ) :=
∑

j∈Bt

r2(y j , c) = (1/n) c�XBt X
�
Bt
c → max

c∈�n ,||c||=1
, (5)

where XBt is the data matrix X restricted to the variables (columns) of Bt . Classical
eigenvalue theory shows that the solution cBt is given by the standardized eigenvector
vt that belongs to the largest eigenvalue λt of XBt X

�
Bt
(and also X�

Bt
XBt ), i.e., by the

first principal component in Bt . Finally,Vigneau andQannari formulate the following
criterion for clustering variables:

g3(B; X) :=
�∑

t=1

∑

j∈Bt

r2(y j , cBt ) → max
B

(6)

that is equivalent to the two-parameter correlation clustering criterion
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g4(B, C; X) :=
�∑

t=1

∑

j∈Bt

r2(y j , ct )
2 → max

B,C
, (7)

where maximization is also with respect to the choice of the system C = {c1, ..., c�}
of � standardized class-specific prototype variables (vectors) c1, ..., c� ∈ �n .

From its definition as a two-parameter optimization problems it is evident that for
the variable clustering problem (7) a (sub-)optimum �-partition B of variables can
be obtained by a generalized k-means algorithm:

(1) Begin with an initial partition B = (B1, ..., B�) of M = {1, ..., p}.
(2) Partially optimize the clustering criterion with respect to the class prototype

system C for the classes Bt according to (5), thus yielding the class-specific
eigenvector solutions cBt (class-specific principal components).

(3) Build a new �-partition B of the variables by assigning each variable y j to the
‘most similar’ cBt , i.e., the one with the largest value of r

2(y j , cBt ).
(4) Iterate (2) and (3) until convergence.

Defining the similarity of variables by a correlation coefficient involves implicitly
the concept of a linear regression. In fact, the correlation clustering criterion (7) above
can be obtained from a probabilistic clustering model in which any variable y j =
(x1 j , ..., xnj )� of a class Bt is generated, up to a random normal error, from the same
latent factor (prototype variable) ct = (ct1, ..., ctn)� ∈ �n by a linear regression. The
corresponding regression-type variable clustering model is given by

Xi j = a j + b j cti + ei j for i = 1, ..., n; j ∈ Bt (8)

with variable-specific intercepts a j , slopes b j , and independent normal errors ei j ∼
N (0, σ 2). Estimating the unknown a j , b j , the prototype system C = (c1, ..., c�) and
the �-partition B by maximizing the likelihood of X = (xi j ) is equivalent to the
optimization problem

g5(B, C, a, b; X) :=
�∑

t=1

∑

j∈Bt

n∑

i=1

(xi j − a j − b j cti )
2 → min

B,C,a,b
. (9)

Partially optimizing the inner sum of g5 with respect to a j , b j yields the classical
regression estimates

b̂ j := sy j ct
sy j y j

and â j = x̄·, j − b̂ j c̄t,· for j ∈ Bt (10)

in Bt with, e.g., c̄t,· := ∑n
i=1 cti/n, and the partial minimum of the two inner sums

of (9) is given by
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h(Bt , ct ) :=
∑

j∈Bt

n∑

i=1

(xi j − â j − b̂ j cti )
2 =

∑

j∈Bt

n · sy j y j (1 − r2(y j , ct ))

and characterizes the homogeneity of Bt for a given prototype variable ct . Finally,
the multiparameter clustering problem (9) reduces to the two-parameter mixed
continuous-discrete optimization problem for (B, C):

g6(B, C; X) := mina,b g5(B, C, a, b; X) =
�∑

t=1

h(Bt , ct )

=
�∑

t=1

∑

j∈Bt

n · sy j y j (1 − r2(y j , ct )) → min
B,C

. (11)

For the special case of standardized column variables y j , i.e., for x·, j = 0 and sy j y j =
||y j ||2/n = 1, this criterion is equivalent to the criterion (6) proposed by Vigneau
and Qannari [43]. Insofar we have shown that their criterion (6) can be derived from a
probabilistic clustering model. A software program in R is given by Chavent, Liquet,
Kuentz-Simonet, and Saracco [15]. In the next section, a similar model will be used
for modeling the co-clustering problem.

4 Co-Clustering, Where Variable Clusters are
Characterized by Class-Specific Factors

In this section, we propose a co-clustering model for an n × p object × variable
data table X = (xi j ) with normally distributed entries where the clusters of objects
(rows) are distinguished only by their levels (main effects) while each cluster of
variables (columns) is, additionally, characterized by a cluster-specific factor with a
high correlation to the variableswithin this class. Therebywe adopt the basic idea that
has been followed in Sect. 3 when clustering the variables only. More specifically,
with the notation of former sections and as an extension of the one-way clustering
model (8), we consider the model

Xi j = μ + αs + a j + b j cti + ei j for i ∈ As, j ∈ Bt , (12)

s = 1, ..., k, t = 1, ..., �,

where A = (A1, ..., Ak) and B = (B1, ..., B�) are the unknown partitions of rows
and columns, respectively (with known k and �), μ is a general effect and αs the
‘main effect’ of row class As . In this model, the vector ct = (ct1, ..., ctn)� represents
a cluster-specific latent factor that acts, in cluster Bt , as an explicative variable in the
regression model that explains the n observations of variable j in the j-th column
y j = (x1 j , ..., xnj )� of X , up to the main effects, by a linear regression a j + b j cti
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on the components of ct with unknown variable-specific coefficients a j and b j . As
before, ei j are independent N (0, σ 2) errors.

The clustering problem then consists in finding estimates for the parameters μ,
α = (α1, ..., αk), a = (a1, ..., ap), b = (b1, ..., bp), σ

2, the set of factors
C = (c1, ..., c�), and the partitions A and B (under suitable norming constraints). In
the model (12), the intercepts a j of the linear regression part are specified separately
for the variables j . In the following, we consider the more specialized co-clustering
model where these intercepts are the same, βt say, for all variables j from the same
class Bt . This is described by the more specific co-clustering model

Xi j = μ + αs + βt + b j cti + ei j for i ∈ As, j ∈ Bt , (13)

s = 1, ..., k, t = 1, ..., �

with the constraints

α̃· :=
k∑

s=1

|As |
n

αs = 0, β̃· :=
�∑

t=1

|Bt |
p

βt = 0, ||ct ||2 = 1 (14)

It describes a situation with additive class-specific main effects αs and βt while
interactions are cell-specific with the product form b j cti (factor model).

Invoking the maximum likelihood approach for estimating the parameters in (13),
we obtain the following factor-induced co-clustering problem:

Q(A,B;μ, α, β, b, C; X)

:=
k∑

s=1

�∑

t=1

∑

i∈As

∑

j∈Bt

(xi j − μ − αs − βt − b j cti )
2 → min (15)

where minimization is over all parameters under the constraints (14) (the model (12)
may be treated similarly). In the following, we propose a generalized alternating
k-means-type algorithm for solving this problem where, in each step, we partially
optimize the criterion Q, (15), with respect to the involved parameters in turn.

Step 1: Choose an initial configuration (A,B, μ, α, β, C). A reasonable choice might
be μ = x̄·,·, αs = x̄ As ,· − x̄·,·, βt = x̄·,Bt − x̄·,·, while A and B could be obtained by
separately clustering the rows and columns of X , e.g., by the classical k-means
algorithm. Moreover, the class-specific factors c1, ..., c� might be chosen randomly
from the unit sphere in �n .

Step 2: For fixed (A,B, μ, α, β, C), determine the optimum regression coefficients
b1, ..., b� that minimize the criterion Q, (15). For notational convenience, we intro-
duce the ‘adjusted’ n × p data matrix Z = (zi j (A,B)) with entries
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zi j (A,B) := zi j (A,B;μ,α, β) := xi j − μ − αs − βt

for i ∈ As, j ∈ Bt , s = 1, ..., k, t = 1, ..., �

(where main effects are eliminated) such that this partial optimization problem takes
the form

Q =
�∑

t=1

∑

j∈Bt

n∑

i=1

(zi j (A,B) − b j cti )
2 =

�∑

t=1

∑

j∈Bt

Q j → min
b1,...,b�

. (16)

Minimizing, separately for each j ∈ Bt , the inner sum Q j yields the estimates:

b̂ j =
∑n

i=1 zi j (A,B)cti∑n
i=1 c

2
ti

= z j (A,B)�ct j ∈ Bt , t = 1, ..., �

(with z j (A,B) the j-th column of Z ; note that ||ct ||2 = 1) and the partial minimum

Q̃(C) := min
b1,...,b�

Q =
�∑

t=1

∑

j∈Bt

n∑

i=1

(zi j (A,B) − b̂ j cti )
2

=
�∑

t=1

∑

j∈Bt

(||(z j (A,B)||2 − (z j (A,B)�ct )2
)

(17)

Step 3: Looking now for the factors ct we have to minimize the criterion (17) with
respect to C = (c1, ..., c�). This amounts to maximize, separately for each class Bt ,
the criterion

∑

j∈Bt

(z j (A,B)�ct )2 = c�
t

⎡

⎣
∑

j∈Bt

z j (A,B)z j (A,B)�
⎤

⎦

︸ ︷︷ ︸
St

ct =: c�
t St ct

with respect to ct under the constraint ||ct || = 1. As in Sect. 3 the solution of
this problem is given by the normalized eigenvector ĉt of the n × n matrix St =
St (A,B, μ, α, β) that belongs to the largest eigenvector of St (first principal com-
ponent in Bt ).

Step 4: After having obtained the coefficients b j = b̂ j and the factors ct = ĉt we
substitute these estimates in the original co-clustering criterion Q, (15), andminimize
itwith respect to the global andmain effectsμ,α, andβ under the norming constraints
(14). A brief calculation yields the estimates:
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μ̂ = x̄·,· −
�∑

t=1

|Bt |
p

b̄Bt c̄t,· with b̄Bt :=
∑

j∈Bt

bt
|Bt |

α̂ = x̄ As ,· − x̄·,· −
�∑

t=1

|Bt |
p

(c̄t,As − c̄t,·)

β̂t = x̄·,Bt − x̄·,· − b̄Bt c̄t,· +
�∑

τ=1

|Bτ |
p

b̄Bτ
c̄t,·

While in Steps 2.–4. we have obtained the estimates for the effects μ, α, β, the
coefficients b j and the factors ct , i.e., the configuration (A,B; μ̂, α̂, β̂, b̂, Ĉ) for a
fixed choice of the partitions A = (A1, ..., Ak) of objects and B = (B1, ..., B�) of
variables, we now update these partitions by consecutively minimizing the criterion
Q, (15), with respect to B (Step 5.) and A (Step 6.).

Step 5: Concerning first the partitionB of variables, the new and partially optimum �-
partition B̂ = (B̂1, ..., B̂�) for Q is theminimum-distance partitionofM = {1, ..., p}
with the classes

B̂t := { j ∈ M} | t = argminτ=1,...,� δ( j, τ ;A,B, μ̂, α̂, β̂, b̂, Ĉ)} (18)

for t = 1, ..., � where the distance measure δ is defined by

δ( j, τ ;A,B, μ̂, α̂, β̂, b̂, Ĉ) := ||(z j (A,B)||2 − (z j (A,B)�cτ )
2 (19)

for j = 1, ..., p, τ = 1, ..., � with zi j (A,B) = zi j (A,B; μ̂, α̂, β̂, b̂, Ĉ)). In fact, a
look at (17) shows that the best partition B̂ has to minimize the distance δ, (19), with
respect to τ for all variables j . Note that it follows from the original formula (15)
for Q that the same partition is obtained when using the expression

δ̃( j, τ ;A,B, μ̂, α̂, β̂, b̂, Ĉ) :=
k∑

s=1

∑

i∈As

(xi j − μ̂ − α̂s − β̂τ − b̂ j ĉτ i )
2

for j = 1, ..., p, τ = 1, ..., � instead of δ in (18).

Step 6: Starting with the partition pairA, B̂ and the current parameters μ̂, α̂, β̂, b̂, Ĉ,
the estimation Steps 2.–4. are now repeated and will result in new estimates
μ∗, α∗, β∗, b∗, C∗. With these estimates and the partition B̂ of variables, the k-
partition A of the set of objects O is updated next: the new k-partition Â that
partially minimizes the criterion Q(A, B̂;μ∗, α∗, β∗, b∗, C∗; X), is the minimum-
distance partition with classes

Âs := {i ∈ O | s = argminσ=1,...,k d(i, σ ;A, B̂, μ∗, α∗, β∗, b∗, C∗)} (20)
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for s = 1, ..., k, where the distance measure d is defined by

d(i, σ ;A, B̂, μ∗, α∗, β∗, b∗, C∗) :=
�∑

t=1

∑

j∈Bt

(xi j − μ∗ − α∗
σ − β∗

t − b∗
j c

∗
ti )

2 (21)

for i = 1, ..., n, σ = 1, ..., k.

Step 7: The Steps 2.–6. are repeated until convergence of the two partitions.

Finally, we have obtained the partitions A and B of objects and variables (rows
and columns), together with their characterizations, i.e.,

– the main effects αs of the classes As of objects;
– the main effects βt of the classes Bt of variables together with the factors (proto-
type variables) c1, ..., c� ∈ �n of these classes.

The components of each factor ct describe the contribution of the n objects to
the composition of the column clusters Bt and the object×variable interaction terms
b j cti . For easily interpreting the numerical results we can, e.g.,

– display, for each variable j from class Bt , the n points (cti , yi j ), i = 1, ..., n, in
�2 that should be close to the corresponding regression line η = βt + b j c;

– display and compare the latent factors c1, ..., c� with the discrete curves (i, cti ),
i = 1, ..., n, in �2, where the object labels i are arranged such object classes form
contiguous segments; and

– visualize the � factors c1, ..., c� ∈ �n in a two-dimensional principal component
display.

5 Discussion and Extensions

In this paper, we have proposed two probabilistic approaches for clustering simulta-
neously the objects (rows) and the variables (columns) of a data matrix. In contrast
to other approaches where, e.g., ANOVA models or information distances are con-
sidered (see, e.g., Bock [8, 10–12]), our approach considers situations where the
characterization of object clusters is different from the characterization of clusters
of variables. In Sect. 2 this has been illustrated for the case when object clusters are
characterized by class-specific means while variable clusters are characterized by
class-specific variances. Moreover, in Sect. 4 we have introduced co-clustering mod-
els where object clusters were defined by main effects, and variable clusters by their
main effects and a class-specific factor that explains the variables via a class-specific
regression. This latter model was suggested after analyzing, in Sect. 3, a clustering
method for variables only (proposed by Vigneau & Qannari [43]) and formulating a
corresponding probabilistic model from which our new model can be derived.
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For both co-clustering models, we have proposed an appropriate generalized
k-means algorithm that proceeds by successively updating model parameters and
partitions. These methods can be modified into various ways, e.g., by discussing the
initial settings and the order of partial optimization steps. In this respect, this paper
does not provide final results and lends itself to various investigations in the future.
Basically, our models should be seen as a prototype for approaches that combine
clustering of objects and clustering of variables in a simultaneous, probability-based
framework. They can be extended to other two-parameter distributions, to the case
of factor hyperplanes (involving higher principal components in each column class)
and also to co-clustering models for three-way data similarly as in Bocci, Vicari, and
Vichi [6], Schepers, Van Mechelen, and Ceulemans [37], Vichi, Rocci, and Kiers
[42], or Wilderjans and Cariou [44], Wilderjans and Cariou [13].
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