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Foreword

I am very pleased to write a foreword for the Festschrift of Prof. Akinori Okada. He
was born in Tokyo in September 1943, and all his academic life has been active.
Now he is 77-years old; it is the age of celebration, according to the traditional
Japanese age system.

Professor Okada obtained a job at Chiba University in 1971 and moved to Rikkyo
University in the next year to be a Senior Lecturer and then Associate Professor of
statistics and operations research. He received his Ph.D. in Engineering from Keio
University in 1979. He spent 35 years in Rikkyo University until he further moved to
Tama University in 2007, where his best collaborator Prof. Tadashi Imaizumi serves.

Professor Okada has made significant contributions to the fields of multidi-
mensional scaling and cluster analysis, especially the analysis of asymmetric
relationships. His works on these fields are so influential that he edited more than 15
books in Japanese and English on multidimensional scaling, cluster analysis,
statistics, linear algebra, operations research, data analysis, and marketing science.
The book entitled ‘Operations Research: Introduction to Management Science’
[Operêshonzu Risâchi–Keieikagaku Nyumon–] written with Dr. Ken-ichi Goto,
published in 1987, has been used as a standard textbook of operations research for
more than 30 years in courses in the departments of social science schools in Japan.

I share a good memory with Prof. Okada; we hosted together the first
International Meeting of the Psychometric Society (IMPS) in Osaka in Japan in
2001. Prior to that, Prof. Okada and the late Prof. Haruo Yanai participated in the
council meeting of the Psychometric Society in the U.S. One of the main purposes
for the visit was to propose we should host an annual meeting in Asia, particularly
in Japan for the first time. As a result, the meeting was successfully held in July
2001, where Prof. Okada was the Vice President of the executive committee and I
served as the chair of the local organizing committee. The meeting was a great
success; more than 400 participants gathered and accordingly, the financial results
were in a sound condition. The T-shirts with the IMPS logo shown by Prof. Heiser
in the photo below was a gift for Prof. Jacqueline Meulman, as a small token of the
members’ appreciation; although she had seriously prepared for the meeting
together with us, her sickness prevented her from attending the meeting in the end.
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Professor Okada is the series editor in Springer named Behaviormetrics:
Quantitative Approaches to Human Behavior. He launched the joint meeting of the
German Classification Society and the Japanese Classification Society in corpora-
tion with German colleagues, and also organized the joint meeting with the
Classification and Data Analysis Group of the Italian Statistical Society and the
Japanese Classification Society in corporation with Italian colleagues. In addition to
this, Prof. Okada served as the President of the International Federation of
Classification Societies (2016–2017).

He led the Behaviormetric Society as the President (2012–2015), and has still
been a member of the board of directors of the Society; his achievements have
proven that he is one of the distinguished leaders of the behaviormetrics and
classification societies.

In Japan, they say we should make a life plan for up to hundred years now, since
the average life span continues to grow. Professor Okada still has a quarter of a
century more of his life. We hope that he can continue to enjoy his life and remain
active as an academician.

Osaka, Japan
November 2019

Yutaka Kano

Photo 1 Professors Akinori Okada, Haruo Yanai, Willem Heiser, Kazuo Shigemasu and Yutaka
Kano from the flush left. Photo taken on July 19, 2001, just after the IMPS2001
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Preface

The year 2019 is the 40th anniversary of the doctorate degree of Akinori Okada,
who is a Professor Emeritus at Rikkyo University, Japan. We are delighted to work
as Editors for this ‘Festschrift’ of him. He received his Ph.D. in Engineering from
Keio University, Tokyo in 1979. During the course of his long and distinguished
career of more than 45 years, he has made significant research contributions to
theory and applications in areas such as multidimensional scaling, cluster analysis,
psychometrics, data analysis, operations research, data science, marketing research,
consumer behavior, psychological, and social human relationships. Today these
research contributions are essential constituents of the realm of ‘behaviormetrics’.
Akinori Okada has played an important role as a leader in developing behavior-
metrics. Especially his research contribution toward the development and appli-
cation of asymmetric multidimensional scaling and cluster analysis are significant.
His work has been published in journals such as Advances in Data Analysis and
Classification, Behaviormetrika, Journal of Classification, Psychonomic Science,
Journal of Applied Psychology, Organizational Behavior and Human Performance,
Japanese Journal of Behaviormetrics [Kôdo Keiryogaku], Japanese Psychological
Review [Shinrigaku Hyôron], Sociological Theory and Methods [Riron to Hôhô],
Communications of the Operations Research [Operêshionzu Risâchi], Japanese
Journal of Applied Statistics [Ôyotôkeigaku], Japanese Review of Clinical
Ophthalmology [Ganka Rinsho Ihô], The Journal of the Institute of Electronics and
Communication Engineers of Japan [Denshi Jyôhô Tsushin Gakkaishi Shi] among
other things, as well as in numerous refereed proceedings volumes.

He also played an important role as a scientific leader in behaviormetrics, and
especially contributed his effort to introduce the quantitative concept in social
sciences. He is the series editor of ‘Behaviormetrics: Quantitative Approaches to
Human Behavior’, published by Springer, which covers all aspects of
Behaviormetrics; theory, concept, method, and application in order to disclose and
understand human behavior. He is one of the founding managing editors of the
‘Advances in Data Analysis and Classification’. He also is the founding editor
of the ‘Bulletin of Data Analysis of Japanese Classification Society’ or ‘Dêta
Bunseki no Riron to Ôyo’ in Japanese. Akinori Okada was the President of the
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International Federation of Classification Societies (2016–2017), the
Behaviormetric Society (2012–2015), Japanese Classification Society (2005–2009),
and chaired the program committee of numerous international conferences. He is a
Research Fellow of the Operations Research Society of Japan. He has been an
outside director of SHL-Japan Limited since 2002 as a statistician. Akinori Okada is
a great mentor of many students. Three of his former students decided to honor him
for his outstanding achievements in behaviormetrics and data science by inviting
his colleagues and friends to contribute articles for this ‘Festschrift’, who sent us
articles of high quality to us. Two of us wrote an article each as well. The present
‘Festschrift’ focuses on the latest developments in behaviormetrics and data sci-
ence, and covers both theoretical aspect and applications to a wide range of areas
including psychology, marketing science, sociology, social survey, operations
research, etc. The contributions to this volume are intended for researchers and
practitioners who are interested in the latest developments and applications in these
fields. The present volume consists of two parts which express two aspects of the
research of behavirometrics and data science by Akinori Okada: a theoretically-
oriented part and an application-oriented part. Contributions are ordered alpha-
betically based on the corresponding authors’ names within each of these two parts.
We have to confess that there are several anomalies in the order of contributions
due to the inattention of the first editor. We would like to express our deepest
appreciation to authors for their contributions to the volume and cooperation while
we edited the volume. We want to show our heartiest gratitude to Mr. Reginald
Williams and Ms. Yasuko Hase for thoughtfully helping us in English for the e-mail
of inviting authors and of the reminder to the authors. We cordially appreciate Mr.
Yutaka Hirachi and Ms. Sridevi Purushothaman at Springer Nature for their
assistance for publishing the present volume.

Tokyo, Japan
March 2020

Tadashi Imaizumi
Atsuho Nakayama
Satoru Yokoyama
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Part I
Theoretically-Oriened



Co-Clustering for Object by Variable
Data Matrices

Hans-Hermann Bock

Abstract Co-clustering means the simultaneous clustering of the rows and columns
of a two-dimensional data table (biclustering, two-way clustering), in contrast to sep-
arately clustering the rows and the columns. Practical applicationsmaybemet, e.g., in
economics, social sciences, bioinformatics, etc. Various co-clustering models, crite-
ria, and algorithms have been proposed that differ with respect to the considered data
types (real-valued, integers, binary data, contingency tables), and also themeaning of
rows and columns (samples, variables, factors, time,...). This paper concentrates on
the case where rows correspond to (independent) samples or objects, and columns
to (typically dependent) variables. We emphasize that here, in general, different
similarity or homogeneity concepts must be used for rows and columns. We propose
two probabilistic co-clustering approaches: a situation where clusters of objects and
of variables refer to two different distribution parameters, and a situation where clus-
ters of ‘highly correlated’ variables (by regression to a latent class-specific factor)
are crossed with object clusters that are distinguished by additive effects only. We
emphasize here the classical ‘classification approach’, where maximum likelihood
criteria are optimized by generalized alternating k-means type algorithms.

1 Co-Clustering

Clustering methods are well-known tools for analyzing and structuring data, inten-
sively investigated in statistics, machine learning and data science, and broadly used
in many application domains such as as market and consumer research, psychology
and social sciences, microbiology and bioinformatics. The basic problem consists in
grouping a given set of objects into homogeneous classes (clusters) on the basis of
empirical data that allow to quantify the ‘similarity’ or ‘dissimilarity’ of the objects
and so to define the homogeneity within, or the separation between, the classes.
In the most simple case there is an n × p data matrix X = (xi j ), where values xi j

H.-H. Bock (B)
Institute of Statistics, RWTH Aachen University, Aachen, Germany
e-mail: bock@stochastik.rwth-aachen.de
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4 H.-H. Bock

are recorded for n objects and p variables and we look for an appropriate partition
A = (A1, ..., Ak) of the set of objects O = {1, ..., n} (the rows of X ) with classes
A1, ..., Ak such that similar row vectors (objects) are united in the same class while
row vectors from different classes are hopefully quite dissimilar. Depending on the
context, the detected or constructed clusters will be interpreted as (personality) types,
consumer groups, music styles, families of plants, gene clusters, etc. Since the early
1960s when clustering methods came up, a large variety of clustering models and
clustering algorithms have been developed for different data types, see, e.g., Bock
[7, 9], Jain and Dubes [26], Miyamoto, Ichihashi, and Honda [32], McLachlan and
Krishnan [31], Basu, Davidson, and Wagstaff [5], Aggarwal and Reddy [1], and
Hennig, Meila, Murtagh, and Rocci [25].

Co-clustering (biclustering, two-way clustering, block clustering) means the
simultaneous (i.e., not separate) clustering of the rows and columns of a data matrix
by determining an appropriate partition A = (A1, ..., Ak) of the rows together with
an appropriate partition B = (B1, ..., B�) of the set of columnsM = {1, ..., p} such
that both row and column clusters are ‘homogeneous’ and reflect the hidden interplay
between row and column effects. Biclustering provides an aggregated view on the
similarity structurewithin the setsO andM of objects and columns, respectively, and
also can serve in order to reduce a large data table with n · p entries to a manageable
size with only k · � blocks Ak × Bt together with their characterizations (data com-
pression). Often the aggregated view on the blocks will provide a better insight into
the latent relationships and interactions that may exist between objects and variables
than a detailed analysis of the numerous entries xi j . Many applications underline
the usefulness of co-clustering methods, e.g., in marketing (Arabie, Schleutermann,
Daws, & Hubert [3]; Gaul & Schader [18]; Baier, Gaul, & Schader [4]), psychology
and social sciences (Kiers, Vicari, & Vichi [27]; Schepers, Bock, & Van Mechelen
[38]), bioinformatics and gene analysis (Cheng & Church [16]; Madeira & Oliveira
[28]; Turner, Bailey, Krzanowski, & Hemmingway [39]; Alfò, Martella, & Vichi [2];
Martella, Alfò, & Vichi [30]; Cho & Dhillon [17]; Martella & Vichi [29]; Pontes,
Giràldez, & Aguilar-Ruiz [33]), and text mining (Dhillon [19]).

A range of co-clusteringmethods have been proposed in the past, see, e.g., the sur-
veys in VanMechelen, Bock, and De Boeck [40],Madeira and Oliveira [28], Charrad
and BenAhmed [14], Govaert andNadif [23, 24] andmethodological articles such as
Bock [8, 10–12], Govaert [20], Vichi [41], Govaert and Nadif [21, 22, 24], Rocci
and Vichi [34], Salah and Nadif [35], Schepers, Bock, and Van Mechelen [38] and
Schepers and Hofmans [36]. These methods differ, e.g.,

– By the type of observed data values xi j , e.g., real-valued, integer, categorical,
binary, mixed, etc.

– by the meaning of the entries xi j , e.g., association values, measurements, frequen-
cies, etc.

– by the classification structure, e.g., hierarchical versus nonhierarchical, hard versus
fuzzy classifications, and mixtures.
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– by the modeling approach using, e.g., probabilistic models, empirical concepts,
optimization criteria, and algorithms, etc.

– by the practical meaning of the rows and columns.

Concerning this latter issue, we may distinguish between cases where rows and
columns denote the categories of two given nominal factors (e.g., the crop variety i
with the fertilizer j yields xi j tons of cereals), and cases of the object× variable type
mentioned in the first paragraph above (e.g., object i realizes the value xi j for variable
j).While the two-factor case is typically symmetric insofar as clustering of both rows
and columns is (or may be) based on the nearness of corresponding entries in the
rows and columns, respectively, this may be misleading in the second unsymmetric
case since, differently from the objects (rows), the similarity of variables (columns) is
typically expressed in terms of mutual dependencies or interrelationships. Insofar, in
the object×variable case, clustering of rows and columns should typically be based
on different distance or similarity indices that must be integrated into a joint two-way
clustering model.

In this paper, we consider two situations of this latter type and provide, as a
paradigm for more complex situations, suitable probabilistic co-clustering models
and corresponding k-means type algorithms: In Sect. 2 we describe a two-way two-
parameter biclustering model where the row partitionA refers to the first parameter
(cluster means) while the column partition B is induced by the values of the second
one (class-specific variances). Amore sophisticated and novel co-clusteringmodel is
described in Sect. 4, where object classes are characterized by a class-specific mean
value (main effect) while additionally each class of variables is characterized by a
class-specific latent factor that is estimated together with the column partition. As a
prelude for this latter two-way model we consider in Sect. 3 a (one-way) clustering
algorithm for variables only, proposed by Vigneau and Qannari [43] that is related
to correlation and latent factor concepts, and show that it can be derived from a
probabilistic one-way clustering model. In Sect. 4 this model will be integrated in
the two-way clustering case. Section5 concludes with some remarks and possible
extensions.

2 Co-clustering with Class-Specific Variances
in the Variable Clusters

We have emphasized in Sect. 1 that for an object × variable matrix X = (xi j ), clus-
tering of variables (columns of X ) may be inspired by other purposes or charac-
terizations than when clustering objects (rows of X ). In this section, we consider a
simple example for such a co-clustering problem and describe a model where object
clusters are characterized by cluster means (main effects) while clusters of variables
are distinguished by different variability of the data. More specifically, we consider
the following probabilistic co-clustering model for independent normally distributed
random variables Xi j :
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Xi j ∼ N (μs, σ
2
t ) for i ∈ As, j ∈ Bt , s = 1, ..., k, t = 1, ..., � (1)

with the k-partitionA = (A1, ..., Ak) of the n rows, the �-partition B = (B1, ..., B�)

of the p columns of the matrix X = (Xi j ), where row clusters As are characterized
by cluster-specific expectations μs while column classes Bt are characterized by
class-specific variances σ 2

t . In this situation, maximum likelihood estimation of the
unknown parameters A,B, μ = (μ1, ..., μk), and σ = (σ 2

1 , ..., σ 2
� ) (for fixed k and

�) is equivalent to the minimization of the co-clustering criterion

Q(A,B, μ, σ ; X) :=
k∑

s=1

�∑

t=1

∑

i∈As

∑

j∈Bt

[
(xi j − μs)

2

σ 2
t

+ log σ 2
t

]
→ min

A,B,μ,σ
. (2)

Equating to zero the partial derivatives w.r.t.μs and σ 2
t yields the (implicit) formulas

for the estimates μ̂s and σ̂ 2
t :

μs =
[

�∑

t=1

|Bt |
σ 2
t

x̄ As ,Bt

]
/

[
�∑

t=1

|Bt |
σ 2
t

]
(3)

σ 2
t = 1

n · |Bt | ·
∑

j∈Bt

k∑

s=1

∑

i∈As

(xi j − μs)
2 (4)

= 1

n · |Bt | ·
∑

j∈Bt

k∑

s=1

⎡

⎣
∑

i∈As

(xi j − x̄ As , j )
2 + |As | · (x̄ As , j − μs)

2

⎤

⎦ .

Here |As |, |Bt | are the class sizes, and we use largely self-explanatory notations such
as

x̄ As , j :=
∑

i∈As

xi j/|As |, x̄i,Bt :=
∑

j∈Bt

xi j/|Bt |

x̄ As ,Bt :=
∑

i∈As

∑

j∈Bt

xi j/(|As | · |Bt |), x̄·,· :=
n∑

i=1

n∑

j=1

xi j/(n · p).

So the estimate μ̂s = μs is a weightedmean of the � blockmeans x̄ As ,Bt (withweights
inversely proportional to σ 2

t /|Bt |, the variance of the mean X̄i,Bt in the class Bt ) and
the estimate σ̂ 2

t = σ 2
t comprises terms that measure the variability within As (for

the variables j ∈ Bt ) and the distance between the individual means x̄ As , j from the
class-specific estimated expectations μs .

Since it is impossible to obtain explicit formulas for both estimates we propose
to resolve the co-clustering problem (2) by the following iterative algorithm of the
k-means type:

1. Beginwith two initial partitionsA andB and an initial estimate for σ (e.g., with σ 2
t

the empirical variance of the data values in the |Bt | columns of X corresponding
to Bt );
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2. Estimate the object-class-specific expectations μs by (3) (i.e., minimize Q
w.r.t. μ);

3. Estimate the variable-class-specific variances σ 2
t by (4) (i.e., minimize Q

w.r.t. σ );
4. For given B, μ, and σ minimize Q w.r.t. the k-partition A of the set of objects

O = {1, ..., n}. An elementary argumentation shows that theminimum is obtained
by the generalized minimum-distance partition Ã with object (row) clusters

Ãs := { i ∈ O | s = argmins ′=1,...,k d(i, μs ′ |B, σ ) } s = 1, ..., k,

where the distance d is defined by

d(i, μs ′ |B, σ ) :=
�∑

t=1

∑

j∈Bt

(xi j − μs ′)2/σ 2
t .

5. Update the parameter estimates μ, σ by repeating Steps 2. and 3. for the current
partitions Ã and B.

6. Given Ã,μ, and σ , minimize Q w.r.t. the �-partitionB of the set of variablesM =
{1, ..., p}; the solution is given by the generalized minimum-distance partition B̃
with variable (column) clusters

B̃t := { j ∈ M | t = argmint ′=1,...,� δ( j, σ 2
t ′ |Ã, μ) } t = 1, ..., �,

where the distance δ is defined by

δ( j, σ 2
t ′ |Ã, μ) :=

k∑

s=1

∑

i∈ Ãs

(xi j − μs)
2/σ 2

t ′ + n · log σ 2
t ′ .

7. Iterate 2. to 6. until convergence.

Obviously this algorithm decreases successively the criterion Q, (2), and insofar
approximates a solution to the stated co-clustering problem. Note that ties, empty
classes, local optima, and oscillating partitions may be possible and must be consid-
ered or avoided in a corresponding computer program.

3 Clustering of Variables Around Latent Factors

In this section, we describe a method for one-way clustering of the p variables
(columns) of a data matrix X = (xi j ) that has been proposed by Vigneau and
Qannari [43] and uses squared correlations for measuring the similarity between
two variables. In fact, we show that this method and the related clustering criterion
can be derived, as a special case, from a relatively general probabilistic clustering
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model that characterizes each cluster of variables by a class-specific latent factor. In
the following Sect. 4 this model will be integrated in our co-clustering models (12)
and (13) for the objects and variables of X .

In many practical contexts, the similarity of two random variables Y j ,Y j ′ is
measured by their squared correlation r2(Y j ,Y j ′) := Corr2(Y j ,Y j ′). Similarly, in
case of a n × p data matrix X = (xi j ) = (y1, ..., yp), where the j-th column y j =
(x1 j , ..., xnj )� represents the j-th variable, the similarity of y j and y j ′ (or j and j ′)
is measured by the square of the empirical correlation

r(y j , y j ′) := sy j ,y j ′√sy j ,y j sy j ′ ,y j ′

with

sy j ,y j ′ := (1/n)

n∑

i=1

(xi, j − x̄·, j )(xi, j ′ − x̄·, j ′) = (1/n) y�
j y j ′ ,

where x̄·, j := (
∑n

i=1 xi j )/n is the mean of the n entries in the column j of X and the
last equality sign holds for centered columns y j (i.e., x̄·, j = 0).

Vigneau and Qannari have integrated this similarity concept into the search for
an optimal �-partition B = (B1, ..., B�) of the set M of variables (columns of X ).
In order to formulate a corresponding clustering criterion, they define, for each class
Bt , a suitable ‘prototype variable’ or ‘class representative’. Instead of choosing one
of the observed variables (columns) y j from Bt (medoid approach), they construct a
synthetic one, i.e., a virtual column c ∈ �n in X . More specifically (and for centered
columns y j ), they define the prototype vector cBt := (ct1, ..., ctn)� ∈ �n to be the
vector c ∈ �n that is most ‘similar’ to the variables in Bt in the sense

S(c; Bt ) :=
∑

j∈Bt

r2(y j , c) = (1/n) c�XBt X
�
Bt
c → max

c∈�n ,||c||=1
, (5)

where XBt is the data matrix X restricted to the variables (columns) of Bt . Classical
eigenvalue theory shows that the solution cBt is given by the standardized eigenvector
vt that belongs to the largest eigenvalue λt of XBt X

�
Bt
(and also X�

Bt
XBt ), i.e., by the

first principal component in Bt . Finally,Vigneau andQannari formulate the following
criterion for clustering variables:

g3(B; X) :=
�∑

t=1

∑

j∈Bt

r2(y j , cBt ) → max
B

(6)

that is equivalent to the two-parameter correlation clustering criterion
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g4(B, C; X) :=
�∑

t=1

∑

j∈Bt

r2(y j , ct )
2 → max

B,C
, (7)

where maximization is also with respect to the choice of the system C = {c1, ..., c�}
of � standardized class-specific prototype variables (vectors) c1, ..., c� ∈ �n .

From its definition as a two-parameter optimization problems it is evident that for
the variable clustering problem (7) a (sub-)optimum �-partition B of variables can
be obtained by a generalized k-means algorithm:

(1) Begin with an initial partition B = (B1, ..., B�) of M = {1, ..., p}.
(2) Partially optimize the clustering criterion with respect to the class prototype

system C for the classes Bt according to (5), thus yielding the class-specific
eigenvector solutions cBt (class-specific principal components).

(3) Build a new �-partition B of the variables by assigning each variable y j to the
‘most similar’ cBt , i.e., the one with the largest value of r

2(y j , cBt ).
(4) Iterate (2) and (3) until convergence.

Defining the similarity of variables by a correlation coefficient involves implicitly
the concept of a linear regression. In fact, the correlation clustering criterion (7) above
can be obtained from a probabilistic clustering model in which any variable y j =
(x1 j , ..., xnj )� of a class Bt is generated, up to a random normal error, from the same
latent factor (prototype variable) ct = (ct1, ..., ctn)� ∈ �n by a linear regression. The
corresponding regression-type variable clustering model is given by

Xi j = a j + b j cti + ei j for i = 1, ..., n; j ∈ Bt (8)

with variable-specific intercepts a j , slopes b j , and independent normal errors ei j ∼
N (0, σ 2). Estimating the unknown a j , b j , the prototype system C = (c1, ..., c�) and
the �-partition B by maximizing the likelihood of X = (xi j ) is equivalent to the
optimization problem

g5(B, C, a, b; X) :=
�∑

t=1

∑

j∈Bt

n∑

i=1

(xi j − a j − b j cti )
2 → min

B,C,a,b
. (9)

Partially optimizing the inner sum of g5 with respect to a j , b j yields the classical
regression estimates

b̂ j := sy j ct
sy j y j

and â j = x̄·, j − b̂ j c̄t,· for j ∈ Bt (10)

in Bt with, e.g., c̄t,· := ∑n
i=1 cti/n, and the partial minimum of the two inner sums

of (9) is given by



10 H.-H. Bock

h(Bt , ct ) :=
∑

j∈Bt

n∑

i=1

(xi j − â j − b̂ j cti )
2 =

∑

j∈Bt

n · sy j y j (1 − r2(y j , ct ))

and characterizes the homogeneity of Bt for a given prototype variable ct . Finally,
the multiparameter clustering problem (9) reduces to the two-parameter mixed
continuous-discrete optimization problem for (B, C):

g6(B, C; X) := mina,b g5(B, C, a, b; X) =
�∑

t=1

h(Bt , ct )

=
�∑

t=1

∑

j∈Bt

n · sy j y j (1 − r2(y j , ct )) → min
B,C

. (11)

For the special case of standardized column variables y j , i.e., for x·, j = 0 and sy j y j =
||y j ||2/n = 1, this criterion is equivalent to the criterion (6) proposed by Vigneau
and Qannari [43]. Insofar we have shown that their criterion (6) can be derived from a
probabilistic clustering model. A software program in R is given by Chavent, Liquet,
Kuentz-Simonet, and Saracco [15]. In the next section, a similar model will be used
for modeling the co-clustering problem.

4 Co-Clustering, Where Variable Clusters are
Characterized by Class-Specific Factors

In this section, we propose a co-clustering model for an n × p object × variable
data table X = (xi j ) with normally distributed entries where the clusters of objects
(rows) are distinguished only by their levels (main effects) while each cluster of
variables (columns) is, additionally, characterized by a cluster-specific factor with a
high correlation to the variableswithin this class. Therebywe adopt the basic idea that
has been followed in Sect. 3 when clustering the variables only. More specifically,
with the notation of former sections and as an extension of the one-way clustering
model (8), we consider the model

Xi j = μ + αs + a j + b j cti + ei j for i ∈ As, j ∈ Bt , (12)

s = 1, ..., k, t = 1, ..., �,

where A = (A1, ..., Ak) and B = (B1, ..., B�) are the unknown partitions of rows
and columns, respectively (with known k and �), μ is a general effect and αs the
‘main effect’ of row class As . In this model, the vector ct = (ct1, ..., ctn)� represents
a cluster-specific latent factor that acts, in cluster Bt , as an explicative variable in the
regression model that explains the n observations of variable j in the j-th column
y j = (x1 j , ..., xnj )� of X , up to the main effects, by a linear regression a j + b j cti
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on the components of ct with unknown variable-specific coefficients a j and b j . As
before, ei j are independent N (0, σ 2) errors.

The clustering problem then consists in finding estimates for the parameters μ,
α = (α1, ..., αk), a = (a1, ..., ap), b = (b1, ..., bp), σ

2, the set of factors
C = (c1, ..., c�), and the partitions A and B (under suitable norming constraints). In
the model (12), the intercepts a j of the linear regression part are specified separately
for the variables j . In the following, we consider the more specialized co-clustering
model where these intercepts are the same, βt say, for all variables j from the same
class Bt . This is described by the more specific co-clustering model

Xi j = μ + αs + βt + b j cti + ei j for i ∈ As, j ∈ Bt , (13)

s = 1, ..., k, t = 1, ..., �

with the constraints

α̃· :=
k∑

s=1

|As |
n

αs = 0, β̃· :=
�∑

t=1

|Bt |
p

βt = 0, ||ct ||2 = 1 (14)

It describes a situation with additive class-specific main effects αs and βt while
interactions are cell-specific with the product form b j cti (factor model).

Invoking the maximum likelihood approach for estimating the parameters in (13),
we obtain the following factor-induced co-clustering problem:

Q(A,B;μ, α, β, b, C; X)

:=
k∑

s=1

�∑

t=1

∑

i∈As

∑

j∈Bt

(xi j − μ − αs − βt − b j cti )
2 → min (15)

where minimization is over all parameters under the constraints (14) (the model (12)
may be treated similarly). In the following, we propose a generalized alternating
k-means-type algorithm for solving this problem where, in each step, we partially
optimize the criterion Q, (15), with respect to the involved parameters in turn.

Step 1: Choose an initial configuration (A,B, μ, α, β, C). A reasonable choice might
be μ = x̄·,·, αs = x̄ As ,· − x̄·,·, βt = x̄·,Bt − x̄·,·, while A and B could be obtained by
separately clustering the rows and columns of X , e.g., by the classical k-means
algorithm. Moreover, the class-specific factors c1, ..., c� might be chosen randomly
from the unit sphere in �n .

Step 2: For fixed (A,B, μ, α, β, C), determine the optimum regression coefficients
b1, ..., b� that minimize the criterion Q, (15). For notational convenience, we intro-
duce the ‘adjusted’ n × p data matrix Z = (zi j (A,B)) with entries
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zi j (A,B) := zi j (A,B;μ,α, β) := xi j − μ − αs − βt

for i ∈ As, j ∈ Bt , s = 1, ..., k, t = 1, ..., �

(where main effects are eliminated) such that this partial optimization problem takes
the form

Q =
�∑

t=1

∑

j∈Bt

n∑

i=1

(zi j (A,B) − b j cti )
2 =

�∑

t=1

∑

j∈Bt

Q j → min
b1,...,b�

. (16)

Minimizing, separately for each j ∈ Bt , the inner sum Q j yields the estimates:

b̂ j =
∑n

i=1 zi j (A,B)cti∑n
i=1 c

2
ti

= z j (A,B)�ct j ∈ Bt , t = 1, ..., �

(with z j (A,B) the j-th column of Z ; note that ||ct ||2 = 1) and the partial minimum

Q̃(C) := min
b1,...,b�

Q =
�∑

t=1

∑

j∈Bt

n∑

i=1

(zi j (A,B) − b̂ j cti )
2

=
�∑

t=1

∑

j∈Bt

(||(z j (A,B)||2 − (z j (A,B)�ct )2
)

(17)

Step 3: Looking now for the factors ct we have to minimize the criterion (17) with
respect to C = (c1, ..., c�). This amounts to maximize, separately for each class Bt ,
the criterion

∑

j∈Bt

(z j (A,B)�ct )2 = c�
t

⎡

⎣
∑

j∈Bt

z j (A,B)z j (A,B)�
⎤

⎦

︸ ︷︷ ︸
St

ct =: c�
t St ct

with respect to ct under the constraint ||ct || = 1. As in Sect. 3 the solution of
this problem is given by the normalized eigenvector ĉt of the n × n matrix St =
St (A,B, μ, α, β) that belongs to the largest eigenvector of St (first principal com-
ponent in Bt ).

Step 4: After having obtained the coefficients b j = b̂ j and the factors ct = ĉt we
substitute these estimates in the original co-clustering criterion Q, (15), andminimize
itwith respect to the global andmain effectsμ,α, andβ under the norming constraints
(14). A brief calculation yields the estimates:
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μ̂ = x̄·,· −
�∑

t=1

|Bt |
p

b̄Bt c̄t,· with b̄Bt :=
∑

j∈Bt

bt
|Bt |

α̂ = x̄ As ,· − x̄·,· −
�∑

t=1

|Bt |
p

(c̄t,As − c̄t,·)

β̂t = x̄·,Bt − x̄·,· − b̄Bt c̄t,· +
�∑

τ=1

|Bτ |
p

b̄Bτ
c̄t,·

While in Steps 2.–4. we have obtained the estimates for the effects μ, α, β, the
coefficients b j and the factors ct , i.e., the configuration (A,B; μ̂, α̂, β̂, b̂, Ĉ) for a
fixed choice of the partitions A = (A1, ..., Ak) of objects and B = (B1, ..., B�) of
variables, we now update these partitions by consecutively minimizing the criterion
Q, (15), with respect to B (Step 5.) and A (Step 6.).

Step 5: Concerning first the partitionB of variables, the new and partially optimum �-
partition B̂ = (B̂1, ..., B̂�) for Q is theminimum-distance partitionofM = {1, ..., p}
with the classes

B̂t := { j ∈ M} | t = argminτ=1,...,� δ( j, τ ;A,B, μ̂, α̂, β̂, b̂, Ĉ)} (18)

for t = 1, ..., � where the distance measure δ is defined by

δ( j, τ ;A,B, μ̂, α̂, β̂, b̂, Ĉ) := ||(z j (A,B)||2 − (z j (A,B)�cτ )
2 (19)

for j = 1, ..., p, τ = 1, ..., � with zi j (A,B) = zi j (A,B; μ̂, α̂, β̂, b̂, Ĉ)). In fact, a
look at (17) shows that the best partition B̂ has to minimize the distance δ, (19), with
respect to τ for all variables j . Note that it follows from the original formula (15)
for Q that the same partition is obtained when using the expression

δ̃( j, τ ;A,B, μ̂, α̂, β̂, b̂, Ĉ) :=
k∑

s=1

∑

i∈As

(xi j − μ̂ − α̂s − β̂τ − b̂ j ĉτ i )
2

for j = 1, ..., p, τ = 1, ..., � instead of δ in (18).

Step 6: Starting with the partition pairA, B̂ and the current parameters μ̂, α̂, β̂, b̂, Ĉ,
the estimation Steps 2.–4. are now repeated and will result in new estimates
μ∗, α∗, β∗, b∗, C∗. With these estimates and the partition B̂ of variables, the k-
partition A of the set of objects O is updated next: the new k-partition Â that
partially minimizes the criterion Q(A, B̂;μ∗, α∗, β∗, b∗, C∗; X), is the minimum-
distance partition with classes

Âs := {i ∈ O | s = argminσ=1,...,k d(i, σ ;A, B̂, μ∗, α∗, β∗, b∗, C∗)} (20)
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for s = 1, ..., k, where the distance measure d is defined by

d(i, σ ;A, B̂, μ∗, α∗, β∗, b∗, C∗) :=
�∑

t=1

∑

j∈Bt

(xi j − μ∗ − α∗
σ − β∗

t − b∗
j c

∗
ti )

2 (21)

for i = 1, ..., n, σ = 1, ..., k.

Step 7: The Steps 2.–6. are repeated until convergence of the two partitions.

Finally, we have obtained the partitions A and B of objects and variables (rows
and columns), together with their characterizations, i.e.,

– the main effects αs of the classes As of objects;
– the main effects βt of the classes Bt of variables together with the factors (proto-
type variables) c1, ..., c� ∈ �n of these classes.

The components of each factor ct describe the contribution of the n objects to
the composition of the column clusters Bt and the object×variable interaction terms
b j cti . For easily interpreting the numerical results we can, e.g.,

– display, for each variable j from class Bt , the n points (cti , yi j ), i = 1, ..., n, in
�2 that should be close to the corresponding regression line η = βt + b j c;

– display and compare the latent factors c1, ..., c� with the discrete curves (i, cti ),
i = 1, ..., n, in �2, where the object labels i are arranged such object classes form
contiguous segments; and

– visualize the � factors c1, ..., c� ∈ �n in a two-dimensional principal component
display.

5 Discussion and Extensions

In this paper, we have proposed two probabilistic approaches for clustering simulta-
neously the objects (rows) and the variables (columns) of a data matrix. In contrast
to other approaches where, e.g., ANOVA models or information distances are con-
sidered (see, e.g., Bock [8, 10–12]), our approach considers situations where the
characterization of object clusters is different from the characterization of clusters
of variables. In Sect. 2 this has been illustrated for the case when object clusters are
characterized by class-specific means while variable clusters are characterized by
class-specific variances. Moreover, in Sect. 4 we have introduced co-clustering mod-
els where object clusters were defined by main effects, and variable clusters by their
main effects and a class-specific factor that explains the variables via a class-specific
regression. This latter model was suggested after analyzing, in Sect. 3, a clustering
method for variables only (proposed by Vigneau & Qannari [43]) and formulating a
corresponding probabilistic model from which our new model can be derived.
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For both co-clustering models, we have proposed an appropriate generalized
k-means algorithm that proceeds by successively updating model parameters and
partitions. These methods can be modified into various ways, e.g., by discussing the
initial settings and the order of partial optimization steps. In this respect, this paper
does not provide final results and lends itself to various investigations in the future.
Basically, our models should be seen as a prototype for approaches that combine
clustering of objects and clustering of variables in a simultaneous, probability-based
framework. They can be extended to other two-parameter distributions, to the case
of factor hyperplanes (involving higher principal components in each column class)
and also to co-clustering models for three-way data similarly as in Bocci, Vicari, and
Vichi [6], Schepers, Van Mechelen, and Ceulemans [37], Vichi, Rocci, and Kiers
[42], or Wilderjans and Cariou [44], Wilderjans and Cariou [13].
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How to Use the Hermitian Form Model
for Asymmetric MDS

Naohito Chino

Abstract In this paper, we shall first revisit theHermitian formmodel (HFM) for the
analysis of asymmetric similarity matrices (abbreviated as ASM) proposed by Chino
and Shiraiwa [5] and show how to interpret the configuration of objects obtained by
applying HFM to empirical and hypothetical ASMs. Finally, we shall discuss briefly
how to apply HFM to ASM which changes as time proceeds through the mutual
interactions among objects.

1 Introduction

In this section we shall introduce the Hermitian form model (hereafter, abbreviated
as HFM) for the analysis of asymmetric (dis)similarity matrix, which was proposed
by Chino and Shiraiwa [5]. Let us first suppose that we have an observed asymmetric
similaritymatrix S = [

s jk
]
, whose element s jk denotes the intensity of the similarity

from object j to object k among N objects. Therefore, matrix S is N byN, and is in
general asymmetric.We shall hereafter abbreviate the Asymmetric SimilarityMatrix
as ASM.

ASM can be found everywhere in our daily lives, in research laboratories, and
so on. Sometimes researchers assume some ASM theoretically or hypothetically in
order to explain a certain observed phenomenon. For example, one-sided love and
hate among members of any informal group are typical examples which constitute
such an ASM in daily lives. Trade data matrix among nations is another typical
ASM. Amount of migration from one region to another is also such an example in
geography.

In research laboratories, we may observe various pathways among voxels of
neurons, biosynthetic pathways of nicotinamide adenine dinucleotide (NAD) (e.g.,
Imai &Guarente [11], Fig. 2), and so on. In field research wemay observe, for exam-
ple, the pecking order among a group of hens and cocks in biology (e.g., Rushen
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[15]). Suppose that the code is one in the case when there is a pathway or such an
order, and otherwise it is zero. Then, we get an ASM whose elements are binary.

We sometimes assume some special ASM theoretically or hypothetically. For
example, Sato, Akiyama, and Farmer [17] assume the payoff matrices of “rock-
paper-scissors” in the context of the theory of the evolutionally stable strategy in
biology. Equation (1) shows them.

A =
⎡

⎣
εx −1 1
1 εx −1

−1 1 εx

⎤

⎦ ,B =
⎡

⎣
εy −1 1
1 εy −1

−1 1 εy

⎤

⎦ . (1)

Theweightmatrix specifically assumed in the hidden layers is also considered as a
typical ASM in recurrent neural networks (e.g., Goodfellow, Bengio,&Courville [8],
Fig. 10.3). Usually, elements of the weight matrix are unknown parameters of some
neural network model, and thus are estimated from data. From the psychometrical
point of view, elements of ASM are measured at various levels. For example, these
elements in the affinity data discussed above are measured at an interval level. Those
in trade data aremeasured at a ratio level. Binary data frequently observed in research
laboratories, which might be considered as count data, may be viewed as measured
at a ratio level. This type of data can be sometimes said to be measured at an absolute
scale level. Dummy variables, 1 and −1 in the payoff matrices might also be said to
be measured at a ratio level.

For these elements of ASM, HFM assumes the ratio level of measurement. As
a result, for example, affinity data matrices among members of any informal group
discussed above should not be analyzed by HFM. In such a case, we may analyze
such matrices using various asymmetric MDS methods which do not necessarily
assume the ratio level of measurement (e.g., Okada & Imaizumi [13, 14]; Saburi &
Chino [16]).

In this paper, we shall show how to interpret the configuration of objects obtained
by applying HFM to theoretical or empirical ASMs, typical examples of which we
listed above. In Sect. 2, we shall revisit HFM briefly. In Sect. 3, we shall explain how
to interpret the configuration of objects obtained by HFM. In Sect. 4, we show some
applications of HFM to empirical ASM, and interpret the configurations of objects
obtained by HFM. In Sect. 5, we show some applications of HFM to theoretical or
hypothetical ASM, and interpret these configurations obtained by HFM. In Sect. 6,
we shall discuss the merit of HFM, and refer to a possibility of utilizing these con-
figurations for future research. In Sect. 7 we shall discuss the ASMwhich changes as
time proceeds through the mutual interactions among objects. We introduce a certain
hypothetical force acting on the state spaces of some underlying dynamical system
and discuss how to interpret such a force by utilizing the theory of HFM.
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2 Revisit of HFM

In this section we shall summarize the HFMmodel proposed by Chino and Shiraiwa
[5]. In HFM we first decompose N by N ASM, S, into the symmetric part and the
skew-symmetric part,

S = S + St

2
+ S − St

2
= Ss + Ssk, (2)

and then construct a Hermitian matrix as follows:

H = Ss + i Ssk, (3)

where i2 = −1. It is apparent from Eq. (3) that S is a real matrix whileH is a special
complex matrix. SinceH is a Hermitianmatrix, the conjugate transpose of H denoted
by H∗ is also H. H is an N by N matrix.

In HFM we first consider the eigenvalue problem of H, that is,

Hui = λiui , 1≤ i ≤N, (4)

where λi is the ith eigenvalue of H, and ui is the eigenvector associated with λi . It
is well known that all the eigenvalues of H are real, since H is Hermitian. It is also
well known that all of these eigenvectors are unitary, that is, mutually orthogonal in
a complex space. Moreover, without loss of generality we can set λi �= 0 (1 ≤ i≤ n),
and λn+1 = λn+2 = · · · = λN = 0.

Then, let us define

U = [
u1, . . . , un, un+1, . . . , uN

] = [U1,U2 ] , (5)

where U1 and U2 are composed of n column vectors, u1, . . . , un and N − n column
vectors, un+1, . . . , uN , respectively. Moreover, let us define

� = diag [λ1, λ2, . . . , λn] . (6)

Using U1 and �, we get

H = U1ΛU∗
1. (7)

Here, U∗
1 denotes the conjugate transpose of U1.

Let us further define

Ωs =
[

Λ O
O Λ

]
,Ωsk =

[
O −Λ

Λ O

]
, (8)

and
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X = [Ur ,U c] , (9)

where Ur and Uc are such that U1 = Ur + iUc. Here, Ur and Uc are, respectively,
the real part and the imaginary part of the eigenvector matrix U1 of Eq. (7). Then,
H in Eq. (7) can be rewritten as

H = XΩsX t + i XΩskX t . (10)

Here, it should be noticed that the matrices X, Ωs , and Ωsk are all real.
In any case, if we write the ( j, k) element of H in Eq. (7) as h jk , this equation

can be written in the form
h jk = �

(
v j , vk

)
, (11)

where � is a Hermitian form, �
(
v j , vk

) = v j Λv∗
k . This is the reason why we call

our model the Hermitian form model (HFM) for the analysis of asymmetry. Chino
and Shiraiwa [5] proved that a necessary and sufficient condition for this model to
be expressible in terms of (complex) Hilbert space is the positive semi-definiteness
(p.s.d) of H. This means that all the eigenvalues of H are greater than or equal to
zero and in this case we can embed objects in the Hilbert space.

If some of the eigenvalues are negative, we can embed objects in an indefinite
metric space. However, if we restrict the dimension into one in the indefinite metric
space, this space can be considered as a one-dimensional Hilbert space, and we can
interpret the configuration of objects as if it were embedded in a Hilbert space even
if the eigenvalue under consideration is negative. In this case, however, we must
interpret the configuration of objects, noticing the sign of the eigenvalue. We shall
show such an example in Sect. 3.

Next, if we use Eqs. (2), (3), and (10), then we get

S = XΩsX t + XΩskX t . (12)

This equation can be rewritten, in scalar notation, as

s jk =
n∑

l=1

λl
(
r jlrkl + c jlckl

) +
n∑

l=1

λl
(
c jlrkl − r jlckl

)
, (13)

or

s jk =
n∑

l=1

λl
{(
r jlrkl + c jlckl

) + (
c jlrkl − r jlckl

)}
, (14)

where
Ur = [

r jl
]
,U c = [

c jl
]
, (15)

are the real part and the imaginary part of the eigenvector matrix U1, as introduced
in defining the matrix X in Eq. (9). Therefore, both r jl and c jl are real. This means
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that we may treat s jk as if it were defined with n two-dimensional Euclidean planes
notwithstanding the fact that HFM is a (complex) Hilbert space model. In general,
one-dimensional complex plane can be identified with two-dimensional Euclidean
plane.

Finally, we have an interesting identity in HFM (Chino & Shiraiwa [5]). Let
� (ζ, τ ) be a Hermitian form. Then, we have the following polar identity in the
(complex) pre-Hilbert space (Cristescu [6]),

� (ζ , τ ) = 1

4

(‖ζ + τ‖2 − ‖ζ − τ‖2) + 1

4
i
(‖ζ + iτ‖2 − ‖ζ − iτ‖2) . (16)

This equation also holds for the (complex) Hilbert space. Stated another way, we
have

� (ζ , τ ) = 1

2

(‖ζ‖2 + ‖ τ‖2 − ‖ζ − τ‖2)

+ 1

2
i
(‖ζ‖2 + ‖ τ‖2 − ‖ζ − iτ‖2) . (17)

Then, remembering Eq. (11), we have

h jk = 1

2

(∥∥v j
∥∥2 + ‖ vk‖2 − ∥∥v j − vk

∥∥2
)

+ 1

2
i
(∥
∥v j

∥
∥2 + ‖ vk‖2 − ∥

∥v j − ivk
∥
∥2

)
. (18)

Remembering Eq. (3), we have

s jk = 1

2

(∥∥v j
∥∥2 + ‖ vk‖2 − ∥∥v j − vk

∥∥2
)

+ 1

2

(∥∥v j
∥∥2 + ‖ vk‖2 − ∥∥v j − ivk

∥∥2
)

. (19)

We can rewrite Eq. (19) as

s jk = ∥∥v j
∥∥2 + ‖ vk‖2

− 1

2

(∥∥v j − vk
∥∥2 + ∥∥v j − ivk

∥∥2
)

. (20)

This equation bridges the gap between observed asymmetric similarities, s jk , which
are real, and position vectors, v j and vk , of objects, j and k, respectively, which
are complex. As shown in the next section, it is utilized when we want to recover
component asymmetric similarities from the configuration of objects embedded in
the (complex) Hilbert space.
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3 Interpretation of the Configuration of Objects by HFM

In this section, we shall explain how to interpret the configuration of objects embed-
ded in a Hilbert space, which is obtained by applying HFM to any empirical or
theoretical ASM. As discussed in the previous section, objects are embedded in
either the Hilbert space or the indefinite metric space depending on the eigenvalues
of the Hermitian matrix constructed from the ASM.

However, as also discussed in the previous section, both those spaces are consid-
ered as one-dimensional Hilbert spaces if we restrict the space in one dimension. As
a result, we may interpret the n-dimensional configuration of objects in the whole
space per one dimension as if it were a one-dimensional Hilbert space, that is, a
complex plane. This means that we may think of the similarity, s jk , in Eq. (13) as

s jk = λl
(
r jlrkl + c jlckl

) + λl
(
c jlrkl − r jlckl

)
, (21)

for the lth complex plane associated with the lth eigenvalue of H. Here, r jl and c jl
are, respectively, the real part and the imaginary part of the complex number, v j ,
corresponding to the location of object, Oj , on the lth complex plane. Since the
complex plane can be identified with the two-dimensional Euclidean plane, we can
also consider r jl and c jl , respectively, as the abscissa and the ordinate of the position
of Oj , on the lth Euclidean plane.

Then, let us rewrite r jl and c jl as x j1 and x j2, respectively.Moreover, let us define,
respectively, the position vectors, x j = [

x j1, x j2
]
and xk = [xk1, xk2] of Oj and Ok .

Then, Eq. (21) can be rewritten as follows, if we introduce trigonometric functions:

s jk = λ
∣∣x j

∣∣ |xk |
(
cosθ jk − sinθ jk

)
, (22)

where θ jk is the angle from Oj to Ok .
If we identify, respectively, real vectors, x j and xk , with complex numbers,

v j = x j1 + i x j2 and vk = xk1 + i xk2, θ jk is the difference in the arguments θ j and
θk of v j and vk , respectively, in a complex plane. Here, the argument of the complex
number z, defined for z �=0, is the angle which the vector originating from 0 to z
makes with the positive real axis counterclockwise. Figure1 illustrates v j and vk in
a complex plane, assuming that v j is on the real axis. In this case, the argument of
v j happens to be zero, and thus θ jk is equal to the argument of vk .

However, in interpreting the configuration of objects obtained by HFM, it should
be noticed that the positive direction of the configuration of objects must bemeasured
clockwise, considering Eqs. (21) and (22). This means that the similarity from Ok

associated with vk to Oj associated with v j is relatively greater than that from Oj to
Ok in Fig. 1.

Remember here that the positive direction of the configuration of objects is coun-
terclockwise in Chino’s ASYMSCAL (Chino [1]), which is one of the asymmetric
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Fig. 1 Configuration of two
objects, Oj and Ok in the
complex plane, and the
argument θ jk measured
counterclockwise from Oj

MDSs. This model is a Euclidean space model and embeds objects in the two-
dimensional Euclidean space. The original model is written as

s jk = a
(
x j1xk1 + x j2xk2

) + b
(
x j1xk2 − x j2xk1

) + c, (23)

where a, b, and c are real constants.
If we identify real coordinate vector x j = [

x j1, x j2
]
with the complex number

z j = r j1 + ic j1 and xk = [xk1, xk2] with the complex number zk = rk1 + ick1, Eq.
(23) can be rewritten as

s jk = a
(
r j1rk1 + r j2rk2

) + b
(
r j1ck2 − c j2rk1

) + c. (24)

Now, let us set a = b = λ. Then, Eq. (24) is written as

s jk = λ
(
r j1rk1 + r j2rk2

) + λ
(
r j1ck2 − c j2rk1

) + c. (25)

If we further rewrite Eq. (25) as

s jk = λ
(
r j1rk1 + r j2rk2

) − λ
(
c j2rk1 − r j1ck2

) + c, (26)

and compare it with Eq. (21) of HFM, we see that the positive direction of the
configuration of objects is opposite in the case of Chino’s ASYMSCAL.
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radian

Fig. 2 Values of s jk (blue curve) and sk j (red curve) plotted against θ jk when the eigenvalue of H
is positive

radian

Fig. 3 Values of s jk (blue curve) and sk j (red curve) plotted against θ jk when the eigenvalue of H
is negative
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Table 1 Summary of signs of s jk and sk j which depend on θ jk

θ jk (0, π
4 ) ( π

4 ,
π
2 ) ( π

2 ,
3π
4 ) ( 3π4 , π ) (π , 5π

4 ) ( 5π4 , 3π
2 ) ( 3π2 , 7π

4 ) ( 7π4 , 2π )

s jk + – – – – + + +

sk j + + + – – – – +

Table 2 Summary of signs of s jk and sk j which depend on θ jk

θ jk (0, π4 ) ( π
4 ,

π
2 ) ( π

2 ,
3π
4 ) ( 3π4 , π ) (π , 5π4 ) ( 5π4 , 3π2 ) ( 3π2 , 7π4 ) ( 7π4 ,2π )

s jk – + + + + – – –

sk j – – – + + + + –

In any case, s jk in Eq. (22) of HFM depends on θ jk discussed there. Figures2
and 3 illustrate the details of s jk as a function of θ jk . In these figures, we set

∣∣x j

∣∣ |xk |
in Eq. (22) equal to 1 for simplicity. Moreover, we set λ equal to 1 and −1 for Figs. 2
and 3, respectively. These correspond to the cases when the eigenvalues of H are
positive and negative, respectively.

It is apparent from Fig. 2 that sk j is greater than s jk within the range, 0<θ jk<π,
while s jk is greater than sk j within the range, π<θ jk<2π. Moreover, signs of s jk and
sk j depend on θ jk , as summarized in Table1.

In contrast, it is apparent from Fig. 3 that s jk is greater than sk j within the range,
0<θ jk<π, while sk j is greater than s jk within the range,π<θ jk<2π. Moreover, signs
of s jk and sk j depend on θ jk , as summarized in Table2.

Finally, we shall consider a bit about the skewness between s jk and sk j . It is easy
to show that from Eq. (22) we have

s jk−sk j = −λ
∣
∣x j

∣
∣ |xk | sinθ jk . (27)

Therefore, if we set λ
∣∣x j

∣∣ |xk | equal to 1, we have

s jk−sk j = −sinθ jk, (28)

and ∣∣s jk−sk j
∣∣ = ∣∣sinθ jk

∣∣ . (29)

The green curve in Fig. 4 is the very amount of the skewness between the similarities,
s jk and sk j . From this figure, it is apparent that the skewness between them takes the
maximum values when θ jk is π

2 or 3π
2 .



28 N. Chino

radian

Fig. 4 Skewness curves (green) between s jk (black curve) and sk j (red curve) plotted against θ jk

4 Applications of HFM to Empirical Asymmetric
Relational Matrices

In this section we show two applications of HFM to empirical asymmetric relational
data matrices. One is the international trade data among Japan, America, China, and
Russia in 2015, which appeared in The Asahi News Paper in Japan. Table3 shows
this.

According to convention, we administered a log transformation to each element
of this ASM prior to the analysis via HFM. Eigenvalues of the Hermitian matrix con-
structed from the transformed ASMwere 29.9714, 6.1145, 4.4377, and 3.5309. This
means that the trade data has aHilbert space structure as a whole. Of course, each of
the configurations of nations on the complex planes associated with these eigenval-
ues is considered as embedded in a one-dimensional Hilbert space, as indicated in
the previous section. Moreover, these configurations embedded in one-dimensional

Table 3 The international trade data among Japan, America, China, and Russia in 2015

1. Japan 2. USA 3. China 4. Russia

1. Japan 43,480 1,382 1,200 55

2. USA 736 189,592 1,161 71

3. China 1,764 4,832 119,684 348

4. Russia 173 164 333 13,755
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(a) (b)

(c) (d)

Fig. 5 Four configurations of nations corresponding to the one-dimensional Hilbert space. In this
figure, alphabets, A, C, J, and R, indicate USA, China, Japan, and Russia

Hilbert spaces are mutually orthogonal (to be precise, unitary) in the whole space
with the complex Hilbert space structure.

Figure5 shows four configurations of nations corresponding to these one-
dimensional Hilbert spaces. Of course, these four configurations are associated with
the four eigenvalues of the Hermitian matrix discussed above.

Figure5a, which is the configuration associated with the maximum eigenvalue of
the Hermitian matrix, suggests that this dimension looks like a size-factor in PCA
because four nations are compressed in a narrow region. However, if we enlarge
this region, we see that major asymmetric relationships among nations observed
in the ASM are reproduced in the enlarged configuration. Here, in interpreting this
configuration, it should be noticed that the positive direction of this figure is clockwise
because the eigenvalue is positive in this case. It should also be noticed that angles
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Fig. 6 The enlarged
configuration of four nations.
Here, the positive direction
of this figure is clockwise
because the eigenvalue is
positive in this case

θ jk between two nations all fall within π/3 (30◦), as is apparent from Fig. 5a. Then,
looking at Fig. 2, we see that sk j > s jk .

As a result, applying this relation to nations in Fig. 6, the amount of export from
C (China) to A (USA) is greater than that from A to C. Similar trade imbalances are
indicated fromC to J, and from J to A. Finally, it should be noticed that themagnitude
of the skewness between s jk and sk j , which is defined by Eq. (29), increases as θ jk

increases within π/3, as shown in Fig. 4. Since this magnitude is also proportional
to

∣∣x j

∣∣ |xk | in Eq. (27), the magnitude of skewness between A and C might be the
greatest of all the dyadic relations shown in Fig. 6.

The other application is concerned with the biosynthetic pathways of proteins in
mammals (e.g., Imai [10]; Imai & Guarente [11]), an example of which appears in
Fig. 2 of Imai and Guarente [11]. We reconstruct an ASM from this figure in such a
way that the similarity is 1 if the directional arc exists from an element to another
element of 11 substances, and otherwise it is 0. These substances are composed
of tryptophan (an α-amino acid), NAD (nicotinamide adenine dinucleotide, a non-
protein chemical compound), NIC (nicotinamide, an organic molecule), and so on.

Table 4 Biosynthetic pathways of proteins in mammals which was reconstructed from Fig. 2
of Imai and Guarente [11]

1 2 3 4 5 6 7 8 9 10 11

1 0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0

6 0 0 0 0 0 0 1 0 1 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 1 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 1 0
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(a) (b)

(c) (d)

Fig. 7 Four configurations of the biosynthetic pathways corresponding to one-dimensional Hilbert
spaces, which constitute a part of the holistic 11-dimensional Hilbert space

Table4 shows this. Here, it should be noticed that in general such a pathway can be
considered as a weighted digraph (directed graph) in graph theory.

Since the weighted digraph accompanies a weight matrix, we say that a unique
ASM is associated with any weighted digraph.

Eigenvalues of the Hermitian matrix constructed from this ASM were 1.6302,
−1.6302,−1.2534, 1.2534,−0.8706, 0.8706, . . .. These eigenvalues mean that this
data has a holistic indefinite metric structure. Of course, each of the configurations of
the biosynthetic pathways of proteins in mammals on the complex planes associated
with these eigenvalues can be embedded in a one-dimensional Hilbert space, as
discussed previously.
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Fig. 8 An enlarged
configuration of Fig. 7b

Figure7 shows four configurations of the biosynthetic pathways composed of
these one-dimensional Hilbert spaces. These four configurations are associated with
the first four eigenvalues of the Hermitian matrix discussed above.

Figure7a, is the configuration associated with the maximum eigenvalue of the
Hermitian matrix. Although this configuration recovers the major pathways con-
tained in the original data matrix, it does not include the important cyclic pathways,
starting from O6 (NAD) to come back to it through O9 (NIC) and O10 (NMN). In con-
trast, Fig. 7b, which is the configuration corresponding to the maximum eigenvalue
but with negative sign, recovers almost all the pathways contained in the original
matrix. Figure8 is an enlarged configuration of Fig. 7b. In interpreting this config-
uration, it should be noticed that its positive direction is counterclockwise because
the eigenvalue associated with it is negative. Noticing this point, we can find the fol-
lowing pathways in Fig. 8 by following an object to another object counterclockwise
within π radian, referring to Fig. 2 of Imai and Guarente [11]:

1. O1 (Tryptophan)→ O2 (Quinolinic acid)→ O4 (NaMN)→ O5 (deamido-NAD)
→ O6 (NAD) → O9 (NIC) → O10 (NMN) → O6 (NAD)

2. O3 (NA) → O4 (NaMN)
3. O9 (NIC) → O8 (1-methyl-nicotinamide)
4. O6 (NAD) → O7 (O-acetyl-ADP-ribose)

The first pathway includes a cycle starting from O6 and returning to itself. The
second pathway runs into the first pathway at O4 (NaMN). The third pathway gets
away from the first pathway at O9 (NIC). The fourth pathway also gets away from
the first pathway at O6 (NAD).
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5 Applications of HFM to Theoretical or Hypothetical
Asymmetric Relational Data Matrices

In this section, we show two applications of HFM to theoretical or hypothetical
asymmetric relational data matrices. Sato et al. [17] investigated the problem of
learning to play the game of rock-paper-scissors, using the following set of nonlinear
differential equations.

[
ẋi
ẏ j

]
=

[
xi ((Ay)i − xt Ay)
y j ((Bx) j − yt Ax)

]
, i = 1, · · · , n, j = 1, · · ·, m, (30)

where x = (x1, . . . , xn )t is the relative frequency vector for one population, while
y = (y1, . . . , ym )t is that for the second population. This approach is based on
the theory of games and the notion of evolutionarily stable strategy (abbreviated as
ESS), of which theory was introduced by Maynard and Price [12].

In any case, in Eq. (30) A is the payoff matrix for one population, while B is the
payoff matrix for the second population, and these two matrices are denoted as

A =
⎡

⎣
εx −1 1
1 εx −1

−1 1 εx

⎤

⎦ ,B =
⎡

⎣
εy −1 1
1 εy −1

−1 1 εy

⎤

⎦ , (31)

where −1 <εx < 1 and −1 <εy < 1. Here, columns of these matrices are placed in
the order of “rock”, “paper”, and “scissors”. If εx = −εy = ε, this game is called a
zero sum game. In matrix notation, this condition is denoted as A = −Bt . Matrices,
A and B, are nothing but theoretical examples of ASM, in that these ASMs cannot
be observed and are hypothesized a priori.

Although Sato et al. [17] discusses thesematrices from the viewpoint of a dynami-
cal system, they do not discuss themetric structure of thesematrices. Such a structure
can be examined by applying HFM to them. Let us now examine the structure of A
in the case when εx = 0.25, which is one of the cases in which εx and εy are treated
as a bifurcation parameter of the dynamical system described by Eq. (30). The eigen-
values of the Hermitian matrix constructed from this ASM were 1.9821, −1.4821,
0.2500. These eigenvalues mean that this data has a holistic indefinite metric struc-
ture. Figure9 shows this structure. Each of the configurations shows the positions of
the three elements, i.e., “1. rock”, “2. paper”, and “3. scissors”, in a one-dimensional
Hilbert space. Again, these configurations are complex orthogonal (unitary) in the
holistic indefinite metric space.

Figure10 shows the enlarged configuration of Fig. 9a. It should be noticed that the
eigenvalue corresponding to it is positive. This means that the positive direction of
this configuration is clockwise. Considering this point, we can conclude that 1 (rock)
defeats 3 (scissors), 3 defeats 2 (paper), and 2 defeats 1. These relations completely
reproduce the triadic relations assumed in the rock-paper-scissors game.
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(a)

(c)

(b)

Fig. 9 Three configurations of the payoff matrix A corresponding to one-dimensional Hilbert
spaces, which constitute the holistic 3-dimensional Hilbert space

Figure11 shows the enlarged configuration of Fig. 9b. It should be noticed that the
eigenvalue corresponding to it is negative. This means that the positive direction of
this configuration is counterclockwise. Considering this point, we see that the same
triadic relations as in Fig. 10 are reproduced.

Figure9c is the configuration whose associated eigenvalue is positive. As a result,
the positive direction of this configuration is clockwise. However, regardless of this
information, the configuration reveals the collapse of the triadic relations.

Another application of the theoretical ASM is the following matrix,

C =
⎡

⎣
1 −1 1
1 1 −1

−1 1 1

⎤

⎦ . (32)
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Fig. 10 Configuration of
elements (1. Rock, 2. Paper,
3. Scissors) in the
one-dimensional Hilbert
space, which corresponds to
the largest eigenvalue of H
(the enlarged configuration
of Fig. 9a

Fig. 11 Configuration of
elements (1. Rock, 2. Paper,
3. Scissors) in the
one-dimensional Hilbert
space, which corresponds to
the second largest eigenvalue
of H (the enlarged
configurations of Fig. 9b)

According to the rock-paper-scissors game, C is not the payoff matrix, because ε

in Eq. (31) is out of the range defined in the payoff matrices. However, such a matrix
is plausible as a general ASM, and has already been analyzed elsewhere (e.g., Chino
[2]).

In fact, eigenvalues of the Hermitian matrix constructed from this ASM were
2.7321, 1.000, and −0.7321. These eigenvalues mean that this data has a holistic
indefinite metric structure. Figure12 shows this structure. Each of the configurations
shows the positions of the three elements, i.e., “1. rock”, “2. paper”, and “3. scissors”,
in a one-dimensional Hilbert space.
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(a)

(c)

(b)

Fig. 12 Three configurations of the matrixC in Eq. (32) corresponding to one-dimensional Hilbert
spaces, which constitute the holistic 3-dimensional Hilbert space

Figure13 shows the enlarged configuration of Fig. 12a. At a glance, this configura-
tion is completely different from that of Fig. 12. However, the sign of the eigenvalue
corresponding to the configuration of Fig. 11 is negative, while that of Fig. 13 is
positive. This means that these two configurations indicate the same information
about the asymmetric relations among elements.

Similarly, we see that Figs. 9c and12b convey the same information about the
asymmetric relations among elements, considering the signs of the eigenvalues cor-
responding to these configurations. We also find that Figs. 9b and12c convey the
same information. However, it should be noticed that the sizes of the eigenvalues for
these pairs of figures are different from one another. Thismeans that the contributions
of one-dimensional Hilbert space structures to the holistic space structure depend on
the diagonal elements, i.e., ε in Eq. (31), in the case of tripartite deadlock relation.
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Fig. 13 Configuration of
elements (1. Rock, 2. Paper,
3. Scissors) in the
one-dimensional Hilbert
space, which corresponds to
the largest eigenvalue of H
associated with C (the
enlarged configuration of
Fig. 12a)

6 Decomposition of ASM to Elementary ASMs via HFM

In the application sections we have seen that HFM enables us to get multiple
configurations of objectswhich aremutually complex orthogonal (i.e., unitary), given
any empirical ASM or theoretical ASM. Moreover, we can recover real component
ASMs’ from these configurations of objects embedded in a complex space (i.e.,
Hilbert space or indefinite space), using Eq. (20) of HFM.

For example, the theoretical ASM defined by Eq. (32) has three configurations
of objects in the complex space, as shown in Fig. 12 in the previous section. If we
compute component ASMs from these configurations using Eq. (20), we have

C1 =
⎡

⎣
0.333 −0.455 0.122
0.122 0.333 −0.455

−0.455 0.122 0.333

⎤

⎦ ,C2 =
⎡

⎣
0.333 −0.455 0.122
0.122 0.333 −0.455

−0.455 0.122 0.333

⎤

⎦ ,

and C3 =
⎡

⎣
−0.333 −0.122 0.455
0.455 −0.333 −0.122

−0.122 0.455 −0.333

⎤

⎦ . (33)

Since these component ASMs are associated with the three configurations of
which eigenvectors are mutually complex orthogonal, these component ASMs con-
vey unrelated information about objects with one another. Therefore, if we apply
HFM to some empirical ASM as in Table4, and if we find a component configura-
tion which is not congruent with the previous results of the experiment, it might be
worthwhile to examine theoretically and/or experimentally whether such a configu-
ration exists or not substantively.



38 N. Chino

7 Hypothetical Force Acting on the Hilbert Space and Its
Interpretation

The ASMs we have dealt in the previous sections are matrices observed at some
instant of time, or those assumed theoretically or hypothetically. However, in actual
situations an ASM frequently changes as time proceeds through the mutual inter-
actions among objects. In such a case, configuration spaces obtained by HFM can
be thought of as state spaces of some underlying dynamical system. The state space
understudy is, of course, the Hilbert space or indefinite metric space.

Then, we can naturally introduce some forces acting on these state spaces by
which objects move as time proceeds (e.g., Elaydi [7]; Hirsch & Smale [9]). As a
result, the configuration of objects changes as time proceeds. If we take a snapshot
of such a process at some instant in time, we can compute the longitudinal ASMs
using Eq. (20) of HFM. Figure14 shows an illustration of forces exerting on the
configuration space in Fig. 6. In fact, trade imbalance changes year after year by the
political and economic interactions among nations.

In Fig. 14, blue arrows denote the position vectors of the four nations, while red
arrows indicate usual vectors denoting here the forces acting on the two nations,
A (USA) and J (Japan). According to these forces, USA approaches Japan, while
Japan does not necessarily approach America. These forces can be defined as the
mutual interaction matrix as follows. In this case its order is four, which corresponds
to the number of nations.

M =

⎡

⎢
⎢
⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31

m41

m32

m42

m33

m43

m34

m44

⎤

⎥
⎥
⎦ . (33)

Here, each element of thismatrix is a complex number. Moreover, subscript numbers,
1, 2, 3, and 4, denote J (Japan), A (USA), C (China), and R (Russia), respectively,
as in Table3. Therefore, the force emanating from USA to Japan can be expressed
as, say, m21 = 0.07 + 0.1i , and that issuing from Japan to USA can be expressed
as, say, m12 = 0.1 − 0.01i . We assume that the matrix M is defined theoretically or
hypothetically, although it is also an ASM. Moreover, we assume that its elements
are all constant.

Themutual interactionmatrix is sometimes used in dynamical systemmodels. For
example, the payoff matrices hypothesized by Sato et al. [17] which was discussed
in Sect. 5 are considered as such mutual interaction matrices. The weight matrix
representing hidden-to-hidden recurrent connections assumed in recurrent neural
network models is thought of as another example (e.g., Goodfellow et al. [8]). In this
case, however, the weight matrix is real. Chino [3, 4] has recently been developing a
dynamic weighted digraph model using a set of nonlinear complex difference equa-
tions, in which a mutual interaction matrix is hypothesized to explain changes in the
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Fig. 14 An illustration of
forces exerting on the
configuration space in Fig. 6.
Red arrows indicate the
forces acting on the two
nations, America and Japan.
Here, the positive direction
of this figure is clockwise
because the eigenvalue is
positive in this case

observed ASM over time. In this case, the elements of the interaction matrix are not
real but complex, one example of which is the matrix M defined in Eq. (33).

8 Conclusions

HFM is one of the MDS models which is specifically designed to analyze asym-
metric (dis)similarity matrix (abbreviated as ASM), and was proposed by Chino and
Shiraiwa [5]. Among various asymmetric MDS models which have been proposed
up to now, HFM is a special one in that embedded spaces are complex, especially, a
(complex) Hilbert space or an indefinite space, although original ASMs are always
real. This property might sometimes be a barrier for users’ understanding of HFM.
Therefore, we explained in this paper how to use HFM to various ASMs which are
observed in our daily lives, in research laboratories, and so on.

In the introductory section, we gave some typical examples of ASMs and point
out that the ratio level of measurement is required for the elements of ASM to which
we apply HFM. In Sect. 2, we revisited HFM and explained the reason why it is
promising to introduce a complex space in order to summarize the real asymmetric
relationships among objects. The keyword for introducing complex spaces is the
Hermitian form defined in the complex space. Formulae which play important roles
in relating anyASM,S, with this formare obtained by considering the two elementary
equations, i.e., Eqs. (2) and (3) in that section. On the way to deducing the HFM, we
also get an important formula, Eq. (20). This equation builds a bridge between the
similarity from Oj to Ok (real) and coordinate vectors of the two objects (complex).

If we apply HFM to any ASM, then we get multiple configurations of objects
embedded in a (complex) Hilbert space or an indefinite metric space, depending on
the signs of the eigenvalues of the Hermitian matrix H in Eq. (3). If the nonzero
eigenvalues are all positive, we may adopt a Hilbert space as a holistic configura-
tion space. Otherwise we may adopt an indefinite metric space as a holistic space.
Moreover, we may interpret these configurations separately per dimension, because
these configurations, which are associated with the eigenvectors corresponding to
these eigenvalues, are unitary, i.e., complex orthogonal. Furthermore, each of these
configurations can be thought of as embedded in a one-dimensional Hilbert space,
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which can be regarded as a (real) Euclidean two-dimensional space, except the sign
of the corresponding eigenvalue. If the sign is positive, we may consider that the
positive direction of the configuration is clockwise, and if the sign is negative, we
may regard it as counterclockwise. In Sects. 4 and 5, we pointed out two empirical
ASMs and two theoretical or hypothetical ASMs, and explained how to interpret the
obtained configurations of objects via HFM.

In Sect. 6, we focused on a theoretical or hypothetical ASM, and explained how to
recover the component ASMs from the multiple configurations of objects. In Sect. 7,
we discussed the cases in which ASM changes as time proceeds. In such cases, it will
be appropriate and natural to introduce some forces acting on the complex spaces
by which objects move as time proceeds. Then, it may be appropriate and natural
to introduce a dynamical system model in which some mutual interaction matrix is
assumed.

Acknowledgements The author is indebted to Gregory L. Rohe for proofreading of an earlier
version of this paper.
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Asymmetric Scaling Models for Square
Contingency Tables: Points, Circles,
Arrows and Odds Ratios

Mark de Rooij

Abstract We study two asymmetric scaling methods within the context of loglinear
modelling of square contingency tables: the distance-radius model and the slide-
vector model. The usual association parameters of a loglinear model are replaced by
a distance term. We are specifically interested in whether and how the asymmetry
in these methods translates to odds ratio structures, as the latter is a primary mea-
sure of association for contingency tables. We define models in terms of distances
and squared distances. We show that the distance-radius model with distances and
the slide-vector model with squared distances do not represent asymmetry in the
odds ratios. Finally, we also study models without main effects, where the distances
directly represent the observed frequencies. We show that in that case the distance-
radius model perfectly represents marginal heterogeneity.

1 Introduction

Professor Okada was a member of the committee that evaluated my Ph.D. thesis.
In that time (2001) Leiden University had a system where first a main reviewer
(called a referent) evaluated the thesis and after approval of this referent the thesis
went to a committee for approval. Professor Okada was the referent of my thesis
entitled Distance models for transition frequency data. Afterwards Professor Okada
and I met oftentimes in conferences of various classification societies as well as the
psychometric society.

My first memory of meeting Professor Okada goes back to the European meet-
ing of the Psychometric Society in Lueneburg (Germany 1999). Okada gave a pre-
sentation about his and Professor Imaizumi’s asymmetric multidimensional scaling
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method for three-way two-mode data (Okada & Imaizumi [7]), because as he told
the audience ‘several people asked me to present again this scaling procedure’ while
the program gave another topic.

I recently asked Professor Okada about his remembrance of first meetingme. Aki-
nori indicated that we first met at the European Meeting of the Psychometric Society
in Santiago de Compostela (Spain 1997). This meeting was my first conference as
a young Ph.D student and I was quite overwhelmed by so many new ideas and all
kinds of other impressions.

Nevertheless, we see that there is asymmetry in our memories. Asymmetry is also
the research topic of mutual interest, more specifically the representation of asym-
metric data using distance-based graphs. Asymmetric data are collected in many
areas of science, for example in psychology where memories are often asymmetric
(as shown above), in political science where voters change their vote from one polit-
ical party to another, or in marketing science where certain products become more
popular, or in demographic studies where from generation to generation changes
occur in the distribution over occupational classes.

In this paper, we will focus on the analysis of square contingency tables in a
loglinear modelling framework, similar to the work of De Rooij and Heiser [4].
That is, we define a model for the expected frequencies of a contingency table and
fit it by maximizing the Poisson likelihood. In the models the association term of
a loglinear model for a two-way contingency table is replaced by a distance term.
The distance formulations we consider are the Euclidean distance, the distance-
radius model and the slide-vector model. Furthermore, we will distinguish between
distances and squared distances. The squared Euclidean distance was also used in De
Rooij and Heiser, where they coined this model the symmetric distance-association
model.

The distance-radius model was proposed by Okada and Imaizumi [6] for two-way
matrices and later extended to three-way two-mode data in Okada and Imaizumi [7].
The model uses the radius of circles to represent asymmetry (for more details see
Sect. 3).

The slide-vector model was proposed by Zielman and Heiser [9]. The slide-vector
model uses a vector or arrow, to point out the direction of asymmetry (formore details
see Sect. 3). The distance-radius model and the slide-vector model were proposed
together with least squares algorithms. To apply the models to square contingency
tables the frequencies have to be transformed to (dis)similarities. Such a transfor-
mation can be performed in different ways, making the relationship between the
original data and the data analysis sometimes a bit vague. Okada and Imaizumi [6],
for example, write

The original car switching data represent large differences in the size of the frequencieswhich
reflect the large differences inmarket share. These size differences should be removed in order
to distinctively unveil the factors which control the car switches. Hence the size differences
were taken away by means of multiplying each row and column by rescaling coefficients.

Zielman and Heiser [9] use the same data in their paper. They write
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The raw brand switching matrix is not appropriate as input for the scaling program. The
matrix has to be adjusted for differences in market share and the data have to be converted
from similarities to dissimilarities. These two steps can be performed by applying the gravity
model, which amounts to first dividing the raw frequencies yi j by their row and column sum;
and secondly, inverting the standardized frequencies. These inverted numbers yield squared
distances according to the gravity model, so as a last step the square root of the quantities is
taken.

These different transformations make the comparison between the outcomes of the
two analyses difficult: is the difference due to themodels or due to the preprocessing?
Even if those preprocessing steps would be the same, we could still wonder how to
combine the preprocessing and the model into a final conclusion about the data.
When we combine the preprocessing and the distances into a single model one is
forced to think in terms of the data. Moreover, it becomes clear which aspects of the
data are represented by which part of the analysis (Timmerman [8]).

The modelling framework we develop in the next sections enables us to have a
closer look at differences and similarities between the models. By putting different
distance formulations in the same framework for the analysis of frequency data
directly, we obtain a clearer picture. We will be specifically interested in how the
different distance formulations represent the association structure as defined by the
odds ratio. The odds ratio is independent of the marginal distribution of the variables
and therefore an important statistic for the analysis of contingency tables.

In the next section we will outline the general modelling framework. In Sect. 3
we present three distance formulations. In Sect. 4 we derive the representation of
the odds given the three distance formulations. In Sect. 5 we analyse an empirical
data set, which will be introduced in the next section. Section6 concludes with a
discussion.

2 Modelling of Square Contingency Tables

We will be interested in the analysis of square contingency tables, i.e. tables where
the row and column variables have the same categories and the entries represent
a frequency. An example is given in Table1, where a 10 × 10 table is presented
within the rows occupational categories for the father and in the columns the same
categories for their sons (Ganzeboom & Luijkx [5]; De Rooij [3]). The occupa-
tional categories are (1) Large proprietors, higher professionals and managers; (2)
Lower professionals and managers; (3) Routine nonmanual workers; (4) Small pro-
prietors with employees; (5) Small proprietors without employees; (6) Lower grade
technicians and manual supervisors; (7) Skilled manual workers; (8) Unskilled and
semiskilled manual workers; (9) Self-employed farmers and (10) (Unskilled) agri-
cultural workers. Although not strict, overall a lower number represents a higher
social status category.

The entries in the table represent how often the combination of a row and column
entry is observed simultaneously, i.e. the number 52 represents fifty-two fathers
in occupational category 1 whose sons were also employed in this category. The
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Table 1 Occupational mobility data within the rows occupational categories for the father and in
the columns the same categories for their sons

Fathers Sons +

1 2 3 4 5 6 7 8 9 10

1 52 94 43 4 7 5 11 17 2 1 236

2 50 121 42 3 6 9 37 26 2 5 301

3 36 65 40 7 4 5 23 20 3 1 204

4 21 31 17 18 2 1 9 12 0 0 111

5 8 23 11 6 1 2 14 12 0 1 78

6 14 19 11 2 2 6 8 10 0 1 73

7 32 76 48 5 1 12 80 65 2 1 322

8 21 45 39 3 7 11 63 59 5 3 256

9 23 52 14 3 3 7 33 32 61 10 238

10 5 10 10 1 0 3 19 13 2 2 65

+ 262 536 275 52 33 61 297 266 77 25 1884

numbers are denoted by yi j , for i, j = 1, . . . , I , which are the observed frequencies
representing fathers in category i and their sons in category j .

Similar tables can be observed in longitudinal researchwith a categorical variable.
In that case, a cross-tabulation of the categories of interest at time point 1 against
time point 2 can bemade. Also in citation research, we canmake a contingency table,
where in the rows and columns we have journals and the entries denote how often a
row journal cites a column journal.

In all these examples, the diagonal entries of the table are usually large compared
to the off-diagonal entries. In Table1 for example, there are 440 father–son pairs
who have the same occupational category, while there are 1444 pairs who differ
in occupational category. Most often, the interest in the analysis of such data is in
change, that is, in the off-diagonal entries of such a table. Therefore, weights wi j can
be used, which are equal to one if i �= j and 0 otherwise.

2.1 Poisson Model

Wewill define models for square contingency tables with observed counts yi j . Given
the model, expected values are denoted by μi j . Different models put different struc-
tures on these expected values. In what follows, all models are defined as follows:

log(μi j ) = λ + λR
i + λC

j − δi j , (1)

where λR
i and λC

j are the main effects that model the marginal distributions of the
table (i.e. the market share in the quotes of Sect. 1), λ is a constant ensuring that



Asymmetric Scaling Models for Square Contingency Tables … 47

the sum of expected frequencies equals the sum of observed frequencies, and δi j
represents a (squared) distance function. The distance is inversely related to the
expected frequencies: the larger the distance the smaller the expected frequency, the
smaller the distance the larger the expected frequency. We will consider different
distance functions and compare the models, more details will follow in the next
sections.

To estimate the parameters we will minimize the Poisson deviance as defined by

D = −2
I∑

i, j=1

yi j log(μi j ) − μi j .

As argued above for square contingency tables, the diagonal values are often very
large compared to the off-diagonal values while the interest is not so much in these
entries. Therefore, in the analysis of such tables the diagonal entries receive a weight
of zero or the model is extended with an extra set of parameters for the diagonal
cells. We will use the weighted Poisson deviance, which is defined as

Dw = −2
I∑

i, j=1

wi j
(
yi j log(μi j ) − μi j

)
,

where wi j = 0 when i = j , otherwise wi j = 1.

2.2 Model Fit

To assess model fit we will use two chi-square distributed statistics, the Pearson chi-
square test and the Likelihood ratio test. The Pearson chi-square statistic is defined
as

X2 =
∑

i, j

wi j

(
(yi j − μi j )

2

μi j

)
,

and the Likelihood ratio chi-square statistic as

G2 = 2
∑

i, j

wi j

(
yi j log

yi j
μi j

)
.

Both statistics are chi-square distributed given a number of degrees of freedom
(df ) which depend on the specificmodel structure. For comparison of differentmodel
structures we will use Akaike’s Information Criterion, which is defined as

AIC = G2 − 2d f.



48 M. de Rooij

2.3 Marginal Heterogeneity and Association

Having a square contingency table, the interest often focusses on two facets: (1)
changes in marginal distributions and (2) the association pattern. For the data in
Table1 the marginal distribution for the fathers is presented in the last column
(labelled ‘+’) while that of the sons is presented in the last row. We see that occu-
pational classes 1 (+26), 2 (+235), 3 (+71) and 8 (+10) became larger while 4
(−59), 5 (−45), 6 (−12), 7 (−25), 9 (−161) and 10 (−40) became smaller. In our
generic model (Eq.1), the marginal distributions are modelled using the main effect
terms, the λR

i and λC
j .

An important tool for understanding association patterns for contingency tables
is the odds ratio yi j yi ′ j ′

yi ′ j yi j ′
= pi j pi ′ j ′

pi ′ j pi j ′
,

where pi j denotes the cell proportion (yi j = npi j ). The odds ratio is an important
tool because it is independent from the marginal distributions.

For a I × 2 table the odds of category 1 for row i is the probability of category
1 divided by the probability category 2, i.e. pi1/pi2, where a value larger than 1
indicates that the probability for category 1 is larger than the probability for category
2. The odds ratio compares the odds for two different rows i and i ′

pi1/pi2
pi ′1/pi ′2

= pi1 pi ′2
pi ′1/pi2

.

The odds ratio is a nonnegative number and equal to 1 when the odds in the two
rows are equal, meaning no association. Values larger than 1 indicate that the odds
in row i are larger than the odds in row i ′. The further the value is away from 1 the
stronger the association, where an odds ratio of 1

4 indicates a similar strength as an
odds ratio of 4. See Agresti [1] for further properties of the odds ratio. Often we take
a log-transform of the odds ratio, which makes the statistic symmetric around zero,
log( 14 ) = − log(4).

The log of the odds ratio can also be defined in terms of the expected frequencies
(or probabilities) and then be expressed in terms of the model parameters. For our
generic model (Eq.1) we have

θi i ′ j j ′ = log

[
μi jμi ′ j ′

μi ′ jμi j ′

]
= −δi j − δi ′ j ′ + δi ′ j + δi j ′ .

In the next sections we will work out the model implied log odds ratio for different
definitions of δi j .

We will be specifically interested in symmetric and asymmetric odds ratio struc-
tures. We call the odds ratio symmetric when θi i ′ j j ′ = θ j j ′i i ′ . For example, from the
data we can compute
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1. the observed odds that a son of a father who is a in category 5 (small pro-
prietor without employees) falls in category 1 (large proprietor/higher profes-
sional/manager) instead of category 2 (lower professional and manager) is half
those same odds for a father in category 6 (lower grade technician and man-
ual supervisors), i.e. exp(θ5612) = 8/23

14/19 = 0.47, the log of this odds ratio equals
θ5612 = −0.75.

2. the observed odds that a son of a father who is a in category 1 falls in category
5 instead of category 6 is twice those same odds for a father in category 2, i.e.
exp(θ1256) = 7/5

6/9 = 2.1, the log of this odds ratio equals θ1256 = 0.74.

We see that these log odds ratios are not equal, i.e. they are asymmetric.We expect
asymmetric models to represent asymmetric odds ratio structures.

3 Three Distance Formulations

In our generic model we have the term δi j . We will in this section consider specifi-
cations for this term. For example, in Sect. 3.1 we use the distance-radius model and
define δi j = d p

i j (X, r) for p ∈ {1, 2} and in Sect. 3.2 we use the slide-vector model
and define δi j = d p

i j (X, z).

3.1 Distance-Radius Model

Thefirst asymmetricmultidimensional scalingmodelwe consider is the one proposed
byOkada and Imaizumi [6] which is a distance-radiusmodel. Their distancemeasure
is defined as

di j (X, r) = di j (X) − ri + r j ,

where X is a I × M-matrix with coordinates (xim of the points representing the
categories (i) of the contingency table in the M-dimensional space (m = 1, . . . , M).
The ri represent the radius of a circle for each category, the centre of which is defined
as the point representing that category. The ri are constrained to be larger than zero,
and identified by setting the smallest equal to zero.

In a graphical representation (see Fig. 1) the objects are depicted as points with
coordinates xi in a Euclidean space each having a circle with radius ri . In the plot
we show two points labelled 1 and 2 with radii 0.75 and 0.25. The distance from
point 1 to 2 following the definition, d12(X, r) = 2 − 0.75 + 0.25, is given by the
red dotted line, the distance from 2 to 1 is given by the blue dashed line (d21(X, r) =
2 − 0.25 + 0.75). The blue line is longer (2.5) compared to the red line (1.5), i.e. there
is asymmetry. The asymmetry is readily interpretable from the graph, i.e. the distance
from a point with a large radius towards a point with a small radius is smaller than
the other way around.
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Fig. 1 The distance-radius model for two points with different sizes of radii. The distance between
1 and 2 is represented by the red dotted line, whereas the distance between 2 and 1 is represented
by the blue dashed line

When we use δi j = d2
i j (X, r), with

d2
i j (X, r) = (

di j (X) − ri + r j
)2

,

the asymmetric effect is more pronounced, i.e. the squared distances are 2.52 = 6.25
and 1.52 = 2.25.

The number of parameters equals 1 for the λ parameter, 2(I − 1) for the main
effects of rows and columns, I − 1 for the radius parameters (r ), and I M − M(M +
1)/2 for the coordinates. We solve the translational and rotational freedom inde-
terminacy by setting the upper diagonal entries in X equal to zero. The number of
observations equals I 2 − I , so that the degrees of freedom for this model are I 2 −
I − 1 − 3(I − 1) − (I M − M(M + 1)/2) = I 2 − (M + 4)I + M(M + 1)/2 + 2.

3.2 Slide-Vector Model

The slide-vector model was proposed by Zielman and Heiser [9] and is based on a
configuration of points and a vector, representing a shift of the column points in the
opposite direction (or a shift of the row points along the direction). In our framework
we define

δi j = d p
i j (X, z))

with p = {1, 2} and
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Fig. 2 The slide-vector model. The distance between 1 and 2 is represented by the red dotted line,
whereas the distance between 2 and 1 is represented by the blue dashed line

di j (X, z) =
√∑

m

(xim − x jm + zm)2.

In the slide-vector model we again have coordinates for the points representing the
categories. Moreover, we have a vector of length M representing the slide-vector. If
we define y jm = x jm − zm we see that the distance equals

√∑
m(xim − y jm)2, which

is a so-called unfolding or two-mode distance. So, simply subtracting the slide-vector
from the points and then inspecting the distance between the original points and the
newly derived points (y jm) reveals the asymmetry.

In a graphical representation (Fig. 2) the objects are depicted as points with coor-
dinates xi in a Euclidean space. Besides that there is an arrow representing the slide-
vector. In the plot we show two points labelled 1 and 2. The distance from point 1 to
2 following the definition is given by the red line (d12(X, z) = √

(−1 − 1 + 0.5)2),
the distance from 2 to 1 is given by the blue line (d21(X, z) = √

(1 + 1 + 0.5)2).
The blue line is longer (2.5) compared to the red line (1.5), i.e. there is asymmetry.
The asymmetry is readily interpretable from the graph, i.e. the distance from one
point towards another in the direction of the slide-vector is smaller than the reverse
distance. Note that when the slide-vector is orthogonal to the line connecting two
objects, there is no asymmetry for these two points. The longer the slide-vector, the
more asymmetry.

The number of parameters in the distance part of the slide-vector model is
(I + 1)M − M(M + 1)/2, therefore the degrees of freedom for modelling a square
contingency table excluding the diagonal equals I 2 − I − 1 − 2(I − 1) − (I +
1)M + M(M + 1)/2 = I 2 − (M + 3)I + 1 + M(M − 1)/2).
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3.3 Symmetric Distance-Association Model

In De Rooij and Heiser [4] we developed distance-association models. In the cur-
rent paper, we will be specifically interested in the symmetric distance-association
model as it will serve as a reference for the asymmetric models. In the symmetric
distance-association model the only asymmetry that is modelled is marginal asym-
metry, i.e. the model is a special case of the quasi-symmetry model (Caussinus [2]),
where geometric constraints are placed on the symmetric association parameters. In
the symmetric distance-association model δi j is defined by

δi j = d p
i j (X) =

⎛

⎝

√√√√
M∑

m=1

(xim − x jm)2

⎞

⎠
p

.

This is simply the Euclidean distance when p = 1 or the squared Euclidean distance
when p = 2. These distances are symmetric, i.e. d p

i j (X) = d p
ji (X).

The number of parameters in this model is equal to 1 for the general λ-term,
two times I − 1 for the main effects and I M − M(M + 1)/2 for the coordinates.
Note that in the distance part we have rotational and translational freedom, which are
taken into account in the computation of the number of parameters. The degrees of
freedom for this model are the number of observations (I 2 − I ) minus the number of
parameters, which is I 2 − I − 1 − 2(I − 1) − I M + M(M + 1)/2 = I 2 − I (M +
3) + M(M + 1)/2 + 1.

4 Odds Ratio Structures

In this sectionwe discuss odds ratio structures as implied by the three distance formu-
lations, each for p = 1, 2.We like to show the difference between the two asymmetric
models compared to the symmetric distance-association model. Therefore, we start
with the latter, after which we discuss the distance-radius model and the slide-vector
model.

4.1 Symmetric Distance-Association Model

Because d p
i j (X) = d p

ji (X) (p = 1, 2), the symmetric distance-association model
implies a symmetric association structure, i.e. θi i ′ j j ′ = θ j j ′i i ′ , i.e.

θi i ′ j j ′ = −d p
i j (X) − d p

i ′ j ′(X) + d p
i ′ j (X) + d p

i j ′(X)

= −d p
ji (X) − d p

j ′i ′(X) + d p
ji ′(X) + d p

j ′i (X) = θ j j ′i i ′ .
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4.2 The Distance-Radius Model

Let us start with the model using distances (p = 1), i.e.

δi j = di j (X, r)).

If we work out the logarithm of the odds ratio given by this model structure we have

θi i ′ j j ′ = −di j (X, r) − di ′ j ′ (X, r) + di ′ j (X, r) + di j ′ (X, r)

= −(di j (X) − ri + r j ) − (di ′ j ′ (X) − ri ′ + r j ′ )

+(di ′ j (X) − ri ′ + r j ) + (di j (X) − ri + r j ′ )

= −di j (X) − di ′ j ′ (X) + di ′ j (X) + di j ′ (X) + ri − r j + ri ′ − r j ′ − ri ′ + r j − ri + r j ′

= −di j (X) − di ′ j ′ (X) + di ′ j (X) + di j ′ (X)

= θ j j ′i i ′ ,

i.e. no asymmetry beyond the margins is modelled anymore; the effect of the radii
is absorbed by the main effects. Since the main effect parameters already model
the marginal distributions perfectly, the addition of the circles is superfluous. As
a result, the fit of the distance-association model (p = 1) and the distance-radius
model (p = 1) will be the same.

For the distance-radius model with squared distances (p = 2) the logarithm of
the odds ratio becomes

θi i ′ j j ′ = −d2
i j (X, r) − d2

i ′ j ′(X, r) + d2
i ′ j (X, r) + d2

i j ′(X, r),

which can be further worked out into

θi i ′ j j ′ = −d2
i j (X) − d2

i ′ j ′(X) + d2
i ′ j (X) + d2

i j ′(X)

+2
(
di j (X) − di j ′(X)

)
ri + 2

(
di ′ j ′(X) − di ′ j (X)

)
ri ′

+2
(
di ′ j (X) − di j (X)

)
r j + 2

(
di j ′(X) − di ′ j ′(X)

)
r j ′

+2(ri − ri ′)(r j − r j ′).

This is a quite difficult structure for interpretation. However, we see that on the first
line the symmetric pattern is given, whereas the last three lines present asymmetry
in the association structure. So, the distance-radius model with squared distances
is modelling an asymmetric association pattern, while the same model based on
distances does not.
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4.3 The Slide-Vector Model

The logarithm of the odds ratio for the slide-vector model based on distances (p = 1)
is

θi i ′ j j ′ = −di j (X, z) − di ′ j ′(X, z) + di ′ j (X, z) + di j ′(X, z),

= −
√∑

m

(xim − x jm + zm)2 −
√∑

m

(xi ′m − x j ′m + zm)2

+
√∑

m

(xi ′m − x jm + zm)2 +
√∑

m

(xim − x j ′m + zm)2,

which cannot be further simplified. This shows that the odds ratio structure is asym-
metric, θi i ′ j j ′ �= θ j j ′i i ′ .

The logarithm of the odds ratio for the slide-vector model with squared distances
(p = 2) is

θi i ′ j j ′ = −d2
i j (X, z) − d2

i ′ j ′(X, z) + d2
i ′ j (X, z) + d2

i j ′(X, z),

= −(
∑

m

(xim − x jm + zm)2) − (
∑

m

(xi ′m − x j ′m + zm)2)

+(
∑

m

(xi ′m − x jm + zm)2) + (
∑

m

(xim − x j ′m + zm)2)

= −(
∑

m

x2im + x2jm − 2ximx jm + z2m + 2ximzm − 2x jmzm)

−(
∑

m

x2i ′m + x2j ′m − 2xi ′mx j ′m + z2m + 2xi ′mzm − 2x j ′mzm)

+(
∑

m

x2i ′m + x2jm − 2xi ′mx jm + z2m + 2xi ′mzm − 2x jmzm)

+(
∑

m

x2im + x2j ′m − 2ximx j ′m + z2m + 2ximzm − 2x j ′mzm),

= −d2
i j (X) − d2

i ′ j ′(X) + d2
i ′ j (X) + d2

i j ′(X)

= θ j j ′i i ′ ,

which shows that in this case (p = 2) the slide-vector (z) only represents marginal
heterogeneity: the association structure is symmetric. When fitted to data this model
will have the same fit as the symmetric distance-association model with squared
distances, i.e. there is no additional value of the slide-vector.
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5 Data Analysis

In Table2 the chi-square statistics, degrees of freedom and AIC statistics for the four
models in two dimensions are given. We also give the Mean Squared Error of the
local log odds ratio

MSE(θ) = 1

(I − 1)2
∑

i j

(θi i ′ j j ′ − θ̂i i ′ j j ′)
2,

where i ′ = i + 1 and j ′ = j + 1. This measure can be interpreted as an overall
measure of how well the observed log odds ratios are represented. Note that the
observed log odds ratios were computed based on yi j + 0.5.

5.1 Symmetric Distance-Association Model

We applied the distance-association models to the occupational mobility data, where
we gave zero weight to the diagonal entries.

The two-dimensional model with distances (p = 1) had a chi-square statistic
60.9 and a likelihood ratio statistic of 64.8, both with 54 degrees of freedom. The
AIC equals −43.18 and the MSE(θ ) is 0.53. The estimated distances, main effect
parameters and overall λ are given in Table3. From this table we can derive that the
estimated log odds ratio θ5612 equals

θ̂5612 = − d51 − d62 + d61 + d52
= − 1.03 − 0.49 + 0.81 + 1.11

=0.40

which equals the estimated log odds ratio θ1256. The observed equivalents of these
two log odds ratios were −0.75 and 0.74. So, these particular log odds ratios are not
good represented by the symmetric distance-association model.

Table 2 Fit statistics for the four models. DA is the symmetric distance-association model; DR is
the distance-radius model; SV is the slide-vector model. p = {1, 2} represent distances and squared
distances, respectively

X2 G2 df AIC MSE(θ)

DA (p = 1) 60.88 64.82 54 −43.18 0.53

DA (p = 2) 60.89 64.47 54 −43.53 0.54

DR (p = 2) 42.51 44.65 45 −45.35 0.38

SV (p = 1) 56.54 62.08 52 −41.92 0.54
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Table 3 Estimated distances and main effect parameters for distance-association model (p = 1)

1 2 3 4 5 6 7 8 9 10 λ̂R
i

1 0.00 0.38 0.53 0.71 1.03 0.81 1.21 1.78 6.40 1.83 −0.26

2 0.38 0.00 0.43 0.93 1.11 0.49 0.90 1.55 6.08 1.45 −0.16

3 0.53 0.43 0.00 0.64 0.69 0.45 0.76 1.26 6.37 1.53 −0.51

4 0.71 0.93 0.64 0.00 0.46 1.08 1.34 1.63 6.99 2.16 −0.88

5 1.03 1.11 0.69 0.46 0.00 1.05 1.16 1.27 7.00 2.04 −1.03

6 0.81 0.49 0.45 1.08 1.05 0.00 0.42 1.10 5.96 1.09 −1.56

7 1.21 0.90 0.76 1.34 1.16 0.42 0.00 0.73 5.89 0.88 0.07

8 1.78 1.55 1.26 1.63 1.27 1.10 0.73 0.00 6.27 1.30 0.37

9 6.40 6.08 6.37 6.99 7.00 5.96 5.89 6.27 0.00 5.03 4.90

10 1.83 1.45 1.53 2.16 2.04 1.09 0.88 1.30 5.03 0.00 −0.94

λ̂Cj 0.44 1.01 0.32 −1.32 −1.40 −1.27 0.37 0.74 2.94 −1.83 4.12

The two-dimensional model with squared distances had a chi-square statistic
60.9 and a likelihood ratio statistic of 64.5 with the same number of degrees of
freedom. The AIC equals −43.18 and the MSE(θ ) is 0.53. The fit statistics for the
two symmetric distance-association models are almost equal. The estimated squared
distances, main effect parameters and overall λ are given in Table4. From this table
we can derive that the estimated log odds ratio θ5612 equals

θ̂5612 = −d2
51 − d2

62 + d2
61 + d2

52

= −0.61 − 0.12 + 0.43 + 0.35

= 0.04

Table 4 Estimated squared distances and main effect parameters for distance-association model
(p = 2)

1 2 3 4 5 6 7 8 9 10 λ̂R
i

1 0.00 0.10 0.23 0.46 0.61 0.43 0.98 1.44 1.33 1.83 0.41

2 0.10 0.00 0.06 0.36 0.35 0.12 0.46 0.80 0.86 1.22 0.32

3 0.23 0.06 0.00 0.17 0.12 0.11 0.33 0.57 1.08 1.38 −0.00

4 0.46 0.36 0.17 0.00 0.08 0.52 0.76 0.94 2.08 2.46 −0.44

5 0.61 0.35 0.12 0.08 0.00 0.31 0.38 0.48 1.62 1.87 −0.75

6 0.43 0.12 0.11 0.52 0.31 0.00 0.12 0.33 0.53 0.72 −1.05

7 0.98 0.46 0.33 0.76 0.38 0.12 0.00 0.05 0.60 0.64 0.56

8 1.44 0.80 0.57 0.94 0.48 0.33 0.05 0.00 0.87 0.82 0.61

9 1.33 0.86 1.08 2.08 1.62 0.53 0.60 0.87 0.00 0.06 0.59

10 1.83 1.22 1.38 2.46 1.87 0.72 0.64 0.82 0.06 0.00 −0.24

λ̂Cj 1.10 1.47 0.82 −0.84 −1.09 −0.80 0.84 0.99 −1.37 −1.11 2.71
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which equals the estimated odds ratio θ1256. These estimated log odds ratios are the
mean of the two observed log odds ratios. Given that the model implies a symmetric
structure this is optimal for these specific log odds ratios.

5.2 Distance-Radius Model

We apply the distance-radius model to the occupational mobility data. The two-
dimensionalmodelwith squared distances had a chi-square statistic 42.5, a likelihood
ratio statistic of 44.7 with 45 degrees of freedom. The AIC equals −45.35 and
the MSE(θ ) equals 0.38. The model fits better than the two symmetric distance-
association models.

The estimated squared distances, main effect parameters and overall parameter
are given in Table5. The estimated radii of the ten occupational classes are

1.31, 1.1, 1.04, 1.16, 1.15, 0.95, 0, 0.72, 1.11 and 1.15

showing category 7 has the smallest radius, while category 1 the largest. Therefore,
the distance from category 1 to another is smaller than the otherway around, implying
that the frequency towards category 1 is larger than other way around (taking into
account the main effect parameters). Furthermore, category 7 has the smallest radius,
meaning that the distance from category 7 to the others is larger than the other way
around, implying that the frequency towards category 7 is smaller than the other way
around (taking into account the main effect parameters).

From the table with estimated squared distances we can derive that the estimated
log odds ratio θ5612 equals

Table 5 Estimated squared distances andmain effect parameters for distance-radiusmodel (p = 2)

1 2 3 4 5 6 7 8 9 10 λ̂R
i

1 0.00 0.01 0.00 0.04 0.27 0.00 1.00 0.00 0.49 1.05 −0.12

2 0.28 0.00 0.24 0.51 1.10 0.28 0.37 0.23 0.96 1.75 0.33

3 0.24 0.36 0.00 0.06 0.32 0.05 0.44 0.04 1.04 1.75 −0.11

4 0.24 0.36 0.00 0.00 0.11 0.04 0.43 0.02 1.01 1.69 −0.86

5 0.70 0.90 0.12 0.13 0.00 0.12 0.16 0.05 1.35 1.97 −0.80

6 0.57 0.68 0.17 0.36 0.55 0.00 0.50 0.00 0.69 1.23 −0.97

7 2.61 2.53 2.03 2.76 3.62 1.44 0.00 1.22 2.89 4.10 2.18

8 1.46 1.58 0.75 1.07 1.18 0.21 0.11 0.00 0.92 1.42 0.69

9 1.20 0.94 0.79 1.22 1.55 0.27 0.27 0.03 0.00 0.12 0.21

10 1.82 1.52 1.25 1.75 2.00 0.53 0.07 0.11 0.07 0.00 −0.55

λ̂Cj 1.07 1.80 0.81 −0.93 −0.67 −1.01 0.72 0.34 −1.40 −0.72 2.87



58 M. de Rooij

θ̂5612 = −d51 − d62 + d61 + d52
= −0.70 − 0.68 + 0.57 + 0.90

= 0.08,

whereas θ1256 is estimated by

θ̂1256 = −d15 − d26 + d16 + d25
= −0.27 − 0.28 + 0.00 + 1.10

= 0.54.

Themodel shows asymmetry in the odds ratio structure. For these specific odds ratios
the asymmetry is in the correct direction; however, the estimates are still a bit off.
Overall, this model best represents the odds ratio structure, i.e. the MSE(θ ) equals
0.38 which is much smaller than the MSE for the other models.

5.3 Slide-Vector Model

Finally, we also applied the slide-vector model to the occupational mobility data. The
two-dimensional model had a chi-square statistic 56.5 and a likelihood ratio statistic
of 62.1, both with 52 degrees of freedom. The AIC equals −41.92, worse than the
symmetric distance-association models.

The slide-vector points into the direction of categories 1 and 2 and away from
7 and 8, showing that the distance towards categories 1, 2 and away from 7, 8 is
smaller than the other way around. The expected frequency towards categories 1 and
2 will, therefore, be larger than the frequencies from categories 1 and 2, taking into
account the difference in main effects. Similarly, the expected frequency away from
categories 7 and 8 will be larger than the expected frequency towards categories 7
and 8.

In Table6 the estimated distances, main effect parameters and the overall λ are
given. From the table, and following the same computations as before we can derive
that the implied log odds ratio θ5612 equals 0.2 while the implied log odds ratio θ1256
equals 0.1. The direction of asymmetry for these two odds ratios is opposite to that
of the observed data. Overall, the MSE(θ ) equals 0.54 which is very similar to the
distance-association models, i.e. the slide-vector does not represent the asymmetry
in the odds ratios very well for this specific data set.

5.4 Models Without Main Effects

We saw that for the slide-vector model based on squared distances and the distance-
radius model with distances the asymmetry that the distances represent is absorbed
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Table 6 Estimated distances and main effect parameters for slide-vector model (p = 1)

1 2 3 4 5 6 7 8 9 10 λ̂R
i

1 2.48 2.48 2.91 3.68 4.96 3.05 5.44 5.68 4.35 5.07 1.09

2 2.48 2.48 2.91 3.72 5.03 3.01 5.43 5.67 4.29 4.96 1.32

3 2.04 2.05 2.48 3.26 4.57 2.64 5.01 5.26 3.98 4.77 0.52

4 1.66 1.75 2.03 2.48 3.62 2.56 4.58 4.83 4.02 5.12 −0.58

5 2.04 2.19 2.17 1.85 2.48 3.01 4.26 4.49 4.39 5.76 −0.65

6 2.23 2.17 2.63 3.61 5.02 2.48 4.97 5.20 3.60 4.14 −0.43

7 0.79 0.67 0.65 1.68 3.10 0.25 2.48 2.71 1.65 2.98 −0.87

8 0.99 0.89 0.76 1.67 3.05 0.30 2.24 2.48 1.47 2.86 −1.05

9 2.28 2.15 2.52 3.63 5.10 1.89 4.24 4.44 2.48 2.71 0.22

10 3.79 3.64 3.96 5.06 6.50 3.19 5.15 5.31 3.13 2.48 0.40

λ̂Cj −0.22 0.47 0.06 −1.15 0.18 −1.63 2.14 2.34 −1.61 −0.59 5.34

in the marginal terms, or in other words the asymmetry in the distances models
marginal heterogeneity. This raises the question what happens if the main effects in
the generic model are deleted. In this section we are therefore interested in the model

log(μi j ) = λ − δi j

with δi j = di j (X, r) or δi j = d2
i j (X, z). The odds ratio structure remains the same as

before; however, the asymmetry in the distances now also has tomodel bothmarginal
distributions and therefore the change in marginal distributions.

5.4.1 Distance-Radius Model

The two-dimensional model had a chi-square statistic of 131 and a likelihood ratio
statistic of 130.3, both with 63 degrees of freedom. The AIC statistic for this model
equals 4.3. We see that this model fits significantly worse due to the omission of
the main effect parameters. This model has a symmetric association structure. The
question arises how well the model represents the marginal heterogeneity, because
the margins itself are not perfectly represented (as a model including the main effects
would).

In Table7 we present the observed and estimated marginal frequencies, and also
the change in marginal distributions μ̂+i − μ̂i+ or y+i − yi+. We see that although
the distance-radius model does not perfectly estimate the marginal distributions (as
a model including main effects would) but nevertheless represents the change in
marginal distributions perfectly.
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Table 7 Observed and estimated marginal distributions and marginal change. DR is the distance-
radius model; SV is the slide-vector model

1 2 3 4 5 6 7 8 9 10

Observed yi+ 236 301 204 111 78 73 322 256 238 65

y+i 262 536 275 52 33 61 297 266 77 25

y+i − yi+ 26 235 71 −59 −45 −12 −25 10 −161 −40

DR μi+ 197.7 140.8 177.5 94.5 79.1 69.1 238.7 202.3 180.1 64.2

μ+i 223.7 375.8 248.5 35.5 34.1 57.1 213.7 212.3 19.1 24.2

μ+i − μi+ 26.0 235.0 71.0 −59.0 −45.0 −12.0 −25.0 10.0 −161.0 −40.0

SV μi+ 170.2 186.3 168.3 64.3 106.9 46.2 230.4 232.3 166.8 72.5

μ+i 239.3 241.6 244.2 88.6 36.9 101.1 206.2 201.0 53.3 31.8

μ+i − μi+ 69.2 55.3 76.0 24.3 −70.0 54.9 −24.2 −31.2 −113.5 −40.7

5.4.2 Slide-Vector Model

The two-dimensional model had a chi-square statistic 549.1 and a likelihood ratio
statistic of 445.1, both with 70 degrees of freedom. The AIC statistic for this model
equals 305.1. This model fits very badly compared to all our previous models.

Table7 also gives the estimated marginal distributions and change in marginal
distributions for this slide-vector model. We see that the slide-vector model has diffi-
culties with the representation of the marginal heterogeneity, i.e. the two parameters
cannot deal with the heterogeneity and possible more dimensions are needed. In full
dimensionality the model probably represents the marginal heterogeneity perfectly.

6 Discussion and Conclusion

We considered the distance-radius model and slide-vector model in comparison with
the Euclidean distance in a loglinear framework. Such a framework allows for the
comparison between models in terms of marginal heterogeneity (often dealt with
using preprocessing) and association (often modelled on the resulting data from the
preprocessing). The advantage of putting the different steps in a single framework is
that we obtain a more precise idea what the asymmetric scaling models are actually
achieving.

Weworked out the odds ratio structures given different asymmetric scalingmodels
and found that some implementations do not model any asymmetry in the odds ratio
structure. More precisely, the distance-radius model with standard distances (p = 1)
and the slide-vector model with squared distances (p = 2) result in a symmetric odds
ratio structure.
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In contrast, the distance-radius model with squared distances and the slide-vector
model with distances do imply an asymmetric odds ratio structure. Because the
distance-radius model uses more parameters to represent the asymmetry, it gives a
more accurate representation of the asymmetry. The slide-vector model has a very
simple representation of asymmetry, and therefore hardly performs better than any
symmetric model (at least in our example).
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Flight Passenger Behavior and Airline
Fleet Assignment

Wolfgang Gaul and Christoph Winkler

Abstract Flight passenger behavior comprises, for example, booking requests as
well as cancelations and the no-show phenomenon before the departure of an air-
plane while airline fleet assignment describes the task of putting together among
other things—but above all—an attractive schedule of origin–destination flight con-
nections with corresponding takeoff and landing times. We propose an approach that
takes into account the interrelations between flight passenger behavior and airline
fleet assignment and integrates aircraft-type allocation to flight legs, the treatment of
different booking classes, the offering of specific as well as flexible products to flight
passengers, and overbooking decisions to avoid empty seats in airplanes. An exem-
plary description of how the new approach reacts to alterations of the underlying
situation is added to show the flexibility and advantages of our model formulation.

Keywords Flight passenger behavior · Airline fleet assignment · Refleeting ·
Class-dependent (over) booking · Flexible products · Deterministic linear
programming

1 Introduction

Contributions concerning applications of operations research techniques in the air
transport industry are known for quite some time (see, e.g., Gopalan & Talluri [12];
Barnhart, Belobaba, & Odoni [2] for earlier overviews) where an important part of
the scientific literature describes so-called network problems because in aviation, an
itinerary between two airports may consist of more than one flight leg with transfers
on the ground (see, e.g., Lapp & Weatherford [20]; Vossen & Zhang [29]; Barz &
Gartner [4] for some more recent papers).
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From a mathematical perspective the determination of booking limits (see, e.g.,
Bertsimas & de Boer [6]) and bid prices (see, e.g., Talluri & van Ryzin [25]; Adel-
man [1]; Klein [16]; Kunnumkal & Topaloglu [19]) to control the seat capacities
in airplanes, sometimes formulated with the help of (randomized) linear program-
ming (see, e.g., Talluri & van Ryzin [26]; Topaloglu [27]; Kunnumkal, Talluri, &
Topaloglu [18]), and also applied in simulation experiments (see, e.g., Bertsimas &
de Boer [6]; Gosavi, Ozkaya, & Kahraman [13]; Van Ryzin & Vulcano [28]) have
been tackled.

In order to compensate cancelations during the booking process and no-shows just
before the departure of an airplane overbooking—as acceptance of booking requests
that exceed the physical capacities of available resources—has a long history (see,
e.g., Beckmann [5] for an early contribution and Wannakrairot & Phumchusri [30]
for a more recent paper).

Another aspect is the consideration of booking classes, which takes into account
constraints concerning the seats in airplanes or in which different price settings can
be charged due to buying restrictions and marketing strategies.

The distinction between specific and flexible products (see Gallego, Iyengar,
Phillips,&Dubey [8];Gallego&Phillips [9]who introduced this concept and Petrick,
Goensch, Steinhardt,&Klein [21]; Petrick, Steinhardt, Goensch,&Klein [22];Koch,
Goensch, & Steinhardt [17] for more recent publications) is of interest as it allows
to give seats, which could not be sold as specific offers, to flexible flight passengers
who can do without some of the predefined restrictions such as fixed flight leg(s),
booking class, and utilization time, by which specific products are characterized.

Because of the underlying complexity of the overall problem situation in air
transport optimization, a comprehensive solution (which combines subproblems as,
e.g., airline fleet assignment andmaintenance, scheduling and routing of flights, crew
rostering, incorporation of flexible products within the offering of an airline, as well
as class-dependent (over) booking w.r.t. available seat capacities of airplanes) is a
challenge. Some papers explicitly attempt to integrate two or more subproblems,
e.g., airline fleet assignment and crew rostering (see, e.g., Sandhu & Klabjan [23];
Gao, Johnson, & Smith [10]), airline fleet assignment and routing decisions (see, e.g.,
Barnhart et al. [3]; Haouari, Aissaoui, & Mansour [14]) or airline fleet assignment
and schedule design (see, e.g., Sherali, Bae, &Haouari [24]; Kenan, Jebali, & Diabat
[15]).

In this paper we present a new approach in which aircraft-type allocation to flight
legs, overbooking, incorporation of flexible products as an additional offering of an
airline, and the treatment of different booking classes are combined within an inte-
grated formulation for which a properly adapted Deterministic Linear Programming
(DLP) description is used (see, e.g., Gaul & Winkler [11] for the historical develop-
ment of DLP adaptions to overbooking and the consideration of flexible products as
well as further applications).

Against this background, basic notations with respect to airline fleet assign-
ment and flight passenger behavior are presented in Sect. 2 before in Sect. 3 a new
approach—formulated as modified DLP—is described, which simultaneously can
handle the aforementioned aspects. Section4 presents an example designed to clar-
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ify how theDLP approach reacts to changing situations. Finally, in Sect. 5 concluding
remarks are provided.

2 Notation

2.1 Airline Fleet Assignment

With |M | as notation of the cardinality of a set M , assume that an airline operates a

set of aircraft-types T̃ =
{
1, . . . , |T̃ |

}
where cτ denotes the number of aircrafts of

type τ ∈ T̃ .

Airports as set of nodes N = {1, . . . , |N |} of an air transport network and a set of
activities A associated with the airports and divided into a setG of ground operations
(e.g., (dis)embarkation of passengers and luggage, refueling, maintenance, and other
services in connection with aircrafts on the ground) as well as a set F of flight
operations (landings and takeoffs) are needed for the description of the underlying
situation.

A distinction between a planning and a realization period is advised where the
realization period corresponds to a properly defined time interval at the end of the
planning period.

Costs that arise from performing activity a with aircraft-type τ are denoted by
costaτ , a ∈ A, τ ∈ T̃ , where only activities are considered that end within the real-
ization period.

The subset B ⊂ A = F ∪ G of activities that start before the beginning of the
realization period and end within this period are called cross-border activities w.r.t.
the realization period. Finally, for the model description in the next section the sets
I n (n) = { a ∈ A | ending of a takes place within the realization period at airport
n}, Out (n) = { a ∈ A | beginning of a takes place within the realization period
at airport n}, n ∈ N have to be specified.

Notice, that after a certain time-point t∗ aircraft-type allocation to flight legs
cannot be performed any longer due to organizational restrictionsw.r.t. the underlying
situation.

As an important feature within the offering of an airline the set K = {1, . . . , |K |}
indicates physically available classes of seat capacities in aircraft-types (e.g., first,
business, and economy) as well as booking classes in which different price settings
are charged due to marketing considerations. capτk denotes the capacity of class
k ∈ K on aircraft-type τ ∈ T̃ .

Additionally, the distinction into specific and flexible products is of interest. Spe-
cific products are described by a set I = {1, . . . , |I |} of origin–destination itineraries
and the assigned class k ∈ K with revenue rik , while a set J = {1, . . . , |J |}with rev-
enue s j , j ∈ J indicates flexible products where an execution-mode setMj ⊆ I fixes
a possible allocation of j ∈ J to a subset of appropriate origin–destination itineraries
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(remember that a flexible offering can be assigned to whatever specific product that
fulfills the constraints by which the flexible product is described).

We use F = {1, . . . , |F |} as set of flight legs by which origin–destination
itineraries are composed (the same notation as already described earlier when
explaining flight operations) and a matrix V (with entries v f i equal to 1 if origin–
destination itinerary i needs flight leg f, and equal to 0 otherwise, for f ∈ F and
i ∈ I, respectively, v f m equal to 1 if execution-mode m uses flight leg f, and equal
to 0 otherwise, for f ∈ F and m ∈ Mj ). The class-matrix W (with wik equal to 1
if the origin–destination itinerary i offers class k, and equal to 0 otherwise, respec-
tively, wmk equal to 1 if exection-modem provides class k, and equal to 0 otherwise)
indicates the class which is of importance for seat capacity allocation.

2.2 Flight Passenger Behavior

Flight passenger behavior is not known in advance but can be influenced by the
airline management via, e.g., attractive flight schedules, ticket prices, and the shape
of execution-mode sets Mj . As available seat capacities should be sold within a
given time horizon which is discretized into T time-points or intervals (which are
numbered backward from T to 1 (time of departure)), let Dspec

ikt denote the random
variable which describes the aggregated demand for the specific product i in class
k up to time-point t and dspec

ikt the realization of Dspec
ikt , respectively, D f lex

j t and d f lex
j t

in the flexible case. In former applications of DLP the expected values E
(
Dspec

ikt

)
,

respectively, E
(
D f lex

j t

)
, were used as bounds for seat allocations. Here, we sug-

gest D∗spec
ikt = dspec

ikt + ad justikt , respectively D∗ f lex
j t = d f lex

j t + ad just jt , where it
is assumed that the experience of the management of the airline helps to assign
ad just values which describe demand still to come up until departure. This could
be supported by computer routines which consider—among others—the actual real-
ization of flight passenger demand, additional information about the development of
future demand, available seat capacities, and the time to departure. The pragmatic
use of ad just values has several reasons. In early phases of the planning period,
assumptions about probability distributions for flight passenger demand at takeoff
time may not be profound enough while ad just values can easily be adapted, even
to (unforeseen) events that may influence future developments of the underlying sit-
uation. Although stochastic programming, which is known for quite some time, is an
option where stochastic programming with discrete probability distributions would
even lead to linear programs (see, e.g., Cleef andGaul [7] for a paper inwhich network
flow theory is applied for the solution of a stochastic problem formulation), we have
decided to use the just mentioned ad just values to avoid assumptions concerning
probability distributions and penalty costs which compensate for the nonconformity
between finally realized flight passenger demand and seat capacity allocation. Addi-
tionally, the ad just values tend to decrease when t approaches takeoff time.
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The situation that refleeting is no longer possible after time-point t∗ leads to
a two-stage procedure. In the first stage, aircraft-type allocation to flight legs and
seat determination are simultaneously considered in the airline fleet assignment. In
the second stage, when aircraft-type allocation is no longer possible, the task of
seat determination (together with class-dependent (over)bookings and incorporation
of flexible products) is the main objective. While in the first stage xoldik ≥ 0, i ∈
I, k ∈ K , describes specific demand that, e.g., originates from cancelations in earlier
periods and has to be considered in the actual realization period, in the second
stage xoldik describes already confirmed seat allocations for flight passengers with
specific demand. At some (as late as possible) time-point t f lex before departure also
flight passengers with flexible demand are informed about their now confirmed seat
allocations.

To consider overbooking, the situation has to be modeled, that flight passengers
don’t show up or that too many seats were sold before the departure of an airplane.
Here, pspecf k and p f lex

f k denote the expected show-probabilities (divided into specific
and flexible bookings). Additionally, a parameter ρ f k indicates the share of flexible
flight customers and d f k the costs for a denied service concerning flight leg f and
class k.

3 Model

Now, the following Deterministic Linear Programming (DLP) adaption can be for-
mulated that describes an integrated approach in which airline fleet assignment com-
bines several aspects as, e.g., aircraft-type allocation to flight legs, seat determination,
overbooking, the incorporation of flexible products, and the consideration of different
booking classes:

max
∑
i∈I

∑
k∈K

rik · xik +
∑
j∈J

s j ·
∑
m∈Mj

∑
k∈K

y jmk

−
∑
f ∈F

∑
k∈K

d f k · u f k −
∑
a∈A

∑

τ∈T̃
costaτ · laτ

s.t.
∑
i∈I

v f i · wik · xik +
∑
j∈J

∑
m∈Mj

v f m · wmk · y jmk ≤ z f k ∀ f ∈ F, k ∈ K (1)

∑
j∈J

∑
m∈Mj

v f m · wmk · y jmk ≤ ρ f k · z f k ∀ f ∈ F, k ∈ K (2)

xik ≥ xoldik ∀i ∈ I, k ∈ K (3)

xik ≤ D∗spec
ikt ∀i ∈ I, k ∈ K (4)
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xik ∈ Z+ ∀i ∈ I, k ∈ K (5)∑
m∈Mj

∑
k∈K

y jmk ≤ D∗ f lex
j t ∀ j ∈ J (6)

yjmk ∈ Z+ ∀ j ∈ J, k ∈ K , (7)

m ∈ Mj

z f k ∈ Z+ ∀ f ∈ F, k ∈ K (8)

u f k ≥ z f k ·
(
ρ f k · p f lex

f k +(
1−ρ f k

)
pspecf k

)
−

∑

τ∈T̃
l f τ ·capτk ∀ f ∈ F, k ∈ K (9)

z f k ≥
∑

τ∈T̃
l f τ · capτk ∀ f ∈ F, k ∈ K (10)

u f k ∈ Z+ ∀ f ∈ F, k ∈ K (11)∑

τ∈T̃
laτ = 1 ∀a ∈ A (12)

∑
a∈B

laτ ≤ cτ ∀τ ∈ T̃ (13)

∑
a∈I n(n)

laτ =
∑

a∈Out(n)

laτ ∀n ∈ N , τ ∈ T̃ (14)

laτ ∈ {0, 1} ∀a ∈ A, τ ∈ T̃ (15)

where Z+ denotes the nonnegative integers.
The decision variables of this model are laτ , u f k, xik, y jmk, and z f k which are

all dependent on the time-point t when the calculations are performed. The binary
variables laτ indicate which aircraft-type τ ∈ T̃ is allocated to which activity a ∈ A.
u f k collects the number of denied boardings on flight leg f and class k. xik (specific)
and y jmk (flexible) denote the numbers of seats (within execution-mode m ∈ Mj in
the case of flexible products) assigned to passengers w.r.t. the offering of specific
and flexible products. The overbooking-limits z f k, for which ρ f k (share of flexible
flight passengers in class k of flight leg f ) and pspecf k , p f lex

f k (show-probabilities
divided into specific and flexible customers) have to be taken into consideration, are
also calculated. After time-point t∗ the laτ values have to be fixed and interest can
be concentrated on the overbooking-limits (calculated within the model) and, e.g.,
alterations of the shares of flexible flight passengers or show-probabilities (provided
by the management of the airline).

The objective function maximizes the revenues of specific and flexible
products, from which the costs for denied services as well as the costs for the
allocation of aircraft-types to flight and ground activities are subtracted. The con-
straints (1) secure that the sum of flexible and specific products does not exceed
the overbooking-limits which are bounded from below by the capacities of the
aircraft-types (constraints (10)). Conditions (2) state that only predefined parts of
the overbooking-limits can be allocated to flexible flight passengers. Constraints
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(3) consider already confirmed seat allocations. Restrictions of type (4) and (6) use
the adjusted aggregated demand for specific and flexible products up to time-point
t as additional bounds. Notice, that also other model descriptors (e.g., flight legs,
number of aircraft-types, costs, revenues, and show-probabilities) can undergo alter-
ations when the time-point t changes. For simplicity, however, the index t is omitted
except for the most important flight passenger demand values. Constraints (5), (7),
and (8) restrict the numbers of allocated specific and flexible products as well as the
overbooking-limits to nonnegative integers.

Conditions (9)–(11) delineate overbooking: Constraints (9) provide lower bounds
for deniedboardings as differenceofflight passengerswho showup (theoverbooking-
limits weighted with the show-probabilities (divided into flexible and specific book-
ings and multiplied by the shares of flexible and specific passengers)) minus the
capacity of the aircraft-type used. Constraints (10) secure that the overbooking-
limits exceed the capacities of the allocated aircraft-types (already mentioned) while
restrictions (11) are self-explanatory.

Finally, the integration of aircraft-type allocation to flight legs is described by
means of the conditions (12)–(15). Constraints (12) assign the underlying set of
aircraft-types to flight and ground activities while constraints (13) consider the num-
bers cτ of aircrafts of type τ which enter the realization period in connection with
the cross-border activities w.r.t. the realization period already mentioned earlier.
Restrictions (14) describe some kind of generalized flow constraints as all ingoing
activities of aircraft-types τ ∈ T̃ into airports n ∈ N must go out, again. Constraints
(15) secure that binary variables are used for the allocation task.

Earlier descriptions of airline fleet assignment have appeared in the literature (see,
e.g., Gaul & Winkler [11]) but this approach possesses some features which merit
attention, for example:

– Overbooking and the incorporation of flexible products are jointly treated.
– The consideration of different booking classes allows to specify class-dependent
revenues and denied boarding costs and to work with different show-probabilities
as well as shares of flexible flight passengers for selected classes. As a result,
class-dependent overbooking-limits can be calculated which are of importance for
the decisions of the management of an airline.

– The recalculation of solutions dependent on time-points t at which aggregated
demand data are explicitly updated also allows to check and adapt other model
parameters (e.g., the shares of flexible flight passengers or the show-probabilities).

– The use of adjusted flight passenger demand values on the basis of management
experience leads to straightforward computations.

– The allocation of flight legs to available aircraft-types with different seat capacity
classes and the choice of suited execution-mode sets Mj can be used to better
balance overbooking and avoid empty seats.
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4 Example

The example is kept small on purpose but large enough to allow a first impression
concerning the complexity of the model, to demonstrate how starting conditions
could look like, which kinds of data are taken into consideration, which results can
be expected, and how themanagement of an airline is able to model flight and ground
activities and can react to changings of the data that describe the underlying situation.

4.1 Starting Situation and Data

Based onmanagement experience and historical data, the following starting situation
for the application of approach (1)–(15) is assumed for an airline as depicted in Fig. 1
in which |F | = 17 flight legs connect |N | = 3 airports P, Q, and R with |G| = 20
ground operations in a realization period of two days (although not needed for the
calculations concerning the realization period, some activities before as well as after
the realization period are also shown for clarity of description, see, e.g., g20 as ground
operation which starts before the beginning of the realization period and ends in a
subsequent period). Four different routes, each served by a certain aircraft-type, are
marked: for longer distance flights between airports P andR continuous arrows (flight
legs f1, . . . , f5), for shorter distance flights with intermediate landings in airport Q
waved arrows (flight legs f6, . . . , f9), dashed arrows (flight legs f10, . . . , f13), and
double-drawn arrows (flight legs f14, . . . , f17) are used. Additionally, accompanying
ground activities at the corresponding airports are shown.

As the management of an airline can restrict the offering of packages of flight
connections, we assume for simplicity that return tickets for longer distance flights
are only sold if an overnight stay between landing and return flight takes place.
Additionally, on shorter distance flights no round trips within the realization period
are offered and no itineraries which allow an overnight stay in P, Q, or R in the
realization period (of course, flight passengers can buy single tickets and put together
their own routes).

With these restrictions, still, the following origin–destination itineraries have to
be considered: P → Q: f6; f12; f14, P → Q → R: f6 → f7; f6 → f15; f14 → f15;
f12 → f13 (numbered as i = 19, 20, 21, 26), P→R: f2; f4, Q→ P: f9; f11; f17, Q
→R: f7; f13; f15, R→Q: f8; f10; f16, R→Q→P: f8 → f9; f8 → f17; f16 → f17;
f10 → f11 (numbered as i = 22, 23, 24, 25), and R → P: f1; f3; f5 (notice, that
the ending of f5 takes place in the subsequent period). Finally, a round trip R → P
→ R with itinerary f1 → f4 (numbered as i = 18) is offered for travelers with an
overnight stay at P. A round trip P→R→ P with overnight stay at R using f2 → f5,
although possible, will not be considered as the ending of f5 does not take place
in the realization period. With three booking classes (e.g., first, business, economy)
per origin–destination itinerary, there are 75 specific products. As flight leg f5 and
ground operations g9, g14, and g19 end after the realization period, revenues and costs
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resulting from these activities are not included in the optimizationw.r.t. the underlying
realization period but the activities appear in the generalized flow constraints (14).
On the other side, the set B of cross-border activities w.r.t. the realization period
(known as operations which start before and end in the actual realization period)
is considered which comprises f1, g5, g10, and g15, i.e., four airplanes enter the
underlying realization period. |T̃ | = 3 aircraft-types with c1 = 1 (small: 200 seats),
c2 = 2 (medium: 300 seats), and c3 = 1 (large: 400 seats) are assumed for which
shares of 5%/10%/85% for first/business/economy are used for the separation of the
overall capacities.

Additionally, two flexible products j = 1 (from P to R with execution-mode set
M1 = {2, 19, 20, 21}) and j = 2 (fromR toPwithM2 = {22, 23, 24}) are considered
at a time-point t2 in the planning period some time before time-point t∗ after which
refleeting is no longer possible. Notice, that the management of the airline decides
which specific itineraries andwhichbooking classes are assigned toflexible offerings.
Here, M1 and M2 are subsets of the sets of all itineraries that could be selected.

To allow an as simple as possible description, direct longer distance flight legs
from P to R and from R to P, respectively, have revenues of 1200, 600, and 300 mu
(monetary units) depending on the three booking classes (assumed independent (for
simplicity) of the specific product) with a discount (30%) if flight passengers accept
a transfer in Q. For shorter distance flight legs 720, 360, and 180mu are the revenues,
the round trip R → P → R is priced with 1800, 900, and 450 mu, again, for the three
booking classes. The revenues for the flexible products are 175 mu, in each case.

The assignment of aircraft-type τ to flight leg f induces costs with cost f 1 =
18.000, cost f 2 = 30.000, and cost f 3 = 42.000 mu (assumed independent (for sim-
plicity) of flight leg f ). Costs for ground activities after longer distance inbound
flight legs (g1, . . . , g4) are costg1 = 1.500, costg2 = 2.000, and costg3 = 5.000 mu,
costs for ground activities after shorter distance inbound flight legs (g5, . . . , g19) are
costg1 = 1.000, costg2 = 1.500, and costg3 = 3.500mu (notice, again, that costs for
g9, g14, g19, (and g20) are considered in the subsequent period).

Concerning the overbooking situation the compensation costs for denied services
in classes k = 1, 2, 3 are d f 1 = 1500, d f 2 = 750, and d f 3 = 400 mu for longer
distance flight legs ( f1, . . . , f4), respectively, d f 1 = 900, d f 2 = 500, and d f 3 = 300
mu for shorter distance flight legs ( f6, . . . , f17).

Further, the expected show-probabilities, divided into flexible and specific book-
ings, have to be specified: For the show-probabilities of flexible flight passengers
p f lex
f k , we take a value of 1.0 for all flight legs and all classes (because we argue, that

if someone can make a flexible booking s(he) is such flexible that s(he) can always
come to departure). For the show-probabilities of specific flight passengers pspecf k we
deliberately take values smaller than 1.0 as explained in the discussion of the solution
of this example.

Finally, flight passengers’ demand values have to be specified. We consider three
demand situations at time-points t2 and t1 in the first stage, and t0 in the second
stage (t2 > t1 ≥ t∗ > t0) (remember that after time-point t∗ refleeting is no longer
possible).
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Table 1 Changes of the demand situation in the first stage and corresponding optimal airline fleet
assignment, respectively, refleeting

Table1 shows the values D∗spec
ikt for specific products i , classes k, and the time-

points t2 and t1 together with the show-probabilities for specific flight passengers. On
the right-hand part of Table 1 only those values, that have changed compared to the
information depicted at the left-hand part, are given. Additionally, D∗ f lex

1t2 = 80 and

D∗ f lex
2t2 = 70 are the numbers of flight passengers interested in the flexible products

with the shares of flexible passengers ρ f k as ρ f 1 = 0, ρ f 2 = 0.1, and ρ f 3 = 0.2 for
all flight legswhich are considered in the execution-mode sets of the flexible offerings
M1 and M2 (notice that we have chosen ρ f 1 = 0 for all flight legs to avoid that first
class passengers and flight passengers with flexible demand are jointly seated).

As one of the important messages concerning flight passenger demand situations
in the first stage, the optimal airline fleet assignments (see also Tables 2, 3) are already
contained in Table 1. Consider that, when an aircraft-type serving a certain flight leg
changes, all itineraries which contain this flight leg are affected. This is shown in the
last two columns of the left-hand and the right-hand parts of Table 1. In particular
in itineraries composed by more than one flight leg, the number of seats is deter-
mined by theminimum seat capacities of the corresponding aircraft-types usedwhich
might change as well. Given the complexity of the situation described up to now we
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have—on purpose—selected only three successive time-points t2, t1, and t0 in which
the demand values for i = 11, 12, and 21 (between time-points t2 and t1 in the first
stage) and for i = 3 (at time-point t0 in the second stage) with D∗spec

ikt0 = 18/39/325
are assumed to have changed to be better able to explain whether and how such
alterations have an effect on the model solutions.

4.2 Results

Tables2, 3, and 4 illustrate results of the application of model (1)–(15).
In the first and second column of Tables 2, 3, and 4, the numbers of assigned

specific demand xik (with and without transfer) and of assigned flexible demand y jmk

are depicted. In the third column, the denied boardings u f k are given. Besides the
calculated overbooking-limits z f k in the fourth column, the aircraft-types τ allocated
to flight legs f are indicated.

Table 2 Results for the demand situation at time-point t2 with execution-mode sets M1, M2
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Table 3 Results for the demand situation at time-point t1 with execution-mode sets M1, M̃2

Table2 reveals, e.g., that the seat capacity for specific product 3 is not exploited
(because 400 (20 + 40 + 340) seats are available) so that the management could
change the execution-mode set M2 to M̃2 := M2 ∪ {3} to incorporate more addi-
tional flexible flight passengers, who are interested in a connection from R to P .
In addition to this alteration, remarkable differences between Tables 2 and 3 are
related to the alteration of aircraft-type allocation between time-points t2 and t1, i.e.,
refleeting takes place. At time-point t2 the route f1 → f2 → f3 → f4 is operated
by aircraft-type τ = 3 (large: 400 seats), for the two routes f6 → f7 → f8 → f9
and f14 → f15 → f16 → f17 aircraft-type τ = 2 (medium: 300 seats) is used with
two airplanes, and the route f10 → f11 → f12 → f13 is served by aircraft-type
τ = 1 (small: 200 seats). At time-point t1, however, the aircraft-type allocations
change. With the updated demand values at t1, one aircraft of type τ = 2 operates
the route f14 → f11 → f12 → f17 while the aircraft-type τ = 1 was allocated to
route f10 → f15 → f16 → f13.
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Fig. 2 Airline fleet assignment (demand situation at time-point t2)

Fig. 3 Airline fleet assignment after refleeting (demand situation at time-point t1)

Figures2 and 3 showonly those routes in the underlying example inwhich aircraft-
types are reallocated (double-drawn arrows for type τ = 2, dashed arrows for type
τ = 1) to meet the airline fleet assignment constraints.

In Table 2 the sum of overbooking-limits exceeds the sum of available seat capac-
ities (in total 4800 seats on all flight legs in the underlying realization period) by 163
(1 first / 15 business / 147 economy) but no denied boardings are marked. 86 flexible
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Table 4 Results for the demand situation at time-point t0 with execution-mode sets M1, M̃2, and
M3

customers (61 to the flexible product j = 1 and 25 to the flexible product j = 2) are
assigned (remember that flexible demand was not allowed in class 1).

Table3 reveals that the available seat capacities are now exceeded by 175 (2 first
/ 12 business / 161 economy) possible overbookings but, again, no denied board-
ings appear. This time, 44 flexible flight passengers (flexible product j = 1) and
56 flexible customers ( j = 2) are assigned (remember that i = 3 was added to the
execution-mode set for the flexible product j = 2 (M̃2 = M2 ∪ {3})). From Table 3
the management of the airline can deduce (see the descriptions in Tables 6 and 7
for situation t1) that seats are still available for flight legs 7 and 13 in class k = 3.
Therefore, the management can decide to offer an additional flexible product j = 3
from Q to R with s3 = 100 mu and execution-mode set M3 = {7, 13} because for
this flexible offer flight passenger demand of D∗ f lex

3t0 = 50 seems reasonable.
Let us assume that t1 = t∗ so that refleeting is no longer possible after time-point

t1. Now, Table 4 shows for time-point t0 and execution-mode sets M1, M̃2, and M3

the corresponding results. This time, the sum of overbooking-limits exceeds the sum
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Table 5 Comparison of seat allocations of flight leg 3

Table 6 Comparison of seat allocations of flight leg 7

of available seat capacities by 185 possible overbookings (2 first / 15 business / 168
economy). While, again, 44 flexible flight passengers are assigned to the flexible
product j = 1, now, the number of flexible passengers assigned to j = 2 decreases
to 33 (the reason is that the increased specific demand values for i = 3 (remember,
D∗spec

ikt0 = 18/39/325) are more attractive than the assignment of flexible demand).
On the other hand, altogether 36 flexible flight passengers are assigned to the new
execution-mode set M3 (8 to i = 7 and 28 to i = 13).

Except for flight legs 3, 7, and 13 (see Tables 5, 6, and 7), we leave it to the
interested reader to check the numbers of flight passengers (with specific and flexible
demand) assigned to the origin–destination itineraries of the underlying example, to
add these numbers in those cases where different itineraries use the same flight leg
and/or different types of flight passengers are jointly seated in a certain class, and
to compare the results obtained with the demand values of Table 1, the available
seat capacities in the classes of the aircraft-types used, and the overbooking-limits
calculated by the program.
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Table 7 Comparison of seat allocations of flight leg 13

When flight passengers demand values w.r.t. origin–destination itineraries exceed
the corresponding overbooking-limits, waiting lists or rejections with hints for alter-
native offerings can be used.

For the calculation of overbooking-limits, the assessment of the expected show-
probabilities and the shares of allocated flexible customers are crucial.

Although—to make the description of the underlying situation easier—in some
cases model parameters (capτk, costaτ , d f k, rik, s j , . . .) have been simplified and
assumed to be independent of aircraft-types, classes, flight legs, or ground activities,
and the chosen values were arbitrarily selected to establish a frame for the compu-
tations, the possibilities, how the management of an airline can adapt airline fleet
assignment to changes in the underlying data and influence flight passenger behavior
should have become clear.

5 Concluding Remarks

Anapproach has been presented inwhich the concepts of airline fleet assignmentwith
aircraft-type allocation to flight legs, overbooking, incorporation of flexible products
as additional offering of an airline, and class-dependent seat determination are com-
bined within an integrated formulation for which a properly adapted Deterministic
Linear Programming (DLP) description is used.

An example has beendiscussedwhich allows an elaborated impressionwith regard
to the complexity of the underlying problem situation. Questions concerning, e.g.,
which kinds of data have to be provided, which results can be expected, and how
the management of an airline is able to influence flight passengers and can react to
changes in the situation are tackled. As the decision variables of the approach are
dependent on the time-point when the calculations are performed, repeated applica-
tions of the approach can reveal how airline fleet assignment can be used to better
balance booking requests and avoid empty seats. To keep the example simple, only
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alterations of selected flight passenger demand values and executions-mode sets for
flexible passengers were considered.

References

1. Adelman, D. (2007). Dynamic bid-prices in revenuemanagement.Operations Research, 55(4),
647–661.

2. Barnhart, C., Belobaba, P., & Odoni, A. (2003). Applications of operations research in the air
transport industry. Transportation Science, 37(4), 368–391.

3. Barnhart, C., Boland, N. L., Clarke, L. W., Johnson, E. L., Nemhauser, G. L., & Shenoi, R. G.
(1998). Flight string models for aircraft fleeting and routing. Transportation Science, 32(3),
208–220.

4. Barz, C., & Gartner, D. (2016). Air cargo network revenue management. Transportation Sci-
ence, 50(4), 1206–1222.

5. Beckmann, M. J. (1958). Decision and team problems in airline reservations. Econometrica,
26(1), 134–145.

6. Bertsimas, D., & de Boer, S. V., (2005). Simulation-based booking limits for airline revenue
management. Operations Research, 53(1), 90–106.

7. Cleef, H. J., &Gaul,W. (1982). Project scheduling via stochastic programming.Mathematische
Operationsforschung und Statistik, Series Optimization, 13(3), 449–468.

8. Gallego, G., Iyengar, G., Phillips, R., & Dubey, A. (2004). Managing Flexible Products on a
Network (CORC Technical Rep. TR-2004-01). IEOR Department, University of Columbia.

9. Gallego, G., & Phillips, R. (2004). Revenue management of flexible products. Manufacturing
& Service Operations Management, 6(4), 321–337.

10. Gao, C., Johnson, E., & Smith, B. (2009). Integrated airline fleet and crew robust planning.
Transportation Science, 43(1), 2–16.

11. Gaul, W., & Winkler, Ch. (2019). Aviation Data Analysis by Linear Programming in Airline
Network Revenue Management. To appear in Studies in Classification, Data Analysis, and
Knowledge Organization.

12. Gopalan, R., & Talluri, K. T. (1998). Mathematical models in airline schedule planning: A
survey. Annals of Operations Research, 76(1), 155–185.

13. Gosavi, A., Ozkaya, E., & Kahraman, A. F. (2007). Simulation optimization for revenue man-
agement of airlines with cancellations and overbooking. OR Spectrum, 29(1), 21–38.

14. Haouari, M., Aissaoui, N., & Mansour, F. Z. (2009). Network flow-based approaches for inte-
grated aircraft fleeting and routing. European Journal of Operational Research, 193(2), 591–
599.

15. Kenan, N., Jebali, A., &Diabat, A. (2018). An integrated flight scheduling and fleet assignment
problem under uncertainty. Computers & Operations Research, 100(2), 333–342.

16. Klein, R. (2007). Network capacity control using self-adjusting bid prices.ORSpectrum, 29(1),
39–60.

17. Koch, S., Goensch, J., & Steinhardt, C. (2017). Dynamic programming decomposition for
choice-based revenue management with flexible products. Transportation Science, 51(4),
1031–1386.

18. Kunnumkal, S., Talluri, K., & Topaloglu, H. (2012). A randomized linear programmingmethod
for network revenue management with product-specific no-shows. Transportation Science,
46(1), 90–108.

19. Kunnumkal, S., & Topaloglu, H. (2010). Computing time-dependent bid prices in network
revenue management problems. Transportation Science, 44(1), 38–62.

20. Lapp, M., & Weatherford, L. (2014). Airline network revenue management: Considerations
for implementation. Journal of Revenue and Pricing Management, 13(2), 83–112.



Flight Passenger Behavior and Airline Fleet Assignment 81

21. Petrick, A., Goensch, J., Steinhardt, C., & Klein, R. (2010). Dynamic control mechanisms for
revenue management with flexible products. Computers & Operations Management, 37(11),
2027–2039.

22. Petrick, A., Steinhardt, C., Goensch, J., & Klein, R. (2012). Using flexible products to cope
with demand uncertainty in revenue management. OR Spectrum, 34(1), 215–242.

23. Sandhu, R., & Klabjan, D. (2007). Integrated airline fleeting and crew-pairing decisions.Oper-
ations Research, 55(3), 439–456.

24. Sherali, H. D., Bae, K.-H., & Haouari, M. (2010). Integrated airline schedule design and fleet
assignment: Polyhedral analysis and Benders’ decomposition approach. Informs Journal on
Computing, 22(4), 500–513.

25. Talluri, K. T., & van Ryzin, G. J. (1998). An analysis of bid-price controls for network revenue
management. Management Science, 44(11), 1577–1593.

26. Talluri, K. T., & van Ryzin, G. J. (1999). A randomized linear programming method for
computing network bid prices. Transportation Science, 33(2), 207–216.

27. Topaloglu, H. (2009). On the asymptotic optimality of the randomized linear program for
network revenue management. European Journal of Operational Research, 197(3), 884–896.

28. Van Ryzin, G. J., & Vulcano, G. (2008). Simulation-based optimization of virtual nesting
controls for network revenue management. Operations Research, 56(4), 865–880.

29. Vossen, T., & Zhang, D. (2015). Reductions of approximate linear programs for network rev-
enue management. Operations Research, 63(6), 1352–1371.

30. Wannakrairot, A., & Phumchusri, N. (2016). Two-dimensional air cargo overbooking models
under stochastic booking request level, showup rate and booking request density. Computers
& Industrial Engineering, 100, 1–12.



Comparing Partitions of the Petersen
Graph

Andreas Geyer-Schulz and Fabian Ball

Abstract The Petersen graph has been of long term interest to many graph theorists
because of its appearance as counterexample in many places. In this contribution we
use the Petersen graph—because of its transitivity and its large, but not too large
automorphism group—as a show piece for invariant partition comparison measures.
We show that we can decompose distances between partitions of the Petersen graph
in an (invariant) structural part and a (variable) part caused by an automorphism. In
addition, we study the effects caused by subgroups of the automorphism group and
their interpretation.

1 Motivation

The Petersen graph, shown in Fig. 1, received its name from Julius Petersen (1839–
1910), who first used it as a counterexample to a theorem of Tait on the 4-colour
problem (Petersen [18]). For readers interested in a biography of Julius Petersen,
we recommend Lützen, Sabidussi, and Toft [16]. However, the Petersen graph first
appeared in Kempe [15] as the graph of the Desargues’ configuration.

With graph theorists the Petersen graph soon achieved star status for two reasons:

• The Petersen graph is and continues to be a yardstick to assess conjectures, and
it serves as a rich source of counterexamples to theorems. It is the most often
referenced graph in Capobianco andMolluzo’s book on counterexamples in graph
theory (Capobianco & Molluzzo [6]).

• The Petersen graph has a lot of interesting properties. In fact, Holton and Shee-
han devoted a whole book with several hundred references to exploring different
properties of the Petersen graph (Holton & Sheehan [13]).
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Fig. 1 The Petersen graph
PG with the edge list {1, 6},
{2, 7}, {3, 8}, {4, 9}, {5, 10},
{1, 2}, {2, 3}, {3, 4}, {4, 5},
{5, 1}, {6, 8}, {7, 9}, {8, 10},
{9, 6}, {10, 7}
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Our interest in the Petersen graph started by using it as a symmetric graph for
a modularity maximizing graph clustering algorithm (Geyer-Schulz, Ovelgönne, &
Stein [10]) to illustrate the effect of symmetry on the stability of the cluster solution.
In the conference presentation the first author also became a victim of the Petersen
graph: After showing three isomorphic, modularity optimal solutions (Newman &
Girvan [17]) of the Petersen graph (see Fig. 2), he was asked how many modularity
optimal solutions are there? He boldly conjectured five and added “As one can easily
see”. Clearly, at that point in time, he was overconfident and unaware of the true
automorphism group of the Petersen graph. And the answer five is true if we consider
only a single action (g1 in Table1) of the automorphism group of the graph.We hope,
it is clear nowwhy the Petersen graph never made it into the final version of the paper
cited above.

For people in molecular biology, the two partitions of the Petersen graph shown
in Fig. 3 also make sense if they accept rings of nucleobases: The five pairs in the left
partition correspond to five base pairs (either adenine with thymine or cytosine with
guanine or reverse), the two rings in the right partition to rings of nucleobases. The

Fig. 2 How many modularity optimal partitions are there?
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Fig. 3 How many optimal
partitions are there for pairs
and rings?

cluster criterion of maximizing modularity can be used to generate these solutions
by appropriately increasing the edge weight of each pair (left graph in Fig. 3) or the
weights of the five edges of each ring (right graph in Fig. 3)

In the rest of this paper we use the Petersen graph and the three different clustering
solutions shown in Figs. 2 and 3 as a show case of how clustering of completely
transitive graphs works and what is needed to properly diagnose such solutions.

In Sect. 2 we introduce the automorphism group of the Petersen graph and we
show how the number and the set of equivalent optimal solutions for each of the
three clustering criteria can be computed. Last, but not least, in Sect. 4 we show
the construction of three classes of invariant partition comparison measures and we
compute the structural distance between solutions of the three cluster criteria by a
decomposition of the classic partition comparison measures for the Petersen graph.

2 The Automorphism Group of the Petersen Graph

A finite, undirected, unweighted graph G = (V, E) with nodes V = {1, . . . , n} and
edges E = {{u, v} | u, v ∈ V, u �= v} (uv is short hand for {u, v}) has graph partitions
P ,Q. A partitionP = {C1, . . .Ck} has the usual properties of a partition: non-empty
subsets, completeness under union, and disjointness of subsets.

Graph symmetry is expressed by permutation functions, where a permutation
function p is a bijection p : V → V on the nodes V . The image of p on u is u p : u �→
u p. We extend this notation for sets, partitions, and graphs by pointwise application
of p to the elements of V which are contained in sets, partitions, and graphs in a
natural way, e.g., for the set of edges: E p = {u pvp | uv ∈ E}.

A permutation group H on a finite set V with cardinality n consists of a set of per-
mutation functions which fulfills the group axioms (closedness, identity, inverse, and
associativity) under the group operation of function composition. For two permuta-
tion functions p, q ∈ H , their composition pq is defined as the successive application
of the functions from left to right: u pq = (u p)q . Repeated composition of p is denoted
by pi , i ∈ N0. We define p0 = id as the identity permutation and by p+ we denote
the closure of the composition operation. This means, we repeat the composition
until the resulting set of permutation functions remains constant. A classic text on
permutation groups is Wielandt [22]. The largest permutation group on n symbols
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is called the symmetric group Sym(n) and its explicit representation consists of n!
permutation functions. A generator S of a permutation group is a set of permutation
functions from which the explicit representation of the group is computed by suc-
cessively applying the group operation until no further permutation functions can
be generated (Coxeter & Moser [7]). We denote this by the closure operation S+.
The cardinality of a generator S is usually much smaller than the cardinality of the
explicit representation of a permutation group, e.g. for Sym(n), |SSym(n)| = 2 instead
of n!.

The study of graph symmetry requires the computation of the automorphismgroup
Aut (G) of a graph G, which consists of all permutation functions on V which are
graph automorphisms:

Definition 1 Apermutation function p is an automorphismof a graphG iffGp = G.

The condition E p = E provides a computable and constructive test that p is a
graph automorphism. A brute force approach for solving the graph automorphism
problem for a graph with n nodes consists in testing for n! permutations that E p =
E holds. For the Petersen graph, this means testing 3628800 (= 10!) permutation
functions to extract its automorphism group.

Kemp [14, pp. 26–28] introduces five representations for a permutation function
p (the standard, linear, graph, matrix, and cycle representations). In this contribution
we use three of these representation:

Standard representation. p1 ∈ Sym(n) is written in two lines: The elements of V
appear in the top row, and the elements under the mapping p1 in the row below.

p1 =
(
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 1

)

Linear representation. The linear notation of the permutation p ∈ Sym(n) is the
sequence of 1p, 2p, . . . , np. It requires a fixed ordering of the elements of V .
This corresponds to the second line of the standard representation with elements
sorted in increasing order. We use this representation in the rest of the paper for
the (machine generated) presentation of results on the Petersen graph.

p2 = 2, 1, 3, 4, 5, 6, 7, 8, 9, 10

Cycle representation. Let p ∈ Sym(n) and i1 ∈ V . The sequence i1, i2, . . . with
i j = i pj−1, j = 2, 3, . . . has the property that an element is generated which
already exists in the sequence. This element must be i1, because otherwise for
some j ∈ V : j = i pk = i pt with ik �= it (which violates the bijection property
of p). The sequence i1, . . . il is called a cycle of p generated by i1. (A cycle
is uniquely determined by each of its elements which makes this notation not
unique.) A permutation p is in cycle notation if

p = (i11, . . . , i1r1)(i21, . . . , i2r2) . . . (ik1, . . . , i1rk )
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where the (i j1, i j2, . . . , i jr j i ), 1 ≤ j ≤ k are the cycles of p. Trivial cycles are
omitted. The identity permutation id has only trivial cycles and is represented as
(). The permutations p1 = (1 2 . . . n) and p2 = (1 2) form a generator SSym(n) of
Sym(n).

Note that the closure operations also define the set of isomorphic partitions of a
graphG under Aut (G). For example, for an arbitrary partitionP of a fully connected
graph (a clique of size n), the set of isomorphic partitions of P is ECP = P S+

Sym(n) ,
because the automorphism group of such a clique is Sym(n).

The Petersen graph PG is a representative of several special graph classes: A
Moore-graph, a (3, 5)-cage, a Kneser (5, 2)-graph,… Since the automorphism group
of the Petersen graph is isomorphic to S5 (Wood [23]), the order of Aut (PG) of
the Petersen graph is |Aut (PG)| = 5! = 120. The Petersen graph is node and edge
transitive. Transitive means that each node or edge can be mapped onto each other
node or edge. It is 3-transitive, which means it contains exactly 120 paths of length
3 that are isomorphic.

Given the popularity of the Petersen graph, one would expect to find a generator
of the automorphism group of the Petersen graph either in Holton’s book or in
modern text books on graph theory. In Holton and Sheehan [13, p. 23] one finds only
two automorphisms of the Petersen graph which we show in Table1: g1 formalizes a
rotation of the 5 pairs of PG, whereas g2 moves the nodes of the inner ring to the outer
ringwhile preserving the pairs, but not their circular arrangement. They do not suffice
to generate the full automorphism group of the Petersen graph (|{g1, g2}+| = 20).

After an extended literature search we uncovered a more recent source for genera-
tors of the automorphism group of the generalized Petersen graph GP(10, 3), which
is isomorphic to the Desargues configuration (Pisanski & Servatius [19, p. 177]).
Pisanski and Servatius present the four automorphisms shown in Table2 which gen-
erate the automorphism group of GP(10, 3), which is of order 120, too. In addition,
it is shown that Sym(5) is isomorphic to the automorphism group of the Desargues
configuration (Pisanski & Servatius [19, pp. 178–179]). Unfortunately, however, the
standard Petersen graph PG (denoted as a generalized Petersen graph GP(5, 2))
only has the three generators g1, g2, and g3 of Table2 in common with the gener-
alized Petersen graph GP(10, 3), while g4 is not on automorphism of the Petersen
graph PG at all. A proper replacement of the last generator for the standard Petersen
graph, however, is not easy to find.

The generator of the automorphism group of the Petersen graph shown in Table3
has been computed by saucy (see Darga, Sakallah, & Markov [8]) and verified

Table 1 Two automorphisms of the Petersen graph (Holton & Sheehan [13, p. 23]). i is the index
of pi in Table4

Cycle representation Linear representation i

g1 = (1 2 3 4 5)(6 7 8 9 10) 2, 3, 4, 5, 1, 7, 8, 9, 10, 6 17

g2 = (1 6)(2 9 5 8)(3 7 4 10) 6, 9, 7, 10, 8, 1, 4, 2, 5, 3 72
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Table 2 Three automorphisms of the Petersen graph (g1, g2, g3). g4 is not an automorphism
(Pisanski & Servatius [19, p. 177]). i is the index of pi in Table4

Cycle representation Linear representation i

g1 = (1 2 3 4 5)(6 7 8 9 10) 2 3 4 5 1 7 8 9 10 6 17

g2 = (1 9 3 10)(2 7)(5 6 4 8) 9 7 10 8 6 4 2 5 3 1 108

g3 = (2 5)(3 4)(7 10)(9 8) 1 5 4 3 2 6 10 9 8 7 5

g4 = (2 7)(4 6)(5 8)(9 10) 1 7 3 6 8 4 2 5 10 9 NA

Table 3 The generator of the Petersen graph computed by saucy. i is the index of pi in Table4

Cycle representation Linear representation i

g1 = (4 8)(5 6)(9 10) 1, 2, 3, 8, 6, 5, 7, 4, 10, 9 2

g2 = (2 6)(3 8)(4 10)(7 9) 1, 6, 8, 10, 5, 2, 9, 3, 7, 4 10

g3 = (1 3)(4 5)(6 8)(9 10) 3, 2, 1, 5, 4, 8, 7, 6, 10, 9 25
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Fig. 4 The group actions g1, g2, g3 of the saucy generator from Table3. Black nodes are fixed

by the authors by the brute force approach described above. Figure4 illustrates the
effects of the group actions of the generator found by saucy.

However, this is not the end of the story. Because Aut (PG) is isomorphic to
Sym(5) (by replacing the five edgeswhich link the ringwith the pentagramof the PG
with five single nodes, we obtain a clique with five nodes), we expect that a minimal
generator with two permutations exists. By brute force search, we discovered the
generator of the Petersen graph shown in Table5 which is one out of 3420 minimal
generators. The set of permutations {2, 17}which combines Holton’s and saucy’s
first generator is also a minimal generator.

Table4 provides the base for a compact representation of generators of Aut (PG)

as a set of at least two indices. For example, the saucy generator shown in Table3
is denoted as {2, 10, 25}. p6 completes Holton’s automorphisms to the generator
{6, 17, 72}, and the three sets of permutations {3, 17, 108}, {5, 16, 108}, or {4, 5, 17},
which are all generators of Aut (PG), are adaptations of the generator of Pisanski
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Table 4 The full automorphism group Aut (PG) of the Petersen graph in linear notation. Node
labels are presented in Fig. 1. Holton’s two automorphisms are {17, 72}, the three automorphisms
of Pisanski and Servatius are {17, 108, 5}, the generator computed by saucy is {2, 10, 25}, and a
minimal generator is e.g. {71, 118}
i Permutation i Permutation i Permutation

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 41 4, 5, 1, 2, 3, 9, 10, 6, 7, 8 81 7, 10, 5, 1, 2, 9, 8, 4, 6, 3

2 1, 2, 3, 8, 6, 5, 7, 4, 10, 9 42 4, 5, 1, 6, 9, 3, 10, 2, 8, 7 82 7, 10, 5, 4, 9, 2, 8, 1, 3, 6

3 1, 2, 7, 9, 6, 5, 3, 10, 4, 8 43 4, 5, 10, 7, 9, 3, 1, 8, 2, 6 83 7, 10, 8, 3, 2, 9, 5, 6, 4, 1

4 1, 2, 7, 10, 5, 6, 3, 9, 8, 4 44 4, 5, 10, 8, 3, 9, 1, 7, 6, 2 84 7, 10, 8, 6, 9, 2, 5, 3, 1, 4

5 1, 5, 4, 3, 2, 6, 10, 9, 8, 7 45 4, 9, 6, 1, 5, 3, 7, 8, 2, 10 85 8, 3, 2, 1, 6, 10, 4, 7, 5, 9

6 1, 5, 4, 9, 6, 2, 10, 3, 7, 8 46 4, 9, 6, 8, 3, 5, 7, 1, 10, 2 86 8, 3, 2, 7, 10, 6, 4, 1, 9, 5

7 1, 5, 10, 7, 2, 6, 4, 8, 9, 3 47 4, 9, 7, 2, 3, 5, 6, 10, 1, 8 87 8, 3, 4, 5, 10, 6, 2, 9, 1, 7

8 1, 5, 10, 8, 6, 2, 4, 7, 3, 9 48 4, 9, 7, 10, 5, 3, 6, 2, 8, 1 88 8, 3, 4, 9, 6, 10, 2, 5, 7, 1

9 1, 6, 8, 3, 2, 5, 9, 10, 4, 7 49 5, 1, 2, 3, 4, 10, 6, 7, 8, 9 89 8, 6, 1, 2, 3, 10, 9, 5, 7, 4

10 1, 6, 8, 10, 5, 2, 9, 3, 7, 4 50 5, 1, 2, 7, 10, 4, 6, 3, 9, 8 90 8, 6, 1, 5, 10, 3, 9, 2, 4, 7

11 1, 6, 9, 4, 5, 2, 8, 7, 3, 10 51 5, 1, 6, 8, 10, 4, 2, 9, 3, 7 91 8, 6, 9, 4, 3, 10, 1, 7, 5, 2

12 1, 6, 9, 7, 2, 5, 8, 4, 10, 3 52 5, 1, 6, 9, 4, 10, 2, 8, 7, 3 92 8, 6, 9, 7, 10, 3, 1, 4, 2, 5

13 2, 1, 5, 4, 3, 7, 6, 10, 9, 8 53 5, 4, 3, 2, 1, 10, 9, 8, 7, 6 93 8, 10, 5, 1, 6, 3, 7, 4, 2, 9

14 2, 1, 5, 10, 7, 3, 6, 4, 8, 9 54 5, 4, 3, 8, 10, 1, 9, 2, 6, 7 94 8, 10, 5, 4, 3, 6, 7, 1, 9, 2

15 2, 1, 6, 8, 3, 7, 5, 9, 10, 4 55 5, 4, 9, 6, 1, 10, 3, 7, 8, 2 95 8, 10, 7, 2, 3, 6, 5, 9, 1, 4

16 2, 1, 6, 9, 7, 3, 5, 8, 4, 10 56 5, 4, 9, 7, 10, 1, 3, 6, 2, 8 96 8, 10, 7, 9, 6, 3, 5, 2, 4, 1

17 2, 3, 4, 5, 1, 7, 8, 9, 10, 6 57 5, 10, 7, 2, 1, 4, 8, 9, 3, 6 97 9, 4, 3, 2, 7, 6, 5, 8, 1, 10

18 2, 3, 4, 9, 7, 1, 8, 5, 6, 10 58 5, 10, 7, 9, 4, 1, 8, 2, 6, 3 98 9, 4, 3, 8, 6, 7, 5, 2, 10, 1

19 2, 3, 8, 6, 1, 7, 4, 10, 9, 5 59 5, 10, 8, 3, 4, 1, 7, 6, 2, 9 99 9, 4, 5, 1, 6, 7, 3, 10, 2, 8

20 2, 3, 8, 10, 7, 1, 4, 6, 5, 9 60 5, 10, 8, 6, 1, 4, 7, 3, 9, 2 100 9, 4, 5, 10, 7, 6, 3, 1, 8, 2

21 2, 7, 9, 4, 3, 1, 10, 6, 5, 8 61 6, 1, 2, 3, 8, 9, 5, 7, 4, 10 101 9, 6, 1, 2, 7, 4, 8, 5, 3, 10

22 2, 7, 9, 6, 1, 3, 10, 4, 8, 5 62 6, 1, 2, 7, 9, 8, 5, 3, 10, 4 102 9, 6, 1, 5, 4, 7, 8, 2, 10, 3

23 2, 7, 10, 5, 1, 3, 9, 8, 4, 6 63 6, 1, 5, 4, 9, 8, 2, 10, 3, 7 103 9, 6, 8, 3, 4, 7, 1, 10, 2, 5

24 2, 7, 10, 8, 3, 1, 9, 5, 6, 4 64 6, 1, 5, 10, 8, 9, 2, 4, 7, 3 104 9, 6, 8, 10, 7, 4, 1, 3, 5, 2

25 3, 2, 1, 5, 4, 8, 7, 6, 10, 9 65 6, 8, 3, 2, 1, 9, 10, 4, 7, 5 105 9, 7, 2, 1, 6, 4, 10, 3, 5, 8

26 3, 2, 1, 6, 8, 4, 7, 5, 9, 10 66 6, 8, 3, 4, 9, 1, 10, 2, 5, 7 106 9, 7, 2, 3, 4, 6, 10, 1, 8, 5

27 3, 2, 7, 9, 4, 8, 1, 10, 6, 5 67 6, 8, 10, 5, 1, 9, 3, 7, 4, 2 107 9, 7, 10, 5, 4, 6, 2, 8, 1, 3

28 3, 2, 7, 10, 8, 4, 1, 9, 5, 6 68 6, 8, 10, 7, 9, 1, 3, 5, 2, 4 108 9, 7, 10, 8, 6, 4, 2, 5, 3, 1

29 3, 4, 5, 1, 2, 8, 9, 10, 6, 7 69 6, 9, 4, 3, 8, 1, 7, 5, 2, 10 109 10, 5, 1, 2, 7, 8, 4, 6, 3, 9

30 3, 4, 5, 10, 8, 2, 9, 1, 7, 6 70 6, 9, 4, 5, 1, 8, 7, 3, 10, 2 110 10, 5, 1, 6, 8, 7, 4, 2, 9, 3

31 3, 4, 9, 6, 8, 2, 5, 7, 1, 10 71 6, 9, 7, 2, 1, 8, 4, 10, 3, 5 111 10, 5, 4, 3, 8, 7, 1, 9, 2, 6

32 3, 4, 9, 7, 2, 8, 5, 6, 10, 1 72 6, 9, 7, 10, 8, 1, 4, 2, 5, 3 112 10, 5, 4, 9, 7, 8, 1, 3, 6, 2

33 3, 8, 6, 1, 2, 4, 10, 9, 5, 7 73 7, 2, 1, 5, 10, 9, 3, 6, 4, 8 113 10, 7, 2, 1, 5, 8, 9, 3, 6, 4

34 3, 8, 6, 9, 4, 2, 10, 1, 7, 5 74 7, 2, 1, 6, 9, 10, 3, 5, 8, 4 114 10, 7, 2, 3, 8, 5, 9, 1, 4, 6

35 3, 8, 10, 5, 4, 2, 6, 7, 1, 9 75 7, 2, 3, 4, 9, 10, 1, 8, 5, 6 115 10, 7, 9, 4, 5, 8, 2, 6, 3, 1

36 3, 8, 10, 7, 2, 4, 6, 5, 9, 1 76 7, 2, 3, 8, 10, 9, 1, 4, 6, 5 116 10, 7, 9, 6, 8, 5, 2, 4, 1, 3

37 4, 3, 2, 1, 5, 9, 8, 7, 6, 10 77 7, 9, 4, 3, 2, 10, 6, 5, 8, 1 117 10, 8, 3, 2, 7, 5, 6, 4, 1, 9

38 4, 3, 2, 7, 9, 5, 8, 1, 10, 6 78 7, 9, 4, 5, 10, 2, 6, 3, 1, 8 118 10, 8, 3, 4, 5, 7, 6, 2, 9, 1

39 4, 3, 8, 6, 9, 5, 2, 10, 1, 7 79 7, 9, 6, 1, 2, 10, 4, 8, 5, 3 119 10, 8, 6, 1, 5, 7, 3, 9, 2, 4

40 4, 3, 8, 10, 5, 9, 2, 6, 7, 1 80 7, 9, 6, 8, 10, 2, 4, 1, 3, 5 120 10, 8, 6, 9, 7, 5, 3, 1, 4, 2
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Table 5 A minimal generator of the Petersen graph. i is the index of pi in Table4

Cycle representation Linear representation i

g1 = (1 6 8 10 5)(2 9 3 7 4) 6, 9, 7, 2, 1, 8, 4, 10, 3, 5 71

g2 = (1 10)(2 8)(6 7) 10, 8, 3, 4, 5, 7, 6, 2, 9, 10 118

and Servatius [19, p. 177] for GP(10, 3) to PG. Each set of generators represents
a certain structural symmetry of PG. We leave a detailed analysis of the geometry
of the group actions of the automorphism group of the Petersen graph for further
research.

3 Multiple Isomorphic Solutions of Graph Clustering
Algorithms

Multiple equivalent solutions of graph clustering algorithms all have the same value
of the clustering criterion. They can be divided in two subsets:

1. The set of isomorphic solutions generated by Aut (G).
2. The set of non-isomorphic solutions which have the same value of the cluster

criterion. This group of solutions is left for further research.

First, what do we mean by an optimal solution of a graph clustering algorithm?
Sincemost graph clustering algorithms are only heuristics with no guarantee to find a
globally optimal partition, we refer to the best paritition a graph clustering algorithm
finds as “optimal”. Let P be an “optimal” graph partition in this sense. With the help
of Aut (G) it is possible to generate the set of isomorphic partitions ECP by

ECP = P Aut (G). (1)

A partition is called stable iff |ECP | = 1 else it is called unstable. The transitivity
of the Petersen graph implies that the only stable partitions are the trivial partitions:
the 1-cluster and the singleton partition. All other partitions are unstable. This means
that a set of partitions isomorphic under Aut (PG) and of cardinality greater than 1
exists for all other partitions of the Petersen graph.

The set representation of a partition consists of a set of sets, whereas the linear
representation of a partition is an n-element vector v of cluster labels. vi = c simply
means that node i is element of cluster c with c ∈ 1, . . . , k. The linear representation
specifies a partition up to label isomorphism, e.g.:

(1, 2, 2, 1, 1, 1, 2, 2, 1, 1) � (2, 1, 1, 2, 2, 2, 1, 1, 2, 2).
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Table 6 Number of optimal solutions under Aut (PG)

PModulari t y P2Rings P5Pairs

Number of partitions (up to label isomorphism) 60 12 120

Number of partitions (with canonical labelling) 60 6 6

Table 7 The set of six isomorphic partitions for P2Rings computed by P Aut (PG)
2Rings

Representation of Partitions

Up to label isomorphism Canonical labels Set of sets

1. (1, 1, 1, 1, 1, 2, 2, 2, 2, 2) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2) {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}
2. (2, 2, 2, 2, 2, 1, 1, 1, 1, 1)

3. (1, 2, 1, 2, 2, 1, 1, 1, 2, 2) (1, 2, 1, 2, 2, 1, 1, 1, 2, 2) {{1, 3, 6, 7, 8}, {2, 4, 5, 9, 10}}
4. (2, 1, 2, 1, 1, 2, 2, 2, 1, 1)

6. (1, 2, 1, 2, 1, 1, 2, 2, 2, 1) (1, 2, 1, 2, 1, 1, 2, 2, 2, 1) {{1, 3, 5, 6, 10}, {2, 4, 7, 8, 8}}
9. (2, 1, 2, 1, 2, 2, 1, 1, 1, 2)

7. (1, 2, 2, 1, 2, 1, 2, 2, 1, 1) (1, 2, 2, 1, 2, 1, 2, 2, 1, 1) {{1, 4, 6, 9, 10}, {2, 3, 5, 7, 8}}
10. (2, 1, 1, 2, 1, 2, 1, 1, 2, 2)

8. (1, 2, 1, 1, 2, 2, 2, 1, 1, 2) (1, 2, 1, 1, 2, 2, 2, 1, 1, 2) {{1, 3, 4, 8, 9}, {2, 5, 6, 7, 10}}
5. (2, 1, 2, 2, 1, 1, 1, 2, 2, 1)

11. (1, 1, 2, 1, 2, 1, 1, 2, 2, 2) (1, 1, 2, 1, 2, 1, 1, 2, 2, 2) {{1, 2, 4, 6, 7}, {3, 5, 8, 9, 10}}
12. (2, 2, 1, 2, 1, 2, 2, 1, 1, 1)

Table 8 The set of six isomorphic partitions of P Aut (PG)
5Pairs

{{1, 6}{2, 7}{3, 8}{4, 9}{5, 10}} {{1, 2}{3, 8}{4, 5}{6, 9}{7, 10}}

{{1, 6}{2, 3}{4, 5}{7, 9}{8, 10}} {{1, 5}{2, 7}{3, 4}{6, 9}{8, 10}}

{{1, 2}{3, 4}{5, 10}{6, 8}{7, 9}} {{1, 5}{2, 3}{4, 9}{6, 8}{7, 10}}

The three optimal partitions for the three cluster criteria shown in Figs. 2 and 3
are in set (and linear) representation:

PModulari t y = PM = {{1, 4, 5, 6, 9, 10}, {2, 3, 7, 8}} = (1, 2, 2, 1, 1, 1, 2, 2, 1, 1)
P2Rings = PR{{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
P5Pairs = PP{{1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}} = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
We show the number of isomorphic optimal solutions with and without elimi-

nation of label isomorphism for these partitions in Table6 to show the variation in
the effect of this transformation. For P2Rings , we illustrate the elimination of label
isomorphisms in Table7. The set of isomorphic solutions for P5Pairs is presented in
Table8 and, last but not least, the set of isomorphic solutions forPModulari t y is shown
in Table9.
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Table 9 The set of 60 isomorphic partitions of P Aut (PG)
Modulari t y

{{1, 4, 5, 6, 9, 10}{2, 3, 7, 8}} {{1, 2, 3, 7, 8, 10}{4, 5, 6, 9}}

{{1, 2, 3, 4, 5, 9}{6, 7, 8, 10}} {{1, 5, 6, 8, 9, 10}{2, 3, 4, 7}}

{{1, 5, 7, 10}{2, 3, 4, 6, 8, 9}} {{1, 4, 5, 6, 8, 10}{2, 3, 7, 9}}

{{1, 2, 4, 5, 7, 10}{3, 6, 8, 9}} {{1, 2, 3, 8}{4, 5, 6, 7, 9, 10}}

{{1, 2, 3, 4, 6, 8}{5, 7, 9, 10}} {{1, 2, 6, 7}{3, 4, 5, 8, 9, 10}}

{{1, 2, 3, 5}{4, 6, 7, 8, 9, 10}} {{1, 2, 6, 8}{3, 4, 5, 7, 9, 10}}

{{1, 2, 3, 4, 5, 7}{6, 8, 9, 10}} {{1, 4, 5, 6}{2, 3, 7, 8, 9, 10}}

{{1, 6, 7, 8, 9, 10}{2, 3, 4, 5}} {{1, 2, 5, 7}{3, 4, 6, 8, 9, 10}}

{{1, 5, 6, 7, 8, 10}{2, 3, 4, 9}} {{1, 2, 4, 5, 6, 9}{3, 7, 8, 10}}

{{1, 2, 6, 7, 8, 9}{3, 4, 5, 10}} {{1, 2, 5, 7, 9, 10}{3, 4, 6, 8}}

{{1, 2, 7, 9}{3, 4, 5, 6, 8, 10}} {{1, 6, 8, 10}{2, 3, 4, 5, 7, 9}}

{{1, 2, 3, 4, 5, 10}{6, 7, 8, 9}} {{1, 3, 4, 5, 8, 10}{2, 6, 7, 9}}

{{1, 2, 6, 9}{3, 4, 5, 7, 8, 10}} {{1, 2, 3, 6, 8, 10}{4, 5, 7, 9}}

{{1, 3, 5, 6, 8, 10}{2, 4, 7, 9}} {{1, 2, 3, 6, 7, 8}{4, 5, 9, 10}}

{{1, 2, 4, 5}{3, 6, 7, 8, 9, 10}} {{1, 2, 3, 4, 5, 6}{7, 8, 9, 10}}

{{1, 5, 6, 9}{2, 3, 4, 7, 8, 10}} {{1, 2, 5, 6, 7, 10}{3, 4, 8, 9}}

{{1, 3, 4, 5}{2, 6, 7, 8, 9, 10}} {{1, 2, 3, 6, 7, 9}{4, 5, 8, 10}}

{{1, 4, 5, 6, 8, 9}{2, 3, 7, 10}} {{1, 2, 4, 6, 7, 9}{3, 5, 8, 10}}

{{1, 4, 5, 9}{2, 3, 6, 7, 8, 10}} {{1, 2, 3, 4, 7, 9}{5, 6, 8, 10}}

{{1, 2, 7, 10}{3, 4, 5, 6, 8, 9}} {{1, 2, 3, 4}{5, 6, 7, 8, 9, 10}}

{{1, 3, 4, 6, 8, 9}{2, 5, 7, 10}} {{1, 2, 3, 4, 5, 8}{6, 7, 9, 10}}

{{1, 2, 5, 10}{3, 4, 6, 7, 8, 9}} {{1, 6, 7, 9}{2, 3, 4, 5, 8, 10}}

{{1, 2, 3, 5, 6, 8}{4, 7, 9, 10}} {{1, 4, 5, 6, 7, 9}{2, 3, 8, 10}}

{{1, 2, 5, 6, 8, 10}{3, 4, 7, 9}} {{1, 4, 5, 7, 9, 10}{2, 3, 6, 8}}

{{1, 2, 3, 6, 8, 9}{4, 5, 7, 10}} {{1, 3, 6, 8}{2, 4, 5, 7, 9, 10}}

{{1, 3, 4, 5, 6, 9}{2, 7, 8, 10}} {{1, 5, 6, 10}{2, 3, 4, 7, 8, 9}}

{{1, 2, 3, 6}{4, 5, 7, 8, 9, 10}} {{1, 5, 8, 10}{2, 3, 4, 6, 7, 9}}

{{1, 2, 5, 6, 7, 9}{3, 4, 8, 10}} {{1, 5, 6, 8}{2, 3, 4, 7, 9, 10}}

{{1, 2, 5, 7, 8, 10}{3, 4, 6, 9}} {{1, 2, 3, 5, 7, 10}{4, 6, 8, 9}}

{{1, 2, 6, 7, 9, 10}{3, 4, 5, 8}} {{1, 4, 6, 9}{2, 3, 5, 7, 8, 10}}

4 Measures for Comparing Partitions and for Comparing
Isomorphic Sets of Partitions

As amotivating example for this sectionwe compare the isomorphicmodularity opti-
mal partitions P1 = {{1, 4, 5, 6, 9, 10}{2, 3, 7, 8}}, P2 = {{1, 5, 6, 8, 9, 10}{2, 3,
4, 7}}, P3 = {{1, 2, 4, 5, 7, 10}{3, 6, 8, 9}}, and P4 = {{1, 2, 3, 7, 8, 10}{4, 5, 6, 9}}
from Table9 with five well-known partition comparison measures. Table10 shows
the results. It is obvious that none of these measures is suitable for identifying



Comparing Partitions of the Petersen Graph 93

Table 10 Comparison of Partitions from Set of Isomorphic Modularity Optimal Partitions. Com-
puted with R-Package partitionComparison (Ball & Geyer-Schulz [2])

Measure m(P1,P1) m(P1,P2) m(P1,P3) m(P1,P4)

jaccardCoefficient 1.000 0.448 0.2727 0.448

randIndex 1.000 0.644 0.4667 0.644

minkowskiMeasure 0.000 0.873 1.0690 0.873

larsenAone 1.000 0.792 0.5833 0.800

mutualInformation 0.673 0.178 0.0138 0.291

variationOfInformation 0.000 0.991 1.3183 0.764

partitions which are structurally identical. What we need for comparing partitions of
the Petersen graph is a class of partition comparison measures which are designed
for the comparison of sets of isomorphic partitions.

We start with the formal definition of an invariant partition comparison measure:

Definition 2 A partition comparison measurem : P(V ) × P(V ) → R, for which a
suitable identity axiom holds, is invariant under automorphism if

m(P,Q) = m(P̃, Q̃)

for all P,Q ∈ P(V ) and P̃ ∈ P Aut (G), Q̃ ∈ QAut (G). P(V ) denotes the set of all
partitions of V .

The term suitable identity axiom simply means that the identity must be properly
formulated for the partition comparison measure used. For the similarity measures
(jaccardCoefficient, the randIndex, and the larsenAone) the identity
axiom ism(P,Q) = 1, ifP = Q. For thedistancemeasures (minkowskiMeasure
and variationOfInformation), it is m(P,Q) = 0, if P = Q. And, last but
not least, for the mutualInformation measure m(P,Q) = max, if P = Q.

Theorem 1 Invariant partition comparison measures do not exist.

Proof First, we note that a partition P ∈ P(V ) is

1. either stable (1 = |P Aut (G)|) or
2. unstable (1 < |P Aut (G)|).

Let the identity axiom be m(P,Q) = 0, if P = Q and set c = 0. Let P �= Q.
From the identity axiom follows that m(P,Q) �= c. Let P and Q be on the same
orbit of Aut (G)with 1 < |P Aut (G)| andP �= Q. From the invariance axiomwe know
that m(P,Q) = c, because the group action is an isomorphism. By combining the
invariance and the identity axiom, we get

c = m(P,Q) �= c

which is a contradiction. (Based on Aumann & Shapley [1]). �
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Theorem 1 demonstrates the incompatibility of the identity and the invariance
axiom in ametric space.An implication of this incompatibility is that a singlemeasure
either respects the identity or the invariance axiom.

For the analysis and comparison of several optimal partitions computed by graph
clustering algorithms for graphs with symmetries, we actually need the combination
of a measure and its invariants and an understanding of their relations:

1. Wewant ameasure that measures the distance between partitions. The classic par-
tition comparisonmeasureswhich respect the identity axiombut not the invariance
axiom serve this purpose. We denote such a measure by d. For a survey and ref-
erences to the seminal papers of these measures, see Ball and Geyer-Schulz [4,
pp. 18–21].

2. We want a measure that identifies isomorphic partitions as isomorphic and mea-
sures the distance between non-isomorphic partitions (each ofwhich is an element
of a set of isomorphic partitions), or, to phrase it in the language of Haar [11], a
measure which is invariant to the group transformations of the symmetry group
of the graph. We refer to such a measure as d∗. This is the purpose of invariant
partition comparison measures introduced by Ball and Geyer-Schulz [4].

3. We want to be able to decompose a classic measure in its structural and its trans-
formation part (a measure decomposition) and we want to assess the size of the
structural part and the actual, minimal, average, and maximal potential size of the
transformation part. See Ball and Geyer-Schulz [4].

In the following we will, without loss of generality, consider only distance
functions. All similarity functions for which s(P,P) = 1 holds can be converted to a
distance function by d(P,Q) = 1 − s(P,Q). As the example of the
mutualInformation measure shows, such a transformation can be found: For
nonnormalized similarity functions with an identity m(P,Q) = max, the transfor-
mation is d(P,P) = max−m(P,Q).

A metric for a space S (with s, t, u ∈ S) has a distance function d : S × S → R
+

for which the following holds:

1. Symmetry: d(s, t) = d(t, s).
2. Identity: d(s, t) = 0 if and only if s = t .
3. Triangle inequality: d(s, u) ≤ d(s, t) + d(t, u).

Themetric space (P(V ), d) has as elements the set of finite node partitions P(V ),
the metric space (P(V )Aut (G), d∗) has as elements sets of equivalent partitions of
P(V ).

A pseudometric space has equivalence classes denoted as [s] as elements. In
a pseudometric space (S, d∗) the identity condition is replaced by the invariance
condition d∗(s1, s2) = 0, if s1, s2 ∈ [s]. In addition, for the distance function d∗(s, t)
the symmetry axiom and the triangle inequality hold. Note that in a pseudometric
space, d∗(s1, s2) = 0 does not allow to infer that s1 = s2.

We consider in the following the pseudometric space (P(V ), d∗), which we get
with the help of the transformation t : P(V ) → P(V )Aut (G), which maps a partition
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to its equivalence class under the automorphism group of the graph. As a result, we
have endowed the space P(V )with the metric d to recognize identical partitions and
the pseudometric d∗ to recognize isomorphic partitions.

The construction of an invariant measure d∗ is based on the ideas of Hausdorff
[12, p. 166] and von Neumann [20, 21]: We simply compute the set of all distances
d between pairs of partitions for the direct product of the two equivalence classes of
the partition, and we compute the minimum, the maximum, and the average of this
set of distances, all of which are invariant with regard to the finite automorphism
group of the graph and thus can be used for d∗:

d∗
L(P,Q) = min

P̃∈P Aut (G),

Q̃∈QAut (G)

d(P̃, Q̃) (2)

d∗
U (P,Q) =

⎧⎨
⎩
0 if P Aut (G) = QAut (G)

maxP̃∈P Aut (G),

Q̃∈QAut (G)

d(P̃, Q̃) else (3)

d∗
av(P,Q) =

⎧⎨
⎩
0 if P Aut (G) = QAut (G)

1
|P Aut (G)|·|QAut (G)|

∑
P̃∈P Aut (G),

Q̃∈QAut (G)

d(P̃, Q̃) else (4)

The proof that all three constructions are pseudometrics is in Ball and Geyer-
Schulz [4, pp. 12–13]. The diameter dia(P) of the equivalence class of a partition
is defined by:

dia(P) = max
P̃∈P Aut (G),

Q̃∈P Aut (G)

d(P̃, Q̃) (5)

Note that a direct (naive) implementation of these three variants of d∗ has a
computational complexity O(n2), where n is of the order of Aut (G), which makes
the computation of an invariant partition comparison measure quite expensive.

However, Ball andGeyer-Schulz [4] have found away to reduce the complexity of
computation of an invariant partition comparison measure to O(n) if both partitions
are unstable and to O(1) if one partition is stable. They exploit the fact that both
partitions are subject to the actions of the same graph automorphism group. This
implies that Aut (G) establishes identities on distances between partitions

d(P̃, Q̃) = d(Ph,Qg) = d(P,Qgh−1
) = d(Phg−1

,Q) (6)

with P,Q ∈ P(V ) and g, h ∈ Aut (G). These identities set up a relative measure-
ment system and they show that we only have to choose one partition, say P , as
a reference point to measure the n distances to each of the partitions in QAut (G).
Since the choice of a reference point should not affect the distance we measure, we
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may always choose the partition with the equivalence class of higher cardinality as
a reference point. In the case of a stable partition the complexity reduces to O(1).
For a complete proof for all three variants of invariant measures, we refer the reader
to Ball and Geyer-Schulz [4, pp. 11–12].

P(V ) has the metric d and the three invariant pseudometrics d∗
L , d

∗
U , and d∗

av.
With these distances we can decompose the distance d in a structural part and a part
induced by the group-action:

d(P,Q) = d∗
L(P,Q)︸ ︷︷ ︸
dL ,struct

+ (
d(P,Q) − d∗

L(P,Q)
)

︸ ︷︷ ︸
dL ,Aut (G)

(7)

= d∗
U (P,Q)︸ ︷︷ ︸
dU,struct

− (
d∗
U (P,Q) − d(P,Q)

)
︸ ︷︷ ︸

dU,Aut (G)

(8)

= d∗
av(P,Q)︸ ︷︷ ︸
dav,struct

− (
d∗
av(P,Q) − d(P,Q)

)
︸ ︷︷ ︸

dav,Aut (G)

(9)

dia(P) measures the maximal effect of the automorphism group Aut (G) on
a single equivalence class P Aut (G). In addition, eAut (G)

Max is an upper bound of the
automorphism effect on the distance of two partitions P and Q:

eAut (G)
Max = min(dia(P), dia(Q)). (10)

Additionally, eAut (G)
Max ≥ d∗

U − d∗
L holds.

The three families of invariant measures have been implemented in R for all
partition comparison measures in the R-Package partitionComparison by Ball and
Geyer-Schulz [2].

5 Comparing Partitions of the Petersen Graph

In this section we present a detailed analysis of the properties and a comparison of
the optimal partitions shown in Figs. 2 and 3 (and tabulated in Tables7, 8 and 9) for
the three different clustering criteria with regard to the Rand distance d1−RI and to
the variation of information distance dV I . First, we show some properties of these
partitions and their distances from the singleton and the 1-cluster partition inTable11.
Because the singleton and the 1-cluster partition are stable, no automorphism effects
occur and d∗

L , d
∗
U , and d∗

av correspond to d. (The variation of information measure
establishes a complete and consistent order on the distances of optimal partitions to
the trivial partitions of PG.)

Our next example shows the decomposition of the distancemeasure into an invari-
ant structural and an automorphic part. From the equivalence classes of the optimal
partitions, we pick a second partition to show the effect of Aut (PG) on the measure:
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Table 11 Properties of the three optimal partitions

Measure X = M X = R X = P
Partition type (6, 4) (5, 5) (2, 2, 2, 2, 2)

Number in type 210 126 945

Number of partitions |X Aut (G)| 60 6 6

Stable? False False False

Diameter dia(X , d1−RI ) 0.533 0.533 0.178

Diameter dia(X , dV I ) 1.32 1.35 1.11

d1−RI to {{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}}
(singeton)

0.467 0.444 0.111

dV I to {{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}}
(singleton)

1.630 1.609 0.693

d1−RI to {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}
(1-cluster)

0.533 0.556 0.889

dV I to {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}
(1-cluster)

0.673 0.693 1.609

PM1 = {{1, 2, 4, 5, 7, 10}{3, 6, 8, 9}}
PR1 = {{1, 5, 6, 8, 10}{2, 3, 4, 7, 9}}
PP1 = {{1, 2}{3, 8}{4, 5}{6, 9}{7, 10}}

In Table12 we show the results of the comparison of optimal partitions. The
structural part of the variation of information measure dV I for d∗

L ,V I between PM

and PR is 0.521, between PM and PP it is 0.936 and between PR and PP it is
1.194. For some comparisons (e.g. between PM and PR), the automorphism effect
Aut (d, d∗) dominates the structural effect d∗. This implies that the structural order is
disguised by the automorphism effect. Note, that the choice of the invariant measure
class has an influence on the order of partitions. The second part of Table12 allows a
comparison of theRand distance d1−RI with the variation of information distance. For
the lower invariant measure, the Rand distance leads to the same order of distances as
the variation of information distance: FromTable12we observe d∗

L ,1−RI (PM ,PR) =
0.20, d∗

L ,1−RI (PM ,PP) = 0.356, and d∗
L ,1−RI (PR,PP) = 0.378 which leads to the

following order:

d∗
L ,1−RI (PM ,PR) < d∗

L ,1−RI (PM ,PP) < d∗
L ,1−RI (PR,PP)

Next, we study the automorphism effects within the three sets of multiple equiva-
lent solutions (see Tables7, 8 and 9). Obviously, for all three classes, d∗

L = 0 for the
Rand distance and the variation of information distance.

We observe for the pair and ring set of solutions, that d takes only two values:
d(Pi,Pi ) = 0, and for i �= j)
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Table 12 Measure decomposition for distances between optimal partitions

P,Q d = dV I d∗
L Aut (d, d∗

L ) d∗
U Aut (d, d∗

U ) d∗
av Aut (d, d∗

av)

PM ,PR 1.366 0.521 0.846 1.366 0.000 1.168 −0.198

PM1,PR 1.194 0.521 0.673 1.366 0.173 1.168 −0.026

PM ,PP 0.936 0.936 0.000 2.045 1.109 1.491 0.555

PM1,PP 1.491 0.936 0.555 2.045 0.555 1.491 −0.000

PR ,PP 2.303 1.194 1.109 2.303 0.000 1.378 −0.924

PR1,PP 1.194 1.194 0.000 2.303 1.109 1.378 0.185

P,Q d = d1−RI d∗
L Aut (d, d∗

L ) d∗
U Aut (d, d∗

U ) d∗
av Aut (d, d∗

av)

PM ,PR 0.556 0.200 0.356 0.556 0.000 0.467 −0.089

PM1,PR 0.467 0.200 0.267 0.556 0.089 0.467 0.000

PM ,PP 0.356 0.356 0.000 0.533 0.178 0.444 0.089

PM1,PP 0.444 0.356 0.089 0.533 0.089 0.444 0.000

PR ,PP 0.556 0.378 0.178 0.556 0.000 0.407 −0.148

PR1,PP 0.378 0.378 0.000 0.556 0.178 0.407 0.030

1. d1−RI (Pi ,P j ) = 0.178 and dV I (i, j) = 1.109 for partitions Pi ,P j from the pair
set of multiple equivalent solutions.

2. d1−RI (Pi ,P j ) = 0.533 and dV I (i, j) = 1.1346 for partitionsPi ,P j from the ring
set of multiple equivalent solutions.

That the distribution of the automorphism effects is structurally similar for the ring
and pair solutions for the Petersen graph PG is unexpected given that the cluster
size of in the ring set is considerably larger than in the pair set.

The automorphism effects between the partitions of the modularity optimal par-
titions are more complex and the structure of the effects depends on the parti-
tion comparisonmeasure selected. Aut (d1−RI , d∗

L ,1−RI ) ∈ {0.000, 0.356, 0.533} and
Aut (dV I , d∗

L ,V I ) ∈ {0.000, 0.764, 0.991, 1.282, 1.318}. We show the distribution of
distances of the pairwise distance matrix of this set in Table13 for both distances
considered. Note, that because of the identities shown in Eq.6 the complete structure
of the distances are contained in a single row or column of the pairwise distance
matrix. In addition, the automorphism effect does not follow a normal distribution,
because d∗

av,RI = 0.48 and d∗
av,V I = 1.1757. Last, but not least, Table13 shows that

the variation of information distance is a finer measure than the Rand distance.
We already know from Table11 that partitions of the same partition types as the

three optimal solution sets shown in Tables9, 7, and 8 exist which are not optimal. In
Table14 we show, that a structural difference exists between an optimal and a non-
optimal partition of the same partition type. For the analyses of the automorphism
effects we refer to the analysis of the effects in a set isomorphic partitions presented
above. We show only the 3 invariant measures for both partition comparison mea-
sures.
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Table 13 Distribution of distances in the set of modularity optimal partitions

Rand distance d1−RI Variation of information dV I

d Frequency Share d Frequency Share

0.000 60 0.0167 0.000 60 0.0167

0.356 900 0.2500 0.764 420 0.1167

0.991 480 0.1133

0.533 2640 0.7333 1.282 1200 0.3333

1.318 1440 0.4000

Table 14 Structural differences of non-optimal and optimal partitions of the same partition type

Five pairs (2, 2, 2, 2, 2)

Non-optimal partition
{{1, 4}{2, 6}{3, 7}{5, 10}{8, 9}}

Optimal partition with
any partition of Table8

d d∗
L d∗

av d∗
U

d1−RI 0.178 0.207 0.222

dV I 1.109 1.294 1.386

Two rings (5, 5)

Non-optimal partition
{{1, 2, 4, 6, 7}{3, 5, 8, 9, 10}}

Optimal partition with
any partition of Table7

d d∗
L d∗

av d∗
U

d1−RI 0.356 0.504 0.533

dV I 1.001 1.288 1.346

Modularity optimal (6, 4)

Non-optimal partition
{{1, 3, 5, 7, 9, 10}{2, 4, 6, 8}}

Optimal partition with
any partition of Table9

d d∗
L d∗

av d∗
U

d1−RI 0.356 0.516 0.533

dV I 0.764 1.263 1.318

6 Summary and Outlook

For graph clustering, the main contribution of this paper is the decomposition of a
partition comparison measure in its structural part and in the effect of the automor-
phism group of the graph. The construction given requires the computation of the
automorphism of the graph and an invariant measure on the equivalence classes of
partitions isomorphic under the group action of the automorphism group.

We have applied these measures to analyze partitions of the Petersen graph which
are the results of three different clustering criteria. The property which makes the
analysis of such partitions impossible with standard partition comparison measures
is the transitivity of the Petersen graph. A benefit of the Petersen graph is that the
Petersen graph has on the one hand an automorphism group rich enough for giving
non-trivial applications of measure decomposition and that it is on the other hand
still small enough for explicit demonstrations.



100 A. Geyer-Schulz and F. Ball

The main objection against the methods presented in this contribution is that first
symmetries do not occur in large graphs (e.g. based on asymptotic results on random
graphs by Erdös & Rényi [9]) and second, even if they occur, they have no impact
on the clustering result. However, a large scale empirical study of real world graphs
shows that about 70% of 902 simple graphs are symmetric and almost 80% of 797
simplified graphs (Ball & Geyer-Schulz [3]). In a second study of the 1699 graphs
of the first study the authors found that for 22% of these graphs, symmetry leads to
unstable clustering solutions (Ball & Geyer-Schulz [5]). Combined these two studies
provide strong evidence that the analysis of graph clustering results introduced in
this contribution also has practical relevance.
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Minkowski Distances and
Standardisation for Clustering and
Classification on High-Dimensional Data

Christian Hennig

Abstract There are many distance-based methods for classification and clustering,
and for data with a high number of dimensions and a lower number of observations,
processing distances is computationally advantageous compared to the raw data
matrix. Euclidean distances are used as a default for continuousmultivariate data, but
there are alternatives. Here the so-called Minkowski distances, L1 (city block)-, L2

(Euclidean)-, L3, L4- and maximum distances are combined with different schemes
of standardisation of the variables before aggregating them. Boxplot transformation
is proposed, a new transformation method for a single variable that standardises
the majority of observations but brings outliers closer to the main bulk of the data.
Distances are compared in simulations for clustering by partitioning aroundmedoids,
complete and average linkage, and classification by nearest neighbours, of datawith a
lownumber of observations but high dimensionality. The L1-distance and the boxplot
transformation show good results.

1 Introduction

One thing that I share with Professor Akinori Okada is the affinity for dissimilarities
and distances. At the IFCS 2017 in Tokyo, when Professor Okada was President
of the International Federation of Classification Societies and I was Secretary, he
gave a fascinating presentation on “dissimilarity based on dissimilarity to others”,
and his work is full of non-standard takes on dissimilarity. In the present paper the
dissimilarities of interest will be fairly standard and symmetric distances, but they
will still be used in ways that are, in my opinion, under-represented and under-
investigated in the literature.

There are many dissimilarity-based methods for clustering and supervised classi-
fication, for example, partitioning around medoids (PAM), the classical hierarchical
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linkagemethods (Kaufman&Rousseeuw [9]) and k-nearest neighbours classification
(Cover & Hart [3]). Approaches such as multidimensional scaling are also based on
dissimilarity data. There is much literature on the construction and choice of dissim-
ilarities (or, mostly equivalently, similarities) for various kinds of non-standard data
such as images,melodies, ormixed type data. For standard quantitative data, however,
analysis not based on dissimilarities is often preferred (some of which implicitly rely
on the Euclidean distance, particularly when based on Gaussian distributions), and
where dissimilarity-based methods are used, in most cases the Euclidean distance
is employed. In the following, all considered dissimilarities will fulfil the triangle
inequality and therefore be distances.

Given a data matrix of n observations in p dimensions X = (x1, . . . , xn) where
xi = (xi1, . . . , xip) ∈ IR p, i = 1, . . . , n, in case that p > n, analysis of n(n − 1)/2
distances d(xi , x j ) is computationally advantageous compared with the analysis of
np raw data matrix entries. High dimensionality comes with a number of issues
(often referred to as the “curse of dimensionality”; for example, Hall, Marron, &
Neeman [5]). This could make distances attractive for high-dimensional data, partic-
ularly because the distances do not directly carry information about the dimensional-
ity of the data. But some issues with high dimensions manifest themselves also at the
level of distances, for example, some at first sight fairly innocent distributional con-
ditions allow to prove that for fixed n and p → ∞ all Euclidean distances between
points converge to a constant (Ahn, Marron, Muller, & Chi [1]). There are however
indications that not all reasonable distances are affected in the same way by such
problems (Hall, Marron, &Neeman [5]).Murtagh [12] takes a different point of view
and argues that the structure of very high-dimensional data can even be advantageous
for clustering, because distances tend to be closer to ultrametrics, which are fitted
by hierarchical clustering. He also demonstrates that the components of mixtures
of separated Gaussian distributions can be well distinguished in high dimensions,
despite the general tendency towards a constant. Similarly, for classification, Ahn
et al. [1] state that class separation corresponding to the underlying data generation
process is still possible.

Here I investigate a number of distances when used for clustering and supervised
classification for data with low n and high p, with a focus on two ingredients of dis-
tance construction, for which there are various possibilities, namely standardisation,
i.e., some usually linear transformation based on variation in order to make variables
with differing variation comparable, and aggregation of a single distance out of the
contributions of the individual variables. Particular attention is devoted to the impact
of outliers. A new proposal for standardisation is made, the boxplot transformation,
which does not only standardise variables unaffected by outliers, but also brings such
outliers closer to the main bulk of the data.

In Sect. 2, besides some general discussion of distance construction, various pro-
posals for standardisation and aggregation are made. Section3 presents a simula-
tion study comparing the different combinations of standardisation and aggregation.
Section4 concludes the paper.



Minkowski Distances and Standardisation for Clustering and Classification … 105

2 Distance Construction

The distances considered here are constructed as follows. First, the variables are
standardised in order to make them suitable for aggregation, then they are aggre-
gated according to Minkowski’s Lq -principle. These two steps can be found often
in the literature, however, their joint impact and performance for high-dimensional
classification has hardly been investigated systematically. Before introducing the
standardisation and aggregation methods to be compared, the section is opened
by a discussion of the differences between clustering and supervised classification
problems.

2.1 Clustering Versus Supervised Classification

Superficially, clustering and supervised classification seem very similar. A popular
assumption is that for the data there exist true class labels C1, . . . ,Cn ∈ {1, . . . , k},
and the task is to estimate them. In clustering, all C1, . . . ,Cn are unknown, whereas
in supervised classification they are known, and the task is to construct a classifica-
tion rule to classify new observations, i.e., to estimate Cn+1, . . . ,Cn+m ∈ {1, . . . , k}
for given xn+1, . . . , xn+m . Obviously the clustering problem is more difficult due to
less available information, but underlying model assumptions could be taken to be
the same, and approaches could be expected to be related.When comparing distances
in Sect. 3, this is in fact the approach that will be taken. I have however argued in
Hennig [6] that the clustering situation is somewhat more different in the sense that
there could be various legitimate “true” clusterings on the same data set, and that
it should depend on background knowledge and the aim of clustering what kind of
clustering should be preferred. Particularly, decisions made before the application of
a clusteringmethod such as standardisation, variable selection and distance construc-
tion, do not only influence the result, but can also be seen as implicitly contributing
to the definition of the clusters that will be found. For example, if the data stems from
a questionnaire that has general demographic questions as well as detailed questions
about a certain issue such as the usage of means of transport, one could be interested
in a clustering that aggregates demographic and transport usage information, but one
could also be interested in a clustering based primarily on transport usage that may
or may not be in some way informed by the demographic information, which may
then not be used or downweighted.

An issue regarding standardisation is whether different variations (i.e., scales,
or possibly variances where they exist) of variables are seen as informative in the
sense that a larger variation means that the variable shows a “signal”, whereas a low
variation means that mostly noise is observed. This happens in a number of engi-
neering applications, and in this case standardisation that attempts to making the
variation equal should be avoided, because this would remove the information in the
variations. If class labels are given, as in supervised classification, it is just possible
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to compare these alternatives using the estimated misclassification probability from
cross-validation and the like. However, in clustering such information is not given.
The data therefore cannot decide this issue automatically, and the decision needs to
be made from background knowledge. It is even conceivable that for some data both
use of or refraining from standardisation can make sense, depending on the aim of
clustering.When analysing high-dimensional data such as from genetic microarrays,
however, there is often not much background knowledge about the individual vari-
ables that would allow making such decisions, so users will often have to rely on
knowledge coming from experiments as in Sect. 3 with a single given true clustering.

Finally, in supervised classification class information can be used for standardis-
ation so that it is possible, for example, to pool within-class variances, which are not
available in clustering.

2.2 Standardisation

Normally, and for all methods proposed in Sect. 2.4, aggregation of information
from different variables in a single distance assumes that “local distances”, i.e.,
differences between observations on the individual variables, can be meaningfully
compared. This is obviously not the case if the variables have incompatible measure-
ment units, and fairly generally more variation will give a variable more influence
on the aggregated distance, which is often not desirable (but see the discussion in
Sect. 2.1). None of the aggregation methods in Sect. 2.4 is scale invariant, i.e., mul-
tiplying the values of different variables with different constants (e.g., changes of
measurement units) will affect the results of distance-based clustering and super-
vised classification. Therefore standardisation in order to make local distances on
individual variables comparable is an essential step in distance construction.

Normally, standardisation is carried out as

x∗
i j = xi j − a∗

j

s∗
j

, i = 1, . . . , n, j = 1, . . . , p,

where a∗
j is a location statistic and s∗

j is a scale statistic depending on the data. For
distances based on differences in individual variables as used here, a∗

j can be ignored
here because it does not have an impact on differences between two values.

The most popular standardisation is standardisation to unit variance, for which
(s∗

j )
2 = s2j = 1

n−1

∑n
i=1(xi j − a j )

2 with a j being the mean of variable j . The sam-
ple variance s2j can be heavily influenced by outliers, though, and therefore in
robust statistics often the median absolute deviation from the median (MAD) is

used, s∗
j = MAD j = med

∣
∣
∣
(
xi j − med j (X)

)
i=1,...,n

∣
∣
∣ (by med j I denote the median

of variable j in data set X, analogously later min j and max j ). The “outliers” to
be negotiated here are outlying values on single variables, and their effect on the
aggregated distance involving the observation where they occur; this is not about
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full outlying p-dimensional observations (as are often treated in robust statistics). In
high-dimensional data often all or almost all observations are affected by outliers in
some variables.

If standardisation is used for distance construction, using a robust scale statistic
such as the MAD does not necessarily solve the issue of outliers. If the MAD is
used, the variation of the different variables is measured in a way unaffected by
outliers, but the outliers are still in the data, still outlying, and involved in the distance
computation. Unit variance standardisation may undesirably reduce the influence of
the non-outliers on a variable with gross outliers, which does not happen withMAD-
standardisation, but after MAD-standardisation a gross outlier on a standardised
variable can still be a gross outlier and may dominate the influence of the other
variables when aggregating them. The results of the simulation in Sect. 3 can be used
to compare the impact of these two issues.

The third approach to standardisation is standardisation to a unit range, with
s∗
j = r j = max j (X) − min j (X). This is influenced even stronger by extreme obser-

vations than the variance. But Milligan and Cooper [11] have observed that range
standardisation is often superior for clustering, namely in case that a large variance
(or MAD) is caused by large differences between clusters rather than within clusters,
which is useful information for clustering andwill be weighted down stronger by unit
variance or MAD-standardisation than by range standardisation. The same argument
holds for supervised classification.

For the same reason, it can be expected that a better standardisation canbe achieved
for supervised classification if within-class variances or MADs are used instead of
involving between-class differences in the computation of the scale functional. As
discussed earlier, this is not available for clustering (but see Art, Gnanadesikan, &
Kettenring [2], who pool variances within estimated clusters in an iterative fash-
ion). For within-class variances s2l j , l = 1, . . . , k, j = 1, . . . , p, the pooled within-

class variance of variable j is defined as s∗
j = (s poolj )2 = 1

∑k
l=1(nl−1)

∑k
l=1(nl − 1)s2l j ,

where nl is the number of observations in class l. Similarly, with within-class
MADs and within-class ranges MADl j , rl j , l = 1, . . . , k, j = 1, . . . , p, respec-
tively, the pooled within-class MAD of variable j can be defined as MADpoolw

j =
1
n

∑k
l=1 nlMADl j , and the pooled range as r poolw

j = 1
n

∑k
l=1 nlrl j (“weights-based

pooled MAD and range”).

There is an alternativeway of defining a pooledMADby first shifting all classes to
the samemedian and then computing theMADfor the resulting sample (which is then
equal to the median of the absolute values: “shift-based pooled MAD”). For the vari-
ance, this way of pooling is equivalent to computing (s poolj )2, because variances are
defined by summing up squared distances of all observations to the class means. For
the MAD, however, the result will often differ from weights-based pooling, because
different observations may end up in the smaller and larger half of values for comput-
ing the involved medians. For variable j = 1, . . . , p: s∗

j = MADpools
j = med j (X+),

where X+ =
(∣
∣
∣x+

i j

∣
∣
∣
)

i=1,...,n, j=1,...,p
, x+

i j = xi j − med
(
(xhj )h: Ch=Ci

)
. The same idea

applied to the range would mean that all data are shifted so that they are within
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the same range, which then needs to be the maximum of the ranges of the individ-
ual classes rl j , so s∗

j = r pools
j = maxl rl j (“shift-based pooled range”). Whereas in

weights-based pooling the classes contribute with weights according to their sizes,
shift-based pooling can be dominated by a single class. The shift-based pooled range
is determined by the class with the largest range, and the shift-based pooled MAD
can be dominated by the class with the smallest MAD, at least if there are enough
shifted observations of the other classes within its range.

2.3 Boxplot Transformation

As discussed above, outliers can have a problematic influence on the distance regard-
less of whether variance, MAD, or range is used for standardisation, although their
influence plays out differently for these choices. The boxplot standardisation intro-
duced here is meant to tame the influence of outliers on any variable. It is inspired by
the outlier identification used in boxplots (McGill, Tukey, & Larsen [10]). The box-
plot shows lower quartile (q1 j (X),where j = 1, . . . , p oncemoredenotes the number
of the variable), median (med j (X)), and upper quartile (q3 j (X)) of the data. It defines
as outliers observations for which xi j < q1 j (X) − 1.5 IQR j (X) or xi j > q3 j (X) +
1.5 IQR j (X), where IQR j (X) = q3 j (X) − q1 j (X) is the interquartile range. An
asymmetric outlier identification more suitable for skew distributions can be defined
by using the ranges between the median and the upper and lower quartile, respec-
tively, UQR j (X) = q3 j (X) − med j (X), LQR j (X) = med j (X) − q1 j (X), so that a
lower outlier is defined by xi j < q1 j (X) − 3LQR j (X) and an upper outlier by
xi j > q3 j (X) + 3UQR j (X). The idea of the boxplot transformation is to standardise
the lower and upper quantile linearly to [−0.5, 0.5]. If there are no outliers smaller
than the median according to the above rule, all these observations are standard-
ised in the same way, as are all observations larger than the median if there are
no outliers. If there are outliers on the lower side of the median, all observations
in [min j (X), q1 j (X)] are transformed by a nonlinear transformation that maps the
minimum to −2 (which is −0.5 − 1.5 IQR j or −0.5 − 3LQR j of the transformed
data), so that the outliers are brought so close to the main bulk of the data that
they are no longer outliers by the boxplot definition. Analogously, observations in
[q3 j (X),max j (X)] are mapped to [0.5, 2] if there are upper outliers.

The precise computation is as follows.

Step 1 Median centering:Xm =
(
xmi j

)

i=1,...,n, j=1,...,p
where xmi j = xi j − med j (X).

Step 2 For j ∈ {1, . . . , p} transform lower quantile to −0.5: For xmi j < 0 : x∗
i j =

xmi j
2LQR j (Xm )

.

Step 3 For j ∈ {1, . . . , p} transform upper quantile to 0.5: For xmi j > 0 : x∗
i j =

xmi j
2UQR j (Xm )

. X∗ =
(
x∗
i j

)

i=1,...,n, j=1,...,p
.

Step 4 If there are lower outliers, i.e., x∗
i j < −2:
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Step 4a Find t lj so that −0.5 − 1
t lj

+ 1

t lj(−min j (X∗)−0.5+1)
tlj

= −2.

Step 4b For x∗
i j < −0.5: x∗

i j = −0.5 − 1
t lj

+ 1

t lj

(
−x∗

i j−0.5+1
)tlj

.

Step 5 If there are upper outliers, i.e., x∗
i j > 2:

Step 5a Find tuj so that 0.5 + 1
tuj

− 1

tuj (max j (X∗)−0.5+1)
tuj

= 2.

Step 5b For x∗
i j > 0.5: x∗

i j = 0.5 + 1
tuj

− 1

tuj

(
x∗
i j−0.5+1

)tuj
.

Step 6 In case of supervised classification of new observations, the boxplot stan-
dardisation is computed as above, using the quantiles, t lj , tuj from the training
data X, but values for the new observations are capped to [−2, 2], i.e., everything
smaller than −2 is set to −2, and everything larger than 2 is set to 2.

Figure1 illustrates the boxplot transformation for a given data set. The boxplot trans-
formation is somewhat similar to a classical technique called Winsorisation (Rup-
pert [14]) in that it also moves outliers closer to the main bulk of the data, but it is
smoother and more flexible. Note that for even n the median of the boxplot trans-
formed data may be slightly different from zero, because it is the mean of the two
middle observations around zero, which have been standardised by not necessar-
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Fig. 1 Illustration of boxplot transformation. Scatterplot of data set X versus boxplot transformed
X∗. Lines orthogonal to the x-axis are, from left to right, lower outlier boundary, first quartile,
median, third quartile, upper outlier boundary. Lines orthogonal to the y-axis are, from bottom to
top, −2 (lower boundary), −0.5 (first quartile), median, 0.5 (third quartile), 2 (upper boundary). In
this example there are only lower outliers, but no upper outliers, so a non-linear part occurs on the
lower side but not on the upper side
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ily equal LQR j (Xm), UQR j (Xm), respectively. A symmetric version that achieves
a median zero would standardise all observations by 1.5 IQR j (Xm), and use this
quantity for outlier identification on both sides, but that may be inappropriate for
asymmetric distributions.

2.4 Aggregation

Information from the variables is aggregated here by standard Minkowski Lq -
distances,

dLq(xi , x j ) = q

√
√
√
√

p∑

l=1

dl(xil , x jl)q ,

where q = 1 delivers the so-called city block distance, adding up absolute values of
variable-wise differences, q = 2 corresponds to the Euclidean distance, and q → ∞
will eventually only use the maximum variable-wise absolute difference, sometimes
called L∞ or maximum distance. See de Amorim and Mirkin [4] for a study on the
use of Minkowksi-distances with k-means clustering.

These aggregation schemes treat all variables equally (“impartial aggregation”).
Much work on high-dimensional data is based on the paradigm of dimension reduc-
tion, i.e., they look for a small set of meaningful dimensions to summarise the infor-
mation in the data, and on these standard statistical methods can be used, hopefully
avoiding the curse of dimensionality. Using impartial aggregation, information from
all variables is kept. There is a widespread belief that in many applications in which
high-dimensional data arises, the meaningful structure can be found or reproduced
in much lower dimensionality. Where this is true, impartial aggregation will keep a
lot of high-dimensional noise and is probably inferior to dimension reduction meth-
ods. However, there may be cases in which high-dimensional information cannot be
reduced so easily, either because the meaningful structure is not low dimensional,
or because it may be hidden so well that standard dimension reduction approaches
do not find it. My impression is that for both dimension reduction and impartial
aggregation, there are situations in which they are preferable, although they are not
compared in the present paper.

A side remark here is that another distance of interest would be the Mahalanobis
distance. The Mahalanobis distance is invariant against affine linear transformations
of the data, which is much stronger than achieving invariance against changing the
scales of individual variables by standardisation. It has been argued that affine equi-
and invariance are central concepts in multivariate analysis, see, e.g., Serfling [15].
But in high dimensions, things change. Pires and Branco [13] show that for p ≥
n − 1 all observations have the sameMahalanobis distance to all other observations.
Together with the result of Tyler [16] that for p ≥ n − 1, any affine equivariant
scatter statistic must be proportional to the sample covariance matrix as employed
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in the Mahalanobis distance; it follows that affine invariance cannot be achieved for
high-dimensional data in a non-trivial manner that is informative about the data.
This means that some directions in data space necessarily have to be privileged over
others, as are the main coordinate axes for the Minkowski distances.

3 Experiments

I ran some simulations in order to compare all combinations of standardisation and
aggregation on some clustering and supervised classification problems.

3.1 Setups

The scope of these simulations is somewhat restricted. In all cases, training data was
generated with two classes of 50 observations each (i.e., n = 100) and p = 2000
dimensions. For supervised classification, test data was generated according to
the same specifications. All variables were independent. Variables were generated
according to either Gaussian or t2-distributions within classes (the latter in order
to generate strong outliers). The mean differences between the two classes were
generated randomly according to a uniform distribution, as were the standard devi-
ations in case of a Gaussian distribution; t2-random variables (for which variance
and standard deviation do not exist) were multiplied by the value corresponding to
a Gaussian standard deviation to generate the same amount of diversity in varia-
tion. Standard deviations were drawn independently for the classes and variables,
i.e., they differed between classes. With probability pt , a variable was chosen to be
t2-distributed, otherwise Gaussian. With probability pn , a variable was “noise”, i.e.,
there was no distributional difference between the classes. Draws from pt and pn
were independent, i.e., both noise and informative variables could be Gaussian or
t2-distributed.

There were five different setups:

Simple normal pt = pn = 0 (all distributions Gaussian and with mean differences),
all mean differences 0.1, standard deviations in [0.5, 1.5].

Simple normal (0.99) pt = 0 (all Gaussian) but pn = 0.99, much noise and clearly
distinguishable classes only on 1% of the variables. All mean differences 12,
standard deviations in [0.5, 2].

Normal, t, and noise (0.1) pt = pn = 0.1,mean differences in [0, 0.3] (mean differ-
ence distributions were varied over setups in order to allow for somewhat similar
levels of difficulty to separate the classes in the presence of different proportions
of t2- and noise variables), standard deviations in [0.5, 10]. Weak information on
many variables, strongly varyingwithin-class variation, outliers in a fewvariables.
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Normal, t, and noise (0.5) pt = pn = 0.5,mean differences in [0, 2], standard devi-
ations in [0.5, 10]. Half of the variables with mean information, half of the vari-
ables potentially contaminated with outliers, strongly varying within-class varia-
tion.

Normal, t, and noise (0.9) pt = pn = 0.9, mean differences in [0, 10], standard
deviations in [0.5, 10]. Only 10% of the variables with mean information, 90% of
the variables potentially contaminated with outliers, strongly varying within-class
variation.

For clustering, PAM, average and complete linkage were run, all with number of
clusters knownas 2.Resultswere comparedwith the true clustering using the adjusted
Rand index (Hubert&Arabie [8]). Results for average linkage are not shown, because
it always performedworse than complete linkage, probablymostly due to the fact that
cutting the average linkage hierarchy at two clusters would very often produce a one-
point cluster (single linkage would be even worse in this respect). For supervised
classification, a 3-nearest neighbour classifier was chosen, and the rate of correct
classification on the test data was computed. There were 100 replicates for each
setup.

3.2 Results

Results are shown in Figs. 2, 3, 4, 5, and 6. These are interaction (line) plots showing
themean results of the different standardisation and aggregationmethods. I had a look
at boxplots as well; it seems that differences that are hardly visible in the interaction
plots are in fact insignificant, taking into account random variation (which cannot
be assessed from the interaction plots alone), and things that seem clear are also
significant. “pvar” stands for pooled variance, “pm1” and “pr1” stand for weights-
based pooled MAD and range, respectively, and “pm2” and “pr2” stand for shift-
based pooled MAD and range, respectively.

The clearest finding is that L1-aggregation is the best in almost all respects, often
with a big distance to the others. It is hardly ever beaten; only for PAM and com-
plete linkage with range standardisation clustering in the simple normal (0.99) setup
(Fig. 3) and PAM clustering in the simple normal setup (Fig. 2) some others are
slightly better. L1-aggregation delivers a good number of perfect results (i.e., ARI
or correct classification rate 1). This is in line with Hinneburg, Aggarwal, and Keim
[7], who state that “the L1-metric is the only metric for which the absolute difference
between nearest and farthest neighbour increases with the dimensionality.”

Results for L2 are surprisingly mixed, given its popularity and that it is associated
with the Gaussian distribution present in all simulations. It is in the second position
in most respects, but performs worse for PAM clustering (normal, t and noise (0.1
and 0.5), simple normal (0.1)), where L4 holds the second and occasionally even the
first position. L3 and L4 generally performed better with PAM clustering than with
complete linkage and 3-nearest neighbour. The reason for this is that L3 and L4 are
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Fig. 2 Results from the simple normal setup, adjusted Rand index (ARI) from PAM and complete
linkage, and misclassification rates from 3-nearest neighbours

dominated by the variables onwhich the largest distances occur. This means that very
large within-class distances can occur, which is bad for complete linkage’s chance of
recovering the true clusters, and also bad for the nearest neighbour classification of
most observations. Still PAM can find cluster centroid objects that are only extreme
on very few if any variables and will therefore be close to most if not all observations
within the same class. On the other hand, almost generally, it seems more favourable
to aggregate information from all variables with large distances as L3 and L4 do than
to only look at the maximum.

Regarding the standardisation methods, results are mixed. The boxplot transfor-
mation performs overall very well and often best, but the simple normal (0.99) setup
Fig. 3 with a few variables holding strong information and lots of noise shows its
weakness. In such a case, for clustering range standardisation works better, and for
supervised classification pooling is better. A higher noise percentage is better han-
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Fig. 3 Results from the simple normal (0.99 noise) setup, adjusted Rand index (ARI) from PAM
and complete linkage, and misclassification rates from 3-nearest neighbours

dled by range standardisation, particularly in clustering; the standard deviation,MAD
and boxplot transformation can more easily downweight the variables that hold the
class-separating information. The simple normal (0.99) setup is also the only one in
which good results can be achieved without standardisation, because here the vari-
ance is informative about a variable’s information content. Otherwise standardisation
is clearly favourable (which it will more or less always be for variables that do not
have comparable measurement units).

For supervised classification, the advantages of pooling can clearly be seen for the
higher noise proportions (although the boxplot transformation does an excellent job
for normal, t, and noise (0.9)); for noise probabilities 0.1 and 0.5 the picture is less
clear. In the latter case the MAD is not worse than its pooled versions, and the two
versions of pooling are quite different. Weight-based pooling is better for the range,
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Fig. 4 Results from the normal, t and noise (0.1) setup, adjusted Rand index (ARI) from PAM and
complete linkage, and misclassification rates from 3-nearest neighbours

and shift-based pooling is better for the MAD. In these setups the mean differences
between the classes are dominated by their variances; pooling is much better only
where much of the overall variance, MAD, or range is caused by large between-class
differences. On the other hand, with more noise (0.9, 0.99) and larger between-class
differences on the informative variables, MAD-standardisation does not do well.
Despite its popularity, unit variance and even pooled variance standardisation are
hardly ever among the best methods.

A curiosity is that some correct classification percentages, particularly for L3, L4,
and maximum aggregation, are clearly worse than 50%, meaning that the methods
do worse than random guessing, e.g., in the lower graph of Fig. 2. The reason for this
is that with strongly varying within-class variances for a given pair of observations
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Fig. 5 Results from the normal, t and noise (0.5) setup, adjusted Rand index (ARI) from PAM and
complete linkage, and misclassification rates from 3-nearest neighbours

from the same class, the largest distance is likely to stem from a variable with large
variance, and the expected distance to an observation of the other class with typically
smaller variance will be smaller (although with even more variables it may be more
reliably possible to find many variables that have a variance near the maximum
simulated one simultaneously in both classes, so that the maximum distance can be
dominated by the mean difference between the classes again, among those variables
with near-maximum variance in both classes).
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Fig. 6 Results from the normal, t and noise (0.9) setup, adjusted Rand index (ARI) from PAM and
complete linkage, and misclassification rates from 3-nearest neighbours

4 Conclusion

Distance-based methods seem to be underused for high-dimensional data with low
sample sizes, despite their computational advantage in such settings. This is partly due
to undesirable features that some distances, particularlyMahalanobis and Euclidean,
are known to have in high dimensions. This work shows that the L1-distance in
particular has a lot of largely unexplored potential for such tasks, and that further
improvement can be achieved by using intelligent standardisation. The boxplot trans-
formation proposed here performed very well in the simulations expect where there
was a strong contrast between many noise variables and few variables with strongly
separated classes. In such situations, dimension reduction techniques will be bet-
ter than impartially aggregated distances anyway. For supervised classification, it
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is often better to pool within-class scale statistics for standardisation, although this
does not seem necessary if the difference between class means does not contribute
much to the overall variation.

The simulations presented here are of limited scope. Dependence between vari-
ables should be explored, as should larger numbers of classes and varying class sizes.
Standardisation methods based on the central half of the observations such as MAD
and boxplot transformation may suffer in the presence of small classes that are well
separated from the rest of the data on individual variables.
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On Detection of the Unique Dimensions
of Asymmetry in Proximity Data

Tadashi Imaizumi

Abstract Asmethods of analyzing the relationship of n objects of proximitymatrix,
multidimensional scaling (MDS) has been developed and applied to many data sets.
However, we take care to apply them to an asymmetric proximity matrix. Okada
and Imaizumi have been proposed so-called “circle (or radius–distance) model” by
introducing the radius of each object to extract asymmetric parts in data. In this
paper, we overview these models for a one-way two-mode asymmetric proximity
matrix and propose a method for the detection of asymmetric dimensions by losing
the positiveness of asymmetric dimension weights.

1 Introduction

Various kinds of proximities are often collected in many research areas, for exam-
ple, marketing research, sociology, psychology, and economics. In these research
areas, several proximities between objects have been analyzed for understanding
the relationship of objects from data and developing some theoretical framework in
each area: international trading between nations, brand switching between consumer
products, and social mobility among regions. Multidimensional scaling models and
methods have been developed and will be the most suitable models and methods for
analyzing proximity matrix.

Let s jk be the proximity from object j to object k, such that s jk ≥ 0, and be
two-way proximity matrix of n objects. In many models for analyzing this proximity
matrix, we assume a distance model, that is, each object is embedded as a point of t-
dimensional space, such as x j = [x jt ], t = 1, 2, . . . , p and the distance d jk between
two points x j and xk ,

d jk = (

p∑

t=1

|x jt − xkt |r )
1/r

, (1)
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where r ≥ 1.0 and d jk are linked with s jk for all ( j, k) So, the symmetry of proxim-
ities is implicitly assumed,

s jk = sk j . (2)

However, proximities may be nonsymmetric,s jk �= sk j , for example, international
trading. In the case that we treat that the deviates from symmetric values being
due to error, then we will symmetrize them for eliminating error, for example, by
using the arithmetic mean of the corresponding two elements, s∗

jk = ∗ = (s jk +
sk j )/2, or s jk = √

s jk × sk j . However, a researcher has some rational hypothesis that
nonsymmetric proximities are meaningful; we need to analyze those nonsymmetric
proximities by using suitable models and methods.

2 Overview of Models

2.1 Asymmetric Scaling

Models for analyzing an asymmetric proximity matrix may be classified into two
types of models: distance-based and non-distance-based models. Borg and Groenen
([2], Chap. 23) reviewed the asymmetric scaling models. Constantine and Gower [5]
proposed a decomposition of an asymmetric proximity matrix S into a symmetric
matrixM and skew symmetric matrix N

S = M + N,

M = (S + S′)/2,
N = (S − S′)/2.

Chino [4] also proposed the ASYMSCAL model, where he tried to representM and
N simultaneously.

s jk ≈ a(x j1xk1 + x j2xk2) + b(x j1xk2 − x j2xk1) + c.

This model represents the similarity from object j to object k by an inner product
between two points, j and k (x j1xk1 + x j2xk2), and by an outer product between
these two points (x j1xk2 − x j2xk1). Harshman [7] proposed the DEDICOM model:

S = YAY′.

Kiers [8] proposed an algorithm to find A and Y from the observed S. These
approaches are based on the decomposition of a proximity matrix. The observed
proximities are represented as the inner-product or outer-product of the correspond-
ing two vectors.
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Another approach is to analyze an asymmetric similarity matrix using a distance-
based model such as a variant of the unfolding model. Let δ jk be the dissimilarity
from object j to object k. An unfolding model assumes

δ jk ≈
√√√√

p∑

t=1

(x jt − ykp)2,

where x j and yk are two points in p-dimensional Euclidean space, Rp. Young [14]
proposed a weighted unfolding model,

δi j ≈
(

p∑

t=1

wit (xit − y jt )
2

)12

,

and Zielman and Heiser [15] proposed the slide-vector model:

δ jk ≈
(

p∑

t=1

(x jt − xkt + zt )
2

)1/2

,

where z = [zt ] is a so-called slide vector. Krumhansl [9] proposed the distance-
density model for analyzing a proxmity matrix:

s jk = f −1(δ jk)

δ jk ≈
√√√√

p∑

t=1

(x jt − xkt )2 + aι j + bιk,

where ι j is the term for the density of object o j , ι j ≥ 0. Since the distance-based
model assumes the relation between δ jk and d jk directly, we can capture the overall
relation between objects by configuring the points. The observed proximities are
represented by the inter-points distance in these distance-based models. Distance-
based models had some advantages over decomposition models and the methods
of an asymmetric proximity model when the result was geometrically represented.
Therefore, the model discussed in the following sections will be based on these
distance-based models.

Bove [3] discussed on the decomposition of skew-symmetric matrix N.



122 T. Imaizumi

2.2 The Circle Model

Okada and Imaizumi [12] proposed the circle model, or the radius–distance model
Borg and Groenen [2, Chap. 23] (Fig. 1):

m jk =
(

p∑

t=1

(x jt − xkt )
2

)1/2

− r j + rk . (3)

The radii r j shows the relative dominance of object o j over the other objects. The
larger the dominant object j is, the smaller the radius of the object is. Therefore,
object o j is less dominant than object ok and

s jk ≤ sk j .

In this circle model (3), each object is represented as a point and a circle (sphere,
hypersphere) whose center is at that point in a multidimensional Euclidean space. A
generalized version of the circe model will be introduced. Let v jk denote asymmetric

Fig. 1 Circle (radius–distance) model: the radius of each circle represents r j − mink(rk)
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part from object o j to the other object ok , and −(v jk − vk j ) denote skew-symmetric
part between o j and ok , then

m jk = d jk − (v jk − vk j ), (4)

m j j = 0, (5)

(m jk + mkj )/2 = d jk, (6)

(m jk − mkj )/2 = −(v jk − vk j ). (7)

We have the cross-product term
∑n

j=1

∑n
k d jk(v jk − vk j ) being 0. Let m̄ =∑n

j=1

∑n
k=1 m jk/n2, d̄ = ∑n

j=1

∑n
k=1 m jk/n2, and

n∑

j=1

n∑

k=1

(m jk − m̄)2 =
n∑

j=1

n∑

k=1

(d jk − d̄)
2 +

n∑

j=1

n∑

k=1

(v jk − vk j )
2. (8)

A circle model (3) will be the special model such that

r j = 1

n

n∑

k=1

v jk . (9)

2.3 Ellipse Model

The circle (radius–distance)model is restricted to asymmetric proximities.Moreover,
we could not detect the hidden dimensions, which raises the asymmetric parts of
proximities among n objects. Okada [11] proposed the ellipse model instead of the
circle model, distance–radius model, and applied car-switching data. This ellipse
model is defined by

v jk =
(

p∑

t=1

(|x jt − xkt |/r jt )2
)−1/2

, r jt > 0 (10)

m jk = d jk − d jk(v jk − vk j ). (11)

This ellipse model tries to represent as a point and an ellipse (ellipsoid, hyper-
ellipsoid) in a Euclidean space. And each axis of this space will be uniquely deter-
mined or accounting for skew-symmetries in s jk .
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2.4 Other Variants

In the above two models, each object has embedded a point in a Euclidean space and
corresponding circle (hypersphere) or ellipsoid (hyper-ellipsoid).

Othermodels which assume othermetric space, for example, the city-blockmetric
space, will be introduced,

m jk =
p∑

t=1

|x jt − xkt | −
p∑

t=1

|r jt − rkt |.

However, the directions of the axes are compounded with symmetric part of s jk and
skew-symmetric part of s jk . So it will be difficult to interpret the results and get new
knowledge.

One of the other variants will be an intermediate model between the circle model
and the ellipse model, that is,

v jk = r j × d jk/

√√√√
p∑

t=1

(
(x jt − xkt )/r∗

t

)2
, r∗

t > 0. (12)

All ellipsoids of objects in this model are different with multiplier r j only.
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3 Algorithm

Okada [11] described the nonmetric algorithm to fit the ellipse model to an asymmet-
ric proximity matrix. We describe it briefly. The algorithm consists of three phases
for a given dimensionality p:

a. To construct an initial object configuration and initial values of the semiaxes
{r jt }.
• When p is equal to prespecified maximum dimensionality pmax

r jt = 1.0; j = 1, 2, . . . , n; t = 1, 2, . . . , pmax

• When p is less than pmax

As the contribution of each dimension, we define the quantity dimt ,

dimt =
n∑

j=1

x2j t +
n∑

j=1

v2j t .

We choose the top p contributed dimensions of dimt ; t = 1, 2, . . . , p + 1
and this configuration of the top p dimensions will be supplied as the initial
configuration.

b. To improve the configuration (object configuration X = [x jt ] and R = [r jt ]
using an iterative process.

• Calculate disparities
In general, m jk , which is calculated with the given configuration, is not sat-
isfied with the monotone relationship with s jk in general. Let M(s) denote a
nonincreasing function of s, the disparity m̂ jk = M(s jk) denote a monotone
transformed value of {s jk}. If we could define these disparities well, we can
improve configuration by using these disparities. Well-known disparities are
the disparities defined by Kruskal’s monotonicity principle. Let the quantity
S∗ be defined by

S∗ =
n∑

j=1

n∑

k=1
k �= j

(m̂ jk − m jk)
2. (13)

We try to find the disparities m̂ jk which minimizes S∗ for fixed {m jk}. So,
this problem will be formulated in the framework of the isotonic regression
method. The iterative algorithm obtains disparities {m̂ jk} called the pool adja-
cent violators algorithm (Barlow, Bartholomew, Bremner, & Brunk [1]; de
Leeuw, Hornik, & Mair [6]).

• Improve the configuration
After the disparities were obtained by using the isotonic regression method,
the configurationwill be improved by using these fixed disparities. As themin-
imizing function, we adopt the Stress Formula 2 S byKruskal andCarroll [10],
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T ∗ =
n∑

j=1

n∑

k=1
k �= j

(m jk − m̄)2, (14)

S = √
S∗/

√
T ∗. (15)

The object configuration X is improved as to minimize S by using the opti-
mizing function optim in R software.
After updating X, asymmetric weights R will be updated by a similar pro-
cedure as updating X. In the model (4), we restricted as r jt being greater
than 0, but, m jk , S∗, and T ∗ will take the same value even if some r jt < 0,
respectively. So, we do not take care of the positiveness in the optimization
process. If the updated r jt was negative, it will be replaced with |r jt |.

c. To decide whether further improvement is needed.
The disparities {m jk} are updated using the improvedX andR. Furthermore, the
value of S is calculated. In the case where S is very small (e.g., S ≤ 0.001) or the
improvement S with respect to previous one (e.g., |Siter − Siter−1| ≤ 0.000001,
this phase b will be terminated. In another case, the phases b and c are repeated.

After obtaining the configuration of the dimensionality p, the initial configuration
of the dimensionality p − 1 will be set up by the procedure (3).

4 Application

The ellipse model was applied to the Morse code confusion data by Rothkopf
[13]. This data is the proximity matrix whose cell is the percentage of “same”
responses for all pairs of successively presented aural signals of the international
Morse code gathered from 598 respondents (Rothkopf [13]). The configuration was
obtained from the dimensionality three, two, and one. The corresponding Stress
values were S3 = 0.4603, S2 = 0.5077, and S1 = 0.6321, respectively. The two-
dimensional configuration is adopted and is shown in Table1 and Fig. 2, respectively.

And the corresponding Shepard diagram is also shown in Fig. 3. In Fig. 3, the
model fitting looks well. In Fig. 2, dimension one will represent the number of com-
ponents of Morse code, and dimension two will represent the combination of the
dash “-” and the dot “.”. And the ellipses of each object indicate

• The combination of the dots anddashes dominateswhen the number of components
is few.

• The number of components dominates when the number of components is increas-
ing.
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Table 1 Two-dimensional configuration for the Morse code confusion by Rothkopf [13]

X R
Dim.1(x1) Dim.2 (x2) Dim.1 (r1) Dim.2 (r2)

A .- −1.1515 −0.9849 0.2796 0.0910

B -... 0.4098 −0.3289 0.0377 0.1325

C -.-. 0.2801 0.1464 0.0589 0.0023

D -.. −0.1462 −0.5645 0.0596 0.1402

E . −1.8046 0.6132 0.0548 0.0700

F ..-. 0.3504 −0.4785 0.0021 0.0511

G –. −0.2476 0.4527 0.1552 0.1403

H .... 0.3293 −1.0187 0.0935 0.2444

I .. −1.3798 −0.9198 0.1486 0.1308

J .— 0.3726 0.6359 0.0872 0.0216

K -.- −0.1036 −0.1136 0.0089 0.0666

L .-.. 0.2596 −0.2460 0.0329 0.0449

M – −1.1844 −0.0655 0.2267 0.1635

N -. −1.3924 −0.5307 0.2550 0.1095

O — −0.1427 0.8855 0.1502 0.1371

P .–. 0.2954 0.3178 0.0016 0.0373

Q –.- 0.4260 0.5237 0.0023 0.0451

R .-. −0.4251 −0.4963 0.0065 0.0345

S ... −0.4634 −1.2597 0.0862 0.0959

T - −1.7286 0.6980 0.1733 0.1154

U ..- −0.2703 −0.9285 0.1843 0.1609

V ...- 0.4997 −0.6720 0.0597 0.1341

W .– −0.2944 −0.1162 0.1687 0.1109

X -..- 0.3412 −0.0012 0.0002 0.0904

Y -.– 0.4331 0.4186 0.0064 0.0004

Z –.. 0.4446 0.2823 0.0372 0.0725

1 .—- 0.4351 1.0597 0.0482 0.0515

2 ..— 0.6404 0.5941 0.0542 0.0052

3 ...– 1.0259 0.0778 0.0005 0.0153

4....- 0.7587 −0.5404 0.0839 0.0378

5 ..... 0.7339 −0.8619 0.1229 0.1590

6 -.... 0.6623 −0.2297 0.0081 0.0012

7 –... 0.6545 0.3121 0.0039 0.0028

8 —.. 0.6387 0.7912 0.0316 0.0980

9 —-. 0.3487 1.1863 0.0774 0.1783

0 —– 0.3945 1.3619 0.1643 0.1721
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Fig. 2 Two-dimensional
configuration

Fig. 3 Shepard diagram

To check the fitness of the ellipse model, we applied the circle model, too, and
obtained r j . We also calculated the row sum of skew-symmetric part of data, corre-
lation coefficients between two items of asymmetric weights r1, r2, r, and Sum of
Skew Symmetric parts. The correlation between the Row Sum of Skew Symmetric
parts indicates that both models were fitted to data. Furthermore, the ellipse model
revealed the confusion characteristics of the international Morse code (Table 2).
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Table 2 Correlation matrix among radii

r1 r2 r Row sum of
symmetric parts

r1 1.000 0.555 0.891 0.748

r2 0.555 1.000 0.839 0.841

r 0.891 0.839 1.000 0.901

Row sum of skew
symmetric parts

0.748 0.841 0.901 1.000

5 Conclusion

We briefly surveyed the models for analyzing asymmetric proximities and described
on the circle model and the ellipse. In the optimization process to obtain the con-
figuration, the positive constraints on asymmetric weights r jt were relaxed, and it
worked well.

When applying the ellipsemodel, we need to take care of the dimensionality of the
configuration. The degree of freedom of data is n × (n − 1) in general. On the other
hand, the number of the parameters of the ellipse model is (n − 1) × p + n × p ,
and that of the circle model is (n − 1) × p − p × (p + 1)/2 + (n − 1). So, when
n is smaller, or the dimensionality is near to n/2, the behavior of the ellipse model
may become unstable. In that case, the intermediate model (12) will be useful as a
reference model.

When we suspect tat asymmetric proximity matrix is a block diagonal matrix,

S =

⎛

⎜⎜⎜⎝

S11 S12 · · · S1G
S21 S22 · · · S2G
...

...
. . .

...

SG1 SG2 · · · SGG

⎞

⎟⎟⎟⎠ , (16)

whereG is the number of blocks, and the values of the elements of Sgh for g �= h will
be relatively smaller than those of Sgg or Shh . This case will be found as the number
of the object is large, for example, n > 100. When we investigate on traveling by
air flights, airports will be grouping by regional zone. In this case, the dimensions
between blocks may be different. Then we can simplify our problem, which is fit the
ellipse model to each block matrix Sgg, g = 1, 2, . . . ,G. However, we must develop
a new model when some dimensions of a block g are shared with those of other
blocks g′.
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Multiple Regression Analysis from Data
Science Perspective

Manabu Iwasaki

Abstract Multiple regression analysis is the analytical method that has played a
major role in statistical data analysis, and its importance continues in data science.
In this paper, we first review the multiple regression analysis from the viewpoint of
data science, and explore the future image of it with emphasis on statistical causal
inference. In particular, we focus on the variable selection procedure and discuss it
in detail with a numerical example.

Keywords Asymmetry multidimensional scaling model · Dimensionality
reduction analysis · Topic transition pattern

1 Introduction

In recent years, society’s expectations for data science are rapidly increasing. The
Japanese government also positions artificial intelligence and data science as an
important vehicle of national growth strategy. Tomeet various demands for educating
students with skills and knowledge of data science, some universities recently started
brand-new School of Data Science and also established new graduate schools. In
addition, new educational programs with a focus on data science are prepared in
many universities. Turning our eyes to companies, the shortage of human resources
in data science in various business fields has been pointed out, and many data science
training programs within and beyond the company are being developed by various
organizations.

The question “what is data science?” is difficult to answer, and the answer itself
seems to be not unique. There may exist different answers according to each indi-
vidual or organization. However, the definition that

Data science = (Statistics+ Information Science) × Social Applications
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seems not so far from the correct answer. Of course, the weights for each term in
the expression above may differ depending on the individual or organization. It can
be said, however, that statistics alone nor information science alone cannot provide
adequate definition of data science. Social applications based on specific knowledge
of the field is essential.

If emphasis is placed on statistics, in addition to the traditional theory and practice
of statistics, the development of recent information sciences such as the speed of
computers, the increase in storage capacity, and the rapid progress of network work
environments in recent years havemade and still creating a newparadigmof statistics.
On the other hand, if the emphasis is placed on information science, in addition
to the research on the traditional field of the efficiency of computer operation or
development of fast calculation algorithms, the procedures of effective processing of
actual data and acquirement of valuable knowledge from it are becoming a central
research area. In summary, it is fair to say that new academic fields are now being
created.

One of the recent buzzword is “big data”, see, for example, Holms [7]. Dealing
with big data cannot be done by statistics alone or information science alone. It is
necessary to fuse them with each other, and wisdom is needed to link the knowledge
obtained from the individual domain. The research and practice of data science are
not limited to big data. So-called small data, which have been handledwith traditional
statistical procedures, is still involved in data science, but with a little bit different
flavor.

The current spread of data science is not limited to the variety of data being
handled or the size of the data set themselves. Increasing number and diversity of
people who are or will be involved in the data analysis is an important component of
data science. Hal Varian, prominent Google’s chief economist, once said that “I keep
saying the sexy job in the next ten years will be statisticians.” He then goes on to say
“The ability to take data—be able to understand it, to process it, to extract value from
it, to visualize it, to communicate it—that’s going to be a hugely important skill in
the next decades, not only at the professional level but even at the educational level
for elementary school kids, for high school kids, for college kids”. It can be said that
this part of saying represents the current status and direction of development in the
future.

In this paper, mainly from the standpoint of statistics, the focus will be laid on
the multiple regression analysis, which has probably played the most important role
in statistical data analysis so far. From the viewpoint of data science and statistical
causal inference, regression analysis will be critically reviewed, and then from the
viewpoint of new data science paradigm some cautious points will be discussed.

In Sect. 2, we will have a comprehensive discussion on the relationship between
variables and type of research. In Sect. 3, multiple regression analysis is reviewed
from the standpoint of statistical causal reasoning, which includes classification of
explanatory variables based on their characteristics. Section4 discusses the prob-
lem of variable selection in multiple regression analysis in detail with a numerical
example. A concluding remark will be given in the last Sect. 5.
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2 Relationship Between Variables and Type of Study

In data science, and also statistical data analysis so far, we deal with many variables
in our analysis of data. We clarify the relationship existing between the variables by
using observed data, and then, based on the knowledge obtained, we will proceed to
the next stage such as prediction, control, or human intervention. To that end, it is
important to understand the relationship among variables at hand.

Ordinary statistical textbooks often describe that the relationship between vari-
ables is roughly divided into two categories, that is, causal and correlation, and
proceed that correlation does not necessarily mean causality. In this article, we cat-
egorize the variables into three types, adding a “regression relationship” to them.
The causal relationship is a one-way relationship from cause to effect, which can
be used for prediction and control. Correlation is a bidirectional relationship and
which cannot be used for prediction or control generally. Textbooks explain that it
is important not to confuse the two. The regression relationship added here is in the
middle of them and is defined as one-way but not necessarily a causal relationship.
Therefore, it can be used for prediction but not necessarily for control.

The relationship between variables is closely related to the type of study. Here, fol-
lowing Rosenbaum [13], three types of research are assumed: experimental research,
observational research, and survey. The purpose of both experimental and observa-
tional studies are evaluation of the effects of a certain treatment. In experimental
studies, research plans such as subject selection and treatment allocation can be con-
ducted by the researcher himself or under his/her supervision. The purpose of the
survey is not to consider the treatment effect, but to grasp the current situation or
search for the factors behind the data.

The experimental design is said to be the gold standard for establishing causality.
It is no doubt so, but there are many types of research that cannot be done as experi-
ments in the practice due to ethical or economic constraints, and it is no exaggeration
to say that almost all of the researches in social sciences are non-experimental. Causal
inference from such observational studies is one of the major topics in modern statis-
tics. For details, see Imbens and Rubin [8] or Rosenbaum [14]. So-called statistical
causal inference does not deal with all causal relationships described in everyday
life. It sometimes puts a limitation on the relationship. One particular restriction is
manipulability. That is, we restrict ourselves to the relationship betweenmanipulable
treatment and the effect caused by it. D. B. Rubin, the advocate of statistical causal
reasoning, once stated that

NO CAUSATION WITHOUT MANIPULATION (1)

(Cf. Holland [6]; Rubin [15]). This paper also follows that definition.
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3 Formulation and Functions of Multiple Regression
Analysis

Multiple regression analysis can be formulated as a statistical analysis based on a
linear model between an outcome variable y and explanatory variables x1, · · · , x p

written as
y = β0 + β1x1 + · · · + βpx p + ε. (2)

Here, the explanatory variables x1, · · · , x p are not only observed variables but also
the variables obtained by transformation or combinations of originally observed
variables. The term ε is a random variable that represents the error, and is usually
assumed to be mutually independent with each other and to follow a normal distribu-
tion N (0, σ 2). Variousmodels that relax such assumptions in the past, such asmodels
that do not assume normality for the error term and also models that have serial cor-
relation between the error terms particularly occurred in economic time series. It is
ordinarily assumed that the explanatory variables x1, · · · , x p in (2) are considered
constants, which are predetermined values before taking data in experimental studies
or observed constants as the outcome of some random variables considered. So, it
can be said that the multiple regression model (2) is regarded as a conditional model
given the values of the explanatory variables. For details on multiple regression anal-
ysis, see statistical textbooks such as Montgomery and Peck [11] and Ryan [16]
mentioned a few.

In many statistical textbooks, the model (2) and the error term are assumed in a
descending manner, and the results of statistical inferences about unknown parame-
ters under the model will be derived. However, it may be difficult to judge whether
the assumed model is valid for real data. One criterion for evaluating the validity
of the model is the normality of ε. To that end, ε is not an assumed error term, but
the term we regard as an error which is not included in the main part of the model
β0 + β1x1 · · · + βpx p but may affect the outcome variable y. That is, the term ε is
regarded as the sum of small effects that affect y just as accidental fluctuation. It
should be emphasized that ε is not just an error term, but a term that we consider to
be an error.

The normal distribution is also called the error distribution. The central limit
theorem guarantees that the aggregation of small independent variation follows a
normal distribution. Hence, the term is considered as an error as above should follow
the normal distribution. From that standpoint, the idea is that if the main part of the
fluctuation is extracted, the rest should be normally distributed. So, if ε does not
follow a normal distribution, it is quite likely that the modeling of the main part
is incomplete and some important aspect of the phenomenon considered would be
missed. For this reason, it makes sense to make the normality of ε as one important
criterion of the validity of the model.

It is stated in the above that the explanatory variables in the model (2) are con-
stants. If so, it follows that it is not possible to assume a correlation between the
error term ε and the explanatory variable. Correlation is defined between random
variables, and then the correlation between random variables and constants is zero.
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That is, for two random variables X and Y, when their expected values are 0 (E[X] =
E[Y ] = 0), the correlation between them becomes R[X, Y ] = E[XY ]. With this formu-
lation, the correlation between a constant x with a mean of 0 and a random variable
Y becomes R[x, Y ] = E[xY ] = xE[Y ] = 0. Therefore, ordinary statistical texts will
not touch the correlation between explanatory variables and error terms. However,
there is no guarantee that the correlation between the explanatory variable and the
error term is zero from the standpoint that construction of error tem is responsible
to the researcher. Therefore, especially in the case of variable selection described in
Sect. 4, it is necessary to pay attention to the presence or absence of a correlation
between the explanatory variables and the error term.

Next, we examine the main part β0 + β1x1 + · · · + βpx p of the model (2). This
is a mathematical expression, and because of the abstraction of mathematics, it is
very useful in the sense that various models expressed in this form can be handled in
a unified manner. However, in actual problems, there are various kinds of explana-
tory variables, and it would be necessary to change the interpretation of the results
according to the nature of those variables.

As described in Sect. 2, the relationship between explanatory variables and out-
come variables can be a “regression relationship” for prediction, but the “causal
relationship” is required for the relationship between variables in intervention or
control. In other words, it is important to identify whether the relationship between
variables is causal or regression. In recent years, books that emphasize the statistical
causal inference have appeared. For example, Angrist and Pischke [1], Berk [2], Best
and Wolf [3], and Gelman and Hill [4].

We will examine variables x1, · · · , x p in the multiple regression model (2) in
detail. The variables are collectively called explanatory variables, but their roles
played in the model are often different in actual problems. Although mathematical
expressions do not reveal the role of variables, recognizing the role of each variable
is the key to the success of valid multiple regression analysis.

In recent data science, whether or not it is called big data, it is quite common
that the problems we actually deal with have many variables. Also, data are not only
newly collected by experiments or planned surveys, but also they have been already
collected by other people, or are unintentionally collectedwithout any predetermined
purpose. In such cases, it would be difficult to know the characteristics of the data, but
it is important to know the characteristics and the role of the data played as much as
possible.This role is examined here. It is also important to know the role of variables
in variable selection, which will be dealt in Sect. 4.

Although there are several different methods to classify the candidate variables
for explanatory variables in the regression model, here we classify them into four
types, that is, treatment variables, covariates, confoundingvariables, and intermediate
variables.

The “treatment variable” is the main variable that we want to evaluate the rela-
tionship with the outcome variable by multiple regression analysis. It is called the
controllable variable that can be manipulated in experimental studies. it is also con-
sidered as a variable that plays the role of a causal variable in observational studies.
In the context of statistical causal inference, it is regarded as a causal variable that the
motto (1) is applied. In the experimental study that evaluates the effect of a treatment,
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such a variable will be a dummy variable that takes 1 or 0 according to the presence
or absence of the treatment. Of course, not only binary but also continuous quantity
maybe considered.

“Covariates” are variables that have some influence on the outcome variable,
but not the result variables in the causal relationship from other variables, although
they might be correlated with each other. Also, when there exist treatment variables
in the multiple regression model, covariates are defined as variables that do not
affect the treatment variables, and are called exogenous variables in the context of
economics. Variables that can affect both outcome and treatment variables are called
“confounding variables”. These variables must not be the result of other variables in
causal reasoning. The variables, especially those affected by treatment variables, are
called “intermediate variables”.

It is important to note that confounding variables must always be included in the
model, especially when establishing statistical causal relationships with treatment
variables. Whether covariates are included in the model depends on how the regres-
sion model is used, but in many cases, the accuracy of the estimation of the outcome
variable is improved by incorporating it into themodel. On the other hand, intermedi-
ate variables, which again although depend on how the model is used, should not be
included in the model when looking at the relationship between treatment variables
and objective variables (cf. Rosenbaum [12]). These points are dealt in detail in the
next section with examples.

4 Variable Selection

Variable selection is to identify a set of variables that best explains the outcome
variable y from candidate explanatory variables. This topic is commonly dealt in
many statistical textbooks, see, for example, Montgomery and Peck [11, Chap. 7]
and Ryan [16, Chap. 7]. It should be noted that the selection policy differs depending
on the purpose of analysis. In other words, the variables to be selected or not to be
selected are determined by the purpose of the analysis. An important viewpoint is
that the model selected works well not only for the current data but also for future
data.

First, the question must be answered whether or not variable selection is really
necessary. The situations that variable selection is unnecessary are as follows: If
explanatory variables are determined in advance, the prediction of the outcome vari-
able can be performed from those variables, and hence the variable selection is
unnecessary. For example, in the prediction of the score of the university entrance
examination from the mock exam of 5 subjects, since we certainly have the scores
of the 5 subjects, it is quite natural to use all of them. If the purpose of the analysis
is prediction, it is advisable to use as many variables as possible. This is because the
risk of not incorporating necessary variables into themodel is usually greater than the
risk of incorporating unnecessary variables into the model. If an important variable
is dropped from the model, the correlation between the explanatory variables and
the error term described in Sect. 3 may occur. However, too many variables will not
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produce results that may result in overfitting or overtraining of the model. In such a
case, the risk of extrapolation can be increased. For the response surface method in
the design of experiments, when selecting the optimal value of the outcome variable
assuming, for example, a quadratic function, variable selection is not required unless
the sample size is very small. There will be no reason to dare to remove the first-order
or variable product terms in quadratic functions in the model.

The cases that variable selection is required are as follows: If there are a lot of
explanatory variable candidates in the early stage of analysis, and you don’t know
which of them are needed to explain the outcome variable, for screening purpose
we need variable selection. In the survey, when a preliminary survey is conducted
before the main survey and the survey items are set using the preliminary results, we
need variable selection in order to reduce the cost of the large-scale survey without
decreasing the information to be gathered about the population under study.Of course
in such cases, you must keep items in the survey which is needed theoretically or
practically. When the analytical purpose is control, since it is difficult to control a
large number of variables, it is necessary to focus on a limited number of variables
which seems to be important, and hence variable selection is required.

To explain the main points of the variable selection of exploratory variables, we
will show a simple numerical example. Iwasaki [9] also discussed similar analysis,
but we will add a more detailed discussion here. In this simple example, although
there are only two explanatory variables, the key points of variable selection will be
understood.

Suppose the outcome variable y is the score of the final exam in a statistics class
at a certain university. Exploratory variables are the number of class participation
(x1) and the score of assigned homework (x2). Table1 shows summary statistics for
40 students.

The single regression and multiple regression equations obtained from Table1
are as follows. Each number in parentheses is the coefficient of determination of the
corresponding model. The purpose of the analysis is what variables should be used
to predict the test score y and how to interpret the model.

y = 9.70+ 5.18x1 (R2 = 0.321) (3)

y = −3.63+ 0.90x2 (R2 = 0.737) (4)

y = −2.86− 0.16x1 + 0.91x2 (R2 = 0.739) (5)

x2 = 13.60+ 5.88x1 (R2 = 0.450) (6)

From the correlation coefficients shown in Table1, we observe positive corre-
lations between each variable, and reflecting this, all regression coefficients in the
single regression model between each variable are positive. However, in the multiple
regression model (5) using two explanatory variables, the regression coefficient of
participation (x1) is negative. It is no doubt an educational misinterpretation that less
participation causes better exam score. The null hypothesis of the partial regression
coefficient of x1 is 0 is not rejected. It is also misinterpretation that student’s class
participation does not affect the test scores. How should we interpret it? In multiple
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Table 1 Scores of exam (y), participation (x1) and assignments (x2)

Statistics Exam (y) Part (x1) Assign (x2)

Average 75.61 12.73 88.40

SD 15.06 1.65 14.44

Correlation Exam (y) Part (x1) Assign (x2)

Exam (y) 1 0.671 0.567

Part (x1) 0.671 1 0.859

Assign (x2) 0.567 0.859 1

Fig. 1 Arrow diagram
among variables

y

x2

x1

regression analysis in social sciences such as economics, the regression coefficient
that should be positive often becomes negative due to the effect of multicollinearity,
and this is also the case here.

The relationship among the variables in multiple regression analysis can be clari-
fied by the graphical representation (causal graph) of the variables included. Figure1
displays the relationship between the variables of our current problem.Wewill apply
the variable taxonomy described in Sect. 3. The purpose of the analysis is to evalu-
ate the impact of class participation on the exam score, the participation (x1) is the
treatment variable, while the outcome variable is the exam score (y). In this case, the
assignment (x2) is an intermediate variable between the causal path from x1 to y. If
you want to see the impact of the assignment on the exam score, the participation
(x2) is the treatment variable and the outcome variable is the exam score (y). In this
case, the participation (x1) affects both x2 and y, and hence is a confounding variable.
Although not included in Table1, when gender is given as data, gender becomes a
covariate. Gender cannot be a treatment variable under the motto (1) because it is
usually not artificially controllable.

When the purpose of the analysis is the prediction of y, we have to ask when
the prediction is performed. When predicting exam scores when both participation
and assignment are observed, both participation (x1) and assignment (x2) can be
explanatory variables. But, of course, the situation that only participation data is
available, assignment (x2) cannot be an explanatory variable. Interpretation of the
results of the regression analysis should take into account the characteristics of the
variables as described above.

If the objective of the analysis is to predict y, there is no dominance between the
simple regression model (4) and the multiple regression model (5), assuming that
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observations of both x1 and x2 are available for the prediction. If a simple model is
to be preferred under Occam’s razor, (4) will be selected. However, since data has
already been obtained, there is no harmwe select a model (5) because the sample size
is not so small. When our purpose of analysis is prediction of outcome variable, we
need not interpret the partial regression coefficients of the multiple regression model.
Therefore, if the model (5) is selected, there is no problem even if the coefficient of
x1 is negative.

If the purpose of the analysis is to see the impact of participation (x1) on exam
score (y), since assignment (x2) is an intermediate variable it should not be included
in the model. Therefore, the simple regression model (3) is a valid model in this case.
If the purpose of the analysis is to see the impact of assignment (x2) on exam score
(y), participation (x1) is a confounding variable and hence it must be included in the
model. In other words, the valid model in this case is the multiple regression model
(5), and the coefficient of x2 in the model is the object of interpretation.

In general, if it is necessary to select explanatory variables and there are many
candidates for explanatory variables, it would be necessary to make the selection in a
mechanicalmanner. There are several criteria for selecting explanatory variables, and
some of them are commonly installed in ordinary statistical software. Examples of
such criteria include the coefficient of determination adjusted for degrees of freedom,
Akaike Information Criterion (AIC), Mallows’ Cp, and so on. If the sample size is
moderate or large, there is no significant difference between the criteria.

Variable selection is sometimes performed by examining the P value of the partial
regression coefficient of the explanatory variable. In this case, we have to recognize
clearly that the partial regression coefficient shows the conditional effect of the
correspondingvariable conditional upon the other variables are included in themodel,
and not the single effect of the variable. It is also important that deleting explanatory
variables should be done in one by one manner, and not delete several explanatory
variables at once.

In the problem of data science, there may exist many candidates for explanatory
variables. In selecting the explanatory variables, the purpose of the analysis is first
clarified, as described above, and then the characteristics of eachvariable are carefully
examined.Wehave to identify the variables that should be incorporated into themodel
or those that should not be incorporated into the model. Variable selection should be
performed after such identification of variables. Never make a mechanical selection
without such identification.

5 Concluding Remarks

In data science,machine learningmethods aremainly used (cf. James,Witten,Hastie,
& Tibshirani [10]; Hastie, Tibshirani, & Friedman [5]). Inmachine learning, multiple
regression analysis is positioned as a supervised learning method. The objective of
machine learning is often a prediction of outcome variables or determination of
the optimal value of the variable given exploratory variables. There is no doubt that
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machine learning techniques represented by deep learning or similar techniques have
exhibited considerable power in terms of prediction. However, the prediction scheme
obtained there is often a black box. This fact corresponds to the strategy that we do
not interpret each regression coefficient in the multiple regression model, described
in Sect. 3.

However, in actual problems, prediction alone is not sufficient, and you will often
want to know the effect on outcome variables when some kind of artificial interven-
tion is applied to explanatory variables. If the prediction model is a black box, its
application to real problems would be hesitant. In that case, it is necessary to classify
the explanatory variables as described in Sect. 3, and it is also needed to construct a
multiple regression model by the procedure described in Sect. 4.

Even now that actual calculations can be performed instantaneously by computer,
the construction of valid and useful prediction models remains a challenge for data
scientists. It critically depends upon the ability of each data scientist.
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Multiway Extensions of the SVD

Pieter M. Kroonenberg

Abstract In this paper, I will provide a pictorial overview of extensions of the
two-way singular value decomposition (SVD) to three-way SVD variants; variants
because there are several extensions none of which have all the properties of the two-
way SVD.Multiway extensions will bementioned in passing. The level of exposition
is primarily at an introductory and conceptual level. This is achieved by presenting
concepts in pictures accompanied by the model formula. For the technical aspects,
one is referred to the extensive literature.

Keywords Candecomp/Parafac · Canonical polyadic decomposition · HOSVD ·
Multilinear · Tensor · Three-way data · Tucker models

1 Introduction

Much of the literature on three-way and multiway analysis is couched in heavy
mathematical formulations, but for this Festschrift I have chosen to present in this
paper1 a plethora of displays appropriate for a great Fest. Model formulas are given
as well plus some properties of the models. Thus, this paper is like a cartoon version
of matter which has already been dealt with in earlier mathematically laden papers. It
is more in the spirit of an oral presentation than a detailed exposition of the material.
This can be found in De Lathauwer et al. (2000), which is the main inspiration for
this paper. I will supply a brief selection of publications and references for further
study.

1This paper is an extended version of a presentation held at Procida Island, Italy, 24–25 September
2015.
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2 Two and Three-Way Data

Before extending the singular value decomposition from two-way data it is necessary
to present three-way data as an extension of two-way.

The kind of two-way data that one comes across in the social and behavioural
sciences often consists of subjects (nowadays often referred to as participants; indi-
viduals will do as well) by variables. Such variables can have all kinds of “fill-
ings”; they may have the same or different measurement levels, but at present,
we will restrict ourselves to numeric, well-behaved, data, even though special three-
way SVD generalisations exist and are in use for categorical and binary data; see,
e.g. Kroonenberg [3] in connection with three-way correspondence analysis, and
Van Mechelen, Ceulemans, and associates in connection with three-way binary data
(see e.g. Ceulemans & Van Mechelen [1]). Figure1 shows the data from seven par-
ticipants, in particular, their IQ scores and their results on high school English,
Arithmetic, and Physical Education. Such measurements are typically not collected
once during the high school careers of the students but each year again, leading to
three-way data. Obviously, the school administrators want to see the progression over
the school years, as well as the changes in the patterns between the school variables,
and for this, they will need three-way or three-mode techniques.

Terminology
In statistics the word “way” refers to the size of the data set. One might say “dimen-
sion”, be it that this word is also used in another technical sense. The word “mode”
in this context refers to the different entities that describe the content of the ways
(participants, variables, and years). A set of correlation matrices calculated on these
school data would be described as three-way two-mode data, as two of the ways both
contain the variables (mode 1), the third way is the years (mode 2).

Fig. 1 An example of two-way and three-way data. To the left: scores collected in a single year
(two-way data); To the right: scores collected over six consecutive years (three-way data)
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Furthermore, two-way data fit into a “matrix” and three-way data fit into an
“array”.

2.1 A View of Three-Way Data

Let us first introduce a slightly more detailed view of three-way array and its termi-
nology (Fig. 2).

A data array is indicated either with an underlined bold letter X or a bold script
letter X .
The modes of a three-way array are coded as

• Mode A = First way: i = 1, . . . , I . In the displays to follow indicated in red.
Example: Individuals

• Mode B = Second way: j = 1, . . . , J . In the displays to follow indicated in green.
Example: Variables.

• Mode C = Third way: k = 1, . . . , K . In the displays to follow indicated in blue.

Multiway arrays are also referred to in mathematics as tensors.

2.2 Some Types of Three-Way Data

Table1 provides a non-exhaustive list of three-way data that one can come across in
social and behavioural sciences, but variants of such tables can be constructed for
other disciplines as well. However, in this paper, I will restrict myself to the domain
most familiar to me. As indicated above, we will deal in this paper primarily with
numeric three-way profile data.

Fig. 2 A three-way data
array
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Table 1 Three-way data types

Data types Description

Three-way profile data (continuous,
categorical, binary)

Individuals have scores on a number of variables
measured under several conditions or on several
occasions

Repeated measures data Participants are measured several times on the same
variables

Three-way rating data Subjects score rating scales in different situations;
also stimulus-response data and semantic differential
data

Sets of correlation matrices Correlation matrices of different samples measured
on the same variables

Sets of similarity matrices Similarity matrices of stimuli obtained from
different persons

Three-way interactions Resulting from three-way analysis of variance
designs and log linear analyses of three-way
contingency tables

3 Four-Way Data

Givenwe live in a three-dimensionalworld, it is difficult to picture a four-dimensional
array, so the only recoursewe have is to display such data via a set of three-data arrays
as in Fig. 3.

4 Traditional Ways to Handle Three-Way Data

Before three-way data were common and people had thought about handling them as
a particular type of data, they were generally rearranged into some form of two-way
data. Figure4 shows a number of ways in which this was done. Which manner is

Fig. 3 Four-way profile data
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Fig. 4 Traditional ways to handle three-way data

most appropriate in a study obviously depends on the research questions at hand
and the assumptions one is prepared to make about the data. Most general (com-
mercial) program suites are geared towards the wide combination-mode arrange-
ment of the data, but programs for structural equation models need multivariable-
multicondition covariance matrices, which in particular contexts are referred to as
multitrait-multimethod matrices. If one can transform three-way data to two-way
data, why bother about three-way or multiway data? A quote from Cichocki et al.
([2], p. 146) explains this

• “Early multiway data analysis approaches reformatted the data tensor as a matrix
and resorted to methods developed for classical two-way analysis. However, such
a flattened view of the world and the rigid assumptions inherent in the two-way
analysis are not always a good match for multiway data.

• It is only through higher-order tensor decomposition that we have the opportunity
to develop sophisticated models capturing multiple interactions and couplings
instead of pairwise interactions.”

This echoes the idea that it does not make sense to analyse a three-way analysis
of variance design with a two-way analysis of variance. Similarly it does not make
sense to neglect in a multivariate repeated measure design the repeatedness of the
within-subject factor. In both cases, one neglects an important aspect of the design
during the analysis.
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5 The Singular Value Decomposition (SVD)

The singular value decomposition is the basic structure of a matrix X. To explain
what is meant by this, let us assume we only have two correlated variables (x1 and
x2) and 10 subjects, then we can collect their values in a 10 × 2 subject×variable
matrix. If we plot the 10 subjects as points in a plane defined by the two variables,
we get a cloud of points in the plane (Fig. 5a). If for illustration purposes we assume
that the two variables have a bivariate zero-mean distribution then this makes for an
oval or elliptic cloud of points around the mean. Let us first centre the two variables
so that the centered variables (z1 and z2) cross at the origin (see Fig. 5b). A good
and standard way to examine the information (variability) in the matrix is to seek
a set of perpendicular (i.e. orthogonal) axes (or variables) such that the first new
variable lies along the longest axis (PC1) and describes most of the variance and
the second variable along the short axis (PC2) what is left of the variance (Fig. 5c).
The orthogonality assures that the information described by one axis is independent
of that of the other axis. Finally, we rotate the whole picture (both the points and
the new variables) so the latter becomes the coordinate axes (Fig. 5d). When there
are more variables (or subjects), the process is entirely analogous. Each new axis
accounts for as much of the remaining variance as possible.

Fig. 5 How the singular value decomposition works
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Mathematically this whole process is carried out by the singular value decompo-
sition, which consists of the (10 × 2) rotation matrix A for the subjects, a (2 × 2)
rotation matrix B for the variables, which are scaled such that their columns have
lengths 1. This makes A and B are orthonormal, orthogonal with length 1 columns.
In addition, there is a (2 × 2) diagonal core matrixG, such that the matrix is decom-
posed as. X = AGB′. The matrix A contains the left singular vectors and the matrix
B the right singular vectors; they are the same as the eigenvectors of XX′ and X′X,
respectively. The diagonal elements ofG, the singular values, represent the variabil-
ity along the coordinate axes. The squared singular values are the eigenvalues and
represent the variances of the singular vectors.

Eigen is the German word for own, and refers to the fact that an eigenvector
is not rotated when linearly transformed by the matrix X Thus eigenvalues and
eigenvectors are the entities belonging to or “owned” by the matrix X. Another
word for eigenvectors is basis vectors again emphasising that they are proprietary
to the matrix. This explains why we consider that the singular value decomposition
describes the structure of a matrix.

When there are two or three variables, the scores live in a plane or cube.Withmore
variables the scores live in a higher-dimensional hyperspace, but such a hyperspace
is more than humans can visualise. However, it is often still possible to examine the
structure of the variables and the subject points because we may perform a singular
value decomposition which concentrates in the first singular vectors as much as of
the systematic variability of the variables as possible. In fact, the first singular vector
grabs as much systematic variance as possible. Then the second does the same for
what is left of the systematic variance in the data, and so and so forth. It is, therefore,
often the case that for the later axes there is only random variability left. Of course,
there is no need to look at such axes. If it is such that nearly all systematic variability
is concentrated in the first few axes we can again examine what is going on in the
dataset by looking at the low-dimensional space. Many people have contributed to
the development described in this paper and devoted their efforts to the singular
value decomposition in many different ways. The late Gene Golub was such a great
contributor to both the theoretical and algorithmic development of the SVD that in
December 1992 hewas awarded an honorary doctorate by theKatholiekeUniversiteit
Leuven, Belgium.2 His honorary supervisor Bart De Moor presented him a vanity
license plate with ‘Prof SVD’ for his car.3

2Source http://homes.esat.kuleuven.be/~bioiuser/person.php?persid=15.
3Photo taken July 2004 during the Tensor Decompositions Workshop at the American Institute of
Mathematics; Palo Alto, CA, USA; photo copyright, Pieter M. Kroonenberg.

http://homes.esat.kuleuven.be/~bioiuser/person.php?persid=15
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In summary the basic structure of a data matrix is defined by two orthonormal
matricesA and B; the orthonormality of the matrices is written technically asA′A =
I,B′B = I, and the diagonal core matrix G in which only the diagonal elements
(g11, g22, . . . , gss) are not equal to zero. The first column of A is exclusively linked
to first column of B, and the same for the second and other columns (see Fig. 6).

Figure6 (middle panel) also gives the algebraic formula for the singular value
decomposition (left-hand side) and the tensor formula (right-hand side). The latter
expression makes use of the Kronecker product. Each Xs in the bottom panel is a
rank-1 matrix. Its elements xsi j are equal to the product (aisb jsgss) of the element-
wise summation on the left. There are S of them and the sum up to the original matrix
X. This same notation will be used later in the three-way SVD.

xi j =
∑

s

(aisb jsgss) Xs = gss(as ⊗ bs), s = 1, . . . , S

Fig. 6 Graphical view of two-way SVD (top) Formula view (middle); Tensor view using rank-1
terms (bottom)
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Two-way SVD: Properties

i. Orthonormality. A and B are orthonormal (orthogonal + unit length);
ii. Equal number of columns for all component matrices
iii. Diagonality core.G = (gpq ),G is square and diagonal, i.e. g12 = g21 = 0; only

g11&g22 are non-zero; singular values gss are non-negative entries in nonin-
creasing order; component matrices have equal number of components, gpq =
strength of the link between component p and component q; but for the two-way
SVD the columns of A and B come in pairs: p = q = s.

iv. Unique solution. Any transformation destroys the diagonality of G
v. Complete decomposition. X can always be completely decomposed into its

structure AGB′
vi. Rank revealing. The decomposition is useful for determining the rank of X

Rank X = number of positive singular values = minimum number of rank-1
matrices Xs to decompose X.
(Rank is a far more difficult concept in multiway analysis)

In the sequel, we will indicate which of the three-way generalisations of the two-
way SVD have which of these six properties.

6 Three-Way SVDs

For a matri x called array

there is one additional way:
Looking f or i ts SV D,

we f ind not one not three,

but many more to our dismay

Different three-way generalisations or models arise when different properties of
the two-way SVD are retained. A technical discussion of the reasons why this is the
case can be found in De Lathauwer et al., 2000, 2004 (p. 36), and they will not be
discussed here. Our main aim is to point out in a more general sense which properties
are present and which are lacking in the various proposals for the generalisations.
I restrict myself discussing three-way models rather than multiway models. Unfor-
tunately, there is no single three-way SVD with all six indicated properties of the
two-way SVD.

Some general characteristics of variants

� Matrix product. Three-way arrays can always be written as a matrix product
of orthonormal matrices and an ordered all orthogonal core array of (three-way)
singular values.
Three-way models: The Tucker3 model and the Higher-order SVD (HOSVD).
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� Minimal number of rank-1 terms. Three-waymodel: Canonical decomposition;
referred to as Parafac, Candecomp, or Canonical polyadic decomposition.
� Orthonormal transformations. Such that the singular values are on a “diagonal”
core array.
No three-way model. It is not possible to define such a decomposition; only an
approximation;
� Deflation/Nesting. No deflation; complete three-way models are not nested, i.e.
the singular vectors of smaller models are different from those of larger models.
However, in HOSVD (see below) one could be deflated for each mode separately.

6.1 Replicated SVD

Properties (Fig. 7)

• Replicated SVD is not very exciting. It is not a real three-way model.
• No restrictions on any set of parameters across k.
• Independent solutions for each occasion k.

6.2 Tucker2 Model

Properties (Fig. 8)

i. Orthonormality Yes. A and B orthogonal.
ii. Equal number of columns for all component matrices, No, they may have

different numbers of columns.
iii. Diagonality coreNo diagonality; full core slices; all components ofAmay have

links with all components of B.
iv. Unique solution No. Nonsingular rotations possible without loss of fit.
v. Complete decomposition Yes.
vi. Rank revealing No.

Fig. 7 Replicated Singular
Value Decomposition
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Fig. 8 Tucker2 model

6.3 Parafac/Candecomp; Canonical Polyadic Decomposition

Properties (Fig. 9)

i. Orthonormality. No. Basis solution has correlated components.
ii. Equal number of columns for all component matrices. Yes.
iii. Diagonality core. Yes. Is referred to as slice diagonality of extended core array

(see also Fig. 15).
iv. Unique solution. Yes.
v. Complete decomposition. Problematic.
vi. Rank revealing. Yes. As in two-way SVD (Fig. 6).

6.4 Weighted Two-Way SVD

Properties (Fig. 10)

i. Orthonormality. Yes.
ii. Equal number of columns for all component matrices. Yes.
iii. Diagonality core. Yes. Core array is actually a one-component vector (K ele-

ments).

Fig. 9 Parafac, Candecomp,
Canonical Polyadic
decomposition
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Fig. 10 Weighted two-way
SVD

iv. Unique solution. Yes.
v. Complete decomposition. No.
vi. Rank revealing. No.

6.5 Two-Way SVD on Average of Xk

Properties (Fig. 11)

• Not very interesting: no modelling of individual differences.

6.6 Tucker3 Model

Properties (Fig. 12)

i. Orthonormality. Yes. A, B and C are orthogonal.
ii. Equal number of columns for all componentmatrices.No. Componentmatrices

may have different number of components within limits. Product rule: Product

¯ · =

Fig. 11 Two-way SVD on average of the Xk
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=

Fig. 12 Tucker3 model

of numbers of components of two ways must be larger or equal than that the
number of components of the third way, e.g. P × Q ≥ R.

iii. Diagonality core. No. All components of one-way maybe linked to any duo of
components of the other two ways.

iv. Unique solution. No. May be rotated by nonsingular transformations without
loss of fit.

v. Complete decomposition. Yes.
vi. Rank revealing. No. Rank is problematic; several definitions for the rank of a

three-way exist.

6.7 Higher-Order SVD (HOSVD) [=Tucker (1996) Method I]

Properties (Fig. 13)

i. Orthonormality. Yes.
ii. Equal number of columns for all component matrices. No.

Fig. 13 Higher-order SVD (HOSVD)
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iii. Diagonality core. No.
iv. Unique solution. Yes. Each of the SVDs is unique, so is the core computed from

it, and thus the model is unique given the computational procedure.
v. Complete decomposition. Yes.
vi. Rank revealing. Yes/No. n-rank = (a-rank, b-rank, c-rank).

6.8 Parafac/Candecomp/Canonical Polyadic Model

Properties (Fig. 14)

i. Orthonormality. No.; All orthogonal + diagonality not possible. The first, sec-
ond, and other columns of A, B, and C are exclusively linked to each other as
in two-way SVD. Thus the only non-zero core elements present in the model
formula are the gsss (see also Fig. 16 for relations between models).

ii. Equal number of columns for all component matrices. Yes.
iii. Diagonality core. Yes. G is superdiagonal
iv. Unique solution. Yes.
v. Complete decomposition. No?Model is restricted. Complete decomposition is

problematic in practice?
vi. Rank revealing. Yes. Rank X is minimum sum of rank-1 matrices.

6.9 Three-Way SVD: Core Arrays

See Fig. 15.

(a) Tucker2 model: Extended core array (R = K )

Fig. 14 Parafac, Candecomp, Canonical polyadic decomposition
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Fig. 15 Three-way SVD: Core arrays

(b) Tucker3 model & HOSVD: Full core array
(c) & (d) Candecomp/Parafac (CP) or Canonical polyadic (CP) model:

(c) Superdiagonal full core array: S = P = Q = R
(d) Slice diagonal extended core array: Dashed rectangle = Component
matrix C.

6.10 Relationships Between Models

See Fig. 16.

Fig. 16 Relationships between three Three-way SVD models
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7 Conclusion

This overview of the multiway extension of the singular value decomposition is an
attempt to provide a primarily visual introduction to give the reader an idea of what
it is all about. The effect is that the information is relatively scanty and incomplete
but below I have listed references to start a serious study of the subject now that I
hope to have wetted the appetite for the fascinating extensions of common multi-
variate analysis, especially variants of principal component analysis. The extensions
have been extensively used in various disciplines and references can be found in
the mentioned publications. A bibliography was published in Kroonenberg [4], but
applications can now be found in nearly every discipline from social and behavioural
sciences to the physical sciences and even here and there in the humanities. Again
one should consult the publications mentioned below and their references.

8 Treatments of the Multiway Singular Value
Decomposition: Some Literature

Compact technical summary of the multiway SVD4

De Lathauwer, L. (2009). A survey of tensor methods. In Proceedings of the 2009
IEEE International Symposium on Circuits and Systems (ISCAS 2009) (pp. 2773–
2776). NewYorkCity: Institute of Electrical and Electronics Engineers. (Retrieved
September 5, 2019 from ftp://ftp.esat.kuleuven.be/pub/sista/delathauwer/reports/
ldl-09-34.pdf).

Extended expositions of the multiway SVD

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singu-
lar value decomposition. SIAM Journal of Matrix Analysis and Applications, 21,
1253–1278. (Retrieved September 5, 2019 from http://www.sandia.gov/~tgkolda/
tdw2004/ldl-94-31.pdf).
Leibovici, D., & Sabatier, R. (1998). A singular value decomposition of a k-way
array for a principal component analysis of multiway data, PTA-k. Linear Algebra
and Its Applications, 269, 307–329.
Leibovici, D. (2010). Spatio-temporal multiway decompositions using principal
tensor analysis on k-modes: The R package PTAk. Journal of Statistical Software,
34, 1–34.

General books on multiway analysis (non-exhaustive list)

Cichicki, A., Zdunek, R., Phan, A. H., & Amari, S.-I. (2009).Non-negative matrix
and tensor factorizations: Applications to exploratory multiway data analysis and
blind source separation. Chicester, UK: Wiley.

4The publications mentioned in this section are not explicitly mentioned in the paper itself.

ftp://ftp.esat.kuleuven.be/pub/sista/delathauwer/reports/ldl-09-34.pdf
ftp://ftp.esat.kuleuven.be/pub/sista/delathauwer/reports/ldl-09-34.pdf
http://www.sandia.gov/~tgkolda/tdw2004/ldl-94-31.pdf
http://www.sandia.gov/~tgkolda/tdw2004/ldl-94-31.pdf
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Coppi, R., and Bolasco, R. (Eds.) (1989). Multiway data analysis. Amsterdam,
The Netherlands: North Holland.
Kroonenberg, P. M. (1983a). Three-mode principal component analysis. Leiden,
The Netherlands: DSWO Press.
Kroonenberg, P. M. (2008). Applied multiway data analysis. Hoboken, US:Wiley.
Law, H. G., Snyder Jr., C. W., Hattie, J. A., & McDonald, R. P. (Eds.) (1984).
Research methods for multimode data analysis. New York, NY, USA: Praeger.
Smilde, A. K, Bro, R. & Geladi, P. (2005).Multiway analysis: Applications in the
chemical sciences. Chicester, UK: Wiley.

Specific papers and reviews on multiway analysis(non-exhaustive list)

Açar, E., & Yener, B. (2009). Unsupervised multiway data analysis: A literature
survey. IEEE Transactions on Knowledge and Data Engineering, 21, 6–20.
Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelli-
gent Laboratory Systems, 38, 149–171.
Harshman, R. A., & Lundy, M. E. (1994). PARAFAC: Parallel factor analysis.
Computational Statistics & Data Analysis, 18, 39–72.
Kiers, H. A. L., & Van Mechelen, I. (2001). Three-way component analysis: Prin-
ciples and illustrative application. Psychological Methods, 6, 84–110.
Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications.
SIAM Review, 51, 455–500.
Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., & Falout-
sos, C. (2017). Tensor decomposition for signal processing and machine learning.
IEEE Transactions on Signal Processing, 65, 3551–3582.
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Seriation and Matrix Reordering
Methods for Asymmetric One-Mode
Two-Way Datasets

Innar Liiv and Leo Vohandu

Abstract Analyzing asymmetric datasets and finding novel insights from traces of
asymmetries is a non-trivial challenge in data analysis. We propose a novel use of
seriation and matrix reordering methods to find insights from asymmetric one-mode
two-way datasets. This article addresses the following research questions: How to
use seriation and matrix methods with asymmetric one-mode two-way matrices?
What insights and patterns can be found from asymmetric structure using such an
approach?

1 Introduction

Seriation is an exploratory data analysis technique to reorder objects into a sequence
along a one-dimensional continuum so that it best reveals regularity and patterning
among the whole series (Liiv [8]). Seriation if often called matrix reordering, when
applied to two-way datasets. The scope of this paper is limited to asymmetric entity
to entity data tables. Using Tucker’s terminology (Tucker [22]) and Carroll-Arabie
taxonomy (Carroll & Arabie [2]), we focus on one-mode two-way (N × N) data
tables.

Definition Seriation can be defined as a combinatorial optimization problem for
minimizing a loss function L on a matrix A using permutation matrices � and �

for reordering the rows and columns in a way that maximizes the local and global
patterns (Liiv [7, p. 51]):

argmin�,�L(�A�) (1)

Seriation methods can be applied to analyze asymmetric one-mode two-way datasets
as presented on Fig. 1. FionnMurtagh has very eloquently called such a data analysis
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O1 O2 O3 O4 O5 O6 O7 O8
O1 1 0 1 0 0 0 1 0
O2 0 1 0 0 0 0 0 1
O3 0 0 1 0 0 0 1 0
O4 1 0 0 1 0 0 1 0
O5 0 1 0 1 1 0 0 1
O6 0 1 0 0 1 1 0 1
O7 0 0 1 0 0 0 1 0
O8 0 1 0 0 0 0 0 1

−→

O6 O5 O4 O1 O7 O3 O2 O8
O2 0 0 0 0 0 0 1 1
O8 0 0 0 0 0 0 1 1
O6 1 1 0 0 0 0 1 1
O5 0 1 1 0 0 0 1 1
O4 0 0 1 1 1 0 0 0
O1 0 0 0 1 1 1 0 0
O7 0 0 0 0 1 1 0 0
O3 0 0 0 0 1 1 0 0

Original data table After reordering

Fig. 1 An example of two-way seriation: original (left) and reordered data table (right)

approach a “non-destructive data analysis” (Murtagh [15]), emphasizing the essential
property of seriation methods that no transformation of the data itself takes place,
opposite to a classical transformation in clustering, where a two-mode two-way
matrix (or a one-mode two-way asymmetric matrix, as we propose in this article) is
converted into a one-mode two-way similarity matrix.

Okada and colleagues have argued in numerous contributions (Okada& Imaizumi
[18]; Okada [16]; Okada & Imaizumi [19]; Okada [17]; Okada & Imaizumi [20];
Okada & Tsurumi [21]) that asymmetries in the data should not be regarded as
noise, or be eliminated by averaging corresponding elements. Analyzing asymmet-
ric datasets and finding novel insights from traces of asymmetries is a non-trivial
challenge in data analysis.

The motivation of this paper is to demonstrate, using the same cars dataset as
Okada and colleagues (Harshman, Green, Wind, & Lundy [3]; Okada & Imaizumi
[18]), how to apply seriation andmatrix reorderingmethods to asymmetric one-mode
two-way matrices and to present a discussion on which insights and patterns can be
found from asymmetric structure using such an approach.

This section presented the general introduction to seriation and highlighted the
main motivations for undertaking the research presented in this paper. The rest of the
paper is organized as follows:We will describe datasets used in this paper (in Sect. 2)
and explain methods proposed to analyze the data (in Sect. 3). Experimental design
and results are presented in Sect. 4, followed by a discussion and conclusions.

2 Data

Harshman et al. [3] presented a car trade-in data (see Table1, hereafter referred to as
CARS1 dataset) for a large sample of U.S. buyers of new (1979 model) cars, where
recent buyers of news cars were asked to “indicate both the newly purchased model
and the old model (if any) disposed of at the time of purchase”. Such a dataset is
inherently asymmetric since people tend to switch either to similar or better models.

Each cell in Table1 presents the number of car segments (in rows) traded in, when
car segments in columnswere purchased. Abbreviations of car segments (i.e. row and
column headers in a data table) are presented in Table2. Okada and Imaizumi [18]
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Table 2 Abbreviations of car
segments (i.e. row and
column headers in datasets)

Abbr Description

1 SUBD subcompact/domestic

2 SUBC subcompact/captive imports

3 SUBI subcompact/imports

4 SMAD small specialty/domestic

5 SMAC small specialty/captive imports

6 SMAI small specialty/imports

7 COML low price compact

8 COMM medium price compact

9 COMI import compact

10 MIDD midsize domestic

11 MIDI midsize imports

12 MIDS midsize specialty

13 STDL low price standard

14 STDM medium price standard

15 LUXD luxury domestic

16 LUXI luxury imports

argued that Harshman et al. [3] dataset represents “large differences in the size of
frequencies which reflect the large differences in market share”, which “should be
removed in order to distinctly unveil the factors which control the car switches”.
A dataset (hereafter referred to as CARS2 dataset), where Okada and Imaizumi [18]
have adjusted the car switching data bymultiplying each row and columnby rescaling
coefficients, is presented in Table3. The paper’s experimental design retains a neutral
stance whether an adjustment is necessary or helps to find insights and, therefore,
uses both datasets for experiments.

All necessary data preprocessing steps (e.g. binarization, discretization) to con-
form with input requirements of specific seriation methods are described in context
together with methods and experiments.

3 Methods

We propose to use seriation and matrix reordering methods to find insights from
asymmetric one-mode two-way datasets. However, there is no universal loss function
to be minimized, let alone for asymmetric datasets, where as far as authors are aware,
seriation methods have not been thoroughly studied. Our experiments are based on
the idea, that seriation methods can be applied to analyze asymmetric one-mode
two-way datasets as if they were two-mode two-way datasets while continuing to
keep the information about entities actually belonging to one class.
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Therefore, this paper proposes two sets of experiments to explore different aspects
of both versions of car switching data described in Sect. 2: exploratory data analysis
and algorithmic experiments. The goal of the exploratory data analysis set of exper-
iments is to compare multiple algorithms producing different permutations for rows
and columns using a Visual Matrix Explorer (VME) open source tool (Liiv, Opik,
Ubi, & Stasko [9]), which allows us to calculate, visualize and compare 12 different
permutations of CARS1 (see Fig. 2) and CARS2 datasets (see Fig. 3).

Since most algorithms implemented in that tool assume the input matrix to be
in a binary format, we have binarized (discretized into 2 bins) both input datasets.
Inspired by Bertin’s [1] approach, we set all values having an average or higher
value to be “1” and others to be “0”. We did try with multiple other approaches to
binarization (e.g. median and 75th or 80th percentile), without any significant added
value.

Secondly, we propose an algorithm, which is based on Vohandu “minus tech-
nique” reorderingmethod (Vohandu [23–25]) andusing amonotone systemsheuristic
(Mullat [12–14]). Our proposal for asymmetric datasets is based on the idea that inter-
nal weights will be calculated at every iterative step of the algorithm and the com-
parison of those weights between rows and columns can give us additional insights
about symmetries and asymmetries in the dataset and their extent (e.g. perhaps only
some part of the matrix has asymmetries, while the other part is symmetric). The
algorithm assumes the input data to be continuous (e.g. frequencies, counts).

Algorithm 1 Seriation method for asymmetric one-mode two-way datasets
1: Discretize object’s attributes and re-label them according to their frequency ranking to make

them comparable across attributes.
2: Enumeration of the attribute labels for each attribute.
3: Replacement of attribute labels with the actual frequency of that label within that attribute.
4: Conformity weight for objects is calculated using the sum of attribute value frequencies.
5: Print out row with minimal conformity and its weight.
6: Remove a row with minimal conformity weight.
7: Return to Step 2, unless no rows left.
8: Objects are reordered in the order of removals.
9: Enumeration of the attribute labels for each object.
10: Replacement of attribute labels with the actual frequency of that label within that object.
11: Conformity weight for attributes is calculated using the sum of attribute value frequencies.
12: Print out column with minimal conformity and its weight.
13: Remove a column with minimal conformity weight.
14: Return to Step 9, unless no columns left.
15: Columns are reordered in the order of removals.
16: Compare weights at algorithm iterations between rows and columns.
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Fig. 2 CARS1 dataset rendered in different permutations using Visual Matrix Explorer
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Fig. 3 CARS2 dataset rendered in different permutations using Visual Matrix Explorer
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4 Experiments

In our exploratory data analysis phase we used the Visual Matrix Explorer (Liiv
et al. [9]) tool to explore the original car switching dataset (Harshman et al. [3])
and adjusted dataset by Okada and Imaizumi [18]. Experiments with the following
permutations were presented for both datasets:

• orig—binarization (average value equal or greater over all cells) of the dataset;
• countones—VME’s fast heuristic (Liiv et al. [9]), based on sorting by frequencies
of “ones”;

• conf—sorting by conformity weight; minus—minus technique, and plus—plus
technique (Vohandu [23–25])—algorithms using the monotone systems meta-
heuristic by Mullat [12–14];

• bea—McCormick’s Bond Energy Algorithm (McCormick, Deutsch, Martin, &
Schweitzer [10]; McCormick, Schweitzer, & White [11]);

• roc2—an enhanced rank order clustering by King and Nakornchai [5]
• art—Carpenter-Grossberg neural network based clustering (Kusiak & Chung [6];
Kaparti & Suresh [4]).

The results of exploratory data analysis set of experiments resulting different
permutations is presented on Fig. 2 (for CARS1) and Fig. 3 (for CARS2). The results
of the Bond Energy Algorithm (“bea”) McCormick et al. [11] stand out to be most
informative and compact representation of relationship in both datasets. It is evident
from the original dataset on Fig. 4, and even more clearly from the adjusted dataset
on Fig. 5 that the matrix is not symmetric and it is not possible to find a symmetric
permutation.

The reordering result of the adjusted dataset (CARS2, Fig. 5) brings out three
distinct groups (we have highlighted them as black, dark grey, light grey in the
Visual Matrix Explorer tool to highlight same data in different permutations), where
two groups away from centre give additional insights about different groups of

Fig. 4 Bond energy algorithm result for CARS1 dataset
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Fig. 5 Bond energy algorithm result for CARS2 dataset

Fig. 6 Minus technique result for CARS1 dataset

asymmetries in the dataset (e.g. “SUBI” in the extreme left of the bottom group
and “STDL” in the extreme right of the top group).

For comparison with an alternative permutation and for consistency reasons with
the second set of experiments, we have also presented the result of a minus technique
using the same datasets with the same binarization (see Figs. 6 and 7). Again, it is
possible to see from Fig. 6 that the dataset is not symmetric. Additionally, it high-
lights some structural anomalies (empty cells within otherwise consistent blocks,
e.g. COMM-SUBI, COMM-SMAD, and MIDS-COML).

Similarly to bond energy algorithm, the results are much more interesting using
the adjusted dataset (see Fig. 7), which finds multiple asymmetric subgroups and
identifies “STDL” objects as an outlier in the extreme right position (i.e. the last
iteration of the algorithm)within columns, while having a non-outlier positionwithin
rows.
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Fig. 7 Minus technique result for CARS2 dataset

Fig. 8 Seriation of CARS1 dataset, column-oriented discretization

After the exploratory step, in the second set of experiments, we apply the seriation
algorithmproposed in Sect. 3 directly toCARS1 andCARS2 datasets. Amore detailed
patterning, together with row and column weights in footer columns and rows is
calculated as a result (i.e. Figs. 8, 10, 12, 14).

Since weights printed or stored at algorithm’s steps 5 and 12 were assumed to be
indicating asymmetries in datasets, we have presented row and column weights as
additional line graphs after reordered matrices for detailed analysis (i.e. Figs. 9, 11,
13, 15).

Since step 1 of the proposed algorithm in Sect. 3 did not specify the orientation
of discretization (either over rows or columns), we experimented with both, row-
oriented and column-oriented discretizations for both datasets.
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Fig. 9 Asymmetric weights of reordered objects of CARS1 dataset, column-oriented discretization

Fig. 10 Seriation of CARS1 dataset, row-oriented discretization

Reordering results of column-oriented discretized datasets are presented in Fig. 8
(CARS1) and Fig. 12 (CARS2) and row-oriented in Fig. 10 (CARS1) and Fig. 14
(CARS2).

Interestingly, differences in weights are more visible with the original dataset,
whereaswith column-orienteddiscretization, bothdatasets indicate non-monotonicity
in the second part of the datasets (elements 9–16, Figs. 9 and 15, element order is
derived from algorithm’s steps 8 and 15).
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Fig. 11 Asymmetric weights of reordered objects of CARS1 dataset, row-oriented discretization

Fig. 12 Seriation of CARS2 dataset, column-oriented discretization

5 Discussion

The main strength of seriation and matrix reordering methods is that they do not
transform, compact or eliminate any part of the dataset, which also means that they
do not eliminate asymmetries in the data, if such structural properties happen to
exist. Second differentiating strength is the ability to reveal patterns at multiple
information levels - from local associations, relations and trends to global. In the
case of asymmetric data tables, it enables the researcher to study asymmetry from
multiple levels and aspects - local and object level asymmetry, asymmetric subgroups
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Fig. 13 Asymmetric weights of reordered objects of CARS2 dataset, column-oriented discretiza-
tion

Fig. 14 Seriation of CARS2 dataset, row-oriented discretization

in the data set and the entire dataset being unbalanced and tilting to some specific
direction.

When there are some asymmetries in a data table, we often consider it automat-
ically an entirely asymmetric data table. However, asymmetry can even be partial:
some parts of the data table or structure are asymmetric, while others can be sym-
metric. We have presented row and column weights together with the results of
our proposed method. In case of symmetric data, those lines in aforementioned line
graphs would either be aligned or at least follow a similar pattern.

This paper proposed two sets of experiments to explore different aspects of both
datasets: a preliminary visual exploratory data analysis to understand the context
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Fig. 15 Asymmetric weights of reordered objects of CARS2 dataset, column-oriented discretiza-
tion

and general patterning, and secondly, algorithmic experiments for more in-depth
analysis of selected asymmetric datasets. The results of the Bond Energy Algorithm
McCormick et al. [11] stood out from Figs. 2 and 3 as most informative to present
seriation result’s ability to identify and visualize asymmetries. We also conducted
experiments with a proposed seriation method capable of analyzing CARS1 and
CARS2 datasets directly. The proposed algorithm had an additional strength com-
pared to other seriationmethods: in addition to finding a new permutation of rows and
columns, it also extracted weights reflecting datasets’ structural properties at every
iteration. One application of suchweights is to characterize and identify asymmetries
in the dataset. Another useful property of presented weights is the ability to identify
potential cluster boundaries within seriation results. When we observe weights in
the reverse order, all reversals in the direction of weight changes indicate a potential
cluster boundary or other structural change in the dataset.

Different seriation algorithms can reveal different structural properties and pat-
terns. For example, the results of the Bond Energy Algorithm of CARS2 dataset
(Fig. 5) demonstrated the asymmetry of the dataset and how relationships are clus-
tered into three distinct groups. A different perspective with minus technique (Fig. 7)
allowed us to see even more fine-grained asymmetric subgroups and divide those
former three distinct groups into smaller ones. The result in Fig. 7 even indicated
multiple “incomplete” clusters, where only few relationships are missing (or are
below threshold) from a block cluster, e.g.:

• {STDL, COML, SUBC, COMM} X {SUBD, SMAC};
• {MIDD, MIDS, STDM, LUXD} X {LUXD, MIDS, STDM};
• {SMAI, LUXI} X {SMAI, LUXI, MIDI, LUXD}.

Often, such irregular elements in a larger surrounding subgroup are interesting out-
liers. Similarly, Fig. 6 highlights several potential structural anomalies (empty cells
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within otherwise consistent blocks, e.g. COMM-SUBI, COMM-SMAD and MIDS-
COML).

Our experiments also confirmed that data preprocessing has an enormous impact
to seriation results. Both sets of experiments highlighted differences between the
original dataset (CARS1) and adjusted car switching data (CARS2). Besides initial
transformations and normalizations, further processing (e.g. the choice of the thresh-
old of other strategy for binarization, the choice of orientation for discretization) to
match the dataset with required input for algorithms has similarly a strong impact to
results.

6 Conclusions

Analyzing asymmetric datasets and finding novel insights from different types and
extents of asymmetries is a non-trivial challenge in data analysis. In this paper, we
demonstrated how to apply seriation and matrix reordering methods to asymmet-
ric one-mode two-way matrices and presented a discussion on which insights and
patterns can be found from asymmetric data using the above-mentioned approach.

We agreewithOkada and colleagues (Okada& Imaizumi [18];Okada [16];Okada
& Imaizumi [19]; Okada [17]; Okada & Imaizumi [20]; Okada & Tsurumi [21]) that
asymmetries in the data should not be regarded as noise, or be eliminated by averaging
corresponding elements. To put it modestly, out-of-the-box data analytics software
and developer frameworks covering mainstream data mining methods do not address
the aspect of asymmetries in datasets sufficiently. There is an interesting research
avenue to further research asymmetric data analysis at every process step of the
knowledge discovery—from data preprocessing choices to similarity measures, to
different representations and visualizations.

Acknowledgements The authors would like to thank Tadashi Imaizumi, Atsuho Nakayama and
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Parsimonious Mixtures of Matrix Variate
Bilinear Factor Analyzers

Michael P. B. Gallaugher and Paul D. McNicholas

Abstract Over the years, data have become increasingly higher dimensional, which
has prompted an increased need for dimension reduction techniques. This is perhaps
especially true for clustering (unsupervised classification), aswell as semi-supervised
and supervised classification. Many methods have been proposed in the literature for
two-way (multivariate) data andquite recentlymethods havebeenpresented for three-
way (matrix variate) data. One such method is the mixtures of matrix variate bilinear
factor analyzers (MMVBFA) model. Herein, we propose a total of 64 parsimonious
MMVBFA models. Simulated and real data are used for illustration.

1 Introduction

One aspect of more complex data collected today is the increasing dimensionality
of the data. Therefore, there has been an increased need for parameter reduction
and dimension reduction techniques, especially in the area of model-based clus-
tering. Such techniques are abundant in the literature for traditional, multivariate
data and include parsimonious models (Celeux & Govaert [7]), mixtures of factor
analyzers (Ghahramani & Hinton [17]; McNicholas & Murphy [26]), co-clustering
(Hartigan [19]; Nadif & Govaert [32]; Gallaugher, Biernacki, & McNicholas [10]),
and penalization methods (Pan & Shen [33]; Zhou, Pan, & Shen [51]; Gallaugher,
Tang, & McNicholas [16]). In the case of three-way data, however, there are still
considerable gaps in the literature for clustering high dimensional three-way data.

Three-way data can be considered matrices, examples of which include greyscale
images and multivariate longitudinal data—the latter consists of multiple variables
collected at different time points. In the last few years, many methods have been
proposed for analyzing three-way data. One recent example is the mixture of matrix
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variate bilinear factor analyzers model (Gallaugher & McNicholas [13]), which can
be considered as thematrix variate analogue of themixture of factor analyzersmodel.
Herein, we present a total of 64 parsimonious models in the matrix variate case,
which is effectively a matrix variate analogue of the multivariate family presented
by McNicholas and Murphy [26]. The remainder of this work is laid out as follows:
In Sect. 2, some background on model-based clustering and matrix variate methods
is presented. In Sect. 3, the methodology is outlined. Then, simulations and data
analyses are presented in Sects. 4 and 5, respectively. We conclude with a discussion
and suggestions for future work (Sect. 6).

2 Background

2.1 Model-Based Clustering

Clustering is the process of finding homogenous group structure within heteroge-
neous data. One of themost establishedmethods in the literature ismodel-based clus-
tering, which makes use of a finite mixture model. A finite mixture model assumes
that a random variable X comes from a population with G subgroups and its density
can be written

f (x | ϑ) =
G∑

g=1

πg fg(x | θ g),

where
∑G

g=1 πg = 1, with πg > 0, are the mixing proportions and fg(·) are the com-
ponent densities. The mixture of Gaussian distributions has been studied extensively
within the literature, with Wolfe [47] being an early example of the use of a mixture
of Gaussian distributions for clustering. Other early examples of clustering with a
mixture of Gaussians can be found in Baum, Petrie, Soules, and Weiss [4] and Scott
and Symons [38].

Because of the flexibility of the mixture modelling framework, many other mix-
tures have been proposed using more flexible distributions such as those that allow
for parameterization of tail weight such as the t distribution (Peel &McLachlan [34];
Andrews &McNicholas [2, 3]; Lin, McNicholas, & Hsiu [23]) and the power expo-
nential distribution (Dang, Browne, & McNicholas [8]), as well as those that allow
for the parameterization of skewness and tail weight such as the skew-t distribution
(Lin [22]; Vrbik & McNicholas [45, 46]; Lee & McLachlan [21]; Murray, Browne,
& McNicholas [29]; Murray, McNicholas, & Browne [31]) and others (Browne &
McNicholas [6]; Franczak, Tortora, Browne, &McNicholas [9]; Murray, Browne, &
McNicholas [30]; Tang, Browne, & McNicholas [40]; Tortora, Franczak, Browne,
& McNicholas [43]).

In addition to the multivariate case, there are recent examples of using matrix
variate distributions for clustering three-way data. Such examples include using the
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matrix variate normal (Viroli [44]), skewed distributions (Gallaugher &McNicholas
[11, 12, 15]), and transformation methods (Melnykov & Zhu [28]). Most recently,
Sarkar, Zhu, Melnykov, and Ingrassia [36] present parsimonious models analogous
to those used by Celeux and Govaert [7].

2.2 Parsimonious Gaussian Mixture Models

One popular dimension reduction technique for high dimensional multivariate data is
the mixture of factor analyzers model. The factor analysis model for p-dimensional
X1, . . . ,XN is given by

Xi = μ + �Ui + εi ,

whereμ is a location vector,� is a p × q matrix of factor loadings with q < p,Ui ∼
Nq(0, I)denotes the latent factors,εi ∼ Nq(0,�),where� = diag(ψ1, ψ2, . . . , ψp),
ψ j ∈ R

+, and Ui and εi are each independently distributed and independent of
one another. Under this model, the marginal distribution of Xi isNp(μ,��′ + �).
Probabilistic principal component analysis (PPCA) arises as a special case with the
isotropic constraint � = ψI, ψ ∈ R

+ (Tipping & Bishop [42]).
Ghahramani and Hinton [17] develop the mixture of factor analyzers model,

where the density takes the form of a Gaussian mixture model with covariance
structure �g = �g�

′
g + �. A small extension was presented by McLachlan and

Peel [25], who utilize the more general structure �g = �g�
′
g + �g . Tipping and

Bishop [41] introduce the closely relatedmixture of PPCAswith�g = �g�
′
g + ψgI.

McNicholas and Murphy [26] consider all combinations of the constraints �g = �,
�g = �, and the isotropic constraint to give a family of eight parsimonious Gaus-
sian mixture models (PGMMs). As discussed by McNicholas and Murphy [26], the
number of covariance parameters for each PGMM is linear in the data dimension
p as compared to the parsimonious models presented by Celeux and Govaert [7],
where the majority are quadratic in p and the others assume variable independence.
This paper introduces a matrix variate analogue of the PGMM family of McNicholas
and Murphy [26].

2.3 Matrix Variate Normal Distribution

In recent years, several methods have been proposed for clustering three-way data.
These methods mainly employ matrix variate distributions in finite mixture models.
Similar to the univariate and multivariate cases, the most mathematically tractable
matrix variate distribution to use is the matrix variate normal distribution. An n × p
randommatrixX follows amatrix variate normal distributionwith location parameter
M and scale matrices� and� of dimensions n × n and p × p, respectively, denoted
by Nn×p(M,�,�), if the density of X can be written
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f (X | M,�,�) = 1

(2π)
np
2 |�| p

2 |�| n
2

exp

{
−1

2
tr

(
�−1(X − M)�−1(X − M)′

)}
.

(1)
One notable property of the matrix variate normal distribution (Harrar & Gupta [18])
is

X ∼ Nn×p(M,�,�) ⇐⇒ vec(X) ∼ Nnp(vec(M),� ⊗ �), (2)

where Nnp(·) is the np-dimensional multivariate normal density, vec(·) is the vec-
torization operator, and ⊗ denotes the Kronecker product.

2.4 Mixture of Matrix Variate Bilinear Factor Analyzers

Gallaugher andMcNicholas [13] present an extension of thework ofXie,Yan,Kwok,
and Huang [48], Yu, Bi, and Ye [49] and Zhao, Philip, and Kwok [50] to derive the
MMVBFA model. The MMVBFA model assumes that

Xi = Mg + �gUig�
′
g + �gE

B
ig + EA

ig�
′
g + Eig (3)

with probability πg , for g = 1, 2, . . . ,G, where Mg is an n × p location matrix,
�g is an n × q column factor loading matrix, with q < n, �g is a p × r row factor
loading matrix, with r < p, and

Uig ∼ Nq×r (0, Iq , Ir ),

EB
ig ∼ Nq×p(0, Iq ,�g),

EA
ig ∼ Nn×r (0,�g, Ir ),

Eig ∼ Nn×p(0,�g,�g)

are independent of each other, � = diag{σ1, σ2, . . . , σn}, with σ j ∈ R
+, and � =

diag{ψ1, ψ2, . . . , ψp}, withψ j ∈ R
+. Let zi = (zi1, . . . , ziG)′ denote the component

membership for Xi , where

zig =
{
1 if Xi belongs to component g,

0 otherwise,

for i = 1, . . . , N and g = 1, . . . ,G. Using the vectorization ofXi , and property (2),
it can be shown that

Xi | zig = 1 ∼ Nn×p(Mg,�
∗
g,�

∗
g),
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where �∗
g = �g + �g�

′
g and �∗

g = �g + �g�
′
g . Therefore, the density of Xi can

be written

f (Xi | ϑ) =
G∑

g=1

πgϕn×p(Xi | Mg,�
∗
g,�

∗
g),

where ϕn×p(·) denotes the n × p matrix variate normal density.
Note that the term “column factors” refers to a reduction in the dimension of

the columns, which is equivalent to the number of rows, and not a reduction in the
number of columns. Likewise, the term “row factors” refers to the reduction in the
dimension of the rows (number of columns). Moreover, as discussed by Zhao et al.
[50], we can interpret terms EB and EA as the row and column noise, respectively,
and the final term E as the common noise.

As discussed by Zhao et al. [50] and Gallaugher and McNicholas [12], by intro-
ducing latent variables YB

ig and VB
ig , (3) exhibits the two-stage formulation

Xi = Mg + �gY
B
ig + VB

ig,

YB
ig = Uig�

′
g + EB

ig,

VB
ig = EA

ig�
′
g + Eig.

This formulation can be viewed as first projectingXi in the column direction onto the
latent matrix YB

ig , and then YB
ig and VB

ig are further projected in the row direction.
Likewise, introducing YA

ig and VA
ig , (3) can be written

Xi = Mg + YA
ig�

′
g + VA

ig,

YA
ig = �gUig + EA

ig,

VA
ig = �gE

B
ig + Eig.

The interpretation is the same as before but we now project in the row direction first
followed by the column direction.

3 Methodology

3.1 Parsimonious MMVBFA Models

One feature of theMMVBFAmodel is that each of the resultant scalematrices has the
same form as the covariance matrix in the (multivariate) mixture of factor analyzers
model. Therefore, MMVBFA lends itself naturally to a matrix variate extension of
the PGMMmodels. Specifically, we apply combinations of the constraints �g = �,
�g = �, �g = σgIn with σg ∈ R

+, �g = �, �g = �, and �g = ψgIp with ψg ∈
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Table 1 Row models with the respective number of scale parameters

�g = � �g = � �g = σgIn Number of scale parameters

C C C [nq + n − q(q − 1)/2] + 1

C C U [nq + n − q(q − 1)/2] + n

C U C [nq + n − q(q − 1)/2] + G

C U U [nq + n − q(q − 1)/2] + nG

U C C G[nq + n − q(q − 1)/2] + 1

U C U G[nq + n − q(q − 1)/2] + n

U U C G[nq + n − q(q − 1)/2] + G

U U U G[nq + n − q(q − 1)/2] + nG

Table 2 Column models with the respective number of scale parameters

�g = � �g = � �g = ψgIr Number of scale parameters

C C C [pr + p − r(r − 1)/2] + 1

C C U [pr + p − r(r − 1)/2] + p

C U C [pr + p − r(r − 1)/2] + G

C U U [pr + p − r(r − 1)/2] + pG

U C C G[pr + p − r(r − 1)/2] + 1

U C U G[pr + p − r(r − 1)/2] + p

U U C G[pr + p − r(r − 1)/2] + G

U U U G[pr + p − r(r − 1)/2] + pG

R
+. This leads to a total of 64models, whichwe refer to as the parsimoniousmixtures

of matrix variate bilinear factor analyzers (PMMVBFA) family. In Tables1 and 2,
the models along with the number of scale parameters are presented for the row
and column scale matrices. We will refer to these as the row and column models,
respectively.

Maximum likelihood estimation is performed using an alternating expectation
maximization (AECM) algorithm in almost an identical fashion to Gallaugher and
McNicholas [13]. The only difference is the form of the updates for the scale matri-
ces which is dependent on the model. Below, the general form of the algorithm is
presented and the corresponding scale parameter updates are given in the Appendix.
We refer the reader to Gallaugher and McNicholas [13] for details regarding the
expectations in the E-steps.

AECM Stage 1

In the first stage, the complete-data is taken to be the observed matrices X1, . . . ,XN

and the component memberships z1, . . . , zN , and the update for Mg is calculated.
The complete-data log-likelihood in the first stage is
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�(1) = C +
G∑

g=1

N∑

i=1

zig

{
logπg − 1

2
tr[�∗−1

g (Xi − Mg)�
∗−1

g (Xi − Mg)
′]
}

,

where C is a constant with respect to Mg , �∗
g := �g�

′
g + �g and �∗

g := �g�
′
g +

�g . In the E-Step, the updates for the component memberships zig are given by the
expectations

ẑig = πgϕn×p(Xi | M̂g, �̂
∗
g, �̂

∗
g)

∑G
h=1 πhϕn×p(Xi | M̂h, �̂

∗
h, �̂

∗
h)

,

where ϕn×p(·) denotes the n × p matrix variate normal density. In the CM-step, the
update forMg is

M̂g = 1

Ng

N∑

i=1

ẑigXi ,

where Ng = ∑N
i=1 ẑig .

AECM Stage 2

In the second stage, the complete-data is taken to be the observed X1, . . . ,XN , the
component memberships z1, . . . , zN and the latent factors YB

i = (YB
i1,Y

B
i2, . . . ,Y

B
iG).

The complete-data log-likelihood is then

�(2) = C −
G∑

g=1

Ng p

2
log |�g | − 1

2

G∑

g=1

N∑

i=1

zig tr
[
�−1

g (Xi − Mg)�
∗−1

g (Xi − Mg)
′

− �−1
g �gY

B
ig�

∗−1

g (Xi − Mg)
′ − �−1

g (Xi − Mg)�
∗−1

g YB
ig

′
�′

g + �−1
g �gY

B
ig�

∗−1

g YB
ig

′
�′

g

]
.

(4)
In the E-Step, the following expectations are calculated

aB
ig := E[YB

ig | Xi , zig = 1, ϑ̂] = WA
g

−1
�̂

′
g�̂

−1
g (Xi − M̂g),

bB
ig := E[YB

ig�̂
∗−1

YB
ig

′ | Xi , zig = 1, ϑ̂] = pWA
g

−1 + aB
ig�̂

∗−1

g aB
ig

′
,

(5)

where WA
g = Iq + �̂

′
g�̂

−1
g �̂g . In the CM-step, �g and �g are updated (see

Appendix).

AECM Stage 3

In the last stage of theAECMalgorithm, the complete-data is taken to be the observed
X1, . . . ,XN , the component memberships z1, . . . , zN and the latent factors YA

i =
(YA

i1,Y
A
i2, . . . ,Y

A
iG). In this step, the complete-data log-likelihood is
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�(3) = C − Ngn

2
log |�g | − 1

2

G∑

g=1

N∑

i=1

zig tr
[
�−1

g (Xi − Mg)
′�∗−1

g (Xi − Mg)

− �−1
g �gY

A
ig

′
�∗−1

g (Xi − Mg) − �−1
g (Xi − Mg)

′�∗−1

g YA
igB

′
g + �−1

g �gY
A
ig

′
�∗−1

g YA
ig�

′
g

]
.

In the E-Step, expectations similar to those at Stage 2 are calculated

aA
ig := E[YA

ig | Xi , zig = 1, ϑ̂] = (Xi − M̂g)�̂
−1
g �̂gWB

g
−1

and
bA
ig := E[YA

ig
′
�̂

∗−1

g YA
ig | Xi , zig = 1, ϑ̂] = nWB

g
−1 + aA

ig
′
�̂

∗−1

g aA
ig,

whereWB
g = Ir + �̂

′
g�̂

−1
g �̂g . In theCM-step,we update�g and�g (seeAppendix).

3.2 Model Selection, Convergence, Performance Evaluation
Criteria, and Initialization

In general, the number of components, row factors, column factors, row model,
and column model are unknown a priori and, therefore, need to be selected. In our
simulations and analyses, the Bayesian information criterion (BIC, Schwarz [37]) is
used. The BIC is given by

BIC = 2�(ϑ̂) − ρ log N ,

where �(ϑ̂) is the maximized log-likelihood and ρ is the number of free parameters.
The simplest convergence criterion is based on the lack of progress in the log-

likelihood, where the algorithm is terminated when l(t+1) − l(t) < ε, where ε > 0 is a
small number. Oftentimes, however, the log-likelihood can plateau and then increase
again, thus the algorithm would be terminated prematurely using lack of progress,
(see McNicholas, Murphy, McDaid, & Frost [27], for examples). Another option,
and one that is used for our analyses, is a criterion based on the Aitken acceleration
(Aitken [1]). The Aitken acceleration at iteration t is

a(t) = l(t+1) − l(t)

l(t) − l(t−1)
,

where l(t) is the (observed) log-likelihood at iteration t . We then have an estimate, at
iteration t + 1, of the log-likelihood after many iterations:

l(t+1)
∞ = l(t) + (l(t+1) − l(t))

1 − a(t)
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(Böhning, Dietz, Schaub, Schlattmann, & Lindsay [5]; Lindsay [24]). As suggested
by McNicholas et al. [27], the algorithm is terminated when l(k+1)∞ − l(k) ∈ (0, ε). It
should be noted thatwe set the value of ε based on themagnitude of the log-likelihood
in the manner of Gallaugher and McNicholas [14]. Specifically, we set ε to a value
three orders of magnitude lower than the log-likelihood after five iterations.

To assess classification performance, the adjusted Rand index (ARI, Hubert &
Arabie [20]) is used. The ARI is the Rand index (Rand [35]) corrected for chance
agreement. The ARI compares two different partitions—in our case, predicted and
true classifications—and takes a value of 1 if there is perfect agreement. Under
random classification, the expected values of the ARI is 0.

Finally, there is the issue of initialization. In our simulations and data analyses, we
used soft (uniform) random initializations for the ẑig . From these initial soft group
memberships ẑig , we initialize the location matrices using

M̂g = 1

Ng

N∑

i=1

ẑigXi ,

where Ng = ∑N
i=1 ẑig . The diagonal scale matrices, �g and �g are initialized as

follows:

�̂g = 1

pNg
diag

{
N∑

i=1

ẑig(Xi − M̂g)(Xi − M̂g)
′
}

and

�̂g = 1

nNg
diag

{
N∑

i=1

ẑig(Xi − M̂g)
′(Xi − M̂g)

}
.

The elements of the factor loading matrices are initialized randomly from a uniform
distribution on [−1, 1]. Note that all initializations are based on the UUU model.

4 Simulations

4.1 Simulation 1

Three simulations were conducted. In the first, we consider d × d matrices with d ∈
{10, 20}, G = 2 and M1 = 0,M2 = M(δ)

LT , where δ ∈ {1, 2, 4} and M(δ)
LT represents

a lower triangular matrix with δ on and below the diagonal. We consider the case
where both rows and columns have a CCU model. The parameters for the column
factor loading matrices are

�1 = �2 =
⎡

⎣
15 05 05
02 12 02
03 03 13

⎤

⎦ (d = 10), �1 = �2 =
⎡

⎣
110 010 010
04 14 04
06 06 16

⎤

⎦ (d = 20).
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Table 3 Number of datasets for which the BIC correctly chose the number of groups (G), column
factors (q), row factors (r ), row model (RM), column model (CM), and the average ARI over 25
datasets (Simulation 1)

δ N d = 10 d = 20

G q r RM CM ARI(sd) G q r RM CM ARI(sd)

1 100 0 25 25 25 25 0.000(0.00) 25 24 25 25 25 1.000(0.00)

200 21 25 25 25 25 0.723(0.33) 25 24 24 25 24 1.000(0.00)

400 25 25 25 25 25 0.883(0.04) 25 25 25 25 25 1.000(0.002)

2 100 25 25 25 25 25 1.000(0.00) 25 24 25 25 25 1.000(0.00)

200 25 25 25 25 25 0.999(0.004) 25 25 25 25 25 1.000(0.00)

400 25 25 25 25 25 1.000(0.002) 25 25 25 25 25 1.000(0.00)

4 100 25 25 25 25 25 1.000(0.00) 25 24 25 25 25 1.000(0.00)

200 25 25 24 25 25 1.000(0.00) 25 25 25 25 25 1.000(0.00)

400 25 25 25 25 25 1.000(0.00) 25 25 25 25 25 1.000(0.00)

The row factor loading matrices are

�1 = �2 =
[−1d/2 0d/2

1d/2 1d/2

]
,

where 1c and 0c represent c-dimensional vectors of 1s and 0s, respectively. The error
covariance matrices are taken to be

�1 = �2 = �1 = �2 = D,

where D is a diagonal matrix with diagonal entries dtt = t/5 when d = 10 and
dtt = t/10 when d = 20.

Finally, sample sizes of N ∈ {100, 200, 400} are considered with π1 = π2 = 0.5.
For each of these combinations, 25 datasets are simulated. The model is fit for
G = 1, . . . , 4 groups, 1 to 5 row factors and column factors, and all 64 scale models,
leading to a total of 6,400 models fit for each dataset.

In Table3, we display the number of times the correct number of groups, row
factors, and column factors are selected by the BIC, as well as the number of times
the row and column models were correctly identified. We also include the average
ARI over the 25 datasets with associated standard deviations. As expected, as the
separation and sample size increase, better classification results are obtained. The
correct number of groups, column factors, and row factors are chosen for all 25
datasets in nearly all cases considered.Moreover, the selection of the row and column
models is very accurate in all cases considered.
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Table 4 Number of datasets for which the BIC correctly chose the number of groups (G), column
factors (q), row factors (r ), row model (RM), column model (CM), and the average ARI over 25
datasets (Simulation 2)

δ N d = 10 d = 20

G q r RM CM ARI(sd) G q r RM CM ARI(sd)

1 100 25 25 25 25 25 0.990(0.02) 25 0 25 25 25 1.000(0.00)

200 25 25 25 25 1 0.998(0.007) 25 24 25 25 25 1.000(0.00)

400 25 25 25 25 25 0.997(0.006) 25 25 25 25 25 1.000(0.00)

2 100 25 25 25 25 0 0.998(0.01) 25 0 25 25 25 1.000(0.00)

200 25 25 25 25 0 1.000(0.00) 25 24 25 25 25 1.000(0.00)

400 25 25 25 25 25 0.999(0.003) 25 25 25 25 25 1.000(0.00)

4 100 25 25 25 25 0 1.000(0.00) 25 10 25 25 25 1.000(0.00)

200 25 25 25 25 2 1.000(0.00) 25 23 25 25 25 1.000(0.00)

400 25 25 24 25 25 1.000(0.00) 25 5 25 25 20 1.000(0.00)

4.2 Simulation 2

In this simulation, similar conditions to Simulation 1 are considered, including using
the same mean matrices; however, we place a CUC model on the rows and a UCU
model on the columns. The column factor loading matrices are the same as used for
Simulation 1, �1 is the same as in Simulation 1, and the row factor loadings matrix
for group 2 is

�2 =
[
1d/2 −1d/2

1d/2 0d/2

]
.

We take �1 = Id ,�2 = 2Id and �1 = �2 = D, where D is the same as from Sim-
ulation 1.

Results are displayed in Table4. Overall, we obtain excellent classification results,
even when the sample size is small and there is little spatial separation. There is
some difficulty in choosing the column model when d = 10 but this issue abates
for N = 400. When d = 20, some difficulty is encountered in choosing the correct
number of column factors q; however, the classification performance is consistently
excellent.

4.3 Simulation 3

In the last simulation, the mean matrices are now diagonal with diagonal entries
equal to δ. A CCUmodel is taken for the rows. In the case of d = 10, the parameters
are
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Table 5 Number of datasets for which the BIC correctly chose the number of groups (G), column
factors (q), row factors (r ), row model (RM), column model (CM), and the average ARI over 25
datasets (Simulation 3)

δ N d = 10 d = 20

G q r RM CM ARI(sd) G q r RM CM ARI(sd)

1 100 0 25 25 25 0 0.000(0.00) 0 25 25 25 0 0.000(0.00)

200 0 25 25 20 0 0.000(0.00) 0 25 25 25 0 0.000(0.00)

400 22 12 25 12 16 0.705(0.27) 22 21 24 19 13 0.833(0.32)

2 100 25 24 25 24 17 0.968(0.04) 21 24 25 25 10 0.840(0.37)

200 25 25 25 25 11 0.984(0.02) 25 25 25 25 11 1.000(0.00)

400 25 20 25 18 22 0.988(0.01) 25 25 25 25 20 1.000(0.00)

4 100 25 24 25 24 15 1.000(0.00) 25 25 25 25 18 1.000(0.00)

200 25 25 25 25 10 1.000(0.00) 25 25 25 25 22 1.000(0.00)

400 25 24 25 20 23 1.000(0.00) 25 25 25 25 17 1.000(0.00)

�1 = �2 =

⎡

⎢⎢⎣

13 03 03
12 02 12

−12 −12 −12
−13 −13 03

⎤

⎥⎥⎦ , �1 = �2 = Id{σ2,2=2,σ9,9=4}.

To clarify this notation, the row scale matrices have 1s on the diagonal except for
places 2 and 9 which have values 2 and 4, respectively. The column scale matrices
have a UCC model with

�1 =
[−15 05

15 15

]
, �2 =

[−15 15
15 05

]
, �1 = �2 = I10.

In the case of d = 20, the parameters are

�1 = �2 =

⎡

⎢⎢⎣

16 06 06
14 04 14

−14 −14 −14
−16 −16 06

⎤

⎥⎥⎦ , �1 = �2 = I30{σ2,2=4,σ9,9=2,σ12,12=3,σ19,19=5},

and

�1 =
[−110 010

110 110

]
, �2 =

[−110 110
110 010

]
, �1 = �2 = I20.

The results are presented in Table5. In this case, there is more variability in the
correct selection of the row and column models, especially the latter. The selection
of q and r is generally accurate. The classification performance is generally very
good with the exception of the combination of a small sample size N with a low
degree of separation δ.
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Table 6 Average ARI values and misclassification rates for each level of supervision, with respec-
tive standard deviations in parentheses, for datasets consisting of digits 1 and 2 drawn from the
MNIST dataset

Supervision (%) ARI Misclassification rate

0 (clustering) 0.652(0.05) 0.0962(0.02)

25 0.733(0.059) 0.072(0.02)

50 0.756(0.064) 0.065(0.018)
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Fig. 1 Heatmaps of the mean matrices, from one of the datasets, for each digit at each level of
supervision
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5 MNIST Data Analysis

Gallaugher andMcNicholas [12, 13] consider theMNIST digits dataset; specifically,
digits 1 and 7 because they are quite similar in appearance. Herein, we consider
digits 1 and 2. This dataset consists of 60,000 (training) images of Arabic numerals
0–9. We consider different levels of supervision and perform either clustering or
semi-supervised classification. Specifically, we look at 0 (clustering), 25, and 50%
supervision. For each level of supervision, 25 datasets consisting of 200 images each
of digits 1 and 2 are taken. As discussed in Gallaugher andMcNicholas [12], because
of the lack of variability in the outlying rows and columns of the data matrices,
random noise is added to ensure non-singularity of the scale matrices. In Table6, we
present the average ARIs and misclassification rates along with respective standard
deviations.

As expected, as the level of supervision is increased, better classification perfor-
mance is obtained. Specifically, the MCR decreases to around 6.5% with an ARI of
0.756 when the level of supervision is raised to 50%. Moreover, the performance in
the completely unsupervised case is fairly good. In Fig. 1, heatmaps for the estimated
mean matrices, for one dataset, for each digit and level of supervision are presented.
Although barely perceptible, there is a slight increase in clarity as the supervision is
raised to 50%. For all levels of supervision, the UUU row model is chosen for all
25 datasets. The chosen model for the columns is the UCU model for 7 of the 25
datasets for 0 and 50% supervision, and 10 datasets for 25% supervision.

6 Discussion

The PMMVBFA family, which comprises a total of 64 models has been introduced
and presented. The PMMVBFA family is essentially a matrix variate analogue of
the family of multivariate models introduced by McNicholas and Murphy [26]. In
all simulations considered, very good classification results were obtained. In some
settings, this was true even for small sample sizes and a small amount of spatial
separation. Model selection was also generally accurate. In the MNIST analysis,
classification accuracy increased with the amount of supervision, as expected, with
the MCR decreasing to 6.5% when using a supervision level of 50%.

One very important consideration for future work is the development of a search
algorithm as an alternative to fitting all possible models. This would be particularly
important for computational feasibility when there is limited parallelization avail-
able. These parsimonious models could also be extended to the mixtures of skewed
matrix variate bilinear factor analyzers (Gallaugher & McNicholas [14], as well as
an extension to multi-way data (e.g., in the fashion of Tait & McNicholas [39]).
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7 Appendix

7.1 Updates for Scale Matrices and Factor Loadings

The updates for the scale matrices and the factor loading matrices in the AECM
algorithmare dependent on themodel. The exact updates for eachmodel are presented
here.

Row Model Updates

CCC:

�̂ =
⎛

⎝
G∑

g=1

N∑

i=1

ẑig(Xi − M̂g)�̂
∗−1

g aA
ig

′
⎞

⎠

⎛

⎝
G∑

g=1

N∑

i=1

ẑigb
B
ig

⎞

⎠
−1

, σ̂ = 1

Nnp
tr{S(1)}.

where

S(1) =
G∑

g=1

N∑

i=1

ẑig
[
(Xi − M̂g)�̂

∗−1

g (Xi − M̂g)
′ − �̂aB

ig
′
�̂

∗−1

g (Xi − M̂g)
′].

CCU:

�̂ =
⎛

⎝
G∑

g=1

N∑

i=1

ẑig(Xi − M̂g)�̂
∗−1

g aB
ig

′
⎞

⎠

⎛

⎝
G∑

g=1

N∑

i=1

ẑigb
B
ig

⎞

⎠
−1

, �̂ = 1

Np
diag{S(1)},

CUU:
For this model, the update for � needs to be performed row by row. Specifically, the
updates are:

�̂( j) =
(

N∑

i=1

ẑig(Xi − M̂g)�̂
∗−1

g aB
ig

′
)

( j)

⎛

⎝
G∑

g=1

1

σg( j j)

N∑

i=1

ẑigb
B
ig

⎞

⎠
−1

,

�̂g = 1

Ng p
diag{S(2)

g },

where

S(2)
g =

N∑

i=1

ẑig
[
(Xi − M̂g)�̂

∗−1

g (Xi − M̂g)
′ − 2�̂aB

ig�̂
∗−1

g (Xi − M̂g)
′ + �̂bB

ig�̂
′]
.
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CUC:

�̂ =
⎛

⎝
G∑

g=1

1

σ̂g

N∑
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ẑig(Xi − M̂g)�̂
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g aB
ig
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g }.
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Column Model Updates
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ẑigb
A
ig

⎞

⎠
−1

,

�̂g = 1

Ngn
diag{P(2)

g },

where

P(2)
g =

N∑

i=1
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UCC:
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ẑigb
A
ig

)−1

, ψ̂ = 1

Nnp
tr{P(3)},

where

P(3) =
G∑

g=1

N∑

i=1
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Interval-Valued Scaling of Successive
Categories

Hisao Miyano and Eric J. Beh

Abstract Correspondence analysis represents the row and column categories of a
contingency table as points in a low dimensional space, irrespective of whether the
categories are successive or not. In this paper, a scaling method is considered for
successive categories that are regarded as a series of boxes (intervals) or numbers
defined on a line scale. By using this method, each category is represented as a
region not as a point under the assumptions that (1) each category is represented by
an interval for which the end points lie on the boundary of its adjacent category, and
(2) the scale values of the category are uniformly distributed over the interval. It is
shown that the proposed method has simple links to correspondence analysis and
multiple correspondence analysis. The effectiveness of the method is confirmed by
considering some examples.

1 Introduction

As a quantitative method for analysing contingency tables, many researchers have
proposed and/or investigated several methods for assigning scores to the rows and
columns of a contingency table. For correspondence analysis, one may refer to
Benzécri [1], Greenacre [12], Gower and Hand [11], Nenadić and Greenacre [20],
and Beh and Lombardo [4]. This issue was also considered for optimal (or dual)
scaling (Guttman [13]; Nishisato [22]) quantification method (Hayashi, Higuchi, &
Komazawa [14]), and reciprocal averaging (Hill [15]; Mardia, Kent, & Bibby [18]).
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For the analysis of a contingency tablewith successive categories, correspondence
analysis and optimal scaling methods under order constraints have been studied
(Schriever [28]; Parsa & Smith [26]; Ritov & Gilula [27]; Beh [2, 3]; Yang & Huh
[31]; Lombardo, Beh, &D’Ambra [16]; Nishisato&Arri [24]). Another method is to
consider a dual scaling method for successive categories proposed by Nishisato [23]
and Nishisato and Sheu [25]. Such a method is a uni-dimensional scaling method
which enables one to estimate both the scores of objects and the scale values of
category boundaries as the method of successive categories Torgerson [30] does.
Nishisato’s method is an optimal scaling method which is different from the method
of successive categories in the sense that it does not employ any assumption about the
distribution of responses Nishisato [21]. Gifi [9] also offered a collection of nonlinear
multivariate methods based on optimal scaling which includes an order-constraint
uni-dimensional scaling method for successive categories. By extending the Gifi’s
approach, Mair and de Leeuw [17] proposed a general framework of multivariate
analysis with optimal scaling of which the theoretical foundations were given by de
Leeuw [8].

When considering these methods, it is commonly assumed that each row and col-
umn of a contingency table is represented by a point in a multidimensional space.
However, as successive categories are often regarded as a series of intervals defined
on a line scale, they are intrinsically consecutive and have more or less ambiguous
meanings. In that sense, if the column categories of a contingency table are succes-
sive, they might be well represented as successively connected regions or intervals
rather than points in the space.

By utilising the idea of Guttman’s optimal scaling, this paper presents a new
scaling method for successive categories, in which each category is represented as
a region but not as a point in a multidimensional space. The scaling method is
constructed under the assumptions that (1) each category is represented by a corre-
sponding interval for which the end points are the boundary points of its adjacent
categories, and (2) the scores of the object in each category are uniformly distributed
over the corresponding interval. The first assumption gives a representation of suc-
cessive categories by intervals, and the second defines a distribution of object scores
within a category.

This paper is structured as follows. First, we shall discuss the scaling problem
for a single categorical variable by considering the quantification problem for a con-
tingency table with successive categories. A two-sided eigen equation for interval-
valued scaling of successive categories is derived, which has a simple relation to that
of correspondence analysis. The interval scaling problem for a contingency table
with more than two variables is also addressed, and the two-sided eigen equation
corresponding to that for the case of a single categorical variable is provided. Some
mathematical discussions are made on the solution of the two-sided eigen equation.

Numerical examples are given to illustrate the effectiveness of the interval-valued
scaling method. Discussions are made, in particular, on the scaling method for a
general contingency table, which includes both successive and non-successive cate-
gorical variables.
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2 Scaling of Successive Categories in Contingency Table

In this section, first we give the motivation and the basic idea of our approach to the
scaling problem of successive categories, as well as the definitions and the notation
used throughout this paper. We then discuss the scaling method for a successive
categorical variable.

2.1 Motivation and Basic Idea

As mentioned in the previous section, several methods, including correspondence
analysis, optimal scaling, dual scaling, and reciprocal averaging, have been proposed
as the quantificationmethod of contingency tables. It is known that thesemethods are
algebraically equivalent to each other (e.g., Greenacre [12]), while having originated
in different contexts.
Contingency tables are generally used to describe the association between the row
and column variables of the table, where each row and each column in the table repre-
sents a category of the corresponding variable. Conventional quantification methods
quantify the two variables by assigning scores to the categories, under the assumption
that each category is represented by a point in a multidimensional space. However,
the assumption of representing categories as points might be not so appropriate if
the row or column categories are successive.
As a continuous variable is often categorised by defining the categories in terms of
intervals or classes of values it can take, successive categories are typically regarded
as a series of boxes (intervals) or numbers defined on a line scale, and verbal descrip-
tions, such as fairly and somewhat, are often attached to them. Hence, if each succes-
sive category is represented as a point in a multidimensional space, then the point is
considered to be a representative of the corresponding interval or range represented
in the space.
The aim of this paper is to provide a scaling method for successive categories which
enables us to evaluate the variations in the scale values of categories. In other words,
using the idea of optimal scaling, a new scaling method is developed under the
assumption that the scale value assigned to each category has an internal variation.
For example, the samples from a certain category of which the scaled interval is
[t1, t2] are interpreted as selecting values randomly across this interval. As is noted
in the symbolic data analysis for interval-valued data, this is not to be confused with
uncertainty or the impression when a variable takes a value in that interval with some
level of uncertainty (Billard & Diday [6]).
Let N = (nik) be an r × c matrix where nik , i = 1, 2, . . . , r, k = 1, 2, . . . , c, are the
frequencies in an r × c contingency table, r is the number of objects to be observed,
and c is the number of categories. Following the conventional notation, we define
R = diag(ni.) and C = diag(n.k) to be r -dimensional and c-dimensional diagonal
matrices, respectively, where ni. = ∑

k nik , n.k = ∑
i nik , and n.. = ∑

i,k nik .
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Suppose that category k is represented by an interval [tk, tk+1] or [tk+1, tk]; that is,
the categories k and k + 1 are differentiated at the point tk+1, and the scores at each
category are uniformly distributed over the corresponding interval. Then the scores
of object i can be considered to be randomly distributed as a mixture of c uniform
distributions with mixing proportions nik/ni., k = 1, 2, . . . , c; that is, its probability
density function hi (x) is given by

hi (x) =
c∑

k=1

nik

ni.
uk(x), (1)

where uk(x) is the probability density function of the uniform distribution corre-
sponding to the k-th interval. Then, the expected score x̄i and the variance s2i of
object i are given by

x̄i =
∫

xhi (x)dx

=
c∑

k=1

nik

ni.
t̄k, (2)

s2i =
∫

(x − x̄i )
2hi (x)dx

=
c∑

k=1

nik

ni.
(v2k + (t̄k − x̄i )

2)

=
c∑

k=1

nik

ni.
(v2k + t̄2k ) − x̄2

i , (3)

where t̄k = (tk + tk+1)/2, and v2k is the variance of scores within the k-th interval;
that is, v2k = (tk+1 − tk)2/12.

Let x̄ be a r -dimensional column vector defined by x̄ = (x̄1, x̄2, . . . , x̄r )
′, t be a

(c + 1)-dimensional vector defined by t = (t1, t2, . . . , tc+1)
′, and O+ and O− be c ×

(c + 1)matrices defined by O+ = (0; I ) and O− = (I ; 0), where I is a c × c identity
matrix, and 0 is a c-dimensional vector of zeros. Then, using the matrix N̄ defined
by N̄ = N (O+ + O−)/2, the mean vector x̄ and the variance s2i are represented by

x̄ = R−1 N̄ t, (4)

s2i = 1

ni.
t′Gi t − x̄2

i , (5)

where, using the matrix given by Di =diag(ni1, ni2, . . . , nic), Gi is defined by

Gi = 1

3
(O ′

+ Di O+ + 1

2
(O ′

+ Di O− + O ′
− Di O+) + O ′

− Di O−). (6)
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From (1), it is easy to see that our approach is an extension of optimal scaling
approach. Ifμk is the score assigned to the k-th category, then, using the delta function
δ(x), uk(x) is denoted by uk(x) = δ(x − μk), and x̄i becomes the weighted mean of
the category scores.

2.2 Scaling Method for Successive Categories

Assuming that
∑

k n.k t̄k = 0, and for notational convenience, defining that n̄.k =
(n.k−1 + n.k)/2, ni0 = ni(c+1) = 0 for any i , the total variance s2t and the between
variance s2b are given by

s2b = 1

n..

r∑

i=1

ni. x̄
2
i

= 1

n..

t′ N̄ ′ R−1 N̄ t, (7)

s2t =
r∑

i=1

ni.

n..

s2i + s2b

= 1

n..

t′Gt, (8)

where G is a matrix defined by G = ∑
i Gi .

It is easy to show that N̄ ′ R−1 N̄ is a (c + 1) × (c + 1) symmetric matrix of which
the (k, k ′)-element is given by

∑
i n̄ik n̄ik ′/ni., k, k ′ = 1, 2, . . . , c + 1, and (3/2)G is

a tridiagonal symmetric matrix having n̄.k , k = 1, 2, . . . , c + 1 as diagonal elements
and n.k/4, k = 1, 2, . . . , c as sub-diagonal elements.

Following the traditional optimal scaling approach, the optimal twhichmaximises
the ratio η2 = s2b/s2t can be obtained; that is, under the assumption t′Gt = 1, the
optimal t satisfies

N̄ ′ R−1 N̄ t = λGt, (9)

where λ is a Lagrange multiplier corresponding to the constraint t′Gt = 1. Here,
N̄ ′ R−1 N̄ is nonnegative definite, and G is positive definite if n̄.k > 0 for any k
(Golub & van Loan [10]). Hence assuming that n̄.k > 0 for any k, the optimal t is
obtained by solving the eigen equation

(R− 1
2 N̄ G− 1

2 )′(R− 1
2 N̄ G− 1

2 )z = λz, (10)

where z = G
1
2 t, and z′z = 1.

As it is well known in optimal scaling, the above two-sided eigen equation also has
a trivial solution which corresponds to λ = 1, since N̄ ′ R−1 N̄1 = G1 = n̄C , where
n̄C = (n̄.1, n̄.2, . . . , n̄.(c+1))

′ and 1 is a (c + 1)-dimensional vector of ones. The solu-



202 H. Miyano and E. J. Beh

tion z0 corresponding to λ = 1 is given by z0 = G1/21/
√

n... Hence, the optimal
solution we obtain by removing the trivial solution z0, from the problem, satisfies
the equation

(G− 1
2 N̄ ′ R−1 N̄ G− 1

2 − 1

n..

G
1
2 11′G

1
2 )z = λz. (11)

This equation means that the optimal solution can be obtained by solving the two-
sided eigen equation (9) replacing N̄ ′ R−1 N̄ with N̄ ′ R−1 N̄ − n̄C n̄

′
C/n.. which is

centred at zero.
Another expression of the above two-sided eigen equation can be derived, which

leads us to a correspondence analysis method for successive categories. Define nR =
(n1., n2., . . . , nm.)

′, and N̄ = (n̄ik). Then,

N̄ ′ R−1 N̄ − n̄C n̄
′
C/n.. = (N̄ − 1

n..

nR n̄′
C)′ R−1(N̄ − 1

n..

nR n̄′
C). (12)

From (11), this equation means that the solution z can be obtained by using a
singular value decomposition of the matrix R−1/2(N̄ − nR n̄′

C/n..)G−1/2, while
in traditional correspondence analysis, the singular value decomposition of R−1/2

(N − nRn′
C/n..)C−1/2 is used, where nC = (n.1, n.2, . . . , n.c)

′ and C = diag
(n.1, n.2, . . . , n.c).

3 Numerical Examples

To illustrate themethod discussed in the previous section, wewill analyse two contin-
gency tables considered in the studies by Beh and Smith [5], and Calimlim, Wardell,
Cox, Lasagna, and Sriwatanakul [7]. Since our scaling method provides the end
points of the intervals of categories in a representation space, categories are repre-
sented as the regions determined by those end points; categories are represented by
the rectangles with the vertices defined by the end points in two-dimensional space,
and the cuboids in three-dimensional space. However, if we assume that within each
category, its scaled values are distributed on the line segment determined by the end
points, then categories are represented by the intervals in a multidimensional space.

The contingency tables considered here are such examples mentioned in the lit-
erature on correspondence analysis (Beh & Smith [5]; Beh & Lombardo [4]; Parsa
& Smith [26]; Greenacre [12]).

3.1 Asbestos Exposure Data

A contingency table analysed by Beh and Smith [5] is considered. The data are based
on Selikoff’s [29] asbestosis data, which clarify the association between asbestosis
grade (severity) diagnosed and occupational years exposed to asbestos. Multiple
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Table 1 Obtained Intervals of Asbestosis Grades

End point tk Centre t̄k CA

dim.1 dim.2 dim.1 dim.2 dim.1 dim.2

None 0.0332 −0.0354 0.0231 −0.0114 0.0253 −0.0141

Grade 1 0.0130 0.0126 −0.0094 0.0310 −0.0124 0.0401

Grade 2 −0.0319 0.0494 −0.0507 −0.0090 −0.0538 −0.0263

Grade 3 −0.0695 −0.0675 −0.0692 −0.0730 −0.0647 −0.0648

−0.0688 −0.0784

grades of asbestosis are defined as either none or ranging from Grade 1 (the least
severe) to Grade 3 (the most severe).

Table1 represents a two-dimensional solution obtained by our interval scal-
ing method; the first two eigenvalues are 0.4398 (88.0 %) and 0.0539 (11.9 %).
For comparison, it also represents the scale values obtained from the conventional
or classical CA, of which first two eigenvalues are 0.4892 (84.2 %) and 0.0892
(15.4 %). It is clear that the centres or means of the intervals almost coincide with
the scale values of conventional CA, but the variation of scale values in “Grade 3”
is extremely small compared with those in other asbestosis grade categories (see
Fig. 1).

Figure1 reveals that (1) a two-dimensional space is needed for asbestosis grades
to be represented separately, and (2) “Grade 3” is not separated from “Grade 2” in
a uni-dimensional space while the probability of the “Grade 2” scale values tak-
ing the interval of “Grade 3” is very small, say about 2%, since the scale values of
“Grade 2” are uniformly distributed over the interval [−0.0695,−0.0319] whereas
those of “Grade 3” are over the interval [−0.0695,−0.0688]. It also visually con-
firms Selikoff’s “20-year rule” which claims that most workers exposed to asbestos
for less than 20 years display normal chest films, but most workers exposed for more
than 20 years display abnormal ones. However, since only the centre of “0–9 years”
is included in the rectangular of “None”, we might assert a “10-year rule”; that is,
most workers exposed for more than 10 years display abnormal chest films, but not
those for less than 10 years.

3.2 Drugs’ Effectiveness Data

A contingency table analysed in Greenacre [12] is considered. The data are from a
study by Calimlim et al. [7] and are reproduced in Greenacre [12, p.263, Table9.5]. A
sample of 121 patients is considered and randomly assigned to one of four categories
that represent a different analgesic drug (A, B, C, or D). Each patient was asked to
rate the effectiveness of the drug on a 5-point scale; poor, fair, good, very good, and
excellent.
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Fig. 1 Two-dimensional display of association between asbestosis grades and occupational expo-
sure to asbestos. The centres of the regions are indicated by “+”

poor

very good
good

excellent

fair

A

B

C

D

0.1 0.05 0.05
Dim. 1

0.1

0.1

Dim. 2

Fig. 2 Two-dimensional display of association between drugs and rating scales; rectangular regions
for poor, fair, good, very good, and excellent, of which centres are indicated by “+”

Applying our method to the data, a two-dimensional solution is obtained, fol-
lowing the analysis by Greenacre [12]. The corresponding eigenvalues are 0.279
(85.5%) and 0.042 (12.9%). Figure2 suggests that the responses “poor”, “fair”, and
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Table 2 Obtained intervals of the effectiveness of four drugs

End point tk Centre t̄k CA

dim.1 dim.2 dim.3 dim.1 dim.2 dim.3 dim.1 dim.2

Poor −0.0251 0.1027 −0.2788 −0.0523 −0.0192 −0.1442 −0.0406 0.0244

Fair −0.0795 −0.1410 −0.0096 −0.0874 −0.0871 0.0521 −0.1058 −0.1450

Good −0.0953 −0.0331 0.1138 −0.0416 0.0747 0.0661 −0.0441 0.0976

Very good 0.0122 0.1825 0.0184 0.0820 0.0790 0.0254 0.0960 0.0512

Excellent 0.1518 −0.0244 0.0325 0.1614 −0.0849 0.0029 0.1557 −0.0902

0.1710 −0.1453 −0.0266

“good” cannot be separated, while the responses “very good” and “excellent” can be
discriminated. This result coincides with that of Greenacre [12] derived from using
a resampling technique, except that the responses “very good” and “excellent” are
separated. Also, it might be asserted that the drugs can be separated into two groups:
A with B and C with D. This result also coincides with that of Greenacre [12].

A three-dimensional solution is shown in Table2, from which we can assert that
the third dimension is needed to separate all response categories.

4 Scaling of Successive Categories in a Concatenated
Contingency Table

The comments made in Sect. 2 can be extended to the interval-valued scaling of
successive categories of a concatenated contingency table. Let ni jk be the frequencies
(i = 1, 2, . . . , r; k = 1, 2, . . . , c j ) in an r × c j contingency table defined on the j-
th variable X j , j = 1, 2, . . . , p, where c j is the number of successive categories
X j takes, and p is the number of variables. Also let N j = (ni jk) be the r × c j

contingency table for X j . Then, the concatenated contingency table N(c) is given by
N(c) = (N1, N2, . . . , Np).

Let the interval [t jk, t j (k+1)] be the interval scale value of the k-th category of
X j . Then, under the assumption that the scores within the k-th category of X j are
uniformly distributed, the mean vector x̄ j for X j is given by

x̄ j = R−1 N̄ j t j , (13)

where R = diag(ni../p), t j = (t j1, t j2, . . . , t j (c j +1))
′, and N̄ j is a r × (c j + 1)matrix

of which (i, k) element n̄i jk is given by (ni j (k−1) + ni jk)/2.
Suppose that the total score Y is defined by Y = ∑p

j=1 X j . Then, under the
assumption of the uniform distribution, the vector ȳ = (ȳ1, ȳ2, . . . , ȳr )

′, where ȳi

is the expected value of Y for object i , is given by



206 H. Miyano and E. J. Beh

ȳ =
p∑

j=1

R−1 N̄ j t j . (14)

Suppose that
∑c j

k=1 n. jk t̄ jk = 0 for any j , j = 1, 2, . . . , p; that is, the expected
grand mean of scores Xi j , i = 1, 2, . . . , r is 0 for any variable X j . Then, the total
variance s2t of the scores is given by

s2t = 1

n...

r∑

i=1

ni..

p∑

j=1

E[X2
i j ]

= p

n...

p∑

j=1

t′j G j t j , (15)

where (3/2)G j is a tridiagonal symmetric matrix with n̄. jk , k = 1, 2, . . . , c j + 1 as
diagonal elements and n. jk/4, k = 1, 2, . . . , c j as sub-diagonal elements.

Also, the between variance s2b is given by

s2b = 1

pn...

r∑

i=1

ni..(E[Yi ])2

= p

n...

1

p

p∑

j=1

p∑

l=1

t′j N̄ ′
j R−1 N̄l tl . (16)

Hence, the optimal t j , j = 1, 2, . . . , p, which maximises s2b under the constraint
s2t being constant, satisfies

p∑

l=1

N̄ ′
j R−1 N̄l tl = λpG j t j , (17)

where λ is a Lagrange multiplier corresponding to the constraint.

Let G F be a block diagonal matrix of which diagonal blocks are defined by G j ,
j = 1, 2, . . . , p, and t be defined by t = (t′1, t′2, . . . , t′p)′. Then, (17) is rewritten as

N̄ ′
(c) R−1 N̄(c)t = λpG F t, (18)

where N̄(c) = (N̄1, N̄2, . . . , N̄p).
For notational convenience, let F = (Fjl) be a block matrix defined by Fjl =

N̄ ′
j R−1 N̄l ; F = N̄ ′

(c) R−1 N̄(c), then the following properties hold for the matrices F
and G F .

1. Fjl = F ′
l j , j, l = 1, 2, . . . , p
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2. Fjl1l = n̄ j , j, l = 1, 2, . . . , p. where 1l is a cl + 1-dimensional vector of ones,
and n̄ j is a c j + 1-dimensional vector of which elements are n̄. jk, k = 1, 2,
. . . , c j + 1.

3. Fj j1 j = G j1j, j = 1, 2, . . . , p.

From these properties, for a
∑p

j=1 c j + p-dimensional vector 1 of ones, we have
F1 = pG F1 = p(n̄′

1, n̄
′
2, . . . , n̄

′
p)

′. That is, two-sided eigen equation (18) has a solu-
tion t = 1 corresponding to λ = 1.

The optimal solution t is obtained by solving the equation

(pG F )−
1
2 F(pG F )−

1
2 z = λz, (19)

where z = (pG F )
1
2 t, and z′z = 1.

Equation (19) has a trivial solution z0 = G
1
2
F1/

√
n... corresponding to λ = 1.

Hence the optimal solution can be obtained by replacing F with F̃ defined by

F̃ = F − p

n...

G F11′GF

= F − p

n...

n̄n̄′, (20)

where n̄ = (n̄′
1, n̄

′
2, . . . , n̄

′
p)

′. This equation equivalently means that the ( j, l)-block

element F̃jl is given by

F̃jl = Fjl − p

n...

n̄ j n̄′
l

= N̄ ′
j R−1 N̄l − p

n...

n̄ j n̄′
l

= (N̄ j − p

n...

nR n̄′
j )

′ R−1(N̄l − p

n...

nR n̄′
l), (21)

where N̄ j = (n̄i jk), i = 1, 2, . . . , r, k = 1, 2, . . . , c j + 1, and nR = (n1.., n2..,

. . . , nr..)
′/p. Therefore, using the notation N̄(c) = (N̄1, N̄2, . . . , N̄p), F̃ can be

rewritten as
F̃ = (N̄(c) − p

n...

nR n̄′)′ R−1(N̄(c) − p

n...

nR n̄′). (22)

From this equation, we can assert that the optimal solution can be obtained by using
a singular value decomposition of R−1/2(N̄(c) − (p/n...)nR n̄′)(pG F )−1/2.
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5 Discussions

In this paper, a new scaling method for successive categories has been proposed,
which represents the categories as intervals or regions but not points. The advantages
of our method are that (1) it clarifies how successive categories are related to each
other, (2) variabilities of the scores within categories might be evaluated from the
sizes of the corresponding intervals or regions, and (3) it has a simple relation to
the classical approaches of two-way correspondence and multiple correspondence
analyses.

Generally, multiple correspondence analysis considers a contingency table where
more than two categorical variables exist but are not always successive. Hence our
method for multi-way contingency table is restricted to the special case where all the
categorical variables are successive, but it can be easily extended to accommodate
more general cases. For example, if the categories of the first p1 variables are not
successive, then for (18), we only have to define the first p1 block diagonals of
G F by G j = diag(n. j1, n. j2, . . . , n. jc j ), j = 1, 2, . . . , p1, and the N̄(c) by N̄(c) =
(N1, N2, . . . , Np1 , N̄p1+1, . . . , N̄p).

Our scaling method also can be extended to the case where a contingency table
consists of successive and non-successive categories. This case will occur when
the response category such as “I don’t know” is included as a response to a set of
successive categories.

In general, the idea of interval-valued scaling of successive categories might be
considered in the framework of the scaling method for fuzzy categories. We shall
leave this issue for future consideration.

References

1. Benzécri, J.-P. (1973). L’Analyse des Données. Vol. 1: La Taxinomie. Vol. 2: L’Analyse des
Correspondances. Paris: Dunod.

2. Beh, E. J. (1997). Simple correspondence analysis of ordinal cross-classifications using orthog-
onal polynomials. Biometrical Journal, 39, 589–613.

3. Beh, E. J. (1998). A comparative study of scores for correspondence analysis with ordered
categories. Biometrical Journal, 40, 413–429.

4. Beh, E. J., & Lombardo, R. (2014). Correspondence analysis. Theory, practice and new strate-
gies. Chichester: Wiley.

5. Beh, E. J., & Smith, D. R. (2011). Real world occupational epidemiology. Part 2: A visual
interpretation of statistical significance. Archives of Environmental & Occupational Health,
66, 245–248.

6. Billard, L., & Diday, E. (2006). Symbolic data analysis. Chichester: Wiley.
7. Calimlim, J. F., Wardell, W. M., Cox, C., Lasagna, L., & Sriwatanakul, K. (1982). Analgesic

efficiency of orally Zomipirac sodium. Clinical Pharmacology and Therapeutics, 31, 208.
8. De Leeuw, J. (1988). Multivariate analysis with optimal scaling. In S. Das Gupta & J. K. Ghosh

(Eds.), Proceedings of the International Conference on Advances in Multivariate Statistical
Analysis (pp. 127-160). Calcutta: Indian Statistical Institute.

9. Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.
10. Golub, G. H., & van Loan, C. F. (1996). Matrix computation. Baltimore: Johns Hopkins.



Interval-Valued Scaling of Successive Categories 209

11. Gower, J. C., & Hand, D. J. (1996). Biplots. London: Chapman & Hall.
12. Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London: Aca-

demic Press.
13. Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale

construction. In Horst, P. et al. The Prediction of Personal Adustment, 319-348. New York:
Social Research Council.

14. Hayashi, C., Higuchi, I., & Komazawa, T. (1970). Joho Syori to Tokei Suri (Information pro-
cessings and mathematical statistics). Tokyo: Sangyo Tosyo. (in Japanese).

15. Hill, M. O. (1974). Correspondence analysis: A neglected multivariate method. Applied Statis-
tics, 23, 340–354.

16. Lombardo, R., Beh, E. J., & D’Ambra, L. (2007). Non-symmetric correspondence analysis
with ordinal variables. Computational Statistics and Data Analysis, 52, 566–577.

17. Mair, P., & de Leeuw, J. (2010). A general framework for multivariate analysis with optimal
scaling: The R package aspect. Journal of Statistical Software, 32(9), 1–23.

18. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic
Press.

19. McNair, D. M., Lorr, M., & Droppleman, L. F. (1971). Manual for the profiles of mood states.
San Diego, CA: Educational and Industrial Testing Service.
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Orthonormal Principal Component
Analysis for Categorical Data as a
Transformation of Multiple
Correspondence Analysis

Takashi Murakami

Abstract While multiple correspondence analysis (MCA) is a useful tool to visual-
ize the structure in survey data, there exists a difficulty in displaying a solution beyond
three dimensions. We devised a procedure for interpreting a multidimensional solu-
tion ofMCA based on loadings in a similar way as exploratory factor analysis (EFA).
It is a simple principal component analysis (PCA) of orthonormal quantified variates
derived from categorical variables, which is shown to yield essentially the same solu-
tion as standard MCA. In order to facilitate interpretations, bidirectional rotations
of the weight matrix approximating simple structure, and orthonormal polynomials
for ordered categorical variables are introduced. An illustrative example analyzing
survey data of professional baseball spectators is demonstrated.

1 Introduction

Multiple correspondence analysis (MCA) has been commonly used for analyzing
survey data (e.g., Greenacre [9]). However, it has two serious shortcomings. First,
although it facilitates understandings of data structure through visualization (e.g.,
Gower, Lubbe, & Le Roux [7]), the graphical representation is usually limited to
a two-dimensional surface, and not sufficient to describe the solution consisting of
three or more dimensions. This restriction is rather inconvenient in practical situa-
tions because survey data often involve a large number of variables with divergent
contents, the structure tends to be complex and multidimensional. Second, it is said
thatMCAoften yields some spurious dimensions,which appear in quadratic or higher
order functional forms of the dominating dimension (e.g., Bekker & De Leeuw [1]).
Particularly, the quadratic relation is sometimes called the horseshoe phenomenon
(e.g., Greenacre [8]).

Wewill propose a procedure to cope with the above-mentioned inadequacies. The
main strategy is to introduce the loadings of the locally quantified variates defined
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for each categorical variable on quantified variables obtained by standard MCA, and
a special rotation method attaining the simple structure. As a result, clues for inter-
preting output of MCA are shifted to loadings on multiple axes from configurations
on a plane. In addition, orthogonal polynomials will be used to quantify categories
of ordered categorical variables. This metric quantification together with the rotation
may not only make interpretations easier but assist to detach the spurious variations
as ignorable axes.

These modifications of theMCA solution are shown not to change its contribution
to the total variance, and computed quantified scores. In other words, the method
developed heremakes it possible to interpret theMCA solution in a similarmanner of
principal component analysis (PCA),which approximates exploratory factor analysis
(EFA).

In the following sections, the process of transformation from MCA to PCA is
explained in detail, and an illustrative example using real data is demonstrated.

2 MCA and Transformations of the Solution

2.1 The Basic Formulation and the Algorithm of MCA

Let us consider an n (respondents) by p (categorical variables) data matrix X. Let xk
be a k-th column of X, and Gk be an n×ck indicator matrix for variable k defined as

gi jk =
{
1 if xik = j
0 otherwise

(1)

where ck is the number of categories of variable k. We assume that categories are
coded by an integer sequence, and there is no empty category. Define

c= c1 + c2 + . . . + cp

and assume n�c. If we define an n×c indicator matrix as

G = [
G1 G2 . . . G p

]
(2)

then the basic formula of MCA can be written as

F = GV , (3)

where1 V is a c × r matrix of quantifications, F is an n × r matrix of quantified
variables, and r is the (in principle) prespecified number of dimensions. We will

1In the standard formulation of MCA (e.g., Greenacre [9]), the right-hand side is divided by
√
p,

but we omitted it to transform MCA into PCA-form naturally.
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employ the maximization of n−1tr (F
′
F) as the criterion to be optimized.2 A natural

formulation of the problem to be solved may be to maximize

φ (V | G) = n−1tr (V
′
G

′
GV ) (4)

subject to
n−1V

′
DV= I r (5)

where D = diag(G
′
G) is a c × c diagonal matrix, elements of which are response

frequencies for total categories, and I r is the r × r identity matrix. Note that
1

′
cD1c = np, where 1c is an n-dimensional vector, all elements of which are unity.
While some algorithms obtaining the optimal V are known, we will use the eigen-

value decomposition of a positive semi-definite matrix. Let us define

B = D−1/2G
′
GD−1/2 (6)

which is called the normalized Burt matrix (Gower & Hand [6]).
The rank of B is atmost c − p + 1becauseG

′
k1ck = 1n for every k. The eigenvalue

decomposition of B may be written as

B = [
k0 K

] [
λ0 0

′

0 Λ

] [
k

′
0

K
′

]
= λ0k0k

′
0 + KΛK

′
(7)

where λ0 is the largest eigenvalue of B, k0 is the corresponding c-dimensional eigen-
vector of unit length,Λ is the (c − p) × (c − p) diagonal matrix of remaining eigen-
values, and K is the c × (c − p) corresponding unit-length eigenvector matrix. The
p − 1 zero eigenvalues and the corresponding eigenvectors are omitted in (7). If all
the elements ofΛ is arranged in the descending order, we can assume that they are all
distinct from each other, λ1 > λ2 > . . . > λc−p. Hence the matrix K is orthonormal,
K

′
K = I c−p, and uniquely determined up to signs.
It was shown that λ0 = p, and that this is always larger than remaining eigen-

values of B (Gower & Hand [6, p. 55]). The corresponding eigenvector k0 is the
c-dimensional vector being proportional to the square roots of response frequencies
of all categories,

k0 = (pn)−1/2D1/21c

which can be easily confirmed by postmultiplying B by k0. The set of the largest
eigenvalue and the corresponding eigenvector is called the trivial solution, which
conveys no meaningful information, and must be ignored (e.g., Greenacre [8]).

The quantification matrix is defined as

V = n1/2D
−1/2

K r (8)

2The formulation of maximization is of course easily shown to be equivalent to least squares
(e.g., Ten Berge [16]).
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where K r is the matrix of the eigenvectors corresponding to the r largest eigenval-
ues, Λr .

Defining v0 = n1/2D−1/2k0 according to (8), we obtain f 0 = Gv0 = p1n . This
is just the trivial solution, but due to the property, we know that all columns of
F are centered, F

′
1n = 0r , because F

′
f 0 = V

′
G

′
Gv0 = K

′
r Bk0 = pK

′
r k0 = 0r

using (6) and (7).
Hence, the criterion to be maximized n−1tr(F

′
F) is interpreted as the sum of

variances rather than just the mean sum of squares, and we can evaluate the relative
size of contribution of r quantified variables (Greenacre [9]) by

(c − p)−1φ (V | G) = (c − p)−1tr (Λr ).

2.2 The Decomposition of Quantifications

Let us begin by noting a property of MCA solution, which is important for our
purpose. If we define the local quantified variables as

Fk = GkV k (9)

where V k is ck × r submatrix of V = [
V 1

′ V 2
′ . . . V p

′ ] ′, then Fk is just a sum-
mand of the quantified variables such as

F = F1 + F2 + . . . + F p

Let us call F obtained by (3) the global quantified variables to distinct it from the
local quantified variables defined in (9).

Then, all the local quantified variables are centered,

F
′
k1n = 0r (10)

as was shown by Gower and Hand [6, p. 60] (also see Appendix of the present
chapter). This property has been scarcely mentioned in the literature, but will play
the central role in our formulation.

Now, let us decompose V k into the product of two matrices as

V k = UkW k (11)

where Uk is a ck × mk matrix of quantifications, W k is an mk × r matrix of
weights, mk = min (ck − 1, r), and define m = m1 + m2 + . . . + mp. If we define
dk = Gk1n, U k may be necessarily centered owing to (10) because

W
′
kU

′
kdk = V

′
kG

′
k1n = F

′
k1n = 0mk
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This formula looks only insisting that themk-dimensional vectorU
′
kdk is orthogonal

to all the vectors in W k , but
U

′
kdk = 0mk (12)

holds almost certainly in real data, where n � c, becauseW k has at leastmk linearly
independent (row) vectors, and no non-null vector in mk-dimensional space can be
orthogonal to all of them simultaneously.

In addition, we will constrain Uk to be orthonormal in the sense that

n−1U
′
kDkUk = Imk (13)

where Dk = G
′
kGk= diag dk is a ck × ck diagonal matrix. Note that D = diag(

D1, D2, . . . , D p
)
. If we define a c × m block diagonal matrix, U = diag (U1,

U2, . . . , U p
)
, and using (13), we obtain n−1U

′
DU = Im. Thus, we know that

W = [
W

′
1 W

′
2 . . . W

′
p

] ′ is orthonormal since

W
′
W = n−1W

′
U

′
DUW = n−1V

′
DV = I r

Now let us define a matrix of scores for each variable,

Zk = GkUk (14)

Owing to the constraints of (12) and (13), Zk is also centered and orthonormal,

Z
′
k1n = 0mk and n−1Z

′
kZk=Imk

Next, define Z = [
Z1

′ Z2
′ . . . Z p

′ ]′
, and compute the following matrix,

R = n−1Z
′
Z =

⎡
⎢⎢⎢⎣

I c1−1 R12

R21 I c2−1

. . . R1p

. . . R2p
...

...

R p1 R p2

. . .
...

. . . I cp−1

⎤
⎥⎥⎥⎦ (15)

which is an m × m matrix of correlations, and is also written as R = n−1U ′G′GU .
Therefore,

W
′
RW = n−1V

′
D1/2BD1/2V = K

′
r Bkr = Λr (16)

which means W consists of eigenvectors corresponding to the largest r eigenvalues
of R. Then, the matrix of (global) quantified variables can be written as

F = ZW
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and the criterion of maximization is to be

n−1tr (F
′
F) = tr (W ′RW) (17)

subject to W ′W = I r , which is PCA of Z (e.g., Ten Berge [16]). In other words, the
r largest eigenvalues of R are the same as that of normalized Burt matrixB except for
the one corresponding to the trivial solution, and principal component scores, F =
ZW = GV , agree with (global) quantified variables.

One may consider that the formulation above is practically meaningless because
Z is not given without MCA solution V . However, by considering an additional
indeterminacy of Uk and W k , PCA will be understood as a tool not depending on
the MCA solution.

2.3 Indeterminacies in Local Quantifications

Let T be an arbitrary r × r orthogonal matrix (TT
′ = I r = T

′
T ), which does

not change the maximization criterion because tr(TV
′
G

′
GVT

′
)= tr(V

′
G

′
GV )=

ntr(Λr). Thus V k = UkW k has indeterminacy of orthogonal rotation from right-
hand side.

There exists another indeterminacy in decomposition of (11). By defining Sk as
an mk×mk orthogonal matrix, U kW k = U kSkS

′
kW k . This means that W k has the

possibility of bidirectional orthogonal rotations S
′
kW kT . This “double indetermi-

nacy” will be able to be used to obtain high simplicity facilitating interpretations as
will be discussed in Sect. 3.4.

Moreover, the indeterminacy is extended to a limit. Consider the condition where
r ≥ ck for every k. Then (12) insists that Uk exists in the (ck − 1)-dimensional
orthogonal complement of dk because the condition r ≥ ck means thatmk = ck − 1,
hence ck − 1 vectors, columns of U kSk , are entirely arbitrary because any set of
vectors satisfying (12) and (13) spans the orthogonal complement of dk , and it reaches
any other set of vectors in the space by orthogonal transformation (Murakami [15]).

Then, does any R defined by arbitrary Uk have the same eigenvalues of B con-
versely, even in cases of r<ck? We will show the answer in the next section.

3 Orthonormal Principal Component Analysis

3.1 Terminologies for Introducing PCA Formulation

Before explaining the derivation of the procedure, we will mention some terminolo-
gies to avoid possible confusions. Uk has been called a matrix of quantification
without any appropriate alternatives although their sizes and constraints are different
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from those of V k . Columns of Zk in (14) defined by a quantification matrix will
be called variates to distinct from variables, xk . When quantified by orthonormal
polynomials introduced in Sect. 3.5, their columns are referred to as a linear variate,
a quadratic variate, and so on.W and F are called the matrix of (component)weights
and of (component) scores, respectively, according to the tradition of PCA although
F is equivalent to (global) quantified variables in MCA. Finally, we will call PCA
of R defined in (15) orthonormal PCA, or OPCA hereafter.

3.2 Arbitrary Quantifications to Categories

Let us begin with a method to obtain a ck× (ck−1) quantification matrix, Uk,

satisfying both (12) and (13) simultaneously. We will employ QR factorings as

D1/2
k

[
1ck Pk

] = [
q0k Qk

]
�k (18)

where Pk is a ck × (ck − 1) matrix of random or specified numbers,
[
q0k Qk

]
is

the ck × ck orthogonal matrix, q0k = n−1/2D1/2
k 1ck , and Σk is also the ck × ck upper

triangular matrix. Then, the matrix of quantification,

U k = n1/2D−1/2
k Qk (19)

may satisfy the required conditions because U
′
kdk = n1/2Q

′
kD

1/2
k 1ck = nQ

′
kq0k =

0ck−1, and n−1U
′
kDkUk = Q

′
k Qk = I ck−1. Note that 1

′
ck Dk1ck = n.

While other procedures of orthogonalization also attain the same purpose in cases
where random numbers are given to Pk , the use of QR factorization (or its equiv-
alence, Gram–Schmidt orthogonalization) may be compulsory for a specified Pk ,
e.g., by polynomials discussed in Sect. 3.5 because the order of orthonormalization
is essential. If p1k consists of an arithmetic sequence as in (24), ( j = 1), the property
must be kept in q1k , which is the vector of quantification for a linear variate.

3.3 Equivalence of OPCA to MCA

We will show that PCA of Z = GU yields essentially the same solution as MCA.
Let us define a c × p matrix, J = diag

(
1c1 , 1c2 , . . . , 1cp

)
, and G

[
J U

] =[
1n1

′
p Z

]
. Then, compute the c × c mean cross product matrix,

R+ = n−1

[
1p1

′
n

Z′

] [
1n1

′
p Z

]
=

[
1p1

′
p O ′

O R

]
(20)
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where O is a p × (c − p) null matrix. The eigenvalue decomposition of R+ may be
written as

R+ =
[
p−1/21p O
0c−p L

] [
p 0

′
c−p

0c−p Δ

] [
p−1/21

′
p 0

′
c−p

O ′ L′

]
(21)

due to the fact that the only nonzero eigenvalue of 1p1
′
p is p. We also assumed that

R = LΔL
′
, where Δ is the (c − p) × (c − p) diagonal matrix of eigenvalues and

L is an orthogonal matrix of the corresponding eigenvectors.
Now let us define U+ = n−1/2D1/2

[
J U

]
, which is a c × c orthogonal matrix

(U+′
U+ = I c = U+U+′

) owing to 1
′
cD1c = n, and (13). Then,

R+ = U+′
D−1/2G

′
GD−1/2U+ = U+′

BU+. (22)

Obviously R+ has the same eigenvalues as B, and the corresponding eigenvectors
are in U+′ [ k0 K

]
.

[
k0 K

] = U+
[
p−1/21p O
0c−p L

]
= [

n−1/2D1/21c U L
]

Thus, we have shown that Δ = Λ and UL = K . Hence, the eigen decomposition
of R defined by any arbitrary U results in MCA with the same contribution, and
principal component scores, F = ZW , agree with the quantified scores of MCA
up to orthogonal rotation.

3.4 Rotation Problem

Since the equivalence of the two methods, MCA and OPCA, has been shown even
in cases of r<ck , we will concentrate on OPCA hereafter.

By any arbitrary ck×(ck−1) centered and orthonormal quantification matrix
Uk , we obtain an n× (ck−1) orthonormal variates Zkfor variable k, compute the
(c−p)×(c−p) correlation matrix R, and by eigenvalue decomposition of R, we
have W , the matrix of eigenvectors corresponding to the largest r eigenvalues, Λr .

However, although any randomnumbers transformed to satisfy (12) and (13) yield
essentially the same solutions, the interpretable result may not be obtained without
rotations approximating simple structure. In other words, we must determine the
solution uniquely through rotations.

The simple structure makes it possible to interpret the solution axis-by-axis sepa-
rately.Although a similar goalmay be pursued by differentmethods as in the common
use of EFA, our rotation procedure has some special characteristics. First, rotated is
the matrix of weights rather than of loadings. Second, rotation is done not only from
the right-hand side of the matrix by T as usual but also from the left-hand side by
S

′
k as was mentioned in Sect. 2.3.
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The rotation of the orthonormal weights from the right-hand side coincides with
the independent cluster rotation, a case 2 of “oblique rotation by orthogonal rotation”
proposed byHarris and Kaiser [11]. The transformationmatrix T itself is orthogonal,
but rotated component scores F may be mutually correlated because their variances
are not equal to each other.

Independent cluster rotation has three interesting properties. First, the loadings,
standardized partial regression coefficients of each variate on all components, are
column-wisely proportional to component weights such as

A = Ẅ
[
diag

(
T ′ΛrT

)] 1
2 (23)

where Ẅ = [
W

′
1S1 W

′
2S2 . . . W

′
pSp

]′
T . Second, the column sum of squares

coincides with the contribution of the dimension because A
′
A = diag (T

′
ΛrT ),

which does not hold in other oblique rotations (Murakami [15]). Third, if we employ
following orthomax family (Crawford & Ferguson [3]) as the criterion,

p∑
k=1

ck∑
j=1

r∑
l=1

ẅ4
jkl − γ

p

⎛
⎝ p∑

k=1

ck∑
j=1

r∑
l=1

ẅ2
jkl

⎞
⎠

2

where γ is a specified positive constant, they are reduced to the simplest quartimax,
the first term of the above formula, owing to that the second term is constant due to

Ẅ
′
Ẅ = I r unless the row-normalization is done (Harris & Kaiser [11]).
Hence rotations from the right-hand side, WT, and from the left-hand side,

W
′
kSk (k = 1, . . . , p), are alternated until convergence. The convergence is guar-

anteed because the alternating process is apparently monotonic.

3.5 Use of Orthogonal Polynomials for Ordered Categorical
Variables

If a set of loadings approximating simple structure is obtained, onemay notice that the
interpretations are not necessarily easy. Meanings of variables in the usual PCA can
easily be understood because analyzed variables are unidimensional quantity. The
user of OPCA, on the contrary, may encounter difficulties to recognize the meaning
of variates because they are multidimensional, and one cannot know the values given
to each category without referring to elements of the matrix of quantification, UkSk .
It must be too laborious to do so for all the variates.

For the remedy of the drawback, wewill recommend applying orthogonal polyno-
mials to ordered categorical variables. Before applyingQR factoring, (18), arithmetic
sequence and its powers may be given to columns of Pk as

p jk =
[
1 j 2 j . . . c j

k

]
′ j = 1, . . . , ck − 1 (24)
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As a result, the first and second columns of Qk becomes the centered and normal-
ized linear function of the category numbers, and the quadratic function, centered,
normalized and orthogonal with the first, and so on. Columns of Uk defined by (19)
are so called weighted orthonormal polynomials (e.g., Kimball [13]). In this case, of
course, rotation from left-hand side must not be applied.

For binary variables, Uk is reduced to a vector of two elements, and only simple
centering and normalization are sufficient to satisfy (12) and (13).

4 Illustrative Example

4.1 Analyzed Data and MCA Solution

Data set to be analyzed A set of survey data was collected from the spectators of
Japanese professional baseball game held in a stadium in the central district of Japan
on May 18, 2016. The survey was done as a practice of undergraduate students.
While respondents filled the fully structured inventory consisting of 51 questions,
only 15 items shown in Table1 are used for the example.

The number of respondents (n) is equal to 738 (223 cases including missing
values were excluded3), and the total numbers of categories (c) is 60. Items used
here were assembled or written based on the common sense of social survey asking,
e.g., demographic attributes, and preferences, habits, and behavior in spectating a
professional baseball game. Somewhat special items are three questions (no. 5–7)
on identification to a supporting team (“Team identification” in Table1), which were
quoted from an article on the post-disaster social well-being (Inoue, Func, Wann,
Yoshida, & Nakazawa [12]) with some modifications (See Footnotes of Table1).
They are Likert-type items which are popular in psychological research.

Solution of MCA We computed eigenvalues of 60×60 normalized Burt matrix
defined in (6). The largest 30 eigenvalues except for the trivial solution is shown
in Fig. 1. Although 18 eigenvalues are beyond unity, it seems to be too large as
interpretable dimensions.

While the decision of the number of components will be discussed in detail later,
we will demonstrate the two-dimensional biplot (Gower et al. [7]), a simultaneous
representation of both quantifications of categories, and quantified scores of respon-
dents in Fig. 2. To avoid excessive complicatedness caused by concentrations ofmany
category points surrounding the origin in the limited space, only category points of
Items 3, 5, 6, 7, and 15 are shown.

A typical “horseshoe” is formed by category points of Likert-type items 5, 6, and
7, and the configuration of quantified scores of respondents. This suggests that three
items share overwhelming large amount of commonvariations because the statements

3The unusual numbers of missing values were mainly caused by misunderstandings that only one
of three Likert-type items should be responded.
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Table 1 Analyzed questionnaire items and response frequencies for each category

Item Freq. Item Freq.

1 Gender 8 Fan club

Male 504 Member 202

Female 234 Interests 152

2 Age level No interests 307

–19 years old 69 Withdrawn 77

20–29 176 9 Traveling time to Stadium

30–39 118 –29min. 40

40–49 165 30–59 129

50–59 104 60 230

60– 106 61–120 136

3 Interests in professional baseball 121–180 135

Best of all sports (3–1)a 499 181– 68

Equal to some others (3–2) 184 10 Watching at Stadium so far

Less than some others (3–3) 55 First time today 86

4 Supporting team 1–2 times 70

Home team 389 3–5 148

Neither/nor 95 6–10 143

Visitor 254 11– 291

5 Identification 1a 11 Accompanying persons

Agree (5–1) 367 Alone 63

Mildly agree (5–2) 243 Family 293

Neither/nor (5–3) 87 Friend(s) 245

Mildly disagree (5–4) 15 Partner 46

Disagree (5–5) 26 Colleague(s) 74

6 Identification 2b Other(s) 17

Agree (6–1) 290

Mildly agree (6–2) 201 Looking forwarde

Neither/nor (6–3) 186 12 Victory of supporting team 506

Mildly disagree (6–4) 28 13 Seeing favorite players 198

Disagree (6–5) 33 14 Exciting feelings 381

7 Identification 3c

Agree (7–1) 235 15 Satisfaction with watching

Mildly agree (7–2) 197 Satisfied (15–1) 172

Neither/nor (7–3) 209 Mildly satisfied (15–2) 391

Mildly disagree (7–4) 41 Neither/nor (15–3) 128

Disagree (7–5) 56 (Mildly) unsatisfiedf 47
aNumbers in parentheses are symbols in Fig. 2. Ibid
bI consider myself to be a real fan of the team’
c‘Being a fan of the team is very important to me’
d‘Being a fan of the team is a reason for my life’
e‘What do you expect in watching the game today?’ (followed by a checklist consisting 11 items)
fTwo alternatives were merged. The symbol in Fig. 2 is 15–4
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Fig. 1 Scree plot of the
normalized Burt matrix. Two
arrows directing points
before noticeable gaps give
clues to decide the number of
components of OPCA

Fig. 2 Biplot demonstrating
first two dimensions of
MCA. Thin dots denote
component scores

are very similar to each other. No one may be able to say that the two-dimensional
solution in Fig. 2 represents information included in data fully.

4.2 Solution of OPCA

Coding of categories Integer sequences as in (24) are given to categories of items
except for Item 8 and 11, which are treated as unordered categorical variables.
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Fig. 3 Orthonormal
polynomials, linear,
quadratic, and cubic
functions, applied to two
items, “Team identification
I” (dashed lines), and “Team
identifications III” (solid
lines)

The ck−1 variates satisfying (12) and (13) were generated for each item. Figure3
shows linear, quadratic, and cubic variates of Item 5 and 7 as an illustration. Forms of
lines of the same degree are slightly different from each other due to the differences
in the response rates of categories.

In coding the ordered categories, orders of codes are important. The general
rule employed here is that descending sequences are given from categories with the
positive meaning to with the negative. For example, code “5” is given to “agree”, and
“1” to “disagree” in Item 5 and 7 aswas seen in Fig. 3, where the larger numbersmean
the stronger identification. Similarly, “Best of all sports” in Item 3, “Home team” in
Item 6, and “Satisfied” in Item 15 are given the largest integers, respectively. On the
other hand, ascending sequences were given to items asking the number of times, and
the length of time, Item 2, 9, and 10. For binary items, directions are also important.
“Female” in Item 1, and “Checked” in 12–14 were defined as positive. Categories
of Item 8 and 11, unordered categorical variables, were given uniformly distributed
random numbers in the interval (0,1). Rotated quantification matrices for these two
items will be shown in Tables4 and 5.

Patternmatrix The patternmatrix of 45 variates on 9 components by (23) is shown
in Table2. A notation in row headers, “x.y”, denotes number of the item correspond-
ing to Table1, 1≤x≤15, and the orthonormal variate, y, so e.g. 7.3 denotes the cubic
variate of Item 7. Components I–IX are arranged according to their contributions.
The number of components, 9, was decided by bootstrap sampling explained in the
next division. The solution explained about 38.1% of the total variance, 45.0.

All hashed rows and columns in Table2 will be omitted in interpretations. The
second to fourth columns are hashed because salient loadings on the components are
all quadratic, cubic, and quantic variates, suggesting that they are spurious. Rows
whichhaveno significant loadingswill also be ignored in the interpretations.Decision
of significance of coefficients was done based on bootstrap sampling.
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Fig. 4 Box plot of six
interpretable components

Bootstrap sampling MCA and PCA in psychological use have been often called
descriptive multivariate analysis, and inferential statistical tools have been scarcely
developed. However, we wish some significance testing to choose loadings referred
to in interpretations. In the situation where sampling distributions of estimated coef-
ficients are not easily obtained, the bootstrap method would be useful (Efron &
Tibshirani [5]). We employed the Procrustes bootstrap method for PCA developed
by Timmerman, Kiers, and Smilde [17].

Two thousand samples are obtained, the meanM and the standard deviation (stan-
dard error) se was computed for each loading, and z = M/se was used for the decision
of significance. The decision was done in two stages. In both stages, the absolute
value of z is compared with the upper limit of the standard normal distribution z(α/2).
In the first stage, multiplicity is considered, hence a was set to be 0.05 divided by
the number of loadings, r(c − p) in the manner of Bonferroni. In the second stage,
the simple α = 0.05 was used. Two criteria are distinguished by different printing
types in Table2. (see footnotes).

Only two solutions, r = 7 and r = 9 were compared by referring to Fig. 1. While
two components with no significant loadings existed in the 7-component solution
even in simple 5% level probably due to intrusion of variations from components
corresponding to smaller eigenvalues, all components of 9-components solution have
at least two significant loadings even considering multiplicity. We will demonstrate
and interpret the 9-component solution hereafter.

By omitting hashed rows and columns, 45 variates and 9 components in Table2
were reduced to 26 and 6 in Table3, and loadings that are not significant were not
displayed. As a result, interpretations of components became rather easy.
Figure4 is a box plot of interpretable six component scores. Components except for
VI are skewed negatively. Especially, skewness of Component I is remarkable.
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Table 2 Pattern matrix of total variates and components

Variate Component

I II III IV V VI VII VIII IX
1 –0.19 0.07 0.08 –0.06 0.02 0.17 0.65 0.07 –0.05 0.48

2.1 0.04 0.00 0.02 –0.04 0.05 0.05 0.02 0.71 0.06 0.52
2.2 –0.02 0.00 –0.04 0.00 –0.04 –0.04 0.07 –0.03 –0.67 0.47
2.3 –0.04 –0.13 0.12 –0.04 –0.05 –0.13 0.06 –0.23 0.22 0.16
2.4 0.13 –0.08 0.18 –0.10 0.02 –0.20 –0.03 0.15 –0.10 0.12
2.5 –0.05 0.03 0.08 –0.08 0.17 0.20 –0.06 –0.21 –0.07 0.13
3.1 0.50 0.09 –0.04 –0.02 0.07 0.16 –0.07 –0.12 –0.04 0.35
3.2 0.02 0.15 0.01 0.15 0.00 –0.18 0.17 –0.11 0.02 0.12
4.1 –0.24 0.03 0.03 0.09 0.62 –0.01 –0.09 0.09 –0.13 0.44
4.2 –0.15 –0.01 –0.01 0.06 –0.22 –0.18 –0.24 0.13 0.02 0.22
5.1 0.87 0.09 0.07 0.01 0.01 –0.03 –0.05 0.08 0.02 0.77
5.2 –0.06 0.85 0.06 0.03 0.04 0.04 0.01 –0.04 0.03 0.74
5.3 0.02 –0.03 0.74 0.04 –0.03 0.01 0.08 –0.05 –0.04 0.56
5.4 0.02 0.01 0.02 0.71 –0.04 0.00 –0.05 0.02 –0.06 0.52
6.1 0.90 –0.02 0.02 0.03 –0.04 –0.01 –0.02 0.04 0.05 0.80
6.2 0.03 0.90 0.01 0.00 0.01 –0.02 –0.01 0.01 –0.02 0.81
6.3 0.02 0.00 0.81 0.00 0.01 0.00 0.01 –0.05 0.00 0.66
6.4 –0.01 –0.03 0.00 0.78 0.04 –0.02 0.07 –0.05 0.03 0.61
7.1 0.86 –0.04 0.01 –0.02 –0.05 0.04 –0.07 0.02 –0.02 0.74
7.2 0.06 0.82 –0.06 –0.04 –0.06 –0.04 0.01 0.04 0.04 0.70
7.3 0.03 0.05 0.73 –0.01 0.00 –0.02 –0.04 0.08 0.03 0.55
7.4 0.01 0.02 0.01 0.70 0.04 0.05 –0.07 0.04 –0.01 0.50
8.1 0.05 –0.03 0.02 –0.04 0.04 0.68 0.15 0.11 –0.02 0.53
8.2 –0.28 0.08 0.07 0.02 –0.40 –0.01 0.09 0.12 –0.19 0.34
8.3 0.25 0.04 –0.13 0.02 0.02 0.00 0.22 –0.25 –0.03 0.20
9.1 0.21 –0.06 0.04 –0.03 –0.58 0.12 –0.10 0.15 –0.05 0.38
9.2 0.03 –0.06 –0.04 0.12 –0.19 0.34 –0.02 –0.11 0.22 0.22
9.3 0.03 –0.04 0.14 0.00 –0.01 0.11 –0.01 –0.05 0.15 0.06
9.4 0.03 0.10 0.00 –0.03 0.02 0.12 0.03 0.05 –0.18 0.06
9.5 0.09 –0.04 –0.08 0.03 0.03 –0.15 0.10 0.14 0.19 0.10

10.1 0.16 –0.04 –0.01 –0.01 0.71 0.05 0.02 0.06 0.06 0.59
10.2 –0.04 0.05 0.05 0.04 0.05 0.38 –0.11 –0.11 0.13 0.19
10.3 –0.03 –0.07 0.02 –0.04 0.18 0.02 –0.07 –0.10 –0.22 0.11
10.4 0.08 0.10 –0.11 –0.13 –0.05 0.01 –0.07 –0.14 –0.17 0.10
11.1 0.06 0.00 –0.07 0.04 –0.03 0.02 0.04 0.69 –0.07 0.49
11.2 0.05 0.06 –0.08 –0.07 –0.01 –0.06 0.00 –0.05 0.62 0.41
11.3 –0.09 –0.03 0.01 –0.01 0.02 –0.01 0.63 0.03 0.00 0.40
11.4 0.01 –0.02 –0.08 0.11 –0.08 0.57 –0.01 0.01 –0.04 0.34
11.5 –0.02 0.09 0.07 –0.06 0.03 0.00 0.00 0.00 0.00 0.02
12 0.39 –0.05 –0.01 –0.09 0.22 0.16 0.21 –0.02 –0.09 0.37
13 0.22 –0.04 –0.06 0.07 –0.13 –0.04 0.48 –0.02 –0.09 0.31
14 0.18 –0.12 –0.03 0.04 0.04 –0.25 0.32 –0.03 0.22 0.23

15.1 0.27 0.00 –0.07 0.07 – 0.13 –0.27 0.17 –0.21 –0.27 0.30
15.2 –0.16 0.07 0.00 0.04 –0.07 0.00 0.29 0.07 0.31 0.23
15.3 –0.13 –0.02 0.02 –0.06 –0.24 0.27 –0.02 –0.20 –0.01 0.18
Con. 3.30 2.38 1.92 1.75 1.72 1.58 1.57 1.46 1.46 17.10

* Bold typed figures denote significance at 5% level considering multiplicity. Italicized denotes simple 

5% level.
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Table 3 Pattern matrix of selected components and variates

Variate Component

I V VI VII VIII IX

1. Gender (+Female) −0.19 0.65

2.1 Age (Linear) 0.71

2.2 (Quadratic) −0.67

3. Interests in pro. baseball (Linear) 0.50

4.1 Supporting team (Linear) −0.24 0.62

4.2 (Quadratic) −0.15 −0.22 −0.24

5. Team identification 1 (Linear) 0.87

6. Team identification 2 (Linear) 0.90

7. Team identification 3 (Linear) 0.86

8.1 Fan club (Strong loyalty) 0.68 0.15

8.2 (Floating loyalty) −0.28 0.40

8.3 (Weak loyalty) 0.25 0.22 −0.25

9.1 Traveling time to Stadium (Linear) 0.21 −0.58

9.2 (Quadratic) 0.34

10.1 Watching in Stadium (Linear) 0.16 0.71

10.2 (Quadratic) 0.38

11.1 Accompanying persons (Family) 0.69

11.2 (Official) 0.62

11.3 (Private) 0.63

11.4 (Alone) 0.57

12. Victory of supporting team 0.39 0.16 0.21

13. Seeing favorite players 0.22 0.48

14. Exciting feelings 0.18 0.32

15.1 Satisfaction (Linear) 0.27 0.17 −0.27

15.2 (Quadratic) −0.16 0.31

15.3 (Cubic) −0.24

Bold typed figures are significant in 5% level considering multiplicity. Italicized are in simple 5%
Item 8 and 11 are unordered categorical variables. Item 1, 12, 13, and 14 are binary variables.

4.3 Interpretations of OPCA Solution

Definitions of variates preserved for interpretations are shown in row headers in
Table3. For example, “Age (quadratic)” means that the variate is an upward concave
function of 6 age stages given in Table1, and “Supporting team (linear)” the variate is
an equal-interval descending function of “Home team”—“Neither/nor”—“Visitor.”
Tables4 and 5 show rotated quantifications of unordered items, the relationship with
“Joining fan club” and “Persons accompanyingwith”, respectively.Names of variates
written in row headers were given based on categories with large absolute values.
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Table 4 Numbers of categories in variable 8 (Joining fan clubs) for three variates

Variates Category

Member Interests No interests Withdrawn

8.1 Fan club (Strong loyalty) 1.51 −0.48 −0.35 −1.62

8.2 (Floating loyalty) 0.60 −0.35 −0.82 2.38

8.3 (Weak loyalty) −0.03 1.87 −0.78 −0.51

Frequency 202 152 307 77

Table 5 Numbers of categories in variable 11 (persons accompanying with) for 4 variates

Variates Category

Alone Family Friends Partner Colleagues Other

11.1 Accompanying (Family) −0.03 0.94 −0.66 −2.79 0.38 −0.59

11.2 (Official) 1.41 −0.03 −1.09 1.67 1.61 −0.39

11.3 (Private) −1.34 0.74 −0.36 2.02 −1.19 −2.88

11.4 (Alone) 2.53 0.11 −0.13 −0.10 −2.10 0.04

Frequency 63 293 245 46 74 17

Some figures in Tables4 and 5 are bold typed considering the differences of
response rates because rarely responded categories tend to be given extreme values
even though the choice is more or less subjective.

Component I is characterized by very high loadings of three “Team identification”
items. Interests in professional baseball and expectation for seeing “Victory of the
supporting team” also have high loadings. Large negative skewness (−0.96) means
that these features are shared by many spectators in Stadium. A low negative loading
of “Supporting team” suggests that supporters of Visitor have rather stronger team
identification than Home team supporters.

On the contrary, Component V represents the characteristics of Home team sup-
porters. They have often watched games in Stadium, and live in the relatively close
districts from Stadium. It is natural that skewness of the score is −0.24 because sup-
porters of Home team are majority of spectators. Relationships between Component
I and V are shown in the left panel of Fig. 5. Relative concentration of respondents
on the north-east region reflects the skewness of both components.

Respondents whose scores on Component VI are high seem to have a strong
loyalty to their supporting teams by judging from large loadings of the first variate
on “Fan club”. In addition, they tend to watch games alone, and mild loadings of
quadratic variates of “Supporting teams”, “Traveling time to Stadium”, and times
of “Watching games in Stadium” suggest that about half of respondents with these
properties live in the districts where Visitor locates. The horseshoe-like (but not
an artifact) distribution with Component V, shown in the right panel of Fig. 5, also
reflects the same tendency. Rather large positive skewness (0.37) suggests that those
who have strong loyalty to supporting teams belong to a relatively minor group.
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Fig. 5 Left panel: The relationship between Component I (supporters in general) and V (Home
team supporters). Both components are skewed negatively, and slightly correlated (0.16). Right
panel: The relation between Component V and VI (Strong loyalty). Almost no correlation (−0.09),
but horseshoe-like relationship is found. The form of distribution may not be an artifact because
there must be supporters with strong loyalty in enthusiastic fans of both Home team and Visitor

Component VII relates to gender differences. Female respondents tend to watch
games with familiar persons, family members or the partner. They seem to have
stronger interests in some favorite players rather than the result of a game. The
distribution of this component is almost symmetric (skewness = −0.07).

Remaining two components are related with the linear function (Component VIII)
and the quadratic function (Component IX) of age, respectively. The former shows
that the tendency watching games with family members grows with age. The latter
means that middle-age spectators tend to visit Stadium with colleagues, and the
mild loading of the quadratic variates of Satisfaction suggests the U-shaped relation
between age and satisfaction, which is repeatedly confirmed in broad contexts (e.g.,
Blanchflower & Oswald [2]) and not an artifact again. Since both components skew
negatively, (skewnesses are −0.41 and −0.34, respectively), characteristics related
to these two components are owned by majority groups.

OPCA has found 6 dimensions, most of which combine attitudes and habits on
professional baseball with demographic variables. One may agree with the fact that
the dimensions convey more information on individual differences among spectators
than the graphical representation obtained by standard MCA (Fig. 2).

Giulianotti [10], for example, classifies football spectators in United Kingdom
into four types, Supporters, Followers, Fans, and Flaneurs based on two assumed
dimensions, “Traditional–Consumer” and “Hot–Cool”. Our six-dimensional con-
figuration seems to conceptualize more concrete and sound taxonomy of baseball
spectators in Japan based on empirical facts.



Orthonormal Principal Component Analysis for Categorical Data … 229

5 Discussion

Wehave devised PCA for categorical data, which is essentially equivalent to standard
MCA. Although decomposition (11), which is the bridge of MCA and PCA, may be
regarded as introducing superfluous complexity to analyses of categorical data, PCA
of derived orthonormal variates (OPCA) can be expected to yield an interpretable
multidimensional solution by the aid of rotation approximating simple structure and
orthonormal polynomials, as was shown in the illustrative example.

The signs of coefficients sometimes cause confusions in interpretations. Although
we pointed out the importance of coding orders in Sect. 4.2, routines of QR factoring
and of eigenvalue decomposition have usually no rule to determine the signs of
columns of Qk and eigenvectors. In fact, signs of Qk can be determined uniquely
by making all diagonal elements of �k positive, but it is difficult to determine the
direction of quantifications in unordered categorical variables as long as random
numbers are used as initial values. Careful treatment of signs is inevitable.

When the number of categories is so large that ck − 1 > r , the number of variates
of variable k can be reduced to r. In our experience, simple quartimax rotation from
left-hand side works well to do so by creating a null matrix in Ẅ k . But preliminary
dimension reduction procedure would be, of course, available.

Another well-known method to treat categorical data in a similar way of EFA
is nonlinear PCA (NCA; e.g., De Leeuw [4]). It yields a p× r loading submatrix
of the same size as ordinary EFA by imposing “rank-one restriction” (Bekker &
De Leeuw [1]) on each variable. However, it seems to be common for categorical
variables to have meaningful variations in two or more dimensions as was shown in
our example. Although methods giving the different numbers of quantifications for
different variables can be developed, it may be too complicated to decide the number
for each variable individually. Hence, OPCA proposed here would gain convenience,
which gives full-rank quantification to all variables, and the user removes spurious
dimensions and variates in the stage of interpretations. Moreover, the method does
not require any special algorithm beyond simple decompositions of matrix and a
planar rotation routine.

While nonlinear variates of Likert-type items and components on which they load
were simply deleted in our example, we do not deny the possibility that a quadratic
component, at least, is useful in interpretations as was suggested by Greenacre
[8]. The reason why nonlinear components should be discarded in interpretations
is explained by Bekker and De Leeuw [1]. They investigated a kind of weighted
orthonormal polynomials, Hermite–Chebyshev polynomials, applied to multivariate
normally distributed variables. Based on Lancaster [14], they showed if the corre-
lation between two variables is ρkl , correlations between ν-th degree polynomials
becomes ρν

kl , and correlations between polynomials of the different degrees are zero.
Considering eigenvalue decomposition of correlation matrix between all variates
defined by several degrees of polynomials, which may be seen as a continuous ver-
sion of OPCA, the largest eigenvalue for quadratic variates can be larger than the
second largest one for linear variates when the variables are highly unidimensional.
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This means that the second component is a function of simple square transformations
of variables, which is the horseshoe, and brings nothing new.

However, we have found the eigenvalues corresponding to quadratic and higher
degree components are far larger than predicted by exponential decreasing of corre-
lations not only in our illustrative example but in other many real data sets (e.g., [15]).
These results suggest that higher order variates in real data reflect some empirical
facts. This may be a topic in another article.

Appendix: A Proof of Equation (10)

As was mentioned in Sect. 2.2, centrality of global quantified variables, F
′
1n = 0r

is well known, but the same property of local ones, F
′
k1n = 0r (k = 1, . . . , p), seem

not to have been taken note so far with some exceptions such as Gower and Hands
([6], pp. 60–61). We will show the essence of their proof in our notation.

From (6), (7), and (8), we know that G
′
kGV = DkV kΛr , where Λr is a diagonal

matrix of the first r elements ofΛ. Pre-multiplying 1
′
ck , and using 1

′
ckG

′
k = 1

′
n , 1

′
nG =

d ′, and 1
′
ck Dk = d

′
k , we obtain d

′
V = d

′
kV kΛr . The left-hand side is 1

′
nF, which is

0
′
r , the centrality of global quantified variables, and the right-hand side is 1

′
nFkΛr .

Because Λr is nonsingular, it means F
′
k1n = 0r .
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1 Introduction

The past three decades have seen increasing social inequality, such as wealth
inequality, disparities in educational opportunities and occupational insecurity,which
strained the social and welfare systems in many countries (Zucman [56]). It has been
said that the increasing gap between the haves and the have-nots undermines trust,
empathy for people who are different, and tolerance (Uslaner [54]). At the same time,
however, those traits are of particular importance in an era of globalization, where
people increasingly interact with others different from oneself. Nevertheless, preju-
dice, discrimination, and expulsion of ethnic minorities and foreigners are thought to
be on the rise worldwide, in public discourse, the media as well as political rhetoric.

Growing inequalitymay also affect people’s subjectivewell-being (SWB)because
comparisons with others maymatter. Differences in income and people’s perceptions
of the quality of their own lives may affect people’s happiness. The chronic life stress
associated with coping with socio-economic disadvantage may have adverse effects
on SWB; on the other hand, the members of advantaged groups may be satisfied with
the status quo and report higher self-esteem compared to the disadvantaged.

It is important to assess how diverse types of attitudes about the society exist
among people, how socio-economic and socio-demographic positions affect the
social attitudes such as opinion towards social systems, and who feels satisfied or
dissatisfied in this unequal society. How people’s social position in the social stratifi-
cation system affects the views that people hold about the social world? In the present
study, people’s responses towards various dimensions of social orientations, opinions
on social policies, and political attitudes/ideology are used to answer to the above
questions. Firstly, we explore the heterogeneity among the population with regard
to social cognition and attitudes by using a latent class graded item response theory
model. Secondly, we examine the associations between social status characteristics
and latent classes concerning major dimensions of social cognition and attitudes.

We focus on the dimensions of SWB and social orientation/personality traits
such as social dominance orientation, system justification, patriotism, status anxiety,
authoritarianism, and gender ideology. We choose such emotions as SWB, sense of
social exclusion/cohesion, self-esteem, and anxiety, because it has been said that
growing inequality in the society increases the interpersonal tensions and strains,
which leads to erosion of social cohesion. Moreover, it has been emphasized that
rising disparities such as wide income gaps are the threats to the SWB and health in
many societies (Wilkinson & Pickett [55]). People in more unequal societies have
a greater concern with social status and become more dominated by status compe-
tition, which damage individual health through stress reactions. In addition to the
above dimensions, we also shed light on the concepts concerning intergroup relation-
ships and social intolerance, ethnocentrism, prejudice, and the social stigmatization
of members of minority groups such as racism, and authoritarianism. Xenophobic
movements have rapidly grown in the past few years. In Japan, the increasing man-
ifestation of racist hate speech and hate crimes against ethnic minorities has come
to the attention of the United Nations (UN). Although Hate Speech Elimination Act
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came into force in Japan in June 2016 in response to numerous recommendations
from aUN special rapporteur onminority issues to restrict hate speech, the UNCom-
mittee on the Elimination of Racial Discrimination urged the Japanese government
to enhance its efforts to tackle this problem again in 2018.

In addition to the concepts associated with intergroup conflicts, authoritarianism
has attracted attention again for the past several years, since it has been discussed that
it is closely related to the recent growth of support for populist political parties, the
current appeal of political conservatism, and the emergence of leaders with authori-
tarian tendencies in many Western societies (MacWilliams [33]; Müller [35]; Norris
& Inglehart [36]). The characteristics of populism are antielitism, antipluralism, and
mass clientelism, and it has tendencies that may push it towards authoritarianism
and/or totalitarianism (Müller [35]).

In the following, we employ a latent variable model included in the class of finite
mixture item response theory models to examine how members of contemporary
Japanese society are classified in terms of SWB, values, and attitudes. We explore
how these traits are associated with the individual’s socio-economic features and we
provide a comprehensive picture of the contemporary Japanese society. The remain-
der of this article is organized as follows. In Sect. 2,we describe the data. In Sect. 3,we
provide technical details on the proposed model focusing on its formulation based on
discrete latent variables. In Sect. 4, we show the results and in Sect. 5, we summarize
the main conclusions.

2 Data

Responses to the questionnaire of the Stratification and Social Psychology (SSP)
Project in Japan are considered in this study. The project focuses on a web-based
survey administered in December 2018. The purpose of the project is to examine
relationships among people’s socio-economic and socio-demographic position, class
identification, personality traits, and cognitive tendencies. Survey requests were sent
by email to target individuals, who were both men and women aged between 20 and
64 chosen from an online panel of more than 12 million members, inviting them to
participate in the online survey and selected according to demographic quotas such
as prefectural census population, age distribution, and gender. Therefore, the respon-
dents represent diversity in terms of gender, Japanese geographical area, and birth
cohort. The sample size is made of 2,898 individuals (1,476 men and 1,422 women).
We selected 54 items measuring 14 different constructs on social psychological atti-
tudes and personality traits. We specify the complete list of items concerning each
dimension in Table9 (see Appendix). We briefly discuss each dimension by the
following points:

– Satisfaction is a cognitive evaluation of one’s life and a core dimension of SWB.
Understanding the factors influencing people’s SWB and its correlates is one of
the most important issues in the scientific study (OECD [37]). We dispose of four
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questions about satisfaction across different domains: life in general, respondent’s
education, Japanese society, the area respondent lives.

– SocialDominanceOrientation (SDO) is a general orientation attitude towards anti-
egalitarianism, relentless competition between groups, hierarchical relationships
between social groups, and group-based dominance. It measures political and
economic conservatism, nationalism, cultural elitism, anti-black racism, sexism
and the belief in a just world (Pratto, Sidanius, Stallworth, &Malle [41]; Sidanius,
Pratto, & Bobo [51]). It follows from this that racism and gender role attitudes
are closely related to SDO. In order to measure one’s degree of preference for
inequality among social groups, nine items are included, see Table9.

– System justification theory emphasizes the human propensity to perceive existing
social arrangements, or the status quo, as fair, legitimate, and desirable (Jost &
Banaji [23]; Jost, Glaser, Kruglanski, & Sulloway [24]; Kay & Jost [25]). The
notion that “people who are disadvantaged by a social system are especially likely
to support it” is known as the system justification hypothesis, which holds that
people who suffer the most from a given state of affairs are paradoxically the
least likely to question, challenge, reject, or change it. During this process, com-
plementarity in the social world (the belief that “no one has it all” or “poor but
happy”) stereotypes makes people feel better about their own position in society
and increases the perceived legitimacy of the social system. However, it has been
pointed out that system-justifying variables help to explain ingroup ambivalence
and the internalization of inferiority among members of disadvantaged groups,
help to justify existing inequality and hierarchical relationships among different
social groups, therefore, incompatible with ideas of equality. In order to measure
beliefs concerning the need for balance and complementarity in the social world,
four items are considered which measure this dimension.

– Authoritarianism is a psychological disposition defined as a tendency to preserve
what is established and hostility to social innovation. The tradition of research on
the personality correlates of conservatism beganwithAdorno’s study of authoritar-
ianism and fascist potential in personality, and also, it was central to Mannheim’s
sociological analysis of conservatism (Adorno, Frenkel-Brunswik, Levinson, &
Sanford [1]; Mannheim [31]). Six questions are included for the notion of this
ideology. There is a long tradition in sociology and political sciences of arguing
the relation between social class and political values. For example, according to
Lipset [29], working-class people express more negative attitudes towards ethnic
and racial minorities and liberal immigration legislation. In previous empirical
research (Carvacho et al. [12]), authoritarianism and SDO were negatively asso-
ciated with income and education (Celeux & Soromenho [13]).

– Patriotism and racism, each of which is one of the forms of group attachment, are
closely related to authoritarian personality. Patriotism is a sense of positive iden-
tification with and feelings of affective attachment to one’s country. However, the
concept has two facets: blind attachment and constructive patriotism (Adorno et al.
[1]; Schatz, Staub, & Lavine [49]). Also, the concept of racism has two facets: old-
fashioned racism and modern racism (McConahay [32]; Taka & Amemiya [53]).
The first one is pre-civil-rights-movement racism and it is the familiar stereotype
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and support for segregation and for open discrimination. In contrast, the second
one is referred to as the post-civil-rights-movement beliefs and its principal tenets
are, for example, that people in minority groups are pushing too hard, too fast and
into places where they are not wanted, and these tactics and demands are unfair.
We use one item as patriotism and four items to measure blind patriotism and
racism.

– Sense of social exclusion and status anxiety are source of stress and can rob people
of their self-confidence and happiness (Delhey & Dragolov [16]; Layte &Whelan
[27]). Status anxiety is a concern with social status or a worry concerning how
others see us. Fatalism, which is the sense of being controlled by outside forces, or
at the other extreme, it is the sense of personal control and beliefs that one can shape
his/her own social outcomes, is also characterized by negative self-evaluations and
associated with the above orientations to self and society.

– Gender ideology has been investigated by a lot of research to understand if age
and education play a role in this system of thinking. Age has been found to be a
consistently significant correlate of gender role attitudes: younger people have a
more egalitarian gender role attitude than older people (Inglehart & Norris [22];
Kikkawa [26]). It may be because older people were socialized with substantially
more traditional gender role norms than younger people. As for the effect of
education (Ojima [38]; Suzuki [52]), the highly educated develops egalitarian
gender ideology, see, among others, Pennoni and Nakai [40].

– Social Inequality, Meritocracy, Political Efficacy, Relationships with others, and
Religious attitudes are also included as dimensions in this study and they concern
opinions on social and political issues, see Table9.

All the items in the questionnaire are of multiple choice type, with five categories
scored on an ordinal scale ranging from 0 to 5 indicating levels of satisfaction or
agreement: (0) satisfied (agree), (1) somewhat satisfied (agree), (2) neither satisfied
nor dissatisfied (neither agree nor disagree), (3) somewhat dissatisfied (disagree), (4)
dissatisfied (disagree), and (5) don’t know.

Table1 shows the distribution of the item response categories for six (1–4 and 50–
51) out of the 54 itemsmeasuring the above fourteen dimensions.We notice that 45%
of individuals are satisfied or somewhat satisfied with the overall life, 34% neither

Table 1 Distribution of the item response categories for the dimensions concerning satisfaction
(items 1, 2, 3, 4) and gender ideology (items 50, 51)

Response category

0 1 2 3 4 5

Item 1 0.06 0.39 0.25 0.17 0.13 0.00

Item 2 0.11 0.31 0.32 0.16 0.10 0.00

Item 3 0.01 0.14 0.34 0.29 0.21 0.01

Item 4 0.07 0.35 0.34 0.15 0.10 0.00

Item 50 0.31 0.22 0.34 0.09 0.03 0.01

Item 51 0.17 0.39 0.33 0.07 0.04 0.01
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Table 2 Distribution of the available covariates

Variable Category Proportion

Gender Male 0.51

Occupation 1 Regular full-time employee 0.43

Occupation 2 Part-time or temporary worker 0.25

Occupation 3 Self-employed 0.08

Occupation 4 Unemployed 0.24

Marital status 1 Married 0.58

Marital status 2 Never married 0.35

Marital status 3 Divorced and widowed 0.07

Education 1 Lower secondary 0.02

Education 2 Secondary 0.39

Education 3 College or higher 0.59

Housing 1 Own house 0.64

Housing 2 Renting 0.32

Housing 3 Others 0.04

Age 1 [20, 24] 0.06

Age 2 [25, 29] 0.11

Age 3 [30, 39] 0.22

Age 4 [40, 44] 0.13

Age 5 [45, 49] 0.14

Age 6 [50, 54] 0.12

Age 7 [55, 59] 0.11

Age 8 [60, 64] 0.11

Income 1 First quintile 0.23

Income 2 Second quintile 0.26

Income 3 Third quintile 0.20

Income 4 Fourth quintile 0.22

Income 5 Missing 0.09

Family members 1 One-person household 0.19

Family members 2 Two-person household 0.26

Family members 3 Three-person household 0.26

Family members 4 Four-person household 0.20

Family members 5 More than four 0.09

Region 1 Hokkaido 0.04

Region 2 Tohoku 0.07

Region 3 Kanto 0.36

Region 4 Chubu 0.16

Region 5 Kansai 0.17

Region 6 Chugoku 0.06

Region 7 Shikoku 0.03

Region 8 Kyushu 0.11
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satisfied nor dissatisfied with the Japanese society; 31% disagree that men should
work outside the home and women should maintain the home, and 39% somewhat
agree that husbands should do household chores and childcare. Interestingly, 33%
are neutral with respect to this question.

The respondents are asked to fill the questionnaire alsowith a broad range of socio-
demographic characteristics.We analyze the polythomously scored items accounting
for the effects of these covariates. The observed proportions are reported in Table2,
amongwhichwe consider also income classes.1 Wenotice that half of the respondents
are married, high educational levels are mostly represented in the data and middle
age people are mainly resident in the Kanto province of Japan.

3 Latent Class Graded Item Response Theory Model

We apply an item response theory model tailored to cluster individuals according to
homogeneous subpopulations sharing similar latent traits and attitudes. The
multivariate formulation of the model allows us to account jointly for the answers
provided to each item in the questionnaire measured on a five point scale. First intro-
duced by Rasch [43] as a model for dichotomously scored items and later improved
by Birnbaum [11] and Lord and Novick [30], the model suggests that the proba-
bility to provide a certain answer to an item can be modelled as a function of the
person position on a latent trait and the parameters that characterize the item.We con-
sider a finite mixture item response theory model (Bartolucci, Bacci, & Gnaldi [6];
Bartolucci, Pennoni, & Lupparelli [9]) based on a latent class model (Goodman [19];
Lazarsfeld & Henry [28]) . We assume that the same item response model holds for
all the individuals in the same latent class and possibly different item response mod-
els hold for different latent classes that define homogeneous groups of individuals
showing similar traits (Pennoni [39]). We dispose of class-specific item parameters
describing the peculiarities of an item when it is answered by individuals belonging
to a certain latent class. In particular, by adopting the parameterization proposed by
Samejima [46, 47], we are able to account for the ordinal categories. The model for
ordered item categories was first proposed by Samejima [48] and named as Graded
Response Model (GRM). It assumes two item parameters: a difficulty parameter for
the threshold of each item and a discrimination parameter. When the categories are
ordered, the threshold refers to the comparison between item category y or higher and
category y − 1 or smaller. The difficulty levels of each itemmeasure the general ten-
dency of respondingwithin a category of a certain item. If it is possible to assume that
all the categories within the same item discriminate in the sameway, the discriminant
parameters are constrained to be constant.

The questionnaire measures similar and related psychological constructs that are
unobservable and we need to account for their multidimensional structure (Reckase

1The categories of the annual income in yen are the following: (1) less than 750,000, (2) 750,000–
2,500,000, (3) 2,500,000–4,500,000, (4) 4,500,000 or more, (5) missing.
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[44]). To deal with more than one dimension, Agresti [2] proposed a multidimen-
sional log-linear item response theory model and later on Rijmen and Briggs [45]
proposed a multidimensional Rasch model. In the following, we adopt the proposal
of Bartolucci [5] based on discrete latent variables (Bartolucci & Pennoni [8]) and
we adopt a parameterization with multidimensional latent variables to deal with all
the dimensions illustrated in Sect. 2. Therefore, we define the model as a Multidi-
mensional Latent Class Graded Item Response Theory (MLCGIRT) model.

Let Yi j denote the categorical response variable for individual i to item j ,
i = 1, . . . , n, j = 1, . . . , J , driven from an ordinal polytomous item having the
same r j = r ordinal categories y = 0, 1, . . . , r − 1. The vector of responses pro-
vided by this individual to the questionnaire is denoted as Yi = (Yi1, . . . ,Yir )′. The
corresponding observed values are denoted in lower case, that is, by yi j and yi .
Let D be the number of different latent traits measured by the J items. We define
Ui = (U1i , . . . ,UDi )

′ the vector of latent variables corresponding to the D latent
traits, and ui as one of the possible realizations ofUi . We assume that ξ ud represents
the vector of values (support points) of Ui with u = 1, . . . , k denoting the latent
classes and d = 1, . . . , D denoting the dimensions. The mass probabilities (weights
of each latent class) at individual level are defined as πi,u,x = p(Ui = ξ ud |xi ) since
they depend on the available fixed concomitant variables collected in the column
vector xi representing the socio-demographic features of the respondent.

The item characteristic curve also known as item response function is

p jy(ui ) = p(Yi j ≥ y|ui ), y = 1, . . . , r − 1,

where ui denotes the dimensions of the model with elements uid , d = 1, . . . , D, and
is assumed as a monotonic non decreasing function of ui for each i = 1, . . . , n. It is
parameterized as

log
p jy(ui )

1 − p jy(ui )
=

( D∑
d=1

1{ j ∈ Id }ξud − β j y

)
, j = 1, . . . , J, y = 1, . . . , r − 1,

where β j y is the difficulty of threshold y of item j and the discrimination parameter
for each item is fixed to 1. The assumption of the model is that of local independence,
according to which the responses inYi are conditionally independent given the latent
variables in Ui and the individual covariates in xi . This leads to the following

p(yi |ui ) =
J∏

j=1

p′
j yi j (ui ), i = 1, . . . , n

where p′
j yi j

= p(Yi j = y|ui ) is obtained as

pi j (ui ) − pi j+1(ui ).



Identifying Groups With Different Traits Using Fourteen Domains … 241

The concomitant variables at individual level xi are supposed to influence the
probability of belonging to a certain latent class and they are modelled through
reference-category logits of the following type

log
πi,u,x

πi,1,x
= γ0u + x′

iγ 1u i = 1, . . . , n, u = 2, . . . , k, (1)

where γ0u are intercepts specific of each latent class and γ 1u are vectors of regression
parameters with u ranging from 2 to k, see, among others, Dayton and Macready
[15] and Formann [18] for further details. The interpretation of the effects of the
covariates is straightforward if the ability levels are increasingly ordered.

Given observed data referred to a sample of n subjects, the log-likelihood of the
model is

�(θ) =
n∑

i=1

log pi (Yi = yi ),

where θ is the vector collecting all the free parameters. Maximum likelihood esti-
mation of the model parameters is performed by maximizing �(θ) through the
Expectation–Maximization (EM) algorithm (Baum, Petrie, Soules, & Weiss [10];
Dempster, Laird,&Rubin [17]). It relies on the complete data log-likelihood, denoted
by �∗(θ), which corresponds to the log-likelihood that we would compute if we knew
the values of the latent variables. The algorithm alternates two steps (E and M) until
convergence. The E-step computes the conditional expected value of �∗(θ) given
the observed data and the current value of the parameters. This expected value is
maximized at the M-step with respect to θ and the estimate of this parameter vector
is updated until convergence. Standard errors are obtained through the square root of
the diagonal elements of the inverse of the observed or expected information matrix
(Bartolucci, Farcomeni, & Pennoni [7]).

The number of support points of the latent distribution is chosen according to the
most popular information criteria: the Bayesian InformationCriterion (BIC, Schwarz
[50]) and the Akaike Information Criterion (AIC, Akaike [3]). After estimation, an
important task consists on the prediction of the latent variables at individual level.
In the literature, the Maximum-A-Posteriori (MAP) approach is considered as the
best rule to allocate each individual in a latent class (Goodman [20, 21]). This rule
is employed for finite mixture models in general (McLachlan & Peel [34]) and it
consists of selecting the latent class having the highest posterior probability, which
corresponds to the conditional distribution of the latent variable given the observed
responses and the concomitant variables. This conditional MAP approach is based
on the following allocation rule

ûi = argmax
u=1,...,k

b̂i,u, i = 1, . . . , n, (2)

where b̂i,u is the estimated posterior probability for subject i to be allocated in latent
class u given his/her response configuration and covariates.
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Table 3 Maximum log-likelihood, number of parameters, values of the Akaike and Bayesian
information criteria of the model for a number of latent classes ranging from 1 to 4

k �̂ #par AIC BIC

1 −22,9631.05 270 459,802.09 461,414.47

2 −22,4922.47 317 450,478.93 452,371.99

3 −22,3160.70 364 447,049.40 449,223.12

4 −22,4044.62 411 448,911.24 451,365.64

Table 4 Estimated support points ξ̂ud (latent traits levels) of the three latent classes for each
dimension

Dimension Latent class 1 Latent class 2 Latent class 3

1 Satisfaction 2.03 3.24 4.81

2 Patriotism 3.97 3.27 1.82

3 Blind patriotism and racism 0.45 1.47 0.46

4 Sense of social exclusion −1.39 0.47 1.50

5 Status anxiety −1.19 1.06 1.13

6 Fatalism 2.97 3.49 4.38

7 Relationship with others 1.01 1.96 2.77

8 System justification 2.38 1.86 1.02

9 Social dominance orientation 0.70 1.43 0.81

10 Opinion on inequality or social status −0.06 0.55 0.25

11 Authoritarian traditionalism 1.93 2.82 1.19

12 Gender ideology 0.37 1.40 0.27

13 Political opinion 3.66 3.22 3.76

14 Religious mind 3.00 3.08 3.79

4 Results

The proposed MLCGIRT model is estimated for a number of support points k of
the latent variable ranging from 1 to 4. Table3 reports on the highest maximum
log-likelihood at convergence, the number of free parameters, and the corresponding
AIC and BIC values. According to the results, there are three different latent subpop-
ulations. The estimated class weights π̂u,x tell us that the biggest subpopulation is the
second with 47% of the Japanese belonging to this class; instead 36% of individuals
are in class 1 and the remaining 17% in class 3.

Table4 shows the estimated support points (ξ ud ). The latent classes differ in the
emphasis they place on some characteristics, especially the extent to which individ-
uals are satisfied with life, feeling self-worth or self-esteem, and have fatalistic life
views. These estimates allow us to disentangle the following differences between
the three latent subgroups. Individuals grouped in latent class 1 show the pattern of
responses of being relatively satisfiedwith their life, own education, and the area they
live, good relationship with others and the community where they live, and sense of
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being recognized by others. Moreover, respondents in latent class 1 feel secure in
their status and work and have high feeling of self-esteem. At the same time, respon-
dents in latent class 1 tend to choose moderately open-minded and democratic way
of thinking. They reject various modes of intergroup inequality, show some dis-
agreement with authoritarianism and traditionalism as well as gendered division of
labour.

Latent class 2 groups the respondents that are moderately satisfied with own
life but relatively dissatisfied with the Japanese society, and agree to some extent
with traditionalism. They show a tendency to choose neutral response options in the
middle (neither agree nor disagree) in general. This classmay embody average image
of the Japanese because some research on cross-cultural differences in response
style reported that, compared to North Americans and European people, East-Asian,
especially Japanese, exhibit more ambivalent and moderate responding, see, among
others, Bagozzi,Wong, andYi [4] andChen, Lee, andStevenson [14]. Thismeans that
East-Asian choose the midpoint of the scale more frequently. The result that almost
half of Japanese belong to class 2,which shows the highest conditional probability for
response category 2 (neither agree nor disagree) all over the items, can be understood
in the light of these arguments.

Latent class 3 shows the pattern of responses of those being relatively dissatisfied
with own life as well as with Japanese society. They are not only unhappy with their
life but also express a sense of being excluded in the community they live, as well as
pessimistic and fatalistic views towards life. However, at the same time, they show
the most tolerant and open-minded attitudes; they are tolerant towards the ethnic
minorities, and take a liberal gender role attitudes to advance gender equality. It is
worth noting that the response patterns of latent class 1 are very similar to those
of latent class 3 in terms of dimension 3 (blind patriotism and racism), dimension 9
(social dominanceorientation), anddimension12 (gender ideology).Both of themare
not racist, reject various modes of intergroup inequality or group-based dominance.
Also, both individuals in latent classes 1 and 3 support more equal division of labour
between husbands and wives. However, in terms of SWB, the response patterns of
latent class 3 are in contrast to those of latent class 1. Respondents in latent class 1
are relatively happy and having high feeling of self-worth, whereas respondents in
latent class 3 are not contented with Japanese society, low in perceptions of control or
mastery, and low in self-esteem, that is to say that they are more distressed, although
latent class 3 concerns people whose psychological traits are the most tolerant and
most liberal.

The estimated difficulty levels β̂ j y for the items measuring satisfaction of each
item are reported in Table5. They represent the point on the latent continuum at
which the individual latent traits are located. The difficulty parameter corresponding
to the first response category is constrained to zero. The item difficulties are ordered
according to the item categories and the probability of positively answering an item
decreases as its difficulty increases (the traits being constant) and increases according
to the estimated traits (the difficulties being constant). From the results, we notice
that the levels of each item are increasing according to a linear trend. Item response
category 1 (somewhat satisfied) is more difficult to respond for item two (how sat-
isfied are you with your education). Item response category 2 (neither satisfied nor
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Table 5 Estimated difficulties (β̂ j y) for each response category (0 as baseline) of the four items
measuring satisfaction

Response
categories

1 2 3 4 5

Item 1 0.00 2.80 4.09 5.30 9.25

Item 2 0.68 2.66 4.26 5.52 8.23

Item 3 −1.51 1.11 2.99 4.54 8.27

Item 4 0.08 2.63 4.36 5.61 9.07

Table 6 Estimated conditional response probabilities for the four items measuring satisfaction

Response
category

Item 1 Item 2 Item 3 Item 4

Latent class 1 0 0.12 0.21 0.03 0.13

1 0.57 0.45 0.26 0.52

2 0.20 0.25 0.44 0.26

3 0.08 0.07 0.20 0.06

4 0.03 0.02 0.07 0.03

5 0.00 0.00 0.00 0.00

Latent class 2 0 0.04 0.06 0.00 0.04

1 0.35 0.29 0.10 0.31

2 0.31 0.38 0.33 0.40

3 0.19 0.17 0.35 0.16

4 0.11 0.09 0.21 0.09

5 0.00 0.01 0.01 0.00

Latent class 3 0 0.01 0.02 0.00 0.01

1 0.11 0.09 0.02 0.09

2 0.21 0.26 0.11 0.29

3 0.29 0.30 0.29 0.30

4 0.37 0.30 0.54 0.30

5 0.01 0.03 0.04 0.01

dissatisfied) is more difficult to respond for item one (how satisfied are you with your
life overall). Item response category 3 (somewhat dissatisfied) and 4 (dissatisfied)
are more difficult to respond for item four (concerning the residential area).

With reference to the estimated conditional probabilities of answering to each
response category, Tables6 and 7 report the estimates referred to items measuring
satisfaction and sense of social exclusion, respectively. The interpretation of these
estimates is provided in the following as an example.2 The results in Table6 con-
cerning satisfaction show that respondents in latent class 1 have high probability
(0.57) of answering somewhat satisfied and low probability (0.20) of answering
neither satisfied nor dissatisfied, whereas those in latent class 3 have a probabil-
ity of 0.37 of answering dissatisfied and 0.29 of answering somewhat dissatisfied.

2The other results are available from the authors upon request along with the R (R Core Team [42])
code implemented to perform the analyses.
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Table 7 Estimated conditional response probabilities for the six items measuring social exclusion

Response
category

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Latent class 1 0 0.81 0.61 0.62 0.14 0.26 0.28

1 0.12 0.19 0.20 0.49 0.54 0.50

2 0.06 0.15 0.14 0.29 0.15 0.17

3 0.01 0.04 0.02 0.04 0.03 0.03

4 0.00 0.01 0.01 0.04 0.02 0.02

5 0.00 0.00 0.01 0.00 0.00 0.00

Latent class 2 0 0.38 0.19 0.20 0.02 0.05 0.06

1 0.24 0.18 0.21 0.19 0.33 0.30

2 0.25 0.36 0.39 0.44 0.36 0.38

3 0.07 0.18 0.12 0.14 0.12 0.12

4 0.03 0.06 0.04 0.18 0.13 0.13

5 0.03 0.03 0.04 0.03 0.01 0.01

Latent class 3 0 0.18 0.08 0.08 0.01 0.02 0.02

1 0.19 0.10 0.12 0.08 0.16 0.14

2 0.34 0.31 0.40 0.31 0.33 0.33

3 0.14 0.29 0.21 0.18 0.18 0.18

4 0.07 0.14 0.09 0.36 0.29 0.29

5 0.08 0.08 0.10 0.08 0.02 0.04

Similarly, respondents in latent class 1 have large probabilities of reporting sat-
isfaction on item two (education) and item four (residential area). On the other
hand, respondents in latent class 3 have large probabilities of reporting dissatisfac-
tion on items two, three, and four, concerning dissatisfaction with Japanese society
above all. Respondents in latent class 2 have a 0.35 probability of answering some-
what satisfied and 0.31 probability of answering neither satisfied nor dissatisfied
for item one. Therefore, they are less satisfied with their life overall than those in
latent class 1, but they are relatively satisfied with life and neighbourhood.

The results in Table7 show that respondents in latent class 1 tend to have positive
affect because they experience their lives in positive ways; they have 0.80, 0.61, and
0.62 as probabilities of reporting disagreement with the following items “I feel left
out of society”, “Life has been so complicated today that I almost can’t findmyway”,
and “I feel that the value of what I do is not recognized by others”, respectively. On
the other hand, those in latent class 3 are less likely to have sense of belonging to
a community; they give neutral responses to item 1, 2, and 3, but have relatively
larger probabilities of reporting disagreement with the following items: “I feel close
to people in the area where I live”, “I feel emotional attachment to the area where I
live”, and “I want to keep living in the community where I live”.

The interpretation of the regression coefficients in Eq. (1) concerning the effects
of the concomitant variables is not straight. Therefore, we show in Table8 the propor-
tions of Japanese allocated in each latent class according to the posterior probabilities
by covariates as in Eq. (2). In this way, we can understand the effects of the socio-
economic features of the respondents on the probability to be allocated in each latent
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Table 8 Estimated proportions of Japanese allocated to the latent classes on the basis of the
estimated posterior probabilities

Covariates Latent class 1 Latent class 2 Latent class 3

Male 0.39 0.42 0.19

Female 0.32 0.53 0.15

Occupation 1 0.34 0.54 0.12

Occupation 2 0.36 0.44 0.20

Occupation 3 0.44 0.38 0.18

Occupation 4 0.35 0.43 0.22

Marital status 1 0.42 0.46 0.12

Marital status 2 0.24 0.52 0.24

Marital status 3 0.38 0.41 0.21

Education 1 0.26 0.45 0.29

Education 2 0.30 0.49 0.21

Education 3 0.40 0.46 0.14

Housing 1 0.39 0.46 0.15

Housing 2 0.30 0.49 0.21

Housing 3 0.27 0.57 0.18

Age 1 0.29 0.49 0.22

Age 2 0.26 0.56 0.18

Age 3 0.28 0.53 0.19

Age 4 0.33 0.52 0.15

Age 5 0.33 0.48 0.19

Age 6 0.41 0.43 0.16

Age 7 0.44 0.39 0.17

Age 8 0.58 0.34 0.08

Income 1 0.32 0.44 0.24

Income 2 0.37 0.44 0.19

Income 3 0.31 0.54 0.15

Income 4 0.44 0.47 0.09

Income 5 0.29 0.51 0.19

Family members 1 0.27 0.51 0.22

Family members 2 0.43 0.41 0.16

Family members 3 0.35 0.49 0.16

Family members 4 0.34 0.51 0.15

Family members 5 0.36 0.46 0.18

Region 1 0.44 0.41 0.15

Region 2 0.30 0.50 0.20

Region 3 0.34 0.48 0.18

Region 4 0.36 0.47 0.17

Region 5 0.38 0.49 0.13

Region 6 0.37 0.43 0.20

Region 7 0.39 0.44 0.17

Region 8 0.34 0.48 0.18
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subpopulation. Compared to men, less females are allocated in latent class 1. The
results suggest that females tend to be less satisfied and more likely than men to
perceive existing social arrangement, or the status quo, as unfair. This suggests also
that compared to men, women may be more likely to give moderate response styles
when answering their opinion towards society.

Concerning the relating socioeconomic position of an individual, such as educa-
tion, occupational statuses, and respondent’s annual income, we make the following
observations. Self-employed, married with at least two family members, highly edu-
cated, with a relative high income are mainly allocated in latent class 1. This suggests
that people of these groups tend to report higher SWB and self-esteem based on their
stable personal life such as good health conditions, strong social relationships, and
standard of living. These advantaged groups are moderately open-minded, although
these members are not as liberal or open-minded as the members in latent class 3.
They also tend to bolster and justify aspects of the societal status quo, therefore,
express more satisfaction with the status quo. Compared to those who are secure and
advantaged, the lowest income quintile group tends to be found in latent class 3, who
reports lower SWB and somewhat fatalistic view towards life. Single individuals,
unemployed, never married and with just one member in the family, with a basic
level of education and a very low income are mainly allocated in latent class 3.

As regards age, the result shows that the younger members of Japanese society
tend to belong to latent class 2, whereas relatively older people in their late 50s up to
early 60s are more likely to be found in latent class 1. This suggests that Japanese
elder members are more contend with Japanese society and their local community,
and also, feel secure in their status and work and have a high feeling of self-esteem
compared to the younger group.

Residential block does not show clear association, but people living in Hokkaido
(island at the north end of Japan) are mainly predicted in latent class 1. On the other
hand, Tohoku block (the northernmost region of Japan’s main island) has a greater
probability of belonging to latent class 3.

5 Conclusions

The MLCGIRT model employed in this study is a suitable analytic tool to disen-
tangle the complex system of SWB, values, and social attitudes and to disclose
latent subpopulations associated with the individual social position. People’s social
environment and their socio-economic positions provide different opportunities and
constraints for attaining valued goals in the society. Therefore, whether he or she is
likely to belong to a particular latent class, which reflects homogenous subpopula-
tion sharing similar social attitudes, may depend on people’s social standings. Those
who are relatively advantaged social groups such as wealthy, highly educated, and
married people reveal content with the status quo and high SWB. These persons are
thought to become unconsciously integrated into an existing social system and there-
fore conform to the ideas and practices that perpetuate the status quo, which benefit
unfairly certain social groups while disadvantaging other groups. People who are
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relatively disadvantaged in society, on the other hand, are experiencing a lot of stress
and negative impacts on their SWB, lack of a sense of belonging within a network of
social support, and therefore they are more likely to manifest critical view with ref-
erence to the existing socio-political structure and cultural norms. Further research
must be undertaken in these areas to compare and assess the change and stability in
SWB and value patterns across different social groups over time by collecting and
then utilizing the data of a follow-up study.
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Appendix

Table 9 Fourteen dimensions of social consciousness of the SSP survey and related items

Satisfaction

1 How satisfied are you with your life overall

2 How satisfied are you with your education

3 How satisfied are you with Japanese society

4 How satisfied are you with your residential area

Patriotism

5 I have feeling of pride in being Japanese

Blind patriotism and racism

6 I would support my country right or wronga

7 It cannot be helped that ethnic minorities experience discrimination even though they acquire
Japanese citizenshipa

8 It is wrong that foreigners and ethnic minorities have equal rights as Japanese in Japanese
societya

9 Foreigners and ethnic minorities are getting too demanding in their push for equal rightsa

Sense of social exclusion

10 I feel left out of societya

11 Life has been so complicated today that I almost can’t find my waya

12 I feel that the value of what I do is not recognized by othersa

13 I feel close to people in the area where I live

14 I feel emotional attachment to the area where I live

15 I want to keep living in the community where I live

(continued)
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Table 9 (continued)

Status anxiety

16 Some people look down on me because of my job situation or incomea

17 I worry that while I am dawdling, everyone will get ahead of mea

18 I worry that while I am not paying attention, I might lose everything I have gained so fara

Fatalism

19 I’m always optimistic about my future

20 I put importance on enjoying today’s life rather than saving money or making efforts for
the future

21 I want to live my life making plans and carry them out within a certain year

22 I want to realize my dream no matter how it is difficult

23 The natural abilities and qualities of a person decide his/her successa

24 By hard work, we can achieve anything

25 People’s life is predetermined by fatea

Relationship with others

26 I have trouble getting along with friends frequentlya

27 I want to enjoy leisure time with friends

System justification

28 All in all, the world is a ‘balanced’ placea

29 A person who has recently experienced a string of bad breaks probably has something
good coming to him or hera

30 Some people have everything, while others have nothing

31 Everything has its advantages and disadvantagesa

Social dominance orientation

32 No one group should dominate in society

33 In getting what your group wants, it is sometimes necessary to use force against other
groupsa

34 To get ahead in life, it is sometimes necessary to step on other groupsa

35 It’s ok if some groups have more of a chance in life than othersa

36 We should do what we can to equalize conditions for different groups

37 Sometimes other groups must be kept in their placea

38 It’s probably a good thing that certain groups are at the top and other groups are at the
bottoma

39 All groups should be given an equal chance in life

40 We would have fewer problems if we treated people more equally

Opinion on inequality or social status

41 I see no problem even if the economic gap widens in the future in Japana

42 Parents should give their children best education possible

43 Educational levels reflect people’s ability

(continued)
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Table 9 (continued)

Authoritarian traditionalism

44 One should always respect our eldersa

45 Children should obey to their parents’ intensiona

46 One should always show respect to those in authoritya

47 It generally works out best to keep on doing things the way they have been done beforea

48 People who question the old and accepted ways of doing things usually just end up
causing troublea

49 In this complecated world, the only way to know what to do is to rely on leaders and
expertsa

Gender ideology

50 Men should work outside the home and women should maintain the homea

51 Husbands should do household chores and childcare

Political opinion

52 Politics should be left to the people who want to do it

53 Nuclear power plants should be shut down hereafter

Religious mind

54 It is important to have a religious mind
aFor items whose ordered categories from 1 to 5 are taken in reverse order
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Quantification Theory: Categories,
Variables and Modal Analysis

Shizuhiko Nishisato

Abstract Quantification theory (QT) is known by many names such as dual
scaling, Hayashi’s quantification theory, optimal scaling, homogeneity analysis and
correspondence analysis. It is in essence singular value decomposition of categor-
ical data. As Torgerson [29] called QT as principal component analysis (PCA) of
categorical data, one may get some ideas about what QT is. The fact that there are
so many aliases is interesting and suggests its versatility. Some names reflect certain
mathematical aspects and the others quite different characteristics. No matter what
aliases one may adopt, it is certain that QT has many hidden characteristics. As we
glance at its general developments, we cannot help but wonder why there are still
so many problems associated with QT unsolved. The current paper is an essay with
its focus on QT’s very basic foundation problems, which have somehow escaped
enough attention of researchers. Following Torgerson’s naming of QT as PCA of
categorical data, we first look at the most fundamental difference between PCA and
QT, and then move on to look at some aspects peculiar to QT. We will conclude the
paper with some warnings on the characteristics of input data for QT, to avoid the
situation of garbage in garbage out.

1 Principal Component Analysis and Graphs

Pearson [28] and Hotelling [11] have laid the foundation of principal component
analysis (PCA). Given a set of n standardized continuous variables, PCA is a tech-
nique to derive a liner combination of the n variables in such a way that the variance
of the linear combination be a maximum, under the condition that the sum of squares
of weights for the variables is equal to 1.

Such a linear combination is called the first principal component, and the set of
weights, adjusted by the singular values, are called principal coordinates of the n
variables. After eliminating the first principal component scores from the original
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data, the residuals are then subjected to the variance-maximization process to arrive
at the principal coordinates of the second component, which is orthogonal to the
first component. In this way, we continue to extract as many components as the
data allow, and we will eventually arrive at Euclidean orthogonal coordinates of n
variables. What PCA accomplishes is to start with correlated variables and produces
a set of orthogonal components, of which elements are Euclidean coordinates.

Although we know that PCA and QT deal with continuous variables and categor-
ical variables, respectively, there exists another important difference between them.
Historically PCA has been used for uni-modal analysis. For example, consider a
variety of barleys planted at randomly sampled farms, and the crop data were col-
lected and analyzed by PCA. The sole interest of the researchers lies in identifying
relations between the variety of barleys (e.g., which variety of barleys grow better
than the others, or are there any clusters of barleys which seem to flock together
in different components?). In other words, although the data are summarized in a
two-way table of a variety of barleys-by-farms, the researcher’s interest is focused
only on the relations between barleys, and not on the farms. This is a typical example
of uni-modal analysis. PCA is likely to provide principal coordinates of barleys in
several dimensions, and using those coordinates, the investigators can present the
results in multidimensional graphs.

2 Quantification Theory and Graphs

Since uni-modal analysis is mentioned above, let us introduce QT (quantification
theory) as typically used for bi-modal analysis. Suppose that 10,000 seeds of six
varieties of barleys are planted at 10 farms in different provinces, and at the harvest,
randomly chosen 2,000 seeds from each farm are classified into the 6 (barleys)×10
(provinces) contingency table. Then. ourmain interest lies in the interactions between
barleys and provinces, that is, how different provinces affect the growth of different
kinds of barleys. This is a typical example of data analysis that QT deals with, that
is, bi-modal analysis.

QT has been developed since the early years of the last century. Perhaps the
best source for its historical developments is an excellent compendium by Beh and
Lombardo [1], which covers contemporary developments of relevant topics. Excel-
lent sources of traditional QT can be found in Gifi [9] and Nishisato [19].

The basic type of QT is often characterized by the following bilinear expansion
of the contingency table with typical element fi j :

fi j = fi. f. j

ft
(1 + ρ1y1i x1 j + ρ2y2i x2 j + ρ3y3i x3 j · · · + ρK yK i xK j ) (1)

.
where fi., f. j are marginals of row i and column j , respectively, ft is the total
frequency, ρk is the k-the singular value, yki , xk j are, respectively, i-th and j-th
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elements of singular vectors yk and xk. One may note that this is nothing but singular
value decomposition of a two-way table, known for many years (e.g., Beltrami [2];
Jordan [12]; Eckart & Young [7]).

As may be inferred from this formula, QT is typically concerned with bi-modal
analysis, that is, rows and columns are equally treated for analysis, an aspect which
is of particular importance. This aspect is related to the expression “joint graphical
display”. In other words, the researchers are typically interested in plotting both
row variables and column variable in common space (note the word “joint”). An
inevitable question then is “What multidimensional coordinates can we use to plot
both row variables and column variables in common space?”

It is well known that the rows and the columns of the contingency table are
generally correlated, but not perfectly, thus the space for rows and the space for
columns are different. The ignoring of this space discrepancy sounds like outrageous,
but the undeniable fact is that most researchers in QT have ignored this discrepancy!

The currently most popular joint graphical method is called “symmetric scaling”
or French plot, developed and extensively used in France. In spite of the fact that it
ignores the space discrepancy, it has been routinely used by most QT researchers!
Symmetric scaling is correct only when the rows and the columns are perfectly
correlated, a case which would not interest any researchers.

An alternative method is called non-symmetric scaling, which is based on the idea
of projecting rows, for example, onto the space for columns, or vice versa. Some
researchers call this graphical method logical, but it is not the case at all because the
projection of standard coordinates of rows onto the standard coordinates of columns,
as is done in non-symmetric scaling, is utterly meaningless: data structure is depicted
by principal coordinates and not by standard coordinates. Thus, if one wants to be
logical, then the principal coordinates of rows should be projected onto principal
coordinates of columns—the only problem is that the norms of rows and columns in
the graph are different, and this is against our attempt to compare the rows and the
columns in a justifiable way, namely on the equal footing.

The history shows that Carroll, Green, and Schaffer [4–6] proposed the so-called
CGS scaling for accommodating both rows and columns in common space, but
the CGS scaling was severely criticized by Greenacre [10] and did not survive the
criticism.

However, the justification for the CGS scaling was described six years before the
proposal of the CGS scaling by Nishisato [13]: he described that the contingency
table could be reformatted into the response-pattern table, and stated that the latter,
which contains both rows and columns of the contingency table in common space,
requires at least doubled multidimensional space. In other words, if one wants to
represent rows and columns in common space, the dimensionality of space must
be at least doubled. This discovery, coupled with the Young–Householder theorem
(Young&Householder [30]), offers a solution to theCGSscaling.Recently,Nishisato
[20] and Nishisato, Beh, Lombardo, and Clavel [22] promoted his solution to the
perennial problem of joint graphical display, that is, mapping rows and columns of
the contingency table in common space.
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According to Nishisato, the quantification space can be partitioned into several
types of space, namely, contingency space which is used by the current practice of
contingency table analysis, dual space, which accommodates both rows and columns
of the contingency table and residual space. Furthermore, dual space can be parti-
tioned into subspaces which can be used to show how inaccurate or accurate the
currently most popular symmetric scaling is. Since the matter has been thoroughly
discussed and illustrated in the aforementioned papers, we will simply borrow the
same example and present the partitioned multidimensional space used by QT.

3 Decompostion of Quantification Space

Nishisato [20] andNishisato et al. [22] illustrated howquantification space can be par-
titioned and how to identify exact Euclidean coordinates for both rows and columns
in common space (this is the solution to the perennial problem of joint graphical
display). We will use the same numerical example and look at the partitioned quan-
tification space. The data used here is a subset of the original data reported byGarmize
and Rychlak [8], in which it was assumed that subjects’ perceptions of Rorschach
inkblots are influenced by the moods of the subjects. The researchers collected the
data obtained under experimentally induced moods. The subset of the data consists
of frequencies of observations of three different Rorschach inkblots under sixmoods,
as shown in Table1 (Contingency Table).

Nishisato [13] discussed the condensed response-pattern table, corresponding to
the contingency table, as shown in Table2, as equivalent to the incidence table,
consisting of 1s and 0s. The equivalence of the condensed response-pattern table and
the (1, 0) incidence table canbedemonstrated byBenzécri’s principle of distributional
equivalence (Benzécri [3]) and Nishisato’s principle of equivalent partitioning of
forced classification (Nishisato [14]).

Chapter 4 of his 1980 book contains a description of a number of mathematical
relations between the contingency table and the response-pattern table formats. The
most relevant to our discussion is that the condensed response-pattern table contains
both rows and columns of the contingency table in columns. From the graphical point
of view, thismeans that quantification of the response-pattern table yields coordinates
for both rows and columns of the contingency table in common space (see Young &

Table 1 Contingency table

Rorschach response Induced moods

Fear Anger Depression Ambition Security Love

Bat 33 10 18 1 2 6

Butterfly 0 2 1 26 5 18

Mountains 2 1 4 1 18 2

http://dx.doi.org/10.1007/978-981-15-2700-5_4
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Table 2 Response-pattern table

Rorschach responses Moods

Bat Butterfly Mountains Fear Anger Depression Ambition Security Love

33 0 0 33 0 0 0 0 0

10 0 0 0 10 0 0 0 0

18 0 0 0 0 18 0 0 0

1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 2 0

6 0 0 0 0 0 0 0 6

0 2 0 0 2 0 0 0 0

0 1 0 0 0 1 0 0 0

0 26 0 0 0 0 26 0 0

0 5 0 0 0 0 0 5 0

0 18 0 0 0 0 0 0 18

0 0 2 2 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 4 0 0 4 0 0 0

0 0 1 0 0 0 1 0 0

0 0 18 0 0 0 0 18 0

0 0 2 0 0 0 0 0 2

Householder [30]). Since our interest lies in finding coordinates of these variables
in common space, we now look at only the quantification outcome of the response-
pattern table. For detailed comparisons of the two response formats, please refer to
Nishisato [20] and Nishisato et al. [22].

First, let us note that multidimensional data structure of rows and columns of the
contingency table can be represented by principal coordinates, obtained from the
response-pattern representation of the contingency table. Second, notice that those
principal coordinates must be identified from a set of components in terms of some
mathematical constraints associated with multidimensional decomposition. Table3
(Principal Coordinates in Different Types of Space) shows the decompositions of
the response-pattern structure of the contingency table, as reported in Nishisato [20]
and Nishisato et al. [22].

In this example, the contingency table yields two components, of which principal
coordinates are listed under the contingency space (C-space). Although this is a two-
dimensional decomposition, we know that for each component, the row space and
the column space are not identical, but discrepant by the angle θ where

θk = cos−1 ρk
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Table 3 Principal coordinates in different types of space

C-space C-space

Space D-space D-space D-Space D-space

DSub-1 DSub-1 DSub-2 DSub-2

R-space R-space R-space

T-space T-space T-space T-space T-space T-space T-space

Component 1 7 2 6 3 4 5

Bat −092 −0.31 −0.39 −0.19 0.00 0.00 0.00

Butterfly 1.19 0.41 −0.49 −0.23 0.00 0.00 0.00

Mountain 0.09 0.03 1.88 0.91 0.00 0.00 0.00

Fear −1.10 0.38 −0.42 0.20 −0.01 −1.25 0.29

Anger −0.66 0.23 −0.37 0.18 2.74 1.23 0.78

Depression −0.83 0.28 0.00 0.00 −1.48 1.75 −0.42

Ambition 1.37 −0.47 −0.63 −0.31 −0.09 0.11 1.23

Security 0.29 −0.10 1.97 −0.95 0.20 −0.29 0.16

Love 0.78 −0.27 −0.45 0.22 −0.14 −0.31 −1.88

Eigenvalue ρ2 0.895 0.105 0.811 0.189 0.500 0.500 0.500

for component k (Nishisato & Clavel [23]) . In our example, the contingency table
yields two eigenvalues ρ2

1 = 0.62 and ρ2
2 = 0.39 so that the angles between row

spaces and column spaces are 42◦ and 57◦ for components 1 and 2, respectively. This
means that we need four-dimensional space to accommodate both rows and columns
of this contingency table, which is called dual space. Which four components, out
of 7, will constitute dual space? The mathematical constraint on dual space is that
the average eigenvalue is 0.5. Since we already have two components from the
contingency table analysis (note that the distributions of eigenvalues are different
between the contingency table and the response-pattern table as fully discussed in
Nishisato [13], and these two components are in fact those from the response-pattern
table which correspond to those in the contingency table), it is easy to find two more
components that will make the average eigenvalue of the four components as 0.5.
Dual space then consists of components 1, 7, 2 and 6 as seen in Table3. The four
components in dual space are further grouped into two sets of two components each
under the restriction that the average of the two components is 0.5. The two sets are
listed under Subspace 1 and 2.

As Nishisato [20] and Nishisato et al. [22] has shown, it is remarkable that if
we plot two components in Subspace 1 or 2, the two-dimensional graph shows the
distribution of rows and columns of the contingency table variables in such a way
that all row variables are aligned to one line and all column variables are lined on
another, and that the angle between the two lines is exactly equal to the discrepancy
angle, calculated by the above formula. In other words, the two-dimensional graph
of each subspace demonstrates how good or bad symmetric scaling’s unidimensional
graph is!
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The remaining three-dimensional space is residual space, inwhich threeRorschach
inkblots have nomore contributions. In other words, the total association between the
rows and the columns of the contingency table is completely accounted for by dual
space. This strongly suggests that QT of the contingency table should be restricted
only to dual space, a good way to justify the name “dual scaling.” Another point to
note here is that the eigenvalue of each component in residual space is equal to 0.5.

4 Distribution of Information

The previous section has revealed a number of important aspects of quantification
theory. If we are to ignore residual space, the only strategy is to use the equal numbers
of rows and columns so that residual space is null and dual space is identical to total
space.

In expanding the scope of dual scaling, Nishisato [13] treated the contingency
table as two multiple-choice data, to handle the extension of quantification from two
variables to many variables, which is dual scaling of multiple-choice data or multiple
correspondence analysis.

Whenwe have three categorical variables, we can consider twoways of represent-
ing the data asNishisato [13] did for two-variable case, namely the three-dimensional
contingency table and the three-item response-pattern table. The tri-variate expansion
of the data with the typical element fi jk can be expressed as

fi jk = fi.. f. j. f..k
ft

(1 + ρ1y1i x1 j z1k + ρ2y2i x2 j z2k + ρ3y3i x3 j z3k · · · + ρK yQi xQ j zQk)

(2)

The corresponding response-pattern table is nothing but the joined table of three
response-pattern matrices, which we can express as

F = [F1, F2, F3]

When we consider all possible relations between two variables, it was relatively
clear as we saw in the previous section. But, the relations involving more than two
sets of variables are more complex than the previous case. In order to look into a
complex case, there is a general framework for capturing data structure, proposed by
Nishisato and Lawrence [26], which describes the multiple-response-pattern table as

F = (Σi Pi )F(Σ j Pj ),

where Pi and Pj are projection operators such that

Σi Pi = Im,
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Σ j Pj = In.

In our case, the rows are distinct response combinations of n categorical variables and
we are not interested in the structure of the rows. Therefore, we will not consider the
decomposed structure of the rows, that is, we treat the left-hand side as the identity
matrix, and consider only the structure of columns.

To advance our discussion, let us again use the case of two categorical variables,
that is, F = [F1, F2]. In our example, the number of columns of F1 was smaller than
that of F2. Therefore, if we form the projection operator of the columns of F1 by

P1 = F1(F ′
1F1)

−1F ′
1

and subject the matrix F P1 to quantification, we obtain the principal coordinates of
dual space. If we subject F(I − P1) to quantification, we will obtain the principal
coordinates of residual space.

Withmore than three categorical variables, the situation becomes complicated, the
quantification of the response-pattern matrix will no longer yield distinct separation
of different types of space. The question then is which one of the following matrices
we should subject to quantification process:

• Data F Pj to obtain the coordinates which totally account for the categorical vari-
able j

• Data F(I − Pj ) to obtain the coordinates of the components which are free from
the influence of variable j

• Data F Pj Pk to look at the data structure associated fully with the two variables j
and k

• Data F P1P2P3(I − P4) to extract components, associated with variables 1, 2
and 3, but free from the influence of variable 4

• and so on.

These are the topics of forced classification analysis in QT (see Nishisato [14–17,
19]; Nishisato & Hilsdale [25]; Nishisato & Lawrence [26]; Nishisato & Gaul [24];
Nishisato & Baba [21]). Please see these relevant papers about applications of forced
classification.

The task of identifying different kinds of spaces, subspaces will become very
complicated when we have more than three categorical variables, and it is certain
that we must introduce definitions of a larger variety of spaces and subspaces than
what we saw for the two-variable case. This is too large a problem to deal with in
the current paper and this expansion will, therefore, be left for future work.
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5 Categories, Variables and Standardization

We often spend most of our time for developing methods of data analysis and forget
the strategy of data collection methods. But, we should remember that the quality of
data should be the first concern and thus be treated here as a topic of top priority.

This is a problem peculiar to categorical data analysis because it is often up to the
researchers to decide how to collect data for analysis (e.g., the determination of the
number of categories is up to the researchers), and remember that QT determines the
decomposition of data through “optimization.” For example, the correlation between
two categorical variables would increase as the number of categories of each variable
increases, because of the increased freedom to manipulate, the aspect which does not
exist with continuous variables, where the only possibilitywe have is to determine the
weight for the variable and not individual values. More concretely, consider finding
the relation between the body strength and the age. Suppose that one investigator used
three rating scale of [weak, average, strong] for body strength and two age groups
[under 50, over 50] for the variable “age.” Suppose further that the other researcher
used 10 rating scales from very weak to extremely strong for body strength and 10
groups [younger than 10, 11–20, 21–30, ..., 91–100] for age. It may not be obvious
but the second researcher will find a higher value of the correlation between the
two categorical variables, simply because the second researcher has greater freedom
to determine the values of the categories. This aspect of manipulation in QT is
an essential difference between quantification analysis and analysis of continuous
data.Note thatwe do notmanipulate the values of continuous data, the only allowance
there being to manipulate the weights for variables. In the above example, it is likely
that the second researcher will find a nonlinear relation between the age and the body
strength through nonlinear assignments of weights to the categories.

This problem is discussed in Nishisato [25], but because of its importance, wewill
look at some problems here. The source of our main concern is that quantification
theory is based on “optimization” and that the outcome of optimization is often in
the hands of the investigator.

When we analyze multiple-choice data [F1, F2, ..., Fn] by QT, it is well known
(for example, see Nishisato [25]) that

• The smaller the frequency of category p of variable j , the greater the influence
of the category over quantification because the sum of squares of category p of
variable j , SSjp, is given by

SSjp = N − f jp

nN

where N is the total number of rows of the response-pattern table, f jp is the fre-
quency of category p of variable j and n is the number of categorical variables.
Note the relation: the smaller the frequency of the category, the greater the con-
tribution of the category to SSjp. This sounds like just the opposite of what we
might expect.



262 S. Nishisato

• The larger the number of categories of variable j , m j , the greater the contribution
of the variable to the total variance, SSj , because

SSj = Σp SS jp = (m j − 1)

n

where n is the number of variables. This means that the variable with many more
categories than others will exert greater influence on the outcome of quantification.

• The larger the average number of categories in the data set, the greater the contri-
bution of the data set, SSt , for

SSt = Σ j
m j − 1

n

This means that the outcome of quantification is heavily influenced by the average
number of categories used in the data set. This information becomes relevant when
one wants to compare the results between data sets.

The above discussion inevitably leads to the question of standardization for QT.
Without standardization, how can we compare the results of different studies where,
for example, different numbers of categories are used in multiple-choice questions?

Interested readers may refer to Nishisato [18], in which he proposed standardized
dual scaling and demonstrated what effects would be shown on the results (1) if the
effects of the number of categories are partialled out and (2) if the category frequency
effects are partialled out. He demonstrated, for example, that the standardization of
category frequencies have the effects of eliminating the so-called “outlier” effects—it
is known inQT that a categorywith only one response, for example,will have decisive
effects on the outcome in such a way that the first component may be determined
by the outlier (the category with only one response). It is usual in QT practice that
researchers will adopt only the first few major components for interpretation, but
what if the most major component is a reflection of one category of one variable?

Standardized dual scaling has not been further pursued, but it may be worth
investigating, considering that how categories are introduced in research is in the
hands of researchers, and that some researchers may want to compare the results of
QT from different studies. How can we make sure that one can compare two studies
on the same topic appropriately?

We have a lesson on this topic, however, from the well established PCA, where
investigators sometimes use the decomposition of the variance–covariance matrix
V and sometimes the correlation matrix R of the same data set. It is known (see
Nishisato&Yamauchi [27]) that the principal components fromV are totally different
from principal components from R. In other words, in PCA, the standardization
changes the structure of data substantially. The same may be the case with QT. To
the best of the current author’s knowledge, this problem of standardization versus
non-standardization for PCA has not been solved, and it is likely that the same
problem may exist for QT.
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6 Concluding Remarks

This is an essay on quantification problems based on half a century work of the
author. The idea of quantification arises from the need for quantitative description
of categorical, qualitative or subjective data. In spite of many studies in QT and
remarkable advancement of theory, there are still a number of problems to investigate,
or rather it seems to the current author that the more we know, the less we are certain
about what we can do with our knowledge to understand analysis of categorical data.
It is hoped that the current essay may nurture some thought for further development
of quantification theory in a more convincing way than now.

The current discussion of QT also has implications for the traditional uni-modal
analysis when it is extended to bi-modal analysis. For example, consider factor
analysis. When we derive factor loadings of variables, the researchers may also
wish to estimate factor scores for the subjects. The current practice is to estimate
such factor scores for the subjects from factor loadings of variables. This can be
interpreted as projecting factor scores of subjects onto the space of factor loadings of
variables. But, would it not be better if we can find the coordinates of both variables
and subjects in common space? In this case, the problem is the same as that of
joint graphical display of QT. We must double multidimensional space to arrive at
principal coordinates of both variables and subjects.
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Clustering via Ant Colonies: Parameter
Analysis and Improvement of the
Algorithm

Jeffry Chavarría-Molina, Juan José Fallas-Monge and Javier Trejos-Zelaya

Abstract An ant colony optimization approach for partitioning a set of objects is
proposed. In order to minimize the intra-variance, or within sum-of-squares, of the
partitioned classes, we construct ant-like solutions by a constructive approach that
selects objects to be put in a class with a probability that depends on the distance
between the object and the centroid of the class (visibility) and the pheromone trail;
the latter depends on the class memberships that have been defined along the iter-
ations. The procedure is improved with the application of K-means algorithm in
some iterations of the ant colony method. We performed a simulation study in order
to evaluate the method with a Monte Carlo experiment that controls some sensi-
tive parameters of the clustering problem. After some tuning of the parameters, the
method has also been applied to some benchmark real-data sets. Encouraging results
were obtained in nearly all cases.

1 Introduction

Cluster analysis, or clustering, is one of the main tools in Data Analysis andMachine
Learning, since it intends to discover groups or classes in large data sets of objects
described by observed variables, simplifying this way the set with a small number
of clusters. Most clustering methods are based on dissimilarities, graphs, models, or
densities. In our case, we will deal with dissimilarities or distances for numerical
data sets. There are two main families in this case: partitioning methods and hier-
archical ones, being K-means and agglomerative hierarchical methods, respectively,
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the most widely used in practice. Both have local optimality problems: local min-
ima that depend on initialization for K-means, greedy procedure for agglomerative
hierarchical clustering.

Several combinatorial optimization metaheuristics have been used for cluster par-
titioning (Handl & Knowles [14]; Ng &Wong [21]; Sarkar, Yegnanarayana, & Khe-
mani [23]; Trejos, Murillo, & Piza [27]). In this article, we deal with partitioning for
numerical data sets, using an ant colony optimization (ACO) approach in order to
overcome the local optima problem.

According toHandl andKnowles [14], published in 2006, “a few implementations
of ACO have been proposed for data clustering, with the construction graph typically
employed to directly represent cluster assignments (Handl & Meyer [15]; Runkler
[22])”.

In 2004, we published a first paper on clustering using an ant colony optimization
approach (Trejos, Murillo, & Piza [28]) for the minimization of the within sum-
of-squares criterion. In that method, ants were associated with partitions that were
modified during the iterations, according to a probability of selection that depends on
the visibility (proportional to the distance between the objects) and the pheromone
trail (which depends on the fact that the objects have been classified together in
the partitions). The pheromone matrix measured relation intensity between pairs of
objects.

By that time, Shelokar, Jayaraman, andKulkarni [24] published another clustering
method based on ACO for minimizing the same criterion as in Trejos, Murillo, and
Piza [28], with a pheromone trail but no local heuristic. The pheromonematrix relates
objects and clusters, and it is defined by the inverse of the objective function. The
matrix is used as a kind of adaptive memory that contains information provided by
the previously found superior solutions, and is updated at the end of each iteration
(Shelokar et al. [24]). This information is considered by the other ants to continue the
clustering process. However, it is not clear how the authors selected the parameters to
execute the ACO algorithm. They indicate that several simulations were performed
to find the algorithm parameters (Shelokar et al. [24]), but they do not present details
about the process. They also present a comparison among their ants algorithm and
other heuristic methods such as genetic algorithm, simulated annealing, and tabu
search.

Later on, Kao and Cheng in a short paper [17] improved Shelokar’s algorithm
introducing a local heuristic or visibility based on the inverse of the distance between
objects and class centers. The pheromone trail is also defined by the inverse of the
criterion and the algorithm follows almost the same steps as Shelokar algorithm
(Shelokar et al. [24]), with the difference that visibility is introduced.

Neither Shelokar et al. [24] nor Kao and Cheng [17] give a detailed analysis on
the choice of parameters for their methods.

In the present article, we use ACO with ants constructing partitions. The strategy
is based on the traveling salesman problem (TSP) in a similar way as it was tackled
in Bonabeau, Dorigo, and Therauluz [4] with ACO, in our case for the clustering
problem. It is a constructive method, in which each ant builds a partition. This part
of the process is similar to the ideas presented in Kao and Cheng [17] and Shelokar
et al. [24], which were previously presented; but this paper deals with three different
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aims: first, developing a fitting parameters analysis studying the algorithm behavior
in the clustering problem according to its parameters. Second, we introduce a local
searchprocedure basedon theK-means algorithm, to improve thebasicACO(BACO)
algorithmperformance. And finally, to develop a performance comparison among the
K-means algorithm (KM), the BACO algorithm and the BACOK (BACO improved
with the local search procedure) algorithm.

The article is organized as follows. Section2 contains the mains concepts of
clustering we use in the article, introducing the main notation we need. In Sect. 3 the
artificial ant concept is explained and the ACO classical algorithm is presented. In
Sect. 4we introduce the proposedACOalgorithm. Section5 describes the experiment
performed. Sections6 and 7 present the results and some remarks.

2 Clustering

Cluster analysis, or clustering, deals with finding homogeneous groups of objects
such that similar objects belong to the same class and it is possible to distinguish
betweenobjects in different classes.Cluster analysis canbedefinedas anoptimization
problem in which a given function consisting of within cluster similitary and among
clusters dissimilarities need to be optimized (Jafar & Sivakumar [16]; Xavier &
Xavier [30]). In the numerical case, there is a set of objects � = {x1, x2, . . . , xn}
such that xi ∈ R

p, for all i , that is, the objects are described by p numerical or
quantitative variables. The most widely used criterion (Everitt, Landau, Leese, &
Stahl [9]) is the minimization of the within sum-of-squares, also known as within
inertia or variance:

W = 1

n

K∑

k=1

∑

xi∈Ck

‖xi − gk‖2, (1)

where K is the number of classes or clusters (number fixed a priori), P =
(C1,C2, . . . ,CK ) is a partition of �, and gk is the barycenter or mean vector of
Ck . Minimizing W (P) is equivalent to maximizing the between sum-of-squares
(between inertia and variance):

B =
K∑

k=1

|Ck |
n

‖gk − g‖2,

where g is the overall barycenter and |Ck | is the cardinality of class Ck , since the
sum I = W (P) + B(P) is a constant (the total inertia) (Everitt, Landau, Leese, &
Stahl [9]).

TheW (P) function is not a convex function, thusW (P) could have several local
minima (Ng & Wong [21]; Sarkar et al. [23]). This feature causes the traditional
clustering algorithms based on local search, such as K-means, to find mostly local
minima (Trejos et al. [27]). Furthermore, the global optimization algorithms (such
as linear programming, interval methods, branch, and bound methods) present a
high sensitivity to relatively high-dimensional data tables, in which the algorithms’
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probability for finding the optimal partition is very low. In those cases, algorithms
report solutions that differ significantly from the optimum clustering (Bagirov [2]).
Those features represent a challenge to try to find alternative optimization strategies,
and combinatorial optimization heuristics are a viable option.

In recent years heuristic algorithms have been used to solve complex optimization
problems, since their random nature is useful to efficiently avoid the convergence
to local minima (Babu & Mutry [1]; Klein & Dubes [19]; Trejos et al. [27]). As
particular examples of optimization heuristics used in clustering it is possible to cite
simulated annealing, tabu search, genetic algorithms, particle swarm optimization,
and ant colony optimization.

In the particular case of ant colony optimization, there are several contributions,
as the already mentioned (Kao & Cheng [17]; Shelokar et al. [24]; Trejos et al. [28]),
and some other more recent (Handl & Meyer [15]; Handl & Knowles [14]; Runkler
[22]; Zhe et al. [31]).

3 Artificial Ant Colonies

The optimization approach based on ant colonies (ACO) is part of a large group
based on swarm intelligence. It was proposed by Marco Dorigo in 1992, to solve
several discrete optimization problems (Dorigo, DiCaro, & Gambardella [6]; Jafar
& Sivakumar [16]), and since then it has been applied to several combinatorial opti-
mization problems. This method, like every metaheuristic, depends on parameters
which control several decisions taken in the process. There are several papers which
develop parameters analysis for the ACO algorithm. In Gaertner and Clark [13] an
empirical analysis of the sensitivity of the ACO algorithm to variations of some
parameters for different instances of the TSP (traveling salesman problem) is pre-
sented. Similarly, in Wei [29] an experiment with parameter combinations is shown,
in order to improve the speed of convergence of the ACO algorithm in the TSP. Also,
this author indicates that at present the parameter settings and properties research
of basic ant colony algorithm are mostly still in the experimental stage (Wei [29])
Meanwhile, Stützle et al. [25] provides an extensive review of available research
results on parameter adaptation in ACO algorithms. They mention that ACO algo-
rithms involve a number of parameters that need to be set appropriately, in particular
α, β (both used to weigh the relative influence of the pheromone) and ρ (evaporation
rate parameter, 0 ≤ ρ ≤ 1). A parameter selection in the TSP context is developed
in Dorigo, Maniezzo, and Colorni [8], in three different experiments. They tested
the ranges: α ∈ {0, 0.5, 1, 2, 5}, β ∈ {0, 1, 2, 5}, ρ ∈ {0.3, 0.5, 0.7, 0.99, 0.999} and
Q ∈ {1, 100, 10000}. The numbers α = 1 and β = 5, were selected as the best val-
ues for these parameters. Parameter ρ was fixed, depending on the experiment, in
0.99, 0.99 or ρ = 0.5. And finally, parameter Q was found to be negligible.

In nature, the optimization developed by ants while they look for food consists
basically of minimizing the distance between the nest and food. For this reason, the
first application of ACO was to the TSP (Bonabeau et al. [4]). In that problem the
agent should visit n cities, all interconnected, visiting all cities just one time and then
returning to the departure city, minimizing the distance.
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In this paper, the TSP idea is used to study the clustering optimization problem.
Thus, it is necessary to introduce artificial ants; that is, agents in charge of finding a
feasible solution in the search space. During this process the ant will drop artificial
pheromones so that other ants can rebuild the same solution. Pheromones should be
volatile (disappear in time on the trails that have not been intensified) and have to
increase on the shortest trails while the number of iterations increases (Dorigo et al.
[6]).

The pheromone update formula applied in the TSP is given by τuv = (1 − ρ)τuv +
ρ�τuv (Barcos, Rodríguez, Álvarez, & Robusté [3]; Dorigo, Birattari, & Stützle [5];
Dorigo & Gambardella [7]), where τuv is the pheromone present on the trail from u
to v, ρ is the evaporation rate, and

�τuv =
M∑

m=1

�τm
uv,

where M is the number of ants, and �τm
uv is the pheromone dropped by the m-th ant

on the trail (u, v), normally given by

�τm
uv =

{
Q/dm if ant m walks across (u, v)

0 otherwise;

where Q is a parameter to be fitted and dm represents the total distance walked by
ant m.

An alternative way to deal with pheromones is to make local updatings, that is,
every time an ant goes from node u to node v, a local pheromone update is applied
on the trail (u, v) (Dorigo & Gambardella [7]). A possible local update formula is

τuv = τuv + Q

duv
, where Q is a parameter to be fitted and duv is the distance between

u and v. When all ants finish their trips, the pheromone is updated by applying the
evaporation rate.

On the other hand, each ant has to decide to which node it goes from the current
node. In that choice three factors are fundamental: visibility, pheromone trail, and a
probabilistic factor. Thus, if Tm represents the route built by the ant m while it is on
the node u, then the probability of going to the node v is given by

pmuv =

⎧
⎪⎪⎨

⎪⎪⎩

[τuv]α · [ηuv]β∑
s /∈Tm

[τus]α[ηus]β if v /∈ Tm

0 if v ∈ Tm;

where ηuv is the visibility, defined by ηuv = 1/duv, with duv the distance from the
node u to node v; τuv is the pheromone on the trail (u, v), and α and β are parameters
to be fitted (Barcos et al. [3]; Dorigo et al. [6]; Kennedy & Eberhart [18]).

To stop the algorithm, Bonabeau et al. [4] proposed using a maximum iteration
number. The disadvantage of this procedure is that it could stop the algorithm while
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it is still improving the solutions. Also, Dorigo et al. [8] considered investigating
a stagnation behavior of all ants traveling the same path. A stagnation process is
present if a percentage of the ants has the same distance in their paths. Thus, it is
almost certain that those ants are traveling the same path, or at least, that they are
traveling paths with the same cost value.

In Algorithm 1, the classical ACO algorithm is shown.

Algorithm 1 ACO algorithm
Require: Initial parameters.
1: Set parameters and initialize pheromone trails.
2: while stop criterion is not satisfied do
3: for t ← 1 to total of nodes do
4: for m ← 1 to M do
5: Move ant m to a new position.
6: Update Tm .
7: Update the local pheromones (optional).
8: end for
9: end for
10: Update the global pheromones.
11: Keep the best solution in this iteration if it improves the best in memory.
12: end while
13: return The best solution built.

4 Description of the Proposed ACO Algorithm

Themethod starts by defining a list ofM artificial ants h1, h2, . . . , hM , that will build
a data clustering in K classes (or clusters). At the beginning, it is possible to define
the best ant in the colony, denoted by h∗, equal to hm for some m = 1, 2, . . . , M ,
because in that moment there is no comparison parameter among them; thus the
assignment could be random.

For ant hm , with m = 1, 2, . . . , M , K random points in the space of individ-
uals (a hyperrectangle that contains all individuals) are considered, denoted by
gm
1 , gm

2 , . . . , gm
K . These points are interpreted as the initial centroids. Cm

k denotes
the class k, with centroid gm

k , which has been built by ant m. Also, hm has a tabu
list Lm , which is a short term memory that contains the objects classified by hm . In
each iteration, in order to complete the tour, ant m has to classify the objects not in
Lm . When the iteration is done, all objects should be in Lm , this guarantees that the
clustering process is complete.

During the clustering process, each ant randomly chooses an object that is not
in its tabu list. Then, the ant should randomly select a class in which to classify
the object. If ant m selects object i , then the process to choose the class uses a
probabilistic roulette (see Talbi [26]). The probability that hm assigns object i to
class Cm

k is denoted by pmik . To calculate this probability it is necessary to consider
the following factors:
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• Visibility: This factor is denoted by ηm
ik , and it consists of the visibility of hm ,

located on object xi , to “see” class Cm
k . The visibility is defined as the recip-

rocal of the distance from object xi to gm
k , the centroid of class Cm

k . Thus,

ηm
ik := 1

dm
ik
, where dm

ik = d2(xi , gm
k ) = ∥∥xi − gm

k

∥∥2
. If the visibility which hm has

of class Cm
k is large, then the probability of classifying xi in class k is also large.

• The pheromone trail: The pheromone trail perceived by hm on the arc from xi to
gm
k is denoted by τik . It quantifies pheromones that have been dropped by all ants
which have classified the same object xi in its respective class k. If τik is large,
then the probability of assigning class k to cluster xi is going to increase.

Equation (2) shows the formula used to calculate pmik , considering visibility and
the pheromone trail, inspired by the corresponding formula used by the agent in the
TSP:

pmik := [τik]α · [ηm
ik]β

K∑
r=1

[τir ]α · [ηm
ir ]β

, (2)

where α and β are parameters to be fitted.
On the other hand, when hm chooses class Cm

k for object xi , the ant will regis-
ter index i in the respective tabu list Lm . Futhermore, hm should do the following
processes related to the assignment.

• Local pheromone update: Ant hm should drop a pheromone trail between object
xi and class Cm

k . To do this, an auxiliary pheromone matrix was defined, denoted
by 	aux with size n × K , such that entry ik of 	aux contains pheromones between
xi and class k. This matrix has the format presented in Table1.

Ant hm will drop �τm
ik pheromones. This quantity is defined by �τm

ik := Q

dm
ik

,

where Q is a parameter to be fitted. Finally, the local pheromone update is done
by adding �τm

ik with the current entry ik of 	aux .
• Centroid update: The final step in this process is to update the centroid gm

k of

classCm
k .Onepossibility is using its definitiongm

k := 1|Cm
k |

∑

x∈Cm
k

x. This option is not

advisable because there are several unnecessary calculations. If fact, it is possible
to update gm

k recursively using its value in the previous iteration in case object xi

Table 1 Auxiliary pheromone matrix 	aux

C1 C2 C3 · · · CK

x1
x2
x3
.
.
.

xn
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is transferred to class Cm
k . In Trejos et al. [27] the following formula is proven and

is used to update the centroids more efficiently: gm
k := 1|Cm

k |
[(∣∣Cm

k

∣∣ − 1
)

gm
k + xi

]
.

After each ant has clustered one object, it should randomly select a new object that
is not in its tabu list. Next, the ant should follow the process previously described.
This process is done n times, clustering all objects by all ants.

When the process ends, each ant has a complete clustering of objects with the
respective barycenters. Also, matrix 	aux contains pheromones that were dropped
by ants. Entry ik of 	aux contains pheromone �τik , which has been dropped by all
ants that classified object i in its respective class k. This quantity is represented by

�τik =
M∑

m=1

�τm
ik .

The next step is to calculate, for each ant, the within inertia. To do this, the
classification done by each ant, and the respective barycenters, should be considered.
Also, if one of the ants has a within inertia less than W (h∗) (the best inertia so far in
memory), then h∗ (the best ant in memory) is required to be updated.

Global pheromones are stored in a matrix 	 with the same structure as 	aux .
At the beginning, this matrix is initialized with values close to zero (indicating
pheromone absence). When the travels of all ants finish, 	 is updated in entry ik by
	ik := (1 − ρ)	ik + ρ�τik, where ρ is the pheromone evaporation rate.

When the pheromone updating process is done, matrix 	aux is initialized, to be
used in the next iteration. Also, tabu lists (one per ant) are initialized, to start a new
classification process.

As the final step to conclude the current iteration, an intensification process done
by the best ant (the ant with lowest within inertia, denoted by h∗) is developed. h∗
repeats her path dropping extra pheromones in arcs it visited. The intensification
follows the following rule:

	ik :=
⎧
⎨

⎩

	ik + Q
W (h∗) if the object i is in the class k of h∗,

	ik otherwise;

whereW (h∗) denotes the within inertia of the classification done by h∗. This ends the
current iteration and a new clustering process is started, considering the following
information: the global pheromone matrix 	, the barycenters of ants, which will be
used as the initial centroids for the new classes, and the best ant h∗.

Algorithm 2 presents a detailed pseudocode of the BACOK. The K-means algo-
rithm was applied (see line 19 in Algorithm 2) to each ant. The method is applied
after all ants have built their respective classifications, and until the absolute differ-
ence between current inertia and previous inertia is less than 0.0001. Algorithm 3
shows how the local search strategy based on K-means works. If lines from 19 to
22 are eliminated from Algorithm 2, then BACO algorithm pseudocode is obtained.
Finally, in the event that there has been no improvement, Algorithm 2 uses an itera-
tion number (10 iterations) as stopping criterion (see line 4). Consider that, Counter
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is increments in line 5, but its value must be returned to zero every time a better
solution (comparing with the best in memory) is found. This stopping criterion is
based on the stagnation behavior concept presented in Dorigo et al. [8].

Algorithm 2 BACOK algorithm.
Require: n (number of individuals), p (number of variables), K (number of clusters), M (number

of ants), and the parameters α, β, Q and ρ.
1: Build the initial colony with m ants: h1, h2, . . . , hM .
2: For each m = 1, 2, . . . , M define Lm = ∅, and randomly choose gm1 , . . . , gmK .
3: Counter ← 0
4: while Counter ≤ 10 do
5: Counter ← Counter + 1
6: for I := 1 to n do
7: for m := 1 to M do
8: Ant hm chooses a random individual xi , such that i /∈ Lm .

9: Ant hm chooses k := Roulette(pmik), where pmik := [τik ]α ·[ηmik ]β
K∑

r=1
[τir ]α ·[ηmir ]β

.

10: Individual xi and index i are assigned to Cm
k and Lm , respectively.

11: Let 〈	aux 〉ik := 〈	aux 〉ik + �τmik , where �τmik = Q
dmik

.

12: Let gmk := 1|Cm
k |

[(∣∣Cm
k

∣∣ − 1
)

gmk + xi
]
.

13: end for
14: end for
15: Let h∗ := BestAnt(h1, . . . , hM , h∗).
16: For i = 1, . . . , n and k = 1, . . . , K let 〈	〉ik := τik ,

where τik := (1 − ρ) 〈	〉ik + ρ 〈	aux 〉ik .
17: Intensify the best trail. For all i(i = 1, . . . , n), if individual i in h∗ was classified in cluster

k do 〈	〉ik = 〈	〉ik + Q/W (h∗)
18: If the inertia of h∗ improves the best inertia keeped in memory, reset Counter.
19: for m := 1 to M do
20: Apply K-means to hm .
21: Update h∗ if there was an improvement from the K-means application.
22: end for
23: end while
24: return h∗

5 Parameter Analysis

To develop the parameter analysis three data tables (T105, T525, and T2100) were
built, with randomly generated normal variables. The data sets T105 (n = 105 and
p = 6) and T525 (n = 525 and p = 6) consists of 105 and 525 objects, respectively.
Both sets have seven clusters (K = 7), such that six classes have variance equal to
σ 2 = 1, and the seventh class has σ 2 = 3. The data set T105 has a “big” class with
51 objects, and the remaining six groups with 9 objects. Meanwhile, T525 has a
class with 265 objects, and the remaining objects are equitably distributed in the
other groups. The W (P) reference values for T105 and T525 were calculated using
the Eq. (1), thereby 7.62467183 and 7.45610263 were obtained for these tables,
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Algorithm 3 Local search strategy based on K-means applied in BACO.
Require: One ant h.
1: PreviousInertia← −1.
2: while |PreviousInertia − W (hm)| > 0.001 do
3: PreviousInertia← W (hm)

4: For h, build clusters C1,C2, . . . ,CK , using barycenters g1, . . . , gK . To do that, assign each
individual xi to the class with its barycenter closest to xi .

5: Recalculate the barycenters g1, g2, . . . , gK with:

gk = 1

|Ck |
∑

xi∈Ck

xi , for all k = 1, 2, . . . , K .

6: end while
7: return A new ant ĥ.

respectively. Table T2100 has 2100 objects, seven clusters with the same cardinality
and all classes have different variances. The W (P) reference value for this set is
22.56959210.

The Algorithm 2 has four parameters that should be fitted, with the aim of achiev-
ing good performance. Parameters α and β control the relative weights assigned
to pheromone concentration and ant visibility, respectively. Meanwhile, ρ repre-
sents the pheromone evaporation rate, used to update the pheromone matrix. Finally,
parameter Q is a pheromone amplification constant.

To develop the parameter analysis tables T105 and T525 were used, and for each
table, and for each parameter combination, 200 multistart runs were done. Based
on the ranges presented in Dorigo et al. [8], in the current experiment a further
analysis was developed, using ρ ∈ {0.1, 0.2, . . . , 0.9},α, β ∈ {0, 0.5, 1, 1.5, . . . , 6},
and Q ∈ {50, 100, 150, . . . , 500}. In total 9 × 13 × 13 × 10 = 15210 combinations
were run for each table. This analysis used M = 10 (the number of ants).

The pictures in Fig. 1 show some examples of the 90 contour maps built with the
performance percentages (each percentage represents howmany times the algorithm
scores the W (P) reference value, in the 200 runs) obtained with table T105, for
the different parameter combinations. For example, Fig. 1a shows the contour map
for ρ = 0.1, Q = 50 and α, β ∈ {0, 0.5, 1, 1.5, . . . , 6}. This analysis showed that
ρ = 0.5 was the best option, because the best performance zone for ρ = 0.5 (the
darker red zone in Fig. 1b) is better (largest area) than those of the remaining ρ

values.
On the other hand, very similar contourmapswere obtainedwhen ρ was fixed, and

Q varied from 50 to 500 (10 contour maps per each ρ value). This showed evidence
that Q was not an important parameter in this experiment. And this coincides with
the observation presented in Dorigo et al. [8], which indicates that Q has a negligible
influence in the algorithm. Therefore, the parameter Q was fixed at 250 (the range
middle value), but also could be fixed at 100, as they did.

Next, an analysis forα andβ was developedwith tables T105 andT525, usingρ =
0.5, Q = 250, and α, β ∈ {0, 0.25, 0.5, 0.75, . . . , 6}. Figure2 shows the contour
maps obtained in this process. This analysis was not enough to determine optimum
values for α and β. Figure2a and b only suggest that the best performance is probably
obtained when 1.5 ≤ β ≤ 5 and 0 < α ≤ 2.5. For this reason, an extra analysis was
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Fig. 1 Some examples of
contour maps created with
the performance percentages,
for Q = 50,
ρ = 0.1, 0.5, 0.9, and
variants values for α and β.
Analysis done with table
T105

(a) Contour map for = 0.1 and = 50

(b) Contour map for = 0.5 and = 50

(c) Contour map for = 0.9 and = 50
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(a) Results obtained with table T105 (b) Results obtained with table T525

Fig. 2 Contour maps created with the performance percentages, with the fixed values ρ = 0.5 and
Q = 250

Fig. 3 Contour maps
created with the performance
percentages, with the fixed
values ρ = 0.5 and
Q = 250, in table T2100

developed with table T2100. Figure3 shows that any combination for α and β in
the dark red region could be taken. Therefore, for this experiment the combination
β = 2.5 and α = 0.25 was selected. Summarizing, the parameters were chosen as
α = 0.25, β = 2.5, ρ = 0.5, and Q = 250.

6 Extra Data Sets, Results, and Discussion

A personal computer with 8 GB of RAM memory and an Intel Core i7-4712MQ
CPU@2.30 GHz processor, was used in this experiment. In order to develop a com-
parison among the algorithms BACO, BACOK and KM, five real-life data sets were
downloaded from the website of UCI repository of machine learning databases (UCI
[20]): iris (n = 150, K = 3 and p = 4), wine (n = 178, K = 3 and p = 13), glass
identification (n = 214, K = 6, p = 9), redwine quality (n = 1599, K = 3, p = 11)
andwhitewine quality (n = 4898, K = 3, p = 11) data sets. In glass data set the first
attribute was not considered as a variable, because it is an identification number (for
this reason p = 9). Furthermore, K was fixed at 6 because the type of glass number 4
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is not present in this data set (in total, there are 7 types of glass). Inwine quality (both
tables), the attribute number 12 was not considered because it is an output variable.
Additionally, two groups (A and S) of bidimensional synthetic data sets were consid-
ered (downloaded from Fränti & Sieranoja [12]), which are described on Fränti and
Sieranoja [11]. Group A (3 sets) varies the number of clusters, and the group S varies
the overlapping among the clusters (4 sets). All cases use p = 2. Table2 summarizes
the main features of these sets and Fig. 4 shows a bidimensional representation for
each set. Also, the ground truth centroids for these data sets are available on Fränti
and Sieranoja [12]; hence, it was possible to analyze if the proposed BACOK algo-
rithm was generating a reasonable clustering for the data. The centroid index (CI)
presented in Fränti, Rezaei, and Zhao [10] is a cluste- level similarity measure, based
on the cluster centroids, which can be used to compare one clustering against other
solution or the ground truth, if is available. The algorithm BACOKwas executed 100
times on sets A1, A2, A3, S1, S2, S3, and S4, and the best solution found, in each
case, was compared with the ground truth solution, using the CI value. In all cases,
the CI value was equal to zero, therefore according to Fränti and Sieranoja [11],
our algorithm is properly clustering those datasets. This experiment was made with
20 ants (M = 20) and the parameters α = 0.25, β = 2.5, ρ = 0.5, and Q = 250.
Finally, using for each set the centroids of the best solution and the definition of
W (P) (see Eq.1), the best within inertia for each set (Wbest ) was calculated (see
column number 4 on Table2).

Table3 summarizes the results obtained with the three algorithms. The perfor-
mance of each algorithm is represented by a percentage, and this corresponds to the
number of times in which the algorithm scored theWbest value in 100 multistart runs.
The algorithmBACO also usedM = 20, α = 0.25, β = 2.5, ρ = 0.5, and Q = 250.
Meanwhile, the KM algorithm iterates until the difference between two consecutive
within inertias is less than 0.001. The symbol “-” used in Table3means the algorithm
did not attend the Wbest reference value in any of the 100 runs. Also, the standard
deviation of inertia, the average time and the standard deviation of time, in those 100
executions, are presented in Table3.

Table3 shows how the algorithm BACOK performed very good on the available
data sets. This final comparison is valuable because it reinforces one of the princi-

Table 2 Main features for sets on group A ans S

Data set n K W (P) reference value

A1 3000 20 4048752.50

A2 5250 35 3864140.31

A3 7500 50 3858322.01

S1 5000 15 1783523123.37

S2 5000 15 2655821898.14

S3 5000 15 337791436.87

S4 5000 15 3140628447.25
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(a) A1

(b) A2 (c) A3

(d) S1 (e) S2

(f) S3 (g) S4

Fig. 4 Two-dimensional representation for the datasets on groups A and B
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pal contributions of this paper: the BACO and KM algorithms did not show good
results in most all data sets, but our algorithm uses the potential of K-means to
improve the algorithm BACO, and then significantly better results were obtained.
That hybridization process presented in algorithmBACOK reveals how the K-means
algorithm itself could not work well, but it can be used to improve other heuristic
algorithms. Finally, the lowest performance reported by algorithm BACOK was in
the set S4, which has the highest level of overlap (see Fig. 4).

7 Conclusions

We have presented a hybrid clustering method based on the ant colony optimization
metaheuristic and the K-means algorithm. The method is based on some features
developed for ACO in the traveling salesman problem and it is improved by the
K-means algorithm in each iteration. The adaptation to the clustering problem takes
into account the representation of clusters by barycenters, and therefore the distance
between objects and barycenters is used for defining visibility and the pheromone
trail.

After an extensive parameter fitting, an experimentationwas implemented in order
to evaluate the method. It performed very well, attaining the reference value for the
inertia in each data table, in reasonable time. Furthermore, the method showed very
good results when it was applied to other benchmark data sets, where the ground
truth for each set was available.

Finally, the experiment revealed the parameter Q does not have a relevant role in
the ACO algorithm, but the algorithm is very sensitive to the values assigned to the
parameters α, β and ρ. The parameter fitting process was necessary to improve the
algorithm performance and it gave the combination α = 0.25, β = 2.5 and ρ = 0.5.
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PowerCA: A Fast Iterative
Implementation of Correspondence
Analysis

Alfonso Iodice D’Enza, P. J. F. Groenen and M. Van de Velden

Abstract The visual exploration of big data requires interactivity as well as the
possibility to update an existing solution as new data becomes available in real
time. Enhanced exploratory data visualization is provided by dimension reduction
methods. Eigenvalue and singular value decompositions are the core of most of the
dimension reduction techniques, such as principal component analysis (PCA) and
multiple correspondence analysis (MCA). An efficient implementation of MCA,
called PowerCA, is proposed that exploits enhanced computations of the sparse
matrix transformations and fast iterative methods provided by intelligent initializa-
tions in case of repeated analyses. The aim is to extend the applicability of MCA
to computational demanding application such as streaming text and web-log data
visualization as well as bootstrap-based sensitivity analysis.

1 Introduction

Big data is one of the research priorities set by Marketing Science for 2012–2014.
In particular, it is stated that

(...) the explosive growth in the sources and quantity of data available to firms is leading
them to employ new methods of analysis and reporting, such as machine learning and data
visualization (...)
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The visual exploration of big data requires interactivity as well as the pos-
sibility to update an existing solution as new data becomes available in real
time. Enhanced exploratory data visualization is provided by dimension reduction
methods. The eigenvalue decomposition (EVD) and the related singular value decom-
position (SVD) are the core steps of several dimension reduction methods, such as
principal components analysis (PCA). In fact, PCA consists of an eigendecomposi-
tion of the correlation matrix resulting from a set of p quantitative variables observed
on n units, and it leads to a low-dimensional representation of the relation structure
underlying the data set in question (see, e.g., Jolliffe [9], for an in-depth exposition
of PCA). Applications in which dimension reduction can be particularly useful are in
text mining, web-log analysis andmarket basket analysis: in all of these applications,
the information can be collected in a binary data matrix, where the rows record the
presence/absence of the set of considered attributes. As an example, in the context
of text mining, data can be arranged in a document-by-word matrix, whose general
element (i, j) (i = 1, . . . , n, j = 1, . . . , p) is “1” if the j th word is present in the
i th document.

The qualitative data counterpart of PCA is multiple correspondence analysis
(MCA, Greenacre [6]), that aims to describe in a low-dimensional space the multiple
association structure characterizing p categorical or binary variables. As PCA,MCA
is also characterized by the EVD or SVD of a properly transformed data matrix.

In the context of large data sets, the application of standard implementations
of both EVD and SVD becomes unfeasible due to their high computational cost.
The EVD is traditionally computed by a batch time algorithm with computational
complexity O(p3), whereas the SVD has a computational complexity of O(n2 p)
assuming n ≥ p (Golub & van Loan [4]). Thus, both methods become computation-
ally infeasible for large datasets. Several methods in the literature can be used to
efficiently compute the EVD and SVD. In particular, iterative EVD methods, such
as the LR transformation and the QR transformation (Golub & van Loan [4], are
widely used; on the SVD side, Lanczos’ bilinear diagonalization methods reduce the
computational complexity of the procedure (Baglama & Reichel [1]) considerably.
These methods are referred to as batch methods because they require that all the data
is available to perform the decomposition. When the full dataset is not completely
available from the beginning, or when data changes (e.g., when values get updated
over time or when some type of resampling is employed), two approaches can be
considered: complete new decompositions are considered each time data changes,
or the EVD or SVD is updated using the previous solution and the new data (see
Baker, Gallivan & Van Dooren [3], for an overview).

We can distinguish three types of applications requiring repeated fast-paced anal-
yses using dimension reduction can be thought of. First, when data flows change
over time, fast updated dimension reduction solutions may be needed to visualize
the changes. Second, in the context of interactive visualization of dimension reduc-
tion methods, the interface may need to react instantly to user interaction (e.g., such
as the selection of different variables or the elimination of one or more categories).
In such a scenario, the analysis has to be repeated on-the-fly to reproduce on screen
the changes to the solution. Third, the use of bootstrap techniques and permutation
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tests to assess stability and the significance of PCA and MCA solutions, requires the
analyses to be repeated many times. Here, in order to obtain the results in reasonable
time, fast procedures are needed. All these situations illustrate the need for fast and
efficient computations for the dimension reduction solution.

The majority of the matrix decomposition procedures focus on the analysis of
quantitative variables only.However,whendealingwith categorical data, in particular
with binary variables, a further peculiarity arises that needs to be taken into account:
the sparsity of the matrix being analyzed.

In the present paper, an efficient implementation of MCA is proposed that
addresses the issues presented above. In particular, the aim is to extend the suit-
ability of the MCA to computational demanding applications such as dynamic visu-
alization of data streams of texts and web-log analysis. Furthermore, the proposed
procedure aims to increase the feasibility of interactive visualizations and stability
analysis when large amounts of data are repeatedly analyzed. The fast MCA algo-
rithm we propose here, powerCA, exploits enhanced computations of the sparse
matrix transformations together with fast iterative eigendecomposition methods that
exploit “warm starts” (i.e., algorithm initializations that are potentially “close” to the
solutions) in case of repeated analyses.

The paper is structured as follows. In Sect. 2, data structures and basic computa-
tions of MCA are introduced. Section3 discusses and evaluates a method to exploit
sparse matrix multiplication in the context of MCA. A fast iterative procedure to
compute the dominant eigenvalues of a matrix is described in the Sect. 4. Following
that, Sect. 4.1 presents a simulation study to evaluate the computational performance
and accuracy of the iterative procedure compared to the standard EVD implemen-
tation available in CRAN-R environment. In Sect. 5, an application of the proposed
procedure to construct bootstrap confidence ellipses is presented and compared with
a standard MCA implementation. The last section is for conclusions.

2 Correspondence Analysis

Correspondence analysis (CA) is a well-known exploratory method to describe and
visualize the association structure of a cross tabulation table involving two categorical
variables (Greenacre [6]). The generalization of CA to the case of p categorical
variables is multiple correspondence analysis (MCA). Let N be the cross tabulation
table of two categorical variables with r and c levels, respectively. The so-called
correspondence matrix is P = n−1++N, where n++ is the grand total of N. Let r = P1c
and c = P�1r be the row and columnmargins ofP, respectively; 1r and 1c are vectors
with r and c elements all equal to “1”.Define the diagonalmatrices of row and column
margins, respectively, Dr and Dc.

Let the standardized residuals matrix S be

S = Dr
−1/2

(
P − rc�)

Dc
−1/2 (1)
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with general element si j = (pi j − ri c j )(ri c j )−1/2, with i = 1, . . . , r and j = 1,
. . . , c. The core step of CA is based on the decomposition of the S matrix, via
the singular value decomposition (SVD)

S = U�V� with U�U = V�V = I, (2)

where U and V are the left and right singular vectors, and � is the diagonal matrix
of the singular values. The solution can also be obtained by means of the eigenvalue
decomposition (EVD)

SS� = U�U� and (3)

S�S = V�V� (4)

to obtain the orthonormal matrices U and V, with � = �2 being the diagonal
matrix of eigenvalues. Often the row and columns are visualized as points on a
low-dimensional factorial map using the column principal standardization in CA
with row coordinates F = Dr

−1/2U and column coordinates G = Dc
−1/2V�.

One way to compute the MCA solution uses the so-called super indicator matrix
Z consisting of one dummy variable for each category of each variable with a 1
if the category is observed and 0 else. If variable j has p j categories, then Z is
n × s with s = ∑p

j=1 p j . MCA can be computed as CA with N = Z. Hence, going
through the standard computations of (1), the MCA solution is computed by means
of the SVD in (2) on the transformed version of Z. However, when n � s, it is more
efficient to use (4) with S�S = Z�Z = B which is s × s. In MCA, the matrix B
is called the Burt matrix: a partitioned block matrix with as off-diagonal blocks the
contingency tables of variables j and j ′ and as diagonal blocks the diagonal matrices
withmarginal frequencies for the categories of variable j . The correspondencematrix
is C = (ns2)−1B, and since C is square and symmetric by definition, its standardized
residual matrix is

SB = Dc
−1/2

(
C − cc�)

Dc
−1/2. (5)

The EVD of SB = V�V� leads to principal coordinates F = G = Dc
−1/2V�1/2.

Although the Burt matrix-based computations only yield the attribute coordinates
directly, one can calculate the coordinates for the observations as well by using
so-called transition formulas (see e.g., Greenacre [6]).

3 Efficient Computation of the Burt Matrix

MCA based on the Burt matrix involves a decomposition of an s × s matrix, irre-
spective of the number of rows n. When n is very large, however, direct computa-
tion of the Burt matrix as the matrix product Z�Z becomes problematic. However,
the computational cost of this matrix multiplication can be dramatically improved
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using sparse matrix algebra packages. In fact, the indicator matrix is partitioned as
Z = [

Z1, . . . , Zp
]
, where each n × p j block has just one nonzero element per row.

This means that there are n × p nonzero entries out of n × s. In other words, the
larger the number of categories per variable, the higher the sparsity of Z. The advan-
tage of sparse matrix multiplication is proportional to the sparsity of the matrices
involved.

In several applications, such as text mining, web-log analysis, and market basket
analysis, each attribute is binary. Binary data represents a particular case in the
context of MCA. In the binary data case, Z is characterized by a constant sparsity:
in particular, the ratio between the nonzero entries and the total entries in the table
is 0.5, since s = 2p by definition. The computation of the Burt matrix is then only
slightly improved using sparse matrix multiplication.

We propose an alternative way of computing the Burt matrix that allows to exploit
sparse matrix multiplication in case of binary data. Recall that the Burt matrix is a
block square matrix: diagonal blocks are diagonal matrices containing the column
margins of Z j , j = 1, . . . , p (the indicator matrix with dummy coding for all cat-
egories for variable j); the (i j)th off-diagonal block is a cross tabulation matrix,
given by Z�

i Z j . In the special case of binary variables, all the blocks are two-by-two
matrices: given two attributes i and j , the corresponding block is

Z�
i Z j =

[
a b
c d

]
ci

n − ci
c j n − c j n

, (6)

where a indicates the number of copresences of the attributes, d the number of
co-absences, b and c are the mismatches; element ci of the p vector c contains
the marginal frequency of presences of attribute i . By knowing the margins and
the copresences a, it is possible to compute b, c and d. Let Ba = Z̃�Z̃ be the
p × p matrix containing the copresences only; Z̃ is the n × p starting binary data
matrix, with z̃i j = 1 if the i th observation is characterized by the j th attribute and
z̃i j = 0 otherwise. In many applications, Z̃ has very few nonzero entries, so that the
sparse matrix multiplication Z̃�Z̃ is computationally very efficient to obtain Ba . The
co-absence matrix Bd and the mismatch matrices Bb and Bc can be computed as a
function of Ba , that is,

Bb = 1cc� − B�
a , Bc = c1�

c − B�
a , Bd = n11� − (Ba + Bb + Bc) . (7)

Then, each two-by-two block of the complete Burt matrix B is filled up taking values
fromBa ,Bb,Bc andBd , respectively, in the top left, top right, bottom left, and bottom
right positions.

To study the gain in efficiency of our Burt matrix computation for binary data,
with respect to using regular sparse matrix computations, a simulation study was
performed. Three factors were varied: the number of rows (i.e., observations)
of Z, n ∈ {500; 1,000; 5,000; 10,000}, the number of columns (i.e., attributes),
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Table 1 Ratio of computational time for computing the Burt matrix through regular sparse matrix
computations and our efficient computation in (7) for different numbers of observations n and
attributes p, and degree of sparsity π

π n p

50 100 250 500

0.4 500 1.40 2.67 3.06 2.87

1,000 2.17 3.38 3.93 4.45

5,000 4.06 6.31 5.06 5.00

10,000 6.06 4.93 4.70 5.00

0.3 500 1.75 3.28 3.75 3.57

1,000 3.25 4.09 5.25 5.93

5,000 5.75 8.97 8.14 7.90

10,000 8.27 8.50 7.32 7.74

0.2 500 1.50 3.83 4.31 4.03

1,000 4.00 5.62 6.86 7.85

5,000 7.33 13.95 15.60 14.31

10,000 13.28 17.16 14.08 14.09

0.1 500 2.00 4.80 4.84 4.60

1,000 4.00 9.00 8.82 9.34

5,000 10.83 26.00 30.90 29.32

10,000 21.57 31.28 39.18 35.60

p ∈ {50; 100; 250; 500}, and the sparsity π ∈ {0.1; 0.2; 0.3; 0.4}, with π being the
probability of getting a “1” for each of the p considered attributes. For each combina-
tion of the factors, a data setZwas generated and the ratio of CPU time for computing
the Burt matrix through both methods is reported in Table1. The proposed efficient
computation always outperforms the regular sparse computation of the Burt matrix.
The computational speed gain due to the smart computation increaseswith increasing
sparseness and increasing n, whereas the effect of p is less pronounced.

4 The Power Method

The power method represents one of the oldest techniques to solve eigenvalue prob-
lems. In particular, the power method aims at identifying the largest eigenvalue and
corresponding eigenvector of a symmetric (p × p) matrix A. The rationale of the
method is based on the fact that, if a p-dimensional vector q0 is multiplied by the
matrix A, the contribution of the eigenvector corresponding to the largest eigenvalue
increasesmore than the contribution of the other eigenvectors.Upon repeating several
times the product of the vector q0 by the matrix A, the contribution of the eigen-
vector dominates, and the iteration vector converges to the eigenvector in question
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(Vuik & Lahaye [16]). In other words, the method consists of generating a sequence
Akq0 which, with a proper normalization, converges to the dominant eigenvector.
The pseudocode for the implementation of the power method is in Algorithm 1.

Algorithm 1 The power method
Require: A {square symmetric matrix}
1: k := 1 {initialization of the counter}
2: choose q(k) {random initialization of the eigenvector }

3: q(k) := q(k)
(
q(k)Tq(k)

)−1/2
{set the norm of q(k) equal to one}

4: y(k) := Aq(k)

5: λ(k) := q(k)Ty(k) {computation of the eigenvalue }
6: λ(k−1) := λ(k) − 2ε
7: while ((λ(k) − λ(k−1))/λ(k) > ε) do
8: k := k + 1
9: q(k) := y(k−1)

(
y(k−1)Ty(k−1)

)−1/2
{set the norm of q(k) equal to one}

10: y(k) := Aq(k)

11: λ(k) := q(k)Ty(k) {computation of the eigenvalue }
12: end while
Ensure: q(k), λ(k)

The generalization of the power method to the multiple eigenvalue/eigenvector
identification case may be referred to as simple subspace iteration (Saad [15]), and
is based on the relation

Q(k) = AkQ0. (8)

The orthonormalization, however, involves a singular value decomposition of Q(k)

at each iteration, and it might have a high computational cost.
An alternative way is to apply the standard power method to obtain the dominant

eigen-pairλ1 andq1, that is, the largest eigenvalue and the corresponding eigenvector,
and then re-apply the procedure toA − λ1q1qT

1 to obtain λ2 and q2 (see, e.g., Husson,
Josse, Narasimhan, & Robin [10]). More generally, the dth eigen-pair (λd , qd) is
obtained by decomposing the input matrix A minus its rank-(d − 1) approximation,
formally

A −
d−1∑

j=1

λ jq jqT
j .

This approach can also use a warm start for repeated decompositions. Suppose a
new data matrix A+ is available that updates the matrix A, that is A� ← A + A+.
If the rank-d approximation of A is available, A ≈ Q(k)�(k)Q(k)T, the idea is
to use the power method to obtain the rank-d decomposition of A� by using
Q(k) = [

q1, q2, . . . , qd
]
, eigenvectors of A, as a warm initialization of the algo-

rithm. The procedure is detailed in Algorithm 2. For the simple power method, we
used the function powerMethod from the matlib package (Friendly, Fox, &
Chalmers [5]).
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Algorithm 2 Multiple power method with warm start
Require: A, q1, q2, . . . , qd , ε {square symmetric matrix, starting eigenvectors, tolerance}
1: for j in 1, 2, . . . , d do
2: k := 1 {initialization of the counter}
3: q(k)

j := q j {warm initialization of the eigenvector}

4: y(k) := Aq(k)
j

5: λ
(k)
j := qkT

j y(k)
j {computation of the eigenvalue}

6: λ
(k−1)
j := λ

(k)
j − 2ε

7: while ((λ(k)
j − λ

(k−1)
j )/λ

(k)
j > ε) do

8: k := k + 1

9: q(k)
j := y(k−1)

j

(
y(k−1)T
j y(k−1)

j

)−1/2
{set the norm of q(k)

j equal to one}

10: y(k)
j := Aq(k)

j

11: λ
(k)
j := q(k)T

j y(k)
j {computation of the eigenvalue}

12: end while
13: A := A − q(k)

j λ
(k)
j q(k)T

j {update A by removing the rank-1 approximation}
14: end for
Ensure: q(k)

1 , . . . , q(k)
d ; λ

(k)
1 , . . . , λ

(k)
d

4.1 Comparison with Standard EVD Implementation

We assess the performance of the multiple power method compared to the stan-
dard eigen() function for eigendecomposition in CRAN-R. Consider a moving-
window scenario. Let Z be the n × p starting random binary matrix and let B be the
corresponding Burt matrix. The EVD is applied to the standardized residual version
of B, see (5). Each update of the Burt matrix is obtained as follows: let Z+ be a
new nup × p matrix of new observations and let B+ the corresponding Burt matrix.
Similarly, let Z− be the nup rows of Z to be discarded, as they fall outside the active
window, and let B− be the corresponding Burt matrix. Then the current Burt matrix
becomes

B = B + B+ − B−

and the resulting standardized residuals matrix is decomposed.
To compare the computational efficiency for moving windows, we use the fol-

lowing settings in a simulation:

• the number of observations n = 5000,
• the number of observations that is being updated nup = 2000,
• the number of updates 5,
• the number of binary attributes p ∈ {500, 1000, 1500}, and
• the level of tolerance ε ∈ {10−10, 10−12}.
All binary attributes are randomly generated with probability for presence π = 0.25.
We only consider two dimensional solutions.
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The efficiency is compared on two aspects: (a) the computational speed in CPU
seconds as measured by the mean over 10 replicates of each decomposition, and (b)
the accuracy for each update by the median of the relative absolute differences,

median

(∣∣∣
∣∣
q(pm)

1 j − q(evd)
1 j

q(evd)
1 j

∣∣∣
∣∣
,

∣∣∣
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q(pm)

2 j − q(evd)
2 j

q(evd)
2 j

∣∣∣
∣∣
, . . . ,

∣∣∣
∣∣
q(pm)

d j − q(evd)
d j

q(evd)
d j

∣∣∣
∣∣

)

,

averaged over the dimensions and replicates, where q j stands for eigenvector j and
the superscripts pm refers to the power method and evd to standard eigen()
function for EVD.

The results of the computational speed assessment are reported in Fig. 1. We see
that, irrespective to the tolerance level, the eigen() computational time grows
with the number of attributes, whereas the multiple power method is considerably
less affected by the size of the matrix. As a result, the advantage in terms of speed of
multiple power method over the standard implementation becomes considerable for
larger matrices. This is due to the fact that (i) the power method only computes the
dominant eigen-pairs (i i) and uses warm starts. In the first update, the eigenvectors
of the initial matrix are used as a warm start. Subsequently, in each of the following
updates, the eigenvectors obtained in the last update are used as warm starts.

The accuracy measures are reported in Table2. The power method computes
approximated eigen-pairs and it is known to have convergence and accuracy issues
when eigenvalues do not differ much. That is, when the ratio of the computed eigen-
values is such that |λ2|/|λ1| → 1. This is the case with the random matrices being

500 1000 1500
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Fig. 1 Average elapsed time in seconds for eigendecompositions of matrices of different number
of attributes (p = {500, 1500, 2000}) and tolerance levels (ε ∈ {10−10, 10−12})
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Table 2 Average median relative absolute differences of the power method-based solution and
standard EVD

p ε B1 B2 B3 B4 B5

500 1e-10 0.148 0.339 0.339 0.162 0.323

1e-12 0.364 0.351 0.293 0.056 0.336

1000 1e-10 0.123 0.183 0.252 0.236 0.245

1e-12 0.081 0.357 0.259 0.124 0.362

1500 1e-10 0.372 0.336 0.331 0.342 0.375

1e-12 0.170 0.097 0.168 0.361 0.356

decomposed in this simulation study.However,when an underlying association struc-
ture exists, consecutive eigenvalues are likely to differ from each other and these
issues are mitigated, as reported in Sect. 5.

5 PowerCA and the Bootstrap

A common application involving repeatedMCA analyses is the construction of boot-
strap ellipses to assess the stability of the solution. A procedure for constructing bal-
anced bootstrap ellipses is the one proposed by Linting, Meulman, Groenen, and van
der Kooij [12]. Such a procedure can be seen as a sensitivity analysis (Ringrose [14]).
We apply this procedure using both powerCAand ordinaryMCA, and assess the com-
putational gain and accuracy of the powerCAwith respect to ordinaryMCAusing the
ca package (Greenacre&Nenadic [7]). The dependent variables in our experimental
setup are the CPU time and the accuracy of the solution.With respect to the accuracy,
both the attribute coordinates and the constructed ellipses are compared. In particular,
for the attribute coordinates, the Procrustean index R between mjca and powerCA
solutions is computed. The procrustean index R is defined as R = √

1 − m2 with
m2 is the symmetric orthogonal Procrustes statistic (Jackson [8]) that is a measure
of concordance, or similarity, between the two attribute configurations in question
(PowerCA and MCA). The index ranges from 0 to 1 and can be interpreted as a cor-
relation coefficient. It was calculated using the function protest of the R package
vegan (Oksanen et al. [13]). To measure the constructed ellipses we refer to the
relative mean squared error (Van de Velden, De Beuckelaer, Groenen, & Busing,
[17]),

RMSE =
∑J

j=1

∑B
b=1

(
f jb − f̂ j

)T (
f jb − f̂ j

)

B
∑J

j=1 f̂Tj f̂ j
,

where f jb contains the coordinates of the j th attribute in the bth bootstrap replicate
and f̂ j is the coordinate of attribute j in the original (full data) solution. The accuracy
of the ellipses constructed via powerCA and via ordinary MCA is measured in terms
of the absolute value of the relative discrepancy between RMSEs:
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accuracy =
∣∣
∣∣
RMSEpowCA − RMSEmca

RMSEmca

∣∣
∣∣ . (9)

The dependent variables accuracy and CPU time are measured while varying toler-
ance levels and the amount of imposed structure in the generated data set.

For our comparisons, we consider the following settings:

• the size of the data n = 2,500 and p = 250,
• the number of bootstrap replicates B = 250,
• the tolerance level ε ∈ {

10−2, 10−4, 10−6, 10−8, 10−10, 10−12
}

• the strength of association structure by varying combinations of low and high
probabilities (plow, phigh) of an occurrence in a cell in three levels: no,medium, and
high structure, that is, (plow, phigh) ∈ {(0.4, 0.4), (0.3, 0.5), (0.2, 0.7)}. Figure2
shows these three levels of association structure considered, in increasing order,
from left to right.

The first interest here is to see how the computational times of MCA and
powerCA vary depending on the tolerance levels (only for powerCA) and the amount
of structure in the data. Figure3 shows these results. If there is no structure in the
data, powerCA is approximately 20 to 5 times faster than MCA for low levels of
tolerance. The computational time increases as the level of tolerance decreases. For
medium and highly structured data, the computational time of powerCA is steady
with respect to the tolerance level. For those scenarios, powerCA is around 50 times
faster than ordinary MCA.

Fig. 2 Three matrices with increasing association structure: the left panel has no structure
(plow, phigh) = (0.4, 0.4), the middle panel medium structure (plow, phigh) = (0.3, 0.5), and the
right panel high structure (plow, phigh) = (0.2, 0.7)
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Fig. 3 Computational time results over different tolerance values and association strength. Each
line represents a combination of method and association strength
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Fig. 4 Congruency R index of theMCA and powerCA solutions for different association structures
and tolerance levels

To identify the level needed to provide accurate results, we compute the Procrustes
congruency index R as a measure of similarity between the powerCA and MCA
solutions. Figure4 shows the results. In case of data with no structure, the powerCA
only approximates the MCA solutions and lowering the tolerance does not help.
This result is no surprise as it depends on the power method’s convergence and
accuracy issues (see Sect. 4.1). For medium and highly structured data, however,
even a tolerance of 10−2 suffices to reproduce the MCA solution.

With respect to the accuracy of the bootstrap ellipses, we report in Fig. 5, the
log of the values of accuracy index defined in Formula 9, for all scenarios. We
see that the powerCA-based bootstrap solution has low accuracy when the data has
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Fig. 5 RMSE-based accuracy of the bootstrap ellipses for different tolerance levels and association
structures

no association structure, but for the scenarios with medium and high structure, it
becomes increasingly accurate as the tolerance level decreases.

6 Conclusion

The proposed method, called powerCA, can be a useful tool when repeated
exploratory analyses of large and sparse binary data tables are needed.We showed that
in a setting requiring many repeated eigendecompositions of only partially changed
binary data tables the powerCA provides fast and accurate solutions. The powerCA
procedure exploits the power method-based eigen-decomposition which is most
effective when warm starts are provided. The experiments pointed out the limita-
tions of the power method, that is, when there is no (or, weak) association structure
in the binary data table, it may have convergence and accuracy issues. Such issues,
however, can be considered a mild concern: in fact, if there is no association structure
characterizing the data, the application of PowerCA, or of MCA, is pointless in the
first place. It should be noted that the power method is at the base of several modern
procedures such as the augmented implicitly restarted Lanczos bi-diagonalization
algorithm (Baglama & Reichel [1]), and the “thick-restart” Lanczos method (Wu &
Simon [18] (available in R packages in irlba (Baglama & Reichel [2]) and svd
(Korobeynikov [11])): such modern procedures can be considered as evolutions of
the power method. It would be interesting to also consider the performance of such
methods in the MCA setting considered in this paper.
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Modeling Asymmetric Exchanges
Between Clusters

Donatella Vicari

Abstract A nonhierarchical clustering model is proposed here which jointly fits the
symmetric and skew-symmetric components of an asymmetric pairwise dissimilarity
matrix. Two similar clustering structures are defined depending on two (generally
different) partitions of the objects: a “complete” partition fitting the symmetries
(where all objects belong to some cluster) and an “incomplete” partition fitting the
skew-symmetries, where only a subset of objects is assigned to some cluster, while
the remaining ones may remain non-assigned. The exchanges between clusters are
accounted for by the model which is formalized in a least squares framework and
an appropriate Alternating Least Squares algorithm is provided to fit the model to
illustrative real data.

1 Introduction and Background

Asymmetric proximity data arise in many domains where the exchanges between
(generally speaking) objects are under investigation. In fact, the analysis of asym-
metric relationships can profitably shed light on relevant aspects of the directions of
the exchanges or flows and not only on their average amounts. Examples of such
data are brand-switching, migration flows, import–export data, socio-matrices, pref-
erences, confusion data, which may be either directly observed or derived by indirect
measurements.

Since such kinds of data are often intrinsically asymmetric, appropriate method-
ologies need to be used to exploit all the information from the data in terms of both
amounts exchanged and directions, and also the visualization of the results plays a
key role in their interpretation.

Many methodologies have been proposed in the literature for the analysis of the
asymmetric pairwise proximities and systematic reviews may be referred to in order
to get an overview of the many contributions: Chap. 23 in Borg and Groenen [1] is
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specifically devoted to asymmetry; the book by Saito and Yadohisa [20] contains
a comprehensive review of the many models presented in the literature; Bove and
Okada [2], in their paper included in the Special Issue on Analysis of Asymmetric
Relationships of the journal Data Analysis and Classification, provide an up-to-date
review of the most recent models and methods on multidimensional scaling and
cluster analysis for dealing with asymmetric proximity data.

Specifically, in the view of a visualization of the data, many methodologies aim at
embedding the data in low-dimensional spaces based on generalizations of the MDS
methods and to a lesser extent on cluster analysis. In many cases, they rely on the
decomposition of the asymmetry into symmetric and skew-symmetric effects, which
allows to deal independently with the average amounts (symmetric component) and
the imbalances (skew-symmetric component) due to their orthogonality. While the
symmetric part may be represented andmodeled by the usual methods for symmetric
data, appropriate models have been proposed to fit the skew-symmetries. An inter-
esting decomposition of a skew-symmetric matrix has been given by Gower [8] and
Constantine andGower [4, 5]where a graph of the objects is obtained in a planewhere
the angles subtended by the vectors have a fixed meaning: the skew-symmetries are
embedded into the MDS representation of the symmetrized data by drawing arrows
(drift vectors) from any point in the configuration so that these vectors correspond
in length and direction to the values in the rows of the skew-symmetric matrix.

Differently, models for fitting asymmetry directly are based on a representation of
the objects by circles with different radii Okada and Imaizumi [12] or by ellipsoids
(Okada [11]).

In the same multidimensional scaling framework, several models have been
proposed to represent the symmetry and the skew-symmetry of the data in low-
dimensional spaces, (for example, Escoufier & Grorud [6]; Zielman & Heiser [24];
Rocci & Bove [19]; see also Borg & Groenen [1]).

Clustering methodologies for asymmetric data have been proposed under two
major approaches where the asymmetric proximities are regarded either as a spe-
cial case of two-mode two-way data (the rows and the columns are considered two
different modes) or, in accordance with the original form of the data, as one-mode
two-way data (for extensive reviews, see Chap.5 of the book by Saito and Yado-
hisa [20] and Bove and Okada [2]). Most of the proposals are actually extensions
of the classical hierarchical algorithms for symmetric data (Hubert [10]; Okada &
Iwamoto [14]; Takeuchi, Saito, & Yadohisa [21]), while Brossier [3] proposes to
embed a one-dimensional solution from the skew-symmetries into the dendrogram
of the standard average linkage fitted to the symmetric part.

On the other hand, less attention has been paid to nonhierarchical methods for
asymmetric data.

The clusteringmodel for asymmetric data byVicari [22] is framed in the one-mode
approach and relies on the decomposition of the asymmetric dissimilarity matrix into
symmetric and skew-symmetric effects both decomposed inwithin and between clus-
ter effects. Two different clustering structures depending on two (generally different)
partitions of the objects are fitted to the symmetries and skew-symmetries, separately.
Specifically, objects belonging to the same clusters from the skew-symmetric com-
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ponent: (1) share the same behaviors in terms of exchanges directed to the other
clusters and identify,“origin” and “destination” clusters, (2) form closed systems of
internal exchanges. When a unique partition is assumed to exist, a parsimonious
model allows for a simpler and more interpretable solution which can be graphically
displayed and clusters can be jointly interpreted in terms of similar average amounts
and imbalances exchanged.

An extension of themodel termed CLUSKEXT (Vicari [23]) introduces the possi-
bility to incorporate external variables into the model in order to explain imbalances
between objects.

Other nonhierarchical clustering methods are extensions of the k-means cluster-
ing dealing with different asymmetric proximities or using asymmetric coefficients
Olszewski [16, 17];Olszewski&Ster [18]),whileOkada andYokoyama [15] propose
a clustering algorithm which uses the dominant object (Okada & Imaizumi [13]).

Following the same line of Vicari [22, 23], a nonhierarchical clustering model is
proposed here which jointly fits the symmetric and skew-symmetric components of
the asymmetric pairwise dissimilarities by two similar clustering structures depend-
ing on two partitions of the objects: a “complete” partition fitting the symmetries
(where all objects belong to some cluster) and an “incomplete” partition fitting the
skew-symmetries, where only a subset of objects are assigned to some cluster, while
the remaining ones may remain non-assigned.

The paper is structured as follows. In order to motivate and present the methodol-
ogy, an illustrative real example is introduced in Sect. 2. After providing the essential
notation, the joint clustering model for asymmetric dissimilarity data is formalized
in Sect. 3 and an appropriate Alternating Least Squares algorithm is presented in
Sect. 4. Some considerations on the estimates and their interpretations are discussed
in Sect. 5, while in Sect. 6 the model is applied on the real data introduced in Sect. 2.
Finally, some concluding remarks are reported in Sect. 7.

2 Illustrative Example: Language Data

In order to give a flavor of the motivation for the methodology which will be fully
formalized in Sect. 3, the Language Data shown in Everitt and Rabe-Hesketh [7],
adapted from Hartigan [9], have been analyzed as an illustrative example. The data
report the percentage of people in various European countries who claim to speak the
other European languages enough to make themselves understood. Dissimilarities
have been derived by subtracting the original percentages from 100, so that they
indicate the percentages of people in each country who do not speak a given language
(Table1).

As expected the percentages reveal different profiles and their asymmetry, even if
small (0.62%), cannot be assumed to be due to noise. The maps of the languages in
terms of average amounts of the symmetrized percentages and imbalances between
percentages are graphically represented in Fig. 1 and Fig. 2, respectively.
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Fig. 1 Language Data:
classical MDS map from the
symmetrized percentages of
non-spoken languages

Fig. 2 Language Data:
Canonical decomposition
(arrowed lines display the
directions of the
skew-symmetries)

Specifically, Fig. 2 displays the two-dimensional classical MDS configuration
from the symmetric part of the dissimilarity data matrix, while Fig. 2 shows the map
of the languages in the first bimension from the canonical decomposition of the skew-
symmetries (Gower [8]; Constantine & Gower [4, 5]) with arrowed lines indicating
the directions of the exchanges.



302 D. Vicari

In Fig. 2, nodes identifying languages are colored according to their different in-
degree which is equal to the number of arcs with that node as the target: the lighter
the color, the larger the number of arcs directed to that node, i.e., the English node
is light yellow because the percentage of people speaking English also as a second
language is very large (we may say English is a “destination” or “target” language);
conversely, the Finnish node is colored dark blue, because only Swedish people claim
to speak Finnish. Moreover, the larger the imbalance, the thicker the arrowed line.

From Fig. 2, it emerges that the first MDS dimension from the symmetrized per-
centages of non-spoken languages separates the Romance Languages (originating
from Latin) from the German ones with the Finnish (Ural language) just in between,
while the second dimension retrieves the extent at which people do not speak other
languages in addition to their native ones.

The information from the substantial asymmetry come from the analysis of the
“directions” of the percentages (“who speaks what”) which is evident especially for
some countries: for example, the percentage of people who do not speak German in
Netherlands is just 53%, while the percentage of Germans who do not speak Dutch is
much larger (98%). As known, in Fig. 2 the positions of the languages are derived so
that the area of each triangle, formed by connecting the points for languages i and j
to each other and to the origin, is (approximately) proportional to the corresponding
skew-symmetry between languages i and j themselves. Thus, it can be noted that
some (groups of) languages lack of reciprocity in speaking, regardless of the average
percentages. For example, Italian, Spanish, Portuguese, and Finnish are close to a
straight line from the origin giving triangles with small areas (the submatrix formed
by such languages are almost symmetrical), while the triangle formed by each of
such languages and English is quite larger: more people from Italy, Spain, Portugal,
or Finland speak English than the reverse.

Starting from the observed asymmetries in speaking foreign languages, the interest
here is in clustering the languages by taking into account not only their average per-
centages (symmetries) but also their “directions” (skew-symmetries) so that groups
of languages can be identified sharing similar patterns between groups. Generally
speaking, this is even more important when the number of objects (languages here)
to be clustered is large, because the graphical analysis may be difficult or misleading.

The results of the methodology formalized in Sect. 3 and applied to the Language
Data are reported in Sect. 6.

3 The Model

Let A = [ai j ] be an (N ×N) two-way one-mode matrix of dissimilarities measured
on N objects, where ai j is generally different from a ji .

Let us recall that any square matrix A can be uniquely decomposed into a sum of
a symmetric matrix S and a skew-symmetric matrix K
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A = S + K = 1

2

(
A + A

′) + 1

2

(
A − A

′)
(1)

where S and K are orthogonal to each other, i.e., trace(SK) = 0.
The entry si j of S represents the average amount of the exchange between objects

i and j, while the entry ki j of K represents the imbalance between i and j, i.e., the
amount by which ki j differs from the mean si j .

The model proposed here aims at clustering the N objects with respect to both
rows and columns of matrixA, by decomposing the asymmetries into symmetric and
skew-symmetric effects, modeled as functions of two partitions of the objects which
subsume the clustering structures of the dissimilarity data.

Specifically, we consider here a partition of the N objects into J disjoint clusters
uniquely identified by an (N ×J) binary membership matrix U = [ui j ] specifying
for each object iwhether it belongs to cluster j, ( j = 1, . . . , J ) or not, i.e., ui j = 1 if
i belongs to cluster j, ui j = 0 otherwise, and

∑J
j=1 ui j = 1, (i = 1, . . . , N ). Here,

such a partition is referred to as complete partition because any object is required to
be assigned to some cluster.

Furthermore, an incomplete partition of theN objects, identified by an incomplete
membership matrixV, is defined here as a set of J clusters where a number N0 out of
the N objects are allowed to remain non-assigned to any cluster, i.e., letV = [

vi j
]
be

an incomplete (N ×J) binarymembershipmatrixwhere vi j = 1 if i belongs to cluster
j, vi j = 0 otherwise. Note that matrix V actually identifies uniquely a complete
partition of the subset of the N objects corresponding to the (N–N0) nonzero row
profiles in V.

The idea here is to account for the between clustering effects by approximating the
symmetric and skew-symmetric components of the dissimilarities by two clustering
structures depending on matrices U and V, respectively.

Specifically, the skew-symmetries in K are modeled by the clustering structure
introduced in Vicari [22, 23], based on the canonical approximation of any skew-
symmetric matrix as a sum of a number of skew-symmetric matrices of rank 2

K = VD(1N J − V)
′ − (1N J − V)DV

′ + EK (2)

where D is a diagonal weight matrix of size J, 1XY generally denotes the matrix of
size (X × Y ) of all ones, and the error termEK represents the part of K not accounted
for by the model. For identifiability reasons, matrixVD is constrained to sum to zero:
1

′
N (VD) 1J = 0.
Differently from Vicari [22, 23], the membership matrix V here can be possibly

incompletewith a numberN0 of zero rowprofiles because of the objects non-assigned
to any group and K is actually modeled only by a subset of (N–N0) objects.

Similarly, the symmetric component S is modeled by defining a clustering struc-
ture again as a sum of J terms, depending on the (complete) membership matrix
U

S = UC(1N J − U)
′ + (1N J − U)CU

′ + ES (3)
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where C is a diagonal weight matrix of size J, and the error term ES represents the
part of S not accounted for by the model.

Models (2) and (3) can be combined to specify the model accounting for the
asymmetric dissimilarities between clusters

A = S + K =
[
UC(1N J − U)

′ + (1N J − U)CU
′]

+
[
VD(1N J − V)

′ − (1N J − V)DV′
]

+ b (1NN − IN ) + E (4)

subject to

ui j ∈ {0, 1} , ( j = 1, . . . , J ) ;
J∑

j=1

ui j = 1, (i = 1, . . . , N ) (4a)

vi j ∈ {0, 1} , ( j = 1, . . . , J ) ;
J∑

j=1

vi j ≤ 1, (i = 1, . . . , N ) (4b)

1
′
N (VD) 1J = 0 (4c)

where IN denotes the identity matrix of size N, b is the additive constant term and
the general error term E represents the part of A not accounted for by the model.

The first two sets of constraints (4a) and (4b) define the complete membership
matrix U and the incomplete membership matrix V, respectively, while constraints
(4c) assure that the entries of VD sum to zero.

Model (4) is fitted in the Least Squares sense by minimizing

F (U,V,C,D, b) =
∥∥∥A −

[
UC(1N J − U)

′ + (1N J − U)CU
′]

−
[
VD(1N J − V)

′ − (1N J − V)DV
′] − b (1NN − IN )

∥∥∥
2

=
∥∥∥S −

[
UC(1N J − U)

′ + (1N J − U)CU
′] − b (1NN − IN )

∥∥∥
2

+
∥∥∥K −

[
VD(1N J − V)

′ − (1N J − V)DV
′]∥∥∥

2
(5)

subject to the sets of constraints (4a), (4b), and (4c) and where the last expression is
due to the orthogonality of S and K.

In order to minimize the loss function (5), an Alternating Least Squares (ALS)
algorithm is described in Sect. 4.
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3.1 A Constrained Model

A parsimonious model may be specified by assuming (V ⊆ U), i.e., the incomplete
partition into J clusters

{
G1, . . . ,G j , · · · ,GJ

}
given by matrix V, is constrained to

be included into the complete partition
{
M1, . . . ,Mj , . . . ,MJ

}
identified by matrix

U. This is equivalent to say that the two partitions are linked to each other being
G j ⊆ Mj ( j = 1, . . . , J ), i.e., any cluster G jof the incomplete partition is formed
either by a subset of the corresponding cluster Mj of the complete partition or by
Mj itself. Note that objects possibly non-assigned to cluster G j denote objects with
small asymmetries in the data.

In order to fit the parsimonious model, constraints (4b) on the entries of matrix V
need to be modified as follows

vi j ∈ {0, 1} , vi j ≤ ui j (i = 1, . . . , N ; j = 1, . . . , J ) (4b1)

to specify that any object i belonging to cluster Mj of the complete partition can
be either belong to cluster G j (within Mj ) of the incomplete partition or remain
non-assigned.

4 ALS Algorithm

The constrained problem of minimizing (5) subject to (4a), (4b), and (4c) can be
solved by using an Alternating Least Squares (ALS) algorithm, which alternates
between two main allocation/regression steps: updating (U, C) and updating (V, D)
steps.

Initialization. (Starting partitions U and V)
Starting feasible partitions Û and V̂ are chosen randomly or in a rational way and a
number N0 = N/2 of rows of V̂ are randomly set to zero. A random starting value
b̂ for the constant is also chosen.

STEP 1 Updating membership matrix U and weight matrix C

Let R̃ = A −
[
V̂D̂

(
1N J − V̂

)′ − (
1N J − V̂

)
D̂V̂

′] − b̂ (1NN − IN ) denote the resid-
ual of the data matrix A not depending on C and U.

Step 1.1 Updating U (Allocation substep)

The membership matrix U is updated, given the current estimates of V̂, Ĉ, D̂ and b̂
by solving N assignment problems minimizing

F
′ (
U;R̃, Ĉ) =

∥∥∥R̃ −
[
UĈ(1N J − U)

′ + (1N J − U) ĈU
′]∥∥∥

2 + g (6)

over U, subject to constraints (4a) and where g is the part of the loss function not
depending on U.
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This problem is sequentially solved for the different rows of U by taking ûi j = 1,
if column j attains F

′ ([
ui j = 1

] ; ◦) = min
{
F

′ ([
uip = 1

] ; ◦) : p = 1, . . . , J
}
and

ûi j = 0, otherwise. Given row i , for any possible choice uip = 1 (p = 1, . . . , J ),
matrix Ĉ is also updated (see Step 1.2) for computing the loss value (6).

Step 1.2 Updating C (Regression substep)

The substep updating C is nested into step 1.1, being Ĉ computed for any possible
choice of the different rows of U (see Step 1.1).

The weight matrix C is updated, given the current Û, V̂, D̂ and b̂ by minimizing

F
′′ (
C;R̃, Û) =

∥∥∥R̃ −
[
ÛC

(
1N J − Û

)′ + (
1N J − Û

)
CÛ

′]∥∥∥
2 + g (7)

over C. Actually, by denoting with c, the J-vector of the main diagonal of C, which
contains the very unknown weights to be estimated, model (4) can be also rewritten
as

vec
(
R̃

) = [
Û ∗ (

1N J − Û
) + (

1N J − Û
) ∗ Û

]
c + ec (8)

where ∗ and vec denote the Khatri-Rao product and the vec operator, respec-
tively, and ec is the vectorized error term. The minimum of (7) is attained for
vector ĉ which solves the equivalent regression problem (8), i.e., by denoting

QÛ = [
Û ∗ (

1N J − Û
) + (

1N J − Û
) ∗ Û]

, the optimal ĉ =
(
Q

′
Û
QÛ

)
Q

′
Û
vec

(
R̃

)

is obtained. Updating Ĉ follows, straightforwardly by setting Ĉ = diag(̂c).

STEP 2 Updating membership matrix V and weight matrix D
Step 2.1 Updating V (Allocation step)
The incomplete membership matrix V is updated, given the current estimates of
Û, Ĉ, D̂ and b̂ by minimizing

F
′′′ (

V; D̂) =
∥∥∥K −

[
VD̂(1N J − V)

′ − (1N J − V) D̂V
′]∥∥∥

2 + h (9)

over V, subject to constraints (4b) and where h is the part of the loss function not
depending on V.

This problem is sequentially solved for the different rows of V by considering
that, given row i, (J+1) possible choices are available: v̂i j can be either 0 or 1 ( j =
1, . . . , J ), with the constraint that the row sum is not greater than 1, i.e., for row i
a zero profile is allowed and object i can be either allocated to only one cluster or
remain non-assigned.

Thus, given row i, the updating of vi j is achieved by taking v̂i j = 1, if column j

attains F
′′′ ([

vi j = 1
] ; ◦) = min

{(
F

′′′ ([
vip = 1

] ; ◦) : p = 1, . . . , J
)

; F
′′′ ([

vi j = 0
] ; ◦)

}

and v̂i j = 0, otherwise. Given row i, for any possible choice for either v̂i j = 1 or v̂i j =
0 ( j = 1, . . . , J ), matrix D̂ is also updated (see Step 2.2) and the loss value (9)
computed.

The number N̂0 of the non-assigned objects in the current optimal solution follows
straightforwardly.
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Step 2.2 Updating D (Regression step)

The weight matrix D is updated, given Û, V̂, Ĉ and b̂ by minimizing

F
′v (

D; V̂) =
∥∥∥K −

[
V̂D

(
1N J − V̂

)′ − (
1N J − V̂

)
DV̂

′]∥∥∥
2 + h (10)

over D, subject to constraints (4c). By denoting with d the J-vector of the main
diagonal of D and similarly to Step 1.2, model (4) can be also rewritten as

vec (K) = [(
1N J − V̂

) ∗ V̂ − V̂ ∗ (
1N J − V̂

)]
d + ed = QV̂ d + ed (11)

where ed is the vectorized error term. The Least Squares estimate of d is given by

d̂ =
(
Q

′
V̂
QV̂

)
Q

′
V̂
vec (K) and, in order to fulfill constraint (4c), the optimal weights

in d̂ are transformed so that the N̂0 entries of vector V̂d̂ sum to zero

d̂∗ = V̂
+

(
V̂d̂ − 1

′
N V̂d̂

(N − N̂0)
V̂1J

)

where 1N denotes the N-vector of ones and V̂+is the Moore–Penrose inverse of V̂.
Updating D̂ = diag

(̂
d∗)follows.

STEP 3 Updating constant b
Since the constant term in (4) is added to all off-diagonal terms of the fitted matrix,
its estimation actually involves only the symmetric component S. Hence, given the
current estimates Û, V̂, Ĉ and D̂, the estimation of the constant b is achieved by
successive residualizations and it is given by

b̂ =
[
S −

(
ÛĈ

(
1N J − Û

)′ + (
1N J − Û

)
ĈÛ

′)]
/(N (N − 1) ).

Stopping rule

The loss value F
(
Û, V̂, Ĉ, D̂, b̂

)
is computed for the current estimates. When such

updated values have decreased considerably (more than an arbitrary small conver-
gence tolerance) the functionvalue, then Û, V̂, Ĉ, D̂, b̂ are updatedoncemore accord-
ing to Steps 1 through 3. Otherwise, the process is considered to have converged.

The algorithm monotonically does not increase the loss function and, since func-
tion Fis bounded from below, it converges to a point which can be expected to be at
least a local minimum. To increase the chance of finding the global minimum, the
algorithm should be run several times, with different initial estimates of U and V
and retaining the best solution in terms of loss function value.
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4.1 Algorithm for the Constrained Model

When the constrained model (Sect. 3.1) is fitted, the two main steps of the algorithm
cannot be run sequentially. In fact, because of constraints (4b1) on V, given row i,
only two possible choices are available: v̂i j = 0 or v̂i j = ûi j ( j = 1, . . . , J ), i.e., for
row i a zero profile is allowed and object i can be either allocated to the same cluster
of U or remain non-assigned.

Thus, in order to assure the loss function is nondecreasing, matrices U and V
are jointly updated and Step 2 needs to be nested within Step 1 as described in the
following pseudocode.
________________________________________________
A. Main loop. For i = 1, . . . , N

B. For j = 1, · · · , J
B1) Set ui j = 1 (Step 1.1)
B2) Update C (Step 1.2)
B3) Set vi j = 1 or vi j = 0 (Step 2.1)
B4) Update D (Step 2.2)

End B
C. Update b (Step 3)

End A
________________________________________________

5 On the Estimates

5.1 Weight Matrix D

In order to evaluate the meaning of the estimated weights, let us consider the incom-
plete matrix V = [

v1, . . . , v j , . . . , vJ
]
and the corresponding incomplete partition

into J clusters
{
G1, . . . ,G j , · · · ,GJ

}
.

Thus, any entry d j ( j, . . . , J ) of the diagonal weight matrix D is the weighted
average imbalance originating from all objects i in clusterG j (i ∈ G j ) directed to all
objects h in clusters different fromG j (h /∈ G j ), corrected for the average imbalance
directed to cluster G j .

Moreover, let d̃ denote the vector of size (N − N0) having (non-null) weights
corresponding to the (N − N0) objects assigned to clusters

{
G1, . . . ,G j , · · · ,GJ

}
.

Note that objects belonging to the same clusters have the same weights d̃i and such
weights sum to zero (constraints (4c)), whichmeans that the total imbalance between
clusters is null on average and a “closed” system of reciprocal exchanges between
clusters is defined.

Thus, for any object i belonging to cluster Gj , weight d̃i is
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d̃i = ṽ
′
j K̃

(
1 − ṽ j

)
/
(
(N − N0)N j

)
, if i ∈ G j , ( j = 1, . . . , J )

where ṽ j and K̃ denote the subvector of v j and the submatrix of K, respectively,
corresponding to the N-N0 objects assigned to the J clusters in V.

Hence, any object i with positive (negative) weight d̃i is mainly a “destination”
(“origin”) of the exchanges and any cluster Gj actually includes objects having on
average similar behaviors in terms of exchanges directed toward the other clusters.

Note that theN0 (N0≤N) objects possibly non-assigned to any cluster are actually
objects which generate (almost) null imbalances or equivalently their corresponding
exchanges in the data matrix A are (almost) symmetric.

5.2 Weight Matrix C and Constant b

Following the same lines of Sect. 5.1, let us consider the partition into J clusters{
M1,. . . ,Mj ,. . . ,MJ

}
identified by the (complete) membership matrix U. Then,

any entry c j ( j = 1, . . . , J ) of the diagonal weight matrix C represents the average
amount between clusters Mj and Mh (h �= j), corrected for the mean of the average
amounts between all clusters different from Mj .

Thus, large (small) values for c j denote clusters with large (small) amounts of
exchanges on average.

Note that when J = 2, the estimation of weights c j ( j = 1, 2) actually results to
be always the mean of the average amounts between the two clusters and ĉ1 = ĉ2
follows.

Moreover, the constant term b represents the baseline average amount of the flows
regardless of any clustering and, since it is supposed to be added to all exchanges
between objects, it affects only the average amounts of the exchanges (the symmetric
component S) and not their directions.

6 Application: Language Data

Both clustering model (4) and its parsimonious version (Sect. 3.1) have been applied
to the Language Data presented in Sect. 2 by running the algorithm for any choice
of the number of clusters from 2 to 5 and by retaining the best partition in 100 runs
from different random initial starts. The choice of the number of clusters has been
done by analyzing the scree plots of the loss function values as J increases and in
both cases, the partitions into three clusters have been chosen.

Since the relative loss values of the two solutions are very close (0.00552 vs.
0.00548, respectively), the constrained model has been preferred to be analyzed in
detail as usual in a confirmative perspective.
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Table 2 Language data: estimated symmetric and skew-symmetric percentages of non-spoken
languages

ŜB Ital, Fr,
Port, Finn,
Spn

Ger, Eng Dch,
Swed,
Dan, Nor

K̂B Ital, Port,
Finn, Spn

Ger, Eng Dch, Dan,
Nor

Ital, Fr,
Port, Finn,
Spn

0 95.20 97.82 Ital, Port,
Finn, Spn

0 −7.29 3.90

Ger, Eng 95.20 0 82.19 Ger, Eng 7.29 0 11.19

Dch,
Swed,
Dan, Nor

97.82 82.19 0 Dch, Dan,
Nor

−3.90 −11.19 0

From the average percentages the following three clusters of languages result
(matrix U):

Cl1: (Italian, French, Portuguese, Finnish, Spanish)
Cl2: (German, English)
Cl3: (Dutch, Swedish, Danish, Norwegian)

which coincide with the three clusters from the skew-symmetric component (matrix
V) up to two languages which remain non-assigned: French and Swedish (in italic).

The baseline average percentage of the people nonspeaking foreign languages
(b̂ = 94.21) is quite large and, in order to estimate the symmetric component of the
data, it needs to be added to the estimated symmetric dissimilarities computed by
using the weights ĉ = (8.31;−7.32;−4.70). The estimated weights of the imbal-
ances between clusters result d̂ = (−0.32; 6.97;−4.22), where the positive weight
of Cl2 qualifies English and German as “target” languages, in the sense that many
people speak them, but the reverse is less frequent. Conversely, the large negative
weight of Cl3 reveals that Dutch, Danish, and Norwegian are the least spoken lan-
guages by the others. Note that the two sets of weights provide a ranking of the
clusters from two different perspectives: (a) from ĉ, the ranking of the clusters (Cl1,
Cl3, Cl2) in terms of decreasing average % of non-spoken languages, regardless the
directions, is derived; (b) from d̂, the ranking of the clusters (Cl2, Cl1, Cl3) indicates
the directions of the spoken language, i.e., Cl2 is the “target” language cluster.

Table2 reports both the estimated symmetrized percentages of non-spoken lan-
guages between clusters (̂SB) from the complete partition (Û) and the estimated
imbalances between clusters (K̂B) from the incomplete partition (V̂). Moreover, the
same solutions have been graphically displayed in Fig. 3 by representing languages as
nodes and the estimated symmetric and skew-symmetric percentages, respectively,
as arcs.

By analyzing the percentages in Table2, it can be observed that the solution
actually represents a compromise between what already seen in Figs. 1 and 2:
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Fig. 3 Language Data: Estimated symmetries (a) and skew-symmetries (b) between clusters

Cl1: (Romance + Ural) languages
Cl2: German languages
Cl3: Scandinavian languages + Dutch

where the largest average percentage of non-spoken languages (97.82%) is found
between Romance and Scandinavian languages. Moreover, the positive imbalance
(3.90%) between such two clusters specifies that people in (Italy, France, Portugal,
Spain, and Finland) speak neither the Scandinavian languages norDutch. Conversely,
the lowest average percentage (82.19%) of non-spoken languages results between
German and Scandinavian languages with a large positive imbalance (11.19%) in
favor of Cl2: as known, English and German are spoken by almost everyone and,
especially, by Scandinavian and Dutch people at a larger extent than Romance lan-
guage speaking people, but the reverse is much less frequent. This reflects what
observed in Fig. 2 where English and German form a group far apart due to few
British and Germans speaking other languages.

Interestingly, Fig. 3b visualizes the ranking of the clusters with the “target” lan-
guages below and since French and Swedish remain non-assigned to any cluster, they
actually do not contribute to estimate the imbalances. In fact, French is generally little
spoken and few French speak other languages, while Swedish, which is actually less
similar to the other two Scandinavian languages, has an almost symmetrical profile
in the original data (with the exception of Swedish speaking German and English).

7 Concluding Remarks

In the view of analyzing asymmetric exchanges, a model for clustering asymmet-
ric dissimilarities between pairs of objects has been proposed. The model relies on
the decomposition of the observed asymmetric matrix into symmetric and skew-
symmetric components which are modeled to identify clusters of objects which
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best account for the between cluster exchanges. Two similar nonhierarchical clus-
tering structures have been presented for jointly fitting the symmetries and skew-
symmetries, by assuming that a “complete” partition of the objects (where any object
belongs to some cluster) fits the symmetries, while an “incomplete” partition (where
only a subset of objects belong to clusters, while the remaining ones may possi-
bly be non-assigned) may fit the skew-symmetries. A parsimonious model has been
also proposed where the two clustering structures for the between cluster exchanges
depend on the same partition up to a number of possible non-assigned objects.

The model has been formalized in a least squares framework and an efficient ALS
algorithm has been provided. By using graphical representations of the results, it
is possible to simply visualize how objects interact in terms of exchanges between
clusters, because origins and destinations of the exchanges identify objects with
similar behaviors in terms of both average amounts and directions of the exchanges.

Further developments may regard, on one hand, different specifications of the
clustering structures and, on the other hand, a deeper investigation of the performance
of the model in fitting different kinds of data.
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Exploring Hierarchical Concepts:
Theoretical and Application
Comparisons

Carlo Cavicchia, Maurizio Vichi and Giorgia Zaccaria

Abstract Phenomena are usually multidimensional and their complexity cannot be
directly explored via observable variables. For this reason, a hierarchical structure of
nested latent concepts representing different levels of abstraction of the phenomenon
under study may be considered. In this paper, we provide a comparison between a
procedure based on hierarchical clustering methods and a novelty model recently
proposed, called Ultrametric Correlation Matrix (UCM) model. The latter aims at
reconstructing the data correlation matrix via an ultrametric correlation matrix and
supplies a parsimonious representation of multidimensional phenomena through a
partition of the observable variables defining a reduced number of latent concepts.
Moreover, the UCM model highlights two main features related to concepts: the
correlation among concepts and the internal consistency of a concept. The perfor-
mances of the UCMmodel and the procedure based on hierarchical clustering meth-
ods are illustrated by an application to the Holzinger data set which represents a real
demonstration of a hierarchical factorial structure. The evaluation of the different
methodological approaches—the UCM model and the procedure based on hierar-
chical clustering methods—is provided in terms of classification of variables and
goodness of fit, other than of their suitability to analyse bottom-up latent structures
of variables.

1 Introduction

Inmany areas of study, the real problems pertainmultidimensional and complex phe-
nomena that cannot be directly observed. These phenomena may be hypothesised to
have a nested latent structure representing different levels of abstraction, thus forming
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a tree-shape structure which involves “ranked” relationships between concepts and
detects the logic hierarchy related to the dimensions of the phenomenon under study.
The root of the tree represents the highest level of abstraction, i.e., the multidimen-
sional (general) concept not directly observable, whereas the leaves of the tree define
the evidence, i.e., the observable variables. Each node represents a nested cluster of
variables defining a hierarchy that generally has a parsimonious form.

The investigation of the relationships between latent concepts defining a multidi-
mensional phenomenon is the aim of the model proposed by Cavicchia, Vichi, and
Zaccaria [2], in which the parsimonious hierarchy of nested partitions of the variable
space is formally defined through an ultrametric matrix. It is worthy to notice that an
ultrametric distance matrix does not correspond to an ultrametric matrix, as stressed
in Cavicchia et al. [2], even if there exists a relationship between the two. However,
the researchers could think to use a procedure based on a classical hierarchical clus-
tering algorithm, to build the whole hierarchy from J observed variables to the most
general latent concept and to cut the tree identifying Q main latent concepts and
maintaining the corresponding hierarchy. This sequential strategy does not guaran-
tee an optimal solution since the classification errors made in the first steps can never
be corrected. It is worthy to remember that in this case the aim of the analysis is to
detect Q reliable latent concepts together with the corresponding hierarchy.

In this paper we compare the above described procedure based on traditional
agglomerative clusteringmethods—inparticular, single linkage (Florek,Łukaszewicz,
Perkal, Steinhaus, & Zubrzycki [8]), complete linkage (McQuitty [22]), Ward’s
method (Ward [26]), and average linkage (Sokal &Michener [24])—with the model
proposed by Cavicchia et al. [2]. Their application to a benchmark data set made up
of groups of variables identifying latent concepts highlights the potential of the latter
with respect to the formers. Furthermore, the aforementioned proposal is based upon
a parsimonious representation of the relationships among variables, which allows
to reduce the time complexity of the bottom-up algorithms and the possibility that
misclassifications at the bottom of the hierarchy affect its upper levels.

The paper is organised as follows. In Sect. 2, a brief review of the four aforemen-
tioned agglomerative clusteringmethods is depicted. The newmethodologyproposed
by Cavicchia et al. [2] is illustrated in Sect. 3. Section4 provides a deep comparison
among methods described in the paper herein via a benchmark data set, in order to
highlight their advantages and weaknesses in searching for hierarchical relationships
among variables—not only with the clustering objective—associated with a latent
concept structure. A final discussion completes the paper in Sect. 5.

2 Hierarchical Classification of Variables

Hierarchical classification defines a set of methods that have been proposed to pin-
point hierarchically nested classes of units, even variables,1 defining a set of partitions

1In this paper we use the term objects as a synonym of both units and variables.
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Fig. 1 N-tree representation: root node (a), internal nodes (b, c, d, e, f, g), terminal nodes (h, i, j,
k, l, m, n, o)

represented by tree-shape structures. For completeness, we firstly define an n-tree
(Bobisud & Bobisud [1]; McMorris, Meronk, & Neumann [21]) as follows.

Definition 1 An n-tree on a set of objects O = {1, 2, ..., J } is a set T of subsets of
O satisfying the following conditions: O ∈ T , ∅ /∈ T , { j} ∈ T ∀ j ∈ O and A ∩ B ∈
{∅, A, B} ∀A, B ∈ T .

An n-tree is composed of a root node, which represents the whole set of objects,
some internal nodes,whichdefine the nested classes of objects, and the terminal nodes
(leaves), which are the observable objects, all connected by branches as represented
in Fig. 1, with at most n-2 internal nodes corresponding to a binary tree.

A particular n-tree, called dendrogram—the main graphical representation used
in the paper herein (see Sect. 4)—is defined in Definition 2.

Definition 2 A dendrogram is a valued n-tree where given a mapping b on R+, any
two internal nodes A and B of T, such that A ∩ B �= ∅, then b(A) ≤ b(B) ⇔ A ⊂ B.

The hierarchical classification methods usually produce a complete dendrogram.
Nevertheless, especially for large data sets, a complete hierarchy of nested partitions
frequently has low interest and the construction of a parsimonious tree, which con-
tains a limited number of internal nodes, is preferred and turns out to be clearer albeit
the loss of information related to the dimensionality reduction (Gordon [10]).

The hierarchical clustering algorithms we take into account are the agglomerative
ones, whose criterion for the construction of the dendrogram starts from J singleton
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sets of objects and recursively merges two of them—from the bottom upwards—to
obtain the whole hierarchy. All these methods are computed on a distance matrix, as
a measure of dissimilarity, and they differ in the way of defining distance between
two groups of objects (or between a group of objects and a singleton). It is worthy of
remark that the distance matrices have diagonal elements equal to zero, nonnegative
off-diagonal elements and they must be symmetric.

For variables, it is often suggested to use the correlation coefficient to quantify
the similarity among variables (e.g., Cliff, Haggett, Smallman-Raynor, Stroup, &
Williamson [4]; Gordon [10]; Strauss, Bartko, & Carpenter [25]). Therefore, even if
the classical hierarchical clustering methods are defined for clustering units, they can
be employed for classifying variables. Indeed, it is possible to transform a measure
of similarity—the correlation coefficient in this case—into a dissimilarity between
objects, as follows

d jh = 1 − r jh → d jh ∈ [0, 1] when r jh is assumed to be nonnegative, (1)

where d jh is the distance between the object { j} and the object {h} of O . Moreover,
if a similarity matrix is positive semidefinite—as the correlation matrix is—then the
distance matrix defined by

d jh = √
1 − r jh (2)

is Euclidean (Gower [11]).
The four hierarchical clustering methods we consider herein—single linkage,

complete linkage, average linkage,Ward’s method—can be obtained as special cases
of the following equation proposed by Lance andWilliams [18, 19], and generalised
by Jambu [15],

d(Ci ∪ Ch,Ck) = αi d(Ci ,Ck) + αh d(Ch,Ck) + β d(Ci ,Ch)

+ γ |d(Ci ,Ck) − d(Ch,Ck)|, (3)

where Ci ,Ch,Ck are clusters of objects of O with 1 ≤ |Ci | ≤ J − 2, (∀Ci ∈ O).
The parametersαi , αh, β, γ inEq. (3) define different clustering techniques, as shown
among others in Everitt, Landau, Leese, and Stahl [7] and Lance and Williams [19].

All thesemethods are agglomerative techniqueswhich do not produce reversals in
the dendrogram representation, i.e., the following conditions for Lance andWilliam’s
Eq. (3) hold:

γ ≥ −min{αi , αh}
αi + αh ≥ 0

αi + αh + β ≥ 1.

Moreover, thesemethods—as theDefinition 2 in turn—satisfy a fundamental con-
dition: the ultrametric property (e.g., Hartigan [12]). This property may be expressed
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in two different ways, with respect to distances and to the components of a dendro-
gram, respectively as follows:

d(Ci ,Ch) ≤ max{d(Ci ,Ck), d(Ch,Ck)} Ci ,Ch,Ck ∈ O (4)

b(A, B) ≤ max{b(A,C), b(B,C)} A, B,C ∈ T . (5)

Starting from a distance matrix, the hierarchical clustering algorithms produce a
complete dendrogram. In this framework, the optimal number of clusters is chosen
by cutting the n-tree at a specific level. For a deeper review of the hierarchical
classification algorithms see Gordon [9].

The procedure based on the above-described hierarchical clustering algorithms
for the classification of variables works as follows:

Step 1 (Transformation of correlations into distances) Given a data correlation
matrix R, the corresponding distance matrix is obtained by applying Eq. (1) with
respect to the elements of R.

Step 2 (Hierarchical clustering algorithm) According to Eq. (3), a hierarchi-
cal clustering algorithm is chosen and computed on the distance matrix defined in
Step 1.A complete dendrogram and the corresponding estimated ultrametric distance
matrix are obtained.

Step 3 (Parsimonious hierarchy) To define a parsimonious hierarchy in Q groups
of variables—for a given Q—the dendrogram obtained in Step 2 is cut at the Qth
level, i.e., pinpointing Q groups of variables which may correspond to Q latent con-
cepts. The bottom-up aggregations from the aforementioned level upwards identify
the parsimonious hierarchy.

Step 4 (Model fit) To evaluate the solution obtained in Step 3, the estimated
ultrametric distance matrix has to be transformed into the ultrametric correlation
matrix through the inverse relationship to that of Eq. (1). The least squares difference
between the data correlation matrixR and the estimated—according the hierarchical
clustering method chosen in Step 2—correlation matrix is computed with respect to
the total correlation of the data.

3 The Ultrametric Correlation Model

Considering a nonnegative correlation matrix R of order J , the Ultrametric Correla-
tionMatrix (UCM)model proposed byCavicchia et al. [2] is defined by the following
equation

R = Ru + E, (6)

where Ru is the (J × J ) matrix representing the hierarchical structure of the latent
concepts and E is the (J × J ) random error matrix, i.e., the residual matrix. The
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authors have put a non-negativity assumption on R and, consequently, on Ru to
avoid a compensatory effect into the hierarchy. Nevertheless, in the paper herein this
assumption allows to compare the hierarchical clustering methods recalled in Sect. 2
with the model (6), since both distances and correlations turn out to be nonnegative.
Moreover, they belong to the interval [0, 1] according to Eq. (1).

Ru is an ultrametric correlation matrix, where the ultrametric property of the
matrix (Dellacherie, Martinez, & San Martin [6, pp. 58–59]) formalises the math-
ematical counterpart of the latent concepts hierarchy. It is formally specified as
follows:

Ru = V(RB − IQ)V′ + VRWV′ − diag
(
dg(VRWV′)

) + IJ, (7)

subject to constraints

V = [v jq ∈ {0, 1} : j = 1, ..., J, q = 1, ..., Q]; (8)

V1Q = 1J i.e.,
Q∑

q=1

v jq = 1 j = 1, ..., J ; (9)

RB is an ultrametric correlation matrix (Definition 2 in [2]); (10)

min{Wrqq : q = 1, ..., Q} ≥ max{Brqh : q, h = 1, ..., Q, h �= q}. (11)

In Eq. (7), V is the (J × Q) membership matrix, which defines a partition of the
variable space thanks to constraint (9), i.e., it identifies Q < J nonoverlapping groups
of variables (C1, ...,CQ); RB is the (Q × Q) between-concept correlation matrix,
whose elements Brqh (q, h = 1, ..., Q, h �= q) denote the correlation between two
latent concepts, each one associated with a group of variables (Cq and Ch) and
RW is the (Q × Q) diagonal within-concept consistency matrix, whose elements
on the main diagonal, i.e., Wrqq (q = 1, ..., Q), represent the consistency within
each group of variables and the off-diagonal elements are equal to zero. The two lat-
ter matricesRB andRW embody two different features related to the variable groups:
the correlation between concepts and the internal consistency of a concept,
respectively (Cavicchia, Vichi & Zaccaria [3]).

The model (6) is estimated by Cavicchia et al. [2] in a least-squares framework,
minimising the squared norm of the difference between the data correlation matrix
R and the reconstructed ultrametric correlation matrix Ru.

In the next section, a comparison between the models described herein is carried
out by stressing the strong potential of the Cavicchia et al. [2] proposal in investigat-
ing the hierarchical relationships between latent concepts, whenever they exist and
even if not known a priori, with respect to the traditional agglomerative clustering
algorithms.
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4 A Comparison Between the Ultrametric Correlation
Model and the Agglomerative Clustering Algorithms

The Holzinger data set2 (Holzinger & Swineford [13]) is a benchmark example
very useful to inspect the hierarchical factorial structure of a multidimensional
phenomenon—represented in this case by the general ability of an individual—
composed of different latent dimensions (concepts). It is defined as a (14 × 14)
correlation matrix (J = 14), with Q = 4 latent concepts (Spatial, Mental Speed,
Motor Speed and Verbal) corresponding to the abilities tested for 355 individuals
and described in Table1. The optimal number of latent concepts may be assessed by
means of the classical criteria to choose the number of factors or principal compo-
nents (e.g., Kaiser’s method [16]).

It is worthy to highlight that we aim at defining reliable concepts and, in addition,
at identifying the hierarchical structure over these concepts which pinpoints the
hierarchical relationships between them. To achieve this goal we assess the potential
of the model described in Sect. 3 with respect to the traditional clustering methods
cited in Sect. 2, when there exists a particular hierarchical latent structure underlying
the data.

Firstly, we compute the UCMmodel to the Holzinger correlation matrix to obtain
the parsimonious bottom-up structure of the four latent concepts. It isworthy to notice
that to apply the model (6) the non-negativity condition on the correlation matrix
must hold. The original one has three negative correlation coefficients close to zero
which turn out to be statistically nonsignificant (Holzinger & Swineford [13]), as
the other values in the Holzinger correlation matrix whose magnitude is lower than
0.1; thus, we can set these three negative values to zero. The resulting nonnegative
correlation matrix shown in Fig. 2 points out the existence of the four theoretical
groups—corresponding to the latent concepts of the Spatial, Mental Speed, Motor
Speed and Verbal ability—3 out of 4 internally highly correlated, whereas the vari-
ables representing theMotor Speed ability have lower correlations within the group.
As a result, this weak relationship between the objects in Cth

3 could entail their
misclassification, as we will see thereafter.

Unlike the traditional hierarchical clustering algorithms which produce complete
dendrograms, i.e., they define a complete hierarchy over the J variables, the UCM
model starts from the classification of variables in Q < J groups before searching
for their optimal bottom-up aggregations. As shown in Table2 and Fig. 3, all the
abilities are well-classified except for the variable T36a which is assigned to CUCM

2
rather than to CUCM

3 . Indeed, it can be noticed that this variable has a low correlation
with those in Cth

3 and a higher correlation with the others (see Fig. 2).
The estimates of the between-concept correlation matrix and the within-concept

consistency matrix of Eq. (7) are the following:

2It is available on psych package in R.
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Fig. 2 Heatmap of the Holzinger (14 × 14) correlation matrix of ability tests

Table 1 Holzinger data set:
variables and latent
dimensions (ability)
description

Cth
q Latent concept (ability) Variables

Cth
1 Spatial tests T1, T2, T3.4

Cth
2 Mental speed tests T6, T28, T29

Cth
3 Motor speed tests T32, T34, T35, T36a

Cth
4 Verbal tests T13, T18, T25b, T77

RB =

⎡

⎢⎢
⎣

1 0.330 0.144 0.386
0.330 1 0.144 0.330
0.144 0.144 1 0.144
0.386 0.330 0.144 1

⎤

⎥⎥
⎦ RW =

⎡

⎢⎢
⎣

0.551 0 0 0
0 0.402 0 0
0 0 0.386 0
0 0 0 0.606

⎤

⎥⎥
⎦ .

It has to be highlighted that the UCM algorithm involves an UPGMA step to obtain
an ultrametric matrix RB, using the inverse relationship to that between distances
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Table 2 Variable groups of
the UCM model with Q = 4 CUCM

q Variables

CUCM
1 T1, T2, T3.4

CUCM
2 T6, T28, T29, T36a

CUCM
3 T32, T34, T35

CUCM
4 T13, T18, T25b, T77

Fig. 3 Dendrogram of the ultrametric distance matrix obtained by computing the Ultrametric
CorrelationMatrixmodel on theHolzinger (14 × 14) correlationmatrix of ability tests and applying
Eq. (1) on the result

and correlations in Eq. (1). Since the data correlation coefficients are nonnegative by
hypothesis, all the distances belong to the interval [0, 1] and vice versa.

Looking at Fig. 3, the hierarchy of the four latent concepts is built by merging the
Spatial and Verbal abilities first, then the latter with the Mental ability; all of these
are engendered by the brain. The last aggregation lumps together the broad group of
CUCM
1 ,CUCM

2 ,CUCM
4 and CUCM

3 , whose corresponding latent concept is related to
the movement ability. It is worthy of remark that Holzinger and Swineford data set
has been analysed bymany authors; in particular, Loehlin and Beaujean [20, pp. 235-
239] have conducted a higher-order exploratory analysis (Schmid & Leiman [23])
on their correlation matrix pinpointing a strong correlation between the Spatial and
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Table 3 Variable clusters at Q = 4 level of the clustering methods hierarchy

Cm
q Single link and average link Complete link and Ward’s method

Cm
1 T1, T2, T3.4, T6, T28, T29, T13, T18, T25b, T77 T1, T2, T3.4, T6, T28, T29

Cm
2 T34, T36a T32

Cm
3 T32 T13, T18, T25b, T77

Cm
4 T35 T34, T35, T36a

Verbal tests—corresponding to the first aggregation w.r.t. the UCM model—and a
low correlation between theMotor speed—which partially overlaps theMental speed
ability - and the other abilities. The latter bears the UCMmodel out, since the CUCM

3
is lumped together with the other groups in the last aggregation as an additional
ability.

To make a comparison between the hierarchical classification methods, we apply
the Single, Complete, Average Linkage, and Ward’s Method to the distance matrix
obtained by transforming the Holzinger correlation matrix by means of Eq. (1) and
complying the procedure described in Sect. 2. The results are shown in Fig. 4, where
the groups corresponding to the 4th level of the hierarchy (Q = 4) are coloured. It
is worthy to remark that to identify the aforementioned level of the hierarchy, and
the corresponding partition of variables, a complete dendrogram must be computed.
Indeed, the hierarchical clustering algorithms taken into account in the paper herein
do not allow to choose the optimal number of clusters a priori, as the UCM model
does. The four groups, i.e., the 4th level of the hierarchy from the top downwards, of
each hierarchical clustering method are illustrated in Table3. The different compo-
sition of these groups with respect to the theoretical and the UCM ones immediately
stands out. In fact, even if on one hand the variable T36a is always merged with the
other variables in Cth

3 —conversely to the UCM model—on the other hand Cth
1 and

Cth
2 are never pinpointed separately at the 4th hierarchical level. The aforementioned

difference between those methods and the model illustrated in Sect. 3 affects also the
Adjusted Rand Index (ARI, Hubert & Arabie [14]), which compares the estimated
partitions of the 14 variables in 4 groups for each algorithm with the theoretical
one. Looking at Table4, it can be noticed that the highest ARI is achieved by the
UCMmodel, since its partition in four groups of variables is the most similar (equal
except for T36a) to the one hypothesised by Holzinger and Swineford. Moreover,
an additional examination of the Cronbach’s α (Cronbach [5]) has been carried out,
revealing the existence of a general latent factor associated with all the variables;
thus, the Cronbach’s αs are suitable for both the procedure based on the hierarchical
clustering methods and the UCM model.

The parsimony of themodel (6) allows both to compute a dimensionality reduction
of the problem under study, loosing as less information as possible, and to obtain
the most similar partition of the variables to the theoretical one. This highlights the
potential of the UCM model with respect to the traditional ones, which “suffer from
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Fig. 4 Dedrogram of a Single Linkage, bComplete Linkage, cAverage Linkage, dWard’sMethod
on the distancematrix obtained by transforming theHolzinger (14 × 14) correlationmatrix of ability
tests according to Eq. (1)

Table 4 Adjusted Rand Index between the theoretical membership matrix defined in Holzinger
and Swineford [13] and the membership matrices referred to the traditional hierarchical clustering
methods at level Q = 4 and the Ultrametric Correlation Matrix model; fit of each methods/model
taken into account

Method/Model ARI Fit

UCM model 0.7922 0.0437

Single link 0.1703 0.1440

Complete link 0.6308 0.1536

Average link 0.1703 0.0449

Ward’s method 0.6308 0.1354

the defect that they can never repair what was done in the previous steps” (Kaufman
& Rousseeuw [17]).

To have a deeper comparison between the hierarchical clustering methods and the
UCMmodel, we compute their fit by taking into account the least-squares difference
between the data correlation matrix and the estimated ones that we want to minimise.
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The results are shown in Table4. The fit of the UCM model turns out to be the best
with respect to the other methods. Indeed, only the Average Linkage has a similar
fit, whereas the Single, Complete Linkage, and Ward’s method have a three times
higher fit.

The results shown in this section illustrate the difference between the procedure
based on the traditional classification methods (see Sect. 2) and the Ultrametric Cor-
relaton Matrix model described in Sect. 3. Starting from J manifest variables and
building a complete hierarchy over them turns out to be not sufficient, as shown in
this section, when there exists a hierarchical latent structure in the data. Furthermore,
if the number of the original variables is too large a dimensionality reduction of the
problem, means a parsimonious representation, is needed. From a theoretical point
of view, the UCMmodel provides a parsimonious representation of the relationships
among variables, starting from Q groups each one associated with (forming) a latent
concept. It is worthy to highlight once again that the hierarchical clustering methods
are not able to repair the errors done in the initial levels of the complete hierarchy,
whenever they occur. Conversely, thanks to its features, the model (6) does not suffer
from the errors underneath the Qth level of the hierarchy, given that the Q variable
groups are directly pinpointed in a dimensionality reduction approach without going
through binary aggregations of variables from J to Q. Moreover, since the UCM
model works on a correlation matrix, the latent concepts of a phenomenon might
also be quantified.

5 Conclusions

In this paper, a comparison between a procedure based on the well-known hierar-
chical clustering methods and the novelty model proposed by Cavicchia et al. [2] is
provided. The latter allows to pinpoint a parsimonious representation of multidimen-
sional phenomena through the partition of the observable variables into a reduced
number of concepts—each one associated with a latent dimension—and to study the
relationships among the latent concepts which belong to a broader general concept.
The difference between the procedure based on traditional clustering algorithms and
the methodology illustrated in Sect. 3 is appreciated thanks to their application to a
benchmark data set, which represents a real hierarchical factorial structure.

As well as the construction of a hierarchy of latent concepts, the UCM model
illustrated herein entails a dimensionality reduction of the problem under study,
starting from a parsimonious representation of variables in groups. The number of
groups is chosen a priori by means of the traditional criteria for selecting the optimal
number of factors/components, instead of cutting the n-tree as usually done for the
hierarchical clustering methods. Differently from those aforementioned algorithms,
the model described in Sect. 3 does not suffer from the errors that could turn up in
the lower levels of the dendrogram, since it starts from a parsimonious partition in
Q < J variable groups.
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Improving Algorithm for Overlapping
Cluster Analysis

Satoru Yokoyama

Abstract Several overlapping cluster analysis models have been suggested, and
various kinds of data have been analyzed by these models. ADCLUS suggested
by Shepard and Arabie [9] can be adapted to one-mode two-way proximity data.
INDCLUS (Carroll andArabie [4]) is for two-mode three-waydata, andGENNCLUS
(DeSarbo [6]) is the generalizedmodel for two-way data. In addition, Yokoyama et al.
[10] suggested a model for one-mode three-way similarities. The algorithm of these
models is based on MAPCLUS (Arabie and Carroll [1]) , which is the most general
algorithm for overlapping cluster analysis. This algorithm consists of an alternating
least squares approach and a combinatorial optimization procedure. Therefore, it
takes a long time to obtain the result and it is likely to obtain local results when data
consisting of a large number of objects are analyzed. In the present paper, the author
tries to improve the algorithm in several ways.

1 Introduction

From the late 1970s, several overlapping cluster analysismodels have been suggested
by researchers. Shepard and Arabie [9] introduced a model for one-mode two-way
similarity data; this model is called the ADditive CLUStering (ADCLUS) model.
INdividual Differences CLUStering (INDCLUS, Carroll and Arabie [4]) applies
to two-mode three-way similarities. In addition, Yokoyama, Nakayama, and Okada
[10] suggested a model for one-mode three-way similarities. These models are based
on Arabie and Carroll [1] algorithm. Arabie and Carroll [1] suggested an alterna-
tive algorithm for fitting the ADCLUS model called MAthematical Programming
CLUStering (MAPCLUS). Furthermore, DeSarbo [6] suggested an algorithm called
GENNCLUS, which extended it for rectangular data.

However, in these algorithms, when the number of subjects increases, the result
tends to be local solutions or an increase in the computation time. The problem is
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expressed as “NP-hard” or “complex” in various papers. Several algorithms have
been suggested, such as SINDCLUS (Chaturvedi & Carroll [5]), SYMPRES (Kiers
[8]), and France, Chen, and Deng [7], but it seems that each algorithm has the same
problem.

In the present study, the author tries to improve the algorithm to improve the
stability of results and reduce computation time.

First, the computation time and the result of VAF (variance accounted for) are
compared between data with a small number of objects and data with a large num-
ber. In particular, the author examines the difference in computation time and VAF
depending on whether the alternating least squares (ALS) approach or the combi-
natorial optimization procedure is done. Furthermore, the results vary depending on
the initial clusters. The author examines the change in results when the method of
generating initial clusters is changed.

2 Overlapping Cluster Analysis

2.1 ADCLUS Model

Shepard and Arabie [9] introduced overlapping cluster analysis model for one-mode
two-way data. This model represents similarities as the sum of discrete overlapping
properties. It represents the similarity, si j (i, j = 1, . . . , n, where n is the number of
objects) as

si j ∼=
R∑

r=1

wr pir p jr + c (1)

where wr (r = 1, . . . , R) is the nonnegative weight (assumed to be nonnegative) of
the r th cluster, the pir is binary; if the object i�(i = 1, . . . , n) belongs to cluster r is
1, otherwise it is 0. The c is the additive constant, it can be represented as the weight
of the (R + 1)-th cluster, so that Eq. (1) can be rewritten as

si j ∼=
R+1∑

r=1

wr pir p jr . (2)

2.2 MAPCLUS Algorithm

The MAPCLUS algorithm uses a gradient approach to minimizing a loss function
to maximize the variance accounted for (VAF), and a combinatorial optimization
procedure. Equation (3) is the loss function which was shown in Arabie and Carroll
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[1, p. 214] and Arabie, Carroll, DeSarbo, and Wind [2, pp. 313–314]. This loss
function is the weighted sum of two terms: one is a normalized measure of the sum
of the squared errors and the other consists of a penalty function in the form of a
polynomial over all pairwise products pir p jr toward 0 or 1.

Lk(αk, βk,�, P) = αk
ak
dk

+ βk
uk
vk

(3)

here

ak =
n∑ n−1∑

i< j

(δ
(k)
i j − wk pik p jk)

2,

dk = 4
n∑ n−1∑

i< j

δ
(k)2
i j /M,

uk = 1

2

n∑

i

n∑

j

[(pik p jk − 1)pik p jk]2,

vk =
n∑ n−1∑

i< j

(pik p jk − Tk)
2,

δ
(k)
i j = si j −

∑

i �=k

wr pir p jr ,

Tk = 1

M

n∑ n−1∑

i< j

pik p jk,

M = n(n − 1)

2
,

αk + βk = 1.

The pir and weight wr are computed in two steps. First, given the first subset
pi1 = [p11, . . . , pn1], pi1 are iteratively improved, and w1 estimate to use linear
regression. Then the values of second cluster (pi2 and w2) are calculated using an
alternating least squares (ALS) approach, and soon.Theseprocedures (main loop) are
repeated while gradually decreasing the value of the loss function. When no further
improvement in VAF is forthcoming or the predetermined number of iterations is
reached, while pir are made binary, the pir and weight wr are computed as ALS
approach (polish loop).

Then, the combinatorial optimization step begins when the improvement in VAF
becomes negligible. The combinatorial optimization consists of doubleton and sin-
gleton strategies. These strategies repeat the round robin loop until there are no
further improvement in VAF. After that, the pir and wr are determined to be the final
solution.
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3 Improvement of Algorithm

As an improvement of the algorithm, the number of iterations of the ALS approach
and the combinatorial optimization procedure is examined in this section.

In general, when the number of objects increases, the estimation of the clusters
and weights by the ALS approach tends toward solutions, and combinatorial opti-
mization takes a long time. Here, a dataset with a relatively small amount of data and
slightly larger dataset is used, The author verified how the results and computation
times change by changing the number of iterations of the ALS approach and the
combinatorial optimization. The relatively small dataset is POS data, which is used
in Yokoyama et al. [10]. This data is simultaneous purchase data for categories of
liquor at convenience stores. The slightly larger dataset is the survey data, which is
the purchasing experience of 64 types of foods in a certain period, where a purchase
experience is defined as a simultaneous purchase.

In the present paper, the following five patterns of algorithms were used:

(A) use ALS approach (maximum number of iterations of the main loop is 1, of the
polish loop is 5), use combinatorial optimization,

(B) use ALS approach (maximum number of iterations of the main loop is 1, of the
polish loop is 5), use combinatorial optimization,

(C) use ALS approach (maximum number of iterations of the main loop is 10, of the
polish loop is 10), no combinatorial optimization,

(D) use ALS approach (maximum number of iterations of the main loop is 10, of the
polish loop is 10), no combinatorial optimization,

(E) combinatorial optimization only.

The number of clusters varied from 7 to 3, and the initial clusters were changed
100 times at random in each analysis.

For the analysis, a programwritten in Cwas used on a computer runningWindows
7 with an Intel Core i7-4790 3.60 GHz CPU and 32 GB of memory.

The results are shown in Tables1, 2, and 3. Table1 shows the maximum VAF for
each number of clusters. Table2 shows the ratio of acceptable results, which means
90% of the maximum VAF for each cluster. Table3 shows the index of the average
computation time for each analysis when pattern A is 100%.

For the POS data, the maximum VAF was almost the same for each cluster with
all five methods, but the acceptable VAF ratio was low for methods (C), (D), and (E),
which all used either the ALS approach or combinatorial optimization, but not both.
The computation times of these three methods are short. On the other hand, for the
survey data, the maximum VAF was almost the same in the three methods (A), (B),
and (E), which all used combinatorial optimization. However, that of methods (C)
and (D) were smaller than the others; the acceptable VAF ratios of these twomethods
were close to zero. We conclude that combinatorial optimization is necessary in the
analysis. In addition, the acceptableVAF ratio formethod (E)was low,ALS approach
is also necessary. Methods (C) and (D) showed a tendency for the computation times
to increase compared tomethod (A).When the number of objects is large, it is thought
that a combination of the ALS approach and combinatorial optimization is required.
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Table 1 Maximum VAF of each algorithm of real data analysis

POS Survey

7 6 5 4 3 7 6 5 4 3

(A) 0.979 0.972 0.961 0.942 0.900 0.862 0.844 0.819 0.783 0.731

(B) 0.979 0.972 0.961 0.942 0.900 0.862 0.845 0.822 0.783 0.731

(C) 0.969 0.954 0.912 0.926 0.896 0.709 0.693 0.666 0.656 0.658

(D) 0.959 0.951 0.951 0.940 0.896 0.760 0.760 0.742 0.706 0.666

(E) 0.979 0.972 0.961 0.942 0.900 0.858 0.840 0.813 0.779 0.728

Table 2 Acceptable VAF ratio of each algorithm of real data analysis

POS Survey

7 6 5 4 3 7 6 5 4 3

(A) (%) 60.0 68.2 80.7 87.9 96.4 79.7 84.2 86.8 90.3 96.3

(B) (%) 69.3 80.3 87.4 93.5 98.3 86.8 88.2 92.5 94.8 97.1

(C) (%) 3.0 2.7 4.0 4.8 4.9 0.0 0.0 0.0 0.0 0.0

(D) (%) 11.5 10.9 13.6 14.8 11.9 0.0 0.0 0.1 0.1 0.3

(E) (%) 14.6 17.4 20.4 29.2 40.4 8.1 10.0 14.8 20.8 29.4

Table 3 Computation time of each algorithm of real data analysis

POS Survey

7 6 5 4 3 7 6 5 4 3

(A) (%) 100 100 100 100 100 100 100 100 100 100

(B) (%) 106.2 106.1 114.9 114.1 128.8 93.4 93.8 91.7 94.1 95.2

(C) (%) 50.7 55.6 58.9 61.7 70.3 3.7 3.9 4.2 4.2 4.3

(D) (%) 63.4 70.4 71.4 78.9 94.6 4.4 4.6 4.8 5.0 5.0

(E) (%) 69.2 63.3 63.2 61.9 59.0 127.1 135.1 139.6 151.2 156.1

A more detailed analysis was performed with artificial data. The artificial data
were created under the following conditions: the number of clusters was 6, weights
were fixed at 4.00, 2.75, 1.75, 1.00, 0.50, and 0.25; number of objects were 10, 25,
50, and 100; the cluster structures were patterned and random. Similarity data were
calculated from these cluster structures using the ADCLUS model formula Eq. (1).
Then these similarity data were analyzed using the five methods.

The results are shown in Tables4, 5, and 6. In Table4, the maximum VAF of
methods (A), (B), (D), and (E) was almost close to 1; the original cluster structure
can be reproduced. But withmethod (D), it cannot be reproducedwhen the number of
objects increases. Table5 shows that methods (A) and (B) had a high ratio of accept-
able VAF and can reproduce the original cluster structure for many initial clusters,
but the ratio of methods (D) and (E) was low, showing that these methods depend
on the initial clusters. It is also characteristic that the ratio depends on the method,
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Table 4 Maximum VAF of each algorithm of artificial data analysis

Artificial data 1 (patterned) Artificial data 2 (random)

n=10 n=25 n=50 n=100 n=10 n=25 n=50 n=100

(A) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(B) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(C) 0.992 0.757 0.712 0.863 0.998 0.902 0.771 0.763

(D) 0.998 0.967 0.996 1.000 1.000 0.995 0.993 0.992

(E) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5 Acceptable VAF ratio of each algorithm of artificial data analysis

Artificial data 1 (patterned) Artificial data 2 (random)

n=10 n=25 n=50 n=100 n=10 n=25 n=50 n=100

(A) (%) 80.0 87.0 92.0 91.0 94.0 91.0 94.0 97.0

(B) (%) 82.0 87.0 88.0 91.0 94.0 95.0 93.0 95.0

(C) (%) 13.0 0.0 0.0 0.0 19.0 1.0 0.0 0.0

(D) (%) 18.0 2.0 6.0 5.0 12.0 4.0 2.0 3.0

(E) (%) 41.0 45.0 41.0 45.0 55.0 45.0 38.0 30.0

Table 6 Computation time of each algorithm of artificial data analysis

Artificial data 1 (patterned) Artificial data 2 (random)

n=10 n=25 n=50 n=100 n=10 n=25 n=50 n=100

(A) (%) 100 100 100 100 100 100 100 100

(B) (%) 85.1 101.7 98.0 93.4 85.5 103.0 92.9 90.9

(C) (%) 68.5 26.5 7.0 1.5 70.4 29.3 6.6 1.2

(D) (%) 55.9 36.7 9.8 2.2 108.9 30.8 9.1 1.9

(E) (%) 44.4 98.9 151.5 191.2 62.1 100.4 140.5 149.6

regardless of the number of subjects. Regarding computation time, Table6 shows
that method (B) was almost the same as method (A), while method (E) increases as
the number of objects increases. Methods (C) and (D) were short in time because the
cluster structure cannot be reproduced.

From the above research, it can be seen that when the number of objects is large,
the method using only combinatorial optimization reduces the ratio of acceptable
VAF and increases the computation time compared to the methods that used both
the ALS approach and combinatorial optimization. Therefore, the ALS approach is
necessary. In addition, the ratio of acceptableVAF is significantly reducedwhenusing
only the method of ALS approach, combinatorial optimization is also necessary. It
was also found that increasing the number of iterations in the ALS approach does
not improve the results.
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4 Improvement Byinitial Cluster

From the analysis in the previous section, it was found that theMAPCLUS algorithm
may depend heavily on the method and the initial cluster.

The problemof dependency on the initial cluster is the same as k-means clustering.
K-means++ was suggested by Arthur and Vassilvitskii [3]. The k-means model gives
cluster centers randomly, but k-means++gives the first center randomly, and then uses
a weighted probability, where objects close to the centers are less likely to be chosen
as the next center. The results and calculation speeds are improved dramatically.

In the original method of MAPCLUS algorithm, the initial cluster uses the result
of the singular value decomposition (SVD) of similarity data or random data. The
analysis in the previous section used randomdata for the initial cluster. In this section,
we will improve the result by changing the method of generating initial clusters.

The proposed method is as follows:

1. A cluster is randomly generated.
2. The weight and VAF are calculated.
3. The VAF is positive, the cluster is taken as a candidate for an initial cluster.
4. Repeat steps 1 to 3 until there is a sufficient number of candidates above the

number of clusters required for the analysis.
5. The initial cluster consists of a combination of clusters, each of which has a large

VAF compared to other candidates.

In the present analysis, each dataset was analyzed with 20 initial clusters, which
were created by changing the combination. For the analysis, a program created in
R was used on a computer running CentOS 7 with an Intel Core i7-4790 3.60 GHz
CPU and 32 GB of memory.

The loss function of this program is

L =
R+1∑

k=1

n∑

i

n−1∑

j
i< j

(si j − wk pik p jk)
2,

the optim function of R was used for optimization.
First, the proposed procedure was applied to the two artificial datasets used in

Sect. 3. For this analysis, data in which the number of objects was 10, 25, and 50
were used. In the original method, 20 initial values were randomly created.

Tables7 and 8 show the results, such as the maximum VAF, the average VAF,
the number of iterations of both the main loop and the polish loop, combinatorial
optimization, and computation time.

Using patterned artificial data, there is no difference in the values between the
proposed method and the original method. Computational time was reduced by 35.
Using random artificial data, when the number of objects was small, the proposed
method had a higher number of iterations and computation time. But as the number
of subjects increased, the results were almost the same between the two methods,
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Table 7 The result of artificial data 1

Artificial data 1 (patterned)

Number of objects 10 25 50

Method Original Proposed Original Proposed Original Proposed

Number of generated
initial clusters (Max. 20)

20 7 20 20 20 20

Maximum VAF 100% 99.9% 99.2% 99.1% 91.9% 91.9%

Average VAF 99.9% 99.9% 95.3% 96.7% 91.1% 90.3%

Average of main loop
(Max. 20)

19.45 20 18.8 15.4 18.95 20

Average of polish loop
(Max. 10)

4.3 9.71 6.65 10 9.8 10

Average of combinatorial
optimization (Max. 10)

8.6 9.43 9.25 10 10 10

Average of computation
time

4.24 2.77 32.15 19.71 269.96 165.76

Table 8 The result of articial data 2

Artificial data 2 (random)

Number of objects 10 25 50

Method Original Proposed Original Proposed Original Proposed

Number of generated
initial clusters (Max. 20)

20 20 20 20 20 20

Maximum VAF 1 1 0.998 0.997 0.989 0.989

Average VAF 1 1 0.954 0.967 0.911 0.904

Average of main loop
(Max. 20)

19.7 20 18.8 15.4 18.95 20

Average of polish loop
(Max. 10)

6.95 10 6.65 10 9.8 10

Average of combinatorial
optimization (Max. 10)

7.45 10 9.25 10 10 10

Average of computation
time (sec.)

3.56 7.70 33.32 19.80 202.32 134.32

and the computation time was lower by 30–40% in the proposed method. Since the
number of initial clusters is 20, the maximumVAF is slightly smaller than in Table4.

In addition, this procedure was applied to the POS data and survey data. In these
analyses, the number of clusters was set to 5 for both datasets. The results are shown
in Table9.

For the POS data, the average VAF was slightly smaller, the maximum VAF was
larger, and the computation time was about half. Both methods were analyzed with
only 20 initial clusters, so although the maximum VAF in Table1 is less than 0.961,
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Table 9 The result of POS and survey data

POS Survey

Number of objects 15 64

Method Original Proposed Original Proposed

Number of generated initial clusters (Max. 20) 20 20 20 20

Maximum VAF 0.949 0.955 0.447 0.736

Average VAF 0.943 0.930 0.432 0.720

Average of main loop (Max. 20) 19.2 20 16.2 20

Average of polish loop (Max. 10) 9.6 9.9 10 7.3

Average of combinatorial optimization (Max. 10) 10 8.25 10 8.85

Average of computation time (sec.) 8.36 3.94 387.47 292.63

acceptable solutions were obtained. For the survey data, the maximum VAF was
0.447 for the original and 0.736 for the proposed method. That value in Table1 was
0.822, so the result of the proposed method is not good, but the computation time
was improved by about 24.5%. The proposed method is considered to be sufficiently
effective.

5 Conclusion

In the present study, the author focused on the stability of the result and the com-
putation time of overlapping cluster analysis. Section3 clarified the problem of the
relationship between the ALS approach, combinatorial optimization, and the number
of objects in the MAPCLUS algorithm, using both real and artificial data. For the
stability of results, it was confirmed that combinatorial optimization is a necessary
procedure, but combining it with the ALS approach is indispensable. In addition, it
was also found that increasing the number of iterations of the ALS approach does
not improve the results.

Next, in Sect. 4, the author examined whether the results could be improved by
generating the initial clusters. The proposed method obtained better results than the
original method.

There are several ways to improve the algorithm of MAPCLUS. It is possible to
improve the loss function, and the content of the combinatorial optimization process
can be changed. The present study proposed a method to generate initial clusters
based on the k-means++ concept. The idea is to obtain good results by collecting
good initial clusters with a good VAF for each cluster. Considering that the proposed
method achieved better results than the original method, it is necessary to examine
further the best way to generate the initial clusters. In the future, the proposedmethod
should be verified with the INDCLUS model and the one-mode three-way model.
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Increasing Conversion Rates Through
Eye Tracking, TAM, A/B Tests: A Case
Study

Daniel Baier and Alexandra Rese

Abstract Online retailers are permanently confronted with the question how to
increase conversion rates of their shops (e.g., the percentage of visits that end with
a purchase). Successful seem to be shops where landing pages arouse attention and
interest as well as quickly to interesting offers. However, whereas many layout and
navigation improvements sound reasonable in general, only few of them result in
increased conversions when going online. In this paper, we discuss how eye tracking,
technology acceptance modeling (TAM), and A/B tests can help to tune them before
going online. The improvement of the navigation menu position on landing pages
at a major European online fashion shop is used for demonstration. The complete
process from idea generation to integration is discussed.

1 Introduction

Using the information how visitors navigate and search for products in an online
shop has long been recognized as an online retailer’s road to success (Kim, Albu-
querque, & Bronnenberg [9]; Ringel & Skiera [15]). So, e.g., Kim et al. [9] discuss
how a major online retailer (amazon.com) collects and analyzes customer search
data (clickstreams) and successfully uses this information to modify the navigation
and quickly lead visitors to interesting products. Moreover, the authors develop a
visualization tool based on Okada and Imaizumi [11]’s asymmetric MDS to support
this. Ringel and Skiera [15] extend this tool to larger amounts of search data with
respect to thousands of products offered in the shop. Other authors (e.g. Baier, Rese,
Nonenmacher, Treybig, & Bressem [2]; Baier, Rese, & Röglinger [3]) demonstrate
that interactive tools like attended shopping, curated shopping, messaging services,
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scanned shopping, or voice assistants support the navigation and the finding of inter-
esting products. They were categorized as attractive by customers of a major online
fashion shop (baur.de).

All these improvements have one thing in common: Their effect on conversion
rates is unclear before integration into the online shop, but this implementation is
costly. Consequently, many online retailers have installed a filtering and tuning pro-
cess that allows to develop “best” improvements in a money-saving stage-by-stage
manner (see for overviews Baier et al. [2]; Baier et al. [3]): In early stages, technolog-
ical, market scouting as well as expert knowledge is used to generate large numbers
of promising improvement ideas at low costs. Then, internal workshops and cus-
tomer surveys help to select few promising alternatives, which then are testwise
implemented and made available to small customer samples in user-labs. Finally,
“best” alternatives have to demonstrate their effects on conversion rates across large
customer samples when implemented and integrated in the online shop.

In this paper, we show how the authors generated, tuned, and tested one improve-
ment idea—amodified navigationmenu position on landing pages—at amajor Euro-
pean online fashion retailer (zalando.de). In Sect. 2, the underlying landing page
improvement problem is discussed. In Sect. 3, we describe how eye tracking, tech-
nology acceptance modeling (TAM), and A/B testing can be used to select and tune
improvements. Sections 4 and 5 discuss the empirical application from idea gen-
eration to testing, tuning, implementation, and integration. The paper closes with
conclusions and outlook.

2 Increasing Conversions via Improved Landing Pages

Landing pages are first pages a consumer is confronted with when visiting an online
shop (Ash, Ginty, & Page [1]). These first pages may depend on how the visitor
accessed the site: It could be the homepage of the online shop if accessed directly or
a more specific page, say, e.g., a category page, a brand page, or a product page if
accessed via a search engine, a banner, a newsletter, or another advertisement with
a specific focus. In most of these cases, the landing pages have a similar navigation
and page layout as all pages of the shop. However, many websites also have specific
landing pages, e.g., microsites (a subselection of pages of the site) or stand-alone
pages, where visitors are guided to as the result of a marketing campaign. These
landing pages may have a far more pronounced call-to-action and a modified page
layout (Ash et al. [1]).

Across all types, landing pages are important for the success of their websites.
Since they are the first pages visitors are confronted with and maybe the last ones
if they immediately quit, goal achievements (e.g., downloads, comments, ratings,
registrations, subscriptions, purchases) are only possible when the visitors’ attention
and interest are aroused there, expectations are fulfilled, and trust, orientation, as well
as call-to-action are present (Gofman, Moskowitz, & Mets [8]; Ash et al. [1]). Con-
sequently, their navigation and page layout as well as their permanent improvement
are big challenges for online retailers.
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So, for making them successful, among others, the following navigation and lay-
out elements have to be carefully selected (see Ash et al. [1]): Size and contents of
page header, size and contents of page footer, size and location of page navigation,
placement of trust symbols and credibility logos, separation of page shell and navi-
gation from page content, size and location of forms or other calls-to-action, mirror
images (swapping) of key page sections (e.g., a form located to the left of the text or
to the right), vertical stacking versus horizontal arrays of page sections, and single
versusmultiple columns. Additionally, decisions on presentation formats are needed:
Degree of detail (e.g., full text, or links to supporting information), writing format,
choice of input elements (e.g., radio buttons or pulldown lists), action format (e.g.,
buttons, text links, or both), editorial tone, use of alternative formats and modalities
(e.g., charts, figures, audio clips, videos, presentations, demos).

For reducing the large number of improvement options to a few, customer sur-
veys based on conjoint analysis have been proposed as useful and applied (see, e.g.
Gofman et al. [8]; Schreiber & Baier [16]). So, Schreiber and Baier [16] collected
preference data from the customers of a major German Internet pharmacy. Using
choice-based conjoint analysis, a sample of 2,489 respondents was confronted with
15 choice tasks among four landing page alternatives. The alternatives resembled the
actual pharmacy’s home page, but varied w.r.t. the following elements and formats:
navigation menu (at the top, at the left, in the middle), search and shopping basket
area (static, flexible), button size (small, large), font size (small=12pt, large=14pt),
and advertising banner (big size banner, junior page, full banner, skyscraper banner,
button). The respondents had to select in each task a preferred landing page. After
analyzing the collected preferences it could be demonstrated that the font size and
the navigation menu had the strongest influence on the customers’ preference and
that the landing page, with navigation menu (at the left), search and shopping basket
area (flexible), button size (large), font size (large=14pt), and advertising banner
(button), was the favorite. Gofman et al. [8] conducted a similar survey to improve the
landing pages of an online grocery store. Using traditional conjoint analysis, a target
segment sample of 172 consumers was asked to rate 27 landing page alternatives con-
cerning their interest to purchase groceries from this online shop on a 9-point Likert
scale. The landing page alternatives varied w.r.t. shipment options, promotions, fea-
tured items, and main pictures. The traditional conjoint analysis results were used to
develop two different landing pages, one for value-oriented consumers (with a focus
on cost saving) and one for impulsive consumers (with a focus on mouth-watering
images).

Whereas the up-to-now discussed preference data collection approach is suited
to select promising improvements among a large number of alternatives in early
stages of the filtering and tuning process at low costs, in the following, more in-
depth testing and tuning methods are discussed which can be applied—in contrast
to the above-described approach—only to few alternatives at reasonable costs.
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3 Tuning Through Eye Tracking, TAM, and A/B Tests

When preceding stages have reduced the number of improvement alternatives to a
few promising ones, these can be testwise implemented and more advanced—and
more costly—approaches can be used to measure their acceptance by the customers
and their ability to increase conversion rates.

From a more practical point of view, a so-called A/B test is the ultimate proof that
an improvement increases the conversion rate (Ash et al. [1]; Gofman et al. [8]). The
original version of the landing page and one (or more than one) variants are made
available for large target segment samples. A splitting technique is used to guide
comparable subsamples to different landing page versions, using, e.g., time slots
where versions are online (sequential testing) or alternating links (parallel testing).
For each visit, the adherence to a subsample/landing page version and the goal
achievement (e.g., download, comment, rating, registration, subscription, purchase:
yes or no) is stored and used to calculate the conversion rate of each version (number
of goal achievements per visits) as a basis for the final decision. The necessary
duration of such an A/B test depends on the expected number of conversions per day,
the number of versions to be compared, the expected increase of the conversion rate,
and the necessary confidence in the results (see Ash et al. [1]). However, in practical
settings, a duration of at least 2–3 weeks with comparable and stable environments
for all versions is needed which makes it clear that the A/B test should be reserved
to final decisions.

Consequently, before starting an A/B test, testing and tuning with smaller target
segment samples is needed. Ash et al. [1] propose for this purpose usability test-
ing, eye tracking, focus groups, customer surveys, customer service representatives
interviewing, usability reviews, forums, and blogs.

Usability testing means that few customers (say, e.g., three to six) are invited
into a laboratory (user-lab) and confronted there with a testwise implementation of
the improvement. They are asked to complete a specific task (use case scenario).
The developers quietly observe the process and use the information for tuning the
testwise implemented improvement afterward. Often, usability tests are combined
with so-called eye tracking, a special form of observation where technology is used
to show what the customers are looking at, in what order, and how long (Ash et al.
[1]; Meißne, Musalem, & Huber [10]). The widespread technology for this purpose
is to track positions and movements of the eye via reflections of an infrared light
beam into the eye. The position and movement of the eye then are used to calculate
points where the customer is looking at on a screen or a video recording. Usually,
fixations (points where the eye rests at least aminimumduration, e.g., 0.15–0.3 s) and
saccades (points where the eye is on the move to another point) are distinguished,
since it is assumed that humans need a minimum fixation duration to understand
the looked at content. Across a sample of tracked customers, the distribution of the
fixation durations can be summarized by so-called heat maps. Here, zones with high
(sums of) fixation durations across the sample are colored in red and zones with
lower fixation durations are colored in yellow or green. Heat maps are assumed to
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Fig. 1 TAM assumptions following Davis [5], Venkatesh and Davis [18]

be the best-known visualization technique for eye-tracking results since they allow
to draw simple conclusions whether screen (or video recording) elements have been
looked at or not.

Usually, usability testing and eye tracking are accompanied by a customer survey
or focus groups where likes and dislikes of the testwise implementation are col-
lected. In this paper, we propose to use surveys based on the well-known technology
acceptance model (TAM) for this purpose. TAM is an information systems theory
with roots in the behavioral sciences (e.g. Fishbein & Ajzen [7]) that was developed
by Davis [5] for measuring the acceptance of information systems in a work envi-
ronment. It models how users come to accept and use a technology at the working
place. The model suggests that when users are presented with a new technology,
a number of factors influence their usage intention and usage behavior, especially
their so-called perceived usefulness and their perceived ease of use are assumed to
be decisive. Figure 1 reflects these main modeling assumptions.

Numerous applications of TAMalso outside the work environment—for example,
w.r.t. new technologies in offline and online shopping, see Pavlou [12], Baier and
Stüber [4], Rese, Baier, Geyer-Schulz, and Schreiber [13], and Rese, Schreiver, and
Baier [14]—have shown that the model is well suited to explain and predict usage
behavior. Users are confronted with a new technology and have to answer standard-
ized questionnaires. An analysis of the collected data using variance- or covariance-
based estimation methods for structural equation models allows to explain and pre-
dict the acceptance by the target segment. Over the years, TAM was extended by
Venkatesh and Davis [18] as TAM2, by Pavlou [12], by Venkatesh, Morris, Davis,
and Davis [19] as UTAUT (unified theory of acceptance and use), and by Venkatesh,
Thong, and Xu [20] as UTAUT2. The main extension focus was to add additional
factors to better explain and predict the acceptance. So, e.g., Venkatesh and Davis
[18] introduced the factors subjective norm, image, (job) relevance, output qual-
ity, and result demonstrability that influence the factor perceived usefulness. Pavlou
[12] introduced trust and perceived risk as additional factors that explain online
shop usage. In Fig. 1, one of these factors adapted to TAM in an online shopping
environment—shopping relevance—is integrated, following Venkatesh and Davis
[18].
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4 Empirical Application: From Idea Generation to Testing

In our empirical application, the online shop of a cooperating major German online
fashion retailer (zalando.de) serves as demonstration object that needs improvement.
There, at the time before our investigation, the category pages “fashion for women”
and “fashion for men” were frequently used landing pages but also had high so-
called bounce rates, i.e., high percentages of visits that immediately ended there
without a goal achievement. Obviously, the two landing pages could not arouse
the visitors’ attention and interest, the visitor’s expectations were not fulfilled, or
trust, orientation, as well as call-to-action were missing (see the above discussion
or Gofman et al. [8]; Ash et al. [1]). This assessment was confirmed by interviews of
the authors with a small sample of customers confronted with these landing pages.

Consequently, market and technological scouting was performed which resulted
in two improvement ideas: “integrating a heroshot in the navigation menu” and
“adding a central navigation menu.” A heroshot is a picture of an attractive member
of the target segment that arouses the visitor’s attention and interest (see Gofman et
al. [8]; Ash et al. [1]). A central navigation menu is positioned in the middle of the
screen and provides additional help to find interesting offers. The motivation for an
additional central navigation menu comes from the observation that—on average—
website visitors tend to look at the screen center first. This behavior is well known
and seems even to have evolutionary reasons. Predators and preys look in the mid-
dle of a scene, maybe this is the best starting point to recognize actions and react
quickly. Experiments in visual sociology support this observation. So, e.g., Tatler
[17] showed 22 test persons 120 indoor, outdoor, and human-generated scenes with
biased distributions of image features (image samples with bias to the left, bias to
the right, unbiased samples). Eye tracking revealed that even with biased distribu-
tions, the test persons tended to look in the middle of the screen across the sample.
Fehd and Seiffert [6] reported similar observations when altogether 65 test persons
had to track 4–10 moving circles on the screen in a game setting. The test persons
were asked to follow different strategies for keeping control (central looking, center-
target switching, or target looking). The central looking respondents were the most
successful in controlling the game.

Basing on these improvement ideas, two alternative variants were developed for
the landing page “fashion forwomen” and two for the landing page “fashion formen”:
Two with an additional central menu below the usual teaser (variant 1) and two with
a reduced teaser and the additional central menu combined with a heroshot (variant
2). It was assumed—as hypotheses for the following tests—that variant 2 would have
highest conversion rates and the original landing page the lowest. Additionally, it was
assumed that—if the visitors were asked to navigate the landing pages—original to
variant 1 to variant 2 would reduce the time to fixate a navigation menu and that
variant 2 would be superior to variant 1 w.r.t. perceived usability, perceived ease of
use, usage intention, and usage behavior. In order to test these hypotheses, a field
experiment in a user-labwas designed. The original and the two landing page variants
were integrated into mock-ups of the online shop. An eye-tracking experiment was
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prepared and a questionnaire according to the TAM model in Fig. 1 was developed.
Additionally, at the online shop of the cooperating retailer, an A/B test was prepared
to compare the three landing page versions (original, variant 1, variant 2) for women
and for men across larger target segment samples.

5 Empirical Application: From Testing to Going Live

In the user-lab, where eye tracking and the TAM survey were conducted, altogether
n=93 respondents participated and filled out the questionnaires completely (n=55
female, n=38 male participants, all of them students at the local university). n=32
participants evaluated the original and variant 1 of their gender-specific landing
page (n=18 female, n=14 male participants). n=61 participants evaluated the
original and variant 2 of their gender-specific landing page (n=37 female, n=24
male participants). The higher number of participants who were asked to evaluate
version 2 reflects the fact that version 2 was assumed to be the variant with higher
conversion rates.

All participants in the user-lab received a short introduction into the context of the
field experiment (“improvement of the online shop”) and were made familiar with
the eye-tracking system. Then, they were shown (in random order) their gender-
specific original landing page and one of the two variants. In each case, they were
asked to orientate themselves for 20–30seconds on the landing page and then to
navigate to prespecified trousers and shirts. During the visits of the landing pages,
the eye-tracking system calculated the fixations and fixation durations across the
landing pages. Figures2 and 3 reflect the derived heat map for the original landing
page “fashion for women” and variant 2 and the heat map for the original landing
page “fashion for men” and variant 2.

The heatmaps demonstrate that—across the samples—in variant 2 the participants
preferred to orientate via the central menu. The fixations and fixation durations there
were much higher than in the menu on the left which was alternatively offered to
them. For further evaluations, the fixations and fixation durations were allocated to
so-called areas of interest (AOIs). The original landing page contained theAOIs “left-
side navigation,” “top navigation,” and “teaser,” the variants 1 and 2 an additional
AOI “central navigation.” Table1 reflects interesting performance measures of the
three versions: “mean time to fixation (in seconds),” “mean number of fixations,”
“mean fixation duration (in seconds),” and “mean fixation duration per fixation (in
seconds).”

Table1 supports the findings from Figs. 2 and 3 but now additionally gives the
results for variant 1. As expected, variant 2 outperforms variant 1 w.r.t. the important
performance measures: mean time to fixation of the navigation menu and mean
fixation duration of the central navigation (as a measure for fast orientation on the
landing page). The original landing page even has a higher mean time to fixation of
the left-side navigation.
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Fig. 2 Eye-tracking results: heat map for the original landing page “fashion for women” (above)
and variant 2 with reduced teaser, additional central navigation menu, and a heroshot (below)
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Fig. 3 Eye-tracking results: heat map for the original landing page “fashion for men” (above) and
variant 2 with reduced teaser, additional central navigation menu, and a heroshot (below)



350 D. Baier and A. Rese

Table 1 Eye-tracking results: mean time to fixation, mean number of fixations, and mean fixation
durationw.r.t. different areas of interest on the originalwebsite (all, n=93)/variant 1 (n=32)/variant
2 (n=61)

Area of interest Mean time to
fixation (sec.)

Mean number of
fixations

Mean fixation
duration (sec.)

Mean fix. dur. per
fix. (sec.)

Left-side nav. 10.54/7.23/5.22 10.96/13.00/9.53 4.45/3.89/3.96 0.43/0.29/0.42

Central nav. –/6.01/2.44 –/18.37/25.85 –/5.77/8.92 –/0.30/0.35

Top nav. 10.23/11.82/9.62 4.99/4.08/2.55 1.19/1.00/0.51 0.23/0.23/0.21

Teaser 2.12/0.65/2.73 33.98/38.35/11.52 8.90/9.61/2.89 0.26/0.25/0.25

dur.=duration, fix.=fixation, nav.=navigation, sec.= in seconds

Table 2 TAM results: quality of measurement scales and construct values (1= strongly disagree,
…, 7= strongly agree) for variant 1 (n=32) and variant 2 (n=61)

Construct (no. of items) CA CR AVE Mean constr. val.
for variant 1 (std.)

Mean constr. val.
for variant 2 (std.)

Shopping relevance (3) 0.824 0.894 0.739 3.490(1.661) 4.880(1.549)***

Perceived ease of use (3) 0.945 0.964 0.900 4.146(1.776) 4.443(1.842)

Perceived usefulness (5) 0.949 0.961 0.830 3.463(1.610) 4.230(1.822)**

Usage intention (4) 0.895 0.926 0.759 3.164(1.372) 4.021(1.645)**

Usage behavior (2) 0.905 0.955 0.913 1.969(1.722) 3.623(2.396)***

CA: Cronbach’s α; CR: composite reliability; AVE: average variance extracted; constr.
val.=construct values, std.= standard deviation; ***: Differences are significant at p=0.01, **: at
p=0.05

When evaluating the filled out TAM questionnaires of the participants, as usual,
the validity of the constructs and of the TAMmodel has to be checked. Table2 reflects
the usual information on the quality of the measurement scales and construct values.
The five constructs were measured using two to five items, each on 7-point Likert
scales (1=strongly disagree,...,7=strongly agree):

• Shopping relevance via three items (“I noticed the navigation in the middle of the
screen.”, “The location of the navigation in the middle of the screen was striking.”,
“I am very satisfied with the quality of the navigation centered in the middle of
the screen.”),

• perceived ease of use via three items (“Graphical navigations in the middle of the
screen …make shopping easier.”, “…make shopping more enjoyable.”, “…help
me to better orientate.),

• perceived usefulness via five items (“Placing the navigation in the middle of
the screen facilitates orientation.”, “By placing the navigation in the middle
of the screen, I can shop more efficiently.”, “Displaying an additional navigation
in the middle of the screen makes shopping easier.”, “By displaying the naviga-
tion in the middle the shopping experience can be improved.”, “By displaying the
navigation in the middle of the screen, the web page is clearer.”),

• usage intention via four items (“I will use the navigation placed in the middle of
the screen more often in the future.”, “In the future I will regularly pay attention
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Fig. 4 TAM Results: estimated coefficients and variance explained for the structural model of
variant 1 (above) and variant 2 (below)

to navigations placed in the middle of the screen.”, “I will regard the navigation
in the middle as assistance.”, “I intend to use only centrally placed navigations.”),
and

• usage behavior via two items (“When shopping I was guided by the navigation
placed in the middle of the screen.”, “By using the navigation placed in the middle
of the screen I would also have bought something.”).

The validity measures (Cronbach’s α, composite reliability, and average variance
extracted) demonstrate overall good fit, as well as the estimated coefficients and
variance explained for as well as the expected path coefficients and the explained
variances of the structural model for variant 1 and variant 2 in Fig. 4. Moreover,
shopping relevance, perceived usability, usage intention, and usage behavior of vari-
ant 2 are significantly higher than that of variant 1 which supports the hypotheses
(with the exception of perceived ease of use) and gives again a strong support for the
integration of variant 2.

The additionally performed A/B test with the three versions distributed among the
target segment supports the findings. As a goal achievement, the filling of a shopping
basket in the online shop was defined. The conversion rate was defined as the number
of goal achievements divided through the number of visitors of the landing page. In
order to receive stable results, each landing page version went 30days live in the
German online shop. The comparison of the calculated conversion rates for the three
versions led to the following results: Concerning the “fashion for men” landing page,
it was found out that variant 1 decreased the conversion rate from 2.37% (original)
to 2.31% (variant 1), whereas variant 2 increased the conversion rate from 2.32%
(original) to 2.48% (version 2). The improvement was even higher concerning the
“fashion for women” landing page. Variant 1 increased the conversion rate from
2.56% (original) to 2.67% (version 1) and variant 2 from 2.35% (original) to 2.53%
(version 2). The testing and tuning of the variants were so successful that the online
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shop finally integrated variant 2 of both landing pages into the German online shop
and even passed the results to the French online shop where similar landing pages
were developed and integrated.

6 Conclusions and Outlook

To conclude: The proposed landing page modification leads to improved conversion
rates. Most of the hypotheses could be supported. Due to overall positive results, the
improvements were also communicated and integrated into online shops in neighbor
markets (France). Even more interesting is the fact that, in this paper, the complete
process from idea generation to integration in the online shop is discussed and proved
to be successful. As the navigation and page layout of the landing pages as well as
of the complete online shop with all elements need permanent improvement, the
availability of such a cost-effective filtering and tuning process is promising. Maybe
the next step for the authors could be to test the navigation improvements based on
Okada and Imaizumi [11]’s asymmetric MDS that were mentioned by the authors in
the introduction.

Acknowledgements The authorswant to thank thewhole teamat themarketing chair for supporting
this research, especially the former research assistant Dr. Eva Stüber and the cooperating partners
at the online retailer. Also they want to thank Prof. Dr. Akinori Okada for his everlasting support,
inspiration, and helpful suggestions in our research on asymmetric MDS and related methods and
tools.

References

1. Ash, T., Ginty, M., & Page, R. (2012). Landing page optimization: The definitive guide to
testing and tuning for conversions (2nd ed.). Wiley.

2. Baier, D., Rese, A., Nonenmacher, N., Treybig, S., & Bressem, B. (2019). Digital technologies
for ordering and delivering fashion: How BAUR integrates the customer’s point of view. In
Digitalization cases (pp. 59–77). Springer.

3. Baier, D., Rese, A., & Röglinger, M. (2018). Conversational user interfaces for online shops? A
categorization of use cases. InProceedings of the 39th International Conference on Information
Systems (ICIS). Association of Information Systems.

4. Baier, D., & Stüber, E. (2010). Acceptance of recommendations to buy in online retailing.
Journal of Retailing and Consumer Services, 17(3), 173–180.

5. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of infor-
mation technology. MIS Quarterly, 319–340.

6. Fehd, H. M., & Seiffert, A. E. (2010). Looking at the center of the targets helps multiple object
tracking. Journal of Vision, 10(4), 19.

7. Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior.
Englewood Cliffs, NJ: Prentice-Hall.

8. Gofman, A., Moskowitz, H. R., & Mets, T. (2009). Integrating science into web design:
Consumer-driven web site optimization. Journal of Consumer Marketing, 26(4), 286–298.



Increasing Conversion Rates Through Eye Tracking … 353

9. Kim, J. B., Albuquerque, P., & Bronnenberg, B. J. (2011). Mapping online consumer search.
Journal of Marketing Research, 48(1), 13–27.

10. Meißner, M., Musalem, A., & Huber, J. (2016). Eye tracking reveals processes that enable
conjoint choices to become increasingly efficient with practice. Journal ofMarketing Research,
53(1), 1–17.

11. Okada, A., & Imaizumi, T. (1997). Asymmetric multidimensional scaling of two-mode three-
way proximities. Journal of Classification, 14(2), 195–224.

12. Pavlou, P. (2001). Integrating trust in electronic commerce with the technology acceptance
model: Model development and validation. In Amcis 2001 Proceedings (pp. 816–822).

13. Rese, A., Baier, D., Geyer-Schulz, A., & Schreiber, S. (2017). How augmented reality apps
are accepted by consumers: A comparative analysis using scales and opinions. Technological
Forecasting and Social Change, 124, 306–319.

14. Rese, A., Schreiber, S., & Baier, D. (2014). Technology acceptance modeling of augmented
reality at the point of sale: Can surveys be replaced by an analysis of online reviews? Journal
of Retailing and Consumer Services, 21(5), 869–876.

15. Ringel, D. M., & Skiera, B. (2016). Visualizing asymmetric competition among more than
1,000 products using big search data.Marketing Science, 35(3), 511–534.

16. Schreiber, S., & Baier, D. (2015). Multivariate landing page optimization using hierarchical
bayes choice-based conjoint. In Data science, learning by latent structures, and knowledge
discovery (pp. 465–474). Springer.

17. Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing
position independently of motor biases and image feature distributions. Journal of Vision,
7(14), 4.

18. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance
model: Four longitudinal field studies. Management Science, 46(2), 186–204.

19. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of infor-
mation technology: Toward a unified view. MIS Quarterly, 425–478.

20. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information
technology: Extending the unified theory of acceptance and use of technology.MIS Quarterly,
36(1), 157–178.



Descriptive Analyses of Interrater
Agreement for Ordinal Rating Scales

Giuseppe Bove and Alessio Serafini

Abstract A measure of interrater absolute agreement for ordinal rating scales that
have advantages respect to intraclass correlation coefficients and other largely used
measures is presented. Besides, some descriptive methods for analysing the depen-
dence of the level of agreement by raters and targets are considered. In particular,
biplot diagrams are proposed to detect differences in ratings the targets obtained by
different raters, and multidimensional unfolding is suggested to display dependence
of interrater agreement levels by targets. Finally, results of an application to data con-
cerning the assessment of language proficiency are provided to highlight capabilities
of the proposed procedures.

1 Introduction

Agreement among raters is relevant in many fields of application. For instance, in
language studies the agreement of a group of raters who assess on a new rating scale
(e.g. Likert scale) the language proficiency of a corpus of argumentative (written or
oral) texts is analysed to test reliability of the scale. In medicine, agreement between
diagnoses provided by more than one doctor (rater) is considered for identifying
the best treatment for the patient. Similar situations can be found in organizational,
educational, biomedical, social and behavioural research areas, where raters can be
counsellors, teachers, clinicians, evaluators or consumers and targets can be orga-
nization members, students, patients, subjects or objects. A common feature of all
these studies is that several ‘raters’ (or ‘judges’) evaluate a group of ‘targets’. When
each rater evaluates each target, the raters provide comparable categorizations of the
targets. The extent to which the categorizations of raters coincide, the rating scale
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can be used with confidence without worrying about which raters produced those
categorizations. So the main interest here is in analysing the extent that raters assign
the same (or very similar) values on the rating scale (interrater absolute agreement),
that is to establish to what extent raters’ evaluations are close to an equality relation
(e.g. in the case of only two raters, if the two sets of ratings are represented by x
and y, the relation of interest is x = y). Several approaches to the statistical anal-
ysis of rater agreement are available (see, e.g. von Eye & Mun [20]). We focalize
on the computation of coefficients that allow to summarize agreement in a single
score. Cohen’s Kappa (and extensions to take into account three or more raters, e.g.
von Eye & Mun [20]) and intraclass correlations (Shrout & Fleiss [19]; McGraw &
Wong [16]) seem appropriate for the analysis of absolute agreement in the case of
nominal and numerical ratings, respectively. Some authors (e.g. LeBreton, Burgess,
Kaiser, Atchley, & James [13]) have shown that the two indices are affected by the
restriction of variance problem that consists in an attenuation of estimates of rating
similarity caused by an artefact reduction of the between-targets variance in ratings.
For instance, this happens in language studies when the same task is defined for
native (L1) and non-native (L2) writers, and the analysis compares raters agreement
in the two groups separately. Even in the presence of very good absolute agree-
ment, Cohen’s Kappa coefficient and intraclass correlations can assume low values,
especially for L1 group, because the range of ratings provided by the raters is concen-
trated in one or two very high levels of the scale (a range restriction that determines a
between-writers variance restriction). Measures like those proposed in LeBreton and
Senter [14] overcome the restriction of variance problem because they measure the
within-target variance of ratings (i.e. the between-raters variance) separately for each
target and summarize the results in a final average index (usually normalized in the
interval 0–1). In this approach, the influence of the low level of the between-targets
variance is removed by the separate analysis of the ratings of each target. This group
of measures reviewed in LeBreton and Senter [14] is defined only for interval data,
and in some particular situations can assume negative values. Therefore, there is a
lack of proposals for measures to deal with ratings at an ordinal scale level. For this
reason, Bove, Nuzzo, and Serafini [3] and Bove, Conti, and Marella [4] proposed a
new procedure to measure absolute agreement for ordinal rating scales, capitalizing
on the dispersion index proposed by Leti [15] for ordinal variables.

When the interrater agreement is low, it is important to evaluate differences
between raters and dependence of the level of agreement by targets features. Besides,
rating scales frequently comprise subscales corresponding to different dimensions
of the general construct measured, and interrater agreement can depend on the type
of subscale considered. Moreover, when the rating scales assess some kind of profi-
ciency (e.g. in language studies), they can be applied in different types of tasks, and
agreement can depend on the characteristics of the task. In the following, it is shown
how descriptive analyses of some of these kinds of dependencies can be performed
bymultivariate techniques like biplot (e.g. Gabriel [7]; Greenacre [9]; Gower, Lubbe,
& Le Roux [8]) and multidimensional unfolding (e.g. Borg & Groenen [1]).

The paper is organized as follows. In Sect. 2, the measure of interrater absolute
agreement for ordinal ratings proposed in Bove et al. [3] and its main properties
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are presented. In Sect. 3, the bilinear model and the corresponding biplot diagram
are proposed to perform analyses of differences in ratings the targets can obtain by
different raters. In Sect. 4, the unfolding model is suggested as a tool for analysing
by distances the dependence of the level of interrater agreement by targets. In Sect. 5,
some results of a study on the assessment of language proficiency conducted at Roma
Tre University in 2017 are provided to highlight the capabilities of the proposed
procedures. Finally, Sect. 6 contains some remarks and tentative conclusions.

2 A Measure of Interrater Absolute Agreement for Ordinal
Rating Scales

A data matrix X = (xi j ) with each row corresponding to a target and each column
to a rater is observed, the entry xi j is the rating given by rater j to target i (i =
1, 2, . . . , nT ; j = 1, 2, . . . , nR) on a K-point ordinal scale. According to Bove et al.
[3], each row (target) of matrix X defines an ordinal categorical variable (the nR

ratings) whose dispersion can be measured by the index proposed in Leti [15], given
by

D = 2
K−1∑

k=1

Fk(1−Fk) (1)

where K is the number of categories of the variable and Fk is the cumulative pro-
portion associated to category k, for k = 1, . . . , K . Index in (1) is non-negative and
it is easy to prove that D = 0 if and only if all the observed categories are equal
(absence of dispersion). The maximum value of the index (Dmax ) is obtained when
all ratings are concentrated in the two extreme categories of the variable (maximum
dispersion), and it is,

Dmax = K − 1

2
for nR even,

Dmax = K − 1

2

(
1 − 1

n2R

)
for nR odd.

For nR moderately large, the maximum of the index can be assumed equal to
(K-1)/2. It is interesting to notice that D has properties of within and between dis-
persion decomposition analogous to the well-known variance decomposition (Grilli
& Rampichini [11]).

Bove et al. [3] proposed to measure interrater agreement by the average of the nT
normalized values of index D obtained for the rows of the matrix X,
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d = 1

nT

nT∑

i=1

Di

Dmax
(2)

with Di the value of index D for the i-th row of X. Index d is normalized in the
interval [0, 1], and first empirical studies have shown that values below threshold 0.1
represent high levels of interrater agreement, values greater than 0.1 and below 0.2
represent moderate-low levels of agreement, and values greater than 0.2 represent
disagreement. Bove et al. [4] explored sampling properties of d in order to construct
confidence intervals.

3 Descriptive Analysis of Dependence of Agreement by
Raters

Low levels of interrater absolute agreement suggest to perform analyses of the dif-
ferences in ratings the targets obtained by the different raters. One way is to compare
ratings in matrix X as values of numerical variables. Bilinear models (or inner prod-
uct models) allow to perform these comparisons in geometric spaces, because it is
possible to prove that any rectangular matrix may be represented choosing a vector
for each row and a vector for each column in such a way that the elements of the
matrix are the inner products of the vectors representing the corresponding rows and
columns. The bilinear model for ratings in matrix X can be defined by

xti j =
r∑

t=1

aitb jt + εi j (3)

where xti j is the value xi j opportunely transformed (e.g. mean centred or standard-
ized), ait (component score) and b jt (component loading) are the coordinates, respec-
tively, of row (target) i and column (rater) j on dimension t in an r-dimensional space
(r≤rank(X)) and εi j is a residual term. Parameters in model (3) can be estimated
by singular value decomposition (SVD). To make easier graphical interpretation,
rows and columns are usually represented in two dimensions (r =2). In order to ren-
der unique the bilinear decomposition of model (3), coordinates ait and b jt can be
normalized in different ways. In the symmetric biplot normalization, row and col-
umn coordinates are scaled by the square roots of the singular values on respective
dimensions. Each column (rater) is represented by a vector (arrow) that identifies a
direction (or axis) in the plane. Points representing rows (targets) can be projected
along that direction, and the product of the length of the column vector and the length
of the obtained projection approximates the values xti j in that column.

In order to simplify interpretation of diagrams, we can limit ourselves to com-
pare point projections along column vector directions, because these projections are
proportional (according to the vector length) to the corresponding values xti j in the
columns. The comparison of row point (targets) projections along the direction iden-
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tified by column vector (rater) j provides an approximation of the rank order of values
xti j (or xi j ) in column j.

When the global scale is composed of several subscales, it is alsoworth to compare
differences detected in correspondence to each subscale. After applying model (3) to
each subscale separately, the comparison can be performed by the resulting diagrams.

4 Descriptive Analysis of Dependence of Agreement by
Targets

The level of interrater agreement can depend on targetswhen raters tend to agreemore
on assigning rating to some groups of targets respect to other groups. When a global
scale is composed of several subscales, target’s dependence can change according to
the subscale considered. For the analysis of these aspects, a matrix � = (δis) can be
computed, in which each row corresponds to a target and each column corresponds
to a subscale, and the entry δis is the [0, 1] normalized value of index D defined
in (1) obtained for target i in the (nT × nR) matrix of ratings Xs corresponding to
the subscale s. Entries of matrix �, considered as dissimilarities between targets and
subscales, can be represented in a diagramobtained bymultidimensional unfolding to
help the analysis of the dependence of interrater agreement on targets and subscales.

The multidimensional unfolding model, originally proposed by Coombs [6] for
rectangular matrices of preference scores, is given by

δis =
√√√√

r∑

t=1

(ait − bst )
2 + εis (4)

with δis dissimilarity between row (target) i and column (subscale) s in matrix �;
ait and bst are the coordinates, respectively, of row i and column s on dimension t in
an r-dimensional space (r≤ rank(�)) and εis a residual term.We can consider model
(4) as the distance version of model (3), with distances replacing inner products. It is
worth to notice that the Euclidean distance model usually used in multidimensional
scaling (MDS) for square dissimilarity matrices (e.g. Borg & Groenen [1]) is a con-
strained version of model (4), because for each s it is required bst = ast . Iterative
algorithms, starting from initial estimates of a0i t , b

0
st (initial configuration), iteratively

decrease a least squares loss function moving vectors a0i = (
a0i1, a0i2, . . . , a

0
ir

)
and

b0s = (b0s1, b
0
s2, . . . , b

0
sr ), until convergence to a minimum value. An important point

is picking a good initial configuration, in order to avoid the problem of local min-
ima (that means the algorithm did not find the best possible choice for coordinate
matrices).Available programmes for unfolding allow to startwithmanydifferent con-
figurations, so it is possible to check the stability of the estimates obtained, repeating
their computations with different starting points.

For an easy visualization of dissimilarities, approximations in a planar display
(r =2) are usually computed. So, the distance between the point representing i-th
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row (e.g. target) and the point representing s-th column (e.g. subscale) approximates
the corresponding dissimilarity δis (e.g. interrater agreement for target i respect to
subscale s). Hence, when model (4) is applied to a matrix of interrater agreement
indices �, targets tend to be positioned far from a subscale if they obtained rat-
ings with low levels of interrater agreement. On the contrary, targets are positioned
close to a subscale if they obtained ratings with high levels of interrater agreement.
Presence of clusters of targets located far from each other in the diagram indicates
a possible dependence of interrater agreement by some target features. Subscales
located far from each other present different patterns of interrater agreement. Notice
that distances within each of the two sets of the row points and the column points are
only implicitly defined and do not have corresponding observed entries in matrix �.
The unfolding model has also been proposed for the analysis of asymmetric pairwise
relationships in several fields of application (e.g. Bove & Okada [2]).

5 Application

Some descriptive analyses of interrater agreement are provided applying models
(3) and (4) to data obtained in a research concerning the assessment of language
proficiency, conducted at the Roma Tre University in 2017 (for details, see Nuzzo
& Bove [17]). The main aim of the study was to investigate the applicability of a
six-point Likert scale developed by Kuiken and Vedder [12] to texts produced by
native and non-native writers, and to three different task types (narrative, instruction
and decision-making tasks). The scale comprises four subscales, corresponding to
the four dimensions of functional adequacy identified by the authors of the scale:
content, task requirements, comprehensibility, coherence and cohesion (the reader
is referred to Kuiken and Vedder 2017 for a detailed presentation of subscales and
descriptors). Just to give a general idea of the scale, definitions of levels 1 and 6 for
the content subscale are reported:

Level 1: ‘The number of ideas is not at all adequate and insufficient and the ideas
are unrelated to each other’.
Level 6: ‘The number of ideas is extremely adequate and they are very consistent to
each other’.

Twenty native speakers of Italian (L1) and twenty non-native speakers of Italian
(L2) participated in the study as writers. The 20 native speakers were students of
Foreign languages at Roma Tre University. The non-native speakers were 15 for-
eign students attending a course of history of Italian language at the University of
Amsterdam and 5 foreign students of foreign languages at Roma Tre University. All
the texts produced by L1 and L2 writers (120 texts in total for the three tasks) were
assessed by 7 native speakers of Italian on the Kuiken and Vedder’s six-point Likert
scale. The raters were female university students of approximately the same age as
the writers involved in the study, attending the same faculty (MA level).
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Table 1 Values of the d index according to subscales and tasks

Tasks

Subscale Task 1 Task 2 Task 3

N d N d N d

Content 40 0.36 40 0.34 40 0.36

Task requirements 40 0.33 40 0.31 40 0.34

Comprehensibility 40 0.22 40 0.19 40 0.21

Coherence cohesion 40 0.35 40 0.36 40 0.33

In Table 1, the values of the index d are provided for each subscale in each of the
three tasks (task 1—narrative, task 2—instruction, task 3—decision-making). All
the subscales show low levels of interrater agreement, with the only exception of
the comprehensibility subscale in the second task (instruction task). Hence, model
(3) can be considered for analysing differences in rater evaluations in each subscale.
The content subscale in the narrative task is considered as an example to show the
type of analyses that can be performed.

An R (R Core Team [18]) programme was written to obtain component scores
and component loadings of model (3). Figure1 shows the diagram obtained approx-
imating data in r =2 dimensions. The variance accounted for (VAF) by this solution
is 75.5% of the total variance in the data matrix. As it was explained in Sect. 3, in
the diagram, each writer is represented by a point and each rater is represented by a
vector. Ratings xi j are standardized for each rater, and coordinates of the projections
of each writer on a rater vector provide the position of the ratings of the writers
respect to the mean rating of the rater (that coincides with the origin in the diagram).
Positive direction is identified by the arrow at the end of each vector, negative coordi-
nates correspond to ratings less than the mean rating of the rater, positive coordinates
correspond to ratings greater than the mean rating.

Besides, positions of projections along the axis generated by a rater vector provide
an approximation of the rank order of the ratings that writers obtained by that rater.
The approximation will be the more reliable the higher the value of VAF. The value
75.5% obtained for the VAF allows us to be quite confident in the analysis of the
biplot diagram depicted in Fig. 1 (some rank order could be not exactly represented
however).

To interpret the diagram in Fig. 1, we can consider, for instance, positions of
writers labelled 40 and 32 respect to rater vector labelled R5. Projection of writer 32
on the axis generated by rater vector R5 falls far from the origin on the left side of
the axis, and so represents one of the lowest rating of rater 5. Projection of writer 40
falls quite far on the right side of the same axis and so represent one of the highest
ratings. Then, writer 40 is judged better than writer 32 by rater 5 respect to the
subscale content in the narrative task, which means the text produced by writer 40 in
the narrative task is considered by rater 5 more adequate and consistent than the text
produced by writer 32. Rater 3 instead assigns the same rating to texts of writers 40
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Fig. 1 Biplot of writers and raters for content subscale in the narrative task

and 32, so projections of writers 40 and 32 on the axis generated by rater vector R3
have coordinates very similar.

Overall, projections ofwriter 32 on the axes generated by the rater vectors have low
coordinate values that indicate low ratings on the subscales. The opposite happens,
for instance, for writer 18, with all projections having positive values, which means
she is judged always better than the average of the writers group and better thanmany
other writers.

Hence, the positions of vectors shown in Fig. 1 can be compared to analyse depen-
dence of agreement by raters. Vectors labelled R2 and R4 are almost collinear, which
means very similar ratings are provided by rater 2 and rater 4 for the writers on the
content subscale (and so very high level of interrater agreement). This is not the case
for rater 3 and rater 5 which, in many cases, provide different ratings for the same
writers, as it was shown for writers 40 and 32, and provide different rank orders for
the whole group of writers.

Diagram for subscale comprehensibility in the narrative task is provided in Fig. 2.
VAF for this resultwas 83.4%. FromTable 1,we can observe that interrater agreement
is higher for this subscale (d =0.22) than in the content subscale (d =0.36), and this is
reflected in the size of the angle determined by rater vectors in the extreme positions.
In fact, the angle between R3 and R5 in Fig. 1 is a bit larger than the angle between R2
and R5 in Fig. 2. Besides, if we look for collinearity between vectors (remember that
perfect interrater agreement means collinearity and same length of corresponding
vectors), we find only vectors R2 and R4 almost collinear in Fig. 1, but we find two
pairs of almost collinear vectors in Fig. 2 (R5–R6 and R3–R7).

For the analysis of the dependence of the level of interrater agreement on writers,
for each task model (4) was applied to the dissimilarity matrix � of normalized
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Fig. 2 Biplot of writers and raters for the comprehensibility subscale in the narrative task

value of index D defined in (1). The diagram obtained with PREFSCAL programme
available in IBM-SPSS (see Busing, Groenen, & Heiser [5]; IBM Corp. Released
[10]) is shown in Fig. 3, where numbers represent writers and letters represent the
subscales (Stress-I=0.16). Markers for each writer represent native (L1) or non-
native (L2) category for the language variable. According to the unfolding model
properties, thewriters tend to be closer to the subscale forwhich they have higher level
of interrater agreement in the task. For instance, writer 4 is close to comprehensibility
subscale (COM) for which the normalized value of index D is zero (all the raters
provide the same ratings to writer 4 on this subscale). On the contrary, writer 4 is
positioned far from subscale coherence and cohesion (COE) because the normalized
value of index D is high (0.37).

Comparing distances of writers from subscales content (CON), comprehensibility
(COM) and task requirements (REQ), markers of native speakers of Italian (circles)
result closer than markers of non-native speakers of Italian (squares). The contrary
happens for the coherence and cohesion subscale (COE). This seems to indicate a
certain dependence of agreement by writers language in the narrative task. Hence, a
comparison of the level of dispersion of ratings of native and non-native speakers of
Italian revealed that the scale was not very effective to differentiate proficiency levels
among native speakers, especially for the comprehensibility subscale forwhich raters
used only the higher two or three levels of the rating.
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Fig. 3 Unfolding of the dissimilarity matrix of d indices for the narrative task

6 Conclusions

In this study, a measure of interrater absolute agreement for ordinal rating scales
was presented capitalizing on the dispersion index for ordinal variables proposed
by Leti [15]. The measure is not affected by the restriction of variance problem like
intraclass correlation coefficients and other measures widely used. It was shown how
descriptive analyses performed bymultivariate techniques based on bilinear andmul-
tidimensional unfolding models can help to suggest possible explanations for low
levels of interrater agreement found in the application. An application to data con-
cerning the assessment of language proficiency allowed to highlight the capabilities
of the proposed procedures. The biplot diagrams showed differences between raters
respect to the subscales, and the dependence of the level of interrater agreement by
the mother language of the writers was detected in the unfolding diagram. The level
of interrater agreement was lower for non-native speakers than for native speakers
in three subscales. The higher level of interrater agreement for native speakers was
obtained with the comprehensibility subscale. For this subscale, the analysis of the
dispersion of ratings showed that the scale was not effective to differentiate profi-
ciency levels among native speakers because ratings were concentrated only on the
higher levels of the scale. This result suggests that in order to gain a more balanced
picture of the language proficiency, further investigations should take into account
texts that are likely to be distributed along the whole scale for native speakers.
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The Globality of Brands—A Question
of Methods?

Michael Löffler and Reinhold Decker

Abstract To develop a successful global brand strategy, a profound understand-
ing of consumers’ perceptions about the brand in the main markets or countries
is needed. Measuring the image of global brands includes at least two challenges.
First, the market researcher has to select an appropriate method, knowing that differ-
ent methods may yield different outcomes. Second, measuring the image of global
brands differs categorically from measuring the image of local ones, as the global
perspective requires measuring the brand image in diverse markets that may dif-
fer according to various cultural and socioeconomic characteristics. To meet these
challenges, this paper proposes a two-factor approach, including a combination of
the factors “method” and “country.” The data used for illustration purposes were
collected in three leading target countries using a multi-method approach, including
the free association method, the brand concept maps (BCM) method, and a user-
generated content (UGC) method. Multiple correspondence analysis (MCA) shows
how the two-factor approach enables the uncovering of method and country effects
and how the suggested procedure leads to a holistic picture of the global brand image.

Keywords Brand associations · Brand image measurement · Correspondence
analysis · Global brands ·Multi-method approach

1 Introduction

In an increasingly dynamicworld economy,many companies engage in global brand-
ing in order to reach new customers and, thereby, increase sales, profits, and mar-
ket shares (Keegan & Green [31]). Especially in the automotive sector, nearly all
premium brands, such as Audi, BMW, Jaguar, Lexus, and Porsche, act globally.
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Furthermore, competition among companies on a global scale has become increas-
ingly intense with the growing pace of globalization (Chabowski & Mena [6]). In
this highly competitive landscape, an understanding of consumers’ thoughts and
feelings about brands of interest in different target markets is needed to develop a
successful strategy for building and managing a strong brand globally.

However, measuring brand image, in particular that of global brands, includes at
least two challenges. First, the market researcher has to select from various options
to measure brand image. In their extensive review of brand image measurement
methods, Plumeyer, Kottemann, Böger, and Decker [52] identified 12 methods that
were applied at least twice in prior studies and, beyond these, 18 additional methods.
Accordingly, the methods to measure brand images have to be selected carefully.
Second, measuring the image of global brands differs categorically from measuring
the image of local brands. The global perspective requires measuring the brand
image in diverse markets with different cultural and socioeconomic characteristics.
Although prior research has suggested that consumer constructs across countries
should be measured via methods that are not prone to country-dependent results
(e.g., Löffler [43]), it is still unclear how to identify the country effects of brand
perceptions.

To meet these challenges, this paper1 proposes a two-factor approach, including
a combination of the factors “method” and “country.” More precisely, our approach
comprises three well-established state-of-the-art methods for brand image measure-
ment, namely, the free association method (e.g., Batra & Homer [1]), the brand
concept maps (BCM) method (e.g., John, Loken, Kim, & Monga [30]), and a user-
generated content (UGC) method (e.g., Gensler, Völckner, Egger, Fischbach, &
Schoder [21]). In the present paper, we suggest a two-stage procedure, whereby the
data are collected using a multi-method approach applied to different countries (i.e.,
the data collection stage) and are then aggregated to yield a holistic representation of
the brand image (i.e., the data aggregation stage). This multi-method approach is in
line with most recent suggestions in addressing complex research questions: In their
paper about the meaning and the goals of data science, Emmert-Streib, Moutari, and
Dehmer [19] emphasize that “there is not just one method that allows answering a
complex, domain specific question,” but in particular “the consecutive application of
multiple methods allows achieving this.” By using multiple methods and countries,
this procedure can help to identify method and country effects of brand associations
and, thus, determine whether varying brand image outcomes actually result from
varying perceptions across countries.

In an empirical application, three measures were conducted in China, Germany,
and the United States with 2,764 carefully selected respondents in total, result-
ing in nine empirical studies that share similarities as well as differences. While
the methods share some core associations across countries, they complement each
other by revealing additional associations that do not occur in all studies. Multiple
correspondence analysis (MCA) is used in the second stage to show how the two-
factor approach: (a) enables the uncovering of method and country effects of brand

1The authors would like to thank Dr. Anja M. Plumeyer for her valuable and comprehensive con-
tribution to an earlier version of this paper.
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associations; and (b) offers a holistic picture of the global brand, if existent. Thus,
brand managers can direct their marketing efforts based on those associations that
are, more or less, equally important for all target countries as part of a standardization
strategy, and they can address country-specific associations if, for example, cultural
differences require specific adjustments. The visual representation enabled by MCA
allows marketers to identify important brand associations at a glance and to assess
associations according to their appearance in methods and countries.

The remainder of the paper is organized as follows: In Sect. 2, the research back-
ground is presented, followed by a description of the two-factor approach in Sect. 3.
Then, in Sect. 4, the usefulness of the suggested two-stage procedure is demonstrated
in an empirical application. Finally, Sect. 5 provides concluding remarks and possible
directions for future research.

2 Research Background on Brand Image Measures

Keller [32] defined “brand image” as consisting of consumers’ perceptions about
a brand, reflected by brand associations. As such, brand image is a key element of
customer-based brand equity, and it is composed of specific types and dimensions
of brand associations (in particular, favorability, strength, and uniqueness). Prior
research features various methods for measuring brand image. For example, among
others, Likert scales (e.g., Cretu & Brodie [9]), semantic differential scales (e.g.,
Hosany, Ekinci, & Uysal [26]), focus groups (e.g., Bian & Moutinho [3]), in-depth
interviews (e.g., Thompson, Rindfleisch, & Arsel [59]), and projective techniques
(e.g., Hogg, Cox, & Keeling [24]) have been used in studies measuring brand image
(see Plumeyer et al. [52], for a recent overview).

Although in the last decades, many studies have investigated global brands, only
some, such as Roth [54–56], Hsieh [27], Hsieh, Pan, and Setiono [28], and Park
and Rabolt [51], have examined global brand images (see Table1 for an overview).
However, none of these studies focused on measuring brand images across countries
but, instead, investigated the interplay of brand image and other variables. Moreover,
they dealt with an aggregated form of brand image that was abstracted and usually
limited to two or three dimensions. This might be highly suitable for experimental
designs, but it does not fully reflect Keller’s [32] conceptualization of brand image as
brand associations that consumers have in mind. In contrast to the abovementioned
studies, this paper focuses on brand image measurement in the global context by
proposing a two-factor approach to capture the global brand image in a more holistic
way.

To empirically compare the outcomes of brand imagemeasurementmethods, prior
research has predominantly focused on the stability of brand associations. Table2
provides a synoptic overview of corresponding research activities. In contrast to
these previous studies, the current study indirectly compares the free association,
the BCM method, and the UGC method by examining the method effects of brand
associations in a two-stage procedure. The measures across countries do not rely on
the same set of brand associations, as this proceeding is less suitable for depicting
countries’ distinctive perceptions.
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Table 1 Overview of studies to investigate global brand image

Objective Brand image
measurement

Aggregation of brand
associations

Direct country
comparison

Roth [55] investigated
the influence of brand
image strategies on
market shares in 10
countries and studied
moderating effects on
brand image strategy
performance

Rating of brand image
strategies (functional,
social, sensory); no
measurement of brand
associations

Aggregated
perspective

No

Hsieh [27]
investigated, among
other topics, whether
the pattern of brand
image dimensionality
is similar across global
markets (in 20
countries)

Focus groups
identified 14 brand
associations to be
evaluated

Brand associations
were aggregated into
three dimensions
(utilitarian, symbolic,
sensory)

No

Hsieh et al. [28]
investigated the effects
of different
dimensions of brand
image on purchase
behavior across 20
countries

Focus groups
identified 17 brand
associations to be
evaluated via
dichotomous measures

Brand associations
were aggregated into
three dimensions
(utilitarian, symbolic,
sensory)

No

Park and Rabolt [51]
investigated cultural
and consumption
value as antecedents of
global brand image in
two countries

Semantic differential
scaling based on 24
brand associations

Two factors of brand
image (i.e., trendy,
refined) were extracted
after eliminating 11
associations

No

This paper proposes a
two-stage procedure to
measure global brand
image and to draw a
more holistic picture

Free association
method, BCM method,
and UGC method

Aggregation still
differentiated 57 brand
associations

Yes

Combining brand image measurement methods is not new (Plumeyer et al. [52]).
The use of multi-methods can frequently be observed with studies integrating Likert
scales and preceding methods for eliciting brand associations directly from con-
sumers, such as the free association method (e.g., Danes, Hess, Story, & Vorst [11];
Lange & Dahlén [38]), focus groups (e.g., Bian & Moutinho [2]; Power, Whelan,
& Davies [53]), and in-depth interviews (e.g., Cho, Fiore, & Russell [8]; Michel &
Rieunier [46]). Semantic differential scales have similarly been used in combina-
tion with the free association method (e.g., Batra & Homer [1]; Low & Lichtenstein
[44]). Scaling methods require predetermined brand associations, which makes the
integration of preceding and subsequent procedures a natural consequence of the
measurement task to be solved. However, to the best of the authors’ knowledge, no
study has previously combined brand image measurement methods as we do in the
following.
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Table 2 Overview of studies to compare brand image measures

Authors Methods compared Results Same set of brand
associations

Driesener and
Romaniuk [18]

Rating, ranking, and
free-choice measures

The three measures are
highly correlated, and
individuals utilize
them in a consistent
manner

Yes

Dolnicar and Rossiter
[16]

Free-choice measures
held one week apart

Low stability is partly
caused by the
prevailing methods
used in market
research, which can
often lead consumers
to construct temporary
associations

Yes

Koll, von Wallpach,
and Kreuzer [36]

Free association,
storytelling, and
collages

Each method is
suitable for tapping
and reproducing
different aspects of
brand knowledge

No

Dolnicar, Rossiter, and
Grun [17]

Free-choice,
forced-choice binary
measures, semantic
differential scales

The forced-choice
measure is found to
outperform the
free-choice measure
and the semantic
differential scale
measure due to its
higher stability

Yes

This paper Free association, BCM
method, and UGC
method conducted in
three countries

Indirect comparison
by detecting the
method and country
dependence of brand
associations using
MCA

No (in total, a set of 57
brand associations was
considered)

3 Two-Factor Approach to Capture Global Brand Images

3.1 Overview

In the following, we suggest a two-factor approach to capture a holistic picture of the
global brand image. The first factor is the method used to measure the brand image,
and the second factor is the country in which the measurements are conducted. To
adequately account for the global perspective of brand image, it is essential tomeasure
brand image in the main target countries. Accordingly, this two-factor approach is
embedded in a two-stage procedure: In the data collection stage, multiple methods
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are used in different countries to collect a set of brand associations as complete
as possible. In the subsequent data aggregation stage, the collected data are then
aggregated bymeans ofMCA to obtain a visual representation that reveals themethod
and country effects of brand associations.

3.2 Identification of Brand Image Measurement Methods

Brand image measurement methods can be classified, among others, according to
data origin and association origin (Gensler et al. [21]). In this regard, both primary
data (e.g., survey data) and secondary data (e.g., UGC) can be used to measure brand
image. Especially when methods differ in the origin of their associations, they are
likely to yield complementary outcomes in terms of whether and how often a certain
association ismentioned. Themethods focused on in this paperwere selected because
they cover a wide range of different aspects of brand image measurement.

The free association method is frequently used to measure brand image as it is
“extremely powerful and provides insights beyond survey responses” (Danes et al.
[11, p. 290]). Respondents are presented a stimulus (e.g., a brand name) and asked to
nameorwrite downeverything that spontaneously comes tomind regarding it (Boivin
[5]). Thus, the free association method has a remarkable tradition in research and
applications (Levy [40]; Stern, Zinkhan, & Jajau [57]) and is a simple and straight-
forward method for eliciting consumers’ easily accessible verbalized associations
with brands.

John et al. [30] introduced the BCM method as a powerful tool for measuring
brand images by identifying meaningful brand associations and revealing the under-
lying associative network structure. In general, the BCM method contains three
subsequent steps: elicitation, mapping, and aggregation. First, a pre-test or previ-
ous research results are used to identify a list of salient brand associations. Then,
respondents are requested to design individual brand maps for the brand of interest,
using the predetermined brand associations. Finally, the individual brand maps can
be aggregated into a so-called consensus map based on a set of standardized rules.
The resulting consensus map shows which of the brand associations, on average,
are the most salient ones. In the last decade, the BCM method has proven useful for
measuring the images of different types of brands (see, e.g., French & Smith [20];
Kottemann, Plumeyer, & Decker [37]; Zenker & Beckmann [63]).

The increasing use of social media platforms has led to an enormous amount
of content being shared every day (Chaffey [7]). By doing so, consumers are pro-
viding a new source of data that is easily accessible in real time and potentially
relevant for measuring brand images. Brand-related UGC offers insights into what
consumers think and feel about brands and provides the opportunity to “track the
hearts and minds of [...] consumers” (Swaminathan [58, p. 37]). Up to now, several
studies have concentrated on extracting brand associations from different types of
UGC, including product reviews (Decker & Trusov [12]; Gensler et al. [21]; Lee &
Bradlow [39]; Tirunillai & Tellis [60]), consumer messages from forums (Netzer,
Feldman, Goldenberg, & Fresko [50]), social tags (Nam & Kannan [47]; Nam,
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Table 3 Profile of brand image measurement methods

Free association BCM UGC

Data origin Survey data Survey data Web posts

Associations Free Predetermined Extracted

Standardization Low High(er) No

Joshi, & Kannan [48]), social connections on Twitter (Culotta & Cutle [10]), tweets
(Liu, Burns, & Hou [42]), and Instagram posts (Klostermann, Plumeyer, Böger, &
Decker [35]). The de facto availability of UGC-based brand information at any time
enables the dynamic creation of brand images, which, in turn, enables continuous
brand monitorings.

Since the three methods differ regarding their degree of standardization (“no stan-
dardization” with the UGC method, “low standardization” with the free association
method, and “high(er) standardization” with the BCM method), they are likely to
reveal outcomes that are potentially complementary. Table3 summarizes the profile
of the three methods selected in this paper.

3.3 Identification of Target Countries

While we propose three particular methods to be integrated into our two-factor
approach, we cannot generally propose a particular set of countries, since the coun-
tries to be considered should be selected depending on the brand. Especially for target
countries that differ according to important consumer characteristics, such as cultural
dimensions (see, e.g., De Mooij & Hofstede [14]), an integrative consideration may
yield interesting results.

4 Empirical Application

4.1 Stimulus and Country Selection

For this study, automobiles were selected as the research object for several reasons.
Automobiles are highly engineered and sophisticated products, and they provide
an emotional connection with image and fashion and offer experiential satisfaction
(Lienert [41]). Furthermore, they require large expenditures by both agents, the cus-
tomer and the company (Kirmani & Zeithaml [33]). In this risky environment, which
usually involves extensive decision-making, understanding the brand image is impor-
tant for automotive marketers, as it is a decisive purchasing factor for automobiles
(De Mooij [13]). Moreover, automobiles have frequently been used as examples of
high-involvement products in empirical studies, especially in cross-cultural studies
(e.g., Löffler [43]). The premium brand Porsche was selected because it is glob-
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ally well known (Interbrand [29]) and implements standardized marketing strategies
across the global market. Focusing on a specific segment within the automotive sec-
tor follows the recommendation of Verhoef, Langerak, and Donkers [62], which
is to consider the distinctness of different brand tiers (i.e., economy, volume, and
premium brands). Geographically, Asia, North America, and Western Europe are
the world’s largest car markets. Within these areas, China, the United States, and
Germany account for the highest numbers of car sales. Furthermore, according to
Ueltschy, Laroche, Eggert, and Bindl [61], the cultural diversity of these countries
allows for insightful cross-cultural research.

4.2 Respondents

Sampling has proven to be a serious challenge for conducting fieldwork, but it can
lead to results that are more reliable (Hooghe, Stolle, Mahéo, & Vissers [25]). This
is particularly true regarding premium brands in durable goods markets, such as the
automotive market. To face this challenge, the respondents taking part in both the
free association and the BCM methods were carefully recruited and were required
to pass a comprehensive pre-study screening. Qualifying criteria included, among
others, the ownership of a premium automobile brand to ensure respondents’ first-
hand experience. This is important, as prior research has shown that brand ownership
can have an effect on brand evaluations (e.g., Kirmani, Sood, & Bridges [34]). Con-
sequently, our empirical application relies on real premium car drivers instead of
convenience samples. For the UGC method, such a criterion could not be examined,
as typically no data exist concerning the characteristics of the authors of product
reviews and chat posts. However, as reviews document real product experiences, it
was assumed that their authors were either owners or had at least extensively tested
a Porsche automobile.

4.3 Data Collection

According to our two-factor approach, a series of empirical studies was conducted
using the three methods in three countries to capture the global brand image. Each
method was carried out in China, Germany, and the United States, generating a 3
(free association method, BCMmethod, UGCmethod) x 3 (China, Germany, United
States) design.

For the free association method, the data were collected through an online ques-
tionnaire. Respondents were asked to write down everything that came to mind when
they thought about the Porsche brand.

The BCMmethod was implemented as described by John et al. [30], but an online
application was used, since Meißner, Kottemann, Decker, and Scholz [45] recently
emphasized the potential benefits of computer-based brand concept mapping. To
identify predetermined brand associations for the mapping phase of the method,
initial pre-tests were performed that included 1,642 respondents in the three countries
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from the same population that took part in the main study. From this pre-test, the top
25 brand associations for each country were selected.

For the UGCmethod, online platforms for sporty automobiles were examined that
enabled comparisons between China, Germany, and theUnited States. Consequently,
product reviews were collected from three online platforms in China, Germany, and
theUnited States. A teamof three independent researchers examined the unstructured
reviews and extracted the main brand associations that appeared within them. In
contrast to the free association and the BCM methods, the data collected via the
UGC method did not offer precise information on respondents’ countries of origin.
Therefore, it is assumed that the language spoken in the product reviews reflected
the country of origin.

4.4 Descriptive Results

For the free associationmethod, a final sample ofN=1,871 respondentswas achieved
(NCN = 587; NGER = 669; NUS = 615). The BCMmethod had a final sample of 156
respondents (NCN = 43; NGER = 47; NUS = 66), and for the UGC method, a final
sample of 737 respondents was achieved (NCN = 498; NGER = 93; NUS = 146). To
gain an overview of the outcomes of the three methods, Table4 depicts the top 10
frequencies of brand associations mentioned for each method and each country.

Table4 shows that isolated considerations across countries or across methods
may lead to the conclusion that both country and method effects exist and, therewith,
that the identification of the global brand image lying behind is hardly possible.
However, at the same time, it also indicates that multiple methods are needed in
order to uncover the obviously multifaceted set of relevant associations. Therefore,
multiple correspondence analysis (MCA) (see, e.g., Nenadić & Greenacre [49] as
well as Blasius & Greenacre [4] for methodological details) is used in the following
to detect possible method and country effects. According to Di Franco [15, p. 1307],
MCA “possesses excellent descriptive powers, since it allows one to examine the
simultaneous interaction of many variables by exploring their direct links,” taking
advantage of the fact that (p. 1305) “the distance between two or more categories of
different variables can be interpreted in terms of the associations existing between
them.”

4.5 Brand Image Representation Using MCA

Altogether, 57 brand associations, including all brand associations that made up the
top 25 brand associations for the nine studies, are considered. The top 25 are chosen
in order to depict a comprehensive image of the brand associations and because the
BCM method, in line with common practice, comprised 25 predetermined brand
associations.
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Table 4 Top 10 brand associations
Free association BCM UGC

Association Ratio of mention Association Ratio of mention Association Ratio of mention

China :

Classy/noble 0.36 Sports car 0.77 Design 0.38

Luxurious 0.25 911 0.67 Handling 0.28

Fashionable driver 0.18 High-priced 0.63 Convenience 0.27

Attractive design 0.17 Handling 0.63 Speedy 0.26

Sports car 0.16 Sportiness 0.60 Powerful 0.21

Speedy 0.13 Status symbol 0.60 Space (narrow) 0.20

Superior/premium 0.11 Performance 0.56 Sports car 0.19

Cool 0.08 Speedy 0.53 Economic
efficiency

0.17

Good price-value 0.08 Made in
Germany

0.51 Desirable 0.17

Desirable 0.07 Quality 0.51 911 0.15

Germany :

Sporty 0.54 911 0.79 Mileage 0.51

Speedy 0.25 Sports car 0.70 Price 0.45

Design 0.20 Sportiness 0.68 Driving pleasure 0.32

Good price-value 0.20 High-priced 0.57 Performance 0.32

Quality 0.20 Prestige 0.53 Design 0.29

High-priced 0.19 Exclusiveness 0.53 Sound 0.28

Good brand image 0.13 Design 0.51 Processing 0.25

Brand tradition 0.11 Quality 0.51 Speedy 0.24

Exclusive 0.10 Good brand
image

0.49 Quality 0.23

Reliability 0.10 Driving pleasure 0.49 Pract. for every
day

0.18

United States :

Design 0.31 High-priced 0.82 Handling 0.35

Quality 0.31 Performance 0.76 Design 0.24

Sporty 0.30 Sports car 0.74 Speedy 0.21

Speedy 0.28 Design 0.71 Driving pleasure 0.21

High-priced 0.23 Sportiness 0.70 Performance 0.20

Reliable engine 0.23 Quality 0.68 Powerful 0.20

Good price-value 0.20 Made in
Germany

0.65 Price 0.18

Handling 0.17 Driving pleasure 0.65 Mileage 0.16

Reliability 0.13 Prestige 0.64 Love 0.16

Driving pleasure 0.11 Good brand
image

0.61 Quality 0.16
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4.5.1 Discussion of Results

Figure1 depicts the two-dimensional MCA solution for the methods, countries, and
brand associations (see, e.g., Hoffman & de Leeuw [23] for a comprehensive discus-
sion on the interpretation of MCA maps). Each brand association is coded accord-
ing to its presence and absence. MCA usually displays two label points for each
association–one point for presence and one for absence. Figure1, however, depicts
label points for only the presence of brand associations, as the label points reflecting
their absence accumulate around the origin and, thus, provide no meaningful infor-
mation. The results describe two-way associations rather than one-way causality by
positioning methods and countries relative to the associations and vice versa. The
first principal axis explains 66.3% of the principal inertia, and the second princi-
pal axis explains 15.5%, leading to an acceptable 81.8% in total. Of the remaining
principal axes, none explained more than 3.1%. These results indicate that a good
approximation of the data is achieved by the two-dimensional MCA solution. Ten-
dentially, the horizontal axis might be interpreted as reflecting method effects, and
the vertical axis seemingly reflects country effects. However, the correspondence of
methods and countries to the brand associations is more relevant.

Figure1 reveals that the three methods have a larger deviation around the origin
(indicated by the dashed line) than do the three countries (indicated by the solid
line), which are positioned closer to the origin. This indicates a stronger relationship
between methods and the mentioning of brand associations than between countries
and the mentioning of brand associations. Some associations accumulate around
the methods, indicating that these associations were exclusively mentioned in the
corresponding method.

As can be seen, the associations “Cayenne,” “European brand,” “high-priced,”
“made in Germany,” “Panamera,” and “Mission E” are placed close to the BCM
label point at the top left. These brand associations were exclusively named in the
BCM method. Associations predominantly mentioned in the UGC method (in par-
ticular, “classic,” “mileage,” “perfect,” “price,” “processing,” “sound,” “space,” and
“defect”) are grouped around the UGC label point. Additionally, associations are
spread among two or three methods to reflect in which methods the associations
were mentioned. For instance, associations predominantly mentioned in the BCM
and the UGC methods, such as “911,” “fascination,” “joy of living,” “performance,”
and “sportiness,” are positioned between the BCM and the UGC methods. The three
countries are portrayed closer to the origin, indicating that they do not discriminate
as clearly as the methods do. Spreading along the vertical axis, the second dimen-
sion of the MCA reflects the country in which an association was mentioned. The
countries Germany and the United States are arranged closely together, indicating
a higher number of associations named in both countries. The positioning of China
apart from Germany and the United States suggests that China has a smaller overlap
of brand associations with the other two countries. This is confirmed by the brand
image measures, where China received nine exclusively mentioned brand associa-
tions, while Germany and the United States each had three exclusively mentioned
brand associations. All in all, this deduction should not be overrated, since only the
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points lying away from the center of the map should be used as reference points for
in-depth interpretations (Greenacre [22]).

In a nutshell, the MCA representation allows for concluding that the country
effect can be neglected, with slight limitations with regard to China, whereas there
seems to be a remarkable method effect. Accordingly, the “Porsche” brand can be
rated as a global brand and, in turn, locality is not a real issue. The MCA shows
in relation to which associations the method effect seemingly proves effective, in
so far the convex hulls for the countries and the methods (i.e., the two triangles) in
the MCA representation can serve as a kind of indicator of a brand’s globality and
as an indicator of possible methodological effects. The larger the convex hulls, the
stronger the respective effect.

4.5.2 Practical Implications

The findings from an academic and rather methodological perspective summarized
in Sect. 4.5.1 have been discussed with an international team of senior marketing
executives of the automotive industry. The three markets together account for more
than two-thirds of the annual sales volume of the underlying brand. The brand is
consistently managed internationally following identical brand standards globally.
Consistently, the three countries are positioned closely together in Fig. 1.

Some brand attributes have been found to be strongly linked to the underlying
method. Most obvious is, for example, the mentioning of “Mission E” (the full-
electric Porsche vehicle, later named “Taycan” and presented to the public first in
September 2019) in the BCM setup only. From a practitioners’ perspective, the
finding underlines impressively the strong link between attribute selection and image
measurement in the BCM approach. Carefully checking the attributes presented to
the participants in advance again turns out to be necessary, and combining multiple
approaches was revealed to be beneficial and insightful.

The attributes proprietarily mentioned in the UGC setting and grouped closely
around the UGCmethod in Fig. 1 reflect the peculiarity of this method: the attributes
together form less of a holistic brand image, but according to the senior managers,
are more the outcome of specific usage, ownership, and driving situations. Among
them are typically vehicle servicing, repairs, or classic car maintenance. The UGC
method adds to the comprehensive understanding of the brand image but is less
recommended as a sole method for brand image measurement.

4.5.3 Validity and Reliability

To gain insights into the suitability of the three data collection methods, we investi-
gated two criteria as a follow-up analysis. On the one hand, we examined convergent
validity to examine the degree to which the different methods for measuring the
brand image construct provided consistent results. On the other hand, the robustness
of the results as measured via split-half resampling was analyzed. The results of
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Fig. 2 Validity and robustness of results

each sample were randomly split, and mean correlations between the halves for each
association were computed. Both convergent validity and the robustness of results
are measured via Cramer’s V.

Figure2 depicts the measures for the convergent validity and the robustness. Con-
cerning convergent validity, the brand images measured by the free association and
UGC methods have the lowest measure of Cramer’s V, taking the United States as
an example. Consequently, the results provided by these methods feature the least
differences (i.e., the most consistent results), reflecting an acceptable degree of con-
vergent validity. Brand imagesmeasured via the BCMandUGCmethods account for
the biggest differences in terms of shared associations in the United States. Overall,
the results indicate that the methods do not converge perfectly, which would render
the multi-method approach redundant. Instead, they reveal differences between the
methods that do not cast doubt on the validity of the individual measures but allow
enough room to maneuver for a multi-method approach. Therewith, the present
analyses confirm the impressions we already had from looking at Fig. 1 and the
embedded triangles.

Concerning the robustness of the results, the three methods overall reveal encour-
aging results as they are characterized by relatively high levels of robustness. Addi-
tionally, the robustness appears to be fairly stable across all methods, independent of
the country concerned. In sum, the analysis of additional criteria confirms the overall
suitability of the multi-method approach.

5 Conclusion and Outlook

This paper proposed a two-factor approach, including a combination of the
factors “method” and “country,” to study the image of global brands. Using a large-
scale empirical application, we demonstrated that only by combining complementary



The Globality of Brands—A Question of Methods? 381

methods in leading target countries a holistic picture of the global brand image, if
it exists at all, can be drawn. The empirical findings have been discussed with an
international team of marketing executives in the automotive industry and reveal that
by carrying out a multi-method approach, both method and country effects, which
are otherwise at risk of being overlooked, can be detected.

The first stage of our procedure (i.e., the data collection stage) requires the use of
multiple methods to measure the brand image in the target countries. Three of the
more current and frequently used brand image measurement methods—free asso-
ciation, BCM, and UGC—were used to capture Porsche’s brand image in China,
Germany, and the United States. In doing so, researchers and brand managers can
uncover both the breadth and depth of associations connected with the brand of inter-
est in different countries. It was shown that the use of complementary methods can
reveal insights that would not have been obtained if a single method had been used.

The empirical example demonstrated that the methods can share core associations
(i.e., associations that appear throughout all methods), but at the same time, further
associations can be bound to just onemethod or to a combination of twomethods. For
example, the BCM method is highly standardized and, therefore, primarily focuses
on a given set of brand associations. Thus, the BCMmethod ismore likely to focus on
strategic objectives defined, for example, by the brand management. In contrast, the
UGC method enables the extraction of associations that refer to the actual use of the
product. Moreover, measuring brand image in more than one country yields brand
associations that are important across the considered countries, but it also uncovers
associations that are predominant in one country. In sum, a high level of coverage
regarding significant brand associations can be achieved in this way.

In the second stage (i.e., the data aggregation stage), the visual representation
obtained by MCA enables the large variety of information from the nine studies
to be managed and, thus, offers a holistic picture of how consumers think and feel
about the brand. This holistic picture allows marketers to identify important brand
associations at a glance and to assess associations according to their appearance
in methods and countries. The empirical application showed that for the brand of
interest, Porsche, method effects clearly dominate country effects. In addition to
transnational core brand associations, market researchers can also identify desirable
or undesirable brand associations for specific countries based on the identified coun-
try effects. In the present example, the association “cool” was exclusively mentioned
in China (in the free association andUGCmethods). By detecting country-dependent
associations, the brand management can examine whether brand associations in par-
ticular countries go hand-in-hand with the intended positioning of the brand in the
corresponding country.

Of course, our study is not free of limitations that directly suggest avenues for
future research. As this paper solely demonstrated the usefulness of the two-stage
procedure for one well-known brand from the automotive sector, future research
should apply the procedure to other brands from this sector as well as to those from
different sectors. Interesting findings could also result by switching from durable
goods (like cars) to nondurable goods (such as soft drinks). Finally, the two-stage
procedure presented does not provide self-explanatory results. The MCA represen-



382 M. Löffler and R. Decker

tation always requires interpretation by persons who know both the target markets
and the methods. An interesting alternative to MCA is joint correspondence analysis
(JCA), that is, the joint analysis of the off-diagonal submatrices of the Burt matrix.
Greenacre [22] discussed practical implications of using JCA instead ofMCA, among
others, with respect to geometric interpretations.
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Willem J. Heiser, Frank M. T. A. Busing and Jacqueline J. Meulman

Abstract Network methodology typically has two separate stages: (1) constructing
a graph from relational data, and (2) drawing the graph on a map to comprehend its
structure. Multidimensional scaling (MDS) is discussed as a distance-driven graph
drawing method. It is shown that popular drawing methods in computer science that
minimize the potential energy of a spring model are equivalent to a simple form
of MDS without optimal transformation of the graphical distance. They share a
weighted least squares loss function (Kruskal’s stress). The best way to minimize
Stress (Guttman’s algorithm) is shown to be a particular force-directed updating
scheme in terms of a spring model. With several analyses of two examples (a simple
graph and an additive tree), it is shown that using shortest path distances in the graph
as input to MDS gives better drawing results than just using its adjacency matrix.
Inclusion of data weights in Stress to emphasize good fit of small distances turns out
not to be essential. It may even be detrimental to correct representation of line length
in a weighted graph.
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1 Introduction

Networks are discrete structures of relationships. Our dear friend and colleague
Akinori Okada has made several original contributions to the study of structural
characteristics of networks. In Okada [44], he provided an additive, ordinal model
for interpersonal attraction in social networks, based on expansiveness and popular-
ity of the actors. In Okada [45], he introduced multiple measures of centrality based
on more than one eigenvector; and in Gaul, Klages, and Okada [22], we find an
elegant procedure for community structure discovery in asymmetric relations, using
the concept of shortest walk length. It inspired us to write here about the mapping of
discrete relational structures into continuous spatial representations by multidimen-
sional scaling. Out of respect for the Master of Asymmetry, we restrict ourselves to
symmetric relations, using the concept of shortest path distance.

The utilization of multidimensional scaling (MDS) for displaying networks has
a long history. The first example of an MDS mapping of a social network was the
groundbreaking study by Klingberg [33] of the international relations among the
Seven Great Powers in terms of their perceived relative friendliness or hostility. The
data of this study were collected in March 1939—just before the start of World War
II—using the opinions of 241 students of international affairs. Perceived distances
among the nodes of the networkwere determinedby themethodof “multidimensional
rank order”. Those distances in turn were analyzed with what is known as classical
MDS, proposed a few years earlier by Young and Householder [59]. It turned out that
two dimensions did not fit well, and therefore, a photograph of a wax model with
wooden connections was used to display the three-dimensional MDS solution.

Quite a different early example of the insights obtainable from network models
in psychology was the study by Osgood and Luria [46], which concerned a blind
analysis of a case of triple personality disorder, also known as “The Three Faces of
Eve”. Here, data were obtained from a single patient, who had to rate 15 “concepts”
(roles, emotional problems, and significant persons, selected for their differentiating
power) on 10 bipolar scales (such as valuable–worthless, active–passive, and strong–
weak) in three different personality states (“Eve White”, “Eve Black”, and “Jane”).
Profile distances among all conceptswere calculated across the bipolar scales for each
personality state. From these distances, three networkmodels were constructed (with
the same concepts as nodes), each representing a qualitatively different state of the
patient. Themodels could be used tomake inferences about her conditionwithout any
knowledge of the case history or prognosis. For a comprehensive description of the
methodology to determine semantic networks of connotative meaning of concepts—
called the semantic differential—see Osgood, Suci, and Tannenbaum [47].

It has to be noted that in the networks that were actually shown in the Osgood
and Luria [46] paper, the nodes have on average a degree (number of incident lines)
approximately equal to 3, which is a lot less than the number of possible connections
with other nodes (14). What is the reason for the small number of lines, when in this
case all distanceswere known? The paper does not tell us how the lineswere selected;
maybe only lineswith length below a chosen thresholdwere retained, or perhaps lines
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were omitted to keep the display transparent. More generally, it is remarkable that
all subsequent early applications of MDS on network data show the nodes as points
in a two-dimensional plane, but draw no lines between nodes at all. For example,
Laumann and Guttman [40] studied the relative amount by which people of a given
occupation share the same or one of the other 54 occupations with people to whom
they are closely related, and discussed the structure of the occupations obtained by
Guttman’s [26] ordinal MDS technique. But even though they knew the strength of
association between all pairs of occupations, they drew no lines whatsoever between
strongly associated ones. The same thing is true for the Laumann and Pappi [41]
study of connections between elite members of a community, the Romney and Faust
[49] study of a communication network, and virtually all more recent studies of
MDS on semantic or social network data. Apparently, the leading thought in this
research tradition is: MDS gives us locations for the concepts or actors in a spatial
model, and the distance between these locations represents the relative strength of
their connections. So there is no need for adding any lines to the map.

For the network modeling paradigm in multivariate data analysis, however, the
majormathematicalmodel is the graph. A graphmodel forces us tomake a distinction
between pairs of nodes that are directly connected (or adjacent) and pairs of nodes
that are not adjacent. Therefore, the process of displaying an empirical network in a
spatial representation or a map can be divided into two stages:

1. Graph construction: Creating a graph model from relational or multivariate data.
If dichotomous relational data are already available—for example, in case of a
network of mutual friends—then the list of pairs of actors who are friends can
easily be coded in an adjacency matrix with (0, 1) entries, which fully charac-
terizes a simple network graph. If we have any other kind of information about
the empirical network, we must first determine relational measures of associ-
ation, correlation, dissimilarity or similarity—generically called proximities by
Shepard [53]. Then we must somehow divide the proximities into two groups:
pairs of nodes that are considered to be adjacent, and pairs of nodes that are not.
Adjacent pairs give us a (possibly weighted) network graph.

2. Graph drawing: Creating a spatial representation of the graph. Given a simple
network graph coded as an adjacency matrix, we can form a dissimilarity matrix
in which adjacent pairs have a single value indicating the length of a line (e.g.,
one) and the nonadjacent pairs have an arbitrary single value strictly greater than
that length. For aweighted network graph,we form a dissimilaritymatrix inwhich
the cells of adjacent pairs contain their weight (because in a graph the weight of a
line corresponds to its length), and the cells of nonadjacent pairs contain a single
value strictly greater than the largest weight.

To produce the spatial representation, we can use MDS or some other procedure
for graphical display. There are two possibilities for the input of the graph drawing
procedure:
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(i) Using simply the adjacency matrix of the graph, with entries coded as dissimi-
larities;

(ii) Replacing the tied dissimilarities for all nonadjacent pairs by the geodesic or
shortest path distances between any two nodes, which is the natural metric in a
graph.

Let us illustrate the two stages with two well-known examples from the literature.
The first one is the methodology ofGaussian graphical modeling, which started with
Dempster [13]. It was already well developed in the eighties of the last century (cf.
Whittaker [58]), and saw an upsurge more recently in wider communities, such as
psychometrics (Epskamp, Waldorp, Möttus, & Borsboom [15]). Here the nodes of
the graph are variables. Dempster introduced the idea that to reduce the number of
parameters in themultivariate normal distribution, itwould be of interest to restrict the
elements of the inverse of the covariance matrix rather than the covariances through
dimension reduction. The reason is that these elements involve the partial correlation
of the two variables after elimination of the influence of all other variables. If the
small partial correlations are forced to be equal to zero, then the remaining larger ones
may be used to produce an independence graph, in which there is no line between two
nodes whenever the pair of variables is independent given all other variables. Finding
this graph constitutes Stage 1, which nowadays can be conveniently done with the
graphical lasso (Friedman, Hastie, & Tibshirani [19]). Stage 2 of our two-stage
process—drawing the independence graph—was usually done by hand in the older
literature, and more recently with one of the force-directed graph layout methods
(Brandes [1]).

The second example of a two-stage data analysis method that obeys the net-
work modeling paradigm is isometric feature mapping or Isomap (Tenenbaum,
de Silva, & Langford [56]). It was inspired by the aim of mapping data points
on curved surfaces into a low-dimensional representation, and uses the K-nearest
neighbors procedure for creating a weighted graph in Stage 1. Hence, it focuses on
the local relations. Then in Stage 2, Isomap computes shortest path distances among
the nonadjacent pairs of nodes and uses these—together with the original distances
of the adjacent pairs—as input for classical MDS to create the low-dimensional rep-
resentation. One might note that the graph construction stage is only instrumental in
being able to “unfold” the curved surface and not of interest by itself. Then it should
not be surprising that Isomap does not show the lines of the K-nearest neighbors
graph. Nevertheless, it follows the network modeling paradigm; follow-up methods
do explicitly address graph layout (e.g., Kruiger et al. [34]).

Because there are so many different contexts and considerations for Stage 1, we
restrict ourselves in this paper to Stage 2, graph drawing. Section2 will briefly dis-
cuss some technicalities of several graph drawing procedures, using a weighted least
squares framework. Section3 presents several analyses of a simple graph, coming
from a classical data set about the marital relations between fifteenth-century Flo-
rentine families. Section4 presents several analyses of a special type of (weighted)
graph: an additive tree of the semantic relations between animal terms. In the analyses
of these concrete network graphs, we try to shed some light on two questions. One
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question concerns what the effect is of the relative weight that is given to different
pairs of nodes in the weighted least squares loss function. Another question is: what
differences arise (if any) between using only the adjacencies as input or including
the shortest path distances among all pairs of nodes. We conclude with a discussion
in Sect. 5.

2 Graph Drawing Procedures Based on Least Squares

Classical MDS has been propagated for graph drawing ever since Kruskal and
Seery [39], in their pioneering paper on designing network diagrams, suggested:
“for those who may want to write their own program, we describe very briefly the
simplest method to program, namely the classical method of MDS, which was res-
cued from obscurity by Torgerson ([57], Chap. 11)”. Classical MDS amounts to a
projection of the high-dimensional data points into a space of lower dimensionality.
It is based on a loss function in which the squared dissimilarities are approximated
by squared Euclidean distances. Inherent to the concept of projection is that the
approximation is “from below” (Meulman [43]), implying that large dissimilarities
in high-dimensional space may become smaller or even arbitrarily small in the low-
dimensional space, but never larger—not a desirable property in general. In addition,
it assumes a linear relationship between dissimilarity and distance.

To circumvent the problems of classical MDS, Shepard [53] conceived
a new approach that assumed only an ordinal relationship between distance and
dissimilarity:

di j ≤ dkl whenever δi j < δkl, (1)

where di j is the Euclidean distance between points i and j in the configuration, and δi j

is the dissimilarity between nodes i and j in the graph, for i, j = 1, · · · , n. Shepard
used a heuristic iterative algorithm to obtain the locations for points with distances
satisfying (1). Not much later, Kruskal [35] put the approach on a firm footing
by defining a sum-of-squares measure that incorporated (1). He viewed the MDS
problemas fitting a nonlinear regressionmodel to a possibly nonlinear transformation
of the data. Here we give his least squares loss function in its essential form. Let us
first write the distances as an explicit function of the coordinate vectors xi and x j of
length p, the dimensionality of the representation.

We have
di j (X) = ∥

∥xi − x j

∥
∥ (2)

as the Euclidean distance between points xi and x j , where X is an n × p matrix, the
rows of which contain the coordinates of the points. The least squares nonmetric
MDS loss function is
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σ 2 (X, ϕ) = 1

S

n
∑

i< j

wi j
[

ϕ
(

δi j
) − di j (X)

]2
, (3)

where S is a standardization factor to prevent the coordinates from becoming arbitrar-
ily small, andϕ is somemonotonically nondecreasing function that is not prespecified
but is part of the optimization problem. Kruskal called the square root of his criterion
Stress. We will say more about the data weights wi j shortly. The process of finding
optimal ϕ only under restrictions (1) for given X, and hence for fixed distances, is
called isotonic regression, and finding an optimalX for given ϕ is a nonlinear regres-
sion problem. Minimizing Stress not only over X but also over transformations ϕ

makes the results invariant under ordinal transformations of the dissimilarities, from
which feature derives its name nonmetric MDS. Other classes of transformations ϕ

can be incorporated, too. A simple example is the class of all linear transformations
(which Kruskal & Seery [39] actually used in their examples of network layout, for
which they also calculated shortest path distances among all nodes).

Before we give a few technical details about how to minimize least squares
loss function (3), we briefly discuss the class of physical spring models that were
developed for graph drawing in computer science. In the description of Brandes
[1, p. 71],

Their common denominator is that they liken the graph to a system of interacting physical
objects, the underlying assumption being that relaxed (energy minimal) states of suitably
defined systems correspond to readable and informative layouts.

In the spring model, the nodes of the graph are represented by physical objects
behaving like charged rings (balls, particles) that spreadwell on the plane by repelling
electrical forces. The lines between adjacent nodes are represented by springs that
prevent the rings to drift too far apart by attracting mechanical forces. Depending on
how these forces are formulated—according to criteria of aesthetics chosen, such as
even node distribution in space, uniformity of line length, avoidance of line crossings,
and preservation of symmetry—a different type of force-directed graph drawing
method results. Pioneer in this area was Eades [14], whose model is known as the
spring embedder. Several modifications of the spring embedder were proposed by
Fruchterman and Reingold [20] to improve some of its shortcomings.

Then there is a second group of methods, introduced by Kamada and Kawai
[32]. It is based on the idea that we can minimize the potential energy of a purely
mechanical system without the need of repulsive electrical forces, if we use springs
of different length and strength for every pair of rings. Also, they considered that the
natural length of the spring connecting two rings is the desirable target distance for
the corresponding lines in the drawing. They then chose the length of each spring as
the length of the shortest path between two nodes in the graph. The potential energy
E of a spring between a pair of rings located at positions xi and x j , when stretched
or compressed, is now equal to

E
(

xi , x j
) = 1

2
ki j

(

dG(i, j) − ∥
∥xi − x j

∥
∥
)2

, (4)
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where the natural length of the spring is dG(i, j), the shortest path distance in the
graph, and its actual length is the distance between the locations of the pair of rings
on the plane. The quantity ki j is the stiffness or strength of the spring. Summing
(4) over all springs gives us an objective function that is equivalent to Stress in (3),
with the shortest path distances in the role of the dissimilarities. The data weights in
Stress correspond to the strength of the springs, which can be chosen freely. Kamada
and Kawai choose them proportional to the inverse of the squared shortest path
distances. The motivation is that it will be easier for the system to relax if long
springs are not too stiff. Note that ordinal or other transformations of spring length
are not considered; apparently, there is no physical justification in the spring model
for changing the natural length of a spring in relation to other springs. Cohen [7]
recognized the strong connection between Energy and Stress minimization. He also
introduced an alternative distance function for graphs, which would better reflect
the presence of cliques (clusters).

The use of data weights is not very prominent in applications within the MDS
tradition, although they were already available in the early versions of Kruskal’s pro-
gram MDSCAL5 (Kruskal & Carmone [37]) and its successor KYST-2A (Kruskal,
Young, & Seery [38]). In a review of MDS programs devised at Bell Laboratories,
we find:

Weighting of Data—the MDSCAL5 and KYST programs allow for differential weighting
of the original data values. This can be done either by supplying a matrix of weights in the
same way as the data are laid out or by using a FORTRAN subroutine for generating weights
internally. (Carroll [5])

After inspection of the code of these programs, we discovered that they contain the
following power family formula for generating data weights internally:

wi j = d + e(a + bδi j )
c, (5)

where a, b, c, d, and e are user-provided parameters. Obviously, the Kamada and
Kawai data weights belong to this family by choosing (0, 1,−2, 0, and 1). The same
weighting function had been proposed by McGee [42], and the same function, but
with c = −1, was used by Sammon [51] for nonlinear mapping of multivariate data,
which became a seminal paper in the unsupervised machine learning literature. It is
likely that Kruskal was aware of these papers and for this reason put (5) into updates
of his original program; there was no mention of data weights in the Kruskal [36]
paper, in which he described how he optimized Stress.

Kruskal [36] used a gradient method, in which he included his own carefully
thought-out step size procedure, which nevertheless does not guarantee that the pro-
cess always converges. Since the gradient of Stress has the distance between two
points in its denominator, it was also not clear what to do whenever two points hap-
pen to coincide during the process. De Leeuw [9] solved these two difficulties by
deriving an updating formula on the basis of a majorization principle that resolves
both problems at the same time. It turned out that the resulting updating formula is
equivalent to the correction matrix method used in Guttman [26], and for this reason,
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it was called the Guttman transform. This transform is a special case of Kruskal’s
update, because it moves along the direction of the gradient with a fixed step size of
one. Heiser and De Leeuw [28] implemented the majorization procedure in the first
SMACOF program. In De Leeuw and Heiser [10], an important step was made by
providing a unified framework for including the possibility of imposing constraints
of different kinds on the configuration of points. For an up-to-date review of the
majorization approach to MDS, with special attention to the use of data weights, we
refer to Groenen and Van de Velden [24]. Stress majorization was introduced in the
graph drawing community by Gansner, Koren, and North [21]. They also developed
a number of useful extensions for graph layout that profited from the power and
flexibility of majorization optimization.

We conclude this section by giving a formulation of the SMACOF algorithm that
shows clearly how the update of one point depends on the (transformed) dissimilari-
ties, the current distances, and the weights used in Stress. Suppose we have a current
configuration of points Y and the distances di j (Y) derived from it. On the basis of
these distances we can also determine, if desired, conditionally optimal values of
the transformation d̂i j = ϕ̂

(

δi j
)

called dhats, to replace the δi j ’s. Then the updating
formula in the SMACOF algorithm for a single point yi (keeping the other points
fixed and denoting the update with xi ) is as follows:

xi =
⎡

⎣
1

∑

j �=i wi j

n
∑

j �=i

wi j
d̂i j

di j (Y)

⎤

⎦ yi + 1
∑

j �=i wi j

n
∑

j �=i

wi j

(

1 − d̂i j

di j (Y)

)

y j . (6)

The first termbetween brackets at the right side of (6) is a scalar: theweighted average
of all correction factors d̂i j/di j (Y) for point yi with respect to all other points y j . If on
average all dhats are larger than the current distances, then this scalar will be larger
than one, and the current point yi will be pushed outward with respect to the origin—
a direction forcing larger distances. Point yi will be pulled inwards to the origin if
the reverse holds. The second term in (6) adds to the first one a weighted average
of directions of change toward or away from specific other points y j , depending on
whether d̂i j < di j (Y) or the reverse. If d̂i j = di j (Y), point y j does not contribute a
pushing or pulling force to the final direction of change. We finally note that both
terms do not at all take points y j into account for which wi j = 0.

3 Drawing a Simple Graph: Marital Relations Between
Florentine Families

As an example for the effect of using shortest path distances rather than only using the
adjacencies in a simple unweighted graph, and for exploring the effect of weighting,
we are going to analyze a classic data set that was also analyzed in Okada [45].
In this paper, Okada was looking for (possibly overlapping) subgroups of actors in
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a social network who show different types of centrality, and his example was the
well-known symmetric graph of marital relations between 16 Florentine families in
fifteenth-century Florence, Italy.

What do we know about the prospects of embedding an adjacency matrix in
Euclidean space by MDS? Kruskal and Seery [39, p. 31] had a clear opinion:

We also experimented with defining the distance [. . . ] between two nodes to be either one
(if they are adjacent) or “infinity” (if they are not directly connected) [. . . ]. However, we
found the method described above to give more desirable diagrams.

The “method described above” was calculating shortest path distances. Unfortu-
nately, Kruskal and Seery did not tell the reader in what sense the MDS results on an
adjacency matrix were less desirable. One possibility might have been that they used
ordinal transformations. In a binary proximity matrix, there are only two tie blocks
(sets of pairs with the same proximity value). In the so-called primary approach to
ties (Kruskal [36]), the dhats will become equal to the corresponding distances in the
block of nonadjacent pairs when they are larger than the largest distance in the block
of adjacent pairs. According to update formula (6), these pairs will disappear as an
acting force upon the current point. The same holds for the smallest distances in the
block of adjacent pairs that do not overlap with the block of nonadjacent pairs. The
implication is that theremay not be enough constraints to steer away fromundesirable
solutions. However, there is positive theoretical evidence that using linear transfor-
mations with intercept can be a successful option for embedding an adjacency matrix
in Euclidean space in such a way that adjacent nodes are located closer to each other
than nonadjacent ones. In a very early paper on such an embedding, Guttman ([25],
published in 1977) showed that it is always possible to locate the node points in less
than n − 1 dimensions, provided that a suitably chosen additive constant is used.
He also showed that it will be possible to draw a (hyper-)sphere (or circle) around
any point, in such a way that its adjacent nodes are separated from the nonadjacent
nodes. Of course, this result does not guarantee that a desirable diagram exists in two
dimensions, but it does suggest that least squares MDS may work well for binary
proximities. For an in-depth discussion of Guttman’s type of graph embedding, we
refer to Freeman [18].

A peculiarity of our example is that the Pucci family has no tie to any of the
other Florentine families. Unconnected points or unconnected subgraphs cannot be
accommodated in standard MDS techniques, so we continue with 15 families. In our
analyses, we always use classical MDS as an initial configuration after estimation
of the smallest additive constant that ensures a Euclidean representation (Cailliez
[4]). In a large experimental study with graphs of different types, Brandes and Pich
[2] confirmed that classical MDS followed by least squares MDS works particularly
well for graph drawing. The software that we used for the SMACOF iterations and
the type of plots made for the current paper is called PROXMAP.1

The three plots on the left of Fig. 1 give the results for the Florentine families
graph, with as input one minus the adjacency matrix, and analyzed without any

1Available upon request from the second author.
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transformation ϕ. The plot at the top gives the MDS drawing of the graph and shows
a quite regular structure. The three families with largest node degree (6 for Medici, 4
for Strozzi, and 4 for Guadagni) form the center of three relatively dense areas, and
the four families with node degree equal to one (Lamberteschi, Ginori, Acciaiuoli,
and Pazzi) are located on the outside. The middle plot in the left column of Fig. 1
gives the result of single-link hierarchical clustering superimposed on the points in
the MDS configuration. PROXMAP obtains the nested clusters by first calculating
the minimum spanning tree (Prim [48]) based on the inter-point distances in the
MDS solution, from which the single-link clusters can be easily derived, also for
large networks (Gower & Ross [23]). The hierarchical clustering shows a major
separation between the elongated 5-family group on the lower left side with the
larger group on the right side around the central clique Medici–Ridolfi–Tornabuoni.

The third plot in this column contains circles around the family points, which
indicate their contribution to the value of Stress in (3). The square root of (3) is
usually reported and is called Kruskal’s Stress-1. In this case, it equals 0.337, which
is large—an effect due to the large tie blocks. Hence, the circles are relatively large—
especially for the points in the center and the Barbadori node. Looking back at the
graph in the top panel, we see that these points with large contributions to Stress have
relatively long lines with other points, even though lines represent direct connections,
and therefore should be relatively short.

In the right column of Fig. 1, we give the comparable results obtained when we
add a constant equal to one to all cells of the (0, 1)-dissimilarity matrix, so that
adjacent pairs of nodes now get a dissimilarity of one and nonadjacent pairs of nodes
a dissimilarity of two. Kruskal’s Stress-1 becomes lower (0.285), and the family
locations are roughly the same. But note that some of the long lines between adjacent
families have become shorter (e.g., between Strozzi and Ridolfi), and some of the
short lines have become longer (e.g., between Strozzi and Peruzzi). More precisely,
the coefficient of variation of the distances between adjacent pairs is reduced from
0.505 to 0.353 (30.1%). This effect of getting more homogeneous line lengths is
also apparent in the single-link clustering plot: the big divide in two groups along
the diagonal has become less wide, and the Medici family enters into a small cluster
with the Acciaiuoli family. The circles in the Stress decomposition plot show that
the reduction of Stress is especially due to the families in the middle. These effects
remain totally unchanged if we include an optimal linear transformation ϕ in the
analysis, or not (and either with or without optimal intercept).

We now turn to the MDS analyses using shortest path distances, calculated with
Floyd’s algorithm (Floyd [16]). The dissimilarities now range from 1 (for direct
connections) to 5 (for the longest paths). We first look at the results of an unweighted
analysis, with ordinal transformation and primary approach to ties (which means
that ties may become untied in the dhats). They are displayed in the left column
of Fig. 2. A first thing to note is that line length is now even more uniform than in
the analysis of the adjacencies with the additive constant. Also, the graph is rotated
counterclockwise with an angle of about 45◦. Even though rotation is not a change
affecting the distances, it does give an indication of change in the configuration,
because PROXMAP rotates toward the principal axes. The longest paths are now
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Fig. 1 MDS on adjacency matrix of Florentine families graph (for explanation, see the text)
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Fig. 2 MDS on the path distances of Florentine families graph (for explanation, see the text)
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aligned horizontally (from Pazzi to Lamberteschi, from Pazzi to Bischeri, and from
Pazzi to Peruzzi). The Medici–Tornabuoni–Ridolfi triangle moved to the center of
the plot, and together with the Albizzi and Guadagni family, they have the highest
loadings on both centrality measures of Okada [45]. The four families in the Strozzi
group score high on Okada’s second centrality measure, and also turn out to be the
second most important cluster in the additive clustering analysis (Shepard & Arabie
[55]) that he performed.

In the single-link hierarchical clustering, we see quite a few small changes, most
likely due to the more homogeneous line lengths, which lead to a contraction of
several points to the origin. The Barbadori family moved to an extended central
cluster, while Salviati and Pazzi still form a small isolated cluster. Kruskal’s Stress-1
equals 0.0112 for this analysis; the fit is very close to perfection. Stress decomposed
by node, as in Fig. 1, would be invisible. So we give in the third plot of the left
column in Fig. 2 the so-called Shepard plot, which has the shortest path distances
on the x-axis and on the y-axis the fitted distances (labeled with open circles) and
the optimally transformed data (labeled with closed circles). Almost all transformed
data are equal to their corresponding distances spread out in the vertical direction
within each tie block.

We see only a very few open circles in the first three steps of the step function,
where some distances are a little bit too long or too short. Note that the step function
suggests that a linear transformation would be an acceptable alternative in this case,
andwould give the same configuration of the nodes, with just a bit more Stress.When
we checked this suggestion, we indeed obtained comparable results, with Kruskal’s
Stress-1 = 0.134.

Let us now compare these analyses with a weighted approach, where we have
used the Kamada and Kawai [32] choice for the inverse of the squared shortest path
distances (and where we note that the use of Sammon [51] weighting (not shown) did
not make very much difference). The resulting graph representation, the single-link
clusters, and the Shepard plot are shown in the right column of Fig. 2. Kruskal’s
Stress-1 moved from 0.0112 to 0.0121, just a little bit higher than the unweighted
analysis. Nevertheless, the graph representations are very similar. In the single-link
clustering, the Bischeri family became disconnected from the Strozzi group—a small
change, and not in accordance with other evidence. In the Shepard plot, we see only
very slight changes; the only noticeable one is that the distances in the first tie block
are smaller and have less variation than the corresponding ones in the unweighted
analysis.

Summarizing our results so far, we conclude that the unweighted analysis using
shortest path distances is the one to be preferred. It has the lowest Stress, the graph
representation is clearly interpretable, and the length of the lines (distances between
adjacent pairs of nodes) has the least variation. But we have also seen that the results
for the binary adjacency data are certainly acceptable, especially if we include an
additive constant, either in the coding of the dissimilarities, or by choosing the option
to transform them linearly with an intercept via the Stress algorithm.
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4 Drawing a Weighted Graph: An Additive Tree of Animal
Names

Trees are connected graphs with only one path between each pair of nodes, or alter-
natively, a tree is a graph without cycles and with n − 1 lines. Additive trees (or
phylogenetic trees) are weighted graphs with these properties. But, in addition, they
incorporate a distinction between end nodes (or terminal nodes), which have degree
one and represent empirical objects or actors, and internal nodes, all of which except
one have degree three and represent nested clusters of end nodes. If we have n end
nodes, there will be n − 1 internal nodes and 2n − 2 lines connecting all of them,
provided that all branches of the tree are binary. The metric in a tree is just the graph-
ical distance: the total length of the unique path between them. In a rooted additive
tree, there is one distinguished internal node, called the root, which splits the total
collection of end nodes into two or more groups. The other internal nodes in turn
split these groups into subgroups until only single end nodes remain. An additive
tree in which all end nodes are equidistant from the root is called an ultrametric tree.

The branches of an additive tree form long paths with additive segments from end
nodes to the root, and both the number of branches and their length grows with n.
It is known that an ultrametric tree can be embedded in a Euclidean space of n − 1
dimensions, but not in n − 2 dimensions (Holman [30]). This result supposes that
we want to reproduce the ultrametric distances exactly. But it can also be shown that
an ultrametric tree can be scaled in one dimension, provided that we are prepared to
use optimal ordinal transformations with the primary approach to ties (Critchley &
Heiser [8]). So it is not unreasonable to suppose that trees can be mapped by MDS
approximately in two dimensions.

Our example is one of the data sets used by Sattath and Tversky [52] to illustrate
their pioneering additive tree fitting algorithm, which is very closely related to the
famous neighbor-joining method (Saitou & Nei [50]) for fitting phylogenetic trees
in evolutionary biology. The data are from an experiment by Henley [29], who asked
a homogeneous group of 18 students to rate the dissimilarity between all pairs of 30
animals on a scale from 0 to 10. We will use the adjacency characteristics and the
weight parameters of the tree obtained by Sattath and Tversky with their ADDTREE
program as input to our PROXMAP program. In Fig. 3, top panel, we first give the
graph configuration computed by an MDS analysis with only the binary adjacency
matrix as input and with transformation option “ordinal with primary approach to
ties”, which yielded a Kruskal’s Stress-1 of 0.00575.

The first thing to notice about this configuration is that it has a lot more variance
along the first (horizontal) dimension than along the second (vertical) dimension. The
elongated configuration appears to be in accordance with the Critchley andHeiser [8]
result on ultrametric trees. It should be noted, however, that their result does not apply
completely here, because an additive tree does not have the restriction that all end
nodes are equidistant from the root. There are some line crossings; see, for instance,
thepig, the chimp, and the cluster of chipmunk, squirrel, rat, andmouse. Nevertheless,
the MDS configuration certainly gives us some useful extra information about the
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Fig. 3 Ordinal MDS on the adjacencies of the Animals tree (for explanation, see the text)

tree: the dominant distinction between the carnivores on the right and the herbivores
on the left. That these groups form the strongest contrast cannot be easily detected
in the traditional dendrogram representation of this tree in Sattath and Tversky [52],
in which all branches point into the same direction. In the bottom panel of Fig. 3, we
show the Voronoi diagram of this solution, which is a partitioning of the plane into
regions of all points that are closer to the indicated node than to any other node. It
gives an indication of how tightly constrained the location of each node is. It is clear
that the end nodes, which all have degree one, have more freedom to move than the
points in the middle.

Figure4 gives the configuration of the tree obtained by analyzing the adjacencies
with an optimal linear transformation including an intercept. Here, Kruskal’s Stress-
1 is 0.3817, which is relatively high, and normally an indication that we should seek
a solution in higher dimensionality. However, we see only a little crossing of lines,
and the full space is covered by the four major branches of the tree: starting with
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Fig. 4 Metric MDS on the
adjacencies of the Animals
tree (for explanation, see the
text)
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the carnivores on the right and going counterclockwise, we have the rodents on top,
the apes in the left upper part, and the herbivores on the left lower part. Further
subdivisions, such as tall, equine, and livestock for the herbivores, or canine and
feline for the carnivores are clearly recognizable. So, at first sight, it looks like a
good use of the available space.

However, from the point of view of distance approximation, this configuration is
pretty bad, because the two major branches that formed the large contrast in Fig. 3
have been bent down in a horseshoe kind of shape. The effect is severe bias in the dis-
tances: for example, while the lion and the tiger are two steps apart from each other
in the tree, like the zebra and the horse, we find that the tiger and the zebra are also
close to each other in Euclidean distance, even though these two animals are twelve
steps apart from each other in the tree. Similarly, the chipmunk appears to be close to
the root, while it is five steps away from it in the tree. The fact that the points appear
to be uniformly distributed within a circle can be attributed to a known phenomenon
that occurs when all dissimilarities are equal. As noted by De Leeuw and Stoop [11,
p. 397], optimal configurations minimizing metric Stress when all dissimilarities are
equal (for sufficiently large n) must have this tendency (for less than 7 points theywill
all be on a circle). Buja, Logan, Reeds, & Shepp [3] called the equal dissimilarity
case “totally uninformative” and gave a more detailed mathematical analysis.
Although our example is not totally uninformative, it comes close. We have a first
tie block of 56 dissimilarities for adjacent pairs and a second tie block of 1540 dis-
similarities for nonadjacent pairs. So 96.5% of the dissimilarities are equal (to the
larger value), which apparently is enough to cause a uniform distribution of points
within the circle.
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Fig. 5 Ordinal MDS with unweighted Stress on path distances of the Animals tree

Our last two analyses of the Animals example use path distances in the Sattath
and Tversky additive tree, where the weight parameters (indicating line length) are
incorporated. Both analyses have ordinal transformations with primary approach to
ties. In Figs. 5 and 6, we give the tree configurations accompanied by Shepard plots
and stress decomposition plots.

For the results of the analysis without data weights in the Stress function given
in Fig. 5, Kruskal’s Stress-1 is 0.2256. We find the herbivores on the right, with the
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Fig. 6 Ordinal MDS with weighted Stress on path distances of the Animals tree

livestock clearly as a separate branch, while the giraffe from the tall group overlaps
with the equine group. In the left upper part, we find the rodents and apes, and in
the left lower part the carnivores, with separate branches for the bear, the canines,
and the felines. The effect of the weight parameters of the tree is particularly visible
in the different lengths of the lines to the end nodes. For instance: the elephant, the
giraffe, and the bear have longer end lines in the tree than the horse and the fox.
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In the Shepard plot on the right-hand side, we see a slightly accelerating nonlinear
transformation and quite a lot of distances that are too small. It suggests that the tree,
which has four main branches, will fit much better in three dimensions, allowing the
branches to extend near the corners of a tetrahedron (but it would bring us outside
the scope of this paper to pursue this suggestion). The Stress decomposition plot on
the left-hand side shows a remarkable pattern that is the reverse of what we saw in
the Florentine families example: the best fitting nodes are in the center, and the worst
fitting nodes are on the outside. This effect is caused by the fact that for pairs in two
different main branches located next to each other, the tree distances go via the root,
while the Euclidean distances go directly to the neighboring branch.

For the ordinal analysiswith Kamada & Kawai data weights in the Stress function,
we see in Fig. 6 that the tree configuration showsmore separationwithin branches and
less differentiation in line length. Both effects are probably due to the emphasis on
fitting the small tree distances right. Kruskal’s Stress-1 is very slightly lower, 0.2206.
However, using data weights in the fit function which are inversely proportional to
the square of path distances does seem to eliminate the weight differentiation among
lines in the weighted tree. Whenever such an effect occurs, it must be considered
an undesirable feature. The Shepard plot in Fig. 6 has fewer distances that are larger
than the transformed dissimilarities, compared to Fig. 5, and slightly more distances
that are (much) smaller, except for the lower left corner of the plot. So the effect
of Kamada & Kawai weighting shows up in the Shepard plot, too, and the Stress
distribution over points has become slightly more even.

Summarizing our results of the Animals example, we believe that in this case,
an ordinal analysis of the adjacency matrix does contribute to our understanding of
the structure of the tree, by showing the major distinction between two of the four
branches of the tree. We have shown that a metric analysis of the adjacencies can
be misleading, due to the equal dissimilarity effect. Using path distances including
the line length in the tree therefore is the best option. However, weighting the Stress
function with the inverse of the squared path distances does not seem to be a good
idea, because it tends to suppress the differentiation in line length.

5 Conclusions and Discussion

We have distinguished a two-stage network modeling paradigm for multivariate data
analysis, with graph construction in the first stage and graph drawing in the second
stage. Examples of graph construction were: making an independence graph, a K-
nearest neighbors graph, or an additive tree graph.Many different graph construction
methods have been proposed in the psychometrics and classification literature. We
believe that least squaresmethods are preferable, in terms of generality andflexibility.
Examples are least squares fitting of additive trees (De Soete [12]) and least squares
fitting of intersection graphs defined on a discrete feature space (Heiser [27]; Frank
& Heiser [17]). An overview of other structural models for proximity matrices,
including appropriate software, is given in Hubert, Arabie, and Meulman [31]. For
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graph drawing, there are two main types of methods: force-directed and distance-
driven graph drawing. But it should be noted that there have also been proposals for a
mixture of the two, for example by Chen and Buja [6], who proposed local MDS, and
by Kruiger et al. [34], who proposed tsNET, a modification of t-SNE. Both papers use
a modified objective function with terms based on a nonlinear dimension reduction
technique and terms based on classical force-directed correction techniques.

We have restricted ourselves to distance-driven graph drawing by least squares
MDS, on the basis of Kruskal’s [35] Stress function, which accommodates the pos-
sibility of weighting the residuals differently and transforming the proximities opti-
mally within a given class of functions. Two examples were presented to throw light
on two questions. The first question was, what kind of graph characteristics would
be best to use as input, adjacencies or shortest path distances? It turned out that
shortest path distances were generally to be preferred, because they give a better
fit, a representation that gives more valid information on the structure of the graph,
and a portrayal of inter-node distance that more closely reproduces line length in the
graph. Nevertheless, it also turned out that in the example of the tree an ordinal anal-
ysis of the adjacency matrix highlighted something that was not evident in the usual
dendrogram representation: it showed which pair of main branches gives the largest
contrast. However, metric analysis of the adjacency matrix is not recommended,
because the dominance of equal distances between nonadjacent pairs tends to cause
uniform distributions of points within a circle. The second question concerned the
use of data weights in the Stress function to down-weight residuals related to large
distances in the graph. In the first example of a simple graph, weighting did not make
much difference. In the second example of an additive tree, weighting turned out to
be detrimental to good differentiation of line length. So for weighted graphs, one has
to be cautious with this kind of weighting of the residuals.

It is of interest to point out that the relation between an MDS and an additive
tree representation for the Henley [29] data was also considered by Shepard [54]
in his authoritative Science paper. He used an MDS configuration based on the
original data and superimposed the Sattath and Tversky [52] tree on that solution.
This kind of parallel analysis ofMDS and clustering is the common thing to do in the
MDS literature. What we did in the current paper, however, was either calculating
a single-link clustering on distances fitted by MDS—to highlight features of the
MDS configuration (in the first example)—or calculating an MDS configuration on
distances fitted by hierarchical clustering—to highlight features of the tree (in the
second example). When analyzing the data twice, it might be preferable to first select
the model that produces a better fit, and then use the other method on the distances
of the fitted model as an additional tool for interpretation.

In conclusion, we believe that there is much room for further action and devel-
opment of multidimensional scaling in the network paradigm of multivariate data
analysis. By exploiting the distinction between direct and indirect connections or
influences, graphical models provide a conceptually interesting alternative to dimen-
sion reduction. But if—as is often the case—the structure of the fitted graph is
high-dimensional, we still need nonlinear dimension reduction by multidimensional
scaling to comprehend it.



Mapping Networks and Trees with Multidimensional Scaling of Proximities 405

References

1. Brandes, U. (2001). Drawing on physical analogies. In: M. Kaufman & D. Wagner (Eds.)
Drawing graphs (Vol. 2025, pp. 71–86). Lecture notes in computer science. Berlin: Springer.

2. Brandes, U. & Pich, C. (2009). An experimental study on distance-based graph drawing. In: I.
G. Tollis & M. Patrignani (Eds.) Graph drawing (GD’08) (Vol. 5417, pp. 218–229). Lecture
notes in computer science. Berlin: Springer.

3. Buja, A., Logan, B. F., Reeds, J. A., & Shepp, L. A. (1994). Inequalities and positive-definite
functions arising from a problem in multidimensional scaling. Annals of Statistics, 22(1), 406–
438.

4. Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika,
48(2), 305–308.

5. Carroll, J. D. (1987). Some multidimensional scaling and related procedures devised at Bell
Laboratories, with ecological applications. In P. Legendre & L. Legendre (Eds.),Developments
in numerical ecology (pp. 65–138). New York: Springer.

6. Chen, L., & Buja, A. (2009). Local multidimensional scaling for nonlinear dimension reduc-
tion, graph drawing, and proximity analysis. Journal of the American Statistical Association,
104(485), 209–219.

7. Cohen, J.D. (1997).Drawinggraphs to conveyproximity:An incremental arrangementmethod.
ACM Transactions on Computer-Human Interaction, 4(3), 197–229.

8. Critchley, F.,&Heiser,W. J. (1988).Hierarchical trees can be perfectly scaled in one dimension.
Journal of Classification, 5(1), 5–20.

9. De Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. R.
Barra, F. Brodeau, G. Romier, & B. Van Cutsem (Eds.), Recent developments in statistics (pp.
133–146). Amsterdam: North Holland Publishing Company.

10. De Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the con-
figuration. In P. R. Krishnaiah (Ed.), Multivariate analysis (Vol. V, pp. 501–522). Amsterdam:
North Holland Publishing Company.

11. De Leeuw, J., & Stoop, I. (1984). Upper bounds for Kruskal’s Stress. Psychometrika, 49(3),
391–402.

12. De Soete, G. (1983). A least squares algorithm for fitting additive trees to proximity data.
Psychometrika, 48(4), 621–626.

13. Dempster, A. P. (1972). Covariance selection. Biometrics, 28(1), 157–175.
14. Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, 42, 149–160.
15. Epskamp, S.,Waldorp, L. J.,Möttus, R.,&Borsboom,D. (2018). TheGaussian graphicalmodel

in cross-sectional and time series data. Multivariate Behavioral Research, 5(4), 453–480.
16. Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345.
17. Frank, L. E., & Heiser, W. J. (2008). Feature selection in feature network models: Finding

predictive subsets of features with the Positive Lasso. British Journal of Mathematical and
Statistical Psychology, 61(1), 1–27.

18. Freeman, L. C. (1983). Spheres, cubes, and boxes: Graph dimensionality and network structure.
Social Networks, 5(2), 139–156.

19. Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3), 432–441.

20. Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement.
Software-Practice and Experience, 21(11), 1129–1164.

21. Gansner, E. R., Koren, Y., & North, S. (2005). Graph drawing by stress majorization. In: J.
Pach (Ed.), Graph drawing: 12th International Symposium GD 2004 (Vol. 3383, pp. 239–250).
Lecture notes in computer science. Berlin: Springer.

22. Gaul, W., Klages, R., & Okada, A. (2013). Community structure discovery in directed graphs
by asymmetric clustering. Behaviormetrika, 40(1), 85–99.

23. Gower, J. C. & Ross, G. J. S. (1969). Minimum spanning trees and single linkage cluster
analysis. Journal of the Royal Statistical Society, Series C (Applied Statistics), 18(1), 54–64.



406 W. J. Heiser et al.

24. Groenen, P. J. F., & Van de Velden, M. (2016). Multidimensional scaling by majorization: A
review. Journal of Statistical Software, 73(8), 1–26.

25. Guttman, L. (1965). A definition of dimensionality and distance for graphs. (Unpublished
manuscript, published in: J. C. Lingoes (Ed., 1977), Geometric representations of relational
data: Readings in multidimensional scaling, pp. 713-723. Ann Arbor, MI: Mathesis Press).

26. Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space
for a configuration of points. Psychometrika, 33(4), 469–506.

27. Heiser, W. J. (1998). Fitting graphs and trees with multidimensional scaling methods. In C.
Hayashi, K. Yajima, H.-H. Bock, N. Ohsumi, Y. Tanaka, & Y. Baba (Eds.), Data science,
classification, and related methods (pp. 52–62). Tokyo: Springer.

28. Heiser, W. J., & De Leeuw, J. (1977). How to Use SMACOF-I: A program for metric multidi-
mensional scaling. The Netherlands: Department of Data Theory, Leiden University.

29. Henley, N. M. (1969). A psychological study of the semantics of animal terms. Journal of
Verbal Learning and Verbal Behavior, 8(2), 176–184.

30. Holman, E. W. (1972). The relation between hierarchical and Euclidean models for psycho-
logical distances. Psychometrika, 37(4), 417–423.

31. Hubert, L., Arabie, P., & Meulman, J. J. (2006). The structural representation of proximity
matrices with MATLAB. Philadelphia, PA: SIAM.

32. Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Infor-
mation Processing Letters, 31(1), 7–15.

33. Klingberg, F. L. (1941). Studies in measurement of the relations among sovereign states. Psy-
chometrika, 6(6), 335–352.

34. Kruiger, J. F., Rauber, P. E., Martins, R. M., Kerren, A., Kobourov, S., & Telea, A. C. (2017).
Graph layouts by t-SNE. Computer Graphics Forum, 36(3), 283–294.

35. Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1), 1–27.

36. Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: a numerical method. Psychome-
trika, 29(2), 115–129.

37. Kruskal, J. B. & Carmone, F. (1969). How to use M-D-SCAL (version 5M) and other useful
information. Unpublished manuscript, Bell Laboratories, Murray Hill, NJ.

38. Kruskal, J. B., Young, F.W.,&Seery, J. B. (1973).How to use KYST-2A: A very flexible program
to do multidimensional scaling and unfolding. Unpublished manuscript, Bell Laboratories,
Murray Hill, NJ.

39. Kruskal, J. B. & Seery, J. B. (2000). Designing network diagrams. In: Proceedings of the First
General Conference on Social Graphics (pp. 22–50). Washington, DC: U.S. Bureau of the
Census.

40. Laumann, E. O., & Guttman, L. (1966). The relative associational contiguity of occupations in
an urban setting. American Sociological Review, 31(2), 169–178.

41. Laumann, E. O., & Pappi, F. U. (1973). New directions in the study of community elites.
American Sociological Review, 38(2), 212–230.

42. McGee, V. E. (1966). The multidimensional scaling of “elastic” distances. British Journal of
Mathematical and Statistical Psychology, 19(2), 181–196.

43. Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate analysis
with optimal transformations. Psychometrika, 57(4), 539–565.

44. Okada, A. (2003). Using additive conjoint measurement in analysis of social network data.
In M. Schwaiger & O. Opitz (Eds.), Exploratory data analysis in empirical research (pp.
149–156). Berlin: Springer.

45. Okada, A. (2008). Two-dimensional centrality of a social network. In: C. Preisach, H.
Burkhardt, Schmidt-Thieme L. & R. Decker (Eds.), Data analysis, machine learning and
applications (pp. 381–388). Berlin: Springer.

46. Osgood, C. E., & Luria, Z. (1954). A blind analysis of a case of multiple personality using the
semantic differential. Journal of Abnormal and Social Psychology, 49(4), 579–591.

47. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Urbana,
IL: University of Illinois Press.



Mapping Networks and Trees with Multidimensional Scaling of Proximities 407

48. Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Tech-
nical Journal, 36(6), 1389–1401.

49. Romney, A. K., & Faust, K. (1982). Predicting the structure of a communications network from
recalled data. Social Networks, 4, 285–304.

50. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

51. Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on
Computers, C-18(5), 401–409.

52. Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42(3), 319–345.
53. Shepard, R. N. (1962). The analysis of proximities:Multidimensional scaling with an unknown

distance function, Psychometrika, Part I: 27(2), 125–140, Part II: 27(3), 219–246.
54. Shepard, R. N. (1980). Multidimensional scaling, tree fitting, and clustering. Science, 210,

390–398.
55. Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as

combinations of discrete overlapping properties. Psychological Review, 86(2), 87–123.
56. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
57. Torgerson, W. S. (1958). Theory and methods of scaling. New York: Wiley.
58. Whittaker, J. (1990). Graphical models in applied multivariate statistics. Chichester, UK:

Wiley.
59. Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual

distances. Psychometrika, 3(1), 19–22.



Pitfalls in the Construction of Response
Scales in Cross-Cultural Surveys:
An Example from East Asian Social
Survey

Noriko Iwai and Satomi Yoshino

Abstract With an example from Japanese General Social Survey (JGSS) and East
Asian Social Survey, this paper discusses difficulties in the construction of response
scales in cross-cultural surveys. Issues on the cultural differences in response ten-
dencies are examined with comparisons of response distributions from JGSS and
EASS. Despite careful attempts to minimize biases, there can be problems in the
instruments, which may influence the data quality. Challenges about the use of inter-
nationally validated scales are addressed with an example of EASS 2010 health
nodule development.

1 Introduction

Due to the increasing popularity of cross-national survey research and the cross-
cultural studies, there are a number of studies that examined issues in cross-national
and cross-cultural surveys. Numerous findings have been reported on cultural differ-
ences in response tendencies across countries as well as within multicultural coun-
tries. For example, while there is a higher tendency for respondents to choose extreme
responses in Western countries such as U.S. and Canada, U.K. and Germany, choos-
ing midpoint responses is rather popular in East Asia (Chen, Lee, & Stevenson [2];
Si & Cullen [16]).

Different theories have been identified to explain these cultural differences. With
respect to cultural differences in collectivistic versus individualistic culture, it had
been identified that respondents from collectivistic culture value in group harmony
and tend to choose midpoint responses, whereas those from individualistic culture
do not afraid to speak their own mind and are likely to choose extreme responses
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(Behr & Shishido [1]; Harzing [5]; Takahashi, Ohara, Antonucci, & Akiyama [19]).
As for differences in communication style, past research pointed out that in some
culture people prefer to be seen as modest, while in other cultures, extreme response
would be viewed as sincerity (Harzing [5]; Smith [17]).

Culture and country-level characteristics have been reported to explain the vari-
ance in response tendencies at a greater proportion as compared to socio-demographic
characteristics (Roberts [13]; Van Vaerenbergh & Thomas [20]). As there is much
to be learned from cross-cultural comparisons, construction of comparable measure-
ments is essential. This paper discusses challenges in constructing response scales in
cross-cultural surveys, using Japanese General Social Survey (JGSS) and East Asian
Social Survey (EASS) as an example.

2 Development of Scales in JGSS and EASS Questionnaires

2.1 Development of JGSS Questionnaires

JapaneseGeneral Social Survey (JGSS)wasmodeled after theGeneral Social Survey
(GSS) in theUnited States (Iwai [9, 10]) . In the development of JGSS questionnaires,
two pilot surveys were conducted in order to examine response tendencies among
Japanese respondents, and how they might be different from those in the United
States. The pilot studies used a split-ballot method with Questionnaire A including
questions and response scales that are often used in the GSS. The other included the
questions and scales which were common in Japanese surveys (Iwai [9, 11]; Sugita
& Iwai [18]).

Specifically, the followings areas were tested to understand ways in which
Japanese respondents answer to question: wording effect, characteristics of scales
such as scales’ polarity, symmetry, the number of categories, and inclusion of “Don’t
know” option (Iwai [9, 11]; Sugita & Iwai [18]). The examination of the results from
the two pilot studies showed that among the eight common response styles identified
by Roberts [13], Japanese respondents had midpoint response style as well as mild
point response style. Therefore, a guideline for the JGSS questionnaire was made in
the effort to minimize the bias (for details of the guidelines, see Iwai [9]).

Regarding the wording, JGSS had noticed that some of the Japanese translations
in response categories for questions in the International Social Science Programme
(ISSP) that have been conducted by The NHK Broadcasting Culture Research Insti-
tute were not exactly the same as the original wording in English. For example,
in Gender Role Module (1994, 2002, 2012), a response category “strongly agree”
was translated as “ ” which means “I think so” or “I agree” (Table1). It is
very interesting that a higher proportion of Japanese respondents chose “strongly
disagree” to the statement, “A man’s job is to earn money, a woman’s job is to look
after home and family (V11)” as compared to respondents from the United States in
2012 (Fig. 1). This result does not necessarily mean that Japanese had more liberal
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Table 1 Comparison of translations of response categories between the United States and Japan
for ISSP Gender Module

Fig. 1 Comparison of response distributions between Japan and the United States

gender role ideology than Americans in 2012. It was likely the result of translations
in the response scale categories. In constructing JGSS questions and response cat-
egories, JGSS has been paying tremendous attention in wording and in translation
of questions if they are originally made in English such as EASS module questions
which will be described below.

2.2 Development of EASS Questioners

East Asian Social Survey (EASS) was launched to produce data on issues relevant
to East Asian societies and is comprised with four teams, which conduct GSS-type
national surveys in Japan (JGSS), China (Chinese GSS), Korea (Korean GSS), and
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Taiwan (Taiwan Social Change Survey). EASS is not an independent survey, but
the methodology was developed based on a pre-existing survey framework in each
society, in which the EASSmodules are incorporated into. Modules are developed in
English first, and each team translates themodules into their own languages, followed
by back translation into English for checking the accuracy of the translations.

EASSplaces emphasis on cultural comparability in data collections, and one of the
central focuses of discussions for EASS modules development was the construction
of response scales. As noted earlier, a number of previous studies illustrated cultural
differences in response tendencies between respondents from Asia and Western cul-
tures; they tend to report that Asians are likely to choose midpoint responses (Chen
et al. [2]; Behr & Shishido [1]; Harzing [5]; Smith [17]). However, during the EASS
module development, it became clear that there are also variations among the four
societies and that issues on midpoint response style are not as problematic in China
and Korea as they are in Taiwan and Japan (Shishido [14]; Shishido, Iwai, & Yasuda
[15]). Variations can be observed in response patterns among Japanese, Chinese,
Korean, and Taiwanese respondents (Behr & Shishido [1]). Figure2 compares the
distributions of 18 survey items for the four groups of respondents using the EASS
2006 family module, and the distinct patters of Japanese respondents are clearly
displayed.

In Taiwan, in the face-to-face interview, respondents were first asked to choose
“agree” or “disagree” to a question, followed by the degree to which they agree or
disagree. Only when respondents refused to choose either an answer at the first step,
they were given a choice for “neither agree nor disagree.” This method is used to
reduce the number of midpoint responses (Shishido et al. [15]) JGSS cannot adopt
this method, since JGSS includes most of the EASS module questions into a self-
administered questionnaire, not into an interview questionnaire.

During the discussions on EASS response scale development, while Japanese
teamwas reluctant to include a midpoint in response scales due to tremendously high
concentration of responses to the midpoint, other three teams requested to include
it in order to make the scale comparable to other global surveys such as the ISSP
(Behr & Shishido [1]). After a series of discussions and pre-tests in each society,
EASS teams decided to adopt a 7-point scale with a midpoint (ranging from strongly
agree to strongly disagree) in attitudinal questions (see (Shishido et al. [15]) for more
details about the development of EASS response scales).

3 Inclusion of both EASS and JGSS Scales into JGSS
Questionnaires

As described in the previous section, EASS scales put primary focus on the com-
patibility with other international surveys such as ISSP. At the same time, it was
also critical for the JGSS to pursue the comparability with other Japanese surveys,
in which intense adverb is generally avoided. Therefore, the JGSS team decided to
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Fig. 2 Comparison of response distributions (Adopted from “Issues in cross sectional national
surveys: Experience from JGSS and EASS projects,” by Shishido [14])
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Fig. 3 Distributions of response on subjective health in JGSS-2006 and JGSS-2012

use the split-ballot method when possible in order to include two scales, the JGSS
scale and the EASS scale, for some of the questions.

Subjective health is one of the questions that have been asked using two scales,
while the JGSS scale ranges from 1 Good to 5 Poor, the EASS scale ranges from 1
Very good to 5 Very bad. The wording of the questions is exactly the same: “How
would you rate your health condition?” Figure3 shows the response distributions
by each scale in JGSS-2006 and JGSS-2012. Though responses in both scales are
concentrated on and around the midpoint, the concentrations are notably high in
the EASS scale. Furthermore, in line with the previous findings and the results of
JGSS pilot studies (Iwai [9]; Sugita & Iwai [18]), in the EASS scale, much less
respondents chose the first category, which had the extreme adverb “very”.

Table 2 Sample descriptions
JGSS 2006 JGSS 2012

Age (mean) A B A B

52.42 52.73 53.55 53.27

T-test t = −0.611, p = 0.541 t = 0.572, p = 0.568

N % N % N % N %

Sex

Male 1023 48.2 964 45.3 1060 45.5 1088 46.6

Female 1101 51.8 1166 54.7 1272 54.5 1247 53.4

Pearson chi-square χ2 = 3.607, p = 0.058 χ2 = 0.611, p = 0.434

Marital status

Married/cohabitated/widowed 1739 81.9 1716 80.6 1847 79.2 1840 78.8

Divorced/separated/Never married 385 18.1 414 19.4 485 20.8 495 21.2

Pearson chi-square χ2 = 1.197, p = 0.274 χ2 = 0.113, p = 0.736

Education

Less than high school 384 18.2 402 19 372 16 338 14.5

High school 1021 48.4 1045 49.3 1085 46.8 1071 46.0

Post-secondary school 704 33.4 672 31.7 863 37.2 917 39.4

Pearson chi-square χ2 = 1.412, p = 0.494 χ2 = 3.350, p = 0.187
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As the respondents were randomly selected and randomly assigned to one of the
two questionnaires, the observed differences in the distributions cannot be attributed
to sampling selection bias. In addition, there were no significant differences in the
sample characteristics between the two groups of respondents in the split-ballot for
both JGSS 2006 and JGSS 2012 as summarized in Table2. Therefore, there were
no biases in the sample characteristics which might have influence on the observed
differences in the two types of scales for subjective health.

The comparison of the two scales for subjective health highlights a pitfall in
designing cross-country and cross-cultural surveys. While it is crucial to develop
questions and response scales that are culturally appropriate for all the participat-
ing countries, it is also important to consider country-specific patterns, including
response patterns and biases. Achieving cross-cultural comparability and pursuing
for local validity can be incompatible at times (He & van de Vijver [6]).

Having two scales in one survey enables researchers to choose whichever scales
that might be appropriate for their investigations; however, it is not always the option.
Previous studies have pointed out the lack of attention to response scales among
researchers who develop surveys (Shishido et al. [15]). Users of survey data need to
make sure the details of themethodologies in the survey and be aware of the influence
of response scales, which might have impact on their analysis.

4 Inclusion of Existing International Scales in EASS 2010
Health Module

The theme of the EASS 2010module was health, and from an early stage of the mod-
ule discussion, the EASS teams agreed to include internationally validated scales for
health status of the respondents as it was the most fundamental questions for the
module (Hanibuchi [4]). The EASS team decided to include the SF-12, which is a
short version of the Medical Outcomes Study (MOS) 36-item Short-Form Health
Survey SF-36 (Ware, Kosinski, Turner-Bowker, & Gandek [21]). The SF-12 was
originally developed in English and translated to and validated in various other lan-
guages, including Japanese (Fukuhara & Suzukamo [3]) . Among the EASS teams,
JGSS included the already validated version of questions in Japanese. In China, at
the time of the EASS 2010 health module development, there was no Chinese ver-
sion that has been validated, so CGSS purchased a copyright for the original English
version and translated by themselves.

Although there was already validated version of SF-12 in Taiwan, the Taiwanese
team (TSCS) decided not to include the SF-12 into their questionnaires for several
reasons. TSCS was preparing for conducting the EASS 2010 health module along
with the ISSP health module. Due to these reasons, TSCS chose not to include the
SF-12, and included only a few basic measurements for respondents’ health status.
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Table 3 Comparison of the translations of the subjective health scale (SF-12) in the EASS 2010
module

4.1 Translation Issues on Subjective Health in the EASS
2010 Health Module

Table3 shows the comparison of literal translations of the response categories in
Japanese, Chinese, Korean, and Taiwanese for the question on subjective health,
which is one of the 12 questions in the SF-12. Parentheses under the translations in
each language include the literal translations of the words back to English. As you
can see, the table with back translations illustrates that the wording of the translations
is not identical across four teams. Translations in Taiwanese are the most accurate
among the four teams, and the rest of the teams had issues in the translations (Iwai
[7]; Iwai & Yoshino [8]). For example, in Japan, the SF-12 had been validated in
Japanese, and the Japanese version is copyrighted. Therefore, the JGSS team was
unable to change any wordings in the scale.

As translations in the response scales for subjective health in the EASS 2010
health module were unequal across the four teams, there were notable variations
in the response distributions among the respondents in the four societies Fig. 4. At
first glance, Taiwanese respondents appear to be the least healthy with the highest
proportion of respondents scoring 4. “Fair”, and the less proportions of respondents
reporting excellent to good health as compared to the other countries. However,
when we compare the response distributions with Table3, it became clear that the
translation of the category 4. “Fair” was quite different in Taiwanese translation as
they were in other languages. While the Taiwanese translation indicate 4. “Fair” as
a middle point to slightly positive condition. translations in Japanese, Chinese, and
Korean imply “somewhat poor”. Thus, the observed differences in subjective health
were likely to be attributed to the different connotations in the response categories.
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Fig. 4 Distributions of
responses on subjective
health in EASS 2010

Table 4 Proportions of not having chronic disease or longstanding health problem and their
distributions of subjective health

Japan China Korea Taiwan

% not having any
chronic disease or
longstanding
health problem

54.4 66.0 69.2 67.9

Subjective health

Excellent 4.6 35.2 27.5 3.8

Very good 24.3 40.5 37.2 20.1

Good 60.2 19.3 25.6 31.2

Fair 10.3 4.2 8.2 36.7

Poor 0.5 0.7 1.5 8.2

There were not many objective measurements of health in the EASS 2010 health
module, so it is difficult to clarify the influence of the translation problems on the
response distributions for subjective health. However, it is possible to compare the
response distributions of subjective health with self-reported presence of chronic
conditions or longstanding health problem, which is the only quasi-objective health
measurement.1

Table4 shows the proportion of those who do not have any chronic disease or
longstanding health problem and their distributions of subjective health. The pro-
portion of respondents who do not have chronic health problems in China (66.0%),
Korea (69.2%), and Taiwan (67.9%) was similar, yet the proportion of those who
said their health to be excellent to very good were much lower in Taiwan compared
to the other two countries (75.7% for Chinese, 64.7% for Korean, and 23.9% for
Taiwanese). In fact, the number was the lowest for Taiwanese as it was even lower
than Japanese (28.9%). As the response scale in Taiwanese was off balanced, the
response distribution was notably skewed.

1Aspresence of chronic conditionswas self-reported, it is called quasi-objective rather thanobjective
Jürges [12].
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Additionally, patterns in the response distributions for subjective health in EASS
2010were also different from othermodules. The next section compares the response
distributions for subjective health between the EASS 2010 and the EASS 2012.

4.2 Issues in the Distributions of Subjective Health in the
EASS 2010 Health Module

Figure5 shows the comparison of the distributions of subjective health for Japanese,
Chinese, Korean, and Taiwanese respondents in EASS 2010 and EASS 2012. As
for Japanese respondents, the concentration at the midpoint is substantial in EASS
2010 compared to the response distributions in EASS 2012. As Japanese respondents
have strong tendency to avoid extreme responses (Behr & Shishido [1]), having two
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Fig. 5 Comparison of the distributions of subjective health in EASS 2010 and EASS 2012
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Table 5 Comparison of the distributions of subjective health in EASS 2010 and EASS 2012

Japan Taiwan

Age (mean) 2010 2012 2010 2012

53.7 53.3 46.8 45.81

T-test t = −0.888, p = 0.375 t = 1.836, p = 0.66

N % N % N % N %

Sex

Male 1154 46.2 1088 46.6 1086 49.4 1074 50.3

Female 1342 53.8 1247 53.4 1113 50.6 1060 49.7

Pearson chi-square χ2 = 0.063, p = 0.801 χ2 = 0.384, p = 0.535

Marital status

Married/cohabitated/widowed 1805 72.3 1655 70.9 1309 59.7 1280 60

203 8.1 185 7.9 173 7.9 166 7.8

Divorced/separated/Never married 99 4 127 5.4 99 4.5 106 5

388 15.6 368 15.8 613 27.9 581 27.2

Pearson chi-square χ2 = 6.042, p = 0.110 χ2 = 0.706, p = 0.872

Education

No formal education 0 0 0 0 140 6.4 114 5.9

Less than high school 396 15.9 338 14.5 593 27 551 26.4

High school 1157 46.6 1072 46.1 557 25.3 550 25.6

Post-secondary school 931 37.5 916 39.4 908 41.8 919 42.2

Pearson chi-square χ2 = 2.759, p = 0.0252 χ2 = 3.369, p = 0.338

categories with highly positive health status “excellent” and “very good” resulted in
less variance.

Response distributions for Taiwanese respondents in EASS 2010 were also con-
siderably different from those in EASS 2012. The highest point in the distributions
in EASS 2010 was at “Fair”, whereas in EASS 2012 the responses were peaked at
the midpoint. This was likely because the wording of the translation used for “Fair”
in EASS 2010 indicates the middle point. Response distributions for Chinese and
Korean respondents in the two EASS modules were fairly similar as the response
scales were exactly the same.

Table5 shows some of the basic sample characteristics for respondents from Japan
and Taiwan in EASS 2010 and EASS 2012. There were no significant differences
between basic sample characteristics in EASS 2010 and EASS 2012, which might
have influence on the observed differences in the distributions of subjective health,
for both Japanese and Taiwanese respondents.
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4.3 Issues in the Use of Existing Scales

Internationally developed and validated scales are of great use, which can provide
opportunities for statistical comparisons. However, as shown in the example of the
EASS 2010 health module, there might be inflexibility in the existing scales, which
can be challenging when adding into cross-cultural survey. While translations and
validations of scales into one language focus on cultural sensitivity in the country,
cross-cultural survey needs to consider cultural sensitivity in all participating cul-
tures. He and van de Vijver [6] pointed out the importance of instrument choices in
cross-cultural surveys, highlighting the difficulties cultural-specific considerations
may add to the methodology.

5 Conclusion

As cross-national and cross-cultural survey researches continue to gain attention
from researchers in various disciplines, development of comparable measurements
across cultures is important subject that needs further research. With an example
from Japanese General Social Survey (JGSS) and East Asian Social Survey, this
paper examined challenges regarding the construction of response scales in cross-
cultural surveys.

Discussions on the development of the EASS scale highlight that there are vari-
ations in response style even among the four East Asian societies: Japanese and
Taiwanese respondents tend to choose midpoint more than Chinese and Korean
respondents. The comparison between the JGSS scale and the EASS scale on sub-
jective health further illustrates the midpoint response style among the Japanese
respondents.

As He and van de Vijver [6] point out, aiming for cross-cultural comparability
might be incompatible with obtaining local validity when constructing measure-
ments. In order to minimize the variations of response style among the four teams,
EASS teams chose to use a 7-point scale in attitudinal questions as the 7-point scale
works better than 5-point scale with regard to response variances. Similarly, in Euro-
pean Social Survey, there are various numbers of response options (up to 11 points)
used depending on the types of questions. Choosing an appropriate response option
based on results of pilot studies in each society is one way to minimize the influence
of response styles in cross-cultural survey research.

Comparisons of response distributions for respondents’ subjective health in EASS
2010 health module and translations in the four teams demonstrate the problems in
cross-cultural survey data. As a part of the preparation for the EASS 2020 health
module, the EASS teams had a number of discussions in order to solve the issues in
the response scale. The four teams shared the difficulties and issues in the translation
of the subjective health scale. While Taiwanese translation had no problem in the
EASS 2010 health module, other three translations needed to be modified so that
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the translations would be accurate and the data would be compatible across the
four teams. There were concerns that needed to be considered, which include the
comparability between the 2010 health module and the 2020 health module as well
as the comparability with other EASSmodules. The EASS teams agreed that the first
priority should be achieving the equivalence in the translation of the response scale
and that the wordings of the translation need to be changed accordingly. Specifically,
Chinese and Korean scales would be changed from a balanced scale to an unbalanced
scale, leaning toward positive, in order tomake it equivalent with the original English
scale (please refer to theTable3 for details).As the Japanese translation is copyrighted
and cannot be changed, the Japanese teamdecided to add another question tomeasure
respondents’ subjective health, in which the translation would be comparable with
the other three teams.

While existing scales that have been validated in multiple languages can be a
useful tool in cross-country survey research, there might be issues in comparability
as the translation and validation are done in one country at a time. There are a number
of other issues that can influence the comparability in cross-national survey research,
such as sampling, survey mode, and response bias. For researchers to make accurate
observations, examination of details in methodologies and basic data description are
necessary before the analyses of any data.
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Japanese Women’s Attitudes Toward
Childrearing: Text Analysis
and Multidimensional Scaling

Kunihiro Kimura

Abstract This study aimed to understand Japanese women’s attitudes toward chil-
drearing via text analysis. The text data were taken from the emails that readers had
submitted to a magazine as a reply to the call for essays on the theme “Is Childrea-
ring a Strain?” I hypothesized that Japanese women tended to attribute “failure” to
external factors such as institutional flaws and “success” to internal factors such as
their personal conditions. I employed an “appearance of strings” approach to natural
language processing to map the keywords onto “topics.” Based on the multiple clas-
sification of emails with respect to the topics referred, I calculated symmetric and
asymmetric versions of Jaccard Similarity Coefficient and applied four multidimen-
sional scaling models: Torgerson’s method, SMACOF, slide vector model, and drift
vector model. There was a contrast between positive and negative feelings. There
were also personal, interpersonal, and societal facets. The emails expressing positive
attitudes tended to refer to only personal topics, while those manifesting negative
attitudes tended to refer to the topics in all the three facets. In the latter group of
emails, reference to personal topics implied reference to interpersonal topics, and
reference to interpersonal topics implied reference to societal topics.

1 Introduction

Text analysis, which is also called text mining or text analytics (Solka [22]; Brier &
Hopp [5]), is helpful in exploring the structure of people’s attitudes. In this paper, I
will report the results of my study that employed text analysis to understand Japanese
women’s attitudes toward childrearing. The text data were taken from the emails that
readers had submitted to a magazine as a reply to the call for essays on the theme “Is
Childrearing a Strain?”

Although this study followed the orthodox procedure for text analysis that consists
of two steps, that is, feature extraction and multivariate analysis (Solka [22]; Brier
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& Hopp [5]), it had a distinctive characteristic in each step. In the first step of
this study, it employed an “appearance of strings” approach to natural language
processing in order to map the keywords and phrases that appeared in the documents
onto “topics”1 and thereby classify the documents. In the second step, it applied not
only symmetric but also asymmetric multidimensional scaling (MDS) models to the
data of the dissimilarity between topics.

I expected that these characteristics would contribute to elucidate the “implying–
implied” relationship between the topics, and thereby enable us to examine a social–
psychological hypothesis on the causal attribution in childrearing.

This study was also a reexamination of my previous study with my student
(Hasegawa & Kimura [11]),2 with the same dataset but different techniques.
Hasegawa and Kimura [11] had adopted ALSCAL. In this study, I applied Torg-
erson’s method, symmetric SMACOF, and the two asymmetric MDS models, that
is, slide vector model and drift vector model.

2 Attribution of Success and Failure Hypothesis

Our previous study (Hasegawa & Kimura [11]) found the contrast between positive
and negative feelings and that between personal and societal topics. It also found that
personal topics had tended to be proximate to positive attitudes while societal topics
had tended to be proximate to negative attitudes. We could interpret this pattern of
association from a social–psychological perspective on the causal attribution of suc-
cess and failure (Beckman [2]; Zuckerman [26]). People tend to attribute “success”
to internal factors, while they tend to attribute “failure” to external factors. Although
many scholars have used the term “self-serving bias” to describe these tendencies and
assumed self-enhancement and self-protection motivations to explain them (Miller
& Ross [16]; Böhm, & Pfister [3]), I would not like to delve into motivational pro-
cesses or to examine whether they are a kind of error or not. Rather, I will simply
hypothesize such tendencies and deduce predictions from the hypothesis.

Application of the idea of internal/external attribution to the case of Japanese
women’s experience in childrearing yields the following hypothesis:

– Hypothesis. Japanese women who have experienced strain in childrearing would
believe that it was caused by external factors such as institutional flaws, while
those who have not would believe that they are well-off owing to their personal
conditions.

From the hypothesis, the two predictions will follow:

1Since I use the word “topic” in nontechnical terms, I would not refer to Topic Modeling or Latent
Semantic Analysis.
2Hasegawa and Kimura [11] is a revised and abbreviated version of Hasegawa [10].
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– Prediction 1. Configurations obtained by variousmultidimensional scaling (MDS)
models will exhibit the contrast between positive and negative feelings and that
between personal and societal topics.

– Prediction 2. In the configurations, personal topics are proximate to positive feel-
ings while societal topics are proximate to negative feelings.

3 Method

The text data were taken from the emails that readers had submitted to a maga-
zine. In the first step of text analysis, that is, in feature extraction, I used a text
analytics software that is specialized to Japanese language and adopts an “appear-
ance of strings” approach to natural language processing. I adopted the coding rules
described in Hasegawa [10, Appendix] with some modification. These coding rules
map the keywords or phrases that appeared in the emails onto topics.

The second step of text analysis is multivariate analysis.Multidimensional scaling
(MDS) and correspondence analysis (CA) are often used to obtain a configuration
of topics in documents. I used MDS because it is superior to CA in the visualization
of data in the sense that a configuration plot obtained by MDS is much easier to
interpret than graphical representation of a result obtained by CA.3

In order to apply MDS models to the data obtained by the multiple classification
of emails with respect to the topics referred, we need to calculate a measure of
similarity between the topics and transformed it to dissimilarity. I employed ordinary
and asymmetric versions of Jaccard Similarity Coefficient to measure the similarity.

3.1 Data

I analyzed the same dataset as Hasegawa [10] and Hasegawa and Kimura [11] had
used. The sample (n = 102) was taken from the emails published in Is Childrearing
a Strain? Emails from 2,118 Readers, Special Issue of AERA, a Japanese magazine
(AERA Editorial Office [1]). The editorial office of the magazine had asked the
readers to submit their essays of this title via email. Hasegawa [10], considering
the aim of her study, selected the 102 essays according to the following criteria: (1)
the writer was female, (2) she voluntarily submitted her essay, and (3) it refers to
the conditions of childrearing in Japan at that time. Essays that only referred to the
conditions of childrearing in abroad or those that had been written at the request of
the editorial office were excluded.

3For cautions in interpreting graphical representation of a result obtained by CA, see, for example,
Brier and Hopp [5, p. 115]. For suggestions in interpreting a configuration plot obtained by MDS,
see, for example, Borg, Groenen, and Mair [4, Chap.7].
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3.2 Classification of Documents According to Mapping of
Keywords onto Topics

In order to map the keywords or phrases that appeared in the emails onto topics
and classify the emails according to the mapping, I used AUTOCODE for Windows
Ver. 1.03 (Sato [20, 21]), a text analytics software specialized to Japanese language.
AUTOCODE adopts an “appearance of strings” approach to natural language pro-
cessing. That is, it is only based on the appearance of strings (or sequences of char-
acters). Although it requires preparing a dictionary, a set of coding rules that maps
strings to topics, it does not involve morphological analysis, parsing, or machine
learning.

The most important advantage of this approach is that it is easy to handle the
expression of negation. For example, it is easy to distinguish between the four: happy,
not happy, unhappy, and not unhappy. A disadvantage of this approach, however, lies
in the fact that we need a dictionary customized to the specific data.

I used the coding rules described in Hasegawa [10, Appendix] with some modifi-
cation for minimizing the errors in classification and thereby increasing the accuracy.
Hasegawa [10] coded respondents’ feelings by intensively reading the emails instead
of using the results from AUTOCODE. In this study, I independently read them and
reattached codes for feelings to each of them.

3.3 Measurement of Similarity Between Topics

Based on the multiple classification of emails with respect to the topics referred, I
measured similarity between the topics, transformed it to dissimilarity, and applied
multidimensional scaling (MDS) models to the dissimilarity matrix.

Although many similarity measures have been proposed (Gower [8]; van Eck
& Waltman [24]), the most frequently used ones in text analysis are Jaccard Sim-
ilarity Coefficient and Cosine (Solka [22]; Brier & Hopp [5]). Cosine is, however,
mostly used tomeasure similarity between documents.We need tomeasure similarity
between topics here. For this purpose, Jaccard Similarity Coefficient is more appro-
priate than Cosine.4 Moreover, we can use a modified version of Jaccard Similarity
Coefficient to measure asymmetric similarity.

Thus, I used ordinary Jaccard Similarity Coefficient (Jaccard [12–14]) to measure
symmetric similarity between the topics appearing in the emails. Let C = {

ci j
}
be a

co-occurrence matrix, where ci j stands for the entry to the cell of the i th row and the

4van Eck andWaltman [24] argued that for the purpose of normalization of occurrence, probabilistic
measures of similarity, whose example is Association Strength, are more appropriate than set-
theoretical measures such as Cosine, Inclusion Index, and Jaccard Similarity Coefficient. Lee,
Pincombe, and Welsh [15] showed that the correlations predicted by the measures based on count
similarity models of human similarity judgment between documents, such as Jaccard Similarity
Coefficient and Cosine, tended to be lower than those predicted by LSA measures, that is, three
localweighting functions used in Latent SemanticAnalysis, and those achieved by human inter-rater
correlation.
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j th column in the matrix and represents the frequency of the documents that referred
to both i th and j th topics. The coefficient for the topics i and j , denoted by si j , is
defined as

si j= ci j
cii+c j j−ci j

in terms of the entries in the co-occurrence matrix. We can interpret this coefficient
as representing the conditional probability that both i th and j th topics appeared in a
document given the appearance of one of these topics in it, that is,

si j=P
(
Ai∩A j

∣∣ Ai∪A j
) = P

(
Ai∩A j

)

P
(
Ai∪A j

)

where Ak represents the set of documents in which the kth topic appeared.
Dissimilarity between the topics, denoted by δi j , is defined as 1 minus Jaccard

Similarity Coefficient, that is,
δi j= 1−si j

where the unity is equal to the theoretical maximum of the coefficient.
Similarly, I used Unilateral Jaccard Similarity Coefficient (Santisteban &

Carcamo [19]) to measure asymmetric similarity between the topics. The coefficient,
denoted by s∗

i j , is defined as

s∗
i j=

ci j
cii

Although Santisteban and Carcamo [19] presented an interpretation of this coef-
ficient in terms of the number of edges (or ties) between two vertexes (or nodes)
in a network, I prefer an alternative one. As in the case of original, symmetric Jac-
card Similarity Coefficient, we can interpret the unilateral or asymmetric version as
representing the conditional probability that both i th and j th topics appeared in a
document given the appearance of the i th topic, that is,

s∗
i j=P

(
Ai∩A j

∣∣ Ai
) = P

(
Ai∩A j

)

P (Ai )

In terms of this coefficient, I defined asymmetric dissimilarity as

δ∗
i j= 1−s∗

i j

3.4 Multidimensional Scaling

Hasegawa and Kimura [11] had adopted ALSCAL, a frequently used algorithm for
multidimensional scaling (MDS), in SPSS. In this study, I applied four MDSmodels
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to the data, using R packages and functions, instead. These models are Torgerson’s
method, symmetric SMACOF, slide vector model, and drift vector model.

Torgerson’s [23]method is a classical, metricMDSmodel. On the assumption that
the distance between a pair of objects is proportional to the similarity or dissimilarity
between them and the dissimilarity satisfies the metric axioms, this model estimates
the distances between all pairs of objects and obtains a configuration of the objects.
This model is implemented in the R function cmdscale. In this study, its result
was also used as the initial configuration in applying other three models that adopt
SMACOF, the majorization approach.

SMACOF (de Leeuw & Mair [7]; Groenen & van de Velden [9]) is an approach
to find an MDS solution by using majorization to minimize the loss function called
stress, which summarizes the discrepancy between the estimated distance and the
disparity,where a disparity is amonotonic transformationof the dissimilarity between
a pair of objects. I applied simple, symmetric SMACOF model to the data, using the
function smacofSys (or mds) in the R package “smacof.”

Slide vector model and drift vector model are asymmetric MDS models. Both
models assume decomposition of a dissimilarity matrix into a symmetric part and
an asymmetric part. The symmetric part is scaled with SMACOF algorithm to give
a configuration of points that represent the objects.

Slide vector model (Zielman & Heiser [25]) represents asymmetry in a dissimi-
larity matrix as one vector and locate it as an arrow in the configuration plot. Slide
vector model would be most useful when there is a systematic and uniform trend or
shift. I used the program ssmacof. R (de Leeuw [6]) instead of slidevector in the R
package “asymmetry.”

Drift vector model (Borg et al. [4, pp. 57–59]) uses the asymmetric part to attach
an arrow on a point. The direction of an arrow is determined by the sign of the
asymmetry between the point and another point. A drift vector is a resultant of all
the arrows from a point. Drift vector model would be most useful when there is a
systematic but not necessarily uniform trend. I used the function driftVectors in the
R package “smacof.”

I expected that these asymmetric MDS models would enable us to elucidate the
“implying–implied” relationship between the topics and to examine the attribution
of success and failure hypothesis and the predictions derived from it in detail.

4 Results

4.1 Frequency and Co-occurrence of Topics

Table1 shows the 13 topics that I selected from the results of classification with
AUTOCODE. Although our previous study (Hasegawa & Kimura [11]) had picked
up 14 topics as variables from the results of classification, I selected 13 of them and
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Table 1 Variables representing topics in the text

Variable name Description

Pretty “Children (or babies) are pretty”

Worklife Work–Life balance

Workplac Workplace system (e.g., childcare leave,
reentry to employment)

Admin Administrative agencies or policies;
Governments

School School; Kindergarten

Peer Earwigging from peers or neighbors

Husband Relationship with husband

Maturity Matured or acquired a new perspective through
childrearing

Help Help or support from others

Captivit Captivity; No freedom

Money Money

Negative Negative feelings for childrearing

Positive Positive feelings for childrearing

dropped “society in general.” This is because the topic was associated with other 13
topics in almost the same degree so that its distinctiveness was disputable.

The topic “workplac” refers to the workplace systems such as working hours, a
salary system, childcare leave, or reentry to employment. The topic “maturity” refers
to the respondent’s belief that she matured or acquired a new perspective through the
experience of childrearing.

Table2 shows the co-occurrence matrix C for the 13 topics. The diagonal repre-
sents the number of the emails in which each topic appeared.

4.2 Similarity and Dissimilarity Between Topics

With the entries in the co-occurrence matrix, I calculated ordinary Jaccard Similarity
Coefficient and Unilateral Jaccard Similarity Coefficient.5 The observed values of
the former are shown in Table3, and those of the latter are shown in Table4. These
similarity matrices were transformed into dissimilarity matrices.

5Since I modified some of Hasegawa’s [10, Appendix] coding rules and independently coded
respondents’ feelings, the co-occurrence matrix and the Jaccard Similarity Coefficient matrix differ
in part from those that Hasegawa [10] and Hasegawa and Kimura [11] used. Although Hasegawa
[10] did not show them, we can estimate them by referring to the frequency distribution for the
topics [10, p. 30, Fig. 4.2] and the observed four-point correlation coefficients between the topics
[10, p. 33, Table4.1].
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I will show the results of the application of four MDSmodels, that is, Torgerson’s
method, symmetric SMACOF, slide vector model, and drift vector model, to the
dissimilarity matrices.

4.3 Torgerson’s Method

The configuration obtained by the application of Torgerson’s method, a classical
metricMDSmodel, to the dissimilarity matrix, is shown in Fig. 1. The result was also
used as the initial configuration in applying SMACOF, the majorization approach.

On the one hand, the configuration suggested that there was a contrast between
positive feelings and negative feelings toward childrearing. This finding supported
the first half of Prediction 1. On the other hand, it also suggested that there were
three facets for the topics: that is, personal, interpersonal, and societal facets. The
topics “pretty,” “maturity,” “husband,” and “captivit” seem to belong to the personal
facet. “Admin” and “school” seem to belong to the societal facet. The topics “help,”
“peer,” “worklife,” “workplac,” and “money” seem to belong to the interpersonal
facet, which had not been expected by Prediction 1.

We should also note that the positive feelings seemed only proximate to “pretty”
and “maturity,” which are in the personal facets, while the negative feelings seemed

Fig. 1 Configuration plot by Torgerson’s method
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proximate to topics in all the three facets. The finding was more complicated than
Prediction 2.

4.4 Symmetric SMACOF

Figure2 shows the configuration plot of topics obtained by SMACOFwith the initial
configuration given by Torgerson’s method. Compared with the result of Torgerson’s
method, the differences in distances between the topics were seemingly reduced. The
overall pattern in positions of the topics, however, seemed almost preserved.

4.5 Slide Vector Model

Figure3 shows the configuration plot of topics obtained by slide vector model with
the initial configuration given by Torgerson’s method. The magnitude of the slide
vector was small. This suggested that there was not a uniform asymmetric trend
between the topics.

Fig. 2 Configuration plot by SMACOF (Stress = 7.406684)
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Fig. 3 Configuration plot by slide vector model (Stress= 8.128524, Slide-vector: (−0.013876473,
0.006437277))

4.6 Drift Vector Model

Figure4 shows the configuration plot of topics obtained by drift vector model with
the initial configuration given by Torgerson’s method. An arrow from a point repre-
sents a drift vector defined as a resultant of all the vectors that represent asymme-
try between a point and another point. We may think that a drift vector shows an
“implying–implied” relationship between topics in the sense that the topic at its initial
point tends to be implied by the topics near its terminal point.

The result of drift vector model suggested that the attribution of success and
failure hypothesis and the predictions derived from it were only partly supported.We
observed a clear bifurcation of attitudes into positive andnegative ones. Thiswaswhat
I had expected in the first half of Prediction 1. The facets, their association with the
feelings, and the relationship between the facets seemed, however, more complicated
than I had predicted. It would be more appropriate to assume three facets or tiers,
that is, personal, interpersonal, and societal ones, than to assume the dichotomy of
personal/societal facets. Moreover, the emails expressing positive feelings toward
childrearing tended to refer to only personal topics, while those manifesting negative
attitudes tended to refer to personal, interpersonal, and societal topics. In the former
group of emails, reference to “pretty” implied reference to the positive attitudes but
not vice versa, and in turn, reference to the positive attitudes implied reference to
perceived “maturity” but not vice versa. In the latter group, reference to personal



436 K. Kimura

Fig. 4 Configuration plot by drift vector model (Stress = 0.266841)

topics such as “captivit” and “husband” implied reference to interpersonal topics
such as “help” and “worklife,” but not vice versa. In turn, reference to interpersonal
topics implied reference to societal topics such as “school” and “admin,” but not vice
versa. Two topics, that is, “money” and “peer,” might be exceptional in the sense that
they seemed to belong to the interpersonal facet but the direction of the revealed
implying–implied relationship did not seem congruent to the predictions from my
hypothesis.

The resultant pattern of the vectors exhibited a “clockwise” flow of the implying–
implied relationships. This pattern suggested that the directions of the asymmetric
relationships are systematic but not uniform in the space. It is interesting to compare
the pattern with the “systematic trend” that Borg et al. [4, pp. 58–59] found in their
analysis of the Morse code confusion data provided by Rothkopf [18]. Their result
showed that the directions of the arrows expressing drift vectors were almost the
same, which means that the respondents in Rothkopf [18] failed to differentiate long
signals from short ones more often than vice versa.

5 Concluding Remarks

The results of this study only partly supported the attribution of success and failure
hypothesis and the predictions derived from it. Looking carefully at the configura-
tion plots, however, I found that there might be three facets or tiers, that is, personal,
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interpersonal, and societal ones. It seemed that the positive feelings toward childrea-
ring were only proximate to topics in the personal facets, while the negative feelings
were proximate to topics in all the three facets. Among the emails expressing nega-
tive feelings, reference to personal topics tended to imply reference to interpersonal
topics, and in turn, reference to interpersonal topics tended to imply reference to
societal topics.

There are limitations in this study. The sample size was small. The sample was
possibly biased owing to readers’ self-selection in their decision to submit an essay
to the magazine or the editorial office’s selection of essays to be published.Wemight
need to conduct a survey with a large-scale random sample of Japanese women and
ask the respondents to write an essay on the same theme to examine whether we can
generalize the findings.

From a methodological point of view, this study could be regarded as an attempt
to explore the applicability of various multidimensional scaling (MDS) models to
sociological or social–psychological phenomena. Okada [17] observed that a limited
number of MDS models had been used in sociological studies. As a reply to his
observation, I tried to apply some MDS models with which sociologists might not
be familiar. There is a lesson that the results taught us: Adopting an asymmetric
MDS model in text analysis will contribute to our understanding of the structure of
people’s attitudes. Drift vector model may be especially useful when the directions
of the asymmetric relationships between objects such as topics and concepts are
systematic but not uniform.
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Consensus or Dissensus in Occupational
Prestige Evaluation: A New Approach
to Measuring Consensus and Inter-group
Variations

Keiko Nakao

Abstract Numerous empirical studies of occupational prestige in the past several
decades have accumulated a great deal of knowledge about the ways in which people
evaluate the social standing of various occupations. One of the major findings is that
individuals in different social locations were found to provide similar responses in
their judgement about the occupational hierarchy in the society. At the same time,
however, the individuals do vary in their responses to a certain degree and the level
of agreement was found to be different in individuals with varying social status.
In this paper, a recently developed theoretical model of cultural consensus and its
related methods are shown to be useful in providing answers to whether the level of
agreement is high enough to call the prestige hierarchy a consensus or a collective
conscience. The application of these methods enables us to measure the portion of
prestige perception that is commonly shared by all individuals relative to the amount
of variation observed between subgroups and individuals.

Keywords Evaluation of occupational prestige · Consensus · Cultural consensus
model · Inter-group variations

1 Introduction

Numerous empirical studies of occupational prestige in the past several decades
have accumulated a great deal of knowledge about the ways in which people evalu-
ate the social standing of various occupations. Prior studies not only producedwidely
used scales of prestige and the socioeconomic index (SEI) for various occupations,
researchers have made efforts to investigate systematic properties of prestige scales
as well as how people evaluate social standing of occupations. The general empirical
findings point to that of stability. It is understood not only that different measur-
ing instruments produce very similar results, but also that the prestige hierarchy is
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remarkably stable over time (Hodge, Seigel, & Rossi [8]; Nakao & Treas [12]) and
consistent across societies (Treiman [16]). These results were shown in analyses
in which aggregated or constructed scales were compared. The consistency also has
been observed at the individual level indicated by a strong agreement among individ-
uals’ ratings. Individuals in different social locations were found to provide similar
responses in their judgement about the occupational hierarchy in the society. At the
same time, however, the individuals do vary in their responses to a certain degree and
the level of agreement was found to be different in individuals with varying social
status. Thus, the question still remains as to whether the level of agreement is high
enough to call the prestige hierarchy a consensus or a collective conscience. In this
paper, a recently developed theoretical model of cultural consensus and its related
methods are shown to be useful in providing answers to unresolved issues about
the prestige consensus. The application of these methods enables us to measure the
portion of prestige perception that is commonly shared by all individuals relative to
the amount of variation observed between subgroups and individuals.

2 Occupational Prestige as a Collective Conscience

The discussions of consensus in prestige judgements took off when strong inter-
rater correlations were found in several studies in the 1970s. For example, Balkwall,
Bates, & Garbick [1, 2] reported 0.745 as the average correlation of individuals’
judgements.While other researchers reported lower values of inter-rater correlations,
from 0.42 to 0.48 (Jencks et al. [10]; Goldthorpe&Hope [5]), theywere still regarded
as indicating substantial agreement among the raters. Challenging such view of the
prestige consensus, Guppy [6] argued that the degree of consensus varied according
to the social strata, and thus no collective conscience can be claimed. He pointed out
that the level of agreement is greater among higher status individuals than among
those who are in lower strata. Guppy and Goyder [7] further reported the differences
in the level of agreement based on education, occupation, and race of individuals.
Acknowledging such variations in agreement, however, Hodge, Kraus, and Schild
[9] contended that characteristics of evaluators never explain more than 25% of the
variance in prestige ratings and that they would be far less than variations within
subgroups. More recently, Wegener [17] reiterated the issue of prestige consensus
and the importance of investigating individual differences. Using the psychological
scaling techniques, Wegener found a polarization of judgments among higher status
individuals, while a lack of discriminating responses was found in lower social strata.
He suggested that this difference of variance in responses might attribute to the
difference in the level of agreement between various social groups.

The objective of this paper is to clarify unresolved issues about consensus in
occupational prestige evaluation. We adopted the conceptual basis of the cultural
consensus model and its related statistical techniques recently developed in psy-
chometrics and anthropology (Romney, Weller, & Batchelder [13]; Batchelder &
Romney [3]; Romney, Moore, Batchelder, & Hsia [14]). The paper proceeds in the
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following manner. First, after a brief explanation of the theory of cultural consensus
and its analytical approach, we demonstrate the way to measure the degree of con-
sensus in individuals’ perceptions of occupational hierarchy. Second, in an attempt
to assess the relative sizes of consensus versus dissensus, we measure the portion
of their view shared by all individuals and compare it to the amount of variation
that exist between subgroups based on some characteristics of individuals. Third,
we investigate the differences in the level of agreement. The data used in analyses
are from the occupational prestige module of the 1989 General Social Survey (GSS)
(Davis & Smith [4]).

3 Theory of Cultural Consensus and Analytical Approach

The approach presented in this paper follows the theory of cultural consensus, the
model first developed in the field of anthropology (Romney et al. [13]; Batchelder
& Romney [3]). In the effort to objectively elicit an aspect of culture that is not
directly observable, the theory of cultural consensus views culture (or an aspect of
culture) as information shared and stored in the minds of the society’s members.
It assumes that the correspondence between any two informants in their responses
is a function of the extent to which each shares the knowledge about the aspect
of culture being investigated, an idea that traces back to Spearman’s landmark 1904
article (Spearman [15]). The principle idea of this model, therefore, is to examine the
pattern of agreement among informants’ responses. It allows us to make inferences
about howmuch each informant shares the knowledge of the information constituting
culture, from which the aspect of the culture can be estimated.

We see occupational prestige similar to what anthropologists view an aspect of
culture as above. The respondents’ ratings of occupational status are subjective judge-
ments based on their perceptions about how occupations are hierarchically located
in the society. Like culture, occupational prestige ranking is an information shared in
the minds of the members in a society, which is not directly observable. If all respon-
dents rated the same way, i.e., in the case of a total consensus, we could say that
their responses constitute the social reality about the society’s occupational prestige
hierarchy, and that every member of the society shares such knowledge and responds
without error. In practice, of course, individuals’ ratings are not all the same. Vari-
ation in individuals’ responses could result from, aside from unavoidable response
error, either one of the following situations: (1) there is no single prestige hierarchy
on which the society’s members agree; (2) there is a single hierarchy of prestige as a
social reality that is commonly shared by themembers of the society, but all members
are not equal in the degree to which they share the knowledge about the common
pattern. Disagreement between any two individuals’ ratings could be attributed to
the difference in their understanding or knowledge about the social reality. Likewise,
the agreement between any two people’s responses is a function of how much each
shares the information about the society’s prestige hierarchy. Based on this model
of shared social reality and individuals’ social knowledge about the social reality,
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our approach is to examine the patterns of individuals’ agreement with each other.
Such information would lead us to find out (1) whether there is a single occupational
prestige rankings that people agree on, and if so, (2) how much consensus there is.

4 Measuring Consensus

We applied the statistical techniques developed for the model of cultural consensus
to the prestige ratings. The basis for the analysis is the inter-rater correlations, which
contain the information about the patterns of individual agreement. We used the rat-
ings of 40 occupations by 100 respondents randomly selected from the GSS sample,
thus a 100 by 100 matrix of correlations between pairs of subjects based on their
ratings of the 40 occupations. (See Appendix for 40 occupational titles.) Singular
value decomposition was performed on this correlation matrix in order to extract the
factors underlying the subject-by-subject correlation matrix. Eigenvalues for the first
four factors are shown in Table1.

As we observe in Table1, the first eigenvalue is overwhelmingly greater than
the rest of the eigenvalues. This is a strong indication of the existence of a single
underlying factor in the matrix of subject-by-subject correlations. In other words, the
respondents’ judgements show a strong agreement such that a single prestige order
of occupations can be elicited. This first factor alone accounts for 53% of variance
in the respondents’ ratings, while the other factors account for only 5% or less. To
validate this single factor, we examined its correspondence with the prestige scores
computed by the conventional manner, i.e., taking the mean of the ratings. The first
factor scores correlated with the conventional prestige scores at 0.998.

As for the degree of collective consensus, the first factor accounts for more than
half the variance—the remaining variance certainly containsmeasurement errors and
individual differences. In the next section, we will examine whether any systematic
rater’s characteristics explain any of the patterns of agreement, by assessing inter-
group variations.

Table 1 Singular value decomposition

Factor Eigenvalues % Cumulative%

1 53.04 53.04 53.04

2 5.11 5.11 58.16

3 3.99 3.99 62.14

4 3.37 3.37 65.51
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5 Measuring Inter-group Variations

In this section, an attempt is made to ascertain whether there are systematic differ-
ences among groups of individuals in their perceptions of occupational hierarchy.
We do this by analyzing the subject-by-subject correlation matrix based on their
ratings. The analytical methods we apply are based on the following assumptions.
First, the mean of subject-by-subject correlations within a group of individuals indi-
cates the extent to which a common shared pattern exists. Second, the correlation
between two individuals is the product of the correlation of each individual with the
shared societal pattern (Romney et al. [14]). These assumptions imply that the corre-
lation between two individuals, i and j, ri j , can be decomposed as a product of each
individual’s correlation with the collective pattern, ri j = rit r j t , where t denotes the
relevant shared pattern. An additional assumption is that there should be no negative
correlation among subjects.

Based on the assumptions stated above, we assess the degree of variation among
the groups of individuals sharing the same attributes. Here, we consider three charac-
teristics of raters, i.e., sex, educational level, and occupation, that are thought to affect
one’s view of occupation. First, let us examine inter-subject agreement between and
within groups of different sexes of raters. There are 51 male respondents and 49
females in our sample of 100. Table2 shows the mean subject-by-subject correlation
based on their ratings for male–male, female–female, and male–female raters.

The mean correlation among the male subjects is 0.422, while females show a
mean of 0.457, slightly higher than that of males. Females agree among themselves
more than the males do. The level of agreement as measured by the mean correlation
within a group indicates the extent to which the group members conform to (or have
the knowledge of) the society’s collective view of the occupational hierarchy. Our
data suggest that females seem to hold a slightly higher social knowledge about
the occupational rankings than males. According to the process models of cultural
consensus, the square root of the mean correlation within a group approximates
the average knowledge of the collective view (Romney et al. [13]; Batchelder &
Romney [3]). Thus, 0.650 for males and 0.676 for females would be the approximate
estimate of the amount of social knowledge an average male or female would share
with others of same sex.

Nowwe turn to analyze the between-group correlations, i.e., male–female correla-
tions. The mean is 0.433. Following the decomposition of the correlation coefficient,
ri j = rit r j t , we can interpret the square root of 0.433, i.e., 0.658, as the approximate
amount of social knowledge shared by both male and female groups. Comparing this
value to what we obtained above would give us the relative portion that is specific to

Table 2 Mean Inter-subject
correlation

Male Female n

Male 0.422 0.433 51

Female 0.457 49
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Fig. 1 Partitioning of the
view of occupational prestige
shared by males and females

the groups. From the above analysis, we obtained 0.422 and 0.457 as the means of
subject-by-subject correlations within groups, male and females, respectively. Since
we have different group sizes for males and females, we aggregate the two averages
weighted by their group sizes, which equals to 0.439. The difference between the
square root of this weighted mean, 0.663, and 0.658 obtained above would indi-
cate the incremental portion that is specific to the groups. The difference is 0.005
(= 0.663− 0.658),meaning that the group-specific portion ismerely 0.5%.The rest,
1− 0.658− 0.005 = 0.337, then make up for sampling and error variance. Figure1
graphically displays how the view of occupational prestige hierarchy is shared (1)
by all, (2) sex-specific, and (3) sampling and error variance.

The above partitioning helps us to evaluate the relative size of the inter-group
variation compared to the amount that is commonly shared. While 65.8% is com-
monly shared by both males and females, only 0.5% is attributed to the difference in
the raters’ sex.

Using the same logic, the inter-groupdifferenceswere examined in termsof groups
based on the raters’ educational levels and occupations. Individuals are grouped into
three categories of educational levels (Less than High School, High School, More
than High School) and two categories of occupations (White Collar and Blue Collar).
The mean inter-subject correlations for within- and between-groups are shown in
Table3. Based on these mean inter-subject correlations, we calculated the relative
amount of shared knowledge and they are summarized in Table4.

Table 3 Mean inter-subject correlations

Education Less than high school High school Above high school n

LT high school 0.159 0.293 0.340 17

High school 0.451 0.518 55

Above high school 0.623 28

Occupation Blue collar White collar n

Blue collar 0.387 0.428 39

White collar 0.470 58
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Table 4 Partitioning of the shared perception about occupational prestige

Sex Education Occupation

Share by all 0.658 0.646 0.654

Between group variation 0.005 0.035 0.013

Sampling and error variance 0.337 0.319 0.333

Table 5 Eigenvalues in % for different sample sizes

Factor Sample size
100 90 80 70 60 50 40 30 20

1 52.52 53.73 50.24 53.67 53.62 49.67 54.68 44.28 56.94

2 6.56 5.02 5.16 6.05 5.60 8.38 6.01 7.64 7.15

3 3.74 4.01 4.56 5.15 4.74 4.60 5.13 6.03 6.29

4 3.32 3.52 4.24 3.66 4.31 4.43 4.65 5.71 5.21

Both Tables3 and4 confirm that the inter-group variation is quite small, compared
to what is commonly shared by all. Sex and occupation (i.e., White collar vs. Blue
collar) only accounts for less than 1% (0.5% and 0.7%, respectively). Education
seems to make more difference than other two characteristics; however, its between-
group variation is merely 2.4%. The portion commonly shared across groups is
consistently high, all at the level around 65%. These results lead us to believe that
these characteristics of raters do not account for the difference in their view of
occupational prestige.

We notice in Table3 that the average inter-subject correlation for the respondents
with less than high school degree is a lot lower than those in other two groups (0.159
vs. 0.451 and 0.624).

6 On Sample Size

The analyses we have shown in the previous sections utilized a sample of 100 indi-
viduals randomly selected from 1166 respondents in the 1989General Social Survey.
We have chosen 100 for the sake of convenience in the calculation and we obtained
a convincing evidence for (1) the existence of single occupational ranking underly-
ing the agreement among individuals’ responses, and (2) the negligible inter-group
variations. We did, however, perform the same analyses even with smaller samples.
Random samples of sizes from 20 to 100 were drawn for comparison (the sample of
100 here is different from the one used in the previous analyses). Table5 shows the
first four eigenvalues in percentages of explained variance resulted from the singular
value decompositions for various sample sizes.
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Table 6 Analysis of inter-subject correlations for different sample sizes

Sample size

Factor 100 90 80 70 60 50 40 30 20

Mean correlation

Male–Male 0.431 0.431 0.394 0.381 0.560 0.343 0.426 0.321 0.077

Female–Female 0.444 0.448 0.493 0.524 0.447 0.457 0.502 0.338 0.626

Male–Female 0.434 0.436 0.441 0.439 0.495 0.389 0.463 0.337 0.263

# of males 48 44 39 32 27 24 14 15 8

# of females 50 46 39 38 32 24 25 14 11

Commonly shared 0.659 0.660 0.664 0.663 0.691 0.624 0.680 0.580 0.513

Sex-specific 0.003 0.003 0.002 0.019 0.000 0.008 0.015 −0.007 0.151

Error variance 0.339 0.337 0.334 0.318 0.309 0.368 0.304 0.427 0.336

We note from Table5 that the dominance of the first eigenvalue is consistently
observed for all samples of various sizes. This is a strong evidence of the existence
of single ranking underlying people’s perceptions about occupational prestige hier-
archy. To validate those extracted underlying factors, factor scores were computed
from each sample of various sizes and they were compared. The computed factor
scores correlated very highly among all nine samples of various sizes. For example,
the correlation between the factor scores from the sample of 100 and those of 20 was
0.980. The mean of correlations between all samples is 0.985, ranging from 0.964
to 0.997. They also correspond with the prestige scores computed from all 1166
subjects, the mean correlation=0.992, ranging from 0.977 to 0.996. These results
indicate the high degree of consensus and robustness in the responses.

Table6 displays results of the analysis of inter-group (males vs. females) variation.
We observe that for smaller samples (i.e., n = 20 and n=30), the pattern of within-
versus between-group mean correlations is not consistent with the larger samples.
The mean is affected by a few outliers, and the smaller the sample and group sizes,
the greater the effect of the outlier values on the mean. We would also expect greater
sampling error for smaller samples. For the sample of size 60, we notice that the
males have higher agreement with each other than females, which is the opposite of
the patterns of the rest. In terms of the pattern of partitioning of shared knowledge,
samples of 80, 90, and 100 show a very similar pattern, two-thirds are commonly
shared, less than 1% is group-specific, and the rest is error. As expected, the portion
attributed to sampling and error variance is greater for the two smallest samples.
The negative value of sex-specific portion in the sample of 30 (−0.0065) would be
attributed to the violation of assumptions about negative inter-subject correlations.
Few cases of negative inter-subject correlations produced a noticeable effect on small
samples.
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7 Differences in the Level of Agreement

Previous empirical studies found that the level of agreement differs according to the
social status of the respondents. Higher status individuals agree more to each other
than those of lower status. Our analysis confirms such phenomena. If we measure
individual’s social status by his/her educational level and occupation, the results
shown in Table3 concur this difference in the level of agreement. Those who hold
less than high school degree correlates with each other on the average of 0.1593,
while those with high school diploma agrees at 0.4508, and the mean of those with
higher education is 0.6230. Similarly, individuals with blue-collar occupations show
a lower mean correlation (0.3867) than those who hold white-collar jobs (0.4701).

One of the explanations for this difference was offered by Wegener [17]. He
suggested that higher status individuals tend to polarize the difference in occupa-
tional status, while those with lower status do not differentiate statuses of various
occupations. This polarization tendency would possibly be responsible for higher
correlation observed among high-status individuals. As Table7 shows, however, our
data did not confirm his proposition. Standard deviation and range, both of which
are measures of variation in individuals’ ratings of 40 occupations, were higher for
lower status individuals than those of higher status, the opposite of what Wegener’s
hypothesis would predict. (The differences in means were statistically significant at
1% for educational level, while differences between occupational categories were
not significant even at the 5% level).

We offer an alternative interpretation. The difference in the level of agreement
between groups is related to the difference in the level of social knowledge of the
respective group members about the relevant issue in question. According to the
model of consensus on which our analyses are based, a correlation between two
subjects, i and j, is a product of two components: how much i shares the society’s
collective view and how much j shares it. Therefore, if a certain social group, Group
A, produces higher inter-subject correlations than another social group,GroupB, then
members of Group A tend to have higher level of social knowledge than member of
Group B.

In the model of cultural consensus, each individual’s level of cultural knowledge
can be estimated from the loading on the first factor. Though our data do not strictly
satisfy all the assumptions for the mathematical model of consensus to apply, we

Table 7 Standard deviation and range of 40 ratings

Mean S.D. Mean range

LT high school 2.27 7.59

High school 2.07 7.27

Above high school 1.79 6.32

Blue collar 2.12 7.33

White collar 1.95 6.83
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Table 8 Association with the measure of individuals’ social knowledge

Correlation Sig. n

Education in years 0.303 0.002 100

Occupational prestige 0.206 0.043 97

Respondent’s income −0.074 0.538 72

Family income 0.100 0.328 98

Mean S.D. n

LT high school 0.434 0.482 17

High school 0.672 0.255 55

Above high school 0.784 0.143 28

Blue collar 0.625 0.300 39

White collar 0.689 0.310 58

Male 0.648 0.283 51

Female 0.678 0.325 49

feel that the data conform to the model satisfactorily enough to assume the loading
on the first eigenvector is a good approximation of individuals’ social knowledge
about occupational status. Table8 describes the association between the loading and
selected characteristics of individual.

The loading on the first eigenvector correlates positively with individual’s educa-
tional level. Individuals with more education tend to have higher social knowledge
about the occupational hierarchy than those with less education. Individual’s occu-
pational status does seem to relate to his/her social knowledge, as indicated by a
significant correlation with occupational prestige; however, the association is not as
strong as that with education. Individual’s economic status (both his/her own income
and family income) as well as sex did not differentiate the level of social knowledge.

When three variables (sex, education, and occupation) were considered simulta-
neously, controlling for age, to predict the values of the loading, they were all shown
to have independent effects (significant at 5%). This is consistent with our previous
findings shown in Tables2 and 3. Inter-subject correlations are higher among females
than males, among more educated individuals than less educated, and among those
with white-collar than blue-collar jobs. Thus, the mean inter-subject correlation can
also be seen as an indication of the level of social knowledge among a group of
individuals.

The above results suggest that the difference in the level of agreement between
groups of varying social status might be attributed to the difference in the level of
social knowledge they share. Individuals with higher education tend to have higher
level of social knowledge about the structure of occupational status in the society.

In order to substantiate the validity of the index of social knowledge,we performed
the following analysis. In the occupational prestige module of the 1989 General
Social Survey, two fictitious titles were included; “Persologist” and “Fooser”. It was
an experiment to find out to what extent people use “guessing” when they were asked
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to rate the status of an occupation which does not exist. Of 98 respondents who were
asked to rate “Persologist”, 46.9% gave a rating, and 52.9% of 119 respondents rated
“Fooser”. Regardless of the ratings given, if they rated at all, they were incorrect
answers indicating the lack of knowledge about the existence of such occupations.
Not giving an answer could mean either (1) the respondent knew such an occupation
does not exist in the society (i.e., correct answer), or (2) he/she is not sure if it existed,
but certainly does not know the social status of such an occupation. Thus, not giving
an answer does not necessarily mean having the correct knowledge; however, the
giving an answer does indicate the lack of knowledge.

In the GSS, these fictitious titles were not rated by all respondents in the sample,
but each was rated by a different subsample of respondents, who also rated a set
of 40 titles we used in our analyses in the previous sections. We applied the same
methods as above and analyzed the ratings of the 40 occupations and examined
whether the index of social knowledge derived from the analyses would be related to
their answers on the fictitious titles. For both subsamples, we found a single factor
structure underlying the pattern of agreement among the subjects, confirming the
consensus (the first eigenvalues account for 54.04 and 52.87%). The mean value of
the first factor loadings, the index of social knowledge,was found lower for thosewho
rated the fictitious titles (i.e., incorrect answer) than for those who did not, both for
“Persologist” and “Fooser”. The loading on the first vector was also associated with
the respondent’s educational level and occupation. It was greater for more educated
and for those with white-collar occupations. (The associations were all statistically
significant at the 5% level, except the significance level was 6% for the association
between the loading and the educational level for “Fooser”.) These results provide
an additional validation of the index of social knowledge as derived in our analyses.

8 Summary and Discussion

In this paper, we applied a theory of cultural consensus in conceptualizing the collec-
tive conscience of occupational prestige. Applying the statistical methods developed
for the cultural consensus model and its related methods enabled us to clarify some
unresolved issues about consensus in occupational prestige evaluations. The analyses
focused on investigating the patterns of agreement among individuals’ ratings.

Our analyses found the following. First, it showed that there is a single occupa-
tional status ranking underlying people’s perception about occupational prestige. The
extracted single factor corresponds to the widely used conventional prestige scores,
confirming the validity of the underlying factor. Furthermore, a single underlying
factor is found even from small samples, as small as 20, that are randomly drawn.
This suggests that the level of consensus is high enough that only a small sample is
needed to elicit the aggregate view of the occupational hierarchy.

Second, variations between groups based on the raters’ characteristics are neg-
ligible, compared to how much they share in their view of occupational prestige
hierarchy. Our analyses showed that less than 1% was attributed to the difference
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between groups based on sex and occupation. Groups of different educational levels
account for only 2.4%. On the other hand, the portion of shared view by all subgroups
of individuals is shown to be around 65%. Since one’s location in the social structure
aswell as one’s sex has been shown to influence somany other attitudes and behaviors
of individuals, this is a remarkable level of agreement between groups. In fact, people
are shown to have about the same level of agreement on their cognition of semantic
structures, such as colors and emotion terms. By comparing different cultures (U.S.
and Japan), Romney et al. [14] found that 63% of semantic structure is universally
shared in emotional terms and 15% is culture-specific. For the semantic domain of
colors, Moore, Romney, and Hsia [11] found 70% being universally shared and only
1% language-specific. The view of the social order, i.e., occupational prestige, is
shared by all members of the society as much as people share such cognitive domain
of semantic structures.

Our third finding is that the level of social knowledge is related to the level of
his/her education, where social knowledge is defined as the degree to which an
individual shares the knowledge of the collective view of the society. Our method
allowed us to estimate each individual’s level of social knowledge, and it was shown
positively related to his/her educational level. Individuals with higher educational
level havemore knowledge about the social order than thosewith lower education do.
Based on our model, this offers an explanation for the prior empirical observations,
i.e., the degree of consensus is higher among individuals of higher social status than
among those in lower level of social strata.

As summarized above, the facts that there is a single ranking extracted, and that
little variation was found between social groups, lead us to believe that the occupa-
tional prestige hierarchy is a collective conscience. If we conceptualize social reality
to be something that is created in the minds of the members of the society col-
lectively, then occupational ranking extracted by the above methods may be called
a social reality. The difference in the level of agreement found between individuals
can be attributed to the difference in individuals’ social knowledge about such reality
collectively created by the members of the society.

The theory of cultural consensus and its related statistical techniques that we
used in this paper can be useful in investigating various social views that is not
directly measurable. When this model was applied to the situations in which correct
answers are known to the researchers, but not to the subjects, the answers that were
estimated from the inter-subject agreements were found to closely approximate the
correct answers (Romney et al. [13]). Sociologists often conduct surveys to find out
what individuals’ perceptions are about various social phenomena. Applying these
analytical approach and the methods shown here would allow us to measure the
degree of consensus and variations among groups and one can determine whether
such views can be considered as a collective conscience created in the minds of
members of the society.
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Appendix: Occupational Titles and Their Prestige Scores

Occupational title Prestige score
1 Accountant 65.38
2 Airplane mechanic 52.86
3 Assembly line worker 34.74
4 Bartender 24.53
5 Bill collector 24.3
6 Baker 34.86
7 Banker 63.25
8 Bus driver 32.07
9 Bank teller 43.28
10 Barber 35.71
11 Chemist 73.33
12 Cook in a restaurant 34.28
13 Clergyman 67.13
14 Cashier in a supermarket 32.56
15 Department head in a state government 75.55
16 Farm owner and operator 52.76
17 Filling station attendant 21.36
18 Gardener 28.57
19 General manager of a manufacturing plant 62.42
20 House painter 33.91
21 Housekeeper in a private home 33.93
22 Insurance agent 46.37
23 Janitor 22.33
24 Lawyer 74.77
25 Locomotive engineer 48.13
26 Lunchroom operator 27.06
27 Logger 31.10
28 Manager of a supermarket 48.31
29 Medical technician 68.40
30 Musician in a symphony orchestra 58.90
31 Public Grade School teacher 64.08
32 Policeman 59.16
33 Post office clerk 42.20
34 Superintendent of a construction job 57.32
35 Shipping clerk 32.71
36 Secretary 46.08
37 Saw sharpener 22.75
38 Telephone solicitor 21.54
39 Travel agent 41.26
40 Welder 41.89
Source Nakao and Treas [12]
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People and Trust

Ryozo Yoshino

Abstract This chapter introduces a study of peoples’ sense of trust in a paradigm
of longitudinal and cross-national comparative survey, called CULMAN (Cultural
Manifold Analysis). Firstly, I explain a history of the survey paradigm developed
in the Japanese National Character Survey (JNCS) and the related cross-national
survey for more than the past six decades. Secondly, fundamental social values of the
Japanese and interpersonal trust as identified in the JNCS are summarized. Thirdly,
a cross-national analysis of interpersonal trust and institutional trust is presented.
Finally, I present some comments for future research.

Keywords Cultural Manifold Analysis (CULMAN) · Science of Data · Sense of
trust · Japanese National Character Survey · Asia-Pacific Values Survey

1 Introduction: Longitudinal and Cross-National Surveys
of National Character by ISM

This chapter introduces a study on longitudinal and cross-national comparative sur-
veys by the Institute of Statistical Mathematics (ISM) over the past 65 years (see
Table1). The survey research covers many theoretical and methodological issues.
Here I focus on peoples’ sense of trust. The background and the significance of this
study are as follows.

The ISM has been conducting a longitudinal nationwide social survey called the
Japanese National Character Survey (JNCS) every 5 years since 1953 (Mizuno et al.

This chapter is a shorter version of Yoshino [32] adapted for this book, with some updated
data. See Yoshino [32], Yoshino et al. [36] and their references for detailed data with the
following websites. http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html (Surveys) http://www.
ism.ac.jp/~yoshino/index_e.html (Cross-national Surveys) http://www.ism.ac.jp/editsec/kenripo/
contents_e.html (Survey Research Report).
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Table 1 List of Main Surveys on National Character Conducted by ISM

1953–present Japanese National Character Survey (every 5 years)
(The most recent survey has been conducted in 2018.)

1971 Japanese Americans in Hawaii

1978 Honolulu residents and mainland Americans

1983 Honolulu residents

1988 Honolulu residents

1987–1993 Seven-Country Survey

UK, FRG (West Germany) and France (1987), USA and Japan (1988),
Italy (1992) and The Netherlands (1993)

1991 Japanese Brazilians in Brazil

1998 Americans of Japanese ancestry on the US West Coast (Seattle and Sant Clara)

1999 Honolulu Residents in Hawaii

2002–2005 East Asia Values Survey (EAVS)

Japan, China (Beijing and Shanghai) and Hong Kong (2002), Taiwan and South
Korea (2003), and Singapore (2004)

2004–2009 Pacific Rim Values Survey (PRVS)

Japan, China (Beijing and Shanghai) and Hong Kong (2005), Taiwan and South
Korea and USA (2006), Singapore and Australia (2007), and India (2008)

2010–2014 Asia-Pacific Values Survey (APVS)

Japan and USA (2010), China (Beijing, Shanghai), Hong Kong and Taiwan
(2011), South Korea, Singapore and Australia (2012), and India and Vietnam
(2013)

(See http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html for the ISM Surveys)

[16]). By the term “national character,” we refer to characteristics reflected in peo-
ples’ response patterns in questionnaire surveys (cf. Inkeles [13]). The survey covers
various aspects of people’s attitudes and opinions in their daily lives. This research
was closely related to the establishment of a scientific system of public opinion
polling for the development of post-World War II democracy in Japan (Yoshino [32,
33]; Yoshino, Hayashi, & Yamaoka [35]). Stimulated by this survey, the now well-
known surveys such as ALLBUS in Germany, the European Values Survey and the
Eurobarometer in the EU, and the General Social Survey (GSS) in the USA have
been initiated.

Since 1971, the JNCS has been expanded to cross-national surveys for a more
advanced understanding of the Japanese national character in the context of compara-
tive study. Our final goal is to develop a statistical study of civilizations that will give
us fundamental information for the peaceful development of the world, under the
paradigm of “Science of Data” (Yoshino & Hayashi [34]). Here, the Science of Data
means a data-based exploratory and wholistic approach by which we overview a sur-
vey process starting from a survey design, preliminary survey, data collection based
on statistical sampling survey, data analysis, to final report for policymaking. And, if
necessary, we repeat the process and extend it to longitudinal survey or cross-national
survey. Collecting data, we try to present multifaced survey data in order to facilitate

http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html
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the understanding of the reality. This is closely related Tukey [24]’s “Exploratory
Data Analysis” or Benzecri [2]’s “Correspondence Data Analysis”, although these
three were independently developed.

Cross-national survey must overcome multi-faceted methodological problems
involving, e.g., different languages, different statistical sampling methods, and dif-
ferent peoples’ general response tendencies. There is no a priori knowledge regarding
how these varying conditions influence peoples’ responses even in the cases where
there is no substantive difference between the peoples. Thus, an important task for our
study is to investigate those conditions under which meaningful cross-national com-
parability of social survey data is guaranteed. Many findings have been reported in
our past publications (Hayashi [7]; Hayashi et al. [9]; Kuroda [15]; Yoshino [27–33];
Yoshino & Hayashi [34]; Yoshino, Hayashi, & Yamaoka [35]).

In our search for conditions that could assure meaningful cross-national compara-
bility of social survey data, we decided at the onset that a comparison of two nations
(or groups) with some similarities (e.g., the Japanese in Japan and Hawaii residents
with Japanese ancestry) would be more meaningful than attempting to compare two
totally different nations (or groups). Some nations (or groups) share certain com-
mon features such as race or language. Therefore, they provide meaningful links for
comparison. Extending these links may eventually create a chain for global cross-
national comparison. By developing the idea of spatial comparison in relation to
temporal and thematic comparisons, we eventually have formulated our methodol-
ogy called Cultural Linkage Analysis (CLA) which incorporates (1) spatial linkages
of cross-national comparison; (2) temporal linkages inherent in longitudinal analy-
sis; and (3) item-structure linkages inherent in the commonalities and differences in
item response patterns within and across different cultures (e.g., on modernization,
religious attitudes, work values, etc.) (see Fig. 1). Furthermore, this has been devel-
oped as a paradigm of Cultural Manifold Analysis (CULMAN), which introduces
hierarchical structures into the three types of linkages within the CLA framework
(Yoshino [28]). For cross-national comparison, a global map consisting of a set of
local charts (corresponding to links of CLA) may be constructed. Each local chart
covers a particular area or region, and some of these may partially overlap. The
whole set of charts covers the globe. The set of charts may compose a sort of hierar-
chical structure, where each level of charts may correspond to a certain expanse of
coverage (e.g., Japan, Asia, Eurasia, or the world), and the larger chart corresponds
to the higher level. Furthermore, the larger chart may be associated with the less
restricted cross-national scalability. In this approach, the concept of a spatial chart
can be extended to both the temporal and item-structure links.1

As for the study of trust, although there are various definitions of “trust,” they may
be roughly classified as “trust in transactions” or “trust in normative philosophy”

1This approach may be contrasted to Inglehart’s World Values Survey that covers culturally diverse
countries worldwide, using a single set of question items. There are some significant differences
between his model and CULMAN. For example, (1) Inglehart’s cultural map classifies the world
by a set of clearly classified cultural zones with definite boundaries, but a cultural manifold may
consist of overlapping charts with a hierarchical structure and each chart may expand or shrink or
merged with the others over time.
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Fig. 1 Cultural Linkage Analysis (CLA). An example of spatial linkage. Extension of comparisons
of local pairs will lead to a global comparison. Each neighboring (overlapping) pair of charts
corresponds to a certain questionnaire (a set of question items). Longitudinal Survey: Japanese
National Character Survey(JNCS) (“Nihon-jin no Kokkumin-sei Chosa”)

(Hosmer [12]). These may be closely related to Uslaner [25]’s distinction between
“strategic trust” and “moralistic trust.” Zucker [41] points out three methods for the
production of trust: (1) process-based trust tied to past exchanges; (2) characteristic-
based trust tied to personal characteristics, such as family background and ethnicity;
and (3) institution-based trust tied to formal societal structures. Shapiro [22] criticizes
the third category because he believes that trust cannot be institutionalized. Further,
Zucker [41] claims that trust is not directly measurable.

Although the Zucker’s three categories of trust aremutually interrelated, my focus
in this study is mainly on the second, i.e., trust based on personal characteristics.
Besides, I pay much attention to the ways people’s trust appears in social survey
data under the influences of culture and general social values as well as general
response tendencies due to gender or ethnic differences. See Yoshino [33] for more
explanation on background of our research.

2 Social Values and Interpersonal Trust

Some researchers say that “trust” is not directly measurable. Fukuyama [5], for
example, suggests to use a measure of distrust such as rates of divorce or murderer
which are directly measurable. There may be no universal scale on sense of trust
beyond differences in cultures and time. Or even if there is such a scale, it may not be
linear with respect to various factors (cf., Yoshino [27]; Yoshino & Tsunoda [39]). I
believe, however, that people’s responses in questionnaire surveys can reveal certain
aspects of their sense of trust, if we can adequately analyze the following: (1) the
time series patterns or cross-national patterns of responses, (2) possibility of nonlinear
correlations between “trust” and other social variables (e.g., class, education, income,
subjective health, etc.), and (3) general response tendencies associated with genders,
nations, and personality types.
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2.1 Fundamental Dimensions of Japanese Social Values

Hayashi [7] and Hayashi and Hayashi [8] show that three dimensions underlie the
Japanese national character: (1) “Giri-Ninjyo” interpersonal relationship, (2) con-
trast between the modern versus tradition in their way of thinking, and (3) religious
attitudes (or heart/mind). Here “Giri” represents the obligation to uphold social duties
and “Ninjyo” represents the more visceral warm-heartedness.

The Japanese shows a particular attitude distressed in balancing “Giri” and “Nin-
jyo” on theGiri–Ninjyo continuum in their interpersonal relationships. Overall, basic
Japanese interpersonal attitudes have been stable, at least over the last six decades,
and probably much longer. Most likely, the basic interpersonal attitudes concerning
human bonds, sense of happiness, life satisfaction, optimism, etc. tend to be stable in
any country over time (Yoshino &Osaki [38]). On the other hand, certain aspects are
sensitive to changes in economic or political conditions and more or less vary in the
short term inmost countries. In the study of JNCS data of 1953–2008, Sakamoto [21]
points out remarkable changes of the response patterns in the periods of 1973–78,
1988–93, and 1998–2003. In all those periods, we have seen sudden changes of
economic conditions due to, respectively, the oil shock, the collapse of bubbling
economy, and the Asia Financial Crisis.

As for the second dimension, the Japanese had long been facing a sort of emotional
and institutional conflicts between the modernization (effectively Westernization or
Americanization) and the maintenance of Japanese tradition since theMeiji Restora-
tion of 1868. In those days, the Japanese faced a situation necessarily to master
Western science and technology and to adapt it into a Japanese style for national sur-
vival (security and prosperity). This situation was called as “Wakon–Yousai” (i.e.,
Use Western technology with Japanese spirit). This enduring effort had underlined
the dimension of the traditional versus modern orientation in the Japanese way of
thinking, at least, until the early 1970s or so. The then younger generation born more
than 10 years after the end of World War II started to show some significant change.
Their response patterns looked conservative on nature, science, and technology, so
some people called it “the return to tradition.” The conservative attitudes looked a
reaction to rapid industrial development and environmental changes in the 1970s
or so.

Since signs of generational changes appeared around 1978, the Japanese ways of
thinking became more complicated than ever. Since the early 1990s, Japan has been
in a period of transition from the established social system to a system of a highly
advanced information age. Parallel to the world order change after the end of cold
war, this situation brought disruption not only to the fields of science and technology
but also to the fields of economics and politics under the name of “globalization.” In
this period of confusion, the majority of Japanese people came to distrust traditional
systems such as banking and bureaucracy as well as the legislature, police, etc.
(Yoshino [27]).

As for religion, about one-third of the Japanese have religious faith but most of
the Japanese think that religious heart/mind is important (Hayashi & Nikaido [10];
Mizuno et al. [16]). In the world-wise secularization after the WWII up to the end of



458 R. Yoshino

cold war, the Japanese is not an exception on this trend, but their religious heart/mind
seems not much changed. For more advanced arguments, we may need to face some
significant differences of religion between the East and theWest (Hayashi &Nikaido
[10]).

2.2 Interpersonal Trust of the Japanese

The past decades have developed psychological studies of measures of interpersonal
trust. Among others, a set of three items from the GSS has been used to measure
people’s sense of trust (Uslaner [25, 26]; Yoshino & Osaki [38]). Although the GSS
started as a sort of American version of the JNCS, we have adopted the three items
from the GSS for our survey since 1978. They are stated as follows (for the Japanese
questionnaire, see http://www.ism.ac.jp/kokuminsei/index.html2).

Q36. Would you say that, most of the time, people try to be helpful, or that they
are mostly just looking out for themselves?

1. Try to be helpful, 2. Look out for themselves.
Q37. Do you think that most people would try to take advantage of you if they

got the chance, or would they try to be fair?
1. Take advantage, 2. Try to be fair.
Q38. Generally speaking, would you say that most people can be trusted or that

you can’t be too careful in dealing with people?
1. Can be trusted, 2. Can’t be too careful.
The source of these items was obtained by Rosenberg [20] selecting five items

among hundreds of items when he constructed a Guttmann scale called “Faith-in-
People Scale” with a regeneration rate of 92% in a student survey. The items were on
trustworthiness, honesty, goodness, genericity, and brotherliness. These items were
used for research by Almond and Verba [1] and others, and then the ISR survey
(the Survey Research Center, the University of Michigan) and the GSS (NORC, the
University of Chicago). In the process, those items have been gradually modified and
the abovementioned three items with binary response scales are survived (Uslaner
[26]).

Each of the three items is supposed to capture somewhat different aspects of
trust. That is, Q36 is related to trust in neighbors (or the norm of reciprocity), Q38
is related to general interpersonal trust, and Q37 is concerned with something in
between the other two items. Our data repeatedly demonstrate that Q37 and Q38
are more correlated for the Japanese, whereas Q36 and Q37 are more correlated for

2Throughout this paper, codes such as Q36 correspond to the common item code of the APVS
questionnaire. For the exact wording of items and the precise data, see http://www.ism.ac.jp/editsec/
kenripo/contents_e.html or http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html.As forQ38, there
are slight differences in wording between our cross-national Japan survey and the Japanese National
Character Survey. In the process of translation and back-translation check tomake a Japanese version
of the cross-national survey questionnaire, we ended up with these two versions. This difference
may produce some percentage differences in the response distributions, but the overall pattern is
stable.

http://www.ism.ac.jp/kokuminsei/index.html
http://www.ism.ac.jp/editsec/kenripo/contents_e.html
http://www.ism.ac.jp/editsec/kenripo/contents_e.html
http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html


People and Trust 459

Fig. 2 Percentages of positive responses of GSS trust items (Q36, Q37, and Q38) and percentage of
positive response to all the three items in Japan. The data are from the Japanese National Character
Survey, except the 1988 data from the Seven-Country Survey. Note Some papers, such as Yoshino
[30, Fig. 1] and Yoshino [31, Fig. 7.3], included an error in the 1978 data, but it has been corrected
here

Fig. 3 Percentages of positive responses of GSS trust items (Q36, Q37, and Q38) and percentage
of positive response to all the three items in USA. The data are from the SPSS format of GSS
(downloaded from the website on May 23, 2019)
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Americans. Some countries such as India may consistently show unique patterns
of correlations, whereas other countries such as South Korea may show less-stable
patterns over years. Yoshino [32] gives more details of cross-national differences on
the three pairs of correlations between the three items.

The response distribution for the Japanese over the past decades (1978–2018) is
shown in Fig. 2. As a measure on a sort of “total interpersonal trust,” I often use the
percentage of those who choose positive categories to all of Q36, Q37, and Q38.
(Because Q36 was missing in some of our past surveys, I sometimes use also the
percentage of those who gave positive answers to both Q36 and Q38. The rankings
on the two items and on the three items are mostly consistent over the countries/areas
where the three items were used (See Fig. 4).

On the measure of “total interpersonal trust,” both the Japanese and Americans
(Fig. 3) have been fairly stable but the Japanese may be more stable than Americans,
at least during 1983–2008. We need to pay attention to the changes in 1978 and in
2013. The Japanese experienced a nationwide panic trying to hoard necessities for
their daily lives after the oil crisis and the Nixon shock (i.e., the unilateral cancella-
tion of the direct international convertibility of the US dollar to gold) around 1973.
Necessarily, this would have downgraded mutual trust. On the other hand, in the
disaster of the Great East Japan Earthquake of 2011, people run to the devastated
area from all over Japan to help the suffered people. Still under the lasting economic
depression, many people considered how they could contribute to recovery of the
area. Comparing to those suffered in the great disaster of earthquake and the suc-
ceeding nuclear plant accidents, all the Japanese must have felt that they must be
satisfied with their lives and have to appreciate mutual assistances. Naturally, this
would have raised mutual trust.3 If Q36, Q37, and Q38 are separately studied, the
Japanese data also show more changes over the years. The changes may confirm
that the economic and political structural reformation damaged the Japanese sense
of trust, roughly, during 1993–2008. Since the postwar time of WWII, the life-long
employment system of Japan provided for better job security—workers’ salariesmay
become lower, but they can’t be so easily fired. This may explain the higher levels
of trust (i.e., the relative stability of response patterns on Q36, Q37, and Q38) found
in the Japanese samples than among the American ones, at least during 1983–2008.

But, in the early 1990s, the reformation under “globalization” started to force the
Japanese to change economic, political, and social systems, looking for efficiency
or internationalization disregarding of the Japanese structures rooted in historical
background or culture. The change of the social systems attacked even interpersonal
systems of family, school, and workplace, disturbing people’s heart and mind. The
“lost two decades” since the collapse of bubbling economy around 1991, after all,

3For the study of longitudinal survey data, as well as cross-national surveys, we need to be careful
of changes of valid questionnaire returns over decades. Generally, respondents who participated
in a survey might be biased to be more trustful than refusers. Thus, we tend to get more trustful
respondents in surveys of the lower response rates. For the change of response rates of the JNCS
over six decades, see: https://www.ism.ac.jp/kokuminsei/en/page9/page13/index.html. Also see
Yoshino [33] for possible misunderstanding of longitudinal data on Japanese high school students’
happiness.

https://www.ism.ac.jp/kokuminsei/en/page9/page13/index.html
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resulted in confusions and failures not only in the Japanese systems but also in
foreign banks and commercial companies which attempted to take advantage of the
opportunities in Japan. Meanwhile, the government has lost people’s trust in the
national pension system. Senior people rely on younger people for future financial
support, but the population of younger generations has been decreasing, and the
younger are lessmotivated to paypension costs, in considerationof the balance.These
situations, originally due to distrust on governmental institution, have necessarily led
to a gap of consciousness on social institutions between the young and the senior
people.

Incidentally, the new graduates during, roughly, 1993–2004 are called “Syusyoku
Hyoga-ki Sedai” (Ice Age Generation of Job Market) or “lost generation” because
they faced remarkable difficulties to get regular job positions under the rapid reces-
sion. They are now in their 30s or 40s, but still face difficulties of getting positions
of regular employees, in spite of recent economic recovery. Because Japanese job
market is mainly for new graduates, those of Ice Age Generation meet much more
disadvantages than younger graduates. At last, the government started amending
the situation, demanding the Japanese business world to employ them as regular
employees.

Looking back over the last 30 years, during the prosperity of the 1980s, therewas a
shift of youngmen’s social values toward individualism and then personal preference
(give priority on personal matters). But the structural reforms of the 1990s led to the
economic recession and the departure from lifetime employment. As a reaction,
human relationships in the workplace seem reconsidered (regression to tradition),
among others, in young people.

Yoshino [27] discussed several aspects of trust, such as trust in politics, sci-
ence, and technology, as well as the work ethic of the Japanese. He concluded that
some aspects of trust may be variable according to economic and political condi-
tions, whereas some others may be more stable. Although the world used to have a
stereotype of the Japanese workers called the “economic animal” in the 1980s, their
attitudes and ethic toward work seem to be influenced by economic and political
conditions.

3 Cross-National Surveys on Trust

3.1 Sense of Interpersonal Trust

Our cross-national surveys also included the three items on interpersonal trust from
the GSS. Table2 is the data from the Asia-Pacific Values Survey (APVS) (2010–
2014). Yoshino [32] and Yoshino, Shibai, and Nikaido [36] show the response dis-
tributions for most of the countries/areas that we have surveyed over the past four
decades. See Figs. 2 and 3 also.

Miyake ([9], Chap. 7) presented an analysis on our Seven-Country Survey. He
concluded that the trust scale had correlations with gender and religion and stronger
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Table 2 Percentages of positive responses to three GSS items on trust in the Asia-Pacific Values
Survey (APVS)
Year 2011 2011 2011 2011 2012 2012 2013 2012 2010 2010

Beijing Shanghai Hong
Kong

Taiwan South
Korea

Singapore India Australia USA Japan

Q36 72 66 43 46 52 50 55 59 51 41

Q37 57 58 40 53 53 49 34 63 53 57

Q38 42 36 21 21 32 34 45 45 31 44

Q36 “People are always trying to be helpful to others.”
Q37 “People are trying to be fair.”
Q38 “People can be trusted”

correlations with family income, educational level, and social class. On this scale,
West Germany, the UK, and the USA scored higher than Japan and the Netherlands,
but the difference was small. The French and Italians clearly scored lower than in
other countries. In addition, thosewhohad religious faith gavemore positive response
rate (“try to be helpful”) to item Q36, irrespective of their religious affiliation. For
Q37, women gavemore optimistic answers (“they would try to be fair”) thanmen. As
for item Q38, there was a clear difference between social classes in all seven coun-
tries. That is, the higher the social class, the more trustful the respondents were. The
difference between classes was remarkably large in France and the USA. Observ-
ing that the higher level of education was associated with the greater trust, Miyake
suspected that the association was caused by the correlation between education and
social class. (Although there was a relatively strong correlation between education
and social class, and between education and income in the USA, this was not nec-
essarily the case for other countries.) Using the same data, Yoshino [27] showed
positive correlations between trust and social class or income in the USA and the
UK but nonlinear correlations in the other five countries, including Japan and West
Germany (i.e., the middle social class shows the higher trust rate than the lower or
the higher). Incidentally, Yoshino and Tsunoda [39] suggested nonlinear relationship
between subjective health and sense of trust.

Figure4 shows the ranking of the percentages in each country of those who gave
positive answers to both Q36 and Q38. The measure seems fairly stable within the
countries/ areas when repeatedly surveyed over years. Interestingly, the Japanese
immigrants in the USA and Brazil are ranked, respectively, as the highest and the
lowest. That is, JAWCS (Japanese Americans on the West Coast) is higher than the
general Americans, whereas JB (Japanese Brazilian) is lower than the Latin countries
(France and Italy). The percentages of positive response in the USA and the UK
were high, whereas those in Italy and France were low. This may be consistent
with Fukuyama’s [5] theory contrasting Japan, the USA, and Germany as highly
trustful countries with China and Italy as less trustful countries. His arguments are
based on the assumption that the former countries have well-developed intermediate
civic organizations between the government and families, whereas the latter have
established atmosphere of strict political centralization in the past long histories.



People and Trust 463

Fig. 4 The percentages of positive responses to both Q36 and Q38 (GSS) Abbreviation: JAWCS:
JapaneseAmericans on theWestCoast (USA),HW(J) or (NJ):HawaiiResidents (Japanese) or (Non-
Japanese), Brazil (JB): Japanese Brazilian in Brazil. Numbers (e.g., 88 or 03) show the survey years
(e.g., 1988 or 2003). Note Fig. 2 of Yoshino [30] included an error of Australia 2012, but corrected
in the figure above

A close look at this figure, however, shows amore complicated reality because the
percentages of positive responses of Mainland China (Beijing and Shanghai) were
higher than might have been expected by the Fukuyama’s argument. There may
be several possible explanations for this. First, the data really do indicate that the
Chinese have a higher sense of interpersonal trust. (Probably they may be focusing
on in-group relationships when responding to those items). Second, the Chinese
respondents might have tried to show a higher sense of interpersonal trust because
they were sensitive to their international reputation, such as Fukuyama’s contention.
Third, the questionnaire items were constructed as a trust scale for Americans, so
they may not be suitable for the measurement of trust in other nations. Fourth, we
need to be careful about the political and sociological implications of the trust scale.
For example, Dogan ([3, p. 258]) states, “Erosion of confidence is first of all a sign
of political maturity. It is not so much that democracy has deteriorated, but rather
the critical spirit of most citizens has improved.” This suggests that we need to
distinguish between the face value of a scale and its implications. In this context,
trust and distrust may not be opposite on a unidimensional scale but instead may
be closely related in a sort of multidimensional mind structure. Furthermore, people
may give the same response for different reasons or different responses for the same
reason. Therefore, for a more meaningful comparison of countries, it is necessary
to consider peoples’ responses with objective measures on, e.g., economics and
politics, as well as general response tendencies of those peoples. As such, I may in
this study give some interpretations of response patterns on certain items, but they
should necessarily be considered tentative.
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Lastly, I note on general response tendencies (Yoshino, Hayashi, & Yamaoka
[35]). Yoshino and Osaki [38] reviewed our past surveys on trust and subjective
well-beingness, and concluded that the long-term tendency is relatively stable over
time regardless of objective economic or political conditions (cf. Hofstead, Hofstead,
& Minkov [11]) although a serious incident or disaster perturbs the stability.

As for general response tendency of each nation, for example, the Japanese tend to
avoid polar answers and prefer intermediate response categories (or “Don’t Know”),
the French tend to choose critical categories, and the Indians tend to choose opti-
mistic categories. Furthermore, as to gender differences, women show stronger self-
disclosure than men (Yoshino [30, Sect. 2]; Yoshino et al. [35, pp. 109–111]). This
may lead a superficial contradiction, e.g., the women show higher sense of sat-
isfaction when asked about their satisfaction, whereas they show higher sense of
dissatisfaction when asked about their dissatisfaction.

3.2 Trust of Social Institutions and Systems

The questionnaires of the APVS included the same items on institutional trust used in
the World Values Survey, with an additional item on trust in science and technology.
The items are stated as in Table3.

Table4 shows the response distribution of the APVS. (Yoshino et al. [36] show all
data frommost of countries that we surveyed, which would be helpful to read the fol-
lowing explanation with them.) To reduce the effects of general response tendencies
particular to individuals or countries, Yoshino [29] transformed the response data
from the East Asia Values Survey (EAVS) (2002–2005) into standardized scores

Table 3 Q.52. How much confidence do you have in the following? Are you very confident,
somewhat confident, not confident, or not confident at all?

Very
confident

Somewhat
confident

Not confident Not confident
at all

a. Religious organizations 1 2 3 4

b. The law and the legal system 1 2 3 4

c. The press and television 1 2 3 4

d. The police 1 2 3 4

e. Federal bureaucracy 1 2 3 4

f. Congress 1 2 3 4

g. NPO/NGO (nonprofit and
nongovernmental organization)

1 2 3 4

h. Social welfare facilities 1 2 3 4

i. The United Nations 1 2 3 4

j. Science and technology 1 2 3 4
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country by country. Here “general response tendencies” mean, e.g., the Japanese
tend to avoid polar responses than the Americans (a sort of variances of the range
of responses). But let us use an easier way that Yoshino [30] used for the Pacific
Rim Values Survey (PRVS) (2004–2009). First, the original response categories are
re-categorized to sum up the percentage of responses to positive categories (“1” and
“2”). Second, the percentages of positive responses are compared item by itemwithin
each country. This yields a rank order of items in each country. Third, the rank orders
of all countries involved are compared. This procedure results in the loss of some
information from the original data, but it may provide more stable cross-national
comparability (unless the rank orders are unstable). Yoshino [32, Table3a, 3b, and
3c] confirms the generally consistent patterns in the countries or areas participat-
ing in all three surveys of APVS, PRVS, and the East Asia Values Survey (EAVS).
For example, the item-by-item differences of percentages between the Japan surveys
in 2002 (EAVS), 2004 (PRVS), and 2010 (APVS) were almost within the margin
of the sampling error. The maximum difference was about 10%, for example, on
NPO/NGO (Nonprofit Organization/Nongovernmental Organization). (The percent-
age on NPO/NGO changed from 55% in 2002 to 45% in 2004 and then up to 49%
in 2010. NPO/NGO activities had been increasing and some disguised NPO/NGOs
had managed illegal businesses in the early 2000s. This was one of the reasons that
the Japanese laws on registered organizations were substantially revised in 2008.)

In Table 4, except for India, Singapore, Vietnam, the USA, and Hong Kong, in all
the studied countries or areas, there was a low degree of confidence in religious orga-
nizations. Even in these five countries or area, the relative degrees of confidence were
not very high compared with all the other items for each country, except for India.
Japan and Mainland China indicated remarkably negative attitudes toward religious
organizations. The percentage of positive responses among the Japanese was lower
than among the Chinese. However, of the 10 items on Q50, the percentage of posi-
tive responses was the lowest for religious organization among Chinese. Most of the
Japanese respect religions or the “religious heart/mind” even when they do not have
religious faith (Hayashi & Nikaido [10]). However, they may keep cautious about
“religious organizations” because some religious groups, such as the “Aum Shin-
rikyo” (a religious cult), caused disasters in the 1990s. In China, the government is
very sensitive toward religious groups because, in the long history of China, religious
groups frequently overthrew governments. In some countries, some religious groups
are closely linked to terrorism.

The percentages of responses that show confidence in authority such as the
“police,” “government,” and “Congress” may represent various patterns of attitudes;
these are likely concerned with democracy. Because free criticism is allowed in
democracy, a negative attitude does not necessarilymean the negation of such author-
ity, and it may reflect a mature democracy in some countries (Dogan [3, p. 258]).
Thus, the percentage of positive (or negative) responses may not be linearly pro-
portional to the degree of political maturity. Table 4 shows, for example, the USA’s
lower degrees of confidence in the press and TV and in Congress. This may be a
critical attitude of matured democracy, or it may be a reflection of current confusions
of democracy, or both.
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As for science and technology, all the countries or areas showed a high degree
of confidence. Hayashi [7] and Zheng and Yoshino [40] presented cross-national
analyses of data on science and technology from our seven-country survey. Hayashi
[7] concluded that the Japanese generally have positive attitudes toward science. They
were, however, negative regarding scientific approaches toward the understanding
of the human heart and mind (“kokoro” in Japanese), solving social and economic
problems, and the possibility of living in space stations in the near future (at the time
of the survey in 1988). The response pattern of West Germans in 1987 was similar
to that of Japanese in the sense that they were also more negative about science
and technology than those in other Western countries. However, they were not so
negative toward the applications of science and technology to social problems as
well as psychological problems of individuals as the Japanese were. This might be
related to that the theories of Hegel andMarx and the psychological theories of Freud
originated in the German culture area.

As for data from the APVS, all of the countries or areas were highly positive
toward science and technology, with rates of positivity for that item being the high-
est among all items. In particular, the rates forMainlandChinawere remarkably close
to 100% in both the PRVS and the EAVS, although the rates were slightly down in
the APVS. There may be several possible explanations for this. On the one hand, the
high rates may represent the fact that, since the late 1970s, China has been emphasiz-
ing the scientific reformation of government agencies, military systems, and social
systems as a priority in their social planning. On the other hand, until recently, they
had placed priority on economic development and they had not paid much attention
to the negative impact of science and technology that advanced industrial countries
have experienced in the past. After the Beijing Olympics in 2008 or even slightly
earlier, the Chinese government started paying attention to the negative side of rapid
economic and industrial development and began planning to improve environmental
conditions, including serious air, soil, and water pollution. Incidentally, they started
also paying attention to political issues, such as the social inequality between urban
and rural areas. They are struggling to deal with these domestic problems, but com-
plete solutions seem still far away tomany observers’ eyes (Reuters [18, 19]), despite
their rising power in international politics. Furthermore, under the recent slowdown
of economic development, environmental improvement may not be on the govern-
ment top priority. And serious pollutions in the urban areas sometimes go over to the
neighboring areas and countries.More recently, however, certain steady environment
improvements in some rural areas are reported [Y. Chen, personal communication,
August 17, 2019].

As a final comment in this section, it should be noted that Sasaki and Suzuki [23,
Chap.11] concluded that “a single scale is not adequate to measure people’s sense
of trust in science and technology because people’s attitudes differ from one issue to
another within the fields of science and technology.” This is also the case with our
study on people’s sense of trust. Note that we have Japanese Nobel Prize Laureates
in the 1990s–2010s more than the past. The JNCS (Nakamura, Yoshino, Maeda,
Inagaki & Shibai [17, p. 15]), however, shows a clear decrease of self-confidence
in science and technology during “the lost decade (1993–2003 or so).” Thus, some
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aspects of confidence are more variable due to economic or political conditions,
whereas generalized interpersonal trust is more stable.

Incidentally, Yoshino [32] gives a summary on regional and generational differ-
ences among Japanese immigrants in Hawaii, Brazil, and the U.S. West Coast. It
touches also ethnic differences (Chinese, Malays, and Indians) in Singapore, and
between indigenous Taiwanese and Chinese mainlanders in Taiwan. Domestic eth-
nic differences on trust are often linked with domestic and international political
issues. Mutual trust is a key for peace.

4 For Future Research—Universal Values of Human Bonds

This chapter has shown a longitudinal and cross-national study of peoples’ sense
of trust. As mentioned, however, we need to be cautious in interpreting the results
because survey data on trust are often a compound of many variables, including gen-
eral response tendencies and respondent biases on participation of survey.4 Issues
on cross-national comparability might never be completely solved because of sig-
nificant differences of infrastructures on survey conditions unique to each country.
But I believe that elucidations of those differences themselves reveal each country’s
situation on economy, politics, and social conditions, beyond superficial comparison
of survey data. I present several comments for our future research as follows.

First, for mutual understanding between East and West, we need to pay much
attention to methodological issues in measuring social values. Scaling of trust may
caution us on the applicability of a certain “single” scale invented inWestern cultures
for Eastern cultures, or vice versa. Gallup ([6], p. 461) reported that, in their global
survey, they could not find a very poor but still happy people. Later studies, however,
have found examples not consistent with the pattern of Gallup report. For example,
Brazilians were very optimistic even when Brazil was the worst debtor nation in
the 1980s (Inkeles [13]). Inglehart reported a positive correlation between economic
development and life satisfaction for some 20 countries in the 1980s (Inkeles [13,
pp. 366–371]). However, life satisfaction of Japan in the 1980s was lower than it
was in 2003 or in 2018, although Japan was prosperous in the 1980s but struggled
with a recession in the 2000s–2010s. Thus, we need to be careful regarding peoples’
general response tendencies in the measurement of social values.

Second, people’s negative responses may not necessarily mean a lack of a sense
of trust. As Dogan [3, p. 258] suggested, some people express distrust or complaint
toward the government or political leaders, not because they lack trust, but because
they know that it is a way to improve their own country and eventually our world in
a democratic way.

Third, I give a comment on the CULMAN framework. The last century was the
time of the expansion of Western civilization, and this century is said to be the
time of Asian revival. Differences between cultures or civilizations occasionally

4See Footnote 3.
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prevent us from deeply understanding each other. In this time of globalization, world
leaders should be knowledgeable about world geography and history, and sensitive
to peoples’ social values if they wish to take seriously their responsibility to develop
and maintain world peace. In studying world history, we should remember that there
are various ways of successful social development.

Some institutional systems or customs are changing, converging toward more
universal ones under the influence of transnational exchange or trade. Other systems
are, however, becoming more sensitive to cultural differences as a reaction to glob-
alization. The last three decades has shown that, at least for the foreseeable future,
globalization will not lead us to a single unified global culture. This is consistent
with a theory of Cultural Evolution that more variations enhance chance of survival.
(cf. Inglehart [14, p. 42] presents a theory of cultural evolution that the value systems
of different cultures may not be converging but changing in the same direction on
“self-expressive values.”) I think CULMAN can be utilized to develop a framework
of policymaking for the gradual development of, so to speak, a global cultural man-

Fig. 5 Amanifold of communities in theWorld. In order to have a steady, peaceful, and prosperous
development, we may need a set of “soft” regulations to connect pairs of communities rather than
a single restrictive global standard
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ifold (GCM) (Fujita & Yoshino [4]; Yoshino [32, 33]; Yoshino et al. [36]; Yoshino,
Shibai Nikaido, & Fujita [37]) (see Fig. 5).

The GCM is a set of hierarchical overlapping local charts, and each chart covers
a certain area (region, country, national groups, civilization, etc.). In each chart, we
may assume that people share a certain culture or social values; the larger chart cor-
responds to the less restrictive but more universal culture or social values. Together,
the charts may comprise a sort of hierarchy. According to the size of the chart (area,
region, or social group), people may be able to assess the degree to which decision-
making or the extent of regulations concerning various types of exchanges (e.g.,
international trade within the members of the region) ought to be rigidly enforced.
GCM charts are dynamic, so each chart may be enlarged, be shrunk, be split into
two, or disappear over time. Some overlapping charts may be assimilated to make a
larger chart. And a new chart may appear. For peaceful and steady integration and
expansion of charts, a set of soft local rules to connect neighboring charts would be
more effective, rather than a single strict global regulation. The set of local rules may
make a hierarchical structure with respect to its coverage and strictness.

The history of the EU may exemplify the concept of GCM. Currently, the East
Asia and the Asia-Pacific area may be presenting other examples. More than two
decades ago, many people doubted such a unification in the East Asia as in the EU
because the East Asia is too complicated on races, languages, religions, and political
systems even in a country. Now, one could see a slow but a steady unification such
as ASEAN, contrasted with the current confusion in the EU. There must be various
ways to achieve successful developments. On March 11, 2011, the Great East Japan
earthquake caused a huge tsunami and resulted in the Fukushima nuclear power plant
disaster. The world media, however, reported the calm attitudes of the Japanese even
in the tragedy. The devastated yet surviving Japanese kept an orderly line in front of
grocery stores waiting to buy food. Many Japanese had a chance to reconsider the
value of their own lives and works and to think of various ways of contributing to
the people and area damaged by the quake. Many news, stories, and surveys reported
on the human bond and the importance of family, relatives, and friends, not only
on a domestic but also a worldwide scale. We have confirmed that the differences
in ideology or religions are minor compared to the universal importance of human
bonds and trust between peoples.

It is my sincere hope that mutual understanding among the various cultures and
civilizations will prevent serious conflicts between nations and cultures and will lead
us to a peaceful and prosperous world in the twenty-first century.
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