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Abstract This note presents a novel methodology for reduction of high order
linear time-invariant commensurate non-integer interval systems. It is shown first
that the fractional-order interval system is reconstructed to integer interval system
and further a hybrid technique is applied as a model reduction scheme. In this
scheme, the reduced denominator is acquired by applying a modified least square
method and the numerator is achieved by time moment matching. This formulated
reduced interval integer model is reconverted to a reduced fractional interval model.
As a final point, the results of a numerical illustration are verified to show the
relevance and superiority of the proposed technique.

Keywords Non-integer interval systems � Kharitonov’s theorem � Model reduc-
tion � Commensurate fractional

1 Introduction

A structure whose parameters are two-dimensional having lower and upper bounds
is defined as an uncertain system. For example, interval parameters a�i ; a

þ
i

� �
and

b�i ; b
þ
i

� �
mean, the parameters ai and bi can take independently any values in

respective intervals a�i ; a
þ
i

� �
and b�i ; b

þ
i

� �
. The width of the interval coefficient is

equal to the difference between the upper and the lower boundary parameters. Some
coefficients of an interval system may have zero interval width, i.e., equal values for
both lower and upper bounds. These systems are successfully handled with interval
arithmetic. The interval system having all the coefficients with zero width is called a
fixed system. Moore’s first book printed on interval analysis was the product of his
Ph.D. thesis. He primarily focused on solutions for ordinary differential equations
problems.
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Recently, fractional-order control systems are fetching progressively prominent
in the control community. Fractional systems are governed by fractional-order
derivatives and integrals which are basically infinite order linear operators. These
fractional-order systems extend the notion of our integer order concepts in control
and improvise on the existing results. So in essence, both fractional calculus and
control systems have been applied to improve the performance of existing control
theories [1]. The processes that we want to estimate the real-world objects are in
general of fractional order [2–4]. These fractional-order systems on applying
Laplace transform with zero initial conditions obtain a transfer function of unlim-
ited order and therefore require infinite memory [5]. In order to reduce the infinite
memory occupied by the fractional systems, it is possible to apply the concept of
approximations [6]. Some of the frequency-based domain reduction methods have
been suggested [7–9]. These approaches are used to generate a reduced fractional
model whose characteristics are akin to the original fractional system. Since the
obtained model is compact compared to the complex original fractional system.
These approaches are called as model reduction techniques.

MOR is a well-recognized and long-standing concept applied for systems of
integer order but an insufficient work being implemented for systems fractional
order. [10]. this instigated us to select this particular zone and put an effort to
introduce a unique reduction methodology for the commensurate non-integer
interval systems [7, 11, 12]. The present study has been put on display with three
examples that the determined reduced fractional interval model by the recom-
mended method approximates well for stable class of high order nonminimum,
non-integer fractional-order integer systems. To the author’s knowledge, the pro-
posed reduction technique applied to commensurate fractional-order interval system
has not been proclaimed so far. The concept and the process endorsed in the
proposed scheme would be a foundation stone for the evolution of new MOR
schemes for fractional interval systems in the future. Two different theories, time
moment matching and least square optimization, are blended together in this
method [13, 14] to get the reduced model. The paper is organized as follows: To
make a proper background, the proposed method is explained in Sect. 2. The
capability of the proposed approach is shown in Sect. 3 through three test systems
and the paper are concluded in Sect. 4.

2 Proposed Method

Step 1: Let the high order fractional-order interval system (FOIS) represented as a
transfer function as cited in [15]
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GðsÞ
Pm

i¼0 n�i ; n
þ
i

� �
sbiPn

i¼0 d
�
i ; d

þ
i½ �sai ð1Þ

where bm [ bm�1 [ � � � [ b1 � 0 and an [ an�1 [ � � � [ a1 � 0.
If all the powers of the derivatives of the above equation are integer multiples of

ϒ, that is, ai, bi = i ϒ. Such that ϒ ε R + and i = 0, 1, 2, 3… then it is considered as
commensurate fractional-order interval system. Therefore, Eq. (1) can be formu-
lated as

GðsÞ ¼
Pm

i¼0 n�i ; n
þ
i

� �
s� iPn

i¼0 d
�
i ; d

þ
i½ �s� i ¼

Pm
i¼0 n�i ; n

þ
i

� �
s�
� �iPn

i¼0 d
�
i ; d

þ
i½ �ðs� Þi ð2Þ

By substituting s� ¼ k, in the above equation becomes integer order interval
transfer function as,

GðkÞ ¼
Pm

i¼0 n�i ; n
þ
i

� �
kiPn

i¼0 d
�
i ; d

þ
i½ �ki ð3Þ

where n = order of the system > m, i = 0, 1, 2, 3, … n and n�i ; n
þ
i

� �
, d�i ; d

þ
i

� �
are

the specified lower and upper boundaries of the ith perturbation.

Step 2: Formulation of four Kharitonov transfer functions from the above equation
as

K1ðkÞ ¼ n�0 þ n�1 kþ nþ
2 k2 þ nþ

3 k3 þ � � �
d�0 þ d�1 kþ dþ

2 k2 þ dþ
3 k3 þ � � � ð4Þ

K2ðkÞ ¼ nþ
0 þ nþ

1 kþ n�2 k
2 þ n�3 k

3 þ � � �
dþ
0 þ dþ

1 kþ d�2 k
2 þ d�3 k

3 þ � � � ð5Þ

K3ðkÞ ¼ nþ
0 þ n�1 kþ n�2 k

2 þ nþ
3 k3 þ � � �

dþ
0 þ d�1 kþ d�2 k

2 þ dþ
3 k3 þ � � � ð6Þ

K4ðkÞ ¼ n�0 þ nþ
1 kþ nþ

2 k2 þ n�3 k
3 þ � � �

d�0 þ dþ
1 kþ dþ

2 k2 þ d�3 k
3 þ � � � ð7Þ

The above four nth order Kharitonov transfer functions can be generalized as

KwðkÞ ¼
Pn�1

i¼0 xwik
iPn

i¼0 ywik
i ¼

xw0 þ xw1kþ xw2k
2 þ � � � þ xw n�1ð Þk

n�1

yw0 þ yw1kþ yw2k
2 þ � � � þ ywnk

n ð8Þ
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such that equate the coefficients of Eqs. (4)–(7) individually with Eq. (8) at w = 1,
2, 3, 4, respectively.

Step 3: Determination of the denominator coefficients of the reduced order interval
model.

If KwðkÞ is extended about k = 0, then the time moment proportions, vwi, are
assumed to be

KwðkÞ ¼
X1
i¼0

vwik
i ¼ vw0k

0 þ vw1k
1 þ vw2k

2 þ � � � þ vw1k1 ð9Þ

Let the corresponding rth order generalized reduced models of KwðkÞ repre-
sented as

KwrðkÞ ¼ pwrðkÞ
qwrðkÞ ¼

Pr�1
i¼0 pwik

iPr
i¼0 qwik

i ¼
pw0 þ pw1kþ � � � þ pw r�1ð Þk

r�1

qw0 þ qw1kþ � � � þ qw r�1ð Þk
r�1 þ kr

ð10Þ

where w = 1, 2, 3, 4.
The minimum time moments required for a reduced model to retain is 2r time

moments, ‘r’ indicates the order of the reduced model and the coefficient qwi, pwi in
Eq. (10) are derived from following a set of equations as:

pw0 ¼ qw0vw0
pw1 ¼ qw1vw0 þ qw0vw1
..
. ..

. ..
. ..

. ..
.

pw r�1ð Þ ¼ qw r�1ð Þvw0 þ . . .þ qw0vw r�1ð Þ
�vw0 ¼ qw r�1ð Þvw1 þ . . .þ qw1vw r�1ð Þ þ qw0vwðrÞ
�vw1 ¼ qw r�1ð Þvw2 þ . . .þ qw1vwr þ qw0vw rþ 1ð Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�vw t�r�1ð Þ ¼ qw r�1ð Þvw t�rð Þ þ . . .þ qw0vw t�1ð Þ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð11Þ

Equating Eqs. (9) and (10) the linear set of equations to preserve ‘t’ time
moments of the original system, the solution of represented as
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vwðrÞ vw r�1ð Þ � � � vw1
vw rþ 1ð Þ vwðrÞ � � � vw2

..

. ..
. � � � ..

.

..

. ..
. � � � ..

.

..

. ..
. � � � ..

.

vw t�1ð Þ vw t�2ð Þ � � � vw t�rð Þ

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hw

�

qw0
qw1
..
.

..

.

..

.

..

.

qwðr�1Þ

2
666666666664

3
777777777775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Qw

¼

�vw0
�vw1
..
.

..

.

..

.

..

.

�vw t�r�1ð Þ

2
666666666664

3
777777777775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Vw

ð12Þ

(Or) Hw * Qw = Vw is the matrix-vector form, where w = 1, 2, 3, 4. The ‘Qw’
vector can be solved in the least squares sense using the generalized inverse
method. This gives the denominator vector estimate ‘Qw’ as:

Qw ¼ HT
wHw

� ��1
HT

wVw ð13Þ

If the coefficients ‘qwi’ of ‘Qw’ vector obtained by the solution of Eq. (12) does
not constitute a stable denominator, then by adding an additional equation to this set
to get stable denominator, then the solution of the linear set is:

vwðtÞ vw t�1ð Þ . . . vw t�rþ 1ð Þ
� �

and �vw t�rð Þ
� � ð14Þ

This process is continued until the Qw vector gets stable and accurate denomi-
nator coefficients.

Finally, the reduced denominator obtained as

qwrðkÞ ¼ qw0 þ qw1kþ � � � þ qw r�1ð Þk
r�1 þ kr ð15Þ

Step 4: Determination of numerator coefficients of reduced model substitute the
reduced denominator coefficients in the Eq. (10) and replace it about k ¼ 0. Then,
the time moments proportions, fwi of the reduced model, is given as

KwrðkÞ ¼
X1
i¼0

fwik
i ð16Þ

By equating the time moment proportionals of original system Eq. (9) with
reduced model Eq. (16), the reduced numerator coefficients are found thus the
reduced numerator is obtained as
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pwrðkÞ ¼ pw0 þ pw1kþ � � � þ pw r�1ð Þk
r�1

Thus, the corresponding four rth order reduced models obtained from the above
as:

K1rðkÞ ¼
p10 þ p11kþ � � � þ p1 r�1ð Þk

r�1

q10 þ q11kþ � � � þ q1 r�1ð Þk
r�1 þ kr

K2rðkÞ ¼
p20 þ p21kþ � � � þ p2 r�1ð Þk

r�1

q20 þ q21kþ � � � þ q2 r�1ð Þk
r�1 þ kr

K3rðkÞ ¼
p30 þ p31kþ � � � þ p3 r�1ð Þk

r�1

q30 þ q31kþ � � � þ q3 r�1ð Þk
r�1 þ kr

K4rðkÞ ¼
p40 þ p41kþ � � � þ p4 r�1ð Þk

r�1

q40 þ q41kþ � � � þ q4 r�1ð Þk
r�1 þ kr

Step 5: From the above four transfer functions the minimum and maximum values
of the coefficients are considered to formulate the reduced interval model repre-
sented as

GrðkÞ ¼ pw0min; pw0max½ � þ pw1min; pw1max½ �kþ � � � þ ½pwr�1min;pwr�1max�kr�1

qw0min; qw0max½ � þ qw1min;qw1max
� �

kþ � � � þ ½qwrmin;qwrmax�kr

¼
Pr�1

i¼0 p�i ; p
þ
i

� �
kiPr

i¼0 q
�
i ; q

þ
i½ �ki

Step 6: Re-convert the above integer order interval transfer function into its frac-
tional commensurate interval form of the transfer function by substitute the k = sϒ

GrðsÞ ¼
p�0 ; p

þ
0

� �þ p�1 ; p
þ
1

� �
s� þ � � � þ p�r�1; p

þ
r�1

� �
s� r�1

q�0 ; q
þ
0

� �þ q�1 ; q
þ
1

� �
s� þ � � � þ q�r�1; q

þ
r�1

� �
s� r�1 þ q�r ; qþ

r

� �
s� r

ð17Þ

The integral performance indices of the original system related to its reduced
model are expressed to calculate and measure the goodness of the reduced order
models, by means of the relative integral square error criterion, which are given as
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ISEimpulse, RISEimpulse, ISEstep, RISEstep, IAEstep, ITAEstep and are defined as
follows

ISEimpulse ¼
Ztsim
0

gðtÞ � grðtÞ½ �2dt ð18Þ

RISEimpulse ¼
Ztsim
0

gðtÞ � grðtÞ½ �2dt
,Z tsim

0
g2ðtÞdt ð19Þ

ISEstep ¼
Ztsim
0

yðtÞ � yrðtÞ½ �2dt ð20Þ

RISEstep ¼
Ztsim
0

yðtÞ � yrðtÞ½ �2dt
,Z tsim

0
½yðtÞ � yð1Þ�2dt ð21Þ

IAEstep ¼
Ztsim
0

yðtÞ � yrðtÞj jdt ð22Þ

ITAEstep ¼
Ztsim
0

t yðtÞ � yrðtÞj jdt ð23Þ

where gðtÞ and yðtÞ are the impulse and step responses of the original system,
respectively, and grðtÞ, yrðtÞ are that of their approximants. tsim indicates the time
required for the responses to reach the final steady state value.

3 Examples and Graphs

In this section, three test systems are deliberated and then these systems are reduced
by the proposed method to show the superiority and effectiveness of this proposed
new algorithm and the results are successfully verified using MATLAB.
A step-by-step procedure is given for test systems.

Test system-1
Let us consider a commensurate fractional-order interval system as:
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G1ðsÞ ¼ 1; 1½ �s2:4 þ 7; 8½ �s1:6 þ 24; 25½ �s0:8 þ 24; 25½ �
1; 1½ �s3:2 þ 10; 11½ �s2:4 þ 35; 36½ �s1:6 þ 50; 51½ �s0:8 þ 24; 25½ � ð24Þ

By substituting k = s0.8, a fourth-order integer interval transfer function framed
out in terms of k as:

G1ðkÞ ¼ 1; 1½ �k3 þ 7; 8½ �k2 þ 24; 25½ �k1 þ 24; 25½ �
1; 1½ �k4 þ 10; 11½ �k3 þ 35; 36½ �k2 þ 50; 51½ �k1 þ 24; 25½ � ð25Þ

Using Eqs. (4)–(17) the proposed reduced fractional interval model obtained as

GrðsÞ ¼ 0:34444; 0:87745½ �s0:8 þ 1:294117; 5:277799½ �
1; 1½ �s1:6 þ 2:27941; 5:8333525½ �s0:8 þ 1:294117; 5:277799½ � ð26Þ

The trajectories of the original fractional interval system and the proposed
reduced fractional interval model are compared in Fig. 1 and 2 for four-time
moments shown in Table 1. The integral performance indices showed in Table 2
which are given as ISEimpulse, RISEimpulse, ISEstep, RISEstep, IAEstep, ITAEstep of the
original system related to its reduced model are expressed to strengthen the supe-
riority of the proposed method resulting in fewer error values. It can be observed
from Figs. 1 and 2 that the proposed method generates stable reduced fractional

Step response

Step response of Original FOIS

Step response of Reduced FOIS

0 5 10 15 20 25 30
Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

Am
pl

itu
de

Fig. 1 The lower boundary step response of the reduced fractional order model and original
system
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interval order models with a good approximation for a stable original high order
interval system. The transient and the steady state step response of the reduced
model obtained by matching four-time moments closely follow the original high
order commensurate fractional interval system. The proposed method provides the
flexibility to the user in selecting the number and type of extra constraints to be
taken into account for better approximations.

Table 1 Time moments of four Kharitonov equations

K1 kð Þ K2 kð Þ K3 kð Þ K4 kð Þ
v1 ¼ 1
v2 ¼ �1:0833
v3 ¼ 1:09028
v4 ¼ �1:06308

v1 ¼ 1
v2 ¼ �1:04
v3 ¼ 1:0016
v4 ¼ �0:947264

v1 ¼ 1
v2 ¼ �1:04
v3 ¼ 0:96
v4 ¼ �0:86

v1 ¼ 1
v2 ¼ �1:0833
v3 ¼ 1:135417
v4 ¼ �1:162761

Table 2 Performance indices of commensurate fractional-order interval systems

Examples Performance indices

ISE for
impulse
response

RISE for
impulse
response

ISE for
step
response

RISE for
step
response

IAE for
step
response

ITAE for
step
response

Example
1

LB 0.052081 0.117601 0.44806 0.078574 0.411871 0.770593

UB 0.009488 0.020671 0.004004 0.007276 0.100991 0.153221

0 5 10 15 20 25 30
Time [s]

0

0.2

0.4

0.6

0.8

1

1.2
Am

pl
itu

de
Step response

Step response of Original FOIS

Step response of Reduced FOIS

Fig. 2 The upper boundary step response of the reduced fractional order model and original system
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4 Conclusion

It is significant to study the behavior of non-integer interval system as they have a
huge demand in applying for various control applications. Investigation still needs
to be done vast as a part of research in this field. This approach tried to give
solutions to some queries related to non-integer interval systems. This note rec-
ommended by the author states about the reduction of commensurate non-integer
interval system. A blended model order reduction mechanism is implemented to
extract a diminishing fractional non-integer model which constitutes a least squares
and time moment matching algorithms. As the method associated with
matrix-vector algebra, its estimation is clear, efficient and also develops a precise
stable reduce interval model. Simulation results validate the dominance of this
scheme where the original system may be retrieved with the approximate model
thereby shorten the design procedure. Extending the results of this paper to be
applicable for a designing of controllers to fractional-order interval systems can be
noticed as an interesting research topic as future scope of work. The beauty of this
technique is that it provides a great advantage to the engineering practitioners
working with large and complex real-time systems.
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