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51.1 Introduction

Nanopore sensing is an emerging and useful tool of single-molecule analysis
especially for biomolecules [1]. In contrast with macroscopic sensors like electro-
phoresis, the realization of single-molecule analysis by nanopore sensors does favor
to multifarious biological sample, because every biomolecule exports exclusive
signal. The principle of sensing is that individual molecules generate detectable
changes in ionic current as they pass through a nanoscale pore. Therefore, many
nanopore sensing were size-regulated and stochastic at the beginning of the study,
where were some unresolved issues such as the discrimination of micromolecules
with similar molecular weights and geometric, the signal-to-noise ratio, and the
inherent flaw of quantification [2]. To develop the selectivity of label-free synthetic
nanopore sensors, investigators applied biological nanochannels or labeled analytes
to achieve exclusive recognition of specific chemical structure or geometric structure
[3]. Although above strategies didn’t satisfy the need of material stability or
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detection in situ, they inspired that the host-guest system is a breakthrough of high-
selective single-molecule analysis of biomolecules by nanopore sensors.

Host-guest sensing bases on the selective recognition between host and guest
molecules deriving from specific intermolecular interaction, just as receptors and
ligands. The most important host-guest interactions consist of solvophobic forces,
electrostatic interactions, Van der Waals interactions, and hydrogen bonds. And
because of the additivity of noncovalent bonding increments, the hosts with multisite
of recognition and bonding show better sensitivity and selectivity [4]. Macrocycle is
one kind of excellent multisite hosts, consisting of crown ethers, cucurbituril,
cyclodextrins, pillararenes, calixarenes, etc. [5]. Due to the change of fluorescence
characteristics and prototropic behavior after the formation of host-guest inclusion
complex, macrocyclic hosts are applied as photochemical sensors in aqueous solu-
tion or on solid surface [6]. Moreover, another kind of useful macrocycle-based
sensors is electrochemical biosensor, which transforms the recognition event on
account of selective electrostatic interactions occurring at the solid-liquid interface
into a readable electrical signal [7]. Numerous studies have indicated that the host-
guest sensing based on functionalized macrocycles shows good selectivity to ions,
proteins, and chiral enantiomer including amino acids and drugs.

Inspired by biological nanochannels, the host-guest strategy of nanopore bio-
sensors was of interest to investigators and contributed to better selectivity of single-
molecular biomolecular analysis [8]. The introduction of host molecule into nano-
pore sensor enriches the recognition capability from finitely size selection to charge
selection, functional group selection, chirality selection, and so on [9]. One prom-
inent example is crown ether modified nanopore sensor of Na+ and K+ [12], two
cations with tiny difference of hydrated ionic radius as 0.27 Å, which show excellent
selectivity in comparison with size-regulated and charge-regulated label-free nano-
pore sensors. Another delicate example is cyclodextrin modified nanopore sensor of
chiral enantiomers, and many other investigation also indicate that macrocycle is one
kind of the most excellent host molecules for nanopore sensing. In this account, we
provide a comprehensive overview of host-guest sensing by macrocycles
functionalized nanopores and nanochannels for biomolecules detection, especially
for ions and chiral micromolecules. According to the sorts of macrocycles, here
includes four parts such as crown ethers, cyclodextrins, pillararenes and
calixarenes. Additionally, compared with label-free nanopore sensing and other
macroscopic sensing, we expound the inherent advantage of host-guest sensing by
nanopores and nanochannels on single-molecule analysis of biomolecules, espe-
cially for ions and chiral micromolecules (Scheme 1).

51.2 Crown Ether Functionalized Nanopores for Bio-sensing

Crown ethers are macrocyclic polyether with oxygen atoms directing toward the
center of the cavity and roughly defining a plane. Crown ethers with different cavity
sizes can preferentially include different alkali metal ions through formation of
unique 1:1 or 2:1 complexes and show different selectivity and sensitivity toward
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these cations based on the “hole-size” principle. Therefore crown ethers are well-
recognized as effective ionophores of alkali and alkaline cation. For instance, 18-
crown-6 ether (18C6) is known as a K+-selective ionophore in aqueous solution.
Lisy and coworkers explained the special affinity for K+ by 18C6 based on the
investigation of M+(18C6)(H2O)1–4 Ar complexes (M+ include Li+, Na+, K+, Rb+,
and Cs+). On the condition that micro-hydration is indispensable, the 18C���K+

interaction dominates and weakens the ability of the ion to interact with H2O,
resulting into the “best fit” of K+ with 18C6. Furthermore, a linear relationship
between the ion diameter and cavity size is found in stable 2:1 “sandwich” com-
plexes by Chu and coworkers. Crown ethers are also capable of complexing with
ammonium and primary amines by three N–H� � �O hydrogen bonds in a tripod
arrangement. Additionally, some derivatives of crown ether, such as (+)-(18-
crown-6)-2, 3, 11, 12-tetracarboxylic acid, could selectively recognize amino acids
enantiomers and peptides [10].

Metal ions in biological systems take part in a variety of essential processes; some
of them even cause adverse effects. Ion channels display selective gating and
transmitting to specific ion, due to the suitable size controlled by allosteric effect
and the asymmetric recognition sites of amino acid residues [11]. Artificial ana-
logues of biological ion channels were investigated in recent two decades. Although
the control over pore dimensions (size and geometry) of various solid materials has
been mature, it is not able to compare to the size of biological ion channel below
nanoscale or break through the ionic selectivity. Inspired from nature, surface
functionalization in nanopores has received great interest. The introduction of
host-guest system to nanopore sensing solved the selectivity of metal ions, where
crown ethers were classical guest.

Two biomimetic ionic sensors and gates for sodium cation (Na+) and potassium
cation (K+) based on crown ether functionalized conical nanochannels were

Scheme 1 Macrocycle-
based host-guest nanopores
and nanochannels for bio-
sensing and analysis

51 Host-Guest Sensing by Nanopores and Nanochannels 1441



reported by Jiang and coworkers [12]. The ionic nanochannels recognized Na+ and
K+ by the 40-aminobenzo-15-crown-5 (4-AB15C5) and 40-aminobenzo-18-crown-6
(4-AB18C6) and formed specifical complexes, respectively. The selective host-guest
sensing of crown ethers and cations is proved over other alkali metal ions due to the
matching of cation size and the crown ether cavity and leads to significant changes in
the surface charge, wettability, and finally electronic conduction of the nanopores
(Fig. 1). The similar results were also proved by Azzaroni [13]. Moreover, the
differences in bonding strength between these two complexes, the association
constant of 4-AB15C5 � Na+ is 13.2 M�1 as a half of 4-AB18C6 � K+, result to
different switch properties of ionic nanochannels. Na+ regulates the states of ion
conduction through the hydrophobic 4-AB15C5-modified nanochannel from
close to open, while more bonding of K+ in 4-AB18C6 reverses the anion conduc-
tion to cation.

Furthermore, these two ionic gates are reversibly regulated by the immobilization
of Na+/K+ and the release using [2.2.2]-cryptand competitively bonding with Na+/
K+. Then, Wen [14] and coworkers found the voltage-response property of the K+-
activated 40-aminobenzo-18-crown-6 functionalized nanochannel. The ionic gating
could tuned to close by releasing K+ under the voltage higher than 2 V, which was
similar with the biological voltage-gated nanochannels (Fig. 2).

Fig. 1 (continued)
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Ali and Ensinger synthesized two specific crown ether analogues, amine-termi-
nated p-tert-butylcalix[4]arene-crown (t-BuC[4]C-NH2) and aminoethyl-benzo-12-
crown-4 (BC12C4-NH2), as selective host molecule of cesium ion (Cs+) and lithium
ion (Li+), respectively. Then t-BuC[4]C-NH2 was modified into the asymmetric
nanopore to fabricate a cesium-response nanofluidic diode [15a]. The inner surface
of the nanopore was switched from a hydrophobic and uncharged non-conductive
state to a hydrophilic and positive charged conductive state upon complexation of
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Fig. 1 (a) Schematic demonstration of the Na+- and K+-regulated ionic nanochannels. (b) I–V
characteristics of the 4-AB15C5-modified nanochannel before and after activation with 10 μMNa+.
(c) The current variation of the 4-AB15C5-modified nanochannels before and after activation with
different concentrations of Na+ at constant voltage +2.0 Vand�2.0 V. (d) I–V characteristics of the
4-AB15C5-modified nanochannel before and after activation with 10 μM K+. (e) The current
variation of the 4-AB18C6-modified nanochannels before and after activation with different
concentrations of K+ at constant voltage +2.0 V and �2.0 V. (Reprinted with the permission from
Ref. [12]. Copyright 2015, American Chemical Society)
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Cs+ ion. And the conductance of nanopore increased directly proportional to the
concentration of Cs+ ion, suggesting the quantitative ability of this nanopore sensing.
Similarly, the BC12C4-NH2 functionalized nanofluidic device exhibited selectivity
to Li+ in the presence of other alkali cations [15b] (Fig. 3).

Based on the complexing of crown ethers with primary amines, the chiral
derivative (+)-(18-crown-6)-2, 3, 11, 12-tetracarboxylic acid (18C6H4) is developed
to the chiral sensing and separation of amino acid enantiomers [16]. Two kinds of
host-guest interaction synergistically contribute to the chiral recognition: (i) four
carboxylic acids of the crown ether act as chiral barriers for the chiral guests

Fig. 2 (a) Schematic demonstration of the artificial voltage-responsive potassium-activated ionic
gating. (b) Ionic currents before (black line) and after (green line) activation with 10�5 MK+ at
different constant voltage. (Reprinted with the permission from Ref. [14]. Copyright 2017, Amer-
ican Chemical Society)
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(according to the size and the spatial orientation, diastereomeric complexes with
different formation constants are formed), and (ii) the other is the electrostatic
interaction such as hydrogen bonds or coulombic attraction or repulsion forces
between 18C6H4 and polar guest. Barnhart and coworkers utilized 18C6H4 as chiral
stationary phase in chiral separations of amino phosphonic acids and amino carbox-
ylic acid enantiomer. Liu and coworkers synthesized the tetrasulfonated 1, 5-
dinaphtho-32-crown-8 with high monovalent affinity and non-pre-organized char-
acteristic [17]. This crown ether derivative was able to form complexation with
pyridinium and recognize NAD+ from NADH, which suggested a wider prospect of
crown ether for biological detection and separation.

51.3 Cyclodextrin Functionalized Nanopores for Bio-sensing

Cyclodextrins (CDs), as sugar-based macro rings, consist of D-glucopyranose units
linked with α-1,4 glycosidic bonds; therefore CDs possess apolar and chiral cavities.
CDs have a hydrophilic outer surface and slightly lipophilic inner cavity; therefore
CDs are water-soluble. Based on the combination of noncovalent interactions and

Fig. 3 Schematic
demonstration of (a) the Cs+

complexation with t-BuC[4]C
moieties on the pore surface
and (b) the Li+ ion
complexation with the B12C4
moieties immobilized on the
pore surface. (Reprinted with
permission from Ref. [15a].
Copyright 2017, American
Chemical Society. Reprinted
with permission from Ref.
[15b]. Copyright 2018,
American Chemical Society)
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steric interactions between the host CDs and guest analytes, CDs are capable
of recognizing chiral enantiomers and forming host-guest inclusion complexes.
Depending on these features, nontoxic and environmentally friendly CDs have a
great utility in analytical chemistry, such as the enhancement of detection sensitivity
and the separation of isomeric mixtures [18]. Several typical guest moieties include
adamantane, azobenzene, ferrocene, cholesterol, lithocholic acid (LA), acridine
orange (AOH+), pyrene, etc. [19]. The controlled release can also be triggered by
external stimuli such as pH, temperature, magnetic field, voltage, as well as molec-
ular competition [20].

The computational study on the interactions of IIA/IIB group metal cations with
the host α-CD shed light on the key factors governing the process of metal bonding
to α-CD [21]. The α-CD preferentially binds smaller cations with enhanced charge-
accepting ability, which is related to the properties such as ion radius, electron
configuration, and coordination number. And the flexibility of CDs also influence
the energetics of the metal-CD complex formation. Kang and coworkers developed
a nanopore sensing as the heptakis-(6-deoxy-6-amino)-b-cyclodextrin embedded α-
hemolysin nanopore (am7β-CD α-HL pore) for the detection of Cu2+ [22a]. The
selectivity was contributed to the high affinity between Cu2+ and the amino groups of
am7β-CD and showed the low detection limit of 12 nM and linear range of
0.08–20 mM. Furthermore, the Cu2+ complexed am7β-CD α-HL pore was able to
simultaneously discriminate six enantiomers of aromatic amino acids [22b]. Each
enantiomer of aromatic amino acids (AAA) interacting with cyclodextrin-metal
binary complex generated obviously different characteristic current block signals
(Fig. 4). The highly efficient enantioselectivity was suggested to be contributed by
the cooperation between hydrophobic cavities of am7β-CD with Cu2+.

In fact, the principle of chiral recognition of amino acids by CDs is substantially
investigated from the viewpoints of induced-fitting mechanisms, geometric comple-
mentary and cooperative bonding processes. Among nature amino acids, the hydro-
phobic aromatic amino acids are preferentially self-included in the cavity.
Furthermore, CDs and their derivatives displayed considerable L-enantioselectivity
to the chiral isomers, especially to L-histidine (L-His) in aromatic amino acids, L-
leucine (L-Leu) in aliphatic amino acids, and L-arginine (L-Arg) in alkaline amino
acids [23]. Based on the chemoselectivity and enantioselectivity of CDs for amino
acids, Li and coworkers reported a simple enantioselective nanopore sensor based on
the β-CD covalently modified nanochannel for highly chiral-specific sensing of L-
His over D-His and the enantiomers of phenylalanine (Phe) and tyrosine (Tyr) [24]
(Fig. 5). Furthermore, β-CD and its derivatives were proved as better host molecules
of drugs, showing the preference for one of the enantiomers. Therefore, β-CD are
utilized in the control release and enantioseparation of chiral drugs. Such as the
investigation reported by Bayley and coworkers, a β-CD disulfide lodged α-hemo-
lysin protein pores (S2β-CD α-HL pore) could screen sodium deoxycholate (DOC)
from a large number of “guests.” Tian and coworkers established a thermoresponsive
drug delivery system based on β-CD-functionalized porous amphiphilic block
copolymer films (β-CD-PBCPFs) to selectively load and release doxorubicin
(DOX) [25].
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Another popular guest of CDs is azobenzene, which is usually used as a
photosensitive adjuster. The trans and cis isomers of azobenzene can be reversibly
switched by photoirradiation, and trans-azobenzene is selectively recognized by α-
CD while is released after switched to cis-azobenzene. Utilizing this character, the
host-guest system of CDs and azobenzene was introduced into nanopore sensors
by Jiang and Wen [26]. The azobenzene-derivative-modified polymer nanochannel
(cis-Azo channel) was fabricated as a hydrophobic nanopore to interdict ion
transport and controlled the immobilization and release of β-CD by light and
electric field to regulate ion transport at the condition of hydrophilic β-CD nano-
channel (Fig. 6).

As Bayley and coworkers’ research, CDs as a molecular adapter also discriminate
nucleobases and generated specific current blocking signal when different
nucleobases move through the cavity. In detail, the difference in the amplitude and
the mean dwell time of current blocking signal enabled the identification of the DNA
sequence, and the frequency correlates with the quantity. These above results were
the basis for the function of DNA/RNA sensing and DNA sequencing. Then they
covalently attached a β-CD derivative (am7βCD) inside the protein nanopore,
permitting the recognition of mononucleotides and continuously reading DNA and
RNA sequences [27].

Fig. 4 Schematic demonstration of am7βCD functionalized protein nanopore for recognition of
Cu2+ and AAA enantiomers, continuously. (Reprinted with the permission from Ref. [22a, 22b].
Copyright 2017, Royal Society of Chemistry)
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Fig. 5 (a) Schematic demonstration of β-CD-modified single nanochannel for enantioselective
sensing of L-His. (b) Current-concentration properties of the β-CD-modified single nanochannel to
L/D-His. (c) Current change ratios for the β-CD-modified single nanochannel in 50 mM PBS
(pH 7.2) upon addition of 1 mM L- or D-His, L- or D-Phe, and L- or D-Tyr, respectively. (Reprinted
with the permission from Ref. [24]. Copyright 2011, American Chemical Society)
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51.4 Calixarene Functionalized Nanopores for Bio-sensing

Calixarenes with a relatively robust macrocyclic structure can be easily and selec-
tively functionalized with a variety of chemical groups at either or both rims of the
phenolic moieties. Calixarenes act as the sensor of metal ions, amino acids, drugs,
and many biomolecules with attractive characteristics such as high sensitivity and
selectivity, label-free and real-time detection, cost-efficiency, fast response time, etc.
Takahashi and coworkers reported a calix[4]arenecrown selectively recognizing Na+

from alkali metal ions. An anthracenyl-triazolyl functionalized bimodal calix[4]
arene was synthesized by Georghiou and coworkers, which sensitively and repro-
ducibly responded to low concentrations of Hg2+ among other divalent metal ions,
based on the structure of para-triazole rings with the distance of 6 Å best matching
with the size of Hg2+. Furthermore, the phenyl skeleton of calixarene could form
compound with NO+ as sandwich structure, and the structure difference between of
cone, partial cone, and 1,3-alternate cone leaded to different bonding strength with

Fig. 6 (a) Schematic demonstration of wettability control in nano-confined environments with
optical method. (b) Optical reversibility of the opening and closing in this system by recording
currents at �1 V. (Reprinted with the permission from Ref. [26]. Copyright 2018, American
Chemical Society)
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NO+. Except for cations, the calixarene derivatives with amino group and amide
group could respond to anions, such as Cl�, SO4

2�, and H2PO4
� [28].

Functionalized calixarenes are designed to selectively detect natural molecular,
such as VX nerve agents, cancer biomarkers, glucose, and especially amino acids
[29]. The ability of calixarene carboxylic acid derivatives for selective recognition of
aromatic amino acid (Trp, Phe, and Tyr) was studied by Oshima; results showed
carboxylic calix[6]arene processes better interaction with aromatic amino acids,
especially for Trp, than calix[8]arene and calix[4]arene. Demirtas and coworkers
reported the synthesis of chiral calix[4]azacrown ethers for enantiomeric recognition
of α-amino acid with exhibited bonding ability and certain chiral recognition to L-
Phe. As amino acids are basic structural building blocks of proteins, the
chemoselectivity and enantioselectivity of calixarenes for amino acids provide the
basis of following peptide and protein sensing. Hamilton and coworkers
functionalized the calix[4]arene by a cyclic peptide (with GDGD sequence) and
carried out the bonding with the active site of α-chymotrypsin and the slow bonding
inhibition. Prata and Barata reported wo isomeric bis-calixarene-carbazole conju-
gates endowed with carboxylic acid functions at their lower rims, displaying a high
sensing ability (KSV up to 6 � 107 M�1) and selectivity toward cytochrome c in
an aqueous-based medium. Also targeted to cytochrome c, Crowley synthesized the
p-phosphonate methyl-calix[4]arene (pmclx4) and investigated the crystal structure
of lysine-rich cytochrome c complexed with pmclx4, identifying a bonding site at
Lys54 [30].

Based on the selective recognition of calixarenes for ions due to the appropriate
cavity of calixarenes matching the size of ions, and the reversible complexation, an
interesting imagination that calixarenes could play a role as ionic receptor and
transporter was proposed and investigated (Fig. 7). Now calixarenes are frequently
used in ionic recognition and separation processes. Davis showed a transmembrane

Fig. 7 Host-guest sensing of calix[4]arene derivatives and ions. (Reprinted with permission from
Ref. [31]. Copyright 2006, Wiley. Reprinted with permission from Ref. [32]. Copyright 2015,
Royal Society of Chemistry. Reprinted with permission from Ref. [15a]. Copyright 2017, American
Chemical Society. Reprinted with permission from Ref. [33]. Copyright 2018, American Chemical
Society)
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transporter of Cl� as partial-cone calix[4]arene (paco-H), and compared with the
inactive para-substituted analogue (paco-tBu), the results suggested that the self-
association and Cl� transport activity were identified to be controlled by the con-
formation of the side chain on the inverted arene of the partial cone [31]. Similarly to
accomplish selective sensing and transport of F�, an artificial single conical nano-
channel modified with 1,3-dipropargylaza-p-tert-butyl calix[4]crown (C4CE) was
designed and established by Li’s group, and the selective and sensitive recognition
from other anions with the detection limit of 9.7 � 10�7 M was reached due to
the N–H� � �F hydrogen-bonding interactions [32]. Ali and Ensinger demonstrated
a Cs+-induced nanofluidic device by exploiting host-guest interactions of the amine-
terminated p-tert-butylcalix[4]arene-crown (t-BuC[4]C-NH2) and Cs+ inside con-
fined geometry. Furthermore, theoretical results based on the Nernst-Planck and
Poisson equations further proved that the bonding of Cs+ cations to calixcrown
moieties increased the Cs+ concentration leading to a gradual increasing conduc-
tance of the positive charged pore [15a]. Zhang and Liu developed a novel method
for the sequential separation of heavy metal ions from wastewater by thiacalix[4]
arene-p-tetrasulfonate (TCAS) modified porous membrane, with the best separation
rate of 94.8%, 95.2%, 92.8%, and 93.6%, for Cu2+, Cd2+, Pb2+, and Ba2+, respec-
tively [33].

Numerous calixarene derivatives functionalized nanopore work as biosensors
of amino acids, peptides, and biomolecules, and they are improved as a novel
method of ionic/molecular transporters and drug delivery systems. Li’s group intro-
duced p-sulfonatocalix[4]-arene (SCX4) to the surface of a single conical nano-
channel by layer-by-layer assembly and successfully realized the highly sensitive
recognition of acetylcholine (Ach) [34] (Fig. 8). Layer-by-layer (LBL) assembly is
a more efficient functionalization method achieved by electrostatic assembly for
incorporating than that associated with covalent amidation reactions. The SCX4 was
assembled after polyethyleneimine (PEI) assembly, and the coating process had no
apparent influence on the diameter of the nanochannel. In this Ach nanochannel bio-
sensing, the sensor sensitivity reached a level of 1 nm contributed to the specific
host-guest recognition. Compared with other methods of Ach sensing such as

Fig. 8 Schematic demonstration of LBL assembly and Ach sensing of SCX4 nanochannel.
(Reprinted with permission from Ref. [34]. Copyright 2013, Wiley)
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microdialysis-electrochemical device, smart biochip, and functionalized quantum
dots, this SCX4 functionalized nanopore is an efficient biosensor of Ach (Table 1)
[35]. Then they designed and prepared a aldehyde calix[4]arene (C4AH)
functionalized nanopore sensor, where the C4AH was attached to the interior surface
of single nanochannel by click reaction and showed high selective response for
arginine (Arg). A significant decrease in the ionic current was observed in the
presence of 1 mm Arg, whereas the ionic current did not change in the presence of
lysine (Lys), histidine (His), tryptophan (Trp), glutamine (Gln), or methionine (Met)
[36].

Guo and Hennig [37] reported a phosphorylation-responsive membrane transport
of peptides, which is based on the discriminated bonding of the anionic amphiphilic
calixarene (CX4-C5) for dephosphorylated cell-penetrating peptides (CPPs)
over phosphorylated CPPs. The CX4-C5 embedded in the phospholipid bilayer
can recognize dephosphorylated CPPs and process the transmembrane transport
(Fig. 9). As an application of calixarene-peptide sensing system, an L-glutathione
(L-GSH) controlled drug delivery system was functionalized with supramolecular
switches by Yang and coworkers [38], based on the reversible complexing of

Table 1 Various LODs for typical Ach sensing systems. (Reprinted with permission from Ref.
[34]. Copyright 2013, Wiley)

Sensing system LOD [nm] Ref.

Microdialysis-electrochemical device 63 [35b]

Au NPs-decorated multiwalled carbon nanotubes 300 [35c]

Biosilicated CdSe/ZnS quantum dots 1000 [35d]

H2O2-sensitive quantum dots 10,000 [35e]

Charge-transfer technique on a smart biochip 10,000 [35f]

Layer-by-layer assembled biomimetic nanochannels 1 [34]

Fig. 9 Schematic demonstration of selective nanoporous transporter of peptide based on calixarene
embedded phospholipid membrane. (Reprinted with permission from Ref. [37]. Copyright 2017,
Wiley)
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biocompatible sulfonatocalixarene-alkylammonium and L-GSH. Zadmard and
Schrader [39] investigated a series of nanomolar protein sensing with embedded
polar calixarene receptor. The sensitivity of the sensor system toward proteins
requires a self-assembly of multiple calixarenes over the protein surface due to
their hydrogen bond donor and acceptor capacities. Thereinto, tetra-
benzylammonium calixarene (Bzalm. 2) and tetraanilinium calixarene (anil 3) are
two of the sensitive receptors and efficient transporters, and Bzalm. 2 embedded
phospholipid membrane and anil 3 embedded phospholipid membrane recognize
basic, neutral, and acidic proteins with the detection limit of 10 pM (Table 2).

51.5 Pillararenes Functionalized Nanopores for Bio-sensing

Pillararenes as a new class of macrocyclic molecules are made up of hydroquinone
units linked by methylene bridges at para positions. Compared with other macro-
cycles, pillararenes are symmetrical, rigid, and easily modified at all positions or
selectively on one or two positions. The electron-donating cavity is a foundational
inclusion unit based on C-H���π interaction. As the recognition unit, the structure and
position of functional moieties on two rims of pillararenes both influence the
selectivity of host-guest interaction. These features afford pillararene selective
host-guest bonding to electron-accepting or neutral guests such as viologen

Table 2 Basic, neutral, and acidic proteins recognized by tetrabenzylammonium calixarene
(Bzalm. 2) and tetraanilinium calixarene (anil 3). Insert: host structures of Bzalm. 2 and anil 3.
(Reprinted with permission from Ref. [39]. Copyright 2005, American Chemical Society)

Host Subphase (M) pI ΔA (A2) MV (kDa)

Bzlam. 2

O

NH3
+Cl–

4

Water 0.0 (7.2)

Histone H1 (10�8) 10.4 0.8 (8.0) 7.7

Cytochrome c (10�8) 9.5 1.4 (8.6) 12.3

Thrombin (10�8) 7.5 2.0 (9.2) 32.0

Albumin (10�8) 6.0 2.8 (10.0) 86.3

ACP (10�8) 4.2 4.0 (11.2) 8.4

anil 3

NH3
+Cl–

O

4

ATP (10�4) 1.8 �2 (6.0) 0.6

ATP (10�6) 1.8 �2 (6.0) 0.6

ATP (10�8) 1.8 �1.2 (6.8) 0.6

NADP (10�8) 1.8 �2 (6.0) 0.7

DNA (10�7) 1.8 �2.5 (5.5) 23.7

ACP (10�8) 4.2 �1 (7) 8.4

Ferritin (10�8) 5.5 Plateau 455.3

Dps (10�9) 5.9 Plateau 190.0

Albumin (10�8) 6.0 1 (9) 86.3

Thrombin (10�9) 7.5 1 (9) 32.0

Cytochrome c (10�8) 9.5 3 (11) 12.3

Histone H1 (10�8) 10.4 5 (13) 7.7
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derivatives and alkyl chains. The host-guest interaction, which forms and stabilizes
the complexes of pillararenes and guests, is influenced by the combination of
different driving forces, such as charge transfer interactions, C–H� � �π interactions,
hydrogen-bonding interactions, solvent effects, as well as hydrophobic and electro-
static interactions, and can be regulated by pH effects and counterion effects [40].
The ions or molecules with higher strength of interaction can selectively and
competitively bind to pillararenes. Wei and coworkers synthesized an 2-aminoben-
zimidazole functionalized pillar[5]arene (PN) and demonstrated the selective coor-
dinated of Fe3+ with two nitrogen atoms of primary amine on PN. Furthermore, F�

could competitively coordinate with Fe3+ restoring the PN-Fe complex to PN. And
the addition of ions proportionately changed the fluorescence intensity of
pillararenes; therefore this kind of pillararenes is prepared as fluorescent
chemosensor for detection of ions, such as Fe3+, Th4+, and H2PO4

�. Based on the
competitive coordination, ions are able to regulate the host-guest complex, and
similar regulation can also be executed by proton H+ and gas CO2/ N2 [41]. Another
large category of guests of pillararene-based chemosensor are biomolecules, includ-
ing amino acids, peptides, ATP, etc. [42]. More interesting is the enantioselective
sensing for chiral enantiomers and cis-trans isomers based on the chiral pillararenes,
which are functionalized by chiral groups or induced by chiral guests [43].

An artificial mercury (II) (Hg2+) ion gate modulated by mercaptoacetic acid-pillar
[5]arene (MAP5) is reported by Li and coworkers [44]. By virtue of the unique
design of the host-guest competition, ion transport can actualize the reversible
switching between “on” and “off” in the absence and presence of Hg2+. Moreover,
the MAP5-immobilized nanochannel is highly effective at distinguishing Hg2+ from
other metal ions; therefore this nanochannel sensor can be used to detect Hg2+ and
act as an excellent robust gate valve for developing nanoelectronic logic devices.

In living systems, ion channels respond to many different stimulations, such as
temperature, pH, light, and so on, playing a vital role in numerous cellular processes.
Facile carboxylic pillar[5]arene-based host-guest interactions are introduced into a
nanochannel for constructing a temperature-sensitive artificial channel by Li and
coworkers [45]. Ion transport was switched from cations to anions by controlling
the extent of the host P5A bound to the guest ionic liquids (IL) with temperature
stimuli (Fig. 10). This effect is suggested due to the changing of the inner surface
charge and wettability of the nanochannel during the process. This study paves a new
way for better understanding the mechanism of temperature-sensitive properties and
shows great promise for biomedical research.

Inspired by channel rhodopsins, a facile noncovalent approach toward light-
responsive biomimetic nanochannels was established by Li and coworkers, based
on host-guest interactions between a negative charged pillar[6]arene host (P6A) and
a positive charged azobenzene guest [46]. By switching between threading and
rethreading states with alternating visible and UV light irradiation, the host-guest
nanochannel can flexibly regulate the inner surface charge to reversibly reverse
the ion transport from cation-selective to anion-selective (Fig. 11). Additionally,
the pillar[6]arene-azobenzene-based nanochannel system could be used to construct
a light-activated valve for molecular transport.
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After the light-responsive biomimetic nanochannel, Li and coworkers reported
a biomimetic chiral-driven ionic gating in L-alanine-decorated pillar[6]arene (L-
AP6) modified host-guest nanochannel [47]. The chiral nanochannels show a high
chiral-driven ionic gate for glucose enantiomers and can be switched between “off”
by D-glucose (D-Glu) and “on” by L-glucose (L-Glu). Remarkably, the chiral
nanochannel also exhibited a good reversibility toward glucose enantiomers. Further
research indicates that the switching behaviors differed due to the differences in
bonding strength between chiral L-AP6 and glucose enantiomers; the selectivity for
D-Glu is greater than ca. 10 times that of affinity of L-AP6-AZO complex for L-Glu.
And then the more bonding with the L-AP6-AZO complex on the inner surface leads
to the decreasing of surface charge within nanochannel; therefore the ion transport is
restrained (Fig. 12).

The pillar[5]arene with terminal positively charged peptides, as an unimolecular
transmembrane channel, was reported by Hou and coworkers [48]. The peptide
functionalized pillar[5]arene displayed high ability of inserting into phosphatidyl-
choline bilayers (diPhyPC), which was driven by the electrostatic interaction
between the positively charged peptides of the pillar[5]arene and the negatively
charged phosphate groups of lipid molecules. The insertion of pillar[5]arene would
destroy the flux of ions and kill cells. The effective activity concentration against
HepG2 cancer cells is measured to be 5.1 μM, although currently the pillar[5]arene is
obviously cytotoxicity to normal cells.

Modulating protein selective translocation is a significant process, therefore to
construct a nanochannel that can well gating protein transport is a vital challenge.
Herein, inspired by nature, Li and coworkers presented a robust strategy to construct
a switchable nanochannel by introducing a pH-responsive binary host-guest system
into nanochannel [49]. Benefit from the novel design of the N-acetyl-L-cysteine-
pillar[5]arene (ACP5) as gatekeeper, the functional nanochannel can well facilitate
histone transport. Under pH regulation, the host-guest assembled nanochannel is
capable of switching “on” and “off” to manipulate histone translocation process,

Fig. 10 (a) Schematic demonstration of temperature-sensitive artificial P5A-modified nano-
channel. (b) Sensitive temperature-responsive ionic current of P5A-modified nanochannel.
(Reprinted with permission from Ref. [45]. Copyright 2017, Wiley)
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which was clearly recorded by patch clamp technique as the distinct current blocking
events (Fig. 13).

51.6 Conclusions and Perspectives

In conclusion, the host-guest sensing by macrocycles functionalized nanopores
process the inherent advantage of single-molecule analysis of biomolecules,
especially ions and chiral biomolecules. More and more macrocycles
functionalized nanopores are designed and fabricated for single-molecule bio-
sensing, based on the selective recognition of macrocycles for biological

Fig. 11 (a) Schematic demonstration of light-regulated P6A-modified nanochannel. (b) The ionic
current of different states regulated by light-responsive host-guest nanochannel. (c) The reversibil-
ity of the different states of the P6A-based nanochannels by measuring the current after alternating
irradiation with different light. (Reprinted with permission from Ref. [46]. Copyright 2017, Nature)
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analytes. We review recent advances in the host-guest sensing by macrocycles
modified nanopores and nanochannels, including crown ethers, cyclodextrins,
pillararenes, and calixarenes. The macrocycle-based nanopore bio-sensors pro-
cess excellent selectivity and sensitivity of biomolecules and the advantages of
label-free, real-time detection, cost-efficiency, and fast response time over other
analytical methods. And macrocycle-based nanopores have potential applications
on heavy metal ion purification [33], chiral drug separation [38], cancer cell
detection [48], and so on [50].

Fig. 12 (a) I–V curves of the L-AP6 nanochannel in 0.1 M KCl electrolyte in the presence of
1 mM glucose enantiomers. (b) The relationship of surface charge density versus log (concentration
of Glu). (c) The mechanism of glucose-enantiomer-driven ion gate using host-guest systems.
(Reprinted with permission from Ref. [47]. Copyright 2018, Nature)
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