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Abstract
Currently organophosphate compounds constitute one of the largest families of 
chemical compounds that are used for pest control, mainly for better crop yield 
worldwide. Due to their toxicity, persistence, and adverse effects, some organo-
phosphates (like parathion and methyl parathion) were classified and registered 
as extremely hazardous by the World Health Organization (WHO) and US EPA 
(US Environmental Protection agency) and have been banned in many countries. 
Some of the hydrolysis intermediates (such as 4-nitrophenol and trichloropyridi-
nol) of these organophosphates are more toxic and environmentally mobile (due 
to greater water solubility) and therefore more dangerous. However, existing 
reports suggest their illegal, extensive use and application without proper techni-
cal know-how (especially by illiterate farmers in underdeveloped/developing 
countries). Their indiscriminate and extensive application and use are responsi-
ble for possible contamination of several ecosystems and groundwater. 
Continuous and excessive use of organophosphates has been reported to be 
responsible for various ever-ending global problems such as contamination of 
air, water, and terrestrial ecosystems, decline in diversity of productive soil 
microflora, disruption of biogeochemical cycles, and death of nontarget macro-
scopic life forms. Organophosphates have been documented as neurotoxic and 
are potent inhibitors of acetylcholinesterase. They are responsible for serious 
adverse effect on the nervous, excretion, endocrine, reproductive, cardiovascular, 
and respiratory systems of target as well as nontarget organisms including 
humans. Moreover, these compounds are one of the major causes of accidental 
and suicidal deaths in rural population of the world. The situation therefore is of 
huge public interest, and hence, suitable cost-effective bioremediation technique 
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must be developed for the restoration of organophosphate-contaminated environ-
mental niches. Bioremediation of pollutants by biological system has emerged as 
the most effective method for clean up the contaminated sites. In order to imple-
ment bioremediation approach, proper understanding of microbial metabolism 
of these organophosphates compounds is of extreme importance. Microbial 
metabolism of OP compounds can be carried out catabolically (with organophos-
phates serving either as a sole source for C, N, or P) or co-metabolically (in the 
presence of other compounds, mainly carbohydrates). The metabolic conversion 
of organophosphates to CO2 and H2O (i.e., complete mineralization) is carried 
out through three main processes such as degradation, conjugation, and rear-
rangements that involves reactions like oxidation, hydrolysis, and reduction, all 
mediated through the enzyme-mediated pathways. The main enzymes that are 
involved in hydrolysis are phosphotriesterases (PTE) and phosphatase. The three 
major types of PTE are reported so far, such as organophosphate hydrolase 
(OPH), methyl parathion hydrolase (MPH), and organophosphorus acid anhy-
drolase (OPAA) encoded by opd, mpd, and opaA genes, which are either located 
on plasmid or on chromosomal DNA. Since most of the organophosphates are 
less soluble to make it physiologically available for microbes, solubilization is 
carried out either through the secretion of organic acid or by biosurfactants by 
the microbial cells. This is followed by adsorption and or uptake. Most of these 
adsorption and uptake mechanisms remain largely unknown. However, being 
lipophilic and small in size, these organophosphates can be transported to the 
periplasmic space where the metabolic transformation starts. The metabolic 
transformation involves either an initial oxidation or reduction followed by 
hydrolysis to release the toxic functional group and phosphate group. This hydro-
lysis step is most critical as it reduces the toxicity of organophosphates. The 
metabolic transformation of the toxic functional group is most well-studied and 
reported in literature. This is followed by a series of reactions that involves inter-
conversion ultimately leading to ring cleavage reaction that opens up the mole-
cule. Further reactions then convert these intermediates into a product that can 
act as suitable metabolite to be entered into the TCA cycle. The end products 
released from the TCA cycle are CO2 and H2O.  Most of initial reactions are 
mediated in the periplasmic space of the bacterial cell. The interconversion of 
much less toxic metabolites occurs in the cytoplasm. Although many facets of 
organophosphates biodegradation have been excavated, still there remain many 
lacunas. Understanding microbial diversity, ecological aspects, and adaptation 
strategies might cater better prospects to hope for smart technologies.
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14.1	 �Introduction

The population of human is probably going through zenith phase of development 
and to cater its need steady food supply for all is an absolute requirement. The latter 
is dependent on the continuous increase in food production. Unfortunately, nearly 
15–20% (sometimes up to 33%) of the agricultural production are lost due to pest 
infestation (Puri et al. 2013). For tropical countries, products are damaged due to 
high humidity, temperature, and several conditions that provide highly favorable 
environment for the multiplication of insect pests (Lakshmi 1993; Abhilash and 
Singh 2009). Thus, to protect crops and food from insect attack, insecticides were 
introduced (Kannan et al. 1997). Initially, organochlorine (OC) insecticides were 
used; however, due to their high toxicity, long persistence in the environment, bioac-
cumulation, biomagnifications, and devastatingly ill ecological effects, the majority 
has been replaced by organophosphate insecticides (Aktar et al. 2009). Some com-
mon organophosphate insecticides used worldwide along with their chemical struc-
ture, mode of action, year of introduction, half-life, and toxicity are illustrated in 
Table 14.1.

14.2	 �Introduction of Organophosphate: Historical 
Perspectives and Current Scenario

The first organophosphate insecticide to be commercialized was Bladan, which con-
tained tetraethyl pyrophosphate (TEPP) and was formulated by German chemist 
Gerhard Schrader in 1937 (Gallo and Lawryk 1991; Kanekar et al. 2004; Ghosh 
2010). Parathion was synthesized in 1944 by same chemist-scientist (Gallo and 
Lawryk 1991) and was introduced in 1947; later on its methyl derivative, methyl 
parathion, was introduced in 1949 (Singh and Walker 2006). Chlorpyrifos was 
introduced in 1965 as acaricide and insecticide (Singh and Walker 2006). Due to its 
broad-spectrum nature, chlorpyrifos was used throughout the world to control a 
variety of chewing and sucking insect pests and mites on a range of economically 
important crops, including citrus fruit, bananas, vegetables, potatoes, coffee, cocoa, 
tea, cotton, wheat, and rice (Thengodkar and Sivakami 2010, Chen et al. 2012).

Currently, more than 140 organophosphates are reported to be used worldwide as 
insecticides, fertilizers, fungicides, weedicides, plant growth factors, and other 
agrochemicals for better crops yield and chemical warfare agents like soman and 
sarin. These organophosphates are used as a component of 100 different types of 
commercially available insecticides, and it has also been estimated that more than 
1500 different types of organophosphates have been synthesized during the period 
of the last century. Presently, organophosphates represent the largest group of chem-
ical insecticides used in plant protection throughout the world after the prohibition 
on use of organochlorine insecticides (Bhagobaty and Malik 2008; Ortiz-Hernandez 
and Sanchez-Salinas 2010).

14  Microbial Metabolism of Organophosphates: Key for Developing Smart…
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14.2.1	 �Usage of Organophosphates

Historically, organophosphates were used as chemical warfare agents such as Sarin, 
Soman, and VX. About 200,000 tons of these extremely toxic organophosphates 
chemical warfare agents were manufactured and are stored. As per Chemical 
Weapons Convention (CWC) of 1993, these stocks must be destroyed within 10 
years of ratification by the member states (Singh and Walker 2006).

Abhilash and Singh (2009) categorically pointed out the following six sectors 
where organophosphates insecticides are used extensively:

	1.	 Agriculture—for control of weeds, insects, pests, and rodents mainly
	2.	 Public health—for control of insect (mainly mosquito and others) vectors that 

spread various diseases (malaria, filariasis, dengue fever, Japanese encephalitis, etc.)
	3.	 Domestic—for controlling insects (mosquitos, louse, etc.), flies that are common 

in houses and gardens (insects such as spiders that affect ornamental plants), 
ectoparasites (scab mites, blowfly, ticks, and lice) of domestic farmhouse cattle

Table 14.1  Some commonly used organophosphate compounds

Name of OP 
insecticides Structure Mode of action

Year of 
introduction

Half-life in soil 
(days)

Parathion Insecticides 1947 30–180

Methyl parathion Insecticides 1949 25–130

Chlorpyrifos Acaricide/
insecticide

1965 10–120

Malathion Insecticides 1950 1–25

Dimethoate Insecticides 1955 2–40

Monocrotophos Insecticides 1965 40–60

Coumaphos Insecticides 1952 24–1400

Data taken from Singh and Walker (2006); Kanekar et al. (2004)
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	4.	 Personal—applied in clothing or body for controlling head and body lice, mites, 
other small insects, etc.

	5.	 Material building—incorporated into paints, plastics, wood (furniture, etc.), and 
other materials as well in building foundation, to prevent insect infestation

	6.	 Others—control of vegetation in forests and factory sites, fumigation of build-
ings, and ships

14.3	 �Toxic Organophosphates: A Global Threat of Huge 
Public Interest

Organophosphates act as neurotoxic agents (Shimazu et al. 2001; Ghosh et al. 2010) 
and are mainly potent inhibitors of acetyl cholinesterase (Tago et al. 2006. Chao 
et al. 2008; Ortiz-Hernandez and Sanchez-Salinas 2010). Acetylcholine is a neu-
rotransmitter and acetylcholinesterase constitutes a key enzyme of the nervous sys-
tem. Generally, after completion of nerve impulse transmission, the function of 
acetylcholinesterase is to hydrolyze acetylcholine (neurotransmitter) into choline 
and acetyl-CoA (inactive components), so that these become available for further 
function. Upon irreversible binding of organophosphate to acetylcholinesterase, it 
loses its normal hydrolysis function. This results into accumulation of acetylcholine 
at the junction of the synaptic cleft. Eventually, overstimulation occurs that ulti-
mately leads to paralysis and, under extreme condition, death (Kumar et al. 2010; 
Theriot and Grunden 2011; Chaudhry et al. 1988; Cho et al. 2004; Bhagobaty and 
Malik 2008; Ortiz-Hernandez and Sanchez-Salinas 2010). The failure of nerve 
impulse transmission, due to the organophosphate pesticide poisoning, causes 
health problems such as weakness, headache, excessive sweating, salivation, nau-
sea, vomiting, diarrhea, abdominal pain, and paralysis which can ultimately lead to 
death (under extreme condition) (Kanekar et al. 2004). Some other health disorders 
reported due to organophosphate poisoning are malfunctioning of the endocrinal, 
respiratory, excretory, and cardiovascular systems as well as miscarriage during 
pregnancy, abnormal/retarded fetus development, etc. (Kumar et al. 2010).

Approximately, two million tons of organophosphate pesticides are used per year 
throughout the world. The major consumers are Europe (45%) followed by the USA 
(24%) and the rest of the world (25%). Herbicides are the main category of pesticide 
used globally followed by insecticides and fungicides (Gupta 2004).

14.4	 �Microbial Bioremediation: Best for Effective 
Environmental Cleanup of Organophosphates

Although several chemical, physical, and physicochemical methods have been devel-
oped for the removal of these toxic chemicals from its contaminated sites, bioreme-
diation is considered to be the best. It is the green process of cleaning the environment 
by using different biological means (i.e., with the help of plants, animals, and micro-
organisms). It offers a more effective, cheap, eco-friendly, and safer alternative 
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process toward cleaning up of toxic and hazardous contaminants/pollutants (Chen 
et al. 2012, 2014). Bioremediation using microorganisms has received huge attention 
in the last one decade. Organophosphate-hydrolyzing enzymes of bacterial origin are 
considered for detoxification (and bioremediation) due to broader substrate specifici-
ties and better kinetics (Dumas et al. 1989; Cheng et al. 1993).

The organophosphate-degrading microorganisms may be used for systematic 
investigation toward development of suitable technology for bioremediation of 
these toxic organophosphate agrochemicals from the contaminated agricultural 
fields (and other adjoining niches). This is a strong need and demand of the day 
toward greener and clean tomorrow.

14.5	 �Hunting Bacteria for Organophosphates: Key 
for Developing Bioremediation Process

Research works carried out over the past three decades have shown microorganisms 
as the major component of biological diversity on our planet earth with the repre-
sentation of 1030 cells. These huge number of microbes are fundamental compo-
nents toward the successful execution of biogeochemical cycles and all other 
processes that take care of the health of our planet earth (Whitman et  al. 1998). 
Several studies has now unequivocally proven that a successful existence and sur-
vival of most of the other life forms (including macroscopic plants and animals) 
depends on the proper functioning and interaction of the very basic normal micro-
biota that varies from one living system to another (Berg et al. 2014).

Therefore, to understand the fate of organophosphate compounds in the ecosys-
tems, its metabolic transformation must be properly investigated in the laboratory 
under precisely controlled conditions (Fig. 14.1). Since the diversity of bacteria is 
considered huge, lot being unknown and unexplored, this group is supposed to serve 
as the major reservoir of novel gene pool to hunt for. Since less than 1% of the total 
diversity is known, it is best to explore more. Bacterial systems are less complicated 
compared to eukaryotic ones (fungal and plants), and their genetic regulation has 
been well explored and better understood and thus can be better manipulated for 
biotechnological applications and bioremediation purposes. In general bacterial 
enzymes are given more importance than the same from other (plants and animals) 
sources due to the following reasons (Dumas et al. 1989; Cheng et al. 1993; Chen 
et al. 2011; Cycon’ et al. 2011; Arora et al. 2012; Chen et al. 2014):

•	 They are generally cheaper to produce.
•	 Their enzyme contents are more predictable and controllable.
•	 Reliable supplies of raw material of constant composition are more easily 

arranged.
•	 Plant and animal tissues contain more potentially harmful materials than 

microbes, including phenolic compounds (from plants), endogenous enzyme 
inhibitors, and proteases.

S. Pailan et al.
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Fig. 14.1  A brief overview of the current trends in the study of organophosphate (OP) metabolism 
(catabolic) in microorganism, from isolation and hydrolysis product identification to pathway 
reconstruction

14  Microbial Metabolism of Organophosphates: Key for Developing Smart…
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•	 Their enzyme-based biodegradation and bioremediation are more cost-effective 
and eco-friendly.

•	 Their enzymes have broad substrate specificity.
•	 Their enzyme can be used easily with bead-based remediation of toxic 

pollutant.

Although many organophosphate hydrolytic enzymes have been reported, con-
sidering the huge estimated diversity of the microbial world, these represent only 
the tip of hidden, unknown iceberg. From the rich collection, such as organophos-
phate-degrading microbes, much has been excavated in terms of microbial metabo-
lism, biodegradation pathways, evolution, genetic, and molecular mechanisms. 
Still, in order to realize the full potential of organophosphate-degrading bacteria, 
their applications, and development of better strategies for bioremediation of con-
taminated sites, more intensive research is required. This involves isolation of 
organophosphate-degrading microorganisms from different ecological habitat 
(extreme habitats), understanding the detail molecular events of degradation and 
signaling pathways that initiate/activate the organophosphate-degrading genes, and 
development of modern technologies for better field applications (Singh 2009).

14.6	 �Study of Microbial Metabolism of Organophosphate 
Compounds

In general, the study of microbial metabolism of organophosphate compounds was 
started by Sethunathan and Yoshida (1973), when they reported a bacterial strain 
Flavobacterium sp. ATCC 27551 (now reclassified as (Sphingobium fuliginis), 
which could degrade and utilize diazinon and parathion as the sole carbon source 
and degrade chlorpyrifos co-metabolically followed by Bacillus sp. and 
Pseudomonas sp. (Siddaramappa et  al. 1973); Xanthomonas (Rosenberg and 
Alexander 1979); Arthrobacter sp. (Nelson 1982); and Pseudomonas diminuta MG 
(Serdar et al. 1982; Mulbry et al. 1986). Singh et al. (2004) for first time reported 
the degradation of chlorpyrifos as the sole carbon source by Enterobacter asburiae 
strain B-4, which was followed by Alcaligenes faecalis (Yang et  al. 2005); 
Stenotrophomonas sp. YC-1 (Yang et al. 2006); and Sphingomonas sp. DSP-2 (Li 
et al. 2007a, b). The overall general methodologies followed toward their studies are 
summarized in Fig.  14.2. So far, many bacterial strains have been reported to 
degrade parathion, chlorpyrifos, and other organophosphate compounds either cata-
bolically or co-metabolically. A thorough and extensive list of bacterial spp. reported 
to be involved in the degradation of organophosphate compounds (mainly parathion 
and/or chlorpyrifos) is documented in Table 14.2.

S. Pailan et al.
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14.7	 �General Trend for Organophosphate Metabolism 
in Microorganisms

The process of microbial metabolism of organophosphate compounds takes place 
through multistep pathway each being catalyzed by an enzyme. In most of the cases, 
the general reactions involved are hydrolysis and oxidation and rarely reduction.

All the organophosphate compounds share a similar general pattern for their 
degradation (Fig. 14.2). There are usually three ester bonds and breakdown of any 
one reduces toxicity of the compound. The most important step is the breakdown of 
ester bond with the main group (Z in Fig. 14.2) is bonded. This releases the group 
[4-NP in case of parathion and methyl parathion; 3,5,6-trichloro-2-pyridinol (TCP) 
in case of chlorpyrifos] to be metabolized further through enzyme catalyzed multi-
ple steps. Finally, the ultimate end product enters into the TCA cycle for complete 
metabolic utilization (Singh 2009; Singh and Walker 2006).

14.8	 �Microbial Metabolism of Organophosphate: A Potential 
Source of C, P, and N for Growing Cells

Most of the studies related to understanding of microbial metabolism of organo-
phosphate compounds started with isolation and degradation of organophosphate 
compounds by microorganisms. Two categories for metabolism studies have been 

Fig. 14.2  General 
pathway for biodegradation 
of organophosphate 
compounds (Singh 2009)
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Table 14.2  List of organophosphate-degrading microorganisms

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Flavobacterium sp. (ATCC 
27551), reclassified as 
Sphingobium fuliginis

Par, Couma (Cat, 
C)
Chlp (Co-met, C)

Paddy field water, 
Philippines

Sethunathan 
and Yoshida 
(1973); 
Kawahara et al. 
(2010)

Pseudomonas sp. Par, 4-NP (Cat, C) Parathion-amended 
soil

Siddaramappa 
et al. (1973)

4 species of Pseudomonas sp. 
(mixed culture)

Par (Co-met C) Agri. wastes Munnecke and 
Hsieh (1974)

Pseudomonas stutzeri Par (Co-met, C) – Daughton and 
Hsieh (1977)

Pseudomonas sp. Par (Cat, P) Soil and sewage Rosenberg and 
Alexander 
(1979)

Xanthomonas sp. Par (Cat, C) Soil and sewage Rosenberg and 
Alexander 
(1979)

Pseudomonas diminuta MG Par, chlp (Cat) American isolate Serdar et al. 
(1982), Mulbry 
et al. (1986)

Arthrobacter sp. Par (Co-met, C) Par-treated soil 
(Gilat, Israel)

Nelson (1982)
Bacillus sp. Par (Co-met)
Pseudomonas sp. (mixed 
culture)

Par, MPar 
(Co-met, C)

MPar-treated soil of 
farmland

Chaudhry et al. 
(1988)

Arthrobacter sp. Chlp (Co-met) Flooded soil treated 
with MPar

Misra et al. 
(1992)

Pseudomonas putida MPar (Cat, C, and 
P)

– Rani and 
Lalithakumari 
(1994)

Flavobacterium balustinum MPar Agri. soils 
(Anantapur, AP, 
India)

Somara and 
Siddavattam 
(1995)

Pseudomonas sp. A3 MPar (Cat, C, and 
P)

Rice field soil Ramanathan 
and 
Lalithakumari 
(1996, 1999)

Micrococcus sp. (M-36 and 
AG-43)

Chlp (Cat) Soil Guha et al. 
(1997)

Bacillus sp. MPar (Cat) Cotton field soil 
(Guntur, AP, India)

Sreenivasulu 
and Aparna 
(2001)

Plesiomonas sp. strain M6 MPar (Co-met) (Nanjing, Jiangsu, 
China)

Zhongli et al. 
(2001)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Burkholderia cepacia, Bacillus 
sp.

MPar Agri. soil Keprasertsupa 
et al. (2001)

Agrobacterium radiobacter 
P230

MPar, Par Soil, domestic yard 
(Brisbane, Australia)

Horne et al. 
(2002a)

Pseudomonas putida KT2442 Par (Cat) – Walker and 
Keasling 
(2002)

Enterobacter, Enterobacter 
asburiae strain B-4 (AJ564997 
and AJ564998)#

Chlp (Co-met and 
Cat, C)

Soils of the UK and 
Australia

Singh et al. 
(2003, 2004)

Pseudomonas 
pseudoalcaligenes

MPar (Co-met) Organophosphate-
treated soil

Ningfeng et al. 
(2004)

Pseudomonas sp. strain 
WBC-3

MPar, 4-NP, Mala, 
Fen, Diazin (Cat, 
C, and N)

– Liu et al. 
(2005)

Chlp, TCP (Cat, 
C)

Soils (che. factory) Yang et al. 
(2005)

7 bacterial species 
(Pseudaminobacter sp., 
Achromobacter sp., Brucella 
sp., Ochrobactrum sp.) 
(AY627033 to AY627039)#

MPar MPar-contam. soil Zhang et al. 
(2005, 2006a, 
b)

Ochrobactrum sp. B2 
(AY661464)#

MPar (Co-met) MPar-polluted soil Qiu et al. 
(2006)

Stenotrophomonas sp. YC-1 
(DQ537219)#

Chlp (Cat, C, and 
P)

Sludge (WW, OP 
pest. manuf.)

Yang et al. 
(2006)

Bacillus laterosporus strain 
DSP

Chlp – Wang et al. 
(2006); Zhang 
et al. (2012a, 
b)

Sphingomonas sp. DSP-2 
(AY994060)#

Chlp (Cat, C) Poll. water (chlp 
manuf. indust., 
Nantong, China

Li et al. 
(2007b)

Klebsiella sp. Chlp Acti. sludge 
(Damascus WW 
Treatment Plant, 
Syria)

Ghanem et al. 
(2007)

Serratia sp. (EF070125)# Chp (Cat, C) Acti. sludge 
(Tiancheng pesti. 
Co., Shandong, 
China)

Xu et al. 
(2007)

Bacillus sp. DM-1 
(DQ201643)#

MPar (Co-met) Organophosphate-
polluted soil

Yang et al. 
(2007)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Acinetobacter radioresistens 
USB-04

MPar, Par (Cat, C) Sedi., WW treat., 
pesti., Shandong, 
China

Fang-Yao et al. 
(2007)

Burkholderia sp. JBA3 Par (Cat) Agri. soil (Korea) Kim et al. 
(2007)

Serratia sp. (AM050059)# MPar, 4-NP (Cat, 
C)

Agri. soil 
(Anantapur, AP, 
India)

Pakala et al. 
(2007)

Delftia sp. XSP-1 MPar, chlp, Fen, 
Phoxim

Sludge collected 
from a pesti. manuf.

Shen et al. 
(2007)

Bacillus firmus strain BY6 Chlp (Cat, C) Coral was collected 
from Teluk Awur 
North Java Sea, 
Indonesia

Sabdono 
(2007)

Pseudomonas stutzeri strain 
HS-D36

Me-Par (Cat, C) Acti. sludge water 
treat. pond pesti. 
facto. in Hubei, 
China

Wang et al. 
(2008)

Arthrobacter sp. L1 MPar (Cat, C, and 
N)

Acti. sludge, enrich. 
tech.

Li et al. 
(2008a, b)

Brachybacterium sp., 
Kytococcus sp., Brevibacterium 
sp., Chromobacterium sp., 
Oceanobacillus sp., Bacillus 
sp. (AB449753, AB449754, 
AB449755, AB449757, 
AB449758, AB449765)

Chlp, Diazin, Ethn 
(Cat, C)

Coral surface (Teluk 
Awur, N. Java Sea, 
Indonesia

Sabdono and 
Radjasa (2008)

Paracoccus sp. strain TRP 
(EF070124)#

Chlp/TCP (Cat, C) Acti. sludge (pesti. 
manuf., Shandong, 
China)

Xu et al. 
(2008)

Pseudomonas aeruginosa 
(NCIM 2074)

Chlp (Cat, C) From NCIM, Pune, 
India

Fulekar and 
Geetha (2008)

Providencia stuartii (MTCC 
8099)

Chlp (Cat, C) Agri. soil (Chittoor, 
AP, India

Rani et al. 
(2008)

Pseudomonas sp. DSP-1 
(DQ482656), DSP-3 
(DQ482655), and DSP-5 
(DQ115539), Sphingomonas 
sp. DSP-2 (AY994060), 
Stenotrophomonas sp. DSP-4 
(DQ482654), Bacillus sp. 
DSP-6 (DQ237947), 
Brevundimonas sp. DSP-7 
(DQ676936)#

Chlp (Cat, C) Water sample of chlp 
indust. Pt. (Nan 
Tong, Jiangsu and 
soil agri. field 
Nanjing, China)

Li et al. 
(2008a, b)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Bacillus pumilus C2A1 Chlp (Cat, C) Soil sample from 
cotton fields at 
NIBGE, Jhang Road, 
Faisalabad, Pakistan

Anwar et al. 
(2009)

Pseudomonas aeruginosa Chlp and TCP 
(Cat, C)

Pesti.-contam. soils 
(Punjab, India)

Lakshmi et al. 
(2009)

Pseudomonas sp., 
Burkholderia, Arthrobacter, 
Pseudomonas, Variovorax, 
Ensifer

Par, Fen, 4-NP, 
MPar (Cat, C)

Rice field soils Min-Kyeong 
et al. (2009)

P. fluorescens, Brucella 
melitensis, Bacillus subtilis, 
Bacillus cereus, Klebsiella sp., 
Serratia sp., P. aeruginosa 
(consortium)

Chlp (Cat, C) Pesti.-contam. soils 
of Punjab

Lakshmi et al. 
(2009)

Burkholderia sp. strain KR100 
(HM101281)#

Chlp-Me, TCP 
(Cat, C)

Korean rice paddy 
soil

Kim and Ahn 
(2009)

Bacillus sp. and Pseudomonas 
sp.

Chlp, MPar, 
phorate, 
dichlorvos

Soil sample Madhuri and 
Rangaswamy 
(2009)

Pseudomonas aeruginosa MPar, Mono MTCC, Chandigarh, 
India

Balamurugan 
et al. (2010)

Stenotrophomonas sp. SMSP-1 
(EU312979)#

Par, MPar, Fen, 
Phoxim
–

Sludge of a WW of 
pesticide manuf.

Shen et al. 
(2010a, b)

Bacillus licheniformis ZHU-1 
(KC197213)#

Chlp (Cat, C) Soil sample from 
Wuqi Farm in 
Shanghai, China

Zhu et al. 
(2010)

Sinorhizobium sp., 
Pseudoxanthomonas sp., 
Streptomyces iakyrus, 
Microbacterium takaoensis, 
Isoptericola dokdonensis 
(GU902282 to GU902303)#

Par (Cat, C) Soil sample Fodale et al. 
(2010)

Spirulina platensis 
(cyanobacteria)

Chlp Obtained from Indian 
Agricultural 
Research Institute, 
Delhi, India

Thengodkar 
and Sivakami 
(2010)

Pseudomonas sp. (aeruginosa/
putida)

Paraoxon (Cat) Soil samples 
Houston, Texas, 
Alvin Texas, League 
City, Texas Sealy, 
Texas Katy, Texas

Iyer et al. 
(2011)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

4 species of Pseudomonas sp., 
2 species of Agrobacterium sp. 
and Bacillus sp. 
(GQ149502-GQ149508)#

Chlp (Cat, C) Soil sample from 
agri. farm of Banaras 
Hindu University, 
Varanasi, India

Maya et al. 
(2011)

Synechocystis sp. strain 
PUPCCC 64 (GQ907237)#

Chlp Rice field of the 
village Dera Bassi of 
Patiala district of 
Punjab state, India

Singh et al. 
(2011)

Pseudomonas sp. strains 
RCC-2, Staphylococcus sp. 
GCC-1, Flavobacterium sp. 
GCC-3, and Streptococcus sp. 
JCC-3

Chlp Soil samples from 
cultivated fields of 
Rajkot, Gujarat, India

Kumar (2011a, 
b)

Acinetobacter sp., 
Pseudomonas putida, Bacillus 
sp., Pseudomonas aeruginosa, 
Citrobacter freundii, 
Stenotrophomonas sp., 
Flavobacterium sp., Proteus 
vulgaris, Pseudomonas sp., 
Acinetobacter sp., Klebsiella 
sp., Proteus sp., and 
Pseudomonas sp. (consortium)

Chlp, MPar 
(Co-Met), 4-NP

Contam. garbage 
dump of Moravia, 
Medellin

Pino et al. 
(2011); Pino 
and Peñuela 
(2011)

Pseudomonas stutzeri, 
Pseudomonas 
Pseudoalcaligenes, 
Pseudomonas maltophilia, 
Pseudomonas vesicularis

Chlp (Cat, C) Pest.-contaminated 
soil in Egypt

Awad et al. 
(2011)

Agrobacterium sp. strain Yw12 
(DQ468100)#

MPar (Cat, C, and 
P)

OP-contaminated 
sludge Huayang 
pesti. manuf., 
Shandong, China

Wang et al. 
(2012)

Enterobacter sp. strain 
Cons002

Par, MPar, phorate 
(Co-met)

Agri. soil Concepcio’n 
et al. (2012)

Bacillus pumilus W1 MPar OP-contaminated soil 
of Khairpur, 
N. Sindh, Pakistan

Ali et al. 
(2012)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Klebsiella sp., (NII 1118), 
Pseudomonas
putida (NII 1117), 
Pseudomonas stutzeri (NII 
1119), Pseudomonas 
aeruginosa (NII 1120) 
(consortium) (HM135446, 
HM135447, HM135448, 
HM135449)#

Chlp (Cat) Chlp-contam. soil 
sample paddy field, 
Kancheepuram, 
Tamil Nadu, India

Sasikala et al. 
(2012)

Pseudomonas putida Chlp (Co-Met) Soil samples 
collected from 
different sites in and 
around Bangalore, 
India, having a 
history of repeated 
application of chlp

Vijayalakshmi 
and Usha 
(2012)

5 species of Pseudomonas sp. 
(individually)

Chlp (Cat, C, and 
P)

Efflu. storage pools 
of facto. producing 
pesti. and from soil 
moisture around 
them

Latifi et al. 
(2012)

Pseudomonas fluorescens, 
Bacillus subtilis, Klebsiella sp.

Chlp, Mono 
(Co-Met)

Pesti.-contam. soil of 
paddy field, 
Annamalai Nagar, 
Tamil Nadu, India

KaviKarunya 
and Reetha 
(2012)

Bacillus stearothermophilus, B. 
circulans, B. macerans

Chlp (Co-Met) Soil from cabbage 
cultivated private 
agri. farm, 
Bangalore, India

Savitha and 
Raman (2012)

Bacillus cereus Chlp,TCP (Cat N) Soil from Jiangsu 
Jinghong Chemical 
Co., Ltd, China

Liu et al. 
(2012)

Four species of Actinobacteria 
(Streptomyces sp.) 
(JQ289350-JQ289353)#

Chlp (Co-Met) Chlp-contam. agri. 
soil from blueberry 
field, Gorbea City in 
southern Chile

Briceño et al. 
(2012)

Stenotrophomonas maltophilia 
strain MHF ENV 20 and MHF 
ENV (HM625746, 
HQ661376)#

Chlp/TCP Soil from banks of 
Surya River, Palghar 
(100 km away from 
Mumbai)

Dubey and 
Fulekar (2012)

Pseudomonas putida MAS-1 Chlp (Co-Met) Indigenous agri. soil 
of Karachi, Pakistan

Ajaz et al. 
(2012)

Pseudomonas sp. WW5 Chlp (Co-Met) – Farhan et al. 
(2012)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Pseudomonas diminuta 
(EMP11c), P. putida 
(EMP12a), P. aeruginosa 
(EMP12b)

OP (Cat, C) Agri. soil from 
Gwalior, Madhya 
Pradesh, India

Sharma et al. 
(2013)

Pseudomonas putida POXN01 MPar Soil sample collected 
from rice field of 
Harlingen (Cameron 
Country, Texas)

Iyer et al. 
(2013)

Sphingobacterium sp. JAS3 
(JQ514560)#

Chlp (Cat, C) Soil collected from a 
paddy field in Vellore 
district, Tamil Nadu 
state, India

Abraham and 
Silambarasan 
(2013)

Naxibacter sp. strain CY6 
(JX987079)#

Chlp, Par, MPar 
(Cat, C, P)

Soil samples from 
pesti.-contam. soil of 
a greenhouse

Kim et al. 
(2013)

Cupriavidus sp. DT-1 
(JQ750642)#

Chlp,TCP (Cat, C) Sludge collected 
from a chlp manuf. 
site in Changzhou, 
Jiangsu Province, 
China

Lu et al. (2013)

Kocuria sp. Chlp Agri. soil of West 
Godavari district of 
AP, India

Neti and 
Zakkula (2013)

Acinetobacter radioresistens, 
Pseudomonas 
frederiksbergensis, Bacillus 
pumilus, Serratia liquefaciens, 
Serratia marcescens, 
Burkholderia gladioli

Chlp, MPar, 
Diazin, Mala, 
Dime

Agri. soil of Beed 
district, Maharashtra, 
India

Hussaini et al. 
(2013)

Nocardia mediterranei Chlp, MPar 
(Co-Met)

– Sukirtha and 
Usharani 
(2013)

Pseudomonas aeruginosa,
Bacillus megaterium,
Staphylococcus aureus

MPar Rhizos. soil 
MP-treated agri. res. 
farm, guava orchad. 
SHIATS and comm. 
farm, Jhunsi, 
Allahabad

Peter et al. 
(2014)

Bacillus subtilis strain C5 
(JN942155)#

MPar Marine sludge (China 
Bohai Sea)

Hao et al. 
(2014)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Pseudomonas aeruginosa, 
Serratia marcescens, and 
Klebsiella oxytoca

Chlp Rice fields in Anaku, 
Omor, and Igbakwu 
towns in Ayamelum 
Local Govt. Area of 
Anambra State, 
Nigeria

Ifediegwu et al. 
(2015)

Bacillus cereus strain LR5 
(JX966388)#

Chlp Soil (treated with 
chlp) was collected 
from Zhejiang 
Academy of Agri. 
Sciences, Hangzhou, 
China

Chen et al. 
(2014)

Pseudomonas sp. strain YF-5 
(KF584917)#

MPar, chlp (Cat, 
C)

Sludge (China) Liu et al. 
(2014)

Pseudomonas sp. BF1–3 
(KJ849233)#

Chlp Balloon flower root Barman et al. 
(2014)

Paenibacillus (Bacillus) 
polymyxa and Azospirillum 
lipoferum

Chlp, chlp-Me, 
Mala

– Romeh and 
Hendawi 
(2014)

Stenotrophomonas sp. G1 
(JN688160)#

Par, chlp, MPar, 
Diazin

Sludge, drain outlet 
(chlorpyrifos 
manufac. Plant, 
China)

Deng et al. 
(2015)

Achromobacter sp. C1 MPar (Cat, C) Agri. soil, Jabalpur, 
India

Mishra (2015)

Mesorhizobium sp. HN3 
(JN119831)#

Chlp, TCP (Cat, 
C)

Chlp-contam. agri. 
soil samples

Jabeen et al. 
(2015)

Cupriavidus taiwanensis 
(JN688161)#

Chlp Sludge from outlet of 
a chlp manuf. in 
Jiangsu Province, 
China

Wang et al. 
(2015)

Bacillus aerius Chlp Soil samples from 
locations of the 
Nandimandalam 
village of YSR 
district Kadapa, AP, 
India

Jayasri et al. 
(2015)

Bacillus thuringiensis strain 
BRC-HZM2 (GQ140344)#

Chlp Samples were 
collected from a facto 
(Fujian Sannong
che. and pest. facto.), 
manuf. OP pesti., 
Sanming, Fujian 
Province, China

Wu et al. 
(2015)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Bacillus aryabhattai SanPs1 MPar (Cat, C) Rhizosphere soil of 
paddy field. 
Burdwan, India

Pailan et al. 
(2015)

Pseudomonas sp. BUR11 MPar (Cat, C) Rhizosphere soil of 
paddy field. 
Burdwan, WB, India

Pailan and 
Saha (2015)

Acinetobacter sp. MemCl4 Chlp (Cat, C) Rhizosphere soil of 
paddy field. Memari, 
WB, India

Pailan et al. 
(2016)

Pseudomonas putida X3 MPar (Cat, C) – Zhang et al. 
(2016)

Pseudomonas sp. R1, R2, and 
R3

Mpar (Cat) Agri. soil, 
Visakhapatnam, AP, 
India

Begum and 
Arundhati 
(2016)

Cupriavidus nantongensis X1 Chlp Isolated from sludge 
collected at drain 
outlet of a 
chlorpyrifos manuf. 
plant

Fang et al. 
(2016)

Staphylococcus warneri 
(CPI2), Pseudomonas
putida (CPI 9), and 
Stenotrophomonas maltophilia 
(CPI 15) (consortium)

Chlp Soil from different 
agric. areas in Kerala, 
India

John et al. 
(2016)

Xanthomonas sp. 4R3-M1, 
Pseudomonas sp. 4H1-M3, and 
Rhizobium sp. 4H1-M1

Chlp 
(catabolically as a 
sole source of C 
and N)

Sugarcane farms in 
the Mackay, 
Burdekin, and Tully 
areas in Queensland, 
Australia

Rayu et al. 
(2018)

Fungi
Penicillium waksmani Par Flooded sulfate soil Rao and 

Sethunathan 
(1974)

Trichoderma harzianum, 
Penicillium vermiculatum, and 
Mucor sp.

Chlp Forest sample Jones and 
Hastings 
(1981)

Phanerochaete chrysosporium Chlp (Cat, N) US Dept. of agri. 
Forest Products 
Laboratory, Madison, 
WI

Bumpus et al. 
(1993)

Aspergillus terreus, 
Trichoderma harzianum

Chlp A clay soil taken 
from the Botanical 
Garden of Assiut 
University, Assiut, 
Egypt

Omar (1998)

(continued)
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Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Coriolus versicolor, 
Hypholoma fasciculare

Chlp – Bending et al. 
(2002)

Aspergillus sp., Trichoderma 
sp.

Chlp Soil pre-treated with 
chlp, China

Liu et al. 
(2003)

Fusarium sp. LK (WZ-I) Chlp – Wang et al. 
(2005); Xie 
et al. (2010)

Verticillium sp. (DQ153250)## Chlp (Cat, C) Samples from farm 
soil, tree rhizos. soil, 
sedi. of a sewer, 
sludge, and piggery 
soil from Huajiachi 
Campus, Zhejiang 
University, 
Hangzhou, China

Yu et al. (2006)

Trichosporon sp. (EF091819)## Chlp,TCP Acti. sludge from 
Tiancheng
pesti. Co., Shandong, 
China

Xu et al. 
(2007)

Verticillium sp. DSP Chlp Soil samples 
collected from farm 
field at Huajiachi 
Campus, Zhejiang 
University, 
Hangzhou, China

Fang et al. 
(2008)

Trichoderma viride MPar MTCC, Chandigarh, 
India

Balamurugan 
et al. (2010)

Aspergillus niger AN400 MPar (Co-Met, C) – Marinho et al. 
(2011)

Acremonium sp. strain GFRC-1 Chlp (Cat, C) From agri. soils Kulshrestha 
and Kumari 
(2011)

Cladosporium cladosporioides 
Hu-01

Chlp (Cat, C) – Chen et al. 
(2012)

Aspergillus terreus JAS1 
(JQ361749)##

Chlp (Co-Met, C) Paddy field 
chlp-contam. soil 
sample from Vellore, 
Tamil Nadu, India

Silambarasan 
and Abraham 
(2013)

Aspergillus sp. F1 (JQ898687), 
Penicillium sp. F2 and F3 
(JQ898688, JQ898689), 
Eurotium sp. F4 (JQ898690), 
and Emericella sp. F5 
(JQ898691)##

Chlp, TCP Soil of Agri. farm of 
Banaras Hindu 
University, Varanasi 
(25o 18′ N, 83o 3′ E)

Maya et al. 
(2012)

(continued)
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addressed in literature. This includes the following: the first includes the catabolic 
utilization/biodegradation studies, where, organophosphate compound has been 
used as the sole source of C, and the second includes co-metabolic utilization/bio-
degradation studies, where another C compound (along with organophosphate com-
pound) has been used as sources of C for growth (Singh 2009). The metabolic 
conversion of organophosphate compounds has been proposed to occur through 
pathways, each having multiple steps. In this chapter, parathion has been considered 
as a representative compound.

Till date, three different pathways for metabolic conversion of parathion have 
been reported as shown in Fig. 14.3 (Singh and Walker 2006). The first pathway 
involves an initial oxidative step to generate paraoxon which is hydrolyzed to gener-
ate 4-NP and diethyl thiophosphoric acid (DETP). For the second pathway, the first 
step is hydrolysis, leading to the formation of 4-NP and DETP.  While the third 
pathway is reductive one facilitated under anaerobic condition [although some  
oxygen-insensitive reductase from Bacillus (Yang et al. 2007) and Anabaena sp. 
PCC7120 (Barton et al. 2004) has been reported]. The reactions involve reduction 

Table 14.2  (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Trichoderma harzianum, 
Rhizopus nodosus

Chlp, Ethn (Cat, 
C)

Chlp- and Ethn-
contam. soil

Harish et al. 
(2013)

Fusarium sp. CR10 
(JX915255); Fusarium 
oxysporum CR9 (JX915246); 
Fusarium sp. GR4 and CR13 
(JX915247); Gibberella 
moniliformis CR11, GR1, GR3, 
and CR4 (JX915252, 
JX915251, and JX915250); 
Dipodascaceae sp. GR2 and 
CR12 (JX915245); 
Chaetomium globosum CR1 
and CR14 (JX915254)##

Chlp Soil (treated with 
chlp) was collected 
from Zhejiang 
Academy of Agri. 
Sciences, Hangzhou, 
China

Chen et al. 
(2014)

Isaria farinosa Chlp Chlp-contam. soil 
samples from Idukki, 
Kerala, India

Karolin et al. 
(2015)

Penicillium citrinum, Fusarium 
proliferatum

MPar Isolated from the 
ascidian Didemnum 
ligulum

Rodrigues 
et al. (2016)

Abbreviation: Acti activated, agri agriculture, Che chemical, Cat catabolic, C carbon, chlp chlor-
pyrifos, Couma coumaphos, Co-met co-metabolic, contam contaminated, Diazin diazinon, Efflu 
effluent, Ethn ethion, facto factory, Fen fenitrothion, Mpar methyl parathion, Par parathion, pesti 
pesticides, Mala malathion, manuf manufacturer, Mono monocrotophos, N nitrogen, P phospho-
rus, poll polluted, res research, rhizos rhizosphere, sedi sediment, WW wastewater, # 16S rRNA 
gene sequence, ## 18S rRNA gene sequence
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of nitro group to amine (leading to formation of 4-aminoparathion), which up on 
further hydrolysis releases 4-aminophenol (4-AP) and DETP. In most of the litera-
tures, the metabolisms of the main functional leaving groups are discussed. The fate 
of DETP, being common to all, is not followed.

It is clear from available literature that the second pathway (the hydrolysis one) 
is the most widely reported one. The 4-NP that is generated is reported to be utilized 
via two pathways: one that operates through formation of 4-NC and BT is more 
prevalent among Gram-positive bacteria [Bacillus sphaericus JS905 (Kadiyala and 
Spain 1998) and Rhodococcus opacus SAO101 (Kitagawa et al. 2004)], while the 
second that operates through formation of PBQ and HQ is more common among the 
Gram negatives [Moraxella sp. (Spain and Gibson 1991) and Pseudomonas sp. 

Fig. 14.3  Pathway of parathion biodegradation (Singh and Walker 2006)
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strain WBC-3 (Zhang et al. 2009)]. However, in Pseudomonas sp. 1–7, both the 
pathways have been reported to be operative (Zhang et al. 2012b).

Very few reports on the degradation of parathion to paraoxon before hydrolysis 
of phosphotriester bond (i.e., the first pathway) were reported, except that from a 
mixed bacterial culture (Mastumura and Boush 1968; Tomlin 2000).

The third pathway has mainly been reported from a mixed bacterial consortium 
(by Munnecke and Hsieh 1976) under anaerobic environment. This pathway was 
also reported from aerobically growing Bacillus sp. (Sharmila et al. 1989 and Yang 
et al. 2007) and Anabaena sp. PCC7120 (Barton et al. 2004). The presence of pos-
sible involvement of oxygen-insensitive reductases is suggested for conversion in 
the aerobic bacteria (Barton et  al. 2004). Very recently, Pailan and Saha (2015) 
reported evidence of two possible pathways (first, through 4-NP formation and, 
second, through 4-aminoparathion and 4-aminophenol) operative in Pseudomonas 
sp. strain BUR11. Through analytical techniques and growth-dependent experimen-
tal evidences, they reported on this aspect.

14.9	 �Overall Process of Organophosphate Metabolism

Several enzymes are reported to participate in the process of metabolism of organo-
phosphate compounds. These can be broadly categorized into two major groups, 
namely, phase I and phase II enzymes. Phase I enzymes participate in reactions that 
makes the molecule much more polar, water-soluble, and amenable for enzymes of 
phase II to act. It may also be pointed that microbes can solubilize organophosphate 
by organic acid secretion and also by biosurfactants (Monteiro et al. 2007). In gen-
eral, increase in solubility reduces half-life of the compounds rapidly. The major 
processes involved in metabolism are biodegradation, conjugation, and rearrange-
ments. These include many chemical reaction types such as oxidation, reduction, 
dealkylation, ring cleavage, oxygenase, and peroxidize mechanisms.

Interaction of toxic organophosphate compound with microorganisms can pro-
ceed through three processes:

	1.	 Transformation reaction leading to detoxification of parent organophosphate 
compound

	2.	 Direct degradation and mineralization through catabolic pathway
	3.	 Maintenance of cellular homeostasis

These three processes can occur together or in isolation depending up on what 
kind of genetic information the organism is equipped with.

Most of the literature has worked up on the second issue (Singh and Walker 2006; 
Pailan and Saha 2015). While, Longkumar et al. (2014) showed existence glutathi-
one S-transferase mediated detoxification system in Acinetobacter baumannii strain 
DS002. The enzyme was reported to be involved in a dealkylation reaction that even-
tually reduced the toxicity of parent methyl parathion. There is a huge lacuna as far 

S. Pailan et al.



383

as the third issue is concerned. This issue is particularly true for those strain that do 
not have the capacity to degrade organophosphates but can tolerate them.

14.10	 �Quantitative Study of Microbial Metabolism

Most of the studies in literature have addressed the quantitative aspect of metabo-
lism study by any one of the following two ways (Peter et al. 2014; Pailan and Saha 
2015; Fang et al. 2016):

	1.	 By monitoring gradual decrease in the amount of parent organophosphate com-
pound in the growth medium (due to microbial metabolism) with respect to time

	2.	 By monitoring gradual increase in the amount of hydrolytic intermediates fol-
lowed by their subsequent decrease, indicating their utilization and metabolic 
conversion

As case study, for example, for metabolic study of parathion, the decrease in the 
residual amount of parathion in microbial culture inoculated test growth flask can be 
compared with blank (i.e., where no microbial inoculants are added) with respect to 
time as shown in Fig. 14.4a.

Another way of monitoring the metabolism is by quantifying the amounts of 
major hydrolytic intermediates produced as a result of the degradation of parent 
compound. As evident from Fig. 14.4b, by studying the fate of four major hydroly-
sis intermediates of parent organophosphate compound, parathion, one can con-
clude that the bacterial culture in the question can metabolically utilize parent 
organophosphate compound with concomitant formation of the first intermediate 
(4-nitrophenol, which accumulates in culture medium initially) followed by its 
gradual utilization (as its amount decreases) and then by formation of other interme-
diates (p-benzoquinone, hydroquinone, and benzenetriol). The temporal trend of the 
graph indicated the utilization of all the intermediates (as they decrease gradually).

Quantification of organophosphate compounds and its other hydrolytic interme-
diates can be carried out by HPLC technique. As evident from Fig. 14.5, compounds 
can be identified by comparing retention time of the test samples to that for authen-
tic standards (from a well-known source like Sigma Aldrich). For quantification, 
specific peak area as well as height of the analytes from the test sample (extracted 
at different time intervals) is compared to that of the standard (for which standard 
curves are generated).

14.11	 �Identifying the Intermediate Compounds Produced 
Due to Metabolic Breakdown of Organophosphate

The reliable techniques to detect and identify different hydrolytic intermedites of 
organophosphate compound (e.g. parathion) are TLC, GC screening, GC-MS and 
LC-MS/MS followed by NIST (National Institute of Standard Technology) library 
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Fig. 14.4  Parathion degradation profile of BUR11. (a) Parathion degradation profile by the strain 
BUR11 and (b) fate of intermediates during parathion degradation by the strain BUR11 (Pailan 
and Saha 2015)

S. Pailan et al.
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search. For the preliminary identification of hydrolytic intermediates during organo-
phosphate (e.g., parathion) degradation, TLC is performed. Compounds were identi-
fied (Fig. 14.6) by comparing Rf value of the test samples to that for authentic standards 
(from Sigma Aldrich).

Through GC screening and library match, also the preliminary idea of hydrolytic 
intermediates can be obtained. However, for confirmed results, separation by 
GC-MS and/or LC-MS/MS techniques followed by the identification of intermedi-
ate compounds by comparing their mass spectrum profiles to that of the NIST 
library are universally accepted (Fig. 14.7)

Fig. 14.5  Parathion degradation by a bacterial strain. The elution profile of each sample is shown 
as individual chromatograms. 0 h control sample (a), 0 h test sample (b), 24 h test sample (c), 72 
h test sample (d), 120 h test sample (e), and elution profiles of standards (f, g, h). X-, Y-, and 
Z-labeled peak denotes parathion, 4-NP, and 4-NC, respectively
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14.12	 �Factors That Affect Organophosphate Degradation

Several factors have been reported to affect the process of organophosphate degra-
dation (both in soil and in laboratory batch cultures). These are as follows:

14.12.1	 �Substrate Concentration

Biodegradation of a particular pollutant depends upon the concentration of pollutant 
occurring in the contaminated site. Usually, a concentration which is too high may 
be toxic for the microbes, while lower concentration may not be sufficient to induce 
the microbial enzyme system involved in the degradation process (Block et al. 1993; 
Morra 1996). It has been reported that with the increasing concentration of organo-
phosphate pesticides, there is a decrease in the microbial population (Shan et al. 
2006). A dosage of 4 l/hac of chlorpyrifos was recorded to be inhibitory to the total 
soil microbial population (Pandey and Singh 2004). The average half-life of chlor-
pyrifos was reported to be increased with the increasing chlorpyrifos concentration 
of the soil (Hua et al. 2009).

Fig. 14.6  Identification of metabolites of parathion degradation by TLC. Authentic standards 1, 
parathion; 2, 4-NP; 3, PBQ; 4, HQ; 5, 4-NC; 6, BT; 7, 4-AP. And 8 and 9 correspond to 72 and 120 
h extract of parathion-grown culture, indicating the detection of 4-NP, PBQ, HQ, and BT during 
the course of degradation (Pailan and Saha, 2015)
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14.12.2	 �pH

It is one of the most important factors for the degradation of organophosphate com-
pounds in soil and other habitats. Majority of the organophosphate pesticides are 
subject to base catalyzed hydrolysis at higher alkaline pH, around 8 (Greenhalgh 
et al. 1980). The degradation of chlorpyrifos was reported to be slow in acid soil (pH 
4.7) and high in alkaline soil (pH 7.7–8.4), by Singh et al. 2003. Biodegradation of 
chlorpyrifos by Bacillus laterosporus DSP was reported to be enhanced by increas-
ing the pH from 7 to 9 (Wang et al. 2006; Zhang et al. 2012b). A study of the effect 
of pH on biodegradation of malathion and dimethoate by Pseudomonas frederiks-
bergensis indicated decrease in half-life (almost by twofold) with increasing pH 
from neutral to pH 8 (Al-Qurainy and Abdel-Megeed 2009). For fungal culture, 
Fusarium sp. LK, biodegradation of chlorpyrifos was reported in the range of pH 
6.5–9 (Wang et al. 2005).

14.12.3	 �Inoculum Size

The population of microorganisms involved in degradation is also reported to be an 
important factor. Inoculum size ranging from 106 to 108 cells/g of soil was suggested 
to be sufficient for bioremediation of pesticides from their contaminated sites 
(Comeau et al. 1993). Biodegradation of fenamiphos and chlorpyrifos was reported 
to be influenced by inoculum size, while no degradation of chlorpyrifos by 
Enterobacter sp. was recorded below an inoculum concentration of 103 cells/g of 

Fig. 14.7  GC-MS spectra obtained from the bacterial culture extract of parathion-grown broth 
culture. (a) 4-NP and (b) 4-NC were found as major compounds as hydrolysis products). The 
compounds were identified and confirmed from the NIST library
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soil. When soil was supplied with less than 105 cells/g of soil, no biodegradation of 
fenamiphos was recorded (Singh and Walker 2006).

14.12.4	 �Bioavailability/Solubility

For proper biodegradation, it is very essential that the pollutant be available/made 
available to the degrading microorganism(s). In general, many organophosphate 
compounds have less water solubility, and this factor has been reported to be respon-
sible for its decreased degradation (Alexander 1999). Many hydrophobic organo-
phosphate pesticides become entrapped in the nanopores of the organic matter of 
the soil and thus are not available for biodegradation at all. Addition of suitable 
material that solubilizes the pollutant or selection of biosurfactant-producing micro-
organisms has been reported to make these hydrophobic molecules available for 
biodegradation. The biosurfactants desorb the hydrophobic chemicals so as to make 
them available for degradation (Aronstein et al. 1991; Brown and Jaffe 2006; Zhu 
and Zhou 2008).

Biosurfactants are anionic or neutral (some are cationic) rhamnolipids, glycolip-
ids, lipopeptides, phospholipids, fatty acids, particulate compounds, etc. which are 
of microbial origin and are used for solubilization of hydrophobic pollutants, with 
the aim of making it bioavailable and more suitable for biodegradation (Monteiro 
et al. 2007).

14.13	 �Chemotaxis and Metabolism of Organophosphate 
Insecticides

The movement of bacteria either toward or away from a chemical gradient is called 
bacterial chemotaxis. Chemotaxis is a natural phenomenon and is reported from 
diverse groups of bacteria. A chemical compound that affects the bacterium’s move-
ment is called the chemoeffector (stimulant). Chemicals that attract bacteria are 
called chemoattractants, and chemicals that repel them are called chemorepellents. 
Chemotaxis can be classified into two types, namely, metabolism dependent and 
metabolism independent (Pandey and Jain 2002; Baker et al. 2005). Till date several 
assays have been developed to check the chemotactic activity of a bacterium. These 
are swarm plate assay, drop plate assay, agarose-plug assay, etc. (Bhushan et  al. 
2000; Samanta et al. 2000; Pandey et al. 2002; Bhushan et al. 2004). As far as che-
motaxis to pesticides/insecticides are concerned, survey of literature revealed 
reports pertaining only to two bacteria, namely, Pseudomonas sp. strain ADP (Liu 
and Parales 2009) and Ralstonia eutropha JMP134 (Hawkins and Harwood 2002). 
Both of them are reported to exhibit chemotaxis-mediated biodegradation of atra-
zine and 2,4-dichlorophenoxyacetate herbicides, respectively. There is hardly any 
literature on chemotaxis of bacteria toward organophosphate compounds except by 
Pseudomonas sp. strain WBC-3 (Zhang et al. 2008) and by Pseudomonas putida 
DLL-1. However, the latter publication is only available in Chinese language, and 
its English version is currently not available (Wen et al. 2007).
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Recently, Pseudomonas sp. strain BUR11 was reported to exhibit positive che-
motaxis toward two OP compounds, namely, parathion and chlorpyrifos (as well as 
their degraded intermediate products 4-NP, 4-AP, and TCP). Through a series of 
plate-based qualitative assays (drop plate & swarm plate) and quantitative assay, the 
chemotactic response was confirmed for the strain BUR11 (Figs. 14.8 and 14.9). 
However, the authors could not conclude whether this chemotactic response was 
metabolism dependent or independent. The study concluded on the importance of 
genetic analyses for better understanding of this chemotactic process; nevertheless, 
this was one of the unique confirmed reports of chemotactic response of bacterium 
toward organophosphate compounds in recent times (Pailan and Saha 2015).

14.14	 �Discovery of Organophosphate-Degrading Enzyme

Organophosphate-degrading enzyme was first described by Mazur in 1946 when he 
discovered the hydrolysis of diisopropyl fluorophosphate (DFP) by enzymes found 
in rabbit and human tissue extracts (Mazur 1946). For the first time, DFPase and 
sarinase enzymes were found to degrade organophosphate compounds. Later, the 
DFPase activities of several bacterial isolates for organophosphate degradation 
were described by Attaway et al. (1987). In 1992, the Nomenclature Committee of 
the International Union of Biochemistry and Molecular Biology listed them in the 
category of phosphoric triester hydrolases. These enzymes were further categorized 
into two subgroups based on their substrate specificities. The first subgroup is the 
organophosphorus hydrolases (also referred to as paraoxonase and phosphotriester-
ase; PTE) that prefer the substrates paraoxon and P-esters, which have P–O and P–S 
bond. The second subgroup is diisopropyl fluorophosphates (also including 

Fig. 14.8  (a) Drop plate assay and (b) swarm plate assay. Qualitative chemotactic response of 
BUR11 toward parathion, chlorpyrifos, 4-NP, 4-AP, and TCP (Pailan and Saha 2015)
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organophosphorus acid anhydrolase, OPAA), which are most active against organo-
phosphate compounds with P–F or P–CN bonds (Cheng and DeFrank 2000).

14.14.1	 �Mechanism of Enzymatic Degradation of Insecticides

In case of insecticide degradation, three main enzymes are involved under two 
metabolism systems. The first metabolism system includes enzymes like hydro-
lases, esterases, and the mixed function oxidases (MFO), and the second system 
includes the glutathione S-transferases (GST) system (Li et  al. 2007a). Several 
enzymes that catalyze metabolic reactions including hydrolysis, oxidation, addition 
of an oxygen to a double bond, oxidation of an amino group (NH2) to a nitro group, 
addition of a hydroxyl group to a benzene ring, dehalogenation, reduction of a nitro 
group (NO2) to an amino group, replacement of a sulfur with an oxygen, metabo-
lism of side chains, and ring cleavage are required to degrade toxic insecticide into 
nontoxic intermediates (Ramakrishnan et al. 2011).

Fig. 14.9  Quantitative capillary assay. Quantitation of the chemotactic response and determina-
tion of the optimal response concentration for BUR11 chemotaxis toward different test compounds 
using capillary assays (Pailan and Saha 2015)
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In most of the microorganisms, insecticides can be metabolized by a three-phase 
process. In phase I metabolism, the initial properties of parent compounds are trans-
formed through oxidation, reduction, and hydrolysis to produce a more water-soluble 
and usually a less toxic product than parent. The second phase (phase II) involves 
conjugation of a pesticide or insecticide metabolite to a sugar or amino acid, which 
increases the water solubility and reduces toxicity, compared to the parent pesticide/
insoluble metabolite. The third phase (phase III) involves conversion of phase II 
metabolites into secondary conjugates, which are also nontoxic. To carry out these 
processes, microorganisms like fungi and bacteria produce several intracellular or 
extra cellular enzymes including hydrolytic enzymes, peroxidases, oxygenases, etc. to 
accomplish the complete mineralization of toxic insecticides (Van Eerd et al. 2003).

14.14.2	 �Enzymes and Gene(s) Involved in Organophosphate 
Compounds Degradation

The organophosphate compounds are tri-esters of phosphates and their derivatives. 
Therefore, the most common enzyme that might be involved in their degradation is 
the esterase. Esterases are also categorized as hydrolases [enzyme that hydrolyzes a 
broad range of aliphatic, aromatic esters and organophosphates, Park and Kamble 
(2001)]. Various types of hydrolases involved in the degradation of organophos-
phate insecticides are as follows:

14.14.2.1	 �Phosphotriesterase (PTE)
Till date, the most well-addressed and discussed organophosphate-degrading 
enzyme is phosphotriesterases (PTE; Theriot and Grunden 2011). It is a metalloen-
zyme that hydrolyzes a variety of toxic organophosphate compounds (mainly those 
that act as nerve agents). PTE was first isolated from Pseudomonas diminuta MG 
(Serdar et al. 1982) and Flavobacterium sp. (Sethunathan and Yoshida 1973). This 
enzyme shows a highly catalytic activity toward various organophosphate insecti-
cides. The PTE was further subcategorized into three groups on the basis of insecti-
cide it acted upon (i.e., based on substrate). These are:

	A.	 Organophosphorus hydrolase (OPH)
	B.	 Methyl parathion hydrolase (MPH)
	C.	 Organophosphorus acid anhydrolase (OPAA)

These three are encoded by opd, mpd, and opaA genes, respectively.

	A.	 Organophosphorus Hydrolase (OPH)
Many of the enzymes known to hydrolyze organophosphorus esters are referred 
as organophosphorus hydrolase [OPH; EC 3.1.8.1]. OPH is the most widely 
studied bacterial enzyme in OP degradation, exhibiting high catalytic activity 
and wide range of organophosphate substrate specificity (oxon and thion) (Yang 
et al. 2006; Ortiz-Hernandez and Sanchez-Salinas 2010). It is a zinc-containing 
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homodimeric membrane protein reported from Flavobacterium sp. strain ATCC 
27551 and Pseudomonas diminuta MG (Sethunathan and Yoshida 1973; Serdar 
et al. 1982). It can hydrolyze organophosphate compounds at a rate approaching 
the diffusion limits (Horne et  al. 2002a). The gene (opd) coding for OPH 
enzymes has been reported to be plasmid borne. The first opd gene (within a 
66kb plasmid, pCMS1) was reported from Pseudomonas diminuta (Sethunathan 
and Yoshida 1973; Serdar et  al. 1982; Mulbry et al. 1986; Singh and Walker 
2006). Similar opd gene has been identified from various Pseudomonas strain 
by using Southern hybridization analysis (Chaudhry et al. 1988). Flavobacterium 
sp. strain ATCC 27551 and Pseudomonas diminuta MG contain identical opd 
genes as well as the OPHs purified from these have identical or very similar in 
amino acid sequences (Serdar et al. 1982; Mulbry and Karns 1989; Siddavattam 
et al. 2003), but it is not clear how this has occurred as the genes are on very 
different plasmids (Harper et al. 1988). Omburo et al. 1992 isolated an opd gene 
encoding a 40 kDa homodimer parathion hydrolase, containing divalent zinc 
ions as a cofactor. Horne et al. (2002a) suggested that PTE is a 384-amino-acid 
protein with a molecular mass of approximately 35 kDa when it is cleaved from 
its signal peptide. The two native Zn2+ ions of this enzyme can be substituted 
with either Co2+, Ni2+, Cd2+, or Mn2+ with/without the restoration of catalytic 
activity. Recent findings have shown that two metal atoms are closely associated 
and the water molecule that attacks the phosphoryl center is bound directly to 
the binuclear metal center (Benning et al. 1995; Vanhooke et al. 1996).

	B.	 Methyl Parathion Hydrolase (MPH)
Singh (2009) reported that MPH is present in several phylogenetically unrelated 
bacteria and is active against several organophosphate compounds but has a nar-
rower substrate range than OPH. The crystal structure of the MPH (which is a 
member of the β-lactamase superfamily) from Pseudomonas sp. WBC-3 has 
been solved by Dong et al. (2005). MPH is a dimer in which each subunit has a 
mixed-hybrid, binuclear zinc center. MPH is not similar to any other PTEs, even 
though several PTEs can degrade methyl parathion. The MPH is coded by mpd 
gene. Molecular studies and phylogenetic analyses confirmed that mpd genes 
have evolved separately from opd genes. Unlike opd genes, most of the known 
mpd genes have been isolated from one country (China), indicating that the 
environment has an influence on mpd evolution (Singh 2009). Whole-genome 
sequence analysis also suggests that mpd and β-lactamase gene homologues are 
present in other bacteria, such as Methylibium petroleiphilum (locus tag NC 
008825), Azoarcus sp. (locus tag AM 406670), Leptothrix cholodnii (locus tag 
CP 00001013), Chromobacterium violaceum (locus tag AE O16825), and 
Sinorhizobium meliloti 1021 (locus tag AE 006469). Interestingly, an AHL lac-
tonase (N-acyl homoserine lactone) from Bacillus thuringiensis also belongs to 
the β-lactamase superfamily. AHL lactonase has some promiscuous PTE activi-
ties, so it is possible that OPH and MPH have evolved from different lactonase 
enzymes (Afriat et al. 2006).
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	C.	Organophosphorus Acid Anhydrolase (OPAA)
Another organophosphate-degrading enzyme that has received considerable 
attention is OPAA [encoded by opaA (organophosphorus acid anhydrolase) 
gene], first isolated from halophilic species Alteromonas undina and Alteromonas 
haloplanktis (Cheng et al. 1993, 1999). This enzyme belongs to the dipeptidase 
family and does not share enzyme or gene-sequence homology either with OPH 
or MPH. This indicates that the organophosphate-degrading function of OPAA 
might have evolved from different progenitors (Singh 2009). OPAAs from the 
species of Alteromonas sp. JD6.5, Alteromonas undina, and Alteromonas halo-
planktis are structurally and functionally similar to each other. They share a 
molecular weight between 50 and 60 kDa, having an optimum pH from 7.5 to 8.5 
and temperature optima ranging from 40 °C to 55 °C, and require Mn2+ for their 
maximum catalytic activity (Cheng et al. 1997). OPAAs are highly active and 
more specific to OP nerve agents than OPHs. The amino acid sequence of OPPA 
of Alteromonas sp. JD 6.5 shares 49% and 31% similarity with dipeptidase or 
prolidase and aminopeptidase of E. coli (Theriot and Grunden 2011).
Since the property of organophosphate degradation is gene mediated, the same 
can be used to develop novel strains for in situ application purpose by genetic 
engineering process. In most of the cases, the genes are defined to be located 
either in plasmids or in chromosomes (Concepcio’n et  al. 2012). In this way, 
many authors reported organophosphate degradation property using recombinant 
bacterial strains (Yang et al. 2005; Xu et al. 2007). Very recently, Farivar et al. 
(2017) reported construction of a recombinant organophosphate-degrading 
Pseudomonas plecoglossicida strains with opd gene from Flavobacterium sp. 
ATCC 27551 using the pUC57 plasmid.
A thorough list of organophosphate-degrading enzymes, genes, and source 
microorganisms from which the enzymes were isolated so far is summarized in 
Table 14.3.

14.14.2.2	 �Other Enzymes Involved in Insecticide Degradation
Survey of literature suggested some other enzymes having organophosphate-
degrading activities. These are as follows:

14.14.2.2.1  Oxidoreductase
Oxidoreductases are a broad group of enzymes that carry out transfer of electrons 
from one molecule (the reductant or electron donor) to another (the oxidant or elec-
tron acceptor). Many of these enzymes require additional cofactors, to act as either 
electron donors, electron acceptors, or both. These enzymes have applications in 
bioremediation. There are the enzymes that catalyze an oxidation/reduction reaction 
by including the molecular oxygen (O2) as electron acceptor. In these reactions, 
oxygen is reduced into water (H2O) or hydrogen peroxide (H2O2). The oxidases are 
a subclass of the oxidoreductases. These enzymes not only catalyze oxidation 
reduction reaction of toxic compounds but also catalyze the oxidation reaction of 
various pesticides, insecticides, as well as herbicides (Scott et al. 2008).
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Table 14.3  List of organophosphate-degrading enzymes, genes, and their source microorganisms

Organisms
Encoding genes 
(accession no.) Degrading enzyme References

Pseudomonas diminuta opd (M29593) OPH Serdar et al. 
(1982)

Flavobacterium sp. opd (M22863) OPH Harper et al. 
(1988)

Pseudomonas diminuta 
MG,

opd (M20392) Phosphodiesterase McDaniel et al. 
(1988)

Flavobacterium sp. strain 
ATCC 27551

opd (M29593) Parathion hydrolase gene Mulbry and 
Karns (1989)

Flavobacterium sp. 
ATCC27551

opd (AJ421424) 
(M20392)

OPH Mulbry and 
Karns (1989)

Escherichia coli, Bacillus 
cereus

ND Phosphonatase Chen et al. 
(1990)

Nocardia sp. adpB ADPase Mulbry (1992)
Mycobacterium sp. or 
Nocardia sp. strain B-1

opaA 
(AAA25371)

– Mulbry (1992)

Pseudomonas spp. glpA and B C-P lyase Penaloza-
Vazquez et al. 
(1995)

Burkholderia caryophylli pehA PEH Dotson et al. 
(1996)

Alteromonas sp. JD6.5 opaA OPAA Cheng et al. 
(1996)

Alteromonas undina
Alteromonas haloplanktis
ATCC 23821

opaA (U29240)
Prolidase gene 
(U56398)

OPAA-2
OPAA

Cheng et al. 
(1996, 1997)

Nocardioides sp. strain 
C190

trzN s-triazine hydrolase Mulbry et al. 
(2002)

Burkholderia sp. strain 
NF100

opd/mpd Fenitrothion-hydrolyzing 
enzyme

Hayatsu et al. 
(2000)

Plesiomonas sp. M6 mpd (AF338729) MPH Zhongli et al. 
(2001)

Moraxella sp. oph OPH Shimazu et al. 
(2001)

Agrobacterium radiobacter opdA 
(AY043245)

OPDA Horne et al. 
(2002a)

Pseudomonas monteilii hocA HOCA (hydrolysis of 
coroxon)

Horne et al. 
(2002b)

Flavobacterium balustinum opd (AJ426431) Parathion hydrolase Siddavattam 
et al. (2003)

Flavobacterium sp. ATCC 
27551

opd (AJ421424) – Siddavattam 
et al. (2003)

Delftia acidovorans pdeA gene 
(AF548455)

Phosphodiesterase 
(PdeA)

Tehara and 
Keasling (2003)

Escherichia coli pepA AMPP (aminopeptidase 
P)

Jao et al. (2004)

(continued)
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Table 14.3  (continued)

Organisms
Encoding genes 
(accession no.) Degrading enzyme References

Pseudomonas 
pseudoalcaligenes

ophc2 
(AJ605330)

OPHC2 Ningfeng et al. 
(2004)

Pseudomonas sp. WBC-3 mpd (AY251554) MPH Liu et al. (2005)
Brucella melitensis mp-7
(AY331581)

mpd (AY627039) MPH Zhang et al. 
(2005, 2006a, b)

Achromobacter 
xylosoxidans mp-2 
(AY331576)

mpd (AY627034) MPH Zhang et al. 
(2005, 2006a, b)

Pseudaminobacter sp. mp-1 
(AY331575) strain no. 
AF072542

mpd (AY627033) MPH Zhang et al. 
(2005, 2006a, b)

Pseudaminobacter 
salicylatoxidans 
(AY331575), strain no 
AF072542

mpd (AY627033) MPH Zhang et al. 
(2005)

Ochrobactrum tritici mp-3, 
mp-4, mp-5, mp-6 
(AY331577, AY331578, 
AY331579, AY331580), 
strain no. AF508089

mpd (AY627035, 
AY627036, 
AY627037, 
AY627038)

MPH Zhang et al. 
(2005)

Burkholderia sp. FDS-1 
(AY550913)

mpd2/opd 
(DQ173274,
AY646835)

MPH Zhang et al. 
(2006a, b)

Stenotrophomonas sp. strain 
YC-1 (DQ537219)

mpd 
(DQ677027)

MPH Yang et al. 
(2006)

Burkholderia sp. NF100 fedA, fedB Fenitrothion hydrolase 
gene (OPH)

Tago et al. 
(2006)

Flavobacterium sp. MTCC 
2495

mpd (AY766084) OPH Kumar et al. 
(2006)

Pseudomonas putida DLL-1 mpd MPH Liu et al. (2005)
Pseudomonas 
pseudoalcaligenes

ophc2 OPH Chu et al. 
(2006)

Sphingomonas sp. DSP-2 
(AY994060)

mpd 
(DQ356953)

MPH Li et al. (2007a, 
b)

Sphingomonas sp. CDS-1 mpd MPH Jiang et al. 
(2007)

Burkholderia sp. JBA3 ophB 
(EF495210)

OPH Taesung et al. 
(2007)

Arthrobacter sp. L1 mpd (EF055988) MPH Li et al. (2008a, 
b)

Pseudomonas sp. (DSP-1, 
DSP-3), Sphingomonas sp. 
DSP-2, Stenotrophomonas 
sp. DSP-4

mpd MPH Li et al. (2008a, 
b)

Pseudomonas stutzeri strain 
HS-D36

mpd MPH Wang et al. 
(2008)

(continued)
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14.14.2.2.2  Mixed Function Oxidase (MFO)
In the reaction catalyzed by the MFO (EC 1.14.14.1), an atom of one molecule of 
oxygen is incorporated into the substrate, while the other is reduced to water. For this 
reason, the MFO requires nicotinamide-adenine dinucleotide phosphate (NADPH) 
and O2 for its operation. It is an enzyme system comprising of two enzymes, cyto-
chrome P450 and NADPH-cytochrome P450 reductase; both are membrane 

Table 14.3  (continued)

Organisms
Encoding genes 
(accession no.) Degrading enzyme References

Pseudomonas stutzeri strain 
HS-D36

mpd (EF515812) MPH Guo et al. 
(2009)

Ochrobactrum sp. Yw18 mpd 
(DQ843607)

MPH Singh (2009)

Ochrobactrum sp. M231 mpd (EU596456) Tian et al. 
(2010)

Stenotrophomonas sp. 
SMSP-1 (EU312979)

ophc2 
(EU651813)

OPHC2 Shen et al. 
(2010a, b)

Lactobacillus brevis 
(WCP902)

opd B – Islam et al. 
(2010)

Pseudomonas sp. Carboxyl 
esterase gene

Carboxyl esterase Goda et al. 
(2010)

Sphingomonas sp. JK1 opd (EU709764) OPH Kumar and 
D’Souza (2010)

Burkholderia cepacia mpd B 
(DQ001540)

MPH Ekkhunnatham 
et al. (2012)

Bacillus pumilus W1 opd A OPH Ali et al. (2012)
Stenotrophomonas 
maltophilia MHF ENV20

mpd OPH Dubey and 
Fulekar (2012)

Kocuria sp. opd OPH Neti and 
Zakkula (2013)

Pseudomonas sp. strain 
YF-5

mpd MPH Liu et al. (2014)

Sphingomonas sp. strain 
TDK1 and Sphingobium sp. 
strain TCM1

Haloalkylphosphorus 
hydrolases (TDK-HAD, 
TCM -HAD)

Abe et al. 
(2014)

Pseudomonas sp. BF1-3 
(KJ849233)

ophB OphB Barman et al. 
(2014)

Acinetobacter sp. AbOPH gene OPH Chen et al. 
(2015)

Sphingomonas sp. DC-6 dmhA Amidohydrolase 
(DmhA)

Chen et al. 
(2016)

Reports from fungi
Pleurotus ostreatus
Chaetomium thermophilum

Laccase Amitai et al. 
(1998)

Aspergillus niger opd A-OPH Liu et al. (2001)
Penicillium lilacinum opd OPH Liu et al. (2004)
Cladosporium 
cladosporioides Hu-01

– CHP (chlorpyrifos 
hydrolase)

Gao et al. 
(2012)

S. Pailan et al.



397

proteins. They are also known as cytochrome P-450-dependent monooxygenase or 
P450 system. The genes encoding the different isozymes comprise a superfamily of 
over 200 genes grouped into 36 families based on their sequence similarity. 
Cytochrome P450 enzymes are active in the metabolism of a wide variety of xenobi-
otics (Khaled et al. 2012). The cytochrome P450 family is a large, well-characterized 
group of monooxygenase enzymes that have long been recognized for their potential 
in many industrial processes, particularly due to their ability to oxidize or hydroxyl-
ate substrates in an enantiospecific manner using molecular oxygen (Urlacher et al. 
2004). Many cytochrome P450 enzymes have a broad substrate range and have been 
shown to catalyze biochemically recalcitrant reactions such as the oxidation or 
hydroxylation of nonactivated carbon atoms. These properties are ideal for the reme-
diation of environmentally persistent pesticide residues. Over 200 subfamilies of 
P450 enzymes have been found across various prokaryotes and eukaryotes. MFOs 
metabolize a wide range of compounds such as OPs, carbamates, pyrethroids, DDT, 
inhibitors of the chitin synthesis, juvenile hormone mimics, etc. (Alzahrani 2009).

14.14.2.2.3  Glutathione S-Transferase (GST)
The GSTs (EC 2.5.1.18) are a group of enzymes that catalyze the conjugation of 
hydrophobic components with reduced glutathione. In this reaction, the thiol group 
of glutathione reacts with an electrophilic place in the target compound to form a 
conjugate which can be metabolized or excreted. GSTs are involved in many cel-
lular physiological activities such as detoxification of endogenous and xenobiotic 
compounds, intracellular transport, biosynthesis of hormones, and protection 
against oxidative stress (Sheehan et  al. 2001; Hayes et  al. 2005; Oakley 2005). 
Broadly, GSTs are divided into four major families: (a) cytosolic GSTs, (b) mito-
chondrial GSTs, (c) microsomal GSTs, and (d) bacterial fosfomycin resistance pro-
teins (Armstrong 1997; Hayes et al. 2005). A very recent report by Longkumar et al. 
(2014) revealed that GST was involved in dealkylation of methyl parathion (OP 
compound) by a bacterial strain Acinetobacter baumannii DS002. Unlike in other 
organophosphate-degrading bacterial strains, in the genome of Acinetobacter bau-
mannii DS002, there is no conserved gene encoding an organophosphate-degrading 
enzyme. The absence of such opd gene and the induction of a GST-like protein in 
the presence of organophosphate insecticides suggested the existence of a novel 
organophosphate-degrading pathway in Acinetobacter baumannii DS002. 
Longkumar and his colleagues also discovered the existence of multiple gst genes 
in Acinetobacter baumannii DS002 and observed the expression of these gst genes 
and involvement of resulting GST enzyme in dealkylation of methyl parathion that 
eventually reduces toxicity of the parent compound (Longkumar et al. 2014).
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14.15	 �Role of OPH in Phosphate Acquisition 
from Organophosphate Compounds

Among the PTEs, OPH (a metalloenzyme requiring Zn as cofactor) is the most 
well-studied and characterized enzyme as far as structural and catalytic properties 
are concerned (Omburo et al. 1992; Kuo and Raushel 1994). It is best studied from 
Brevundimonas diminuta (recently reclassified as Sphingopyxis wildii) (Parthasarathy 
et al. 2017a). It located in the periplasmic space as multi-protein complexes, and it 
interacts with several systems like phosphate-specific transport (Pst) system, ABC 
transporters, and efflux pump AcrZ/TolC.  It is reported to anchor to periplasmic 
face of the inner membrane through a diacylglycerol linked to the invariant cysteine 
residue. This enzyme also contains a signal peptide with a conserved cysteine resi-
due at the junction of its cleavage site. The signal peptide contains a characteristic 
Tat motif which is common for proteins that are translocated across the inner mem-
brane in a prefolded state (Parthasarathy et al. 2016). Based on bioinformatic analy-
ses, the c-terminal of OPH has been predicted to be in the cytoplasmic side 
(Parthasarathy et al. 2017a, b). Apart from triesterase activity, this enzyme has also 
been shown to possess lactonase activity. Due to that, OPH has been hypothesized 
to have evolved from lactonases (whose function s for quorum quenching) for the 
uptake of phosphate from the surrounding environment (Afriat-Jurnou et al. 2012).

It seems PTEs located in the periplasmic space converts organic organophos-
phate (that enters into the periplasmic space through after crossing the outer mem-
brane) into phosphodiesters which ultimately gets converted into inorganic 
phosphate by the combined action of phosphodiesterase and phosphatase. OPH has 
been postulated to be involved in phosphate acquisition from organophosphate 
compounds through its interaction with components of the outer membrane (such as 
ABC-type transporters, TolC, etc.) known to be involved in phosphate transport in 
bacterial cells (Parthasarathy et al. 2016). Although these studies provide some idea 
toward the utilization of phosphotriesterases as the sole source of phosphate (at least 
in Sphingopyxis wildii), there is a huge lacuna as far as the transport processes oper-
ate in this organism.

14.16	 �Concluding Remarks

In spite of advances in cultivation methods, the total number of culturable microbes 
recoverable from any environmental niche is very low compared to what exists nat-
urally. The wealth of information, regarding organophosphate metabolism that we 
have gained from existing diversity, is only the tip of the iceberg as we are far from 
knowing the exact boundaries of microbial diversity on earth. Moreover, a lot more 
studies has to be carried out with anaerobic microbes and their metabolic studies 
with respect to organophosphate compounds. Compared to aerobic metabolism, 
during anaerobic process more substrates are needed to be metabolized to provide 
equitable amount of ATP, and prospect of cleaning xenobiotic substrate is more 
through anaerobic degradation than aerobic degradation. Thus, more systematic 
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studies for exploration of organophosphate biodegradation by anaerobic microor-
ganisms should be made. This will not only increase our bio-resource in terms of 
novel microbes, gene, and enzyme pool for biotechnological aspect of the environ-
mental cleanup process but also may lead to complete understanding of the overall 
degradation process and their links with other ecological processes on our planet 
earth. Microbial metabolism of organophosphate compounds in the environment is 
a complex, less understood process that depends upon the community diversity of 
the microflora residing in the habitat, energy, and nutrient flow as well as stress 
response metabolism of microbes. Unfortunately due to lack of our understanding 
toward holistic system wide understanding of complex interaction between degrad-
ing microbes, their genes, enzymes and multivariate environmental factors along 
with the complex microbial community (de Lorenzo 2008). Very recently, in order 
to understand the relationships in holistic manner, metagenomic approach was 
undertaken and it has shown promising results (Jeffries et al. 2018). The results of 
such approach highlighted the value holistic system-wide metagenomic approaches 
as a tool to predict microbial degradation in the context of the ecology of contami-
nated habitats. As pointed earlier, understanding the adaptation strategies taken by 
a microorganism to tolerate organophosphate toxicity and maintain cellular homeo-
stasis will help us to understand the metabolism in a better way. Another huge 
lacuna is the process of signaling which facilitates the degradation process. Future 
studies will incorporate similar approaches to enrich our understanding the 
relationship.
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