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Abstract
Diverse groups of microorganisms have inhabited this earth, which use different 
types of sources for energy and growth. Industries revolutionize the lifestyle of 
humankind, which affects negatively the ecosystem. Synthetic dyes impart fabu-
lous colors to cloth, food, paper, and cosmetics. Due to their xenobiotic nature, 
they are mostly insurmountable for degradation and also toxic. Most of them are 
washed off during the various processes and mixed in the industrial effluents. 
Microorganisms have enzymatic system for the decolorization of dyes or simply 
they can adsorb them on their surface. Several genera of algae, bacteria, and 
fungi have developed a system to use these unwanted compounds in the water. 
They can also biotransform or degrade them into non-toxic products. Degradation 
of the dyes depends upon their toxicity and chemical structure and the type of 
strain used. Some species were found to be efficient against a variety of dyes at 
a high concentration level. The present review describes the diversity of three 
genera Chlorella, Pseudomonas, and Aspergillus of thallophytes for the degrada-
tion and decolorization of various dyes in industrial effluents and also the use of 
integrated approach of different consortia or other treatments for their applica-
tion in wastewater treatment plants.
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13.1  Introduction

Dyes are synthetic or natural compounds used to color or change the shade of any 
substance. From the beginning natural dyes from plants were used, but the invention 
of synthetic dyes by the British chemist William Perkin (1856) from coal tar revolu-
tionized the chemical industry. During the next few decades, production of synthetic 
dyes has been popularized due to their use in every sector of industries. Dyes are 
used in food products, paper and textile industry, tanning, cosmetics, pharmaceutical, 
etc. Commercial products use colors to attract the customers. Due to their high usage, 
they are concentrated in our environment as xenobiotic compounds. The major share 
of production goes to textile industry which uses more than 10,000 types of dyes, and 
most are used as excess levels with 1000 tonnes per annum. About 10–25% is lost at 
some stage in the dyeing process, and approximately 2–20% is discharged as efflu-
ents in water and soil (Carmen and Daniel 2012). They are highly toxic, if not dis-
posed properly as most of them are washed off in the effluents of these industries and 
reach the water and soil bodies. Dyes and by-products cause environmental, esthetic, 
and health problems. Dyes can be categorized as disperse, basic, acid, direct, and 
reactive dyes (Asgher 2012). The breakdown of chromophore groups (azo or anthra-
quinone) from dyes leads to the formation of toxic compounds (Katheresan et al. 
2018). They break down in the form of several carcinogenic or mutagenic forms 
(aromatic compounds, benzidine, naphthalene, etc.) and cause serious health prob-
lems in the food chain. With the time, xenobiotic compounds accumulate in Mother 
Nature and become problematic for every type of organism. They are mostly 
degraded or adsorbed by microorganisms, but sometimes become recalcitrant in 
nature because of insolubility, absence of transporting enzymes, and non-accessibil-
ity as substrates (Godheja et al. 2016).

The thallophytes are a group of non-mobile organisms which included algae, 
bacteria, fungi, and lichens. This group of organisms inhabited the earth in almost 
all types of conditions like hot springs, volcanoes, and Arctic and Antarctic regions. 
A variety of microorganisms can tolerate these conditions as well as adapt them-
selves for their survival. The xenobiotics or industrial effluents make the natural 
water bodies more acidic and also disturb the growth of biota. Some species of the 
group were found capable of removing the color from industrial effluents by adsorp-
tion or biodegradation or biotransformation or mineralization (Chang et al. 2001a). 
As compared to chemicophysical treatments, biological degradation of dyes is 
always cost-effective and also can remove the toxic amines in the effluents, and 
further the combination of both treatments can produce better results (Hai et  al. 
2007). The exploration of the diversity and deciphering the underlying mechanism 
of adaptability will be helpful to make the positive planning to transform the worst 
environmental conditions (Rampelotto 2010). In the present chapter, we have sum-
marized three different genera, Chlorella (algae), Pseudomonas (bacteria), and 
Aspergillus (fungi), implicated in the natural degradation of dyes in industrial efflu-
ents and the underlying mechanism of decolorization.
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13.2  Algae

Algae are a group of aquatic microorganisms having photosynthetic machinery and 
ca. 50,000 species adapted to various ecological conditions (Xu et al. 2006). They 
come under the group of thallophytes as due to undifferentiated roots, stems, and 
leaves. The major commercially available groups of microalga are Chlorophyta, 
Dinophyta, Haptophyta, Rhodophyta, and Stramenopiles (Heimann and Huerlimann 
2015). The microalgal genera studied for the biotreatment of industrial wastewater 
are Spirogyra, Oscillatoria, Spirulina, Scenedesmus, Cosmarium, etc. (Fazal et al. 
2018) Among these groups, Chlorella taxa have been majorly investigated for the 
treatment of various types of industrial effluents (Banat et al. 1997; Munoza and 
Guieysse 2006; Safi et al. 2014).

13.2.1  Chlorella

The genus is spherical shaped single cell green algae. It is widely used in the field 
of productions of biofuels, cosmetics, food, and pigments and wastewater treat-
ments (de Andrade and de Andrade 2017). Industrial wastewater contains dyes and 
nutrients used by algal community for their growth, which can be used as a sustain-
able approach for biodiesel production and bioremediation (Fazal et al. 2018). The 
two species, i.e., C. vulgaris and C. pyrenoidosa, were well documented by various 
authors for the treatment of effluents of textile industry (Table 13.1).

The first report of degradation of azo dyes by Chlorella was given by Jinqi and 
Houtian (1992). They tested 30 azo compounds for the decolorization process and 
found removal percentage in the range of 5–100%. The most easily degradable dye 
was Direct Blue 71 (100%), and Methyl Red was not decolorized from the medium. 
The azoreductase enzyme was found to be responsible for the bioconversion of 
aniline intermediate into carbon dioxide. The same type of degradation product was 
confirmed by Acuner and Dilek (2004) while studying C. vulgaris for the decolor-
ization of Tectilon Yellow 2G. Sinha et al. (2016) reported the degradation of many 
industrial pollutants by C. pyrenoidosa NCIM 2738-based photobioreactor. The 
organism was able to decolorize the dye completely within 2.16 days and also 
improved the water quality.

The dyes can be degraded into simpler products, or simply they can be adsorbed 
by the microalgae. Adsorption capacity of microalgae can vary for different dyes and 
their initial concentration (Aksu and Tezer 2005). The initial pH of the solution was 
a determining factor for the proper biosorption of the dyes, and it can also vary with 
the specific dyes. Aksu and Tezer (2005) found that the highest uptake of vinyl sul-
phone-type reactive dyes occurred at pH 2.0 by dried C. vulgaris, while Daneshvar 
et al. (2007) demonstrated that basic pH was more favorable for the decolorization of 
Malachite Green. Similar results were observed by Tsai and Chen (2010) by altering 
the pH from 3.0 to 11.0. To attain the highest uptake of cationic dyes, the surface 
should acquire more negative charge which is only possible at this pH. The func-
tional groups, i.e., hydroxyl and carbonyl groups, present on the surface of 
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Table 13.1 Removal of different dyes by Chlorella species

Sr. 
no.

Chlorella 
species

Dyes 
(concentration)

Mechanism 
(enzyme(s))

Removal 
time 
(percentage) By-product References

1. C. 
pyrenoidosa
C. vulgaris

Azo dyes Biodegradation 
(azoreductase)
–

(5–100%) Aromatic 
amines, 
CO2

Jinqi and 
Houtian 
(1992)

2. C. 
ellipsoidea
C. kessleri
C. vulgaris

Tartrazine and 
Ponceau (5–20 
ppm)

6 days 
(40–55%)

Aromatic 
amines

Hanan 
(2008)

3. C. vulgaris Tectilon 
Yellow 2G 
(400 mg L–1)

Bioconversion 200 h (83%) Aniline, 
CO2

Acuner and 
Dilek 
(2004)

Remazol 
Golden Yellow 
(200 mg L–1); 
Remazol Red 
and Black B 
(800 mg L–1);

Biosorption – – Aksu and 
Tezer 
(2005)

G-Red, Orange 
II, and Methyl 
Red (20 ppm); 
basic cationic 
(10 ppm); 
basic fuchsin 
(5 ppm)

Biosorption 
and 
Biodegradation 
(azoreductase)

7 days 
(4–91%)

Aromatic 
amines

El-Sheekh 
et al. 
(2009)

Malachite 
Green (6 mg 
L–1)

Biosorption 90 min 
(91.61%)

– Kousha 
et al. 
(2013)

Congo Red 
(5–25 mg L–1)

Biosorption 
and 
Biodegradation 
(azoreductase)

96 h (83 and 
58 %)

– Hernández-
Zamora 
et al. 
(2015)

4. C. vulgaris 
UMACC 
001

Lanaset Red 
2GA (7.25 mg 
L–1)

Biosorption 10 days 
(48.7%)

– Chu et al. 
(2009)

Supranol Red 
3BW (20 mg 
L–1)

10 days 
(50%)

Lim et al. 
(2010)

5. C. sp. Malachite 
Green (5 ppm)

Decolorization 2.5 h 
(80.7%)

– Daneshvar 
et al. 
(2007)

6. C. 
pyrenoidosa

Thioflavin T 
and Malachite 
Green

Biosorption – – Horník 
et al. 
(2013)

(continued)
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microalgae help them for the biosorption of dyes (Horník et al. 2013). The optimal 
temperature range for the dye uptake by Chlorella lies between 25 and 35 °C; how-
ever, a wide range has little effect on the biosorption (Tsai and Chen 2010).

The continuous lighting conditions used in the case of mixed culture of algae (13 
taxa including Chlorella) removed 80% color within 30 days as compared to 60% 
after 60 days of exposure under simulated field lighting conditions from the pulping 
effluent (Dilek et al. 1999). El-Sheekh et al. (2009) tested C. vulgaris among five 
taxa of microalgae for the removal of basic fuchsin, basic cationic, G-Red, Methyl 
Red, and Orange II. The most susceptible dyes were basic cationic and basic fuch-
sin. C. vulgaris removed 43.7 and 59.12% of Orange II and G-Red dyes. The G-Red 
dye acts as an inducer of the azoreductase enzyme and increases the activity up to 
72.25%. Kousha et al. (2013) compared the biosorption activity for Malachite Green 
of the same species against Scenedesmus quadricauda. They considered the differ-
ent parameters like dye concentration, contact time, algae amount, and pH.  The 
maximum dye removal was done by C. vulgaris (91.61%) as compared to the latter 
one (73.49%). Similarly, Lebron et  al. (2018) recorded maximum elimination of 
Methylene Blue by C. vulgaris (98.20%) as compared to Spirulina maxima 
(94.19%). Recently, Zhao et al. (2018) evaluated the effectiveness of wastewater 
treatment by C. vulgaris, C. zofingiensis, and Scenedesmus sp. in terms of the activ-
ity of photosystem II, nutrient loading, and lipid productivity. C. zofingiensis shows 
higher absorption capability, productivity, and efficiency as compared to the other 
two species, even in worse environmental conditions.

The immobilized form of microalgae has more advantages over the free cell 
suspension for the elimination of heavy metals and xenobiotics in wastewater (Luan 
et al. 2006). Chu et al. (2009) investigated the immobilized C. vulgaris UMACC 
001 (1% κ-carrageenan and 2% sodium alginate) for the treatment of three dyes and 
textile wastewater. The algae immobilized on 2% sodium alginate has higher color 
removal efficiency for the textile wastewater and dyes. The immobilized form is 
more stable, easy to harvest, and protected from the direct exposure to toxicity as 

Table 13.1 (continued)

Sr. 
no.

Chlorella 
species

Dyes 
(concentration)

Mechanism 
(enzyme(s))

Removal 
time 
(percentage) By-product References

Textile 
wastewater and 
Methylene 
Blue dye 
(10–60 mg 
L–1)

60 min 
(40–90%)

– Pathak 
et al. 
(2015)

Methylene 
Blue dye 
(100 mg L–1)

(98.20%) – Lebron 
et al. 
(2018)

7. C. 
pyrenoidosa 
NCIM 2738

Direct Red-31 
dye (40 mg 
L–1)

Biodegradation 
(azoreductase)

2.16 days 
(100%)

Aromatic 
amines

Sinha et al. 
(2016)
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compared to free cells. Later, Gao et al. (2011) also found the same results for the 
removal of nonylphenol using the same type of matrix. Horník et al. (2013) investi-
gated the biosorption capacity of dried biomass of C. pyrenoidosa immobilized in 
polyurethane foam. The process of sorption of cationic dyes (Thioflavin T and 
Malachite Green) depends upon the preliminary concentration of dyes, flow rate of 
solution through the column, bed height, and biomass concentration. The simple or 
modified polyurethane-based adsorbent has been reported as an efficient sorbent for 
the elimination of dyes from wastewater (Sultan 2017).

Apart from the treatment of dyes, the genus has been also directly tested for the 
exclusion of xenobiotics directly from the textile wastewater. The organism utilizes 
textile wastewater for its growth and also removes the color in the range of 41.8–
50.0% as reported by Lim et al. (2010). It also reduces phosphate, nitrate content, 
BOD, and COD from the effluents. The dried biomass was found more efficient as 
a biosorbent than wet algal biomass, due to its high binding affinity and large sur-
face area. It can be cultured in the wastewater for color and COD removal and bio-
mass production (El-Kassas and Mohamed 2014; Pathak et  al. 2015; Tao et  al. 
2017). The integrated approach for the treatment of wastewater and production of 
biomass, lipids, biofuels, bioelectricity, etc. is the promising application of Chlorella 
in the industry (Logroño et al. 2017; Wang et al. 2017; Fazal et al. 2018). Malla 
et al. (2015) tested C. minutissima for biodiesel production and nutrient removal 
from primary and tertiary treated wastewater. The species removed TDS (90–98%), 
N (70–80%), P (60–70%), and K (45–50%) from the wastewater within 12 days. 
Zheng et al. (2017) demonstrated the enhanced production of biofuel by using kelp 
waste extracts combined with acetate in C. sorokiniana.

Seo et al. (2015) used oxidized dye wastewater composed of Methylene Blue and 
Methyl Orange for the harvesting of algae. The exposed amine groups of oxidized 
dyes act as amine-based coagulants. Daneshvar et al. (2018) investigated the feasi-
bility of cultivation of C. vulgaris in a combination of aquaculture and pulp efflu-
ents. The carbohydrate, lipid, and protein percentage was very much high in the 
microalgae from the wastewater as compared to Bold’s Basal Medium (BBM) solu-
tion. Another aspect of the use of microalgae and textile dyeing sludge was proved 
by Peng et al. (2015), as the combination of the duo improved char catalytic effect 
and increased the combustion process for the decomposition of textile dyeing sludge 
residue at high temperature (530–800 °C).

Undoubtedly, the discharge of the dyes into the aquatic ecosystem causes serious 
threats for the growth of many microorganisms. Toxicity studies of many dyes on 
Chlorella have been done by many workers (Hanan 2008; Qian et  al. 2008; 
Hernández-Zamora et al. 2014; Kanhere et al. 2014; Xu et al. 2015). The deterio-
rated metabolic activity, growth rate, respiration, and photosynthesis efficiency of 
C. vulgaris were observed due to the direct exposure of Congo Red (Hernández-
Zamora et al. 2014). After the bioremoval of the effluents by the species, the influ-
ents were less toxic to the primary consumer (Daphnia magna) of the aquatic 
ecosystem (Hernández-Zamora et al. 2015). Kanhere et al. (2014) observed geno-
toxic and cytotoxic effects of Malachite Green on C. pyrenoidosa in the form of 
altered cell morphology, high oxidative stress, DNA damage, and cell death. The 
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growth was inhibited in a dosage-dependent manner, and D. magna ingest the dye 
even at very low concentrations. Thus, there would be the same type of negative 
effects on the other aquatic organisms.

13.3  Bacteria

The prominent genera of bacteria explored by different workers are Aeromonas, 
Bacillus, Escherichia, Eubacterium, Citrobacter, Pseudomonas, Sphingomonas, 
and Staphylococcus (Rafii et al. 1990; Bumpus 1995; Banat et al. 1997; Keck et al. 
1997; Sugiura et  al. 1999; Nakanishi et  al. 2001; Coughlin et  al. 2003). Several 
anaerobic bacteria produce azoreductase for the degradation of dyes and produced 
metabolites. Biochemical and molecular characterization has shown that the enzyme 
presumably a flavin reductase or FMN-dependent NADH-azoreductase or tetra-
meric NADPH-dependent flavoprotein, as found from Sphingomonas, Escherichia, 
and Staphylococcus, respectively (Nakanishi et al. 2001; Suzuki et al. 2001; Chen 
et al. 2005). Bacteria can degrade the xenobiotic compounds in either aerobic or 
anaerobic or both conditions. Many strains of Pseudomonas have degraded them 
into non-hazardous products and simultaneously utilized the dyes for their growth 
(Pandey and Upadhyay 2006). The next section of the chapter reviews the diversity 
of different species/strains of Pseudomonas capable of degrading dyes in industrial 
effluents (Table 13.2).

13.3.1  Pseudomonas

Several workers have isolated the azoreductase enzyme from different species of 
bacteria implicated in the deterioration of azo dyes (Michaels and Lewis 1985; 
Zhipei and Huifang 1991; Yatome et al. 1990; Hu 1994; Bumpus 1995; Banat et al. 
1997). The bacteria utilize them as a source of carbon and nitrogen. However, in the 
case of RP2B dye, it only acts as an inducer rather than as a growth substrate in the 
case of P. luteola (Hu 1998). The enzyme was found to be substrate specific, and the 
susceptibility of the bacterial attack depends on the substitution of the chemical and 
charged group at specific positions (Zimmermann et al. 1982; Yatome et al. 1990; 
Ben Mansour et  al. 2009a). The degradation reaction of azo dyes into aromatic 
amines was fully catalyzed by the enzyme under anaerobic conditions, but to pro-
duce complete inorganic compounds, aerobic conditions are needed (Zhipei and 
Huifang 1991; Idaka et al. 1987a, b).

Zimmermann et  al. (1982) isolated oxygen-insensitive azoreductase from 
Pseudomonas KF46, able to degrade the aromatic amines and complete mineraliza-
tion of carboxy-Orange II.  Nachiyar and Rajkumar (2004, 2005) proposed the 
mechanism of systematic elimination of Navitan Fast Blue S5R by the oxygen-
insensitive enzyme, purified from P. aeruginosa. The intermediate metabolites of 
the dye may have undergone further oxidative deamination/decarboxylation and 
further enter the TCA cycle to release carbon dioxide. One of the intermediates 
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formed in this study, i.e., metalinic acid, was further degraded into aniline and 
β-ketoadipic acid (Nachiyar et al. 2007). Işik and Sponza (2003) used aerobic and 
anaerobic conditions to study the color removal efficiency of Pseudomonas sp. 
They found that decolorization of Direct Black 38 and Congo Red was 83% and 
100% under anaerobic incubation while 74% and 76% under microaerophilic con-
ditions. The aerobic degradation occurs by the action of lignin peroxidase, tyrosi-
nase, and laccase as reported by Kalme et al. (2007b) in P. desmolyticum NCIM 
2112. Further, they purified laccase enzyme from the species and demonstrated the 
asymmetric breakdown of azo bond and that the specificity depends on the position 
of amino, hydroxyl, and sulfonic group in a dye. The decolorization rate is less 
when hydroxyl group and sulfonic group are at meta position or charged carboxyl 
group at ortho position to the azo bond (Nigam et al. 1996; Chen 2006; Kalme et al. 
2007b, 2009). The presence of electron-withdrawing groups or absence of charged 
groups also enhances the rate of decolorization as stated by Hsueh and Chen (2007, 
2008) in P. luteola. The toxicity of dyes depends on the type of azo bond, molecular 
structure, functional groups, and types of intermediates or degraded products. The 
lesser the toxicity of the dye, the easier will be the decolorization. Chen (2002) 
tested the toxicity of three reactive dyes against P. luteola (Acid Yellow, Black B, 
and Red 22). The Reactive Red 22 was easily decolorized, while Reactive Black B 
was highly toxic as it contains two azo bonds. As in this study decolorization is not 
growth-associated, the viability of the cells is the important criterion for the metab-
olism and expression of enzymes. Alternatively the cells can go for biosorption 
rather than decolorization.

Various authors have also isolated the laccase enzyme from different strains/spe-
cies of Pseudomonas and showed its applicability in the elimination of synthetic 
dyes in industrial effluents (Telke et al. 2009; Kuddus et al. 2013; Wang et al. 2012). 
Phugare et al. (2011) purified a highly active enzyme, i.e., veratryl alcohol oxidase, 
from P. aeruginosa BCH. The enzyme has specificity for wide varieties of sub-
strates and decolorizes seven dyes (Methyl Orange, Rubine 3GP, Congo Red, 
Remazol Black, Red HE7B, Red HE8B, and Red HE3B) in the range of 85–100%. 
One of the dyes, i.e., Remazol Black, was decolorized completely within 6 h and 
degraded into 7-diazenyl-naphathalene-1-ol and naphthalene-1,2,7-triol. Kalyani 
et  al. (2011) reported a heme-containing peroxidase enzyme isolated from 
Pseudomonas sp. for the symmetric cleavage of Methyl Orange into N,N-dimethyl- 
1,4-benzenediamine and an intermediate 4-aminobenzenesulfonic acid. The inter-
mediate formed was further degraded into aniline.

Toxicity analysis of the decolorized dyes should be done either by elucidating 
the structure of the degraded products by FTIR, GC-MS, HPLC, and NMR tech-
niques or by using different organisms or cell lines. Several authors have checked 
the genotoxicity/cytoxicity/mutagenic potential of the metabolites formed by 
Pseudomonas during the remediation of industrial effluents (Adedayo et al. 2004; 
Pandey and Upadhyay 2006; Kalme et al. 2007a; Kalyani et al. 2009). Perei et al. 
(2001) isolated an aerobic bacterium called P. paucimobilis from the contaminated 
sites for the effective degradation of mutagenic metabolite sulfanilic acid. During 
the degradation of Orange 52, Violet 7, and Acid Yellow 17 by P. putida mt-2, 
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genotoxic metabolites were found high in static cultures as compared to shaken 
conditions (Ben Mansour et al. 2007). Later on the authors demonstrated that the 
amines were mutagenic formed under static conditions, which later on vanished 
during shaken incubation. Further, the metabolite 4′-aminoacetanilide exhibited 
maximum mutagenicity, while 5-acetamido-2-amino-1-hydroxy-3,6-naphthalene 
disulfonic acid shows less effect due to presence of sulfonic groups (Ben Mansour 
et al. 2009b). Telke et al. (2012) tested the toxicity assays of p-dihydroperoxyben-
zene, 2-hydroxy-7-aminonaphthol-3-sulfonic acid, and 3,6-dihydroxy benzoic acid, 
metabolites formed during biodegradation of Direct Brown MR by Pseudomonas 
sp. LBC1. The textile effluents and the dye were more toxic to Vigna radiata and 
Sorghum bicolor as compared to the biodegraded metabolites.

In the case of Methyl Orange, there wasn’t any kind of removal under aerobic 
conditions by P. putida mt-2 (Thao et al. 2013). So an immobilized bacterial system 
can solve the problem for oxygen-sensitive decolorization by creating miniature 
anoxic environment and complementarily increasing the biomass concentration and 
providing mechanical strength, feasibility of continuous processing, low-cost recov-
ery, and reusability of biocatalyst (Stormo and Crawford 1992; Park and Chang 
2000; Chang et al. 2001a). Puvaneshwari et al. (2002) studied the effective role of 
immobilized P. fluorescens on sodium alginate for the degradation of Direct Blue 
(71%) and Direct Red (82%). Chen and Lin (2007) used silicate/alginate sol-gel 
beads of P. luteola for the decolorization of Reactive Red 22. The rate of decoloriza-
tion of the free cells decreased, while the immobilized system was static after five 
repeated batch cycles. Tuttolomondo et al. (2014) reported the biodegradation of 
Methyl Orange, Benzyl Orange, and Remazol Black by immobilized Pseudomonas 
sp. in sol-gel silica matrices due to higher expression of extracellular enzymes. The 
encapsulation directly protects the bacteria from toxic conditions and consecutively 
increases the production of enzymes involved in degradation. Pseudomonas sp. 
DY1 immobilized in the fungi (A. oryzae) cellular mass shows 96% decolorization 
in the batch cycle, still after 16 days. Inhibition test confirmed that the activity of the 
pellets was mainly due to the bacteria, demonstrating their stable and long-term 
usability for the dye treatment (Yang et al. 2011a, b). Recently, Roy et al. (2018) 
used immobilized Pseudomonas sp. in fly ash for the biodegradation of Reactive 
Yellow. The highest removal percentage (98.72%) was recorded in Pseudomonas 
sp. on fly ash as compared to sorption by fly ash (88.51%) and degradation by spe-
cies (92.62%).

The activated carbon in combination with P. luteola was found to be very much 
effective for the adsorption and biodegradation of Reactive Red 22 (Lin and Leu 
2008). Selvakumar et al. (2010) use electro-oxidation and bio-oxidation by P. aeru-
ginosa for the removal of color from textile effluent having Procion Blue 2G dye. 
Later the treated effluents have been treated with photo-oxidation to remove the 
bacteria, so that water can be recycled. Similarly, Srinivasan et al. (2011) combined 
the sonolysis pretreatment with post-biological treatment by the mutant strain of P. 
putida in the case of Tectilon Yellow 2G.

The studies on the optimization of the conditions like temperature, pH, presence 
of organic compounds, carbon and nitrogen source, concentration range of dyes, 
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and aerobic or anaerobic or both conditions are very much necessary, depending on 
the nature of the dye to be treated by Pseudomonas. Yu et al. (2001) observed that 
presence of nitrate at concentration 1000 mg/L inhibits the process completely, 
while increase in the temperature from 10 to 35 °C enhances the decolorization rate 
of Pseudomonas strain GM3. Chang et al. (2001b) found that tryptone and yeast 
extract enhances the decolorization process of Reactive Red 22, while retarded by 
the added glucose concentration and dissolved oxygen. The activity of azoreductase 
enzyme isolated from cell-free extract also depends upon the growth phase of bac-
teria. Lodato et al. (2007) proved that depletion of dye can be achieved irrespective 
of the initial concentration by changing the aerobic-anaerobic operating conditions. 
In the aerobic conditions, growth of Pseudomonas sp. OX1 can be achieved, while 
in the anaerobic conditions, depletion of dye takes place. Similarly, Lin et al. (2010) 
observed complete mineralization of Reactive Blue 13 by Pseudomonas sp. L1 in 
the same conditions. Joe et al. (2011) investigated the optimal conditions needed for 
Remazol Black B dye by P. aeruginosa CR-25. The maximum rate of removal 
occurs at 37 °C, pH7 with supplementation of peptone, yeast extract, glucose and 
fructose as nitrogen and carbon sources under static conditions. The same results 
have been observed under the above-said conditions by other workers using differ-
ent species of Pseudomonas (Kalyani et  al. 2008; Telke et  al. 2009; Thao et  al. 
2013). Kumar Garg et al. (2012) showed that supplementation of ammonium sulfate 
(0.1%, w/v) and glucose (0.4% w/v) improved the decolorization of Orange 
II.  Mishra and Maiti (2018) demonstrated that yeast extract has positive effect, 
while peptone and glucose have negative effect on the decolorization of Reactive 
Red 21 by P. aeruginosa 23N1. This may be due to the fact that species must have 
utilized peptone and glucose as primary sources of nitrogen and carbon rather than 
the dye molecule. Recently, Hashem et al. (2018) isolated a pH-tolerant P. aerugi-
nosa KY284155 with high decolorization rate for Remazol Black B. With the addi-
tion of iron, magnesium, and yeast extract in the medium, the degradation rate was 
further accelerated. The heavy metals and salts at high concentrations in the medium 
have inhibitory effects on the decolorization of dyes (Gopinath et al. 2011). Some 
strains of P. aeruginosa were very effective in the degradation of reactive azo dyes 
even in the presence of heavy metals like lead, zinc, cadmium, and chromium 
(Maqbool et al. 2016; Hafeez et al. 2018).

The majority of the studies done in Pseudomonas were related to biodegradation 
of the dyes, but few authors have also studied the adsorption phenomena for the 
management of industrial effluents. Du et al. (2012) compared the adsorption capac-
ity of live and heat-treated Pseudomonas sp. strain DY1 biomass for Acid Black 
172. The heat-treated cells have high adsorption due to increased permeability and 
denatured intracellular proteins. Deepa et al. (2013) showed that 4 to 9 pH and 1 to 
1000 mM NaCl concentrations have insignificant effect on the adsorption rate of 
Direct Red by P. putida. Later on, Arunarani et al. (2013) proved the same type of 
effect on the adsorption of Acid Blue 93 and Basic Violet 3 by the same taxa due to 
pH and salts. Liu et al. (2017) extracted a biosurfactant from P. taiwanensis L1011 
and utilized it to accelerate the chemical and biological decolorization of Congo 
Red and Amaranth, respectively. Recently, Iqbal et  al. (2018) developed a novel 
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biosorbent using P. aeruginosa USM-AR2 cells immobilized on mesoporous rice 
husk ash silica (RHA-SiO2).

There is a lot of variability for the potential of degradation of dyes within the 
different genera of bacteria. Hu (1996) compared the adsorption efficiency of 
Aeromonas, Bacillus, Escherichia, Pseudomonas, and Staphylococcus for four 
reactive azo dyes. The dead biomass of the three genera exhibits higher adsorption 
capacity in the order of Aeromonas > Pseudomonas > Escherichia. Nachiyar and 
Rajkumar (2003) tested three species (P. aeruginosa, P. fluorescens, and P. putida) 
for the decolorization of Navitan Fast Blue S5R and found that P. aeruginosa exhib-
ited maximum efficiency (72–92%) within 72 h. Silveira et al. (2009) compared 4 
species (P. oleovorans, P. putida, P. cepacia, and P. aeruginosa) for the efficiency of 
decolorization of 14 commercial textile dyes. Among them, P. aeruginosa and P. 
oleovorans were more capable to decolorize ten textile dyes. The mixed consortia 
of Pseudomonas, Acinetobacter, Escherichia, Enterobacter, Aspergillus, and 
Actinobacteria were also found to significantly decolorize or degrade different 
kinds of azo dyes (Kadam et al. 2011; Yang et al. 2011a, b; Patel et al. 2012; Khan 
et al. 2014; Isaac et al. 2015; Kuppusamy et al. 2017; Sathishkumar et al. 2017).

Pseudomonas genus was also studied for the biotreatment of triphenylmethane 
dyes, used extensively as biological or dermatological agent, and in various pro-
cesses in the food, medical, and textile industry (Sarnaik and Kanekar 1995, 1999; 
Yatome et al. 1981, 1990; Lin et al. 2004; Wu et al. 2009). Malachite Green and 
Crystal Violet dyes were extensively studied by several researchers (El-Naggar 
et al. 2004; Chen et al. 2007; Li et al. 2009; Huan et al. 2010; Kalyani et al. 2012; 
Chaturvedi et al. 2013). Enhancement of degradation of triphenylmethane dyes can 
be attained by adding glucose and sucrose as cosubstrates and heavy metals in the 
medium (Oranusi and Ogugbue 2005). Kalyani et al. (2012) showed that aminopy-
rine N-demethylase, MG reductase, and laccase enzymes were induced in P. aeru-
ginosa NCIM 2074 and degraded Malachite Green into a non-toxic product. The 
same category of enzymes was also found to degrade heavy amounts of the dye 
(1800 mg/L) in P. mendocina (Chaturvedi et al. 2013). Li et al. (2009) isolated a 
strain of Pseudomonas sp. MDB-1 from water of an aquatic hatchery, capable of 
degrading various triphenylmethane dyes. Later on, tmr2 gene encoding the enzyme 
(triphenylmethane reductase) was also fully characterized responsible for the bio-
degradation (Huan et al. 2010; Li et al. 2009). Zabłocka-Godlewska et al. (2014) 
compared SDz3 and Sz6 strains of P. fluorescens for the biodegradation of mixture 
containing triphenylmethane (Brilliant Green) and azo (Evans Blue) dyes. The 
strain Sz6 was able to degrade the dyes faster in shaken/semistatic conditions, and 
maximum removal (95.4%) was achieved in the case of Brilliant Green.

Various species of Pseudomonas were also reported for the removal of other 
xenobiotic compounds used for the preparation of dyes. The compounds include 
phenol by P. putida DSM 548, Pseudomonas CF600, and P. stutzeri (Sá and 
Boaventura 2001; Moharikar and Purohit 2003; Pazarlioğlu and Telefoncu 2005; 
Nowak and Mrozik 2018; Singh et al. 2018); 4-aminophenol by Pseudomonas ST-4 
(Afzal Khan et al. 2006); pyridine by Pseudomonas sp. PI2 (Mohan et al. 2003); 
naphthalene and p-cresol by P. putida and P. gessardii LZ-E (Huang et al. 2016a, b; 
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Izmalkova et al. 2013; Surkatti and El-Naas 2014); chloroanilines by P. putida T57 
(Nitisakulkan et al. 2014); polycyclic aromatic hydrocarbons by P. stutzeri (Álvarez 
et  al. 2015); polynuclear aromatic hydrocarbons by P. plecoglossicida PB1 and 
Pseudomonas sp. PB2 (Nwinyi et al. 2016); and phenanthrene by P. stutzeri JP1 and 
P. mendocina NR802 (Mangwani et al. 2014; Kong et al. 2017).

13.4  Fungi

Many genera of fungi were also explored for the color removal from industrial efflu-
ents, especially actinomycetes and basidiomycetes (Chivukula and Renganathan 
1995; McMullan et al. 2001). These organisms produce extracellular enzymes (lac-
case, peroxidases, and azoreductase) to catalyze dealkylation, oxidation, and 
hydroxylation reactions for the metabolism of dyes (Goszczynski et al. 1994). Most 
of the work was done for white rot fungus (Phanerochaete), as they are capable to 
degrade the majority of the azo dyes (Bumpus 1995; Banat et al. 1997; Cripps et al. 
1990). The other fungal genera reported for the biodegradation of xenobiotic com-
pounds are Streptomyces, Lenzites, Coriolopsis, Neurospora, Penicillium, Pleurotus, 
Trichoderma, and Trametes (Paszczynski et al. 1992; Chao and Lee 1994; Knapp 
and Newby 1999; Saparrat et al. 2014; He et al. 2018; Naraian et al. 2018; Pandey 
et al. 2018). The brown rot fungus (Aspergillus) has also shown potential to biode-
grade a variety of toxic xenobiotic compounds and for the biotreatment of wastewa-
ter (Ali et al. 2010; Abd El-Rahim et al. 2017; Gomaa et al. 2011). Recently, Ning 
et al. (2018) reported biodegradation of 15 dyes by Aspergillus flavus A5p1  in a 
range of 61.7–100.0%. So there is always a need to explore the different strains/
species of the Aspergillus for the degradations of the wide varieties of dyes 
(Table 13.3).

13.4.1  Aspergillus

The genus is composed of 340 species, widespread in diverse habitats, and reported 
as a pathogen, spoils food materials, and produces mycotoxins (Bennett and Klich 
2003; Houbraken et al. 2016). They reproduce by asexual reproduction via conidio-
phores. The key to identify or classify various species of the genus is based on the 
size, color, and arrangement of asexual spores of conidiophores. Some species are 
associated with serious health problems like allergic bronchopulmonary aspergil-
losis, liver cancer (consumption of food containing mycotoxins), etc. (Hedayati 
et  al. 2007). Most of the species are also used to produce beneficial products 
(enzymes, food fermenters, antibiotics, etc.) in biotechnology industry (Samson 
et al. 2014). To mention some of the species with beneficial/harmful effects are A. 
flavus (aflatoxin), A. fumigatus (cellulose, xylanase), A. niger (homologous or het-
erologous proteins), A. oryzae, A. sojae (food fermentation), A. tamari (Japanese 
soya sauces), and A. terreus (lovastatin, terrein) (Park et al. 2017). The present sec-
tion reviews the diversity found within the Aspergillus species for the elimination of 
hazardous dyes from the industrial effluents (Table 13.3).
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Initial studies for the wastewater treatment were mainly focused on the white rot 
fungus group, as they have lignin-degrading enzymes for the oxidation of organic 
compounds (Bumpus and Aust 1987). Aspergillus genus (brown rot fungi) was also 
explored for the removal of dyes in the industrial effluents. Ryu and Weon (1992) 
analyzed four species of Aspergillus (six strains) and one species of Phanerochaete 
(two strains) for the biodegradation of three azo dyes and stated that the former 
genus was much more effective in the process. Mainly two processes for the treat-
ment of dyes in the solution or synthetic effluents were studied extensively, either 
biosorption or biodegradation (Conatao and Corso 1996; Fu and Viraraghavan 2000, 
2002a; Sumathi and Manju 2000; Zope et al. 2007; Esmaeili and Kalantari 2011; 
Almeida and Corso 2014). The biosorption of dyes was influenced by their chemi-
cal structure and functional group on the surface of fungus (Fu and Viraraghavan 
2002b, 2003). Parshetti et al. (2007) observed faster adsorption rate in A. ochraceus 
in the shaking conditions. The treatment of Aspergillus species with immobilization 
beads, autoclaving, and specific compounds also accelerates the process of decolor-
ization (Wang and Hu 2007; Wang et al. 2008; Patel and Suresh 2008). Yang et al. 
(2011a, b) demonstrated higher biosorption capacity in the CDAB (cetyldimethyl-
ammonium bromide) modified biomass of A. oryzae. The same type of result was 
seen by Huang et al. (2016a, b) while investigating the effect of heavy salts, metals, 
and SDS on the adsorption kinetics of chemically modified (cetyltrimethylammo-
nium bromide) A. versicolor. They found a close relationship between low pH (2.0) 
and heavy metals on the biosorption rate. The chemical modification increases the 
surface area and functional groups. Naskar and Majumder (2017) used response 
surface methodology for A. niger and demonstrated that adsorption rate depends 
upon the concentration of biomass, temperature, and pH of the solution. Further, 
they also revealed that amine and carboxyl groups play an important role in dye 
sorption along with electrostatic interactions. The same type of phenomena was 
observed by the authors using different dyes and the same species (Xiong et  al. 
2010; Mahmoud et al. 2017). The high temperature and low pH range (1–3) in the 
solution speed up the uptake of the dyes, as the biosorption is mostly endothermic 
(Akar et al. 2009). This type of condition increases the kinetic energy and diffusion 
rate (Ramya et  al. 2007; Aksu and Karabayır 2008; Abdallah and Taha 2012). 
Contradictory to this, other authors reported optimal temperature (28–30 °C) and 
pH (5) as much more favorable condition for the biodegradation of azo dyes (Ali 
et al. 2007a, b; Ameen and Alshehrei 2017; Sharma et al. 2009) by four Aspergillus 
spp. The nutritional condition needs to be standardized as sources of nitrogen and 
carbon in the medium, as they are also a detrimental factor for the rate of dye 
removal (Kaushik and Malik 2010, 2011). Gomaa et al. (2017) demonstrated the 
role of calcium chloride as stress response in A. niger and high removal efficiency 
for commercial dye Malachite Green.

The live fungal strains were extensively studied for the decolorization of dyes 
from industrial effluents; however, some workers used pellets and dead biomass for 
the process and found promising results as compared to the living strains (Abdallah 
and Taha 2012; Abdel Ghany and Al Abboud 2014; Lu et al. 2017). The formation 
of bioflocculants and silver and zinc oxide nanoparticles using different Aspergillus 
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spp. has also the potential for the color removal from industrial effluents (Deng 
et al. 2005; Muthu Kumara Pandian et al. 2016; Kalpana et al. 2018a, b). Copete- 
Pertuz et al. (2019) demonstrated that A. terreus in combination with Trichoderma 
viride can act as a co-inducer for Leptosphaerulina sp. ligninolytic enzyme activity 
and improved removal of Reactive Black 5 dye.

Survey of literature reveals that most of the studies were related to the biosorp-
tion mechanism rather than the degradation. The metabolites formed during 
 degradation process are shown in Table 13.3. The enzymes involved in the biodeg-
radation were laccase, manganese peroxides, and lignin-modifying enzymes, 
which mineralize synthetic lignin of dyes (Ali and El-Mohamedy 2012; Hasanin 
et  al. 2019). Azoreductase is one of the key enzymes found in the degradation 
pathways of the organism. Ameen and Alshehrei (2017) found laccase and azore-
ductase to be involved in the degradation of Reactive Red 120 into sodium 
2- aminobenzenesulfonate. Tamayo-Ramos et al. (2012) characterized three forms 
of laccase-like multicopper oxidase enzymes having high catalytic activity for 
several phenolic compounds and synthetic dyes. The optimization process for the 
high production and activity of laccase enzyme has been done for several 
Aspergillus species. The factors associated are pH, temperature, carbon and nitro-
gen sources, inoculum size, etc. (Jin and Ning 2013; Benghazi et al. 2013; Kumar 
et al. 2016). Recently, Abd El-Rahim et al. (2017) isolated 18 strains belonging to 
6 species from the wastewater sample and evaluated them against 20 azo dyes. 
The most resistant dye was Fast Green azo dye, and easily degradable dyes were 
Direct Violet and Methyl Red. The decolorization process was enhanced by glu-
cose supplementation, and the limiting factor was a nitrogen source, as in its 
absence the strains were unable to produce lignin peroxidase enzyme. The high 
pH has been also shown to be related to the low formation of residual products 
(Ali et al. 2007a, b).

The different Aspergillus species have shown very much diversity in the biodeg-
radation of various dyes. Anastasi et al. (2009) compared five species of mitosporic 
fungi (Penicillium, Cladosporium, and Aspergillus) for the removal of nine indus-
trial and two model dyes. They found that A. ochraceus and A. flavus were efficient 
for the decolorization of all the dyes tested and one species, i.e., A. ochraceus, 
causes over 90% decolorization against simulated effluents. Similarly, other work-
ers found the maximum potential of Aspergillus as compared to Penicillium (Ali 
et al. 2010; Gomaa et al. 2011; Ali and El-Mohamedy 2012). Khalaf (2008) tested 
the effectiveness of Spirogyra sp. (green algae) and A. niger against the reactive dye 
(Synozol) in textile wastewater. The autoclaved biomass of the both species exhib-
ited 88% and 85% dye removal, respectively. Some species have higher absorption 
capacity, but still they lack the ability to degrade them into non-toxic metabolites 
(Almeida and Corso 2014).

The degraded products should be checked for the toxicity assays, as decoloriza-
tion does not always lead to the absence of toxicity, rather forming incomplete toxic 
metabolites (Almeida and Corso 2014). The extracellular enzymes were found to 
degrade triphenylmethane dye by stepwise demethylation into non-toxic 
N-demethylated products (Kumar et  al. 2011, 2012). Andleeb et  al. (2012) 
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investigated the toxicity of degraded products formed during biodegradation of 
Drimarene Blue dye by A. flavus. As compared to dye treatment, the germination 
and morphological characteristics in Lolium perenne were somewhat near to the 
untreated. Similarly, Parshetti et al. (2007) observed that germination of Phaseolus 
mungo was high or near to control in comparison to the Malachite Green 
treatment.

13.5  Conclusion

The treatment of industrial effluents with cost-effective methods is the urgent need 
of the society. The literature shows that aerobic and anaerobic conditions were well 
utilized by algae, bacteria, and fungi for the management of dyes. The effluents also 
serve as a growth substrate or also can be used to extract biomass. The integrated 
approach of remediation as successive treatment along with extraction of enzymes, 
lipids, and biofuels seems to be the best practice for sustainable development. The 
mixed consortium of best strains of algae, bacteria, and fungi should be tested for 
the degradation of toxic dyes. Genetically engineered strains may be used for the 
degradation of toxic amines in the severe environmental conditions. Toxicity assays 
clearly show which strain is best for the future applications to clear the water for 
recycling.
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