
Series Editor: Naveen Kumar Arora
Microorganisms for Sustainability 22

Pankaj Kumar Arora   Editor

Microbial 
Technology 
for Health and 
Environment



Microorganisms for Sustainability

Volume 22

Series Editor

Naveen Kumar Arora, Environmental Microbiology, School for Environmental 
Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India



More information about this series at http://www.springer.com/series/14379

http://www.springer.com/series/14379


Pankaj Kumar Arora
Editor

Microbial Technology for 
Health and Environment



Editor
Pankaj Kumar Arora
Department of  Microbiology
Babasaheb Bhimrao Ambedkar University
Lucknow, Uttar Pradesh, India

ISSN 2512-1901     ISSN 2512-1898 (electronic)
Microorganisms for Sustainability
ISBN 978-981-15-2678-7    ISBN 978-981-15-2679-4 (eBook)
https://doi.org/10.1007/978-981-15-2679-4

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

https://doi.org/10.1007/978-981-15-2679-4


v

Preface

Pollution is creating a critical situation for health and environment due to its hazard-
ous nature and has become a worldwide issue for environmentalists. A number of 
carcinogenic compounds are daily discharged into soil and water by various means. 
The presence of these compounds in water and soil not only disturbs the ecosystem 
of our earth but also creates a risk for health of living beings. Several technologies 
have been developed to remove these compounds from soil and water. Microbial 
technology has gained attention as microbes are able to degrade these compounds 
without harming the environment.

The book focuses on various aspects of microbial technology in health, environ-
ment, and agriculture. This book consists of 14 chapters related to microbial peroxi-
dases, wastewater treatment, solid waste management, quorum quenching, antitumor 
products, microbe-assisted phytoremediation, microbial endophytes, role of 
microbes in agriculture, microbial degradation of nitroaromatics, and 
organophosphates.

This book describes the recent advances in the field of microbial degradation and 
microbial remediation of various xenobiotic compounds in soil and wastewater. It 
also explains various modern microbial technologies for biodegradation and waste-
water treatment. It covers various microbial technologies for wastewater treatment, 
biodegradation, bioremediation, and solid waste management. Contributions from 
authoritative experts in the world are compiled. It focuses on the current scenario of 
industrial wastewater treatment and its biodegradation.

The book is meant for researchers in wastewater industry, students of environ-
mental sciences, environmental microbiologist, and practitioners in water pollution 
abatement.

I acknowledge the Department of Biotechnology, India, for awarding me DBT-
Ramalingaswami Re-entry Fellowship.

Lucknow, India Pankaj Kumar Arora 
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1Microbial Peroxidases and Their Unique 
Catalytic Potentialities to Degrade 
Environmentally Related Pollutants

Muhammad Bilal and Hafiz M. N. Iqbal

Abstract
Industrial sectors play an imperative role in the economic growth and develop-
ment of any nation. Nevertheless, the discharge of industrial wastewater polluted 
by various textile dyes, pharmaceuticals, recalcitrant organic compounds, hor-
mones, xenobiotic compounds (i.e., insecticides, pesticides, plastics, fertilizers, 
and hydrocarbons), and personal care products into the receiving water bodies 
seriously threatened the natural ecosystem owing to their extremely toxic conse-
quences. This problem is pervasively increasing due to the lack of efficient waste 
management procedures for the proper disposal and treatment of waste. 
Considering the diverse nature of wastewater from industrial processes, design-
ing a cost-competitive, efficient, and eco-friendlier technology with stable reme-
diation performance has become a challenging task for the research investigators 
and environmental engineers. In the past couple of decades, environmental bio-
technology has witnessed a tremendous upsurge in exploring some judicious 
substitutes to the existing technologies for waste management. Conventionally, 
in practice, approaches dealing with wastewater remediation such as chemical, 
physical, and biological methods are either inefficient or restrictive due to 
techno-economic constraints. In this perspective, enzyme-assisted treatment is a 
rapid, easy, eco-sustainable approach and therefore has been keenly explored to 
degrade and mineralize an array of xenobiotic and recalcitrant organic contami-
nants. Peroxidases isolated and characterized by different microbial or plant- 
based natural resources have demonstrated great bioremediation potential. 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2679-4_1&domain=pdf
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Genetic engineering and enzyme immobilization approaches have made it pos-
sible to produce a significant amount of recombinant enzymes and upgrade the 
half-life, catalytic stability, and activity of the biocatalyst, respectively. Moreover, 
the development of nanozymes might display the potential remediation capabil-
ity toward a wide variety of toxic pollutants. In this chapter, we have presented a 
comprehensive overview of the peroxidases and advanced enzyme tools and 
technologies, i.e., immobilized enzyme-based constructs, nanozymes as robust 
catalytic tools, and genetic engineering along with their use in the degradation 
and detoxification of toxic substances, human-health related hazardous com-
pounds, carcinogenic and mutagenic entities, and environmentally related con-
taminants of high concern.

Keywords
Green biotechnology · Industrial waste · Immobilization · Enzymatic remedia-
tion · Genetic engineering · Nanozymes

1.1  Introduction

The functioning of society and its future developments relied on the availability of 
bio-renewable energy resources and the capability to transform environmentally 
polluting production processes with green and sustainable bioprocesses. Water con-
tamination by various recalcitrant organic compounds, textile dye pollutants, phar-
maceutically active compounds, hormones, xenobiotic compounds (i.e., insecticides, 
pesticides, plastics, fertilizers, and hydrocarbons), and personal care products is a 
high concern environmental issue because of their toxic, carcinogenic, mutagenic, 
and teratogenic consequences. These facts garnered a growing concern among the 
scientific community, in particular environmental engineers, to develop a greener 
and sustainable relevance between the Earth and its biological resources (Marco- 
Urrea et al. 2009). Undoubtedly, a range of various chemical, physical, and biologi-
cal methods have been developed and attempted to degrade and eliminate these 
environmentally related chemicals from the contaminated water bodies. Biological 
strategies, explicitly the use of enzymes, have received considerable attention for 
eliminating industrial and environmental contaminants owing to their pronounced 
catalytic efficacy, selectivity, and eco-friendlier processes. Among the enzymes 
ascertained for biodegradation purpose, fungal peroxidases, for instance, horserad-
ish peroxidase (HRP), manganese-dependent peroxidase (MnP), lignin peroxidase 
(LiP), and others, are gaining a lot of attention as promising biocatalysts for the 
biodegradation of refractory xenobiotic and removal of harmful compounds from 
wastewater. Peroxidases are a large group of enzymes, which catalyze the reduction 
of peroxides (i.e., H2O2) and oxidation of a large range of inorganic and organic 
compounds. These enzymes exhibit considerable potential to abate environmental 
contamination by bioremediating wastewater polluted with phenols, cresols, and 
chlorinated phenols, degradation of industrial or textile dye pollutants, and the 

M. Bilal and H. M. N. Iqbal
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elimination of peroxide from foodstuffs and industrial wastes. Processed water from 
fabrics, garment, or textile units often characterizes an intense pigmentation owing 
to the occurrence of different dyes, which are unaffected to classical decolorizing 
treatment technologies and could be potentially decolorized by the use of peroxi-
dases (Huber and Carré 2012). Peroxidases from different sources are also able to 
oxidize dimethoxybenzene, amines, aromatic alcohols, lignin dimers, dyes, and 
phenolic and nonphenolic substrates in the absence of Mn(II). In this chapter, we 
provided an updated overview of the peroxidases and advanced enzyme tools 
i.e., immobilized enzyme-based constructs, nanozymes as robust catalytic tools, 
and genetic engineering along with their use in the degradation and detoxifica-
tion of toxic substances, human health-related hazardous compounds, carcino-
genic and mutagenic entities, and environmentally related contaminants of high 
concern.

1.2  Peroxidases: Potential Sources

Peroxidases are widely spread, structurally diverse and abundant enzymes produced 
by bacteria, fungi, algae, animals, and plants (Battistuzzi et al. 2010). These enzymes 
carry out depolymerization of lignin and other aromatic pollutants in an H2O2- 
dependent reaction using a suitable redox mediator. Peroxidases are characterized as 
heme and nonheme peroxidases. The heme-containing peroxidases can be classified 
into two groups, where enzymes in group 1 are mainly present in animals and those 
found in bacteria, plants, and fungi constitute group 2. Peroxidases found in bacteria, 
plants, and fungi are additionally categorized into three classes: class 1 contains 
yeast-secreted cytochrome C peroxidase, bacterial-originated catalases, and ascor-
bate peroxidase secreted by some species of plants (Dunford 1999; Smulevich et al. 
2006). Extracellularly secreted fungal enzymes explicitly MnP and LiP are included 
in class 2, whereas class 3 encompasses plant-derived peroxidase such as HRP 
(Veitch and Smith 2001; Battistuzzi et al. 2010). Nonheme peroxidases, on the other 
hand, constitute five diverse independent families, including alkyl hydro peroxidase, 
NADH peroxidase, thiol peroxidase, manganese catalase, and haloperoxidase (Koua 
et al. 2009). Among all the above-stated peroxidases, LiP, MnP, and HRP are the 
most studied enzymes owing to their superior catalytic performance for decontami-
nation of toxic compounds and environmental pollutants.

1.2.1  Physiochemical and Catalytic Properties of LiP (EC 
1.11.1.14)

LiP (diaryl propane oxygenase) is a robust heme-containing peroxidase that exe-
cutes H2O2-driven oxidative depolymerization of the lignin molecule (Fig.  1.1). 
After the discovery and isolation in ligninolytic extract of P. chrysosporium, various 
isozymes of LiP were identified in different microbial isolates such as T. versicolor, 
P. chrysosporium, P. sordida, and Phlebia radiata (Tien and Kirk 1983; Farrell et al. 

1 Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade…
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1989; Johansson et al. 1993; Sugiura et al. 2009). For example, Farrell et al. (1989) 
identified the presence of six LiP isozymes designating H1, H2, H6, H7, H8, and 
H10  in the culture broth of P. chrysosporium BKM-F-1767. Similarly, Glumoff 
et al. (1990) characterized five LiP isozymes also from P. chrysosporium and found 
that the purified isozymes exhibited different substrate specificity, stability, sugar 
content, and isoelectric points. The different N-terminal amino acid sequences 
revealed that different genes encoded them. The gene sequence study of P. chryso-
sporium strain RP78 showed almost 10 lip genes that further confirmed the presence 
of LiP isozymes (Martinez et  al. 2004). In consistence with earlier reports, 
Morgenstern et al. (2008) described that the genome of P. chrysosporium harbor 10 
LiP genes designating LiPA–LiPJ that were responsible for encoding various LiP 
isoforms.

LiP is a monomeric hemoprotein with an isoelectric point and molecular weight 
of 38–43 kDa and 3.3–4.7, respectively (Kirk et al. 1986). LiP uses VA as a sub-
strate and functions typically at an acidic pH of about 3.0 (Tien and Kirk 1988). 
Optimal activity at a very low pH optimum differentiates LiP from many other types 
of peroxidases. LiP displays high redox potential for oxidizing nonphenolic com-
pounds constituting more than 90% of recalcitrant lignin molecules. In addition to 
nonphenolic moieties, LiP also exhibits an additional aptitude to oxidizing a diver-
sity of phenolic compounds such as catechol, acetosyringone, guaiacol, syringic 
acid, and vanillyl alcohol (Wong 2009). The presence of tryptophan residue (Trp171) 
on the surface of the enzyme produces a tryptophanyl radical by transferring an 
electron to the heme molecule. Thus, it is involved in the oxidative potential of LiP 
to degrade lignin moieties and related substrates with greater redox potential. 
Notably, variable tryptophan microenvironment modulates the substrate specificity, 
enzyme activity, and catalytic stability (Ivancich et al. 2001).

Fig. 1.1 LiP-assisted cleavage of β-1 linkage in lignin moiety. (Adapted from Falade et al. 2017)

M. Bilal and H. M. N. Iqbal
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1.2.2  Physiochemical and Catalytic Properties of MnP

MnP from P. chrysosporium was first discovered by Kuwahara and coworkers, in 
1984. This enzyme has also been demonstrated as one of the most common lignino-
lytic enzymes produced by WRF. Though its participation in lignin modification has 
been well-studied and described in fungi (Hofrichter 2002), limited reports exist on 
MnP-producing bacteria. Wood-rotting Basidiomycota commonly secretes several 
forms of MnP in their culture extract with molecular masses varying from 40 to 50 
kDa. Up to 11 various MnP isoforms have been reported in the culture extract of 
Ceriporiopsis subvermispora (Lobos et  al. 1994). MnP follows a catalytic cycle 
similar to other heme-containing peroxidases, such as LiP or HRP, except utilizing 
Mn2+as a typical electron donor (Fig. 1.2). From the reaction chemistry viewpoint, 
MnP has enormous potential to turn phenolic molecules into phenoxy radicals. The 
whole reaction assists under the Mn2+oxidation to reactive Mn3+ in the presence of 
H2O2, which consequently can decompose an array of phenolic structures such as 
phenols, amines, aryl diamines, dyes, and phenolic lignin structures (Tuor et  al. 
1992). However, nonphenolic structures can also be degraded by MnP in the pres-
ence of some suitable low-molecular-weight mediators. A literature survey demon-
strated numerous reports on the MnP-assisted oxidative depolymerization of natural 
and synthetic lignin structures as well as a range of many other refractory com-
pounds (Hofrichter et al. 2001, 2010; Hofrichter 2002).

Fig. 1.2 A stepwise illustration of MnP catalytic cycle

1 Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade…
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1.2.3  Physiochemical and Catalytic Properties of HRP

HRP is an imperative heme-containing enzyme and subject of substantial research 
for more than a century. Though the HRP term is used rather broadly, the roots of 
the horseradish (Armoracia rusticana) herb comprises a large variety of character-
istic peroxidase with HRP-C as the most abundant form (Veitch 2004). HRP-C 
comprises two different metal centers, one heme group, and two calcium atoms. 
Both metal centers play a crucial role in the structure and functional stability and 
integrity of the enzyme. The catalytic mechanism of HRP, particularly, the C iso-
zyme, has been widely studied (Veitch and Smith 2001). Figure 1.3 depicts the cata-
lytic cycle of HRP using ferulic acid as a reducing substrate. The formation of 
radical species in the two one-electron reduction steps leads to an intricate profile of 
reaction products containing dimers, trimers, and oligomers that might function as 
reducing substrates in succeeding turnovers (Veitch 2004). In recent years, HRP has 
gained remarkable interest in researchers, scientists, and biotechnology-related 
communities, around the globe, and thousands of research articles have appeared in 
the literature.

1.3  New or Advanced Enzyme-Based Techniques

The real-time practical implementation of enzyme biocatalysts for environmental 
remediation displays many inadequacies such as productivity, catalytic activity, and 
marginal stability. Since enzymes are biomacromolecules, any physical and chemi-
cal change in their structural conformation results in the loss of the enzymatic cata-
lytic activity. Microbial strains are incompetent to secrete sufficient enzyme quantities 
under natural environmental conditions. In this context, scientists and environmental 
engineers are continuously striving to extract/isolate and identify new and unique 
enzyme-producing microbial strains with considerable ability to entirely biotrans-
form or biodegrade the toxic environmental pollutants into harmless substances. 

Fig. 1.3 A stepwise 
illustration of HRP 
catalytic cycle. 
Abbreviations: SR, 
substrate in reduced phase; 
SO, substrate in oxidized 
phase under respective 
reaction environment

M. Bilal and H. M. N. Iqbal
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Some of the sophisticated and state-of-the-art techniques, namely, immobilization 
and genetic engineering, can address the above-stated issues.

1.3.1  Genetic Engineering

The overall productivity and titer of enzymes from their inherent producers are often 
very low under the natural process conditions. The use of genetic engineering 
approaches provides an efficient way to improve the biosynthesis of an array of 
enzymes by the identification, isolation, and cloning of coding genes into an appro-
priate expression candidate. In addition to cost-efficiency for larger-scale production 
of enzymes, overexpressing enzymes by recombinant DNA technology also enhances 
the catalytic features, such as activity, specificity, selectivity, and stability of the 
enzymes. Moreover, the isolation and purification of enzyme-based catalytic cues by 
recombinant technology are also easier than that of the original strain. The pH, sub-
strate scope, temperature steadiness, and shelf life of the recombinant enzymes can 
be substantially upgraded using genetic engineering technologies. Genetically engi-
neered enzymes display a greater capacity to decompose or decontaminate the envi-
ronmental pollutants under defined reaction conditions. For instance, the peroxidase 
enzyme system of Thanatephorus cucumeris strain Dec 1 has been exploited for the 
degradation or decolorization of synthetic dye-based contaminants. Furthermore, the 
extracted peroxidase enzyme system was also expressed in Aspergillus oryzae RD 
005. Recombinant approaches such as site-directed mutagenesis, cassette mutagen-
esis, error-prone PCR, staggered extension protocol, and DNA shuffling were 
employed to archive the enzyme with expanded substrate range and transformation 
of a wide spectrum of environmental pollutants (Dua et al. 2002).

1.3.2  Enzyme Engineering

Enzyme engineering relates to the utilization of recombinant DNA technology 
causing alteration in the amino acid sequence of the enzymes to boost up their fea-
tures such as catalytic activity, pH and temperature stability, stress tolerance, etc. 
(Singh et al. 2013). Figure 1.4 illustrates various features of a biocatalyst that could 
be improved by protein engineering. At contemporary, enzyme engineering strate-
gies have been applied for highly efficient, selective, and hyperactive catalytic con-
structs to efficiently degrade or remove radionuclides and heavy metals (Dhanya 
2014). For instance, nitrobenzene was effectively transformed into nitrite and cate-
chol by an engineered nitrite nitrobenzene 1,2-dioxygenase. However, modification 
in the amino acid residues near its active site (at the position 293) by site-specific 
mutagenesis resulted in a 2.5-fold greater oxidation efficiency toward 
2,6- dinitrotoluene (Ju and Parales 2006). The same site-directed mutagenesis 
approach was also employed to 2-nitrotoluene dioxygenase that catalyzes the oxida-
tive transformation of nitrotoluene to 3-methyl catechol and nitrite (Haigler and 
Spain 1993). The amino acid residues immediate to catalytic regions were selected 

1 Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade…
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for mutagenesis, where the enantio specificity of the enzyme was changed by the 
replacement at the position 258 (Lee et al. 2005).

1.3.3  Nanozymes

Over the past several years, exhaustive research has been directed to designing many 
artificial enzyme biocatalysts with a variety of smart materials to mimic the struc-
tures and functions of various naturally occurring enzymes. In recent times, nano-
zymes, so-called nanoconstructs, with enzyme-like properties or next- generation 
artificial enzymes have gained great researchers’ interest as novel and unique artifi-
cial enzymes with low cost and high stability. Owing to their exceptional features 
than natural and classic synthetic enzymes, significant improvements have been 
made in the field of nanozymes, and consequently several nano-based materials or 
nanoparticles have been pursued to mimic a great variety of naturally occurring 
enzymes, i.e., catalase, esterase, ferroxidase, peroxidase, oxidase, protease, phospha-
tase, and superoxide dismutase, for broad-spectrum applications (Wang et al. 2016). 
Generally, nanozymes lacking a suitable active site, and thus only a particular 

Fig. 1.4 Improved catalytic properties of enzymes by enzyme engineering approach for environ-
mental remediation prospects

M. Bilal and H. M. N. Iqbal
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substrate, could attach and undergo a chemical reaction. These nanoconstructs can 
catalyze the transformation of substrates to products and follow the identical mecha-
nisms and reaction kinetics as of native enzymes in the physiological environment 
(Gao and Yan 2017). Nanozymes have shown potential applications in the develop-
ment of novel biosensor, immunoassay, therapeutics, cancer diagnostics, and envi-
ronmental remediation for the sensing and removal of dyes, organic compounds, and 
industrial wastes, (Liang et al. 2017). Peroxidases mimicking magnetic nanoparticles 
(Fe3O4-MNPs) have been found to be an incredibly simple and powerful method for 
mineralization and decomposition of many organic contaminants, such as phenol, 
rhodamine, and methylene blue from the aqueous media (Wu et al. 2015). Figure 1.5 
illustrates the application perspective of nanozymes in different fields.

1.3.4  Immobilized Peroxidases and Properties

Immobilization of enzyme is an association of native or soluble enzyme onto sev-
eral different kinds of insoluble materials (inert, organic, or inorganic) to hold in 
suitable reactor geometry for improved catalytic efficiency, stability, and economic 
recycling of enzymes even under unfavorable reaction conditions (Bilal et al. 2017a, 
c). Several immobilization procedures such as adsorption on alginate matrix, encap-
sulation, entrapment in polymer networks, covalent coupling to various insoluble 
support matrices (i.e. silica gel), and bifunctional reagents-assisted cross-linking 
have been developed and reported to attach a broad variety of industrially relevant 
enzymes (Table 1.1). Notably, the supporting matrices selected for enzyme attach-
ment should exhibit a larger surface area, be less expensive, and be circumventing 
the diffusional limitations of substrate/product for enzyme catalytic reactions. With 

Fig. 1.5 Application perspective of nanozymes in different fields (Adpated from Shin et al. 2015)

1 Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade…
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reference to the free enzyme, the insolubilized enzymes have retained their initial 
activity for a longer duration and offer simple recovery for recycling in multiple 
consecutive cycles (Bilal et al. 2017a, c). Moreover, the peroxidases in immobilized 
form may exhibit long-term economic and ecological merits for the mineralization 
of recalcitrant xenobiotics because of their repeatability and excellent durability. 
They also present increased thermal tolerance and remarkable activities in varying 
environmental conditions of extreme reaction temperature and pH. The hyperactiv-
ity and stability of intracellular enzymes, which are not active in a cell-free system, 
can also be enhanced by deploying immobilization and encapsulation strategies 
(Skoronski et al. 2017).

Table 1.1 Commonly used immobilization strategies and their merits and demerits

Immobilization 
technique

Type of interactions 
involved

Strength of 
interactions Merits Demerits

Adsorption Ionic 
interactions,hydrogen 
bonds, hydrophobic 
interactions

Weak Simple, 
inexpensive
No 
conformation 
modification
High enzyme 
activity
Support 
reusability

Low stability
Biocatalyst 
desorption
Loss of 
biomolecules

Entrapment Ionic interactions, 
hydrophobic
interactions, covalent 
bonds

Weak/strong No 
modification in 
enzyme 
structure

Low enzyme 
loading

Encapsulation Ionic and hydrophobic
interactions

Weak No enzyme 
alteration
Protection of 
the enzyme

Mass transfer 
limitations

Cross-linking Covalent bonds Strong High strength 
of interactions
No support 
required
Decrease 
desorption
Prevent 
leakage

Diffusion 
limitations
Loss of enzyme 
activity
Alteration in 
active site

Covalent 
binding

Covalent bonds Strong Robust and 
stable 
interactions
Strong 
biocatalyst 
binding
High stability
Reduction in 
enzyme 
leaking

Decreased 
enzyme activity 
due to limited 
enzyme mobility
Support 
materials are not 
renewable

M. Bilal and H. M. N. Iqbal
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1.4  LiP-Assisted Degradation of Hazardous Contaminants

The textile industries consume various chemicals and a large number of pigments 
and synthetic dyes such as anthraquinone, azo, diazo, disperse, and reactive dyes 
that are the main sources of environmental contamination. It is reported that about 
10–15% of these dyes find their way to effluents during the textile dyeing process, 
thus posing a danger to public health due to profound toxicity, carcinogenicity, or 
teratogenicity effects (Bilal and Asgher 2015). Immobilized peroxidases (microbial 
and plant) have shown superior performance to degrade these dye-related pollutants 
owing to their distinctive oxidative potential, low specificity, and minimum associ-
ated limitations. Table 1.2 illustrates the application of immobilized LiP to biotrans-
form and biodegrade a variety of various environmental pollutants.

For instance, Ferreira-Leitao et al. (2007) assessed the efficacy of fungal LiP and 
compared it with a plant-based HRP for the decolorization and degradation of meth-
ylene blue (MB) dye and its demethylated products. Though both peroxidases were 
capable of oxidizing MB and its demethylated derivatives efficiently, the oxidative 
capacity of fungal LiP was found to be double in contrast to the HRP. Moreover, 
HRP lacks the capability to accomplish aromatic ring cleavage indicating LiP as the 
preferred candidate for degrading phenothiazine dyes and eliminating color from 
waste streams.

In another study, Qiu et al. (2009) used nanoporous gold (NPG) of pore diameter 
40–50 nm as a bolster supporting matrix for the covalent attachment of LiP. The 
NPG-immobilized LiP showed an optimal temperature of 10 °C higher compared to 
the free counterpart. After an incubation period of 120 min at 45 °C, the immobi-
lized LiP maintained about 55% of its initial activity, while the native LiP was 
completely denatured under the identical process conditions. Finally, the industrial 
applicability of the NPG-immobilized LiP was tested for decolorizing three struc-
turally different dyes including pyrogallol red, fuchsine, and rhodamine B by two 
H2O2-mediated approaches. Notably, a high biotransformation efficiency of 84.6%, 
75.5%, and 87.2% was recorded for fuchsine, rhodamine B, and pyrogallol red 
dyes, respectively, indicating a potential catalytic and dye-decolorizing efficacy of 
the immobilized LiP.  Recently, LiP from Ganoderma lucidum IBL-05 was opti-
mally entrapped in good quality Ca-alginate microspheres using sodium alginate 
(4.0% w/v), calcium chloride (0.2 M), and glutaraldehyde (0.02%) as a cross- linking 
agent. The pH and temperature optima for Ca-alginate-entrapped LiP were improved 
in comparison with free LiP. After Ca-alginate entrapment, the catalytic behavior, 
as well as the temperature and pH stability of LiP, was considerably enhanced. The 
free LiP exhibited 48%, 40%, 52%, 59%, and 66% color removal efficiency for S.F 
Golden yellow CRL, S.F Black CKF, S.F Foron Blue E2BLN, S.F Turq Blue GWF, 
and S.F Red C4BLN dyes, respectively, and were meaningfully improved to 80%, 
70%, 89%, 83%, and 93% by the Ca-alginate-immobilized LiP using VA as a redox 
mediator. In addition, a noticeable reduction in water quality parameters including 
biological oxygen demand (66.44–98.22%), chemical oxygen demand (81.34–
98.82%), and total organic content (80.21–97.77%) values were also recorded. The 
toxicity tested (brine shrimp lethality and hemolytic test) further substantiated the 

1 Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade…
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efficiency of Ca-alginate-encapsulated LiP treatment for reducing the cytotoxicity 
of dye solutions (Shaheen et al. 2017). Oliveira et al. (2018) used carbon nanotubes 
(CNTs) to immobilize crude extract containing LiP produced from the lignocellu-
losic residue (Jatropha curcas seed cake) by two fungal strains such as P. ostreatus 
(PLO9) and G. lucidum (GRM117). In comparison with native enzymes, the CNT- 
immobilized LiPs revealed improved catalytic efficiency, greater specific activities, 
and higher substrate affinities. Furthermore, it also showed an efficient decoloriza-
tion of RBBR dye in several consecutive decolorization cycles. It can be concluded 
that LiP in immobilized state appears as a good biocatalytic system for the treatment 
of textile and dyeing industrial effluents loaded with a variety of dyes.

1.5  MnP-Assisted Degradation of Hazardous Contaminants

MnP is conceived as one of the earliest peroxidases with an ability to be utilized for 
the decolorization and degradation of environmental pollutants. Interestingly, Yao 
et al. (2013) reported MnPs to be much more efficient in degrading dyes or other 
toxic compounds as compared to LiPs and laccase. Table 1.3 portrays the potential 
of immobilized MnP to degrade and remove a variety of various environmental pol-
lutants. For example, a purified MnP isolated from the culture extract of G. lucidum 
fungus was entrapped in the agar-agar matrix. The resultant entrapped MnP showed 
better tolerance to varying temperature and pH conditions with reference to the free 
counterpart. Thermal stability was also considerably enhanced following immobili-
zation on agar-agar support. The insolubilized biocatalyst preserved more than up to 
70% and 60% of its preliminary activity after incubating for 5 days at 30 °C and 
40 °C, respectively. Moreover, MnP treatment results in the complete degradation 
and detoxification of three textile dyes, viz., reactive blue 21, reactive red 195A, and 
reactive yellow 145A (Bilal et al. 2016). Encapsulated MnP on agarose beads dem-
onstrated wider pH and thermal resistance, as well as enhanced thermal and storage 
stability relative to the soluble enzyme. Additionally, it has shown potential to 
degrade different industrial effluents to varying extents in a packed bed reactor in 
several successive cycles (Bilal et al. 2017b). In another study, Bilal et al. (2017e) 
prepared cross-linked enzyme aggregates of G. lucidum MnP utilizing a range of 
aggregating agents including ammonium sulfate, ethanol, acetone, and tert-butanol 
and 2-propanol and GA as a cross-linker. The biocatalytic capacity of as-prepared 
MnP-CLEAs was investigated by reacting with two potential endocrine disrupters 
(triclosan and nonylphenol) and different textile dyes in an enzyme-loaded packed 
bed bioreactor. Results revealed that MnP-CLEAs were efficient in the transforma-
tion of both the tested endocrine disrupters and achieved 84.2%, 88.0%, 95.5%, and 
100% degradation of Nishat textile-, K&N textile-, Crescent textile-, and Sitara 
textile-based wastewater effluents, respectively.

PAHs are widely distributed organic compounds in aquatic and terrestrial atmo-
spheres, as products of the incomplete fossil fuel incineration. Several of these con-
taminants pose toxic, mutagenic, and highly carcinogenic effects to animal and 
human health (Johnsen et al. 2005). They are highly recalcitrant to nucleophilic and 

M. Bilal and H. M. N. Iqbal
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microbial attack because of the presence of fused aromatic rings in their structure 
with high biochemical persistence (Johnsen et  al. 2005; Nikiforova et  al. 2009). 
Among the group of ligninolytic consortium secreted by WRF, LiP, MnP, and lac-
case were demonstrated to exhibit a crucial role in the decomposition of these toxic 
PAHs. Acevedo et al. (2010) immobilized Anthracophyllum discolor MnP on natu-
rally derived nanoclay support by simple adsorption to evaluate its ability for PAH 
decomposition. In comparison with the free enzyme, the insolubilized biocatalyst 
achieved a >65% and >86% degradation rate toward anthracene and pyrene, respec-
tively. Nevertheless, phenanthrene and fluoranthene hydrocarbons were compara-
tively less degraded by the nanoclay-adsorbed enzyme with a transformation 
efficiency of <8.6% and <15.2%, respectively.

1.6  HRP-Assisted Degradation of Hazardous Contaminants

Peroxidase extracted and purified from horseradish roots have also been assessed in 
environmental applications. In recent years, HRPs have been employed in enor-
mous biotechnological processes, such as lignocellulosic biomass delignification 
and chemical synthesis; nevertheless, environmental bioremediation, treatment of 
the phenolic compounds containing wastewaters, and removal of toxic compounds 
such as xenobiotics, dye pollutants from industrial and drinking water, and 
microbial- resistant pharmaceuticals and hazardous pollutants are the major practi-
cal applications of plant-based HRPs (Bilal et al. 2017a, b, c). Table 1.4 summarizes 
the recent biodegradation studies of the immobilized HRP for a variety of various 
environmental pollutants.

Zinc oxide (ZnO) nanocrystals in the form of nanodiscs, nanoflowers, and 
nanorods were synthesized to immobilize HRP and employed for the degradation of 
phenol. Notably, high removal efficiency of 86.09%, 79.46%, and 77.03% was 
achieved by the HRP immobilized on nanodiscs, nanoflowers, and nanorods, respec-
tively, in comparison with the equivalent non-immobilized fraction exhibiting 
61.52%. Also, the phenol degradative activity of ZnO-insolubilized HRP was tested 
with five additional model phenolic pollutants. The ZnO-coupled enzyme displayed 
superior catalytic efficiency for removing all these phenolic compounds from the 
aqueous media than that to the native HRP. Results evidenced that immobilization 
technology exhibited a noticeable shielding effect on the HRP enzyme against the 
inhibition/inactivation factors, and as a result, immobilized enzyme promoted the 
oxidation and elimination of phenol from the solution (Zhang et  al. 2016). In a 
recent study, Zhang and Cai (2019) immobilized HRP onto newly fabricated Fe3O4- 
incorporated nanotubes used for the degradation of phenol. The synthesized nano-
biocatalytic system removed about 74.1% of total phenol at a final concentration of 
50 mg/L under the optimal processing conditions and preserved over 60% of its 
starting activity even after six consecutive cycles. HRP covalently coupled to silica- 
coated iron nanoparticles functionalized by 3-aminopropyltriethoxysilane results in 
effective degradation of 2,4-dichlorophenol with an utmost removal rate of 80% 
after incubating for 3 h (Chang and Tang 2014). Of most recent, Vineh et al. (2018) 
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recorded a complete removal of phenol (2.5 mg/mL) by plant HRP covalently 
immobilized onto modified graphene oxide using GA as a cross-linker, as compared 
to free enzyme that achieved only 55% degradation under the same conditions. HRP 
immobilized on GA-modified carbon nanospheres demonstrated twofold increased 
efficiency for the biotransformation of different phenolic compounds from aqueous 
media, in particular 4-methoxyphenyl, bisphenol A, and chlorophenols, as com-
pared to the free form of the enzyme. The immobilized nanobiocatalyst eliminated 
51.75%, 95.4%, 43.1%, 100%, 95%, 55.4%, and 99.3% for bisphenol A, paracetamol, 
phenol, catechol, p-chlorophenol, 4-methoxyphenol, and 2,4-dichlorophenol con-
taminants, respectively (Lu et al. 2017). The findings might represent a high poten-
tial to develop a cost-efficient, robust, and eco-sustainable biocatalytic system for 
wide environmental applications and wastewater remediation.

1.7  Conclusion

With the rapid urbanization and growth in population size and industrial sectors 
over the past few years, the accumulation of contaminants into the natural environ-
ment reached an alarming stage. Enzyme-based treatment appears to be a green, 
viable, and eco-friendly solution to overcome this dilemma. A broad family of per-
oxidases isolated from different microbial and plant sources has demonstrated the 
ability to biodegrade various pollutants. Initially, peroxidase-mediated treatment 
was not proven as an efficient remediation approach because of the insufficient 
production of enzymes by microorganisms under the physiological conditions. 
However, the production and titer of these enzymes can be substantially increased 
by the development of recombinant DNA technology together with providing opti-
mal growth requirements to native producers. Furthermore, the shelf life, catalytic 
performance, and the stability of enzymes under stress environment can be boosted 
up to an incredible level by novel immobilization and enzyme engineering 
approaches. Nanozymes also holds a significant promise to clean up environmental 
pollutants up to remarkable levels because of their distinctive catalytic properties. In 
addition to pollutant detection and degradation, nanozymes can increase the bio-
availability by acting on the distantly occurring substrates.
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Abstract
Many species of microalgae have excellent ability to remove nitrogen, phospho-
rus, heavy metals, pesticides, organic and inorganic compounds, and pathogens 
from wastewater. Microalgae species grow well in wastewater and may be used 
for treatment of municipal, industrial, agro-industrial, and livestock wastewaters. 
Furthermore, microalgae biomass is an excellent source of production of various 
valuable products. In this chapter, applications of microalgae for treatment of 
wastewater and production of valuable products are discussed.

Keywords
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2.1  Introduction

Pollution is the major threat to our environment which has resulted from increased 
mushrooming of industries and more urbanization. It affects our ecosystems, flora, 
fauna, and human health worldwide by contaminating soil, water, and air. Pollution 
arises due to increased concentrations of unwanted and harmful substances as the 
results of anthropogenic activities. Most of organic and inorganic constituents have 
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been released in water bodies due to household, agriculture, and industries which 
have led to organic and inorganic pollution (Mouchet 1986; Lim et al. 2010). This 
pollution has greatly affected the availability and quality of water resources around 
the globe (Abdel-Raouf et  al. 2012). Moreover, there are common incidences of 
discharging the wastewater into water bodies without proper treatment. There is no 
parallel connection between the planning and implementation of such discharges in 
municipal plans which are posing serious problems to public health. The wastewater 
contains nitrogen, phosphorus, heavy metals, pesticides, organic and inorganic tox-
ins, and pathogens. The major reason for water pollution is the discharge of indus-
trial waste and sewage without proper treatment. Several wastewater treatment 
plants discharge water that contains significant amounts of toxic metals and organic 
and inorganic compounds. Therefore, it is a major challenge to develop efficient 
wastewater treatment technologies.

Agriculture pollution is also a source of water contamination. Agrochemical resi-
dues containing high concentrations of insecticides/pesticides/fertilizers pose serious 
threat to aquatic ecosystems. Nitrate is identified as one of the most common sources 
of agriculture pollution that causes eutrophication (Abdel-Raouf et al. 2012).

Wastewater can be mainly categorized into household and industrial wastewater 
(Chiu et al. 2015). In the present world, one of the major challenges is the availabil-
ity of clean and potable water for drinking and household. However, to meet this 
challenge, there is a need to develop different new methods for wastewater treat-
ment (Bansal et al. 2018). One of the major resolutions can be phycoremediation 
which efficiently uses algae for treatment of wastewater (Bansal et al. 2018). Algae 
are eukaryotic organisms with great variety ranging from single cell to highly dif-
ferentiated plants. Algae are efficient carbon fixer as it can utilize carbon to release 
oxygen into atmosphere (Rehnstam Holm and Godhe 2003). More than 50% of total 
photosynthetic activity can be attributed to algae, and it significantly affects the 
food chain (Day et al. 2017). Moreover, algae can be used to convert carbon dioxide 
to oxygen by utilization of carbon for its own growth. Thus, algal cells can be effi-
ciently used for wastewater treatment because they can remove the organic com-
pounds, metals, and nutrients left out in wastewater (Laurens et al. 2017). Heavy 
metals have been detected in industrial wastewater. Microalgae can efficiently 
remove/remediate heavy metal ions from the effluents. Kumar et al. (2015) have 
reviewed various biochemical mechanisms present in microalgal cells for removal 
of heavy metals. Algae can be used for production of value-added products along 
with safe cleaning of wastewater such as algal char to replace coal and production 
of effective biofuel, lipids, and active metabolites which can be used as colorants, 
preservatives, and medicines. Microalgal cells can be used to produce alternative 
bioenergy sources. It has been observed that microalgae due to high amount of 
polyunsaturated fatty acids (PUFA) have enormous potential to be used as biodiesel 
(VenkataMohan et al. 2015). They can be harnessed as valuable biodiesel sources 
due to their high cell densities and accumulation of large quantities of triacylglycer-
ols. But some of the major problems using algal technology for wastewater treat-
ment, including availability of space, sunlight, contamination, resilience time, etc., 
need to be managed before employing phycotechnology for wastewater treatment. 
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Some biotechnological strategies such as hyperconcentrated cultures, immobilized 
cell system, photobioreactors, and genetic engineering can be used to improve phy-
cotechnology. Photobioreactors can be used to improve phycoremediation. A micro-
algae photobioreactor has been developed by Marbelia et  al. (2014). In this 
bioreactor, they used lab effluent as input as growth media for Chlorella vulgaris. 
Photobioreactors can be used efficiently for growing high density of algae due to 
less washout problem, and dilutions can be maintained at optimal levels. Moreover, 
it has helped to achieve higher cell density and enabled high waste removal.

This chapter attempts to discuss the role of microalgae in phycoremediation of 
wastewater, current technologies used, and future technologies to improve the pro-
cess further.

2.2  Adverse Effects of Wastewater on the Environment

The composition of wastewater reflects the lifestyles and technologies practiced in 
producing society (Gray 1989). It is a mixture of organic and inorganic materials 
and xenobiotic compounds. Major portions of sewage are carbohydrates, fats, pro-
teins, volatile acids, etc. Major constituents of inorganic pollutants include various 
ions and heavy metals, viz., sodium, calcium, magnesium, chlorine, bicarbonate, 
and ammonium salts, which are among the causative agents of water pollution 
(Tebbutt 1983; Horan 1990; Lim et  al. 2010). Various pollutant sources include 
untreated direct discharge of human wastes from household, municipal wastes, and 
agricultural leach outs including high concentrations of insecticides and pesticides. 
It includes the industrial drains containing higher concentrations of heavy metals 
(Horan 1990). Pollutants can be classified into two categories depending on their 
sources in biological and chemical wastes. Chemical wastes include various inor-
ganic ions, heavy metals from industries, detergents from household, and agricul-
tural leach outs containing insecticides and pesticides (Akpor 2011). Other than 
these different sources, pathogenic microorganisms such as bacteria, viruses, and 
protozoans are common problems which affect the quality of drinking water (Akpor 
2011). Moreover, the largest contributor of pollution is discharge of effluents from 
wastewater treatment. There are a number of previous studies on the negative impact 
of these effluents, which may result into death of aquatic life, algal blooms, habitat 
destruction from sedimentation, debris, and toxicity from chemical contaminants 
and even can interfere with food chain (Canada Gazzette 2010).

The adverse effects of wastewater effluent on environment can be classified into 
two, that is, ecological and health impact (Akpor 2011). Wastewater includes a 
number of different inorganic pollutants such as nitrogen, phosphorus, and heavy 
metals (Larsdotter 2006). Major forms of nitrogen can be ammonium ions and 
nitrite and nitrate ions (Hurse and Connor 1999). Nitrogen in untreated wastewaters 
may be organic and inorganic (Sabalowsky 1999). Nitrate in water causes methe-
moglobinemia, which is the most significant health problem. Blood contains hemo-
globin (iron-based compound), but in the presence of nitrite, it gets converted to 
methemoglobin that does not carry oxygen. Likewise, nitrogen is toxic to fish in its 
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ammoniacal form and adds on to oxygen demand (Jenkins et al. 2003). However, it 
involves increased concentration of phosphorus in water which is an important con-
stituent of living beings. But after assimilation high concentration of phosphorus in 
organisms poses major problem (Rybicki 1997). Increased concentration of phos-
phorus leads to eutrophication, a phenomenon which gives rise to algal bloom. This 
algal bloom has negative effect on wastewater treatment and can hinder the potabil-
ity of drinking water. Thus, this type of major limitation can be removed by control-
ling the concentration of phosphate in wastewater discharge (Vanlarsdrecht 2005).

Human and animal wastes are major sources for pathogenic organisms which are 
released in the wastewater, leading it to become a major reason for public health 
hazards. Most commonly occurring pathogenic microorganisms involve bacteria, 
viruses, and protozoa which contaminates the water resources (Kris 2007). These 
microorganisms are responsible for major waterborne diseases. Such severe water-
borne diseases involve higher risk to human health. Some of the names include 
typhoid fever, shigellosis, salmonellosis, campylobacteriosis, and giardiasis. 
Hepatitis A is one of the virus-borne diseases due to drinking of contaminated water 
(WHO 2004), whereas other pathogens may cause critical diseases which have 
costly treatment such as stomach ulcers, etc. Viruses can be the most dangerous and 
harming pollutants present in water. Reasons for this may be high pathogenicity, 
difficulty in diagnosis, and high dose of antiviral compound requirement (Okoh 
et al. 2007). Bacteria are another form of pathogens by causing various types of 
health hazards associated with digestive systems and skin such as diarrhea, dysen-
tery, and skin and tissue infections. Major disease-causing bacteria found in waste-
water are different types of bacteria, such as E. coli O157:H7, Listeria, Salmonella, 
and Leptospirosis. Giardia and Cryptosporidium are among other protozoans caus-
ing serious diseases. More concentrations of nitrates can cause methemoglobinemia 
whose permissible limit has been set as 10  mg/mL by the US Environmental 
Protection Agency (EPA 2002). Nitrite can further interact with amine to form nitro-
samines which are potent carcinogens. Thus, inorganic constituents such as nitro-
gen and phosphorus cause most favorable conditions for growth of such pathogenic 
organisms. The microbial toxins cause acute problems ranging from gastroenteritis 
to nervous system impairment. According to a health report from the World Health 
Organization, these pathogenic organisms can be a cause of liver cancer in humans.

2.3  Newer Approaches Over Conventional Wastewater

There are several approaches for cleaning wastewater, viz., conventional and advanced 
treatment (Fig.  2.1). Conventional approaches include various physical as well as 
chemical treatments. Chemical treatment is one of the most effective treatments for 
wastewater. The general purposes of the chemical treatment are to change the proper-
ties of water such as removal of suspended solids (turbidity) from the water, pH 
adjustment, and removal of dissolved material in the water, thus improving water 
quality. The prevalent methods in chemical treatment can be  coagulation/flocculation, 
chlorination, chloramination, ozonation, and ultraviolet light (UV) (Gray 2002).
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Flocculation aids in chemical and thermal destruction of pathogens and ultimate 
killing. Flocculation can contribute to the removal of various heavy metals and 
pathogenic organisms including E. coli (60–98%), viruses (60–90%), and Giardia 
(60–98%) (Tchobanoglous et al. 2003). The addition of alum (coagulating agent) 
increases the rate at which the suspended particles settle out flocculation. In bulk 
water treatment, the alum dose can be optimized (Gomez et al. 2006). Chlorination 
is the best known method of disinfection. It needs more contact time due to its high 
oxidation potential. Chlorine can react with NH4+, NO2−, H2S, Fe2+, and other 
organic compounds and leads to the formation of compound called trihalomethanes, 
always leading to toxicity problems. It is still the most commonly employed method 
in the treatment of wastewater with high organic compound concentration 
(Tchobanoglous et al. 2003).

Ozonation is used mainly in secondary wastewater treatment that has antimicro-
bial activity. Major drawbacks of ozonation include high cost involved and lack of 
maintenance. Moreover, there is always the possibility of microbial regrowth. The 
efficiency of UV and chlorine method has been found to be optimal for disinfection 
in wastewater. Treatment with UV light results in no toxicity but involves various 
limitations such as high cost, increased volume of sludge, and dewatering capability. 
The additional advantages of chemical processes are mineralization of nonbiode-
gradable components and reduction in size of reactor (Tchobanoglous et al. 2003).

Biological wastewater treatment can be classified as on-site and off-site treat-
ment systems. Both treatments involve different conditions to be fulfilled before 

Wastewater treatment methodologies

Conventional methodologies

Physical/chemical treatment

Coagulation/flocculation

Chlorination/ozonation

Biological treatment

Preliminary treatment 
physical removal

Primary treatment: activated 
sludge/trickling

Secondary treatment:
Biofilm/Rotators

Tertiary and Quarternary
treatment:aerated lagoons

and stabilization ponds

Advanced methodologies

Phycoremediation involving
microalgae

Immobilized alga-bacterial
system

Photobioreactors

Fig. 2.1 Diagrammatic representation showing conventional and advanced methodologies for 
wastewater treatment
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treatment. Moreover, both have different impacts on public health as well as envi-
ronment (Akpor 2011). All biological methods use the metabolic activities of 
microorganisms to utilize the contaminants of wastewater, thereby reducing the 
BOD and COD values of wastewater effluent. Almost every biological method 
involves utilization of microorganisms for digesting inorganic constituents and 
improving the quality of wastewater. Then it is allowed to settle down as sludge 
which can be separated, and eventually BOD value can be lowered down. Moreover, 
the pathogenic organisms can be removed, and wastewater can be recycled effi-
ciently (Abraham et al. 1997).

No single treatment is available for efficient treatment of wastewater. Primary, 
secondary, and tertiary treatment methods can be used for removal of contaminants 
and pathogens. Sometimes preliminary treatment can be used prior to primary treat-
ment to increase the efficiency of the treatment methods. Moreover, most of the 
time, a combination of more than one method is required (Horan 1990). The step-
wise biological treatment involves various steps. Preliminary treatment removes the 
coarse solid materials which will otherwise cause blockage and equipment damage. 
Very large particles and floating materials are removed by coarse removal which 
involves using bars (Tebbutt 1983). The next step is primary treatment which 
includes sedimentation processes. It enhances the settling of solids under gravity. 
Sedimentation tanks can contribute significantly by lowering the BOD value by 
40% (Horan 1990). However, secondary treatment involves the reduction in organic 
matter. This involves the action of microorganisms such as heterotrophic bacteria 
and their digestive enzymes on utilization of organic matter for energy and growth. 
All processes can be divided into fixed film reactors and dispersed growth processes 
for the removal of the microbial population. Tertiary treatment is used to lower the 
concentration of organic ions. Biological and chemical methods can be used for 
tertiary treatment. Tertiary treatment is responsible for deciding factor of overall 
cost involved because it itself costs four times more than primary treatment (De la 
Noüe et al. 1992). Sometimes, the next step in quaternary treatment is also intended 
for removal of heavy metals, organic compounds, and soluble fractions.

2.4  Microalgal Species Involved in the Wastewater 
Treatments

Several species of microalgae have remarkable ability to remove nitrogen, phospho-
rus, heavy metals, pesticides, organic and inorganic toxins, and pathogens from 
wastewater. Example of these microalgae includes Chlorella, Scenedesmus, 
Phormidium, Botryococcus, Chlamydomonas, and Arthrospira (Abdel-Raouf et al. 
2003; Rawat et al. 2013; Molazadeh et al. 2019).

Many microalgae species including Chlorella, Scenedesmus, Euglena, 
Chlamydomonas, Oscillatoria, and Ankistrodesmus have been demonstrated to grow 
efficiently in wastewater. Few microbial algae are known for heavy metal removal 
(Molazadeh et al. 2019). Examples are Oscillatoria spp. (for chromium removal), 
Chlorella vulgaris (for cadmium, copper, and zinc removal), Chlamydomonas spp. 

M. Thakur et al.



31

(lead removal), and Scenedesmus chlorelloides (molybdenum removal). It is also 
noticed that tolerance to organic pollutants in wastewater varies from species to spe-
cies (Molazadeh et al. 2019). Euglena, Oscillatoria, Chlamydomonas, Scenedesmus, 
Chlorella, Nitzschia, Navicula, and Stigeoclonium have been described as the most 
resistant genera to organic pollutants (Palmer (1974). Table 2.1 summarizes utiliza-
tion of various pollutants of wastewater by microalgae.

Microalgae regulate eutrophication process by removing phosphorous and nitro-
gen components. Microalgae can be effective substitute for biological treatment 
which converts the organic as well as inorganic unwanted constituents to valuable 
biomass. Microalgal species have been widely used for treatment of municipal, 
industrial, agro-industrial, and livestock wastewaters. Algae harvested from the 
treatment pond may be a source of food and valuable products. Algae are able to 
accumulate toxic compounds including selenium, zinc, and arsenic in their cells and 
eliminate them from the aquatic environments. A variety of physical, chemical, and 
biological methods can be used at different stages of primary, secondary, or tertiary 
levels for wastewater treatment.

2.5  Factors Affecting the Wastewater Remediation

2.5.1  Carbon

Carbon is the most important constituent for microalgal growth and cell growth as 
it follows the autotrophic mode of nutrition. However, in other two modes, that is, 
heterotrophic and mixotrophic, it behaves as organic carbon. In Chlorella protothe-
coides, biomass as well as lipid content varied depending on the modes of nutrition. 
Heterotrophic mode resulted in 3.4 times more biomass and 4.2 times more lipid 
content than autotrophic mode (Yanna and Hyde 2002). Microalgae convert carbon 

Table 2.1 Algae used in the remediation of the pollutants present in the wastewater

Pollutants
Algae used for 
bioremediation References

Oil effluents Scenedesmus obliques
Prototheca zopfii
Ankistrodesmus and
Scenedesmus quadricauda

Rajasulochana et al. (2009)
Walker et al. (1975)
Abeliovich (1986); Pinto et al. (2003)

Textile waste 
effluents

Chlorella vulgaris
Chlorella pyrenoidosa

El-kassas and Mohamed 2014; Jinqi and 
Houtian (1992)

Phenolics 
compounds

Chlorella vulgaris, Spirulina Ismail et al. (2013)

Nitrate, organic, 
and inorganic 
phosphorous

Oscillatoria, Synechococcus, 
Nostoc, Spirulina platensis
Chlorella sorokiniana

Dubey et al. (2011); Laliberte et al. 
(1997); Sawayama et al. (1992); 
Sawayama et al. (1998) and Ogbonna 
et al. (2000)

Copper- and 
iron-containing 
effluent

Botryococcus braunii and 
Anabaena doliolum

Rai and Mallich (1992)

2 Microalgal Technology: A Promising Tool for Wastewater Remediation



32

dioxide into inorganic carbon source, and water acts as electron donor for produc-
tion of glucose which gives rise to complex carbohydrates. Moreover, these micro-
algal cells are efficient for utilization of Na2CO3 and NaHCO3. Other important 
constituents than carbon involve nitrogen and phosphorus which plays a significant 
role in growth and development of microalgae. There can be so many sources of 
nitrogen such as detergents, ammonium ions, nitrates, and nitrites present in waste-
water which can be efficiently utilized for growth of microalgae.

2.5.2  pH

pH is an important abiotic factor that affects the microalgal growth. In the cultiva-
tion of the microalgae, the pH value increases due to the photosynthetic assimila-
tions of the CO2. pH is another factor responsible for availability of carbon (Azov 
1982). Moreover, absorption of nitrogen increases pH of the medium. Mechanism 
involves reduction of nitrate to ammonia ions which produces hydroxyl ion (Xu 
et  al. 2006). Increased pH induces precipitation of phosphate in the medium. 
However, this incidence can be lowered by process of respirations. pH is known to 
influence the growth rate of microalgae. The microalgae use the inorganic carbon 
and HNO3 for the growth of the cell productivity. Depending on these parameters, 
pH value may vary from low to high in the alkaline region. pH from 7 to 9 is opti-
mum for the algal growth. Carbon dioxide acts as buffer system in bicarbonate- 
carbonate for photosynthesis,

2.5.3  Salinity

Marine phytoplankton is tolerant to changes in salinity. The best algal growing con-
ditions for most species are salinity levels that are lower than that of their native 
habitat. Lipids can perform both structural and storage functions as they can be used 
in synthesis of the cell membrane and storage products. The lipid contents and the 
composition of microalgae have been shown to change the responses to the environ-
mental variables such as the light, temperature, and salinity. Microalgae have greater 
impact on lipid content due to salinity (Asulabh et al. 2012). However, increased 
salinity can negatively affect the photosynthetic activity which may be due to hin-
drance in electron transport chain (Zhang et al. 2012).

2.5.4  Temperature

It is also a very important factor for the growth of the microalgae. Usually microal-
gae grow profusely in elevated temperature, and growth stops beyond a critical tem-
perature (Ras et  al. 2013). Most common temperature range is from 16  °C to 
27 °C. More heat along with humidity can result in less growth of microalga. After 
a critical temperature, growth rate decreases; however, effect of temperature may 
vary depending on the species.
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2.5.5  Light

Microalgae are phototroph which means they obtain energy from the light. Some of 
the microalgae are capable of growing in dark conditions using simple organic com-
pounds as the energy and the carbon sources. Light conditions directly affect the 
growth and the photosynthesis process of the microalgae. It was also reported that 
the conversion efficiency of the sunlight energy into chemical energy is 2% (Fontes 
et al. 1987). Direct sunlight can often be too intense and cause photoinhibition at the 
surface. At the same time, algal cells deeper down may suffer from photo- deprivation, 
as the radiation has been absorbed or reflected by cells closer to the surface. To deal 
with these challenges, cultivations must be designed with a large surface-to-volume 
ratio and adequate mixing of the algal mass to make sure all cells are illuminated for 
an appropriate amount of time (Christenson and Sims 2011). Algal cultures prevent 
from the light limitation to decrease the depth of the culture vessel. Moreover, depth 
also affects the productivity in light through inverse relationship.

2.5.6  Inhibitory Substance

Many substances act as inhibitory for cell growth as well as photosynthetic effi-
ciency or process. Inhibitory substances include phenolics, heavy metals, herbi-
cides, pesticides, substances in detergents, some microbes, household cleaning 
products, and personal care products. Ammonia is one of the inhibitors which 
reduces the microalgal growth in high temperature and pH (Aharon and Yosef 
1976). Mechanism of toxicity by organic compounds is associated with inhibition 
of nutrient uptake, ultimately leading to permanent damage of cell membrane.

2.6  Problems Encountered During Wastewater Remediation

One of the important drawbacks of wastewater remediation by microalgae is that it 
requires spacious system for the growth of the algae and a good operation speed 
which is not fulfilled by present-day phycoremediation technologies. Downstream 
equipment used for the wastewater remediation is failing due to a build of large 
solid hairs and fibers during the primary treatments. The treated effluents are not 
giving the total nitrogen and phosphorous targets. Ammonia removal is a strictly 
aerobic process. If more ammonia is released into the wastewater remediation, then it 
results into more retention time and low food-to-microorganism ratio and affects pH 
buffering. Algae-treated wastewater is not meeting biochemical oxygen demand tar-
get due to organic overloading, low oxygen concentrations, and sludge accumulation 
and old sludge to the effluents. Loss of opportunity to maintain the fertility of the soil 
is achieved through wastewater rescue. This leads to the need to purchase the organic 
fossil fertilizers. The downstream processing parameters are very expensive for the 
harvesting and the recovery of the secondary metabolites. For short-term treatment 
processes, algal pond treatment can be better alternative for bioflocculation of the 
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algae. Algal growth for the clearing of the wastewater requires the large amount of 
algae to grow in the water bodies and destabilize the ecosystem if the animals feed 
the large amount of the algae growing in the water bodies and leads to the death of 
the animals.

2.7  Mechanism of Action of Microalgae During Wastewater 
Treatment

Microalgae are a type of microscopic photosynthetic organisms usually found in 
marine as well as freshwater environments. They possess a photosynthetic mecha-
nism which is somewhat similar to land plants. Such photosynthetic capabilities of 
microalgae make them significant for treatments with microbial aids where higher 
concentration of nitrogen and phosphorus can be utilized in conversion of solar 
energy into biomass. General mechanism adopted by microalgae to treat wastewater 
includes assimilation, precipitation, biosorption, and bioaccumulation.

2.7.1  Assimilation

Wastewater contains phosphorous in organic as well as inorganic form. Most com-
mon forms of phosphorus in aqueous solutions are orthophosphates and polyphos-
phates which can be utilized by organism for production of biomass. In the next 
level, polyphosphates can be converted into orthophosphates. This process is usu-
ally quite slow. The removal of phosphorous from wastewater in the biological sys-
tem comprises of the treatment of the influent wastewater which is incorporated into 
cell biomass and further involves cleaning with sludge wasting. Microalgal cells 
need phosphorus for metabolic processes such as ATP production, phospholipids, 
and nucleic acids. Algae can assimilate orthophosphates as inorganic ions with the 
aid of energy (Becker 1994). Microalgal cells can store the excess phosphorus in its 
storage (volutin) granules. These reserves can be used for prolonged growth of 
microalgal cells (Fogg 1975; Oliver and Ganf 2000). Therefore, it may be con-
cluded that phosphorus is not associated with immediate effects on microalgal 
growth as compared to temperature and pH (Mostert and Grobbelaar 1987). 
Moreover, concentration of phosphorus may vary in wastewater ranging from 1 mg 
phosphorus per g dry mass. It has been reported that average concentration of phos-
phorus in algal cell is 13 mg phosphorus per g dry weight (Oswald 1988). Higher 
concentrations of phosphorus may not necessarily result in higher growth, whereas 
various different conditions can be optimized to increase the assimilation efficiency 
of microalgal cells. For instance, microalgal cells deficient in nutrients can result in 
better uptake and thus assimilation of phosphorus in less time span. It results in 
more efficient bioremediation. In turn, phosphorus assimilation depends on fixed 
carbon in algae. One of the various optimization strategies involves the starving 
conditions in bioreactor for enhancing the assimilation of other pollutants.
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2.7.2  Precipitation

Carbon species are one of important constituents among others. Microalgae take up 
inorganic carbon in the form of carbon dioxide and bicarbonate ions during photo-
synthesis (Oswald 1988; Borowitzka 1988), which can be subsequently converted 
into carbon dioxide using carbonic anhydrase. When bicarbonate is used as carbon 
source, the pH in the medium increases. This pH increase, which can elevate the pH 
in algal cultures to values above 11, strongly affects the water chemistry. Phosphorus 
may as a result precipitate with available cations to form metal phosphates, where 
calcium phosphates are the most common. Besides being promoted by high pH 
values, precipitation reactions can be enhanced by higher concentrations of calcium 
and phosphorus along with high temperature (Song et al. 2002). Precipitation usu-
ally results in neutral pH and concentrations of phosphate and calcium to be 50 mg 
and 100 mg, respectively (Carlsson et al. 1997). In soft water which is usually with 
less concentration of 50 mg, raised levels of phosphate concentration can be used to 
induce precipitation. Carbonate enhances the production of amorphous calcium 
phosphate and promotes calcite formation from calcium at pH above 8.0. Various 
calcium phosphates can be present in the wastewater which may lie in molar ratios 
between 1 and 1.67. Some salts like amorphous calcium phosphate and octacalcium 
phosphate can act as precursor to hydroxyapatite (Arvin 1983). However, hydroxy-
apatite formation is inhibited by different ion concentrations such as magnesium, 
carbonate, and pyrophosphates (P2O7

4−) (Fergusson et al. 1973; Arvin 1983). The 
effect of magnesium is pronounced when the Mg/Ca ratio exceeds 0.45. At pH lev-
els above 10.5, magnesium forms precipitates with hydroxide ions and loses its 
adverse effect on phosphorus solubility and in turn its utilization (Jenkins et  al. 
1971). Moreover, carbonate reduces the crystalline nature of calcium phosphate 
resulting in formation of amorphous calcium phosphate (Fergusson and McCarty 
1971; Arvin 1983). It can be concluded that phosphorus precipitation is inversely 
correlated with carbonate concentration (Fergusson et al. 1973).

Chemical precipitation contributes significantly to phosphorus uptake by algal 
wastewater treatment and thus bioremediation (Doran and Boyle 1979; Moutin 
et al. 1992; Proulx and LessardP 1994; Mesple et al. 1996; Tam and Wong 2000). 
Particularly in areas with hard water, i.e., water with high concentrations of calcium 
and magnesium, this effect may be pronounced. One of the major effects is chemi-
cal stripping of phosphorus which can be specifically beneficial for algal growth 
with enhanced phosphorus removal as a result. It makes chemical sludge harvesting 
easier as compared to free-floating cells.

2.7.3  Biosorption

Metabolism-independent binding or adsorption of heavy metals to living or dead cells, 
extracellular polysaccharides, capsules, and slime layers is referred to as “biosorption.” 
Walls and envelopes of algae are very efficient in biosorption due to the charged groups 
present in them (Table  2.2). Algae can be immobilized in polyacrylamide gel and 
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packed into columns or used in fluidized beds for the considerable binding of heavy 
metals such as zinc, cadmium, copper, lead, gold, and uranium from wastewater 
(Chojnacka et al. 2005).

Microalgae have enormous potential in cleansing water as they show a strong 
affinity toward polyvalent metal and dissolved metal ions in wastewater (De Bashan 
and Bashan 2010), for example, Chlorella and Scenedesmus.

Biosorption of metals by microorganisms proceeds through a two-stage pathway 
(Fig. 2.2):

 1. An initial rapid, reversible, and passive adsorption onto the cell surface (where 
metal ions adsorb via electrostatic interactions to cell wall functional groups).

 2. A less speedy, irreversible active process which involves the transport of metal 
cations across the cell membrane. The first stage occurs in both living and non-
living cells, whereas the second one takes place only in living ones (Jjemba 
2004; Sud et al. 2008).

Garnham et al. (1992) focused on removal of three metals (Zn, Co, and Mn) by 
Chlorella salina and showed that their uptake was essentially biphasic. The initial 
phase of biosorption is not dependent on physicochemical conditions such as light, 
temperature, and metabolic inhibitors. A slower phase of uptake followed that was 
instead dependent on metabolism and other abiotic factors. For those three metals, 
cellular compartment analysis indicated that large amounts were bound to intracel-
lular components and to the cell wall itself. A higher concentration of each metal in 
the vacuole than in the cytosol was also observed, thus unfolding a possible mecha-
nism of regulation of the free metal ion and detoxification. The capacity of biomate-
rials to adsorb metals depends on the composition of their cellular surface and is 
promoted by the presence of negatively charged functional groups, coupled with 
chemical composition of the outer solution undergoing treatment (Monteiro et al. 
2011). This is especially true with regard to competing anionic groups and pH, 
which affect protolysis and consequently drive such changes. Microalgae are suit-
able chiefly as biosorbents owing to their natural abundance in seas and oceans 

Table 2.2 Parameters used for the algal cultivations

Operational 
parameters Description References
Inorganic 
carbon effect

CO2 and HCO3
−act as the inorganic source of carbon for 

the microalgae
De Morias and 
Costa (2007)

Salinity High evaporation causes the salinity effect. High salinity 
can cause the cellular ionic stress and osmotic stress due 
to the selective ion permeability of the cell wall

Moheimani (2005); 
Salama et al. 
(2014)

Light Strong illumination can inhibit the photosynthesis 
process

Kim et al. (2015)

pH effect Higher photosynthetic activity can increase the 
pH. Neutral pH is favorable but pH as high as 10 and low 
as 4 are tolerate by some species

Moheimani (2005)
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(which allows harvesting and culturing at relatively low cost) and their high sorption 
capacity when compared with other biological or physicochemical sorbents. Such a 
capacity spans the range of 25.4–389 mg/g under acidic/neutral pH values (from as 
low as 2 up to 7) while withstanding concentrations from 20 up to as high as 
20,000 mg/L. These features are, on average, better than those claimed for other 
sorbents from biological or physicochemical origins. Therefore, microalgal biomass 
might be an economically feasible (besides technologically efficient) alternative to 
existing physicochemical methods of metal removal and recovery from wastewaters 
(Mehta and Gaur 2005; Romera et al. 2006) even though actual engineering/cost 
analyses have not been carried out in full. Note, however, that the yield of microalgal 
biomass on the original volume of (sea or fresh) water is relatively poor, unlike hap-
pens with, e.g., macroalgae, and harvesting is in addition difficult to achieve.

2.7.4  Bioaccumulation

Bioaccumulation is defined as intracellular accumulation of unwanted substances, 
which occurs in two stages: the first is similar to biosorption involving attachment 
of potentially toxic elements to the surface, and the second is active transport of 
metal ions into cells. Bioaccumulation is nonequilibrium process (Aksu and 
Dönmez 2000). The process is more complex than biosorption itself and requires 
metabolic activity of cells. It has been reported that metabolic processes support the 
bioaccumulation process and the following reaction takes place in the cell:

 HCO CO OH3 2� � �  

Fig. 2.2 Flowchart showing steps in biosorption
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The hydroxyl ions thus produced are present on cell surface which can scavenge 
the hydroxides of toxic and heavy metals by enhancing precipitation reactions. 
Therefore, these reactions aid in wastewater treatment processes.

Other processes such as biotransformations and biomineralization involve meta-
bolic processes to remove the toxic ions and convert insoluble sulfides and phos-
phates into soluble ions so as to achieve effective removal (Lloyd 2002; Gavrilescu 
2004). This property is used in the removal of ions of iron, manganese, and lead 
(Loukidou and Zouboulis 2005). This aspect of bioconversions includes batch sys-
tems for wastewater treatment (Aksu and Dönmez 2000). Bioaccumulation offers 
another important benefit that is separate; biomass harvesting step is not required, 
and both the treatment and harvesting can be performed simultaneously. Also, addi-
tional unit processes are reduced: harvesting, drying, processing, and storage (Aksu 
and Dönmez 2005). Bioremoval of pollutants present in wastewater has greater 
impact by operational conditions maintained during the process, as some of the pol-
lutants have negative impact on growth of microalgal cells and thus the treatment 
process. Generally, the wastewater containing high load of pollutants cannot be 
treated by bioaccumulation which poses a major limitation to biological method of 
remediation. Moreover, energy source such as sucrose has to be supplied for provid-
ing energy to the growing cells for effective growth and removal (Aksu and Dönmez 
2005). By employing effective methods of strain selection, those strains can be 
selected which can utilize the organic and inorganic pollutants and leads to bioac-
cumulation. Present-day practical application of bioaccumulation is that the major-
ity of conventional municipal wastewater treatment plants based on living organisms 
have a significant contribution of bioaccumulation itself. However, much work is 
needed to confirm the significant contribution of bioaccumulation in municipal 
wastewater treatment plants (Aksu and Dönmez 2000).

In bioaccumulation, pollutants are transported across cell wall and membrane. 
Inside the cells are bound to intracellular structures (Kujan et al. 1995). It has been 
studied in previous work that bioaccumulation involves redox reactions to scavenge 
the unwanted constituents present in wastewater (Yilmazer and Saracoglu 2009). 
These metabolic processes are complex in nature, and different conditions such as 
pH, temperature, growth inhibitors, etc., affect the metabolic processes (Kujan et al. 
1995). Metal ions cause toxicity by complexation with lipid content of cell mem-
brane which causes damage in integrity (Yilmazer and Saracoglu 2009). It has been 
concluded that with increased concentration of pollutants, accumulation adversely 
affects the cell morphology and physiology (DeSiloniz et al. 2002). Major route for 
mechanism of action is through sulfhydryl groups of enzymes which can be easily 
attacked by metal ions, thus causing toxicity in the cell. Another route is by synthe-
sis of low molecular weight proteins rich in thiol groups which can be synthesized 
in response to complexation of metal ions with these pollutants (Martin-Gonzalez 
et al. 2006). There are few reports on some adapted microorganisms which are bet-
ter suited for bioaccumulation than non-adapted ones (Kocberber and Donmez 
2007; DeSiloniz et al. 2002). Effective biotreatment results have been obtained by 
using the enriched cultures isolated from polluted environments (Kocberber and 
Donmez 2007). A study on bioaccumulation in which plasmid of Escherichia coli 
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from pea with genes of metallothionein has been used showed improved accumula-
tion of mercury (Deng and Wilson 2001).

2.8  Biotechnological Strategies for Improvement 
of Phycoremediation of Wastewater

All the problems faced during the wastewater treatment can be improvised by adopt-
ing various biotechnological strategies (Table 2.3) which can be explained in the 
following sections.

2.8.1  Immobilized Cell System

One of the major problems in the utilization of microalgae for the biological tertiary 
treatment of wastewater is their recovery from the treated effluent (Chevalier and De 
la Noüe 1985a; b). Among the ways of solving this problem which have been 
recently studied are immobilization techniques (De la Noüe and Proulx 1988). 
Immobilization of the cells provides better utilization as well as stability to the cells 
as compared to free cells. There are several reports on using immobilized cells in 
both batch and continuous culture systems (Hall and Rao 1989). Chevalier and De 
la Noüe (1985a, 1985b) discovered that Scenedesmus cells when immobilized using 
k-carrageenan were capable of bioaccumulating at same rates as that of free micro-
algal cells. There are numerous advantages related to using the immobilized living 
cells as compared to suspended cells. Immobilized microalgal cells on suitable 

Table 2.3 Different biotechnological strategies used for improvement of phycoremediation

Biotechnological 
strategy

Microalgal sp. 
used Approach used References

Immobilized 
microalgal cells

Phormidium 
laminosum

Polymer foam was used as matrix 
for immobilization of microalgal 
cells

Sawayama 
et al. (1998)

Hyperconcentrated 
cultures

Scenedesmus 
obliquus

Algal biomass greater than 1.5 g/L. 
more biomass can sequester more 
carbon and thus result in energy- 
generating process along with 
wastewater treatment

Chevalier and 
De La Noüe 
(1985a, b)

Microalgal fixed 
biofilm

Enterobacter 
cloacae DT-1

Natural biofilm # 52 was used as 
feedstock for bioenergy production

Miranda et al. 
(2017)

Bacterial-algal 
ggconsortium

Chlorella sp. 
and bacterial sp.

Bacteria is known for efficient 
remediation of wastewater, and 
algal cells can be used for 
production of value-added 
compounds and energy production

Foladori et al. 
(2018)

Photobioreactors Dunaliella 
salina and 
Chlorella sp.

Photosequencing batch reactor has 
been developed
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support are advantageous as cell retention time increases in the reactor (Travieso 
et al. 1992). Polymer coated form of Phormidium laminosum removes nitrate com-
ponents up to 90% in a continuous-flow reactor (De la Noüe et al. 1990; Garbisu 
et al. 1991; Travieso et al. 1992; Sawayama et al. 1998). Sawayama et al. (1998) 
have reported that hollow fiber-immobilized cyanobacterial systems are easy to 
construct and immobilization does not take a long time. Markov et al. (1995) have 
observed that removal of inorganic nutrients from wastewater can be improved by 
immobilizing cyanobacteria on hollow fibers and hydrogen production was 
increased. In a similar study on direct generation of electricity using cyanobacterial 
species Mastigocladus and Phormidium immobilized on suitable matrix which has 
improved the process.

2.8.2  Hyperconcentrated Cultures

Hyperconcentrated cultures have also been employed for wastewater effluent reme-
diation in which high algal biomass >1.5 g/L. Chitosan has been used for immobi-
lizing algae using flocculent (Lavoie and De la Noüe 1983; Morales et al. 1985), 
whereas cell concentrations of up to 1.9  g/L dry weight have been obtained for 
Oscillatoria sp. grown on sewage sludge (Hashimoto and Furukawa 1989). Studies 
on hyperconcentrated cultures are very limited, and more work should be done to 
strengthen the work.

2.8.3  Genetic Engineering

Microalgae consist of characteristics which are helpful for using it for phytoreme-
diation of wastewater, but still no one microalga is the most efficient one. 
Biotechnology can help in improving the bioremediation efficiency of microalgal 
cells by inserting the gene of interest in target cells (Guihéneuf et  al. 2016). 
Mutagenesis has also been used for improving the microalgal cells. Selective muta-
genesis can be performed using various physical and chemical mutagens. The 
genetically modified microalgal cells can be used to enhance the production of valu-
able products (Hlavova et  al. 2015). Moreover, for the development of suitable 
genetically engineered algal strains capable of effective degradation of nitrogen and 
phosphorus, genome databases like NCBI and GenBank can be used for selection of 
suitable genes and data mining approach (NCBI directory 1995).

2.9  Microalgal-Bacterial Aggregate System for Wastewater 
Treatment

Different microorganisms can be complexed and used as aggregates for wastewater 
treatment. For example, microalgal-bacterial aggregates have been employed for 
wastewater treatment. Microalgal-bacterial consortium can be used due to synergistic 
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effect in which microalga provides oxygen for the process and bacteria utilizes nitro-
gen due to nitrification-denitrification. Major problems associated with such aggre-
gates are poor settlement of algal biomass and harvesting problem (Bansal et  al. 
2018). However, different conditions should be optimized and evaluated for effective 
wastewater treatment, and economic feasibility of the process can be determined 
(Quijano et al. 2017). In a similar study, Filadori and coworkers (2018) found enhanced 
nitrogen removal using energy efficient microalgal-bacterial consortium on real 
municipal wastewater. Photosequencing batch reactor (PSBR) has been developed for 
the removal of nitrogen. However, various kinetic characteristics should be evaluated, 
and mass balance analysis should be performed to improve the process further.

2.10  Development of Photobioreactors

Microalgal cells can be produced on a large scale for employing them in different 
applications such as bioremediation processes and bioconversion of biomass into 
valuable products and bioactive compounds (Gupta et al. 2015). A large number of 
efficient photobioreactors have been proposed that are very advantageous for mass 
cultivation of algae (Ugwu et al. 2008). Photobioreactor is a reactor with facility for 
light so as to grow photosynthetic microorganisms such as microalgae. Microalgal 
cultivation needs photobioreactor for different purposes. For generating high-value- 
added products, axenic cultivation of microalgae is needed. Until now, different 
types of PBRs have been invented and produced for algae cultivation during the past 
decades, and some of them have achieved large-scale commercial production (Singh 
and Sharma 2012; Fernández et al. 2013; Gupta et al. 2015). Both types of photo-
bioreactors (open and closed ones) can be used for production of valuable products. 
Open bioreactors have been preferred due to limited control of physical and chemi-
cal conditions such as water, temperature, light, and pH. However, closed bioreactor 
can be used for large-scale production, but major limitation is less light and photo-
synthetic activity (Bansal et al. 2018).

Microalgal cultivation has been studied for over 70 years. Large-scale microalgal 
cultivation was firstly raised by the research of Carnegie Institute in 1952 (Burlew 
1953). To deal with problems encountered in open system, closed vessels have been 
developed to achieve a better yield of microalgae biomass, which does not allow 
direct mass transfer between culture media and the atmosphere and is able to pro-
vide a controllable environment such as light, CO2, temperature, and nutrients 
(Vasumathi et al. 2012; Wang et al. 2014). Closed photobioreactor can be used for 
production of various valuable products which can be used in biopharmaceuticals, 
cosmetics, human health, and biofuels which are produced from microalgae that 
became more and more important; therefore, the development of suitable and sus-
tainable closed PBRs has a great potential. The current common closed PBRs gen-
erally include flat panel, vertical tube (bubble column and airlift), horizontal tube, 
stirred tank, and their modified configurations (Han et al. 2017). Most commonly 
used closed bioreactors for phycoremediation of wastewater are suspended system 
and fixed systems (Hoffman 2002).
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Membrane bioreactors (MBR) are the most popular and an effective wastewater 
treatment technology used in the water treatment area. For the traditional PBR such 
as the flat bioreactor, microalgae can be easily washed out of the bioreactor. The 
membrane has a well-known function of excellent micro-size particle separation. 
Hence, applying membranes containing microalgae to treat wastewater allows 
decoupling the dilution rate (related to HRT) and biomass retention time (MRT). 
MBR was applied in the microalgae wastewater treatment processing, called micro-
algae MBR (MMBR) (Han et al. 2017).

2.11  Applications of Phycoremediation in Wastewater 
Treatment

Algae can be used in wastewater treatment for a range of purposes (Fig. 2.3) which 
are beneficial for the environment as well as for producing valuable products. Some 
of the applications of wastewater treatment by microalgae are given below:

2.11.1  Microalgae in Wastewater Treatment

2.11.1.1  Removal of Nutrients
Microalgae can be efficiently used to remediate the nutrients present in wastewater. 
Major nutrient is nitrogen which contributes to 10% of biomass and is the second 
most important nutrient to microalgal cells (Becker 1994). Nitrogen can be mainly 
present as ammonium ions and nitrate ions which can be easily accumulated by 
microalgal cells (Oliver and Ganf 2000). However, cyanobacteria can assimilate 
various amino acids such as arginine, glutamine, and asparagine and thus can fix 
nitrogen (Bhaya et al. 2000). Several species of microalgae can utilize excess of 
nitrogen. Phosphorus is the next significant macronutrient which can be utilized by 
algae in form of orthophosphate. Phosphates can be utilized by phosphatases and 
stored within the microalgal cells in polyphosphate granules which is known as 
assimilation. Thus, wastewater containing high amounts of phosphorous can be 
treated by using microalgal cultures (Fogg 1975; Oliver and Ganf 2000).

Moreover, microalgae can be efficiently used for tertiary and quaternary treat-
ments as it can easily take up major nutrients for its growth.

2.11.1.2  Reduction of Biological and Chemical Oxygen Demand 
(BOD/COD)

Algae are more efficient carbon fixer as well as scavenge excess nutrients at effec-
tive cost. It can relieve the biological oxygen demand of wastewater by oxygen 
produced by photosynthetic process (Laliberte et al. 1994). Microalgae are consid-
ered to be better for remediation process because it results in less toxic waste as well 
as are nonpathogenic. Algae can remediate the wastewater by the use of enzymes 
for conversion and degradation of pollutants (Oswald 1988). More recalcitrant met-
als and xenobiotic compounds can be remediated by algal metabolism. Many 
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researchers have studied microalgae as possible solution for environmental prob-
lems (Yoshida et al. 2006). The growth of algal cells in natural waters makes it fit 
for human consumption. Important algae species which can be employed for waste-
water treatment are Chlorella, Scenedesmus, Synechocystis, Gloeocapsa, 
Chroococcus, Anabaena, Lyngbya, Oscillatoria, and Spirulina (Palmer 1974).

However, due to excess BOD values of wastewater, the dissolved oxygen can be 
depleted which results in anaerobiosis and thus has adverse effect on aquatic life. 
Hence, its removal is necessary. Colak and Kaya (1988) have found that possibili-
ties of biological wastewater treatment by algae eliminated BOD and COD by 
68.4% and 67.2%, respectively.

2.11.1.3  Removal of Coliform Bacteria
Microalgae can result in scanty growth of fecal coliforms (FC) due to less availabil-
ity of dissolved oxygen in wastewater. This affects the growth of coliforms. Most of 
the coliform bacteria are responsible for pathogenic outbreaks which make water 

Fig. 2.3 Applications of microalgae for wastewater treatment and production of valuable 
compounds
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unfit for drinking purposes. The efficiency of microalgae for bioremediation is 
decided on the basis of coliforms it removes (Sebastian and Nair 1984).

In a study carried out by Curtis et al. (1992), different necessary conditions have 
been checked out for growth of coliforms in the wastewater. Sunlight can damage 
fecal coliform by depleting the oxygen concentration. This depletion occurs in the 
presence of higher pH range which is usually greater than pH 8.5 (Colley Davies 
et al. 2000). Moreover, pH along with oxygen gives rise to photooxidation process 
responsible for killing most of fecal coliforms (Maynard et al. 1999). Major signifi-
cant factors have been found to be increased pH and oxygenation (Van der Steen 
et al. 2000). Ansa et al. (2011) have observed that simulation of algal cells in lake 
conditions can effectively reduce the coliforms.

2.11.1.4  Heavy Metal Removal
Microalgal cells possess molecular mechanism which can differentiate between 
normal and heavy metals (Vela et al. 2006). Moreover, they can be used for easy 
recovery of heavy metals using different desorption chemicals (Figueira et al. 1999; 
Rajamani et al. 2007). Algal cells have higher affinity for metals which makes them 
more suitable for metal removal from wastewater (De Bashan and Bashan 2010). In 
particular, the mechanism by which microorganism removes metals from solution 
includes:

 1. Extracellular accumulation/precipitation.
 2. Cell-surface sorption or complexation by live or dead biomass.
 3. Intracellular accumulation that requires microbial activity (Cossich et al. 2002).

Mechanism for biosorption involves the entrapment of heavy metals in the cel-
lular structure and subsequent absorption on binding sites of cells. This method is 
also termed as “biosorption” or “passive uptake” (Malik 2004). Heavy metals can 
interfere with the metabolic processes of cell and thus cause bioaccumulation or 
active uptake.

2.12  Formation of Valuable Products

Extensive use of fossil fuels due to rapid industrialization has resulted in increase in 
global warming, thereby changing climatic conditions. There is aroused interest in 
utilizing microalgal cells for efficient alternative energy sources known as biofuels. 
Microalgae are thus extensively used for the production of biomass which in turn 
can be used for biofuel production. Microalgae have several advantages for biofuel 
production as these cells have short generation time, rapid growth, high lipid con-
tent, and minimal land requirements. Moreover, wastewater stream can be utilized 
as nutrient feed for these microalgal cells for conversion of biomass to bioenergy.
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2.12.1  Biomass Production

Microalgal cells can be easily grown using the wastewater stream as they contain 
various constituents that serve as nutrients for the cells. Biomass thus produced can 
be used in a number of beneficial ways. As biomass can be used for accumulation of 
heavy metals that are toxic and after extraction of lipid left out, biomass can be used 
for animal feed or for increasing fertility of soil (Pittman et al. 2011). The biomass 
can be utilized for production of biofuels and can be converted into many valuable 
products such as biofertilizers, biofilms, and biopolymers, and recent report is on 
using them for production of electricity (Gouveia et al. 2016).

2.12.2  Bioethanol Production

Generally, two methods are employed for the production of bioethanol from micro-
algal biomass, namely, fermentation (biochemical process) and gasification (Singh 
and Gu 2010). Microalgae are rich in carbohydrates and proteins which can be used 
as carbon sources for fermentation, so microalgae can replace the requirement of 
food crops. This provides the scope for utilization of microalgae in the third- 
generation biofuel production, as using the food crops will cause the scarcity of the 
same. Moreover, there is a temporary prohibition on the use of food crops for the 
production of bioethanol due to food security and availability of agricultural land 
which can be easily resolved using microalgal cells. Therefore, microalgae are gen-
erating a lot of interest as biomass feedstock for bioethanol production (Harun et al. 
2010). Fermentation of the microalgal biomass is catalyzed by microbes such as 
bacteria, yeast, and fungi, and the main by-products are CO2 and water. The spent 
biomass after fermentation is used for anaerobic digestion process for methane pro-
duction so in essence all the organic matter is accounted for (Singh and Gu 2010; 
Harun et al. 2010). Bioethanol production using microalgal cells is still in initial 
stage, and more studies are required to evaluate the utilization of microalgae for 
conversion of biomass to bioethanol (Harun et al. 2010).

2.12.3  Biomethane Production

The interest in biomethane production emanates from the fact that biomethane fer-
mentation technology produces valuable products such as biogas (Singh and Gu 
2010; Harun et al. 2010). Biogas is a mixture of methane (55–75%) and CO2 (25–
45%) and is produced via anaerobic digestion of microalgal biomass by anaerobic 
microorganisms (Singh and Gu 2010; Harun et al. 2010). Biomethane can be used 
as fuel gas and can also be used to generate electricity, while the spent biomass is 
used to make biofertilizers (Singh and Gu 2010). Biogas production in turn depends 
on several factors such as temperature, pH, organic load, and retention time in reac-
tors (Harun et  al. 2010). Though microalgae hold enormous potential for biogas 
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production, more studies are needed to strengthen the possibilities of using them on 
commercial scale for biogas production (Singh and Gu 2010).

2.12.4  Biochar Production

Biomass obtained from microalgal cells can be used as important alternative of 
energy due to its high efficiency to fix carbon dioxide and easy availability that can 
be very useful in present scenario of energy crisis around the globe. Algal biomass 
can be converted into biochar that involves slow pyrolysis to prepare a carbon-rich 
product used for increasing alkalinity of acidic soils. Moreover, high concentrations 
of nitrogen and phosphorus give additional advantage to increase fertility of soil for 
agriculture (Chaiwong et al. 2013). In some previous studies, this biochar due to the 
presence of functional groups and inorganic elements helps it to be used as absor-
bent for wastewater remediation (Yu et  al. 2017). Functional groups present on 
microalgal biochar are responsible for better biosorption for various organic mole-
cules. Biochar has potential to be used for increasing fertility and alkalinity of soil 
for agricultural processes.

2.12.5  Microalgae in Bioelectrochemical Systems

Due to huge energy demands, there is a constant need to find alternative energy 
resources which are clean, renewable, and cost-effective as well as environmentally 
friendly. Microbial fuel cells (MFCs) are such energy-generating systems that fulfill 
all the above characteristics. Microbial fuel cells are based on important property of 
microalgal cells to fix atmospheric carbon dioxide and produce oxygen by photo-
synthesis that can enhance the cathodic reaction (Saba et al. 2017). These microal-
gal cells can also act as efficient electron acceptors and can behave as electron 
acceptors at cathodic end and electron donors at anodic end. They can be used for 
removal of various organic and inorganic constituents from wastewater (Gude et al. 
2013; Wu et al. 2014; Commault et al. 2014). Baicha et al. (2016) reviewed micro-
algal cells as MFCs for bioproduction of electricity and concluded that carbon diox-
ide can play a significant role in biomass cultivation. Along with MFCs, microalgal 
cells can be also employed as microbial desalination cells (MDCs) and bioelectro-
chemical systems (BES). In another study, Saba et  al. (2017) have reviewed the 
effect of several parameters on energy production from MFCs.

The major limitation in MFC is the low current flow; however, considerable 
amount of energy is generated (Otadi et al. 2011). Photosynthetic activity of micro-
algal cells can be used to generate electricity like bioelectrochemical system. Thus, 
solar energy can be converted to electricity using microalgal cells. These play a 
significant role in power generation and can consume the light at night generated in 
daylight (Soni et al. 2016).
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2.12.6  Microalgal Biofilms

Biofilms are produced when microalgal cells are covered by surface molecules such 
as exopolysaccharides. Algal biofilms are films which are generated by colonization 
of microalgal cells on illuminated surfaces in the presence of humid conditions and 
nutrients (Leadbeater and Callow 1992; Jarvie et al. 2002). Algal biofilms can adapt 
the change in environment and survive all the adverse conditions as single cell or in 
clumps (Menicucci 2010). Microalgal cells can be used in a wide number of appli-
cations ranging from agriculture, alternative energy sources, and personal care 
products and nutraceuticals (Pulz and Gross 2004; Mata et al. 2010). Algal biofilm 
is used for removing water impurities; thus, algae are significant due to nutrient 
removal from wastewater due to their enhanced nitrogen (N) and phosphorous (P) 
metabolism ability. Algal biofilms can be employed in wastewater treatment as well. 
It avoids expensive harvesting techniques used in suspension cultivation like cen-
trifugation and flocculation (Gross et al. 2016).

2.13  Other Applications of Microalgae

2.13.1  Production of Secondary Metabolites

Microalgae share some of the common properties like plants, and thus they can be 
used for production of some important secondary metabolites, viz., carotenoids, 
sterols, proteins, lectins, oils, unsaturated fatty acids, antioxidants, fibers, and amino 
acids. Their potential can be explored for commercial production (Cardozo et al. 
2007a, b; Rosenberg et al. 2008; Ioannou and Roussis 2009; Ibañez et al. 2012).

2.13.2  Sulfated Polysaccharides

Marine algae can be used as source for sulfated polysaccharides (SPs) with so many 
structural variants (Wijesekara et al. 2011; Zhang et al. 2012). But most common 
sulfated polysaccharides are fucoidan and laminarins derived from brown algae, 
carrageenan from red algae, and ulvan obtained from green algae (Li and Kim 
2011). Some of previous studies have been carried out with objective of using these 
sulfated polysaccharides in food, feed, pharmaceutical, and beauty industry (Li and 
Kim 2011). Some of the studies have confirmed the role of sulfated polysaccharides 
as antiviral compounds against enveloped viruses (Baba et  al. 1998; Zhu et  al. 
2003). In a similar study, anti-HIV activity has been reported in microalgal and 
cyanobacterial extracts. Moreover, the antiviral activity depends on the molecular 
weight as well as grade of sulfation in the compounds (Witvrouw and De Clercq 
1997). Antiviral compounds were extracted with anti-HIV activities from Fucus 
vesiculosus. It showed water solubility and high anti-HIV activity (Béress et  al. 
1993). Likewise, different algae Phaeophyta, Rhodophyta, and Chlorophyta have 
been explored for antiviral activity (Zhu et al. 2003).
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2.13.3  Proteins and Amino Acids

Rhodophyta (red algae) have enormous amount of proteins as compared to other 
types of microalgae (Mendis and Kim 2011). For instance, phycobiliproteins (PBPs) 
are generally present in red algae and cyanobacteria (Sekar and Chandramohan 
2008). PBPs possess high solubility, stability, and fluorescent properties (Su et al. 
2010). These can perform several important functions such as light harvesting reac-
tions in cyanobacteria and formation of cryptomonads and cyanelles (Glazer 1994). 
There are extensive reports of previous studies on PBPs, and they are known to 
contain medicinal properties such as antitumor, anti-inflammatory, serum lipid- 
reducing properties, and antiviral properties. Moreover, these can be utilized for 
adsorption of pollutants from the body (Romay et al. 2003; Sekar and Chandramohan 
2008).

2.13.4  PHA and PHB Production

Novel compounds such as sustainable polymers like PHAs (polyhydroxyalkano-
ates) and PHBs (polyhydroxybutyrates) can also be produced from algal biomass 
that is significantly used for production of bioplastics. These polymers can be used 
successfully in nanotechnology as efficient nanomaterials and scaffolds in tissue 
engineering (Verma et al. 2019; Bansal et al. 2018).

2.14  Conclusion and Future Prospects

It can be concluded that phycoremediation is one of the safe methods that can be 
used for treating wastewater. It not only produces the clean water but provides vari-
ous valuable products as well as better alternative energy sources such as biofuels. 
Though there are numerous studies on using microalgae in production of these valu-
able products, still many challenges have been encountered such as land and space 
requirements, algal contamination with bacterial cells, eutrophication, etc. These 
problems can be resolved by using photobioreactor which is very efficient novel 
biotechnological approach. As one of the major problems is availability of clean 
water for human use, microalgal technology can help humanity in a great way.

Microalgae can be effectively employed for removal of metal ions and can be 
used as recombinant systems for protein expression for higher plants and animals 
(Hempel et al. 2011). In some of previous works, Chlamydomonas reinhardtii and 
the diatom Phaeodactylum tricornutum have been utilized as model expression sys-
tems. They can also be used for preparation of nanoparticles using metal oxides. 
Microalgae can reduce the pollutant load in environment and avoid the problems 
that can affect human health care (Fawcett et al. 2017). Moreover, these cells can be 
efficiently used for alternative energy sources and production of biofuels. Unlike 
petroleum-based fuels like diesel and petrol, biofuels are rapidly biodegradable. 
Microalgae can also serve as clean electricity producers for bioenergy production 
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(Clarens et al. 2011). Along with so many wonderful properties, these cells can be 
used for production of some of novel compounds such as PHA and PHB which has 
revolutionized the tissue engineering approaches in human health care.
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Abstract
Discharging of industrial effluents directly into water bodies is a global concern 
for aquatic and terrestrial biota. Various methods like physical and chemical have 
been implemented so far, but these existing technologies are sometimes restricted 
of either technical or economic constraints or are expensive and unsustainable 
approaches. Bioremediation offers a promising means to reclaim such 
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 contaminated water bodies in an economical and ecofriendly way. It is an emerg-
ing technology and uses living organisms to manage or remediate polluted soils 
or wastewater. It is defined as the elimination, attenuation, or transformation of 
polluting or contaminating substances by the use of biological processes. In this 
book chapter, we will review the potent role of bacterial species to confer reme-
diation of various pollutants in wastewater. Efforts have been made to summarize 
the new aspects of bioremediation in mitigating the effects of various hazardous 
contaminants from wastewater and their limitations.

Keywords
Wastewater · Bioremediation · Microbial population · End products

3.1  Introduction

Over the past few decades, water pollution has become a major environmental prob-
lem worldwide and has attained considerable attention (Wang and Yang 2016). The 
rapid growth of population, urbanization, automation, and mining are factors which 
lead to widespread water pollution (Singh et  al. 2017, 2018). Water pollution is 
increasing day by day because of the discharge of chemical wastes from industries 
and domestic wastes from home into drains (Florescu et  al. 2010). Additionally, 
regulated and unregulated waste disposal, accidental and process waste spillage, 
mining and smelting of metalliferous ores, and usage of sewage sludge in agricul-
tural field are few factors which are responsible for discharging pollutants into clean 
water bodies sites as leachate, which results in the contamination of our ecosystem 
(Ogbonna et al. 2006; Naruka 2012).

Due to rapid industrialization, the amount of toxic heavy metals in water has 
elevated and cause physiological, genetic, and ecological problems (Jan et al. 2015). 
Entering of heavy metals in water has affected the seed mortality and hindered the 
standard revegetation scheme. As, Cr, Cu, Cd, Pb, and Hg are the heavy metals 
which are being discharged by agricultural, domestic, and industrial effluents, and 
as a result, they are contaminating groundwater, freshwater sources, and other water 
bodies (Kaur et al. 2018; Kumar et al. 2016, 2017; Singh et al. 2016). The ingestion 
of these toxic metals by drinking contaminated water and eating contaminated food 
can get start accumulating in human and animal, which can further lead to severe 
consequences (Wu et al. 2014). Metals like Cd, Cu, Pb and Zn are highly mobile, 
soluble, and predominantly available in nature, especially in water bodies, and can 
cause severe damage to the environment as well as human health (Barakat 2011).

Heavy metals behold the major part of inorganic contaminants and present differ-
ent challenges than organic pollutants (Mishra et al. 2016; Kumar et al. 2015a, b). 
Even metals are necessarily required in trace amount by both animals and plants, but 
at high concentration, they become toxic and induce oxidative stress due to free radi-
cal formation (Bhat and Khan 2011). Another reason which makes these heavy metals 
toxic is that they either replace the valuable metal from the pigments or disrupt the 
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functional enzyme (Kumar et al. 2013, 2014a, b). Thus, contamination of heavy met-
als makes the land barren for plant growth and disturbs the microbial biodiversity 
(Ayangbenro and Babalola 2017). Therefore, a regulatory mechanism is required to 
reduce the release of these pollutants in the soil; however reported approaches are still 
not sufficient to keep the regular checkup of contaminants (Tangahu et al. 2011).

Biological function and chemical properties of heavy metals help in complex 
group formation, whereas metal toxicity varies according to their concentration 
(Chibuike and Obiora 2014). Many of them like Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn 
are highly hazardous in both soluble and elemental form. Even the trace amount of 
these heavy metals in the environment can cause a severe problem in living being 
(Singh et al. 2011). Bioaccumulation of these heavy metals in the food chain has 
become a significant threat to the health of humans (Agrawal et al. 2007). The route 
by which these toxic elements enter in the human body is through ingestion of con-
taminated food or water. As we know, heavy metals can be destroyed but can be 
converted into less toxic by changing its oxidation state (Jaishankar et al. 2014).

The number of anthropogenic activities in the coastal region has led to the substan-
tial discharge of toxic chemical and heavy metals within industrial effluent into coastal 
water bodies (Sharifuzzaman et al. 2016). Liberation of these hazardous substances in 
the environment induces different toxic effects via bioaccumulation or biomagnifica-
tion (Yu et al. 2013; Genuis and Kelln 2015). The soil has become the conventional 
place for the disposal of these heavy metals, which treatment has become the major 
challenge (Chibuike and Obiora 2014). At present, various conventional remediation 
procedures developed are not ecofriendly but are expensive (Balakrishnan and Velu 
2015). Naturally these heavy metals are present in complex or bound form like metal 
sulfate, metal chloride, and metal oxide in the soil (Wuana and Okieimen 2011). 
Various human activities like mining, purification of heavy metals, production of steel 
and other metals, burning of waste material, discharge of industrial effluents, and 
acute use of chemicals fertilizer, pesticide and sewage water also contaminates farm-
ing practices thus affecting ecosystem (Dixit et al. 2015). Table 3.1 enlists the organic 
pollutants present in domestic, hospital and industrial wastes.

3.2  Wastewater Pollution Sources

Wastewater is an intricate blend of both inorganic and organic materials and is sub-
divided into sewage and industrial wastewater (Naidoo and Olaniran 2014), and its 
sources were depicted in Fig. 3.1. Wastewaters comprise of water in which solids 
exist as settleable particles, scattered as colloids, which are materials that don’t settle 
promptly, or solids immersed in water (Shon et al. 2006). Sewage wastewater origi-
nates from households and mainly comprises of water along with small concentra-
tions of dissolved organic and inorganic solids (Praveen et  al. 2016). Organic 
contaminants mostly include lignin, proteins, synthetic detergents, soaps, and other 
organic chemicals (Oller et  al. 2011). Sewage wastewater is also reported for the 
presence of inorganic substances such as zinc, mercury, lead, chromium, copper, etc., 
which are likely to affect both aquatic and terrestrial biota (Westerhoff et al. 2015).

3 Microbial Remediation for Wastewater Treatment



60

Industrial wastewater is produced during cleaning activities or manufacturing 
process in the industrial sector. Such industries discharge a large amount of chro-
mium, zinc, nickel, cadmium, titanium, iron, and other compounds which are highly 
toxic and even carcinogenic (Hanchang 2009; Bazrafshan et al. 2015). Wastewater 

Table 3.1 Various organic pollutants in wastewaters

Wastewater 
source Organic pollutants References
Hospital 
wastewater

Methylene chloride, xylene, octadecanoic acid, butylated 
hydroxyl toluene, 1-tetradecene

Wyasu and Kure 
(2012)

Domestic 
wastewater

Steroid hormones (e.g., 17ß-estradiol, estrone, estriol, 
progesterone, testosterone, 17α-ethinylestradiol, 
diethylstilbestrol), detergent residues (e.g., linear alkyl 
benzene sulfonates, alkylphenols), antimicrobial agents 
(e.g., triclosan, TCS), musk fragrances, sunscreens, 
brominated flame retardants, plasticizers, 
N-nitrosodimethylamine, tryptophan-like C2 compound

Shareef et al. 
(2008)

Textile industry Volatile organic compounds, halogenated anilines, 
benzenes, anthraquinones, alkylated phenols, phthalic 
acid esters

Dsikowitzky 
and 
Schwarzbauer 
(2013)

Tanneries Naphthalene sulfonates, benzene sulfonates, 
anthraquinone sulfonates, 6-acylamino-3-amino-
naphthalene- 2-sulfonic acid, N-(bis-hydroxymethyl- 
phenyl)-acetate, aromatic amines, anilines, nonylphenol, 
ethoxylates, diethyl phthalate, bis(ethylhexyl) phthalate, 
carboxylated polyethylene glycols, cyclohexane, 
aromatic carboxylic acids, phenols, indoles, ethoxylates

Dsikowitzky 
and 
Schwarzbauer 
(2013)

Petrochemical 
industries

Alkylated benzenes, indane, alkylated derivatives of 
indane, alkylated naphthalene, quinoline derivatives, 
xylene, toluene, benzene, indoline, acenaphthene, 
acenaphthylene, fluorene, styrene, methyl styrene, 
phenol, nitrobenzene, phthalic acid ester derivatives 
(Dsikowitzky and Schwarzbauer 2013)

Dsikowitzky 
and 
Schwarzbauer 
(2013)

Paper and pulp 
industry

Resin acids, lignin, terpene, catechol, 
hydroxybenzaldehyde, bisphenol A, nonylphenol ethoxy 
carboxylates, acetyloxy trimethyl bicycloheptanedione, 
acetylmorpholine

Dsikowitzky 
and 
Schwarzbauer 
(2013)

Rubber and tire 
production

Benzothiazoles, aniline derivatives, phthalic ester 
derivatives, diphenylamine, propyldiphenylamine, 
naphthalene, phenanthrene, pyrene, fluoranthene

Dsikowitzky 
and 
Schwarzbauer 
(2013)

Chemical 
production sites

Nitrogenous heterocyclic compounds, sulfur compounds, 
chlorinated compounds, nitroaromatic compounds, alkyl 
phosphates, trimethyl pentanediol-iso-butyrate, 
hexathiepene, naphthalene sulfonates, benzene sulfonates

Dsikowitzky 
and 
Schwarzbauer 
(2013)

Pharmaceutical 
industry

Antihistamine cimetidine, bromazepam, diclofenac, 
metharbital, cortisol, cortisone, dexamethasone, 
prednisolone

Dsikowitzky 
and 
Schwarzbauer 
(2013)
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generated from tannery and pharmaceutical industries has a very poor degradability 
nature because of high biological oxygen demand (BOD) and chemical oxygen 
demand (COD) (Kavitha et al. 2012).

The lack of wastewater treatment facilities forces large parts of the developing 
and underdeveloped countries to discharge openly into water bodies such as rivers, 
streams, and lakes (Cashman et  al. 2014). Various diseases and health problems 
have often been caused by these activities and thus destroy life forms of aquatic 
ecosystems. The presence of such components (both organic and inorganic) in 
wastewater poses a worldwide challenge to treat wastewater (Akpor et al. 2014). 
However, various physical and chemical treatment processes are implemented but 
are costly, generate wastewater solids (sludge), and are further disposed of in an 
inappropriate manner (Balakrishnan and Velu 2015). Sewage sludge is sometimes 
deprived of heavy metals and mostly contains carbon, nitrogen, and nutrients, so it 
can be used as beneficial manure/fertilizer for plant growth, improving its soil struc-
tures, etc. But industrial sludge comprises of high concentration of toxic chemicals 
or heavy metals which became an increasing problem for treatment plants (Mtshali 
et al. 2014).

Both of the physical and chemical approaches had certain disadvantages making 
it a challenging task in terms of ecological and economic terms. Therefore, the first 

Fig. 3.1 Types of wastewater, their sources, and chemical components present in it
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step to treat wastewater should be the evaluation of ecofriendly and possible 
approaches, and this can be done by checking the desired purification rate and tech-
nical feasibility (Bansal et al. 2018).

In bioremediation living organisms are used to manage or remediate polluted 
soils or wastewater into less toxic forms. It is the deletion, reduction, or alteration of 
polluting or contaminating substances by means of biological processes (Ojuederie 
and Babalola 2017).

For bioremediation, a naturally occurring bacterial and fungi or plants are used 
to degrade or detoxify substances hazardous to human health and the environment. 
The potency of microorganisms for this process depends on the existence of a 
microbial population capable of degrading the pollutants, the availability of con-
taminants to the microbial population, and the environmental factors (Chowdhury 
et al. 2012).

3.3  Bioremediation of Wastewater

Several studies and reports on the bioremediation of contaminants in wastewater by 
different bacteria have been documented. A number of microbial populations are 
recognized worldwide and depend exclusively on the contaminants present in the 
wastewater (Silva-Bedoya et al. 2016). Organic contaminants present in wastewater 
are harmful because of their carcinogenic nature and acute toxicity, throughout the 
world. Hence, wastewater treatment, with low-cost investments, is a must to solve 
such problems (Zheng et al. 2013). The ability of nature and natural conditions to 
degrade a substance chemically is termed as biodegradation. Biodegradable pollut-
ants are generally from plants, animals, and various substances from different living 
organisms (Joutey et al. 2013; Yavari et al. 2015). Activated sludge process helps 
achieve almost 80% removal of biodegradable matter from the polluted water 
(Nagwekar 2014). Nature has beforehand gifted these water bodies with microor-
ganisms capable of degrading such organic wastes up to some levels. But, increased 
organic wastes in water demand for higher oxygen for such microorganisms which 
diminish the dissolved oxygen in the water, leading to adverse effects on other 
aquatic organisms and the overall degradation of water quality (Abdel-Raouf et al. 
2012). Utilization of microorganisms like bacteria, fungi, algae, protozoa, and roti-
fers in wastewater treatment plants for degradation of organic pollutants present in 
wastewater is termed “microbial remediation.” Proper maintenance of conditions 
like pH, dissolved oxygen, and nutrients for the selected microorganisms result in 
excellent outcomes, as depicted in Table 3.2 (Akpor et al. 2014).

Physical, chemical, and biological processes are the options to degrade organic 
pollutants. Since the end products of physical and chemical processes are toxic to 
the environment, bioremediation stands out as an ecofriendly and cost-effective 
option (Mani and Kumar 2014). Plants, microorganisms, and useful biomolecules 
produced by them, e.g., enzymes, are used in biodegradation (Ratnakar et al. 2016). 
Adsorption being a cost-effective method for such problems, and since the require-
ments are universally available and not expensive, serves as a promising solution for 
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wastewater treatment. Different physical forces like Van der Waals forces, hydro-
phobicity, hydrogen bonds, polarity, steric and dipole interactions, etc. controlled 
the adsorption process. Since the degree of liquid packing in pores determines the 
extent of adsorption, the adsorbent surface and adsorbate should have comparable 
pore size (Sabir 2015). Ali et al. (2012) studied the efficiency of household wastes, 
agricultural products, sea materials, soil and ore materials, metal oxides, and 
hydroxide waste as adsorbents in wastewater treatment methods. Through this 
study, they were successful in using these natural waste products as efficient adsor-
bents for the treatment of wastewater. Pollutants like polycyclic aromatic hydrocar-
bons, volatile organic compounds, trichloroethylene, trichloroethane cis-DCE 
(cis-dichloroethylene), cis-DCE vinyl chloride, hexavalent chromium, cadmium, 
polycyclic aromatic hydrocarbons, pentachlorophenol, benzo(a)pyrene, polychloro-
ethene, and polychlorinated biphenyls are biodegradable (Megharaj et  al. 2011). 
Most of the biodegradable organic matter is readily degraded by biological treat-
ment processes (Fig. 3.2). But non-biodegradable pollutants may require processes 
like chemical oxidation and ozonation to convert the non-biodegradable matter into 
biodegradable by-products like aldehydes, ketones, organic acids, and other such 
small molecules (Van Leeuwen et  al. 2009). Applying ozone to activated sludge 
oxidizes synthetic organic compounds to biodegradable by-products, e.g., forma-
tion of biodegradable formic acid while ozonating methylene blue dye (Van 
Leeuwen et al. 2009; Wang et al. 2018). Bioremediation techniques have become 
the most popular method of degrading organic pollutants for wastewaters (Azubuike 
et al. 2016). Few examples are listed in Table 3.3.

Table 3.2 Microorganisms used for wastewater treatment (adopted from Akpor et al. 2014)

Microorganism Use in wastewater treatment
Bacteria Mainly aerobic bacteria are utilized to degrade organic pollutants in 

wastewater treatment
Fungi Enzymes produced by fungi are capable of degrading compounds not easily 

degraded by bacteria. Also, fungi produce proteins, organic acids, chitins, 
amylase, glucosamine, antimicrobial compounds, and various other 
metabolites to adapt in harsh conditions, enhancing their survival rates. They 
degrade the compounds by adsorption, chemisorption, chelation, and 
microprecipitation

Protozoa Ciliated protozoa, capable of growth on water surfaces and feeding on 
decaying vegetation and microbes, are a great help in purification and matter 
cycling

Rotifers These microscopic aquatic animals generally found in freshwater and moist 
soil are capable of stabilizing organic wastes, stimulating microfloral 
activities, decomposition, enhanced oxygen, and recycling mineral nutrients. 
They increase oxygen content in activated sludge

Algae Capable of assimilating nitrogen as nitrate, nitrite, and ammonium, microalgae 
also remove organic matter, xenobiotics, and metals in wastewater treatment 
systems. They can also be easily outcompeted by other microbes for essential 
nutrients
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3.4  Microbial Enzymes in Biodegradation

Microorganisms’ dwelling at extreme environments often produces catabolic 
enzymes to survive there and utilize the compounds available in the vicinity. A 
mixed culture offers higher enzyme production and biomass activities. Therefore 
the use of microorganisms and extracellular enzymes produced by them has gained 
popularity (Kumar et al. 2011). Enzymes immobilized on the glass and silica beads 
give even better results and produce compounds which can be easily biodegraded 
(Dhall et al. 2012; Ratnakar et al. 2016).

Possessing at least one polypeptide moiety, an enzyme can be a protein or a gly-
coprotein capable of degrading harmful, insoluble compounds into easily degrad-
able molecules with lowered environmental threat (Karigar and Rao 2011). 
Microbial enzymes capable of degrading organic pollutants present in wastewaters 
can be broadly classified into two main categories, viz., hydrolases and oxidoreduc-
tases (Ratnakar et al. 2016).

Fig. 3.2 Bioremediation cycle: general overview
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Table 3.3 Methods of degrading organic pollutants by use of microorganisms

Method Pollutant Microorganisms/compounds References
Biobarrier system
(Bioreactive 
permeable barrier)

Dieldrin It utilizes native 
microorganisms grown over 
solid particles as a catalyst

Cardona and 
Suarez (2010)

Microbial consortium 
treatment of water in 
a suspension form

Petroleum oil and 
phenol

Alcaligene odorans, B. subtilis, 
Corynebacterium propinquum, 
and Pseudomonas aeruginosa

Singh et al. 
(2013)

Immobilization 
methodology using 
the mixed bacterial 
consortium

Aliphatic and 
aromatic 
petroleum 
hydrocarbons

Bacillus brevis and 
Pseudomonas aeruginosa KH6

El-Borai et al. 
(2016)

Fungal biosorption Textile effluents Lyophilized biomass of 
Cunninghamella elegans 
(MUT2861)

Tigini et al. 
(2010)

Bioconsortium Toluene, 
O-xylene

Pseudomonas putida, Candida 
membranes, Penicillium sp.

Jecu et al. 
(2008)

Bioremediation Lipids Lipase producing Bacillus 
subtilis, Bacillus licheniformis, 
Bacillus amyloliquefaciens, 
Serratia marcescens, 
Pseudomonas aeruginosa, 
Staphylococcus aureus

Prasad and 
Manjunath 
(2011)

Enzymatic 
degradation

Proteinaceous 
wastes in tannery 
saline wastewater

Salt tolerant, alkaline protease 
producing P. aeruginosa

Sivaprakasam 
et al. (2011)

Bioaugmentation by 
sludge hammer 
bacteria

TOC (total 
organic carbon)

Bacillus subtilis, Brevibacillus 
laterosponus, Pseudomonas 
aeruginosa

Hesnawi et al. 
(2014)

Bacterial consortium COD, BOD, 
MLSS (mixed 
liquor suspended 
solids), TSS

Bacillus pumilus, 
Brevibacterium sp., 
Pseudomonas aeruginosa

Dhall et al. 
(2012)

Decolorization and 
detoxification using 
activated sludge

Dyes, additives, 
salts

Bjerkandera adusta MUT3060 Anastasi et al. 
(2011)

Bioremediation using 
fungi

Textile azo dyes White-rot fungi Marasmius and 
Trametes hirsuta with lignite 
xylite and lignite granules

Böhmer et al. 
(2010)

Sequencing batch 
reactor

Blue Bezaktiv 
S-GLD 150 dye

Microbial consortium ‘Bx’ Khouni et al. 
(2012)

Membrane 
bioreactor, 
cometabolic 
transformation

Ketoprofen, 
bezafibrate, 
naproxen, 
ibuprofen

Microbial metabolites:
3-(hydroxy-carboxy-methyl)-
hydratropic acid and 3-(keto- 
carboxymethyl)-hydratropic 
acid

Quintana et al. 
(2005)
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 1. Hydrolase enzymes like cellulase, hemicellulase, and glycosidase act on the 
chemical linkages in complex toxic pollutants and degrade them to simpler 
forms (de Lourdes Moreno et al. 2013).
 (a) Lipase: Lipids are present in the plant, animal, and microbial wastes, which 

are broken down by lipase enzymes that hydrolyze triacylglycerols to glyc-
erol and fatty acids. Bacteria and actinomycetes produce diverge lipases 
capable of esterification, alcoholysis, and aminolysis (Sharma et al. 2011).

 (b) Cellulase: Microbial cellulases are produced as cell-bound, extracellular, or 
cell envelope-associated and are capable of breaking down cellulose to sim-
pler reduced sugars. Cellulases are a combination of enzymes like endoglu-
canase, exoglucanase, and ß-glucosidase, which act together to hydrolyze 
cellulose (de Lourdes Moreno et al. 2013).

 (c) Protease: Wastes from industries like food, pharmaceuticals, leather, deter-
gent, fishery, and poultry contain proteins, which can be catalyzed by micro-
bial proteases. Bacterial proteases are exclusively used to hydrolyze waste 
proteins, and the degraded molecules are consumed by bacteria (Beena and 
Geevarghese 2010).

 2. Oxidoreductase enzymes are utilized to degrade xenobiotics, phenolic com-
pounds, and azo dyes. Since a fungus has a greater surface area to contact the 
pollutants and secretes enzymes, oxidoreductase producing fungus is employed 
to secrete ligninolytic enzymes like laccases, lignin peroxidase, and manganese 
peroxidase (Husain 2006).
 (a) Oxygenase: Oxygenase enzymes catalyze oxygenation of reduced substrates 

by transferring oxygen. They metabolize organic compounds by cleaving 
aromatic rings and by increasing the compounds’ water solubility. They also 
catalyze dehalogenation reactions of halogenated methanes, ethanes, and 
ethylenes. Bacterial mono- and dioxygenases are widely explored and uti-
lized (Yagi and Madsen 2009).

 (b) Monooxygenases: Monooxygenases are a versatile group of enzymes which 
catalyze oxidative reactions of alkanes, steroids, and fatty acids by incorpo-
rating single oxygen atoms in the substrate. Dehalogenation, desulfuriza-
tion, ammonification, denitrification, biotransformation, hydroxylation, and 
biodegradation of aromatic and aliphatic compounds are done by these 
enzymes (Chen et al. 2011).

 (c) Dioxygenases: They can catalyze oxygenation of a diverse range of sub-
strates including aromatic compounds and hence are widely utilized in envi-
ronmental remediation (Karigar and Rao 2011).

 (d) Laccases: Bacteria, fungi, insects, and plants produce laccases which oxi-
dize reduced phenolic and aromatic substrates. They can oxidize ortho- and 
para-diphenols, aminophenols, polyphenols, polyamines, lignin, aryl 
diamines, and phenolic and methoxy phenolic acids. These enzymes are also 
capable of decarboxylation and demethylation (Andualema and 
Gessesse 2012).

 (e) Peroxidases (hydrogen peroxide oxidoreductases): These heme and non- 
heme protein-containing enzymes catalyze the oxidation of lignin and phe-
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nolic compounds. They are categorized as lignin peroxidases, manganese 
peroxidases, and versatile peroxidases, based on their activity (Husain 2010).

3.5  Limitations of Bioremediation

Bioremediation utilizes microorganisms for degradation of hazardous compounds 
and other contaminants like POPs, PCB, PAH, etc. in soil or water (Othman et al. 
2011). But biodegradation also has its own limitations and shortcomings, some of 
which are discussed herein. Biodegradation is a time-consuming process which is 
applicable only to biodegradable compounds, Biodegradation processes are strictly 
bound to the maintenance of proper environmental conditions like temperature, pH, 
and physical interaction beween microbes and compounds. (Azubuike et  al. 
2016). Sometime the process of biodegradation remains incomplete which results in 
partially broken compounds of contaminants which get converted to even more 
toxic by-products (Boopathy 2000).

3.6  Conclusions

Naturally convenient methods of biodegradation have gained popularity nowadays, 
and these methods are being commercialized because of low investments and better 
results which are comparatively lesser harmful to the environment as compared to 
the other available chemical and physical processes. A wide range of bioremedia-
tion process has been developed for the treatment of hazardous organic wastes in 
water using natural and genetically modified microorganisms. Various microorgan-
isms are also genetically modified in the last few decades to be employed for the 
degradation of toxic organic pollutants present in the environment. Like any other 
treatment processes, biodegradation also has few limitations like partial degradation 
of organic wastes, production of toxic by-products, limited availability of chemicals 
to maintain the required environmental conditions for degradation, etc.

References

Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. 
Saudi J Biol Sci 19(3):257–275

Agrawal SB, Singh A, Sharma RK, Agrawal M (2007) Bioaccumulation of heavy metals in veg-
etables: a threat to human health. Terr Aquat Environ Toxicol 1(2):13–23

Akpor OB, Otohinoyi DA, Olaolu DT, Aderiye BI (2014) Pollutants in wastewater effluents: 
impacts and remediation processes. Int J Environ Res Earth Sci 3(3):050–059

Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from 
wastewater. J Environ Manag 113:170–183

Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxi-
fication in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 
29(1):38–45

3 Microbial Remediation for Wastewater Treatment



68

Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications. Biotechnology 
11(3):100–118

Ayangbenro A, Babalola O (2017) A new strategy for heavy metal polluted environments: a review 
of microbial biosorbents. Int J Environ Res Public Health 14(1):94

Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classifica-
tion based on site of application: principles, advantages, limitations and prospects. World J 
Microbiol Biotechnol 32(11):180

Balakrishnan H, Velu R (2015) Eco-friendly technologies for heavy metal remediation: pragmatic 
approaches. In: Environmental sustainability. Springer, New Delhi, pp 205–215

Bansal A, Shinde O, Sarkar S (2018) Industrial wastewater treatment using phycoremediation 
technologies and co-production of value-added products. J Bioremed Biodegr 9(428):2

Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J 
Chem 4(4):361–377

Bazrafshan E, Mohammadi L, Ansari-Moghaddam A, Mahvi AH (2015) Heavy metals removal 
from aqueous environments by electrocoagulation process–a systematic review. J Environ 
Health Sci Eng 13(1):74

Beena AK, Geevarghese PI (2010) A solvent tolerant thermostable protease from a psychrotrophic 
isolate obtained from pasteurized milk. Developm Microbiol Molecul Biol 1:113–119

Bhat UN, Khan AB (2011) Heavy metals: an ambiguous category of inorganic contaminants, nutri-
ents and toxins. Res J Environ Sci 5(8):682–690

Böhmer U, Kirsten C, Bley T, Noack M (2010) White-rot fungi combined with lignite granules and 
lignitic xylite to decolorize textile industry wastewater. Eng Life Sci 10(1):26–34

Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67
Cardona S, Suarez E (2010) Biodegradation pathway prediction of POPs (Persistent Organic 

Pollutants) and biobarrier treatment. Dyna 77(163):115–123
Cashman D, Foster C, McCluskey K, Zhang Y (2014) Identifying Opportunities to Reduce Water 

Pollution and Encourage Voluntary Compliance in Windhoek, Namibia. Undergraduate 
Interactive Qualifying Project No. E-project-050814-051919). Retrieved from Worcester 
Polytechnic Institute Electronic Projects Collection: http://www.wpi.edu/Pubs/E-project/
Available/E-project-050814-051919/unrestricted/City_-_Final_IQP_Report.pdf

Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC (2011) Bacterial flavin-containing mono-
oxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci 108(43):17791–17796

Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation 
methods. Appl Environ Soil Sci 2014:752708

Chowdhury S, Bala NN, Dhauria P (2012) Bioremediation–a natural way for cleaner environment. 
Int J Pharmaceut Chem Biol Sci 2(4):600–611

de Lourdes Moreno M, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of 
novel hydrolytic enzymes. Lifestyles 3(1):38–51

Dhall P, Kumar R, Kumar A (2012) Biodegradation of sewage wastewater using autochthonous 
bacteria. Sci World J 2012:861903

Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, 
Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview 
of principles and criteria of fundamental processes. Sustain For 7(2):2189–2212

Dsikowitzky L, Schwarzbauer J (2013) Organic contaminants from industrial wastewaters: identi-
fication, toxicity and fate in the environment. In: Pollutant diseases, remediation and recycling. 
Springer, Cham, pp 45–101

El-Borai AM, Eltayeb KM, Mostafa AR, El-Assar SA (2016) Biodegradation of industrial oil- 
polluted wastewater in Egypt by bacterial consortium immobilized in different types of carri-
ers. Pol J Environ Stud 25(5):1901–1909

Florescu D, Ionete RE, Sandru C, Iordache A, Culea M (2010) The influence of pollution monitor-
ing parameters in characterizing the surface water quality from Romania southern area. Rom 
J Physiol 56:1001–1010

Genuis SJ, Kelln KL (2015) Toxicant exposure and bioaccumulation: a common and potentially 
reversible cause of cognitive dysfunction and dementia. Behav Neurol 2015:620143

S. Singh et al.

http://www.wpi.edu/Pubs/E-project/Available/E-project-050814-051919/unrestricted/City_-_Final_IQP_Report.pdf
http://www.wpi.edu/Pubs/E-project/Available/E-project-050814-051919/unrestricted/City_-_Final_IQP_Report.pdf


69

Hanchang SHI (2009) Industrial wastewater-types, amounts and effects. In: Point sources of pollu-
tion: local effects and their control, vol 2. EOLSS Publications, Paris, p 191

Hesnawi R, Dahmani K, Al-Swayah A, Mohamed S, Mohammed SA (2014) Biodegradation of 
municipal wastewater with local and commercial bacteria. Procedia Eng 70:810–814

Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization 
and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev 
Biotechnol 26(4):201–221

Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing 
industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism 
and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

Jan A, Azam M, Siddiqui K, Ali A, Choi I, Haq Q (2015) Heavy metals and human health: 
mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 
16(12):29592–29630

Jecu L, Gheorghe A, Popea F, Rosu A, Stoica A, Stroescu M (2008) Potential of microbial species 
in biodegradation of volatile organic compounds from waters

Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms 
and genetically engineered microorganisms. In: Biodegradation-life of science. InTech, London

Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a 
review. Enzym Res 2011:805187

Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by 
macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20(2):114–120

Kavitha RV, Murthy VK, Makam R, Asith KA (2012) Physico-chemical analysis of effluents from 
pharmaceutical industry and its efficiency study. Int J Eng Res Appl 2(2):103–110

Khouni I, Marrot B, Amar RB (2012) Treatment of reconstituted textile wastewater containing a 
reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep 
Purif Technol 87:110–119

Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important 
enzymes. Biotechnology 10(2):121–135

Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative 
estimation of soil’s atrazine. Curr World Environ 8(3):469–472

Kumar V, Upadhyay N, Kumar V, Kaur S, Singh J, Singh S, Datta S (2014a) Environmental expo-
sure and health risks of the insecticide monocrotophos—a review. J Biodivers Environ Sci 
5:111–120

Kumar V, Singh S, Manhas A, Singh J, Singla S, Kaur P (2014b) Bioremediation of petroleum 
hydrocarbon by using Pseudomonas species isolated from petroleum contaminated soil. Orient 
J Chem 30(4):1771–1776

Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015a) Bioremediation of heavy 
metals by employing resistant microbial isolates from agricultural soil irrigated with industrial 
waste water. Orient J Chem 31(1):357–361

Kumar V, Singh S, Singh J, Upadhyay N (2015b) Potential of plant growth promoting traits by bac-
teria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–815

Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N′-phenyl- 
thiophosphorohydrazidic acid O, S-dimethyl ester from acephate: chemical, biotechnical and 
computational study. 3 Biotech 6(1):1

Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design, synthesis, and characterization 
of 2, 2-bis (2, 4-dinitrophenyl)-2-(phosphonatomethylamino) acetate as a herbicidal and bio-
logical active agent. J Chem Biol 10(4):179–190

Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contami-
nated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci 
Technol 11(3):843–872

Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation 
approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

3 Microbial Remediation for Wastewater Treatment



70

Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of 
Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of 
iron contaminated soils. Int J Phytoremediation 18(7):697–703

Mtshali JS, Tiruneh AT, Fadiran AO (2014) Characterization of sewage sludge generated from 
wastewater treatment plants in Swaziland in relation to agricultural uses. Resour Environ 
4(4):190–199

Nagwekar PR (2014) Removal of organic matter from wastewater by activated sludge process- 
review. Int J Sci Eng Technol Res 3(5):1260–1263

Naidoo S, Olaniran A (2014) Treated wastewater effluent as a source of microbial pollution of 
surface water resources. Int J Environ Res Public Health 11(1):249–270

Naruka K (2012) Impact of municipal solid waste on environment and human health. Bioherald: 
Int J of Biodiv Environ 2(1):25–30

Ogbonna DN, Igbenijie M, Isirimah NO (2006) Studies on the inorganic chemicals and microbial 
contaminants of health importance in groundwater resources in Port Harcourt Rivers State 
Nigeria. J Appl Sci 6:2257–2262

Ojuederie O, Babalola O (2017) Microbial and plant-assisted bioremediation of heavy metal pol-
luted environments: a review. Int J Environ Res Public Health 14(12):1504

Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes 
and biological treatments for wastewater decontamination—a review. Sci Total Environ 
409(20):4141–4166

Othman N, Juki MI, Hussain N, Talib SA (2011) Bioremediation a potential approach for soil 
contaminated with polycyclic aromatic hydrocarbons: an overview. Int J Sust Construct Eng 
Technol 2:2

Prasad MP, Manjunath K (2011) Comparative study on biodegradation of lipid-rich wastewater 
using lipase producing bacterial species. Indian J Biotechnol 10:121–124

Praveen PK, Ganguly S, Wakchaure R, Para PA, Mahajan T, Qadri K, Kamble S, Sharma R, 
Shekhar S, Dalai N (2016) Water-borne diseases and its effect on domestic animals and human 
health: a review. Int J Emerg Technol Adv Eng 6(1):242–245

Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation 
of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a 
membrane bioreactor. Water Res 39(12):2654–2664

Ratnakar A, Shankar S, Shikha (2016) An overview of biodegradation of organic pollutants. Int J 
Scientif Innovat Res 4(1):73–91

Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev 
Environ Sci Technol 45(17):1916–1945

Shareef A, Kookana R, Kumar A, Tjandraatmadja G (2008) Sources of emerging organic contami-
nants in domestic wastewater. An assessment based on literature review. Water for a Healty 
Country National Research Flagship

Sharifuzzaman SM, Rahman H, Ashekuzzaman SM, Islam MM, Chowdhury SR, Hossain MS 
(2016) Heavy metals accumulation in coastal sediments. In: Environmental remediation tech-
nologies for metal-contaminated soils. Springer, Tokyo, pp 21–42

Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipase: a review. 
Biotechnology 10(1):23–40

Shon HK, Vigneswaran S, Snyder SA (2006) Effluent organic matter (EfOM) in wastewater: con-
stituents, effects, and treatment. Crit Rev Environ Sci Technol 36(4):327–374

Silva-Bedoya LM, Sánchez-Pinzón MS, Cadavid-Restrepo GE, Moreno-Herrera CX (2016) 
Bacterial community analysis of an industrial wastewater treatment plant in Colombia with 
screening for lipid-degrading microorganisms. Microbiol Res 192:313–325

Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. 
Indian J Pharm 43(3):246

Singh A, Kumar V, Srivastava JN (2013) Assessment of bioremediation of oil and phenol contents 
in refinery waste water via bacterial consortium. J Petroleum J Environ Biotechnol 4(2):145

Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh J (2016) Toxicity, monitoring and 
biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

S. Singh et al.



71

Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017) Efficient biodegradation of 
acephate by Pseudomonas pseudoalcaligenes PS-5  in the presence and absence of heavy 
metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech 7(4):262. https://doi.org/10.1007/
s13205-017-0900-9

Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation 
and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237

Sivaprakasam S, Dhandapani B, Mahadevan S (2011) Optimization studies on production of a 
salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery 
saline wastewater treatment. Braz J Microbiol 42(4):1506–1515

Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review 
on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 
2011:939161

Tigini V, Prigione V, Giansanti P, Mangiavillano A, Pannocchia A, Varese GC (2010) Fungal bio-
sorption, an innovative treatment for the decolourisation and detoxification of textile effluents. 
Water 2(3):550–565

Van Leeuwen J, Sridhar A, Harrata AK, Esplugas M, Onuki S, Cai L, Koziel JA (2009) Improving 
the biodegradation of organic pollutants with ozonation during biological wastewater treat-
ment. Ozone Sci Eng 31(2):63–70

Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks 
in China. Environ Pollut 218:358–365

Wang C, Zhang Q, Jiang L, Hou Z (2018) The organic pollutant characteristics of lurgi coal gasifi-
cation wastewater before and after ozonation. J Chemother 2018:1461673

Westerhoff P, Lee S, Yang Y, Gordon GW, Hristovski K, Halden RU, Herckes P (2015) 
Characterization, recovery opportunities, and valuation of metals in municipal sludges from 
US wastewater treatment plants nationwide. Environ Sci Technol 49(16):9479–9488

Wu B, Wang G, Wu J, Fu Q, Liu C (2014) Sources of heavy metals in surface sediments and an 
ecological risk assessment from two adjacent plateau reservoirs. PLoS One 9(7):e102101

Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemis-
try, risks and best available strategies for remediation. ISRN Ecology 2011:402647

Wyasu G, Kure OA (2012) Determination of organic pollutants in hospital wastewater and food 
samples within Ahmadu Bello University Teaching Hospital (Abuth), Shika, Zaria-Nigeria. 
Adv Appl Sci Res 3(3):1691–1701

Yagi JM, Madsen EL (2009) Diversity, abundance, and consistency of microbial oxygenase 
expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 
75(20):6478–6487

Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. 
Water Air Soil Pollut 226(8):279

Yu Y, Wang YC, Zhou HD, Gao B, Zhao GF (2013) Biomagnification of heavy metals in the 
aquatic food chain in Daning River of the Three Gorges Reservoir during initial impoundment. 
Huan jing ke xue 34(10):3847–3853

Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for organic wastewater. In: 
Water treatment. Intech, London

3 Microbial Remediation for Wastewater Treatment

https://doi.org/10.1007/s13205-017-0900-9
https://doi.org/10.1007/s13205-017-0900-9


73© Springer Nature Singapore Pte Ltd. 2020
P. K. Arora (ed.), Microbial Technology for Health and Environment, 
Microorganisms for Sustainability 22, 
https://doi.org/10.1007/978-981-15-2679-4_4

N. R. Maddela (*) 
Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador 

Faculdad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
e-mail: rmaddela@utm.edu.ec 

L. C. García Cruzatty · D. A. Leal-Alvarado 
Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador 

Faculdad de Agronomía, Universidad Técnica de Manabí, Portoviejo, Ecuador
e-mail: lcgarcia@utm.edu.ec; daleal@utm.edu.ec 

J. C. Olaya 
Faculdad de Agronomía, Universidad Técnica de Manabí, Portoviejo, Ecuador 

S. Chakraborty 
School of Energy & Environmental Engineering, Hebei University of Technology,  
Tianjin, People’s Republic of China 

A. Mukherjee 
Department of Chemical Engineering, Haldia Institute of Technology,  
Haldia, Purba Medinipur, West Bengal, India

4Quorum Quenching for Sustainable 
Environment: Biology, Mechanisms, 
and Applications

Naga Raju Maddela, Luz Cecilia García Cruzatty, 
Daniel Alfredo Leal-Alvarado, Jessenia Castro Olaya, 
Sagnik Chakraborty, and Anupam Mukherjee

Abstract
Quorum sensing signaling is a hierarchal system in bacteria to communicate with 
each other and coordinate their activities. Prevention of the QS pathway by dis-
rupting signals is called quorum quenching (QQ), which is essential not just in 
medicine and healthcare settings but also in membrane bioreactors, aquaculture, 
and agriculture. QQ could be achieved either by interfering with the QS signaling 
pathway (e.g., signal generator or receptor) or intercepting the QS molecules. 
Research on QQ led to the development of strategies that mitigate biofilm-based 
problems in medicine, agronomy, and water engineering. The QQ-strategy is 
being given importance in recent times as there is an immediate need to search for 
an alternative or a complementary approach to phytochemicals and antibiotics. 
This chapter starts with the historical aspects of QQ; furthermore, it  highlights the 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2679-4_4&domain=pdf
mailto:rmaddela@utm.edu.ec
mailto:lcgarcia@utm.edu.ec
mailto:daleal@utm.edu.ec


74

global research in the area of QQ and the mechanism of quenching pathways. 
Afterward, applications of QQ-strategies in medicine, agriculture, aquaculture, 
and water engineering are discussed. Finally, challenges and prospects of QQ 
technology are delineated.

Keywords
Quorum quenching · Mechanism · Medicine · Agriculture · Aquaculture · 
Wastewater treatment
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4.1  Introduction

Microorganisms regulate their community behavior by sending and receiving chemi-
cal signals through a process called ‘quorum sensing’ (QS); interruption of such 
QS-signals is defined as ‘quorum quenching’ (QQ). QS is a fundamental mechanism 
behind many functions of bacteria, such as making virulence factors, biofilm forma-
tion, exopolysaccharide production, antibiotic production, genetic exchange by con-
jugation, pigmentation, etc. (Lade et al. 2014). Correspondingly, QQ came to light to 
control the unwanted functions of QS-related biology. For instance, in the human 
health-care field, control of bacterial pathogens (so-called biofilms) is still challeng-
ing. Pathogenic bacteria are known to utilize QS mechanisms during disease devel-
opment. The use of antibiotics to control bacterial pathogens has a great threat of 
drug resistance in bacteria. An attractive and alternative approach is to use QQ-strategy 
to control pathogens. Several bacteria (e.g., Acinetobacter baumannii, Proteus spp., 
Pseudomonas aeruginosa, Serratia spp. etc.) do produce stable biofilms on medical 
devices which are difficult to control by traditional approaches that are in practice. 
Likewise, QS-mediated problems are not uncommon in several other fields such as 
dental plaque biofilms (Basavaraju et al. 2016), carcinogenesis (Li et al. 2004), agri-
culture (Wang et al. 2010), aquaculture (Defoirdt et al. 2004), wastewater treatment 
(WWT) technologies, and marine life (Galloway et  al. 2012). Therefore, a high 
demand exists for QQ-strategy to control QS-mediated problems in fields such as 
MBRs (membrane bioreactors), medicine, agriculture, aquaculture, etc.

QQ can be achieved by one of the several mechanisms, such as blockage of sig-
nal synthesis, interference with signal molecules (called as autoinducers), and inac-
tivation of signal molecules. QQ-strategy has been successfully applied in different 
environments to control the effects elicited by unwanted biofilms (Bzdrenga et al. 
2017; Maddela et al. 2019). Transgenic plants with a gene (e.g., aiiA)-encoding QQ 
enzyme showed tremendous tolerance to a pathogen (e.g., Pectobacterium caroto-
vorum) (Dong et al. 2001). Oral administration of purified AHL (N-acyl homoserine 
lactone)-lactonase from Bacillus sp. A196 was found to show decrease in Aeromonas 
hydrophila infection in zebrafish (Cao et al. 2012). There are many successful inci-
dences in several wastewater treatment (WWT) facilities for the effective control of 
biofilm biomass (so-called biofouling) (Paul et al. 2009; Ergön-Can et al. 2017; Lee 
et  al. 2017). Unfortunately, QQ-strategy is far from its commercial perspective 
which implies that more details of QQ effects on pure-species need to be elucidated 
in depth. Most studies have assessed the QQ effects in bioreactors exogenously 
dosed with either QQ-enzymes or QQ-bacteria (Yeon et al. 2009; Oh et al. 2012), 
and concurrently ignored endogenous QQ activities in bioreactors Also, there is no 
proper validation of the detrimental effects of the QQ-strategy in bioreactors 
(Choudhary and Schmidt-Dannert 2010; Jiang et al. 2013). It is also noteworthy that 
most of the pure culture studies have been conducted for a very few model bacteria 
(e.g., Escherichia coli, Pseudomonas sp., etc.) while uncovering details for other 
species of Gram-positive bacteria, archaea, fungi, and mixed cultures. Therefore, 
future research must target QQ effects on many natural isolates at the pure-species 
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level, which would provide more details of QQ mechanisms and would decrease the 
gap between the lab- and commercial-stage of QQ-strategy.

This chapter draws an overview of bacterial quorum quenching and its applica-
tions, covering economically vital fields such as medicine, agriculture, wastewater 
treatment, etc. This chapter first summarizes the historical aspects of QQ and the 
current advances in the QQ-technology towards the welfare of society. Consequently, 
a detailed molecular mechanism of the QQ process is focused on. Special attention 
is dedicated to applications of QQ-strategy in different sections such as medicine, 
agriculture, and wastewater treatment. Besides, case studies of QQ-strategy, chal-
lenges, and prospects of QQ-technology are discussed considering the recently pub-
lished literature. Thus, this state-of-the-art chapter is the first compilation of all the 
critical information and updated knowledge required for understanding the QQ 
biology and its implications in relevant economically essential fields.

4.2  Biology of Bacterial Quorum Quenching (QQ)

Disruption of the QS communication system is defined as quorum quenching (QQ) 
(Dong et al. 2001). More than two decades ago, inhibitors and antagonists of the QS 
system had been reported in a marine macroalga (Delisea pulchra) (Givskov et al. 
1996). However, in bacteria, the first recorded evidence of QQ has been observed as 
a part of the biosynthesis of carbapenem antibiotics in a bacterium Erwinia caroto-
vora through fluorescence quenching (Welch et al. 2000); importantly the N-acyl 
homoserine lactone (HSL or AHL) signal is known to influence the carbapenem 
biosynthesis in E. carotovora. Since then, different QQ enzymes have been identi-
fied in various bacteria, where these enzymes can modify or degrade AHLs (Dong 
and Zhang 2005; Romero et al. 2011; Torres et al. 2016). Interestingly, QQ-enzymes 
producing bacteria have been detected both in terrestrial and marine environments 
(Dong et al. 2001; Romero et al. 2008), implying that these enzymes provide a com-
petitive advantage to the producer in terms of food and space. Notably, two QQ 
enzymes that have been extensively studied were AHL lactonases and AHL acylases 
(or AHL amidases) (Christiaen et al. 2011).

It is also important to note that many bacteria genera can quench QS signals. 
Christiaen and others (Christiaen et al. 2011) isolated 59 different bacterial strains 
from various types of environmental samples (e.g., rhizosphere, water, and pond 
water), which belonged to 21 different genera, where the predominant genera were 
Pseudomonas, Arthrobacter, Aeromonas, Delftia, Stenotrophomonas, and 
Achromobacter. These results indicate that there is a high competition among the 
members of the bacterial community in different environments, and the bacteria can 
overcome such competition by QQ activity. In the same study, it has also been found 
that the QQ activity in certain bacteria remained resistant to heat and proteinase K, 
and certain bacteria showed extracellular QQ activity, with different molecular sizes 
(either < or > 6000 Da) of QQ molecules (Christiaen et al. 2011). Thermal resis-
tance and thermophilicity in the community of microbial lactonases are not uncom-
mon because several heat-stable lactonases have been detected in thermophilic 
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archaea bacteria (Mandrich et al. 2010). On the other side, a broad diversity has 
been observed in QQ enzymes of bacteria (Fetzner 2015), where 18 AHL lactonases, 
17 AHL acylases, 4 oxidoreductases, 1 anti-AQs (2-Alkyl-3-hydroxy4(1H)-
quinolone 2,4-dioxygenase), and 1 AI-2 kinase enzymes were identified in different 
bacterial isolates. Also, anaerobic bacteria (e.g., Microbacterium sp.) are not 
exempted from possessing the QQ activity (Liu et al. 2019). All the above results 
indicate that the widest diversity exists in the QQ molecules of different bacterial 
species. The variety of QQ molecules needs to be explored in depth for the practical 
implications of QQ-technology in the nearest future for sustainable development.

According to the 16S rDNA sequence study, it has been found that there is no 
specific clade associated with the QQ activity in sludge community (Tan et  al. 
2015). In this study, the bacteria that were identified with QQ activity belonged to 
four different phyla, such as Actinobacteria, Bacteriodetes, Firmicutes, and 
Proteobacteria. Besides common bacterial genera (e.g., Bacillus, Ochrobacterium, 
Rhodococcus, and Variovorax), some new genera also came to light as QQ bacteria 
from this study (e.g., Acidovorax, Flavobacterium, Novosphingobium, 
Rheinheimera, and Tsukamurella). Interestingly, the sludge sample was known to 
contain both signal-producers and -quenchers in the same community, and some 
strains showed both activities (e.g., Rhizobium borbori N065) too (Tan et al. 2015). 
These results imply that QQ is known to be associated with a wide range of bacte-
ria; furthermore, there is a co-existence of QS and QQ bacteria in the natural habi-
tats, where some of them have dual properties. At the community level, the QS and 
QQ activity of each species is essential in eliciting a complex community behavior. 
Varying the species composition of QS and QQ will have the greatest impact on 
community behavior. The chronological order of the main breakthrough in QQ 
biology has been depicted in Fig. 4.1.

Fig. 4.1 Chronological time scale of QQ biology
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4.3  Global Research in the Area of QQ Technology

There is extensive research going on in the area of ‘QQ’ to see the implications of 
QQ-strategies in many economically essential fields such as medicine, agriculture, 
and industrial MBR facilities. The global research output has increased ~6 times in 
the past 10 years (Fig. 4.2). Figure 4.3 shows the top ten countries where active 
research is taking place in the field of QQ.

A program was conducted by the National Institute of Technology (Tiruchi, 
India) titled, ‘Chemical/Phytochemical Mediated Disruption of Bacterial Acyl 
Homoserine Lactone Mediated, QS Communication Systems’ to enlighten the 

Fig. 4.2 Number of articles published in the last decade (2009–2019) on QS and QQ with an 
interleaved bar diagram. Values on primary- and secondary-vertical axis are the number of publica-
tions (Accessed from ScienceDirect; Keywords ‘quorum sensing’ vs. ‘quorum quenching’). ∗Data 
as of August 2019

Fig. 4.3 Top 10 countries with the highest research productivity (number of publications) in the 
field of QQ. Data accessed from Scopus by using the keyword ‘quorum quenching’, on 13 August 
2019. Values in the parenthesis indicate the number of publications
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researchers about the threat posed by the use of antimicrobial agents and understand 
the QS and QQ and the need for developing effective carrier agents (through nano-
technology) as delivery agents (THE HINDU 2019). Novel antibacterial compounds 
have also emerged from the recent investigations aiming at antibacterial drug design, 
for example, researchers at the University of Eastern Finland have designed a com-
pound that targets LsrK kinase which is an active protein in bacterial communica-
tion (ScienceDaily 2018). Drug design efforts have been made by modeling the 
LsrK protein structure through computational methods, and this study claimed that 
this is the first class of LsrK inhibitor reported to date (Medarametla et al. 2018). 
Such studies will provide useful insights in understanding the behavior of the pro-
tein and protein–substrate dynamics, as well as how to interfere with it.

Advances in the QQ research led to the development of modulations in the QQ 
biofilm to mitigate biofouling on water purification membranes. After knowing the 
importance of QQ bacteria as a promising approach for membrane biofouling con-
trol, several attempts have been made towards the immobilization of QQ bacteria 
in porous matrices for the prevention of uncontrolled biofilm formation in continu-
ously operated membrane processes. However, these attempts have ignored the QQ 
biofilm and its interference with membrane performance. Therefore, for the first 
time, the QQ biofilm has been modulated by dichromatic light, optogenetic c-di-
GMP gene circuit, in which QQ bacteria sense near-infrared and blue light to 
adjust their biofilm formation by regulating the c-di-GMP level (Mukherjee et al. 
2018). Such a modulated QQ biofilm could successfully mitigate biofouling on 
forward osmosis (FO) membranes of water purification facilities, implying that 
controllable biofilm-enabled applications can be widely implicated in different 
biofilm-based biocatalysis.

Very recently, an article has been posted on the website of Health Trends in 
Spanish as ‘Posible final de la era de los antibióticos’ which means ‘Possible end of 
era of antibiotics’ (Paramá 2019). Researchers from the University of South Carolina 
published that soon bacterial QS could become a compelling alternative to the con-
ventional treatment of infectious diseases, and they assumed that this could be a 
more natural way, and they successfully mitigated the bacterial biofilm (of patho-
gens) by silicon oxide nanoparticles (Si-NPs) coated with β-cyclodextrin. A similar 
opinion has also been stated by a research group of Biotechnology and Aquaculture 
headed by Professor Casal at the University of Santiago de Compostela, Spain 
(Paramá 2019). They opinioned that QQ-strategy could be a future tool to penetrate 
the biofilms and eliminate infections, which could be challenging to achieve with 
the current drugs. Researchers from China and America have recently published a 
paper that they identified a new regulatory structure for the Rhizobium QS system, 
and this could have the greatest agronomic impact. Research is also awaiting gen-
eration, regulation, and control of biofilms of cholera producing bacteria, which 
causes three to five million cases of annual infections according to WHO statistics.

Bacterial biofilms cause significant problems in food packing also. Biofilms 
adhered to the food products and to the packaging to which it’s shipped further 
cause severe complications in human. According to the latest report of the 
Centers for Disease Control and Prevention, USA, ~ 48 million illnesses per year 
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are recorded in the USA alone, of which most of them (45%) are caused by bac-
teria. A research team headed by Professor Doron Steinberg at The Hebrew 
University of Jerusalem, Israel, found a new synthetic molecule called TZD and 
incorporated it into biofilm food packaging (PHYSORG 2014). The TZD mole-
cule could mitigate the biofilm formation by bacteria and fungi in corrugated 
cardboard boxes. This TZD-technology has now been successfully incorporated 
into industrial acrylic polymers which are used to coat the corrugated cardboard 
in the fresh food package. Furthermore, TZD has proved to be effective in pre-
venting biofilms in recycled water systems. Thus, the design of TZD like QQ 
polymers is  for their wide applicability  in different areas  such as frozen food 
packing, poultry, meat packaging, etc.

In the area of anti-QS research, a research team headed by a Professor Ben 
Feringa at the University of Groningen, Netherlands, produced a library of 16 com-
pounds with a potential anti-QS activity through a light-operated switch (PHYSORG 
2019). These compounds modulated the QS signals in P. aeruginosa by light. 
Furthermore, irradiation of these compounds by light led to enhancement of QS 
activity by 700-folds, which is attributed to bending of the flexible carbon-based tail 
in the compound structure. Nonetheless, these studies provide a powerful tool for 
both clinical and fundamental research to understand the mechanism of QS and 
QQ. According to the recent reports of the WHO, many pathogenic bacteria (e.g., 
Acinetobacter, E. coli, Klebsiella, Proteus, Pseudomonas, Serratia, etc.) were 
found to develop resistance to many third-generation antibiotics such as carbapen-
ems and cephalosporins (ID 2019). On the other side, there are no effective antibiot-
ics against specific pathogens such as Campylobacter spp., Enterococcus faecium, 
Helicobacter pylori, and Staphylococcus aureus. This situation dramatically 
demands to find new antimicrobial strategies. In this angle, bacterial communica-
tion has opened the door to knowledge that was not suspected by anyone in the past. 
Therefore, track of this type of research is going to dominate in the nearest future in 
discovering new microbial-mitigation-strategies.

4.4  Inhibition of QS Signals: Biology and Mechanism

Extensive and basic research in the area of ‘QQ’ has been carried out in the first 
decade of the twenty-first century, which resulted in the isolation and characteriza-
tion of many kinds of QQ molecules, and these molecules were found to be signifi-
cant in the control of several microbial infections. For instance, AHL-lactonases (a 
type of QQ enzyme) have been found to decrease the disease incidences caused by 
P. aeruginosa (Reimmann et al. 2002), E. coli (Lee et al. 2002), Bacillus thuringi-
ensis (Dong et al. 2004), Erwinia amylovora (Molina et al. 2005) etc. In fact, P. 
aeruginosa was known to be affected by other types of QQ molecules, such as 
paraoxonase (Ozer et  al. 2005), AHL-acylase (Lin et  al. 2003), 3-oxo-C12-(2-
aminocyclohexanone)  (Smith et al. 2003), etc. Nonetheless, several small molecules 
capable of modulating the AHL-based QS system have been identified over the past 
30 years (Galloway et al. 2011); all these insights could help us in understanding 
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and implicating the QQ-strategy in the relevant fields. Signal inhibiting molecules 
are broadly divided into two groups—QQ chemicals and QQ enzymes, and detailed 
classification of signal inhibitors has been shown in Fig. 4.4. Regarding QQ chemi-
cals, there are three kinds of QQ chemicals as described in this section, two of them 
are structural analogs, and one is an enzyme inhibitor. Structurally, QQ chemicals 
are small molecules, and they inhibit the QS signals by one of the several mecha-
nisms. For instance, QQ chemicals those are structurally similar to AHLs and AIPs 
(autoinducing peptides) either  interfere with the corresponding signal binding 
receptors (Lyon et al. 2000), or they decrease the available receptor concentration 
(Manefield et al. 2002). Such type of structural mimicry is quite common in the case 
of halogenated furanones vs. AHLs, and synthetic AIPs vs. AIPs (Fig.  4.5). The 
third type of QQ chemical is an enzyme inhibitor, which may interrupt the essential 
events in the biosynthesis of QS molecules. For example, enoyl-ACP reductase is 
crucial in the formation of an intermediate product during the AHL biosynthesis; 
however, this reductase is quickly inactivated by triclosan (a small QQ chemical) 
(Hoang and Schweizer 1999). Like triclosan, closantel interferes with a two-
component  signal system (is a QS system in gram-positive and gram-negative bac-
teria) by inhibiting histidine kinase (Stephenson et  al. 2000). Thus, the above 
evidence implies that QQ chemicals elicit QS inhibition either by competing with 
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Fig. 4.4 Classification of QQ agents inhibiting QS signal molecules

4 Quorum Quenching for Sustainable Environment: Biology, Mechanisms…



82

the original QS molecules to bind with the receptors or they may inhibit the vital 
enzymes of the QS signal pathway.

Unlike QQ chemicals, QQ enzymes achieve QS inhibition by degrading the QS 
signal molecules. To date, over 20 QQ enzymes have been reported (Dong et al. 
2018), and three crucial among them are (Fetzner 2015) namely AHL-lactonase, 
AHL-acylase, and AHL-oxidoreductase (Fig. 4.4).

4.4.1  AHL-Lactonases

AHL-lactonase (EC 3.1.1.81) is a group of enzymes (QQ enzymes) that can hydro-
lyze the ester bond of the homoserine lactone ring (C–O bond) of AHL signal 
molecules. The scaffold of the α/β-hydrolase fold of lactonases was also found to 
be responsible for the lactonolysis of AHLs. Based on the structure, there are 3 
kinds of lactonases, such as metallo-β-lactamase superfamily lactonases, phos-
photriesterase type of lactonases (PLLs), and paraoxonase (PON) family. Several 
bacteria are known to possess AHL-lactonases, e.g., B. thuringiensis, Burkholderia 
thailandensis, E. carotovora, E. amylovora, E. coli, P. aeruginosa, etc.

4.4.2  Metallo-β-Lactamase Superfamily Lactonases

The first AHL-lactonase identified was a product of the aiiA gene of Bacillus sp. 
isolate 240B1. Crystallographic study (Kim et  al. 2005) has confirmed that 

Fig. 4.5 Mechanism of QS inhibition by QQ agents or QSIs. (a) Structural Mimicry—QSIs such 
as halogenated furanones and synthetic AIPs are structurally like AHLs and AIPs, respectively. 
Binding of QSIs to QS receptors causes either inactivation of receptors or reduces the number of 
receptors for QS molecules ultimately leading to mitigation of QS signals. (b) Enzyme Inhibition—
QSIs (small molecules) can bind and inactivate vital enzymes that are responsible for the QS 
signals

N. R. Maddela et al.
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AHL-lactonase is a metalloprotein, and contains two zinc ions in its active site. 
Since then, AHL-lactonases have been identified in many bacterial species, and 
refer for a review (Fetzner 2015). More recently, AiiK, an AHL lactonase from a 
bacterium KurthiahuakuiLAM0618T has been characterized, and its QQ activities 
have been checked against P. aeruginosa PAO1 (Dong et al. 2018). AHL-lactonase 
is able to hydrolyze both short- and long-chain AHL signal molecules with similar 
efficiency. More details of different metallo-β-lactamase superfamily lactonases 
have been presented in Table 4.1. The chemical reaction that is governed by AHL-
lactonase is shown below:

N-acyl-l-homoserine lactone + H2O ⇌ an N-acyl-l-homoserine.

4.4.3  Phosphotriesterase-like Lactonases (PLLs)

PLLs are the members of amidohydrolase superfamily and are characterized by a 
binuclear metal center within a (β/α)8-barrel structural scaffold. Preferably PLLs 
degrade AHLs of hydrophobic lactones; however, many PLLs are classified as natu-
ral lactonases, and they do degrade lactonases other than AHLs (Xiang et al. 2009). 
Similarly, certain PLLs are active against AHLs containing QsdA (verify) (Afriat 
et al. 2006), and some of the PLLs are thermostable (Chow et al. 2009), implying 
that there is existence of wide diversity in the characteristics (particularly substrate 
specificity, thermostability, etc.) of PLLs. Because of such properties of PLLs, 
attempts have also been made by structure-based mutagenesis or in vitro evolution 
to improvise the catalytic efficiency and modify their substrate range (Hiblot et al. 
2013). More details about the types and substrate specificities of PLLs have been 
provided in Table 4.1.

4.4.4  Paraoxonases (PONs)

Paraoxonases (PONs), which are calcium-dependent enzymes, have lactonase-like 
activity (i.e., hydrolyze the homoserine lactone ring of AHLs). Structurally PONs 
are distinct from the other lactonases and have a six-bladed β propeller fold (Harel 
et  al. 2004). Three types of PONs have been identified (e.g., PON1, PON2, and 
PON3) with broad and physiologically relevant hydrolytic activities. There was a 
first report on the hydrolytic activity of purified PON1 from human serum against 
3-oxo-C12 HSL of P. aeruginosa (Ozer et al. 2005). PONs were found to be more 
active against long-chain AHL-signals (e.g., 3-oxo-C12 HSL) than short-chain 
AHL-signals. In the recent past, bioinformatic approach has been used in the iden-
tification of bacterial PONs and have been characterized biochemically. More 
details of PONs have been shown in Table 4.1.
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Table 4.1 QQ enzymesa—source and substrate specificity

Enzyme Source Substrate Reference(s) 
(A) AHL-lactonases
(A.i.) Metallo-β-lactamase superfamily
AiiA Bacillus spp.

(Bacillus cereus group)
C4-, C6-, C8-, 
C10-HSL; 3OC4-, 
3OC6-, 3OC8-, 
3OC12-HSL; 
3-OH-C4-HSL

Dong et al. (2000), 
Dong et al. (2002), 
Lee et al. (2002), 
Reimmann et al. 
(2002), Wang et al. 
(2004), Liu et al. 
(2005), Morohoshi 
et al. (2012)

AhIs Solibacillus 
silvestrisStLB046

C10-HSL Morohoshi et al. 
(2012)

AhLD Arthrobacter sp. 
IBN110

C6-, C8-, C10-HSL, 
3OC6-, 3OC12-HSL

Park et al. (2003)

AttM (AiiB) Agrobacterium 
tumefaciens C58, M103

C4-, C6-, C7-, C8-, 
C10-HSL; 3OC6-, 
3OC8-HSL

Zhang et al. (2002), 
Carlier et al. (2003), 
Liu et al. (2007)

QsDR1 Rhizobium sp. NGR234 3OC8-HSL Krysciak et al. 
(2011)

Ah1K Klebsiella pneumoniae 
KCTC2241

C6-HSL, 3OC6-HSL Park et al. (2003)

AidC Chryseobacterium sp. 
StRB126

C6-, C8-, C10-, 
C12-HSL; 3OC6-, 
3OC8-, 3OC10-, 
3OC12-HSL

Wang et al. (2012)

Q1cA Soil metagenome C6-HSL Riaz et al. (2008)
(A.ii.) Phosphotriesterase-like lactonases
MCP Mycobacterium avium 

ssp. Paratuberculosis 
K-10

C6-, C7-, C8-, C10-, 
C12-HSL; 3OC8-HSL

Chow et al. (2009)

QsdA Rhodococcus 
erythropolisW2, SQ1, 
Mic1, MP50, 
CECT3008; 
Rhodococcus sp. BH4

C4-, C6- to C14-HSLs, 
with or without 
substitution at C3′

Afriat et al. (2006), 
Uroz and Heinonsalo 
(2008), Oh et al. 
(2013)

Ssopox Sulfolobus 
solfataricusP2

C4-, C6-, C8-, 
C12-HSL; 3OC6-, 
3OC8-, 3OC10-, 
3OC12-HSL

Afriat et al. (2006), 
Hiblot et al. (2013)

SisLac Sulfolobus islandicus 
M.16.4

C4-, C8-, C12-HSL; 
30C8-, 3OC10-, 
3OC12-HSL

Hiblot et al. (2012)

(A.iii.) Paraoxonase
Bacterial PON Oceanicaulis alexandrii 

HTCC2633
C12-HSL; 3OC10-, 
3OC12-HSL

Bar-Rogovsky et al. 
(2013)

(continued)
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Table 4.1 (continued)

Enzyme Source Substrate Reference(s) 
(A.iv.) Others
AiiM Microbacterium 

testaceum StLB037
C6-, C8-, C10-, 
C12-HSL; 3OC6-, 
3OC8-, 3OC10-, 
3OC12-HSL

Wang et al. (2010)

AidH Ochrobactrum sp. T63 C4-, C6-, C10-HSL; 
3OC6-, 3OC8-HSL; 
3-OH-C6-HSL

Mei et al. (2010)

D1hR Rhizobium sp. NGR234 3OC8-HSL Krysciak et al. 
(2011)

BpiB07 Soil metagenome 3OC8-HSL Schipper et al. (2009)
QsdH Pseudoalteromonas 

byunsanensis 1A01261
C4-, C6-, C8-, C10-, 
C12-, C14-HSLs; 
3OC6-, 3OC8-HSL

Huang et al. (2012)

BpiB04, BpiB01 Soil metagenome 3OC8-HSL Schipper et al. (2009)
BpiB05 Soil metagenome 3OC6-, 3OC8-, 

3OC12-HSL
Bijtenhoorn et al. 
(2011b)

 (B) AHL-acylases
Ah1M Streptomyces sp. M664 C6-, C8-, C10-HSL; 

3OC6-, 3OC8-, 
3OC12-HSL

Park et al. (2005)

AibP Brucella melitensis 
16 M

C12-HSL; 3OC12-HSL Terwagne et al. 
(2013)

AiiD Ralstonia sp. XJ12B 3OC6-, 3OC8-, 
3OC10-, 3OC12-HSL

Lin et al. (2003)

Aac Ralstonia solanacearum 
GMI1000

C7-, C8-, C10-HSL; 
3OC8-HSL

Chen et al. (2009)

PvdQ (PA2385) P. aeruginosa PAO1 C7-, C8-, C10-, C11-, 
C12-, C14-HSL; 
3OC10-, 3OC12-, 
3OC14-HSL; 3OH- 
C12-, 3OH-C14-HSL

Huang et al. (2003), 
Sio et al. (2006), 
Bokhove et al. 
(2010), Koch et al. 
(2010)

QuiP (PA1032) P. aeruginosa PAO1 C7-, C8-, C10-, C12-, 
C14-HSL; 3OC12-HSL

Huang et al. (2006)

HacB (PA0305) P. aeruginosa PAO1 C6-, C7-, C8-, C10-, 
C12-, C14-HSL; 
3OC10-, 3OC12-, 
3OC14-HSL

Wahjudi et al. (2011)

HacB 
(Psyr.4858)

P. syringae B728a C4-, C6-, C8-, C10-, 
C12-HSL; 3OC6-, 
3OC8-HSL

Shepherd and 
Lindow (2009)

HacA 
(Psyr.1971)

P. syringae B728a C8-, C10-, C12-HSL; 
3OC8-HSL

Shepherd and 
Lindow (2009)

(continued)
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4.4.5  AHL-Acylases

Unlike AHL-lactonases, AHL-acylases (EC 3.5.1.97) degrade the AHL molecules 
by hydrolyzing the amide bond (–NH2) of AHLs and releasing the corresponding 
fatty acids and homoserine lactones (Leadbetter and Greenberg 2000). AHL- 
acylases have been identified in several species of bacteria (Table 4.1), e.g., P. aeru-
ginosa PAO1, Ralstonia sp., Streptomyces sp., Variovorax paradoxus, etc. and these 
AHL-acylases are characteristically similar to Ntn (N-terminal nucleophile) hydro-
lases but have different substrate specificities. However, AiiO AHL-acylase from 
Ochrobactrum sp. A44 is structurally different and has an α/β-hydrolase fold 
(Czajkowski et  al. 2011). AiiD AHL-acylase (Ralstonia sp.) effectively degrades 

Table 4.1 (continued)

Enzyme Source Substrate Reference(s) 
Aac Shewanella sp. MIB015 C8-, C12-, C12-HSL Morohoshi et al. 

(2008)
AiiC Anabaena sp. PCC7120 C4-, C6-, C8-, C10-, 

C12-, C14-HSL; 
3OC4-, 3OC6-, 3OC8-, 
3OC10-, 3OC12-, 
3OC14-HSL, and 
corresponding 
3OH-CX-HSLs

Romero et al. (2008)

AiiO Ochrobactrum sp. A44 C4-, C6-, C10-, C12-, 
C14-HSL; 3OC4-, 
3OC6-, 3OC8-, 
3OC10-, 3OC12-, 
3OC14-HSL and 
corresponding 
3OH-CX-HSLs

Czajkowski et al. 
(2011)

QsdB Soil metagenome C6HSL; 3OC8-HSL Tannieres et al. 
(2013)

 (C) Oxidoreductases
CYP102A1 B. megaterium C12- to C16-HSL; 

3OC12-HSL (ω-1, ω-2, 
ω-3-hydroxylation)

Chowdhary et al. 
(2007), Chowdhary 
et al. (2008)

BpiB09 Soil metagenome 3OC12-HSL Bijtenhoorn et al. 
(2011a)

 (D) Enzymes acting on AQs
2-Alkyl-3-OH-
4(1H)-euinolone- 
2,4-dioxygenase 
(Hod)

Arthrobacter sp. Rue61a C1- to 
C9-n-alkyl-3-OH-
4(1H)-quinolones

Pustelny et al. 
(2009), Thierbach 
et al. (2014)

 (E) Enzymes acting on AI-2
AI-2 kinase 
(LsrK)

E. coli, other enteric 
bacteria

Linear form of AI-2 
(4,5-di-OH-2,3-
pentanedione)

Roy et al. (2010)

aBacterial origin/soil metagenome
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long-chain AHLs, but can also degrade short-chain AHLs with less efficiency (Lin 
et  al. 2003). On the other hand, AHL-acylases PvdQ (P. aeruginosa PAO1) and 
Ah1M (Streptomyces sp.) can degrade AHLs longer (Huang et al. 2003) and shorter 
than eight carbons (Park et al. 2005), respectively. It is important to note that AHL- 
acylases are more advantageous than AHL-lactonases in the perspective of biotech-
nological applications. For example, the AHL-lactonase product, i.e. N-acyl 
homoserine, is readily converted back to original AHL by recircularization at acidic 
pH. Such type of reversal (i.e. reformation of QS molecules from enzyme products) 
is not possible with AHL-acylase. Furthermore, fatty acids that are formed by the 
action of AHL-acylases are not long lasting, instead they are metabolized quickly.

4.4.6  AHL-Oxidoreductases

AHL-oxidoreductases are another group of QQ-enzymes, able to catalyze the 
hydroxylation of native AHLs and products of lactonolysis. Upon the oxidation of 
AHLs, the product may have still QS properties, but significantly less active than 
parent AHLs (Chowdhary et  al. 2007). One of the examples for the AHL- 
oxidoreductase is cytochrome P450 monooxygenases CYP102A1 (also known as 
P450BM-3), isolated from Bacillus megaterium. This enzyme interacts with a simi-
lar affinity with two substrates such as AHLs and N-acyl homoserines. There are 
also other types of AHL-oxidoreductases isolated from different bacteria and soil 
metagenome, and the details are shown in Table 4.1.

4.5  QQ Technology in Medicine

Post-antibiotics era is vastly needed in the treatment of bacterial human infections 
as there is a threat of emergence of multi-drug resistant bacteria. Recent investiga-
tions are manifesting that many pathogens are known to use QS to regulate their 
virulence (Raina et al. 2009; Antunes et al. 2010; Kalia and Purohit 2011), which 
opened the door to think about an alternative virulence control. The immediately 
discernible option is ‘quorum quenching’, which is an attractive alternative approach 
to attenuate human bacterial infection by the disruption of QS signals (Galloway 
et al. 2012) (Table 4.2). The first clinical trial has been conducted to evaluate the 
impact of QQ on the control of human cystic fibrosis, where garlic oil was used as 
a QS inhibitor. These gave encouraging results in the general improvement in cystic 
fibrosis symptoms; however, this study hasn’t been conducted on a large scale for a 
better evaluation (Smyth et al. 2010).

Several innovative and ecofriendly approaches have emerged from the QQ-strategies 
as the awareness on QQ increased. For example, enzymatic QQ technology had shown 
effective results in the control of several bacterial infections caused by infected cathe-
ters or ventilators (A. baumannii, Proteus spp., P. aeruginosa, Serratia spp. etc.) 
(Bzdrenga et al. 2017). The virulence of P. aeruginosa culture has been decreased by 
QQ enzymes (e.g., SsoPox or PLLs) immobilized on the nanoalumina membrane. 
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Table 4.2 Applications of QQ-strategy in medicine

QQ agent
(protein superfamily) Effect Target pathogen Reference 
AiiA (AHL-lactonase) from 
Bacillus sp.

Inhibition of 
biofilm formation

Vibrio cholerae Augustine 
et al. (2010)

Arctic actinomycetes extract 
(Streptomyces sp. and 
Nocardiopsis sp.) 

Inhibition of 
biofilm formation

V. cholerae Augustine 
et al. (2012)

Resveratrol (AphB) Inhibition of 
biofilm formation

V. cholerae Augustine 
et al. (2014)

BpiB09 (Oxidoreductases) Inhibition of 
swarming 
motility, biofilm 
formation, and 
pyocyanin 
production

P. aeruginosa Brackman 
et al. 
(2011a)

Cinnamaldehyde Inhibition of 
biofilm formation

V. cholerae Brackman 
et al. 
(2011a)

Engineered QQ-lactonase Biofilm 
disruption

A. baumanii S1 Chow et al. 
(2014)

Cranberry extract Block the initial 
attachment and 
inhibit cholera 
toxin 
(LuxO-HapR)

V. cholerae Dinh et al. 
(2014)

Transition state analogs of 
MTANs (5′-Methylth- 
ioadenosine/S- 
adenosylhomocysteine 
nucleosidase): MT-, EtT- and 
BuT-DADMe-ImmA

Decrease the 
virulence

V. cholera, E. coli, S. 
pneumoniae, N. 
meningitidis, Klebsiella 
pneumoniae, S. aureus, 
and Helicobacter pylori

Gutierrez 
et al. (2009)

Acylase AiiO (acyl-homo-serine 
lactones ‘AHLs’)

Inhibition of 
virulence factors 
(e.g., elastase and 
T3SS)

P. aeruginosa Li et al. 
(2019)

Extract of marine Bacillus sp. 
SS4

Inhibition of 
AHL-mediated 
virulence

P. aeruginosa PAO1 Musthafa 
et al. (2011)

Marine bacterial extract (e.g., 
Oceanobacillus, Halomonas)

Inhibition of 
biofilm formation

P. aeruginosa PAO1, 
Serratia marcescens;

Nithya et al. 
(2010)

Phenylbutanoic acid: Bacterial 
extract of S6-01 (Bacillus 
indicus); S6-15 (Bacillus 
pumilus)

Inhibition of 
biofilm formation

E. coli, Shigella 
flexneri, Proteus 
mirabilis

Nithya et al. 
(2011)

Small molecules quinoline- 
containing class of mefloquine 
analogues

Inhibition of 
biofilm formation

V. cholerae Peach et al. 
(2011)

Flavonoid compounds 
(naringenin and quercetin)

Inhibition of 
biofilm formation

V. harveyii, V. cholerae Vikram 
et al. (2011)

(continued)
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Coating of catheters with 5-fluorouracil (QSI–QS inhibitor), furanone (synthetic QSI), 
acylase, acylase + amylase has given effective results in the control of pathogenic bac-
teria such as P. aeruginosa 10145, S. aureus, etc. (Choudhary and Schmidt-Dannert 
2010; Ivanova et al. 2015a, b; Bzdrenga et al. 2017). A thermostable lactonase has suc-
cessfully decreased the mortality rate and virulence factors in biofilms 55% and 65%, 
respectively during the treatment of pulmonary infections such as cystic fibrosis infec-
tions caused by P. aeruginosa PAO1 (Bzdrenga et al. 2017). Furthermore, QQ-strategies 
have also been tested at the topical level. Topical application of a lactonase from 
Bacillus sp. ZA12 has prevented the spread of P. aeruginosa on burned skin animals 
and subsequently reduced the mortality of animals. These results were even more 
effective when lactonase was used in combination with an antibiotic, implying that 
there is excellent compatibility and synergism between QQ-molecules and antibiotics. 
It means, no one may doubt that more novel QQ approaches such as enzymatically 
functionalized dressings and bandages will appear in the future. In the medical field, 
QQ has crossed the border to dental care. Many dental plaque biofilm-forming bacteria 
(e.g., Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and 
Streptococcus sp.) that have been successfully controlled by QQ-strategies resulted in 
a better oral hygiene (Basavaraju et al. 2016). Unfortunately, QQ-approaches in the 
field of dentistry are not advancing well which might be due to less knowledge of QSIs.

In recent years, several model experiments have been conducted to decipher the 
role of QQ-strategies in the control of virulence and disease in animal models (refer 
for a review Rémy et al. 2018). An aliphatic amidase AmiE (a QQ enzyme) could 

Table 4.2 (continued)

QQ agent
(protein superfamily) Effect Target pathogen Reference 
QQ proteins (QQ-5, QQ-7) from 
bacteria

Impaired biofilm 
formation

Candida albicans, 
Staphylococcus 
epidermidis

Weiland- 
Bräuer et al. 
(2019b)

QQ enzymes (lactonases and 
PON like properties) from 
mammalian sera

AHLs 
degradation

P. aeruginosa Yang et al. 
(2005)

Lactonases and acylases Reduce biofilm 
formation

P. aeruginosa PAO1 Rehman and 
Leiknes 
(2018)

AmiE (N-aylhomoserine lactone 
acylase)

Degradation of 
AHLs (preferably 
long chain)

P. aeruginosa PAO1 Ochiai et al. 
(2014)

Homogentisic acid ƴ-lactone Inhibit the 
production of 
pyocyanin and 
extracellular 
matrix

P. aeruginosa Li et al. 
(2018)

Enzymes acylase and α-amylase Prevent bacterial 
biofilm formation 
on urinary 
catheters

P. aeruginosa,  
S. aureus

Ivanova 
et al. 
(2015a)
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disrupt the QS followed by reduction of virulence of P. aeruginosa in a protozoan 
model, i.e. Dictyostelium discoideum (Clamens et  al. 2017). Caenorhabditis ele-
gans (a roundworm), is one of the widely used infection models to study the micro-
bial virulence. Decreased virulence in both gram-positive (e.g., S. aureus) and 
gram-negative bacteria (e.g., Burkholderia cepacian, E. coli, P. aeruginosa etc.) and 
enhanced C. elegans survival were observed when infected C. elegans were treated 
with three different QQ agents, such as (i) QSIs (Baicalin hydrate (Brackman et al. 
2011b), broccoli extract (Lee et al. 2011), hamamelitannin (Brackman et al. 2011b), 
2,5-piperazinedione (Musthafa et  al. 2012a), phenylacetic acid (Musthafa et  al. 
2012b), clove oil (Husain et al. 2013), menthol (Husain et al. 2015), tea polyphenols 
(Yin et al. 2015), Mangifera indica methanol leaf extract (Husain et al. 2017), etc.), 
(ii) QQ enzymes (AiiA lactonase (Wopperer et al. 2006), PvdQ acylase reductase 
(Papaioannou et al. 2009), BpiBo9 reductase (Bijtenhoorn et al. 2011a), MomL lac-
tonase (Tang et al. 2015) etc.) and (iii) QQ bacteria (B. cenocepacia LGM16656, 
P. aeruginosa PAO1 (Christiaen et  al. 2014) etc). Furthermore, the mammalian 
models (e.g., rats or mice) were not exempted from this kind of research. In the 
beginning, several studies have recognized the significance of site-directed muta-
genesis of QS genes in the reduction of severity of several infections such as lungs 
(Pearson et al. 2000), wound burns (Rumbaugh et al. 1999), peritonitis (Sifri et al. 
2002), and prostate gland (Nelson et al. 2009). These results have encouraged us to 
investigate further level with the direct application of QQ molecules in experimental 
animals. For example, inhalation of lactonase SsoPox has reduced P. aeruginosa 
colonization or related mortality in lung infection models (Hraiech et  al. 2014). 
AHL degrading enzyme was also found to be effective in controlling virulence 
caused by P. aeruginosa in a burn wound infection model animal (Gupta et  al. 
2015). The use of tea polyphenols as QSIs was found to be effective in excision 
injury models (Yin et al. 2015). Similarly, several QSIs have also reduced the S. 
aureus pathogenicity in skin wound model animals (Simonetti et al. 2016; Muhs 
et al. 2017). Interestingly, co-treatment with a QSI and an antibiotic has drastically 
reduced colonization of artificial foreign body (such as catheter or implants) by 
pathogenic bacteria such as S. aureus (Simonetti et al. 2016), P. aeruginosa  (Das 
et al. 2016), etc.

For identification of successful results with animal models, a couple of human 
trials have also been conducted with QQ molecules. In the early 2000s, azithromy-
cin was used in clinical trials to treat cystic fibrosis (Wolter et al. 2002) and pulmo-
nary transplanted patients (Gerhardt et al. 2003), but azithromycin usage did not 
lead to a decrease in bacterial load despite improving patient’s quality of life 
(Saiman et al. 2003). But QSI nature of azithromycin was unveiled during the evalu-
ation of QS activities of P. aeruginosa in ventilator-associated pneumonia patients 
(van Delden et al. 2012). Likewise, a couple of other substances have emerged as 
QQ molecules in the human clinical trials, e.g., garlic extracts in cystic fibrosis 
patients (Rasmussen et al. 2005) and 5-FU (a pyrimidine analog) in P. aeruginosa 
(Ueda et al. 2009); overall, very few QQ molecules have reached the stage of human 
clinical trials, which is attributed to the functional differences between the animal 
and human system during the interaction of QQ molecules with their targets.
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4.6  QQ Technology in Agriculture

There is a mounting demand for crop productivity for two principal reasons, 
firstly continuous increase in human population and secondly interest of using the 
crop grain for biofuel production. It is not uncommon that QS plays a vital role in 
numerous plant pathogens; therefore, inhibition of QS signals could be notewor-
thy. Transgenic plants with a gene encoding QQ enzyme can protect the plant and 
crop (Dong et al. 2000, 2001); in this angle, several laboratory-based experiments 
were conducted to test the efficacy of the QQ gene in transgenic plants. The trans-
fer of QQ enzyme encoding genes from bacterial origin (e.g., BacillusAiiA and 
AgrobacteriumAttM lactonases) to different plants has either lowered the symp-
toms or resulted in the total absence of symptoms induced by a QS-inducing 
pathogen (e.g., Pectobacterium) (Dong et  al. 2001; Ban et  al. 2009; Vanjildorj 
et al. 2009; D’Angelo-Picard et al. 2011). Similar results were also observed with 
the production of transgenic tobacco, and potato plants were designed to release 
‘lactonase’ and one plant-associated bacteria E. carotovora was engineered to 
produce ‘Aiia enzyme’(Turan and Engin 2018). Furthermore, it has also been 
investigated and confirmed that the transgenic process is not going to change the 
rhizosphere population (D’Angelo-Picard et al. 2011), implying that QQ-strategy 
is a kind of eco- friendly approach where this strategy can develop disease resis-
tance in the plants without affecting the relationship between plants and the sur-
rounding environment. On the other hand, mutational studies revealed that 
aiiA-defective strain of B. thuringiensis did not exhibit any AiiA lactonase activ-
ity, as well as the strain failed to protect the plant against potato-tuber caused by 
Pectobacterium (Dong et al. 2004). Furthermore, natural multiplication of a QQ 
bacterium namely M. testaceum on the surface of potato leaf could protect the 
plant from soft rot disease (Wang et  al. 2010). The above results indicate that 
genes encoding QQ enzymes seem to be stable in their expression, and these 
genes are quite fit ‘transgenics’ which encourage researchers to screen a large 
number of QQ genes to be expressed in a wide range of plants.

Another way to implement QQ strategy in agriculture is ‘biostimulation’ of 
QQ bacteria (e.g., R. erythropolis) by elective carbon sources (e.g., gamma- 
caprolactone and gamma-heptanolactone) (Grandclement et al. 2016). Elective 
carbon sources such as gamma-caprolactone and gamma-heptanolactone have 
been used to stimulate the growth and root colonization of the introduced and 
native population of QQ bacteria, i.e. R. erythropolis, and this has caused dis-
ease resistance in the plants (Cirou et al. 2007, 2012; Barbey et al. 2012). Certain 
types of QQ enzymes were also found to be effective in controlling plant patho-
gens, for example, esterase is a specific 3-hydroxypalmitate methyl ester, a kind 
of QS molecule used by Ralstonia solanacearum (Bzdrenga et al. 2017). Also, 
some QSIs and QQ microorganisms have been used to disrupt the QS-mediated 
virulence in plant pathogens (soft-rot Pectobacterium spp.), but the efficacy of 
a given QSI was highly dependent on the test pathogen, and this situation dra-
matically demands that QSIs have to be characterized for each of the targeted 
plant pathogens. Interestingly, some QQ bacteria namely Bacillus spp. and 
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Rhodococcus spp. found in the soil and rhizosphere regions (of potato) were 
able to fight against Proteobacterium (a plant pathogen) through QQ-strategy 
without affecting its growth (Uroz et al. 2008), implying that there is a natural 
existence of QQ activities in the plant environment, but not many species of 
such bacteria are known. Details about different QQ isolates (if any) will be 
constructive in the further implications of QQ-strategies in agriculture sector. 
Also, the activities of QQ enzymes of certain bacteria are not entirely compre-
hended. For instance, QS-signal inactivation in R. erythropolis is governed by 
several enzyme activities like lactonase, amidase, and reductase (Uroz et  al. 
2005, 2008); however, only lactonase (encoded byqsdA gene) has been charac-
terized so far (Uroz et al. 2008). When qsdA-defective mutant of R. erythropolis 
was tested against a pathogen Pectobacterium, there was a weak or no effect on 
QS degradation and potato-tuber protection (Uroz et  al. 2008; Barbey et  al. 
2013), which strongly implies that enzymes other than lactonases (in this case 
amidase and reductase) cannot be ignored completely. It is noteworthy that 
QQ-strategies in the plant field raise many doubts, for example, interference 
between the biocontrol agents that produce and quench QS signal molecules in 
not completely understood. Because in one study it was found that the QS pro-
ducers and quenchers had great incompatibility (Molina et al. 2003), suggesting 
that there is a complex interplay between these two communities in eliciting one 
final behavior in a given community. Nonetheless, there is intense research in 
progress to mute the signaling in phytopathogens (Table 4.3), as well as down-
regulate the expression of virulence factors.

Table 4.3 Applications of QQ-strategy in agriculture

QQ agent (protein superfamily) Effect Target Reference 
AiiA (AHL-lactonase) (e.g., 
transgenic plants with AHL- 
lactonase gene)

Enhanced resistance E. carotovora Dong et al. 
(2001)

α-d-Galactopyranosyl-(1–2)-
glycerol (floridoside); betonicine; 
isethionic acid (structurally 
unrelated to AHLs, isolated from 
red alga, Ahnfeltiopsis 
flabelliformis)

Inhibit the AHL 
production

Recombinant A. 
tumefaciens liquid 
culture bioassay

Kim (2007)

QQ-bacteria on the rhizosphere of 
Zingiber officinale(e.g., 
Acinetobacter sp. GG2, 
Burkholderia sp. GG4 and 
Klebsiella sp. Se14)

GG2 and Se14: 
AHL Degrading 
activity via 
lactonolysis
GG4: reduced 
3-oxo-AHLs to 
corresponding 
3-hydroxy 
compounds

Attenuate the 
virulence factors 
in plant pathogens

Chan et al. 
(2011)

AttM (AHL-lactonase) Degradation of 
acyl-AHLs and 
reduced virulence

Erwinia strain 
6276 and other 
bacterial 
pathogens of 
Plants

Carlier 
et al. (2003)

N. R. Maddela et al.
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4.7  QQ-Strategy in Aquaculture

Stringent rules in antibiotic usage in aquaculture and threat of antibiotic resistance 
development in pathogens have jointly led to the initiation of research to set 
QQ-strategy as an alternative for the disease control in aquaculture. In the begin-
ning, QQ enzyme (AHLase) of the gut microbial community of fishes (e.g., 
Dicentrarchus labrax L. and Lates calcarifer) has been successfully used as a bio-
control agent in prawn (e.g., Macrobrachium rosenbergii) larviculture (Nhan et al. 
2010), and this approach resulted in the sustainable aquaculture development. 
Macrobrachium rosenbergii larval growth, larval survival, larval quality, and dura-
tion of the larval rearing process have dramatically been improved by AHLase, 
which was attributed to the down regulation of Vibrio harveyi infection in larva. 
Similar results have also been observed with the purified molecules of AiiO-AIO6 
(Cao et al. 2012), AHLase of pure-species bacteria (e.g., Bacillus sp. QSI-1) (Chu 
et al. 2014) vs. infected zebrafish. All the above results imply that QQ-strategies are 
well investigated in the field of aquaculture to combat pathogenic bacteria 
(Table 4.4), and these strategies will soon replace the antibiotics.

For a sustainable aquaculture industry, novel strategies to control bacterial patho-
gens are must, and such strategies should replace antibiotic application. In the com-
mercial aquaculture, one of the most critical problems is massive economic loss by 

Table 4.4 Applications of QQ-strategy in aquaculture

QQ agent (protein 
superfamily) Effect Target pathogen Reference 
AiiC and Aac 
(AHL-acylase)

Reduced AHL production 
and disruption of biofilm 
formation in fish pathogens

V. anguillarum Morohoshi 
et al. (2008)

Cinnamaldehyde and 
cinnamaldehyde 
derivatives

Reduce virulence (interfered 
with Al-2 based QS) and 
inhibit biofilm formation

V. harveyii Brackman 
et al. (2008)

Hexyl-4,5-dihydroxy-2,3- 
pentanedione (alkyl-DPD 
analogues)

Inhibitors of QS V. harveyi, 
S. typhimurium

Lowery et al. 
(2009)

4-hydroxy cis or trans 
analogs

Inhibit LuxI/LuxE Vibrio fischeri Olsen et al. 
(2002)

N-sulfonyl-HSL Inhibit the action of 
3-oxohexanoyl-l-homoserine 
lactone

V. fischeri Schaefer et al. 
(1996)

Furanone C-30 Inhibit the toxicity V. anguillarum Rasch et al. 
(2004)

N-acyl homoserine lactone 
degrader

Increase fish survival (reduce 
swimming motility and 
biofilm formation by a fish 
pathogen)

Yersinia ruckeri Torabi 
Delshad et al. 
(2018)

QQ-ORF proteins from 
metagenomic library from 
medusa-derived mucus

To maintain a healthy 
microbiota

Defend specific 
bacteria

Weiland- 
Bräuer et al. 
(2019a)
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bacterial diseases; as a result there are high mortality rates in aquacultured organ-
isms such as mollusks, crustaceans, fish, etc. (Defoirdt et al. 2007). Principal infec-
tion is vibriosis, transmitted by feeding substances such as algae, rotifer, and 
Artemia (brine shrimps). Two decades ago, the anti-QS activity of microalgae (e.g., 
D. pulchra) had been observed for the first time in the aquaculture system; QQ 
activity of D. pulchra is attributed to the production of furanones (Givskov et al. 
1996). After 10 years, the importance of natural and synthetic brominated furanones 
as QQ-agents came to light in aquaculture, and they were found to protect brine 
shrimps (Artemia franciscana) from the pathogenic vibrios (V. harveyi, V. campbel-
lii, V. parahaemolyticus, etc.) (Defoirdt et al. 2006). It is important to note that these 
compounds were found to be toxic to the higher organisms (e.g., rainbow trout) 
(Rasch et  al. 2004). After knowing the importance of QSIs, attempts have been 
made to investigate QS-inhibiting algae in both marine and freshwater systems. In 
one investigation, Chlorella saccharophila has been identified as a promising agent 
for controlling the producers of different QS molecules, such as unsubstituted, oxo- 
and hydroxyl-substituted AHLs, and AHLs of V. harveyi (Natrah et al. 2011).

At a further level, attempts have been made to achieve the QQ through the micro-
organism or molecules. Gut microflora of the shrimp (Penaeus vannamei) had a 
capacity to degrade QS molecules (e.g., HAI-1), and such microflora (so-called QQ 
microorganisms) were able to improve the growth rate of rotifers when challenged 
with a pathogen, i.e. V. harveyi (Tinh et al. 2007). Similar results have also been 
observed in other studies too. Intestinal microflora of certain fish (e.g., 
Dicentrarchuslabrax L. and Lates calcarifer) were found to show AHLase activity, 
and such microflora proved to be an effective biocontrol agent in prawn 
(Macrobrachium rosenbergii) larviculture (Nhan et al. 2010). Furthermore, pure- 
species of gut mircroflora also showed similar results, e.g., Bacillus sp. QSI-1 from 
a fish Carassius auratus showed an increased survival rate of infected zebrafishes 
(Chu et al. 2014), which is attributed to the AHLase activity of str. QSI-1. Based on 
these successful results, many patents have also emerged on specific commercial 
products which contain QQ strains (e.g., Bacillus sp.) able to produce AHLase. One 
such commercial product is AquaStar® from Biomin (https://www.biomin.net/en/
products/aquastar/), which improves the larval hatchery production through the 
strategy of QQ. The mode of application of QQ bacteria in aquaculture is either 
incorporation of these strains in the rearing water or bioencapsulation in the feed-
stock. Also, the use of probiotic bacteria alone (D’Alvise et al. 2013) and in combi-
nation with QQ-strategy (Prol García et  al. 2013) was found to be effective in 
controlling the diseases in aquaculture, because in certain cases, QS-independent 
mechanisms are needed to control the pathogens (e.g., Vibrio anguillarum) in aqua-
culture environment. Integrated QQ-strategies seem to play a crucial role in shrimp 
aquaculture shortly (IDRC 2016). It is important to note that shrimp culture 
accounted for more than 50% of overall aquaculture production in 2016. This indus-
try is suffering from severe outbreaks of acute hepatopancreatic necrosis disease, 
caused by Vibrio parahaemolyticus, which leads to severe economic losses (IDRC 
2016). It is noteworthy that Vibrio sp. is found to have multi-resistance towards 
many known antimicrobials. At the same time vaccination is not effective in shrimps 
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since they lack adaptive immunity. Therefore, QQ-strategies are looking like new 
alternatives to protect shrimps from infectious diseases.

4.8  QQ Technology in Wastewater Treatment

One of the most eco-friendly and cost-effective approaches to remove contaminants 
from wastewater is ‘biological treatment’ (Yang et al. 2017). It is a well-known fact 
that bacteria regulate their density and community behavior (such as bacterial 
aggregates in the form of biofilm (Nadell et  al. 2016)) in biological wastewater 
treatment facilities by QS. Many bacterial species in WWT facilities (e.g., sludge) 
can cause fouling on membranes, which has been studied through single-species 
cultures by using dead-end filtration settings (Maddela et  al. 2018). The role of 
bacterial biofilms in WWT facilities is either beneficial (i.e. biocatalysis) or detri-
mental (i.e. biofouling) (Shrout and Nerenberg 2012). Thus, the current challenge is 
how to manipulate the biofilms without affecting the survival and growth of bacte-
rial community (Huang et al. 2016)? Principal obstacles caused by excess biofilm in 
membrane biofilm reactors (MBfR) and moving bed biofilm reactors (MBBR) 
are—limitations in mass transfer, fouling issues, and high liquid headloss, which 
collectively cause poor performance of biofilm reactors, at the end (Hwang et al. 
2010). Therefore, maintaining a constant biofilm thickness during the reactor opera-
tion is a challenging issue.

In the area of WWT, the idea of QQ-MBR (membrane bioreactors) was harbored 
in the year 2002, and then this opened the doors (Table 4.5), and the first practical 
feasibility of QQ-enzymes for biofilm (so-called biofouling in MBRs) control at the 
lab-scale level was observed within 5 years of research (i.e. 2007) (Oh and Lee 
2018). Since then, research on ‘QQ’ is being continued through different variations, 
such as development of immobilized QQ enzymes in 2008, first-time isolation of 
QQ bacteria from WWT facilities in 2009, and this led to open a new era of bacterial 
QQ-MBR in the year 2011. In the subsequent years, there was an observation of 
QQ-beads in 2012, and successful production of QQ-fiber test bead and QQ-sheets 
in 2015 and 2016, respectively. Then in 2017, AI-2 (autoinducer) QQ (with QQ-RO 
(reverse osmosis), QQ-AnMBR (anaerobic MBR)) came into practice. Now the 
QQ-strategy is waiting for its first commercial QQ-MBR. Though plenty of investi-
gation has been done in the fields of QQ-microorganisms, QQ-media, and the size 
of QQ-MBRs, still commercial QQ-MBR does not have a visible future, which is 
attributable to the fact that the QQ-media production cost is not economically fea-
sible, information of QS molecules (AHLs, and AIs) is minimal, and there is a dif-
ficulty in making a synergism between AHLs-QQ and AI-2-QQ and difficulty in the 
optimization of design and media for QQ. And beyond QQ-MBR, still there is no 
idea at all over the commercialization of An-MBR (anaerobic MBR), RO-MBR 
(reverse osmosis MBR), FO-MBR (forward osmosis MBR), etc. even though all 
these MBRs have been proven in lab-scale experimentation. Therefore, additional 
research is obligatory to overcome the hurdles discussed above.
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Table 4.5 Applications of QQ-strategy in industry

QQ agent (protein superfamily) Mechanism Effect References
UV photolysis Inhibit microbial group 

behaviors
Anti-biofouling 
in MBRs

Zhang et al. 
(2019)

AHL-lactonase AiiM Inhibit quorum sensing S. marcescens 
AS-1

Okano et al. 
(2019)

All3924 (homology to the acylase 
QuiP of P. aeruginosa PAO1

Interference of QS 
signaling

Anabaena sp. Romero 
et al. (2008)

Complex biostimulating agent 
(GCL) in core and encapsulated 
QQ bacteria (Rhodococcus sp. 
BH4)

Inhibition of QS Anti-biofouling 
in MBRs

Yu et al. 
(2019)

QQ-enzymes and QQ-bacteria 
(e.g., Afipia sp., Acinetobacter sp., 
Pseudomonas sp., Micrococcus 
sp., Microbacterium sp., 
Rhodococcus sp., and 
Streptococcus sp.,)

Inhibition of biofilm 
formation

Anti-biofouling 
in MBRs

Kim et al. 
(2014)

AmiE (N-Acylhomoserine lactone 
acylase)

Degradation of AHLs P. aeruginosa 
PAO1

Ochiai et al. 
(2014)

QQ-bacteria (encapsulated in a 
dumpling-shaped microbial bag)

Degradation of 
C8-HSL (N-Octonoyl- 
dl-homoserine 
lactone); C6-HSL 
(N-Hexanoyl-l- 
homoserine lactone)

Anti-biofouling 
in MBRs

Gu et al. 
(2018)

Rhodococcus sp. BH4 (microbial- 
vessel system)

Hydrolysis oflactone 
bond of AHL by 
AHL-lactonase and 
mitigation of biofilm 
formation

Anti-biofouling 
in MBRs

Oh et al. 
(2012)

The AHL-lactonase (qsdA of R. 
erythropolis)

Degraded AHL 
molecules 
intracellularly by 
hydrolyzing the lactone 
ring of AHLs

Biofouling 
inhibition in the 
continuous 
MBR.

Oh et al. 
(2013)

Microbacterium sp. embedded 
beads (QQ-bacterium)

Degradation of AHLs 
by the QQB and 
subsequent suppression 
of EPS and SMP 
production

Control 
membrane 
biofouling in 
aerobic 
membrane 
bioreactors

Liu et al. 
(2019)

β-Lactam antibiotic resistant QQ 
bacteria from penicillin 
contaminated river sediments

Degradation of a broad 
range of AHLs 
including 
3-oxo-substitutes

Possible use in 
biofouling 
control

Kusada 
et al. (2019)
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In the recent past, several investigations reported that QQ enzymes (Lee et al. 
2017) and QQ-bacteria/fungi (Ergön-Can et al. 2017) were effective in disrupting 
the QS system in different WWT facilities. A QQ enzyme, i.e. acylase I of 5 μg/mL 
did reduce biofilm formation by 60–73% in A. hydrophila and Pseudomonas putida 
(Paul et al. 2009), and quenching effects of these enzymes were even more effective 
when they were immobilized than in the free form (Lee et  al. 2017). However, 
QQ-microorganisms were found to be more effective than QQ-enzymes, which is 
attributable to the high cost in the production of enzymes and the less half-life of 
QQ-enzymes. Attempts have been made to isolate indigenous QQ-bacteria from 
WWT plants and applied to control the biofilm formation by bacteria isolated from 
the same environment. By these attempts, many QQ-bacteria came to light 
(Acinetobacter sp., Afipia sp., Microbacterium sp., Micrococcus sp., Pseudomonas 
sp., and Rhodococcus sp.) and confirmed that these QQ-bacteria were found to be 
effective inhibitors of biofilms in both the initial- and established-stage (Kim et al. 
2014). Because of such effective results of QQ-strategies, QQ-based methods got 
wider acceptance in the area of WWT facilities, and are being studied extensively 
and being applied in the membrane bioreactors (Oh and Lee 2018; Maddela et al. 
2019). Yet we have many challenges to be addressed in the area of QQ-based bio-
fouling control in MBRs, and as a result, the current status of QQ-MBR is far from 
its commercial stage.

It is not surprising to note that WWT settings are the suitable habitats for co- 
existence of both AHL-producing and AHL-degrading microorganisms. One exper-
imental proof for the co-existence of QS- and QQ-bacteria in activated sludge is that 
there was no induction of β-galactosidase of a reporter strain A. tumefaciens KYC55 
when incubated (6 h) with a known AHL (3-oxo-C8-HSL) (Song et al. 2014) which 
suggest that there was an existence of indigenous QQ activity. Similarly, in gamma- 
caprolactone (GCL) add-back studies with activated sludge, QS signals were inter-
rupted by several QQ-bacteria namely Rhodococcus sp. BH4, Pseudomonas sp. IA1 
and Variovorax paradoxus isolated from sludge, biocake, and nitrifying–denitrify-
ing activated sludge, respectively (Huang et al. 2003; Cheong et al. 2014; Ochiai 
et al. 2014; Kim et al. 2015). In specific environments, the signal-quencher popula-
tion is higher than signal-producers’ (Tan et  al. 2015), implying that there is an 
excellent level of interplay between QQ- and QS-microorganisms. Now the ques-
tion is what is the exact role of indigenous QQ in wastewater treatment facilities? 
The impact of many environmental factors on QQ communities is not fully under-
stood yet. Therefore, to exploit more about their distribution and existence in each 
ecological niche, additional future studies are necessary, which may reduce the gap 
between the lab- and commercial-stage of QQ-MBRs.

4.9  Case Studies

Following are some of the case-studies that provide contextual knowledge over QQ 
in different fields and their progress.
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4.9.1  Anti-biofilm and Anti-QS Activities of the Selected 
Anthocyanidins Against P. aeruginosa PAO1

Anti-biofilm activity of three anthocyanidins (e.g., pelargonidin, cyanidin, and del-
phinidin) was evaluated for the first time under in vitro conditions against biofilm 
formation potential of P. aeruginosa PAO1, for medical reasons (Pejin et al. 2017). 
The activity of the above listed anthocyanidins was tested at three different concen-
trations (e.g., 0.5, 0.25 and 0.125 MIC). The percent inhibition of the biofilm of P. 
aeruginosa PAO1 by delphinidin at concentrations (MIC) of 0.5, 0.25, and 0.125 
was 85, 77 and 57, respectively. Similarly, the biofilm inhibition (%) values for 
pelargonidin were continuously 76, 70 and 62, and for the values for cyanidin were 
85, 83, and 79, respectively. It means that cyanidin was found to be more effective 
over the other two anthocyanidins at all the tested concentrations; for instance, the 
values of percent inhibition of the biofilm (at 0.125 MIC) for cyanidin were 22% 
and 28% higher than pelargonidin and delphinidin, respectively.

4.9.2  Innovative Veterinary Solutions for Antimicrobial 
Resistance

Global health agencies (e.g. International Development Research Centre, IDRC) 
have initiated research to reduce the risk of antimicrobial resistance in livestock, for 
the sustainable human health and food security (IDRC 2019). A growing problem in 
animals is the development of antimicrobial resistance (AMR), which threatens our 
practices that are available to treat bacterial infections in livestock. As a result, live-
stock and aquaculture industries in low and middle-income countries are affected 
massively by increased outbreaks of infectious diseases and resultant economic loss 
in livestock productivity, which ultimately threatens food security and disrupts 
international trade. Furthermore, contamination of animal products with multi- 
antimicrobial- resistant bacteria is a risk factor for humans, animals, and the envi-
ronment. In this direction, very recently, IDRC has announced CA (Canada) $ 21.2 
million in research funding for 11 new projects under the name of ‘Innovative 
Veterinary Solutions for Antimicrobial Resistance (InnoVet-AMR) Initiative’ 
(IDRC 2019). The principal objective of this project is to identify innovative veteri-
nary solutions (including vaccines and alternative solutions), and to reduce the uti-
lization of antimicrobials in livestock and aquaculture operations.

4.9.3  These Brazilian Red Berries Could Hold the Key to Fighting 
Deadly Superbugs

A superbug namely methicillin-resistant Staphylococcus aureus (MRSA), which 
causes mild (e.g., lesions on the skin) and severe life-threatening infections in 
human, accounts for as many as 11,000 deaths/year in USA.  But researchers at 
Emory University (USA) found that a berry extract of Brazilian peppertrees 
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effectively protected the mice infected with MSRA from developing skin lesions, 
reported in ScienceAlert under the ‘Health’ section (Dockrill 2017). This is attrib-
uted to the disruption of QS in bacteria. Traditional healers in Amazon have used 
such extract for hundreds of years to treat infections of the skin and soft tissues. A 
chemical characterization revealed that this berry extract is called as 430D-F5, and 
is a mixture of 27 chemicals. It has also been found that this compound did not kill 
the bacteria, rather inhibited the gene expression of cell-to-cell communication, so- 
called QQ. A single dose of berry extract could show positive effects for up to 2 
weeks. Currently, this research team is looking for a safe and effective method for 
testing this extract in humans, with a possible clinical trial in the nearest future.

4.9.4  Keep Gut Health Challenges at Bay

A commercially available product namely ‘Ecobiol’, which is composed of Bacillus 
amyloliquefaciens CECT 5940, is found to be effective in preventing the develop-
ment of ‘dysbacteriosis’ in birds. Intestinal microbial imbalances or dysbacteriosis 
is a common disorder in birds (e.g., poultry) which is attributed to changes in feed, 
poor water quality, heat stress, high stock densities, microbial infections, etc. 
Therefore, to make the poultry operations profitable, bird performance should be 
optimized with good gut health. Many in vitro and in vivo tests have confirmed that 
str. CECT 5940 is potential in the production of secondary metabolites, QQ, modu-
lation of the immune system, and production of lactic acid; all these mechanisms 
are essential for the maintenance of gut health. QQ activity of B. amyloliquefaciens 
CECT 5940 has practically been proved with a reporter strain i.e. Chromobacterium 
violaceum CV026. Ecobiol® containing str. CECT 5940 successfully prevented the 
production of violacein by C. violaceum CV026, in the presence of C6 HSL 
(Doranalli and Ortiz 2018). Furthermore, probiotic activities of B. amyloliquefa-
ciens CECT 5940 have been confirmed in many case studies, where strain CECT 
5940 could inhibit the population of Clostridium  perfringens and Salmonella spp. 
upon challenging the experiment broiler chickens (PoultryWorld 2018).

4.9.5  Probiotic Good Bacteria Use Fengycins to Eliminate Bad 
Bacteria

Oral Bacillus is found to have QQ activities against the gut colonization of S. aureus, 
which has been confirmed in mice models and human volunteers, revealed in a combined 
investigation of scientists from NIH (National Institutes of Health, USA) and Thailand 
(GEN 2018). The pathogenic S. aureus leads to tens of thousands of deaths every year; on 
the other side, there is a great threat of antibiotic resistance development in these strains 
(e.g., MRSA). An investigation has been carried out with 200 human volunteers in rural 
Thailand, and it was found that 50% of people carried Bacillus subtilis in the gut; further-
more, S. aureus was always absent (both in the gut and nose) when Bacillus was present 
implying that Bacillus spp. might be an effective alternative to antibiotic treatment. Later, 
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Agr-based QS was found to be the vital factor for the colonization of S. aureus, confirmed 
in a mouse model (Piewngam et al. 2018). Then, the same investigation reported that an 
enzyme resistant cyclic lipopeptide namely fengycin B produced by Bacillus spp. was 
responsible for the blocking of Agr-mediated QS in S. aureus. These results have been 
reconfirmed by feeding the mice with B. subtilis spores, which resulted in the complete 
wipe off all S. aureus strains in the animal feces (Piewngam et al. 2018). Similar results 
have also been identified in the Thai human volunteers.

4.10  Challenges and Prospects of QQ Technology

Many challenges remain to be addressed in the area of QQ implications towards a 
sustainable environment. Some of them are as below:

 1. High cost and instability of QQ enzymes limit their applications for controlling 
QS based problems. More importantly, there is significant uncertainty in the 
physiological function of QQ-enzymes which is attributed to difficulties in the 
detection of these enzymes in the environment (Chen et al. 2013). Vast diversity 
(chemically and physically) in QQ-enzymes is also another limiting factor for 
their applications. Nonetheless, the current situation of QQ-enzymes demands 
future research focusing on functional genomics to find out genuine redundancy 
among the relatively homologous enzymes. Such studies may not only help in 
the finding of novel QQ- or QS-microorganisms (bacteria) but also encourages 
the researchers to design QQ or QS like molecules.

 2. Because of practical and ethical problems, murine models are not the best for the 
screening of QQ agents to be used in human medicine. Furthermore, in murine 
models, the physiological aspects of pathology such as wound healing or inflam-
mation are not fully mimicked with human beings; this greatly discourages the 
implications of QQ-strategies in human medicine. As of now, very few QQ agents 
have reached the level of human clinical trials, even though these agents tend to 
show beneficial effects of QSIs. Plenty of investigation has been done with exper-
imental animals; however, validation of these approaches in clinical phases is 
obligatory to confirm the therapeutic relevance of QQ agents.

 3.  Possibility for the development of resistance to QQ agents is a hot topic in most 
of the reviews published in the recent past. In one of our very recent investiga-
tions (Maddela and Meng 2020), biofilm biomass in 6 out of 23 dual-species 
(bacteria) biofilms has been increased in the presence of Rhodococcus sp. BH4, 
which raises a doubt that the QS-bacteria have developed any resistance to QQ- 
bacteria. Existence of multiple QS regulatory genes within strains of the same 
species (Defoirdt et al. 2010) also led to a lot of arguments over the risk of resis-
tance if this diversity induces fitness differences under QQ conditions.

 4. How about the self-degradation of AHLs for certain bacteria, such as 
Agrobacterium and Pseudomonas?

 5. In the plant sector, most QQ approaches have been evaluated under in vitro con-
ditions, and it is hard to find the field-level results in the literature. Results which 
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are obtained at lab-level may not be close to the reality (Grandclement et  al. 
2016; Bzdrenga et al. 2017). Though many plants are able to take up and respond 
to QS signals, only a few plants (e.g., clover and birdfoot deervetch) are known 
to show QQ activities (Palmer et al. 2014). Still we are far from complete under-
standing about plant QQ-enzymes and their corresponding genes. Because of 
this, plant selection and breeding based on QQ-activities are still in their infancy. 
There is a high-level specificity between QQ agents (e.g., QSIs and QQ- 
microorganisms) and target plant pathogens; this considerably demands the 
characterization of QQ agents for each of the targeted plant pathogens (des 
Essarts et al. 2013). In some instances, QS-mediated functions are beneficial to 
the plant system. For instance, Pseudomonas strains (used as biocontrol agents), 
do control certain plant pathogens by producing antibiotic and antifungal mole-
cules. It has been found that there was an incompatibility between QS-signal 
producers and degraders (Molina et al. 2003), which raised many doubts about 
the interference between the biocontrol agents that can produce and degrade QS 
signaling molecules. The use of QQ-strategies for pest control increases another 
problem by affecting beneficial or symbiotic bacteria (e.g., Pseudomonas sp.) 
implying that QQ-strategy seems not to be target-specific. As a result, QQ- 
strategy is going to alter the positive functions in the plant environment.

 6. It is well known that QQ-bacteria (AHL-degraders) are effective biocontrol 
agents in aquaculture to fight bacterial fish disease. But on the other side, they 
could have harmful effects on invertebrates. AHLs are good chemoattractants for 
zoospores of many invertebrates (oysters (Zhao et  al. 2003), mussels (Yang 
2007), etc.) and allow them to settle on biofilms. It is important to note that rear-
ing or hatching of larva requires an efficient settlement. But application of QQ- 
enzymes can exert a negative effect on the accumulation of signal molecules and 
subsequent biofilm formation, which could eventually be a problem to resident 
invertebrates. Under such circumstances, it is difficult to judge whether QQ- 
strategy is beneficial or detrimental.

 7. Regarding QQ applications in MBRs, currently we have many challenges—the 
production cost of QQ-media remains high, no details are available about the 
optimized conditions for QQ-MBR operation, quenching of AI-2 and AIP signal 
molecules is still at their beginning level, it is not known how to control both 
AHLs and AI-2 signals simultaneously for biofouling mitigation, and yet opti-
mum design and economical materials for QQ-media are not available. Studies 
addressing the above challenges will decrease the gap between the lab- and 
commercial- level of QQ-MBR, and also shape the QQ-technology in a sustain-
able way for biofouling control in MBRs.
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Abstract

Chemotherapy is in many cases the primary treatment against several cancers. 
However, there has been increasing and uninterrupted resistance to  antineoplastic 
drugs by malignant tumors. Secondary metabolites are bioactive molecules with 
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diverse functions, used primarily in the pharmaceutical industry serving as the 
basis for medicines. They can be produced by a variety of plants, animals, and 
microorganisms. Actinomycetes are ubiquitous bacteria, responsible for produc-
ing most antibiotics available on the market and producing essential antitumor 
agents used in the treatment of cancer. In this review, we show the significant 
chemicals as well as isolated secondary metabolites that are in the test phase.

Keywords
Chemotherapy resistance · Actinomycetes · Antitumor

5.1  Introduction

Chemotherapy is one of the most used forms of treatment against many types of cancer, 
due to its low cost when compared to other forms of therapy (Holohan et al. 2013). On 
chemotherapy, the usage of cytotoxic agents has increased within the last years, reduc-
ing the development and progression of tumors. The success of chemotherapy was 
mainly based on a more in-depth comprehension of different molecular mechanisms 
that conduct the emergence of neoplasia (Piccolo et al. 2015; Pan et al. 2016).

However, the efficiency of chemotherapy is questioned due to the resistance to 
the medication and the new forms of cancer, once different organisms with the same 
type of cancer can react differently, due to genetic mutations and epigenetic interfer-
ences (Montazami et al. 2015; Marin et al. 2012; Gerlinger et al. 2012).

Important genetic mechanisms related to chemotherapy resistance are pro-
foundly studied because of their complexity. They mainly are related to metabolic 
alterations, which promote the inhibition and degradation of drugs, DNA mutations, 
and epigenetic alterations that increase the expression of the therapeutic targets and 
activate alternative signalization pathways and the effectors of apoptotic pathways 
(Ramos and Bentires-Alj 2015; Housman et al. 2014; Hu and Zhang 2016). They 
are also related to changes on the heterogeneity of tumors and communication 
between cancerous cells and the microenvironment around them, which can stop 
therapeutic responses.

The resistance to antineoplastic agents is classified in two major categories: 
intrinsic and acquired. The intrinsic (primary) resistance occurs when genetic alter-
ations on malignant tumors provide the formation of different resistance factors, 
which turn the treatment inefficient, even before the administration of the drugs. 
Acquired (secondary) resistance can occur during the treatment itself. In the begin-
ning, there is an increase in sensitivity to the drug administered, but during the treat-
ment, genetic mutations can occur (cited above) as an adaptive response (Senthebane 
et al. 2017; Gottesman et al. 2016; Pan et al. 2016; Rebucci and Michiels 2013).

To summarize, resistance to chemotherapy is a result of the organism’s own 
functional dynamic, once the inefficiency of the medicine reaches a threshold too 
insufficient to cure the patient, stabilize the condition, or eliminate the symptoms 
(Salehan and Morse 2013). Therefore, the inefficiency of cytotoxic agents results in 
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a treatment flaw that, usually, leads to death. Although the studies focused on the 
subject are more concentrated on genetics and molecular biology of cancer, the 
search for new medications is still a major objective on the treatment for this disease 
(Olano et al. 2009; Alfarouk et al. 2015; Gomathi and Gothandam 2016).

The present work carried out a systematic survey on chemotherapeutic medicine 
and molecules that presented antitumor/antineoplastic activity and came from acti-
nomycetes on a test phase and are commercially available.

5.2  Search for Bioactive Molecules

Bioactive molecules are secondary metabolites that can be produced by many 
organisms such as plants, bacteria, fungi, kelp, sponges, and oceanic fauna and flora 
(Chinembiri et al. 2014; Catalani et al. 2016; Dias et al. 2012). Usually, they are 
produced in conditions that require adaptive or defensive mechanisms against pred-
ators. These compounds have individual characteristics depending on the species 
producing it; furthermore, they are not vital for growth, development, and/or repro-
duction of the organism of origin (Dias et al. 2012). Those molecules have anti- 
inflammatory, antifungal, anticancer, and antibiotic properties (Zhang et al. 2017; 
Aggarwal et al. 2015; Demain and Vaishnav 2011).

As for the antitumor property, it is worth noticing that bioactive molecules act as 
regulators of tools for repression of oncogenes (genes with cancer connections) and 
the cellular cycle (Aggarwal et  al. 2015). The bioactive compounds interfere on 
whatever oncogenic aspects, such as transcription factors, adhesion molecules, 
growth factors and its receptors, and enzymes that promote inflammatory processes 
(Shanmugam et al. 2016). They also induce the regular cell death (apoptosis) and 
the self-destruction of cells (autophagy) and inhibit the topoisomerases I and II and 
the angiogenesis mechanism (Demain and Vaishnav 2011; Catalani et  al. 2016). 
Last, they are also antioxidant and extinguish free radicals (Kallifatidis et al. 2016).

The most well-known resources are still providing molecules with a larger struc-
tural diversity and offer big opportunities for the prospection of new medicine. The 
microbe diversity represents an important rout for the discovery of new chemical 
molecules (Shah et al. 2017). The actinomycetes are studied, once they produce a 
large summary of natural products (NPs) and other bioactive metabolites, including 
antibiotics, useful enzyme blockers for cancer treatment, enzymes, antifungals, anti-
biotics and antitumor, immunosuppressants, biosurfactants, and immunomodifiers 
that increase immune responses (Adegboye and Babalola 2013; Dilip et al. 2013).

5.3  Actinomycetes: An Overview

5.3.1  Morphology and Reproduction

Actinomycetes are Gram-positive bacteria of the Actinobacteria phylum (Waksman 
1940; Adegboye and Babalola 2013). They are morphologically diverse and vary 
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between coccus (Micrococcus) and bacilli (Mycobacterium) to a ramified mycelium 
(Streptomyces), a majority of which are also spore formers (Ul-Hassan and 
Wellington 2009). They differ, in most cases, due to the presence or absence of 
mycelium (air or substrate), production of melanoid pigments, and their spore struc-
ture (Chaudhary et al. 2013).

For a long time, they were mistaken for fungi, because of similar morphologic 
structures. However, its cell wall has a bigger similarity to other bacteria, because, 
in its composition, the presence of peptidoglycan and teichoic acid is worth notic-
ing, as well as the absence of cellulose and chitin (which are common in fungi). 
Facing these facts, new criterions for fungal-bacterial differentiation were created, 
one that goes beyond cell morphology. These include genetic similarity evaluation 
between DNA sequences, measurement of the genomic guanine-cytosine content, 
cell wall analysis, and membrane composition (Aftab et al. 2015; Barka et al. 2016; 
Behie et al. 2017; Chaudhary et al. 2013; Weber et al. 2015; Polpass and Bhavanath 
2016; Ser et al. 2017).

Actinomycetes reproduce via asexual spores. Filamentous species fragment 
themselves into new cells due to the growth of their hyphae and spore liberation. 
These spores, once exposed, are called conidia; when wrapped on a sporangium, 
they are called sporangiospores. Although not resistant to heat, they can endure 
desiccation, which allows the survival of the species during droughts.

5.3.2  Classification of Actinomycetes

The Actinobacteria phylum is one of the biggest taxonomic unities of the Bacteria 
domain. Until 1983, this bacterial group was classified in five subclasses, six orders, 
and 14 suborders (Goodfellow and Williams 1983). The sequencing and amplifica-
tion of 16S rRNA gene from microbiotic communities became standard for commu-
nity comparisons throughout time, space, and environment. The ribossomic DNA 
sequences of 16S provided actinomycetologists a phylogenetic tree that allowed the 
investigation of actinomycete evolution and the basis for its identification (Burke and 
Darling 2016), which lead to the six classes, 15 orders, 43 families, and 130 genera 
of Actinobacteria (Embley and Stackebrandt 1994; Ludwig et al. 2012).

Between actinomycetes, the genus Streptomyces is still the focus of systematic 
research, and it is of great pharmaceutical interest due to its commercial value as a 
rich source of secondary metabolites (Wei et  al. 2017). The Streptomyces genus 
presents itself in nature in the great number of species between all actinomycete 
genera, with over 500 species. The name Streptomyces was introduced in 1943 to 
actinomycetes of air mycelium production (Dharmaraj 2010).

The genus representatives find themselves mostly on soil. They utilize a large 
variety of extracellular mechanisms for primary growth and easier associations to 
other organisms, as well as reaching its attributes regarding development and sec-
ondary metabolism. Since Waksman’s discovery of streptomycin as the first thera-
peutically useful Streptomyces antibiotic, it was noticed that streptomycetes 
synthesized an incredible variety of chemically distinct blockers, using many differ-
ent cellular processes (Chater et al. 2010).
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5.3.3  Distribution and Ecological Importance

The Actinobacteria species are ubiquitous, which means they are found in different 
habitats. They are considered the main group of microorganisms that make up the 
soil but are also present in aquatic environments such as rivers, oceans, lakes, 
lagoons, swamps, and sewers. Furthermore, they are part of symbiotic associations 
with plants and animals and are present in the gastrointestinal tract of some mam-
mals (Kumar et al. 2014; Rana and Salam 2014; Barka et al. 2016).

New species were found in atypical environments, including medieval paintings, 
desert soil, marine sponge, and thermal fonts containing radon. The ability to inhabit 
the most diverse habitats comes from actinomycete’s capacity to produce extracel-
lular hydrolytic enzymes, particularly on soil, where they are responsible for the 
degradation of organic matter, making them pivotal organisms in the carbon cycle. 
Some species can break more complex and recalcitrant compounds, which the 
Rhodococcus species are a good example of; they can degrade nitrophenol, dinitro-
phenol, pyridine, and nitroaromatic compounds (Ul-Hassan and Wellington 2009; 
Kumar et al. 2014).

They promote the degradation of organic matter, decomposition, and mineraliza-
tion on sediments and on water, releasing organic and inorganic substances dis-
solved in it. The mineralization of organic matter, derived from primary producers, 
results in its cycling, in a way where these substances are returned and, once again, 
available on soil. This way, Actinobacteria not only keep primitive nature of the 
environment but also act as biologic mediators via their involvement in biogeo-
chemical processes such as nitrogen fixation (Kumar et al. 2014).

5.3.4  Production of Biologically Active Molecule

The Actinobacteria produce intra- and extracellular inorganic materials in a 
nanoscale with a differentiated morphology (Manivasagan et al. 2014). Between the 
producers of commercially important metabolites, the actinomycetes are the most 
important prokaryotes in economy and biotechnology (Rambabu et al. 2014).

The filamentous Actinomycetales produce more than 10,000 bioactive com-
pounds, 7600 derivatives of Streptomyces, and 2500 of the so-called rare species of 
actinomycetes, which represent the biggest group (45%) of microbial bioactive 
metabolites (Berdy 2005). The most important fact is that these bacteria have 
evolved due to agglomerates of biosynthetic genes and, therefore, show an unprec-
edented potential in the synthesis of natural, biologically active products (Doroghazi 
and Metcalf 2013; Polpass and Bhavanath 2016).

Now, in the post-genomic era, with thousands of genome sequences for actino-
mycetes available, we realize this bacterial group possesses the genetic capability to 
produce an absurd number of natural products (NPs). This realization, allied with 
the advances in genetic tools, revitalized the interest in exploring actinomycete NPs 
in innovative and creative ways.
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5.3.5  Antitumor Compounds from Actinomycetes

The biotechnological advances improved our comprehension and led to a lot of 
progress in the development of anticancer medication. Although present in the anti-
biotic era, major challenges are faced due to the development of resistance in micro-
organisms and cancer medication. This alarming issue requires immediate action 
when it comes to discovering and developing new, more potent, and less toxic drugs. 
Around 60% of antineoplastic agents come from natural sources such as plants, 
oceanic organisms, and microorganisms (Gomathi and Gothandam 2016).

In Table 5.1, we are able to see 192 bioactive compounds originated from actino-
mycetes, with antitumor and antineoplastic activity tested against different types of 
neoplasia. Between the species in this group, the Streptomyces genus shows up for 
the production of the majority of compounds.

In the global market, there are many antitumor agents with major relevance, 
which were derived from actinomycetes (Table 5.2).

Streptomyces appears in a large summary of the studies as the major chemothera-
peutic drug producer. S. parvulus and S. chrysomallus produce the same compound 
(dactinomycin) and S. galilaeus produces aclacinomycin, which can only be pro-
duced in a lab. In the commercial compounds, there are chemotherapeutic drugs, 
which can be administered by intramuscular, subcutaneous, and intrapleural, not 
just via intravenous.

5.4  Conclusion

Actinomycetes have a large relevance on cancer treatment, once it has a large pro-
duction of bioactive molecules. With the increasing progress in science and technol-
ogy, it is reasonable to predict a higher demand for new bioactive compounds 
synthesized by Actinobacteria from many sources, including earthly and aquatic 
environments (Azman et al. 2015). There are many other bioactive compounds dis-
covered, but they are still in clinical trials and, therefore, not on the market. The 
relevance of new drug discovery makes the treatment expectations increase due to 
chemotherapy resistance.
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Table 5.2 Antitumors derived from Streptomyces sp. available for cancer treatment

Streptomyces sp. Antitumor agents Brand name Laboratory
Streptomyces
parvulus
Streptomyces 
chrysomallus

Dactinomycin 
(actinomycin D)

Dacilon ™
Bloicin-S
Dacmozen®

Dacmozen-Rd
Dacticin
Dactino Injection
Dactocin
Dactinoget
Lyovac Cosmegen
Cosmegen® for 
injection

Celon Labs
Vhb
Korea United Pharm
CBC Pharma
Royal Medical
Gls
MSD
Ovaction
Merck
Lundbeck

Streptomyces verticillus Bleomycin Bleocin ™
Bleocin-S
Bleomycin
Bleopar
Bleomycin
Injection
Bledmax
Blenoxane®

Bleocin
Bleolem
Cbcan
Bleostar-S
Lyoble
Bleoz™

Nippon Kayaku
Kalbe
Parenteral Drugs India
Salius Pharma
Max India Limited
Klab
Lemery
Cbc
United Biotech
Fresenius Kabi
Zuvius Life Sciences
Ahpl

Streptomyces peucetius Doxorubicin Adricin
Doxopar
Doxolid ™
Anthrasafe®

Adriamycin
Doxorubicin
Doxocin
Ribodoxo
Doxorrubicina Hikma
Adrim
Advadox
Caelyx
Dobicin
Doxorubicin
Doxilyd
Doxolem
Cadria
Cadria L Doxorubicin
Doxulip
Doxutec
Duxocin®

Korea United Pharm
Parenteral Drugs Of 
India
Celon Labs
Miracalus Pharma
Pfizer
Hikma
Dbur
Sun Pharmaceutical
Cbc
Teva
Cadila
Salius
Klab
United Biotech 
Biochem
Alkem
Cipla
Meizler Biopharma 
Zuventus
Natco

(continued)
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Table 5.2 (continued)

Streptomyces sp. Antitumor agents Brand name Laboratory
Lipodox®

Lyphidox
Naprodox®

Oncodox-10
Oncodox-50
Oncodox
Rubilong
Natdox-Lp®

Rubex
Doxorubicin 
Hydrochloride 
Injection
Zuvidox 10®

Zuvidox 50®

Ahpl
Zuvius Lifesciences

Streptomyces peucetius Daunorubicin Daunobin
Daunocin®

Daunomycin
Daunorubitec
Daunotec
Daunoblastina
Daunoxome®

Daunorubicin
Vyxeos™

Oncomed
Korea United Pharm
Pfizer
United biotech
Galen Us
Cipla
Shenzhen Main luck 
Pharmaceuticals

Streptomyces lavendulae 
NRRL2564

Mitomycin Mitonco
Lyomit
Mitomycin C
Mutamycin®

Mitosol®

Korea United Pharm
United Biotech
Biochem
Bristol-Myers Squibb
Mobius Therapeutics

Streptomyces galilaeus Aclacinomycin Aclarubicin® Shenzhen Main Luck
Pharmaceuticals
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Abstract

Pollution has become a serious matter of environmental and political concerns in 
the world. Our natural environment has been contaminated by various organic 
and inorganic contaminants, which are being used in many industrial processes 
and released along with industrial effluents. Among them, heavy metals are 
highly toxic pollutants, which cause serious environmental pollution and severe 
health hazards in living beings, and there is a public outcry to ensure the safest 
and healthiest environment for living beings. Phytoremediation, a type of biore-
mediation, has been emerged as an eco-sustainable technology that uses plants 
and their associated microbes to clean up heavy metal-contaminated soils, water, 
and wastewaters as compared to various physicochemical remediation technolo-
gies currently being applied for environmental restoration. However, in current 
scenario, phytoremediation assisted by plant-associated microorganisms, i.e., 
microbe-assisted phytoremediation (use of microbes, i.e., plant growth- 
promoting rhizobacteria, endophytes, and arbuscular mycorrhizal fungi, in 
assisted phytoremediation), is highly preferred for the remediation of heavy 
metal-contaminated sites as they have potential to alleviate the heavy metal tox-
icity in plants through their own metal resistance system and facilitate and 
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improve the growth of host plants under heavy metal stress. In this line, this 
chapter aims to provide an overview on microbe-assisted phytoremediation, 
illustrate various mechanisms elicited for plant growth promotion and heavy 
metal phytoremediation (accumulation/detoxification), and discuss drawbacks 
and future challenges.

Keywords
Heavy metals · Environmental pollution · Toxicity · Microbe-assisted phytore-
mediation · Contaminated sites

6.1  Introduction

Environmental pollution is of serious ecological concern worldwide with a continu-
ally rising public outcry to ensure the safest and healthiest environment. A variety 
of organic and inorganic pollutants have been reported to cause environmental pol-
lution and severe health hazards in living beings (Maszenan et al. 2011; Saxena and 
Bharagava 2017). Among them, heavy metals (HMs) are highly notorious pollutants 
due to their high abundance and nonbiodegradable and persistent nature in the envi-
ronment. Hence, they cause soil/water pollution and toxic, genotoxic, teratogenic, 
and mutagenic effects in living beings (Dixit et al. 2015; Sarwar et al. 2017). They 
also cause endocrine disruption and neurological disorders even at low concentra-
tion (Yadav 2010; Maszenan et al. 2011; Dixit et al. 2015; Sarwar et al. 2017). Any 
naturally occurring metal/metalloid having an atomic number greater than 20 and 
elemental density greater than 5 g/cm3 is termed as HM. They include copper (Cu), 
cadmium (Cd), chromium (Cr), cobalt (Co), zinc (Zn), iron (Fe), nickel (Ni), mer-
cury (Hg), lead (Pb), arsenic (As), silver (Ag), and platinum group elements (Ali 
et al. 2013; Ali and Khan 2018). Among them, Cd, As, Hg, and Pb do not have any 
biological function in the body and thus are nonessential elements. They can cause 
severe health hazards and are listed as priority pollutants by many environmental 
protection agencies worldwide (Jaishankar et  al. 2014; Dixit et  al. 2015; Sarwar 
et al. 2017). Therefore, the removal of HMs from the contaminated matrix is an 
urgent need to safeguard the environment and human health.

Currently, applied physicochemical approaches are environmentally destructive 
in nature and are also costly to apply. However, bioremediation is considered as the 
most eco-friendly approach and employs microbes and plants or their enzymes to 
degrade/detoxify the organic and inorganic pollutants from contaminated environ-
ments. Phytoremediation has been identified as an emerging, low-cost, and eco- 
sustainable solution for HM pollution prevention and control. It is the most suitable 
alternative to conventional physicochemical remediation technologies, which are 
highly expensive and technically more suited to small areas, create secondary pol-
lution and deteriorate soil fertility, and, thus, adversely affect agroecosystem (Ali 
et al. 2013; Chandra et al. 2015; Mahar et al. 2016; Muthusaravanan et al. 2018).

Phytoremediation is the engineered use of green plants with associated soil ben-
eficial microbes to remove toxic pollutants via degradation and detoxification 
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mechanisms from contaminated soil and water/wastewaters (Bharagava et al. 2017; 
Mukhopadhyay and Maiti 2010; Ali et al. 2013). It is an eco-friendly, nonintrusive, 
and aesthetically pleasing remediation technology that removes metal pollutants 
from the contaminated sites (Lee 2013; Chandra et al. 2015; Chirakkara et al. 2016). 
It can be commercialized, and income can be generated, if metals removed from 
contaminated sites could be used to extract usable form of economically viable met-
als (i.e., phytomining) (Chandra et al. 2015; Mahar et al. 2016). In addition, energy 
can be generated through the burning of plant biomass, and land restoration could 
be achieved for sustainable agricultural development or general habitation 
(Stephenson and Black 2014; Mahar et al. 2016). The rationale, mechanisms, and 
economic feasibility of phytoremediation have been discussed elsewhere (Ali et al. 
2013; Wan et al. 2016; Sarwar et al. 2017). However, a longtime frame required for 
phytoremediation and physiological damage to remediating plants under toxic 
metal stress is a major issue. Hence, plant–microbe interactions (PMIs) could be 
exploited to enhance the plant growth and phytoremediation of HM-contaminated 
sites. Therefore, this chapter has mainly focused on the microbe-assisted phytore-
mediation, illustrates various mechanisms elicited for plant growth promotion and 
heavy metal phytoremediation (accumulation/detoxification), and discusses draw-
backs and future challenges with recommendations for further research.

6.2  Heavy Metals: Environmental Pollution and Toxicity 
Profile

Heavy metals (HMs) can be introduced into the environment either by natural or 
anthropogenic processes. Natural processes are geological activities, for instance, 
mineral weathering, erosion, volcanic eruptions, and continental dust. Anthropogenic 
activities include industrial operations such as mining, smelting, electroplating, and 
industrial effluent discharge as well as agricultural practices like the use of pesti-
cides and phosphate fertilizers and release of agricultural wastes (Ali et al. 2013; 
Mahar et al. 2016; Antoniadis et al. 2017). Industrial activities are the major source 
of HM pollution (water and soil) in the environment. If HMs enter the food chain, 
they may bioaccumulate and/or biomagnify at higher trophic levels resulting in 
severe health threats and thus are of serious ecotoxicological concern.

The indiscriminate discharge of toxic metal-rich industrial effluents is one of the 
major sources of environmental pollution. The effluent discharged from metal- 
based industries, especially leather industries (Cr used in leather tanning), causes 
serious soil and water pollution, and hence its treatment and management is a key 
challenge to pollution control authorities (Sahu et al. 2007; Saxena et al. 2016). A 
high concentration of HMs has been reported in sediments of Ganga River and its 
tributaries receiving Cr-loaded tannery effluent (Beg and Ali 2008). In addition, HM 
beyond the permissible limits also deteriorates water quality and makes it unfit for 
drinking and irrigation purpose (Nazeer et  al. 2014). The effluent released from 
electroplating and distillery industries also constitutes a highly rich source of HMs 
and hence is considered as hazardous to living beings (Venkateswaran et al. 2007; 
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Chandra et al. 2008). Furthermore, effluent released from domestic activities is also 
responsible for HM pollution and thus is of serious ecotoxicological concerns 
(Bhardwaj et al. 2017).

In an aquatic ecosystem, HM adversely affects gamete production, sperm qual-
ity, and embryonic development; delays hatching; causes physical deformities in 
fishes; and ultimately leads to the death of newly hatched larvae (Segura et al. 2006; 
Jezierska et  al. 2009; Fatima et  al. 2014). HM also causes endocrine disruption, 
oxidative stress, and genotoxicity in fishes (Jezierska et al. 2009; Luszczek-Trojnar 
et al. 2014; Javed et al. 2016). Further, HM also causes a reduction in hematological 
parameters and glycogen reserve and thus makes the fishes weak, anemic, and vul-
nerable to diseases (Javed and Usmani 2015).

The soil is a nonrenewable resource for sustainable agriculture and acts as a 
major sink for HMs. The contamination of agricultural soil with toxic metals affects 
its physicochemical and biological properties and reduces land usability for agricul-
tural farming leading to food insecurity and thus creating land tenure problems 
(Wuana and Okieimen 2011). Moreover, the coexistence and persistence of HMs in 
soil is also responsible for the entry of toxic metals into the food chain and thus 
leads to severe health hazards in living beings (Khan et al. 2008).

HM inhibits several microbial metabolic processes such as respiration, denitrifi-
cation, and enzymatic activity and, hence, retards the bioremediation processes 
(Zhuang et al. 2007; Sobolev and Begonia 2008). HM also causes a reduction in the 
number of specific microbial populations and a shift in the microbial community 
structure. For instance, Ding et al. (2017) evaluated the effect of Cd and Cr on the 
microbial community structure in the rhizospheric soil of rice plant during a pot 
experiment. Results revealed that the relative abundance of a bacterial genus 
Longilinea was significantly higher in the control soil than in Cd- and Cr-treated 
soils, whereas the relative abundance of the genus Pseudomonas was significantly 
higher in the Cd-treated soils than in the Cr-treated and control soils. However, the 
relative abundance of a genus Sulfuricurvum was also significantly higher in the 
Cd-treated soil than in the Cr-treated and control soils, whereas the relative abun-
dance of the genus Bellilinea was significantly higher in the Cr-treated soil than in 
the other treated soils. HMs also inhibit the cell division, transcription process, and 
denaturation of protein and adversely affect the cell membrane distribution in 
microbes (Jacob et al. 2018). Hexavalent chromium (Cr6+) is also reported to cause 
DNA damage by exerting oxidative stress in soil bacteria and thus leads to geno-
toxic effects (Quievryn et al. 2003).

The irrigation of food crops in the agriculture field with water contaminated with 
toxic metal-rich industrial effluents is a common practice in many developing coun-
tries. It may provide a chance for the movement of potentially toxic metals from 
contaminated soil to edible crops, ultimately reaching into the human/animal body 
via consumption and, thus, rendering severe toxic effects. HM affects various metal- 
sensitive enzymes in plants such as alcohol dehydrogenase, nitrogenase, nitrate 
reductase, and amylase and hydrolytic (phosphatase and ribonuclease) and carbox-
ylating (phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxyl-
ase) enzymes (Nagajyoti et  al. 2010; Yadav 2010). Hence, HM disrupts several 
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biochemical/physiological processes in plants such as seed germination, enzymatic 
activities, nitrogen metabolism, electron transport system, transpiration, CO2 assim-
ilation, antioxidant defense system, photosynthesis, photophosphorylation, cellular 
metabolism, nitrogen fixation, water balance, mineral nutrition, and cellular ionic 
homeostasis and ultimately leads to plant death (Yadav 2010; Lajayar et al. 2017). 
Irrigation of agricultural crops with heavy metal-loaded industrial effluents also dis-
rupts several cytological processes in plants such as root growth and elongation, cell 
membrane permeability, mitotic activity, and the stability of genetic material and 
also creates chromosomal abnormalities (Nagajyoti et al. 2010; Yadav 2010). For 
example, the irrigation of agricultural crops with the HM-rich distillery and tannery 
effluent has been reported to cause a reduction in root/shoot growth and biomass, 
seed germination, and seedling growth and also induce chlorosis and photosynthetic 
impairment (Chandra et al. 2009).

HMs may cause oxidative stress by forming reactive oxygen species (ROS), 
which disrupt the antioxidant defense system and lead to cell damage in humans/
animals, and in extreme cases can be fatal (Jaishankar et al. 2014). For instance, 
hexavalent chromium (Cr6+) has been reported to cause cancer in humans and dam-
age cellular components during its reduction into trivalent chromium (Cr3+), leading 
to the generation of free radicals that cause DNA damage (Mishra and Bharagava 
2016). Therefore, the remediation of HM-contaminated sites is of utmost important 
for environmental safety.

6.3  Current Remediation Technologies: Status 
and Drawbacks

Rapid industrialization and urbanization around the world has led to the recognition 
and understanding of the relationship between environmental contamination and 
public health. Industries are the key players in the national economies of many 
developing countries; however, unfortunately, they are also the major polluters of 
the environment. Among the different sources of environmental pollution, industrial 
wastewater discharged from different industries is considered the major source of 
environmental pollution (soil and water). Industries use a variety of chemicals for 
the processing of raw materials to obtain good-quality products within a short 
period of time and economically. To obtain good-quality products within a short 
period of time, industries generally use cheap and poorly or nonbiodegradable 
chemicals, and their toxicity is usually ignored. However, in the public domain, 
there are many reports available that confirm the presence of a variety of highly 
toxic chemicals in industrial wastewaters.

Industrial wastewaters contain a variety of organic and inorganic pollutants that 
cause serious environmental pollution and health hazards (Maszenan et al. 2011; 
Megharaj et  al. 2011). During production processes, a variety of chemicals with 
large volumes of water are used to process raw materials in industries. This gener-
ates large volumes of high-strength wastewater, which is a major source of environ-
mental pollution (Saxena et  al. 2016). The wastewater generated from 
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pollution- causing industries is characterized by high chemical oxygen demand 
(COD), biological oxygen demand (BOD), total dissolved solids (TDSs), total sus-
pended solids (TSSs), and a variety of recalcitrant organic and inorganic pollutants. 
Organic pollutants include phenols, chlorinated phenols, endocrine-disrupting 
chemicals, azo dyes, polyaromatic hydrocarbons, polychlorinated biphenyls, and 
pesticides, whereas inorganic pollutants include a variety of toxic heavy metals such 
as cadmium (Cd), chromium (Cr), arsenic (As), lead (Pb), and mercury (Hg). The 
high concentration and poor biodegradability of recalcitrant organic pollutants and 
nonbiodegradable nature of inorganic metal pollutants in industrial wastewaters 
pose a major challenge for environmental safety and human health protection; thus, 
it is required to adequately treat industrial wastewater before its final disposal in the 
environment. Although a number of physicochemical methods are applied for the 
treatment of industrial wastewaters, all of these are costly, use a large amount of 
chemicals, and generate a large amount of sludge after treatment, which also acts as 
a secondary pollutant in the environment. Alternatively, biological treatment meth-
ods using an array of microorganisms have diverse metabolic pathways and, hence, 
are regarded as environmentally friendly, cost-effective methods for wastewater 
treatment with simple structural setup, wider application, operational ease, and less 
sludge production compared to physicochemical methods (Mendez-Paz et al. 2005; 
Pandey et al. 2007). Biological methods using microbes are becoming much more 
popular for the treatment of industrial wastewaters in wastewater treatment plants. 
Further, most chemical compounds are degraded by acclimated microorganisms 
during wastewater treatment at wastewater treatment plants; however, some of the 
chemical compounds are not properly degraded/detoxified due to their recalcitrant 
nature during wastewater treatment and are discharged along with wastewaters, 
causing serious environmental pollution (Maszenan et al. 2011). Hence, the applica-
tion of bioremediation technology using potential microorganisms and their consor-
tia or of phytoremediation technology (use of green plants in constructed wetlands) 
is required for the degradation and detoxification of such types of recalcitrant indus-
trial wastewaters prior to safe disposal in the environment.

Phytoremediation is considered as the most applicable remediation technology at 
contaminated sites. Phytoremediation is the engineered use of green plants with 
associated soil beneficial microbes to remove toxic pollutants via degradation and 
detoxification mechanisms from contaminated soil and water/wastewaters 
(Bharagava et al. 2017; Mukhopadhyay and Maiti 2010; Ali et al. 2013). It is an 
eco-friendly, nonintrusive, and aesthetically pleasing remediation technology that 
removes metal pollutants from the contaminated sites (Lee 2013; Chandra et  al. 
2015; Chirakkara et al. 2016). The aim of phytoremediation can be (a) plant-based 
extraction of metals with financial benefit (phytoextraction), (b) risk minimization 
(phytostabilization), and (c) sustainable soil management in which phytoremedia-
tion steadily increases soil fertility allowing growth of crops with added economic 
value (Mahar et al. 2016; Vangronsveld et al. 2009). Phytoremediation includes a 
range of plant-based remediation processes. Phytoremediation reduces the risks of 
pollutant dispersion, and it is applicable for the decontamination of soils or waste-
waters with mixed pollutants (Mahar et al. 2016; Mudhoo et al. 2010). Mechanisms 
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and efficiency of phytoremediation depend on several factors such as the pollutant 
class, its bioavailability especially in soils, physical and chemical characteristics of 
the matrix (soil, water, and wastewaters), and plant species (Mahar et  al. 2016; 
Sreelal and Jayanthi 2017). The plants considered more efficient for phytoremedia-
tion are the metallophytes. These are able to survive and reproduce on metal- 
polluted soils (Coninx et al. 2017; Alford et al. 2010). However, a great number of 
known metallophytes have small biomass and slow growth, characteristics that are 
not advantageous for phytoremediation technologies (Coninx et  al. 2017; Cabral 
et al. 2015). Further, longtime frame required for phytoremediation and physiologi-
cal damage to remediating plants under toxic metal stress is a major issue. Therefore, 
plant–microbe interactions (PMIs) could be exploited to enhance the plant growth 
and phytoremediation of HM-contaminated sites.

The root-/rhizosphere-colonizing, plant growth-promoting rhizobacteria (PGPR) 
have been reported to enhance host plant growth in toxic metal-contaminated sites 
(Yuan et al. 2013; Ma et al. 2015, 2016a). PGPR produces growth hormones such as 
auxins (IAA, indole-3-acetic acid), cytokinins, gibberellins, and ethylene (Rajkumar 
et al. 2012; Ma et al. 2015). The mechanisms of plant growth promotion may vary 
from bacterial strain to strain and depend on various secondary metabolites pro-
duced (Ma et al. 2011; Backer et al. 2018). PGPR also produces some other benefi-
cial compounds such as enzymes, osmolytes, biosurfactants, organic acids, 
metal-chelating siderophores, nitric oxide, and antibiotics (Rajkumar et al. 2012; 
Ma et al. 2015). These beneficial compounds reduce ethylene production via syn-
thesis of ACC (1-aminocyclopropane-1-carboxylate) deaminase that prevents the 
inhibition of root elongation, lateral root growth, and root hair formation and also 
improves the mineral (N, P, & K) uptake in acidic soil (Babu et al. 2013; Ma et al. 
2015). These compounds also suppress phytopathogens, provide tolerance to abi-
otic stress, and help in associated nitrogen fixation (Rajkumar et  al. 2012; Babu 
et al. 2013; Ma et al. 2015). Hence, PGPRs are applied in sustainable agriculture 
development. Besides these, PGPR can lower the metal toxicity to remediating 
plants through biosorption/bioaccumulation as bacterial cells have an extremely 
high ratio of surface area to volume (Ma et al. 2016b; Li et al. 2018). PGPR could 
adsorb high metal concentration by either a metabolism-independent passive or 
metabolism-dependent active processes. Hence, using PGPR in environmental bio-
remediation could be a useful strategy for plant survival in the stressed environment. 
PGPRs reported for the enhanced HM phytoremediation with associated benefits 
have been reviewed in the past (Ma et al. 2011; Rajkumar et al. 2012; Ullah et al. 
2015). Some updated examples from recent studies are summarized in Table 6.1.

Endophytes are the microbes (bacteria/fungi) that reside in the inner tissues of 
plants without causing harm to host. They also help in plant growth promotion and 
development under biotic or abiotic stressed environment and exert many beneficial 
effects than rhizobacteria (Luo et al. 2011; Ma et al. 2011, 2015). They are able to 
tolerate high metal concentration and hence lower phytotoxicity to remediating 
plants as well as help in growth promotion enhancing through biocontrol mecha-
nism and induced systemic resistance against phytopathogens (Ma et  al. 2011, 
2015). They produce phytohormones, organic acids, siderophores, biosurfactants, 
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Table 6.1 Some studies on microbe-assisted phytoremediation of heavy metal-contaminated 
soils

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Enterobacter sp. 
LC1, LC4, & LC6; 
Kocuria sp. LC2 & 
LC5; and Kosakonia 
sp. LC7

Solanum nigrum As Soil IAA and 
P-solubilization

Mukherjee 
et al. 
(2018)

Pseudomonas 
libanensis and 
Pseudomonas 
reactans

Brassica 
oxyrrhina

Cu, 
Zn

Soil IAA, ACC 
deaminase, 
siderophores

Ma et al. 
(2016a)

Pseudomonas putida,
Rhodopseudomonas 
sp.

Cicuta virosa L. Zn Soil Metal-chelating
compounds

Nagata 
et al. 
(2015)

Rhizobium 
leguminosarum

Brassica juncea Zn Soil Metal chelation Adediran 
et al. 
(2015)

Photobacterium spp. Phragmites 
australis

Hg Soil IAA, mercury 
reductase activity

Mathew 
et al. 
(2015)

Bacillus pumilus 
E2S2 and Bacillus 
sp. E1S2

Sedum 
plumbizincicola

Cd Soil IAA, ACC 
deaminase, 
siderophores, 
P-solubilization

Ma et al. 
(2015)

Pseudomonas sp. 
LK9

Solanum nigrum Cd Soil Biosurfactants, 
siderophores, 
organic acids

Chen et al. 
(2014)

P. aeruginosa Triticum aestivum Zn Soil Antioxidative 
enzymes
(catalase, 
peroxidase,
superoxide 
dismutase)

Islam et al. 
(2014)

Mesorhizobium
Amorphae

Robinia 
pseudoacacia

Cu, 
Zn, 
Cr

Soil IAA, induced 
stress
Tolerance

Hao et al. 
(2013)

Acinetobacter sp. Cicer arietinum As Soil IAA production Srivastava 
and Singh 
(2014)

Enterobacter sp. 
JYX7 and Klebsiella 
sp. JYX10

Polygonum 
pubescens

Cd Soil IAA, 
siderophores, 
ACC deaminase, 
P-solubilization

Jing et al. 
(2014)

Bacillus subtilis,
Bacillus cereus,
B. megaterium

Orychophragmus 
violaceus

Cd Soil IAA production Liang et al. 
(2014)

(continued)
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Table 6.1 (continued)

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Phyllobacterium
myrsinacearum 
RC6b

Sedum 
plumbizincicola

Cd, 
Zn, 
and 
Pb

Soil ACC deaminase, 
IAA,
siderophores, P
solubilization

Ma et al. 
(2013)

Staphylococcus 
arlettae NBRIEA 
G-6

B. juncea As Soil IAA, 
siderophores, 
ACC deaminase

Srivastava 
et al. 
(2013)

Rahnella sp. Amaranthus 
hypochondriacu, 
A. mangostanus, 
and S. nigrum

Cd Soil IAA, 
siderophores, 
ACC deaminase, 
P-solubilization

Yuan et al. 
(2013)

Paenibacillus 
macerans NBRFT5, 
Bacillus 
endophyticus 
NBRFT4,
and Bacillus pumilus 
NBRFT9

Brassica juncea Ni Mix. 
of fly 
ash 
and 
press 
mud

Siderophores, 
organic acids, 
protons, and other 
nonspecified 
enzymes

Tiwari et al. 
(2012)

Pantoea agglomerans 
Jp3-3 and 
Pseudomonas 
thivervalensis Y1-3-9

Brassica napus Cu Quartz 
sand

IAA, 
siderophores, 
ACC deaminase, 
P-solubilization

Zhang et al. 
(2011)

Azotobacter 
chroococcum and 
Rhizobium 
leguminosarum

Zea mays L. Pb Soil IAA production 
increased and soil 
pH decreased

Hadi and 
Bano 
(2010)

Bacillus subtilis, B. 
cereus, 
Flavobacterium sp., 
and Pseudomonas sp.

Orychophragmus 
violaceus

Zn Soil ACC deaminase, 
IAA, siderophores

He et al. 
(2010)

Achromobacter
xylosoxidans Ax10

Brassica juncea Cu Soil ACC deaminase, 
IAA,
phosphate 
solubilization

Ma et al. 
(2009)

Burkholderia sp. J62 Zea mays and 
Lycopersicon
Esculentum

Pb, 
Cd

Soil IAA, 
siderophores, 
ACC
deaminase, P
solubilization

Jiang et al. 
(2008)

Burkholderia sp. J62 B. juncea Zn, 
Pb, 
Cu

Soil P, K solubilization Wu et al. 
(2006)

Brevibacillus brevis Trifolium repens Cd, 
Ni, 
Pb

Soil IAA production Vivas et al. 
(2006)

Endophytes

(continued)
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Table 6.1 (continued)

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Bacillus 
thuringiensis GDB-1

Alnus firma As Mine 
tailing 
waste

ACC deaminase, 
IAA, 
siderophores, 
P-solubilization

Babu et al. 
(2013)

Pseudomonas 
koreensis
AGB-1

Miscanthus
Sinensis

As, 
Cd, 
Cu, 
Pb, 
and 
Zn

Soil ACC deaminase 
activity,
IAA

Babu et al. 
(2015)

Staphylococcus, 
Curtobacterium, 
Bacillus, 
Pseudomonas, 
Microbacterium, 
Arthrobacter, 
Leifsonia, 
Paenibacillus

Alyssum 
bertolonii

Ni, 
Co, 
Cr, 
Cu, 
and 
Zn

Soil Production of 
siderophores

Barzanti 
et al. 
(2007)

Serratia 
nematodiphila 
LRE07, Enterobacter 
aerogenes LRE17, 
Enterobacter sp. 
LSE04 Acinetobacter 
sp. LSE06

Solanum nigrum 
L.

Cd Soil Production of 
IAA, 
siderophores, 
ACCD, and 
solubilization of P

Chen et al. 
(2010)

P. monteilii PsF84, P. 
plecoglossicida 
PsF610

Pelargonium 
graveolens

Cr Soil Production of 
IAA and 
siderophores, 
solubilization of P

Dharni 
et al. 
(2014)

Rahnella sp. JN6 Brassica napus Pb Soil IAA, ACC 
deaminase, 
siderophores, 
P-solubilization

He et al. 
(2014)

Actinobacterium Salix caprea Cd 
and 
Zn

Soil Production of 
siderophores and 
ACCD

Kuffner 
et al. 
(2010)

Burkholderia cepacia 
L.S.2.4, 
Herbaspirillum 
seropedicae 
LMG2284

Lupinus luteus L Cu, 
Cd, 
Co, 
Ni, 
Pb, 
and 
Zn

Soil ND Lodewyckx 
et al. 
(2001)

(continued)
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Table 6.1 (continued)

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Pseudomonas 
fluorescens VI8L1, 
Bacillus pumilus 
VI8L2, P. fluorescens 
II8L4, P. fluorescens 
VI8R2, 
Acinetobacter 
calcoaceticus II2R3

Sedum alfredii Zn 
and 
Cd

Soil Production of 
IAA, 
siderophores, 
fixation of 
nitrogen, 
solubilization of 
ZnCO3 and 
Zn3(PO4)2

Long et al. 
(2011)

Serratia marcescens 
LKR01, Arthrobacter 
sp. LKS02, 
Flavobacterium sp. 
LKS03, 
Chryseobacterium 
sp. LKS04

Solanum nigrum 
L.

Zn, 
Cd, 
Pb, 
and 
Cu

Soil Production of 
IAA, 
siderophores, 
ACCD, and 
solubilization of P

Luo et al. 
(2011)

Serratia sp. LRE07 S. nigrum L Cd, 
Cr, 
Pb, 
Cu, 
and 
Zn

Soil Production of 
IAA, 
siderophores, and 
solubilization of P

Luo et al. 
(2011)

Bacillus sp. SLS18 Sorghum bicolor 
L.

Cd 
and 
Mn

Soil Production of 
IAA, 
siderophores, and 
ACCD

Luo et al. 
(2011)

Pseudomonas sp. 
A3R3

Alyssum 
serpyllifolium

Ni Soil Production of 
IAA, 
siderophores, 
ACCD, and 
solubilization of 
P; excreted 
cellulase and 
pectinase

Ma et al. 
(2011)

Methylobacterium 
oryzae CBMB20, 
Burkholderia sp. 
CBMB40

Lycopersicon 
esculentum

Ni 
and 
Cd

Soil ND Madhaiyan 
et al. 
(2007)

P. fluorescens G10, 
Microbacterium G16

Brassica napus Pb, 
Cd, 
Zn, 
Cu, 
and 
Ni

Soil Production of 
IAA, 
siderophores, 
ACCD

Sheng et al. 
(2008)

(continued)
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Table 6.1 (continued)

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Bacillus sp. MN3-4 Alnus firma and 
B. napus

Pb, 
Cd, 
Zn, 
Ni, 
and 
Cu

Soil Production of 
IAA and 
siderophores

Shin et al. 
(2012)

Endophytes belonged 
to Firmicutes, 
Actinobacteria, 
Proteobacteria

Elsholtzia 
splendens, 
Commelina 
communis

Cu Soil Production of 
IAA, 
siderophores, 
ACCD, and 
arginine 
decarboxylase

Sun et al. 
(2010)

Microbacterium sp. 
NCr-8, Arthrobacter 
sp. NCr-1, Bacillus 
sp. NCr-5, Bacillus 
sp. NCr-9, and 
Kocuria sp. NCr-3

Noccaea 
caerulescens, 
Thlaspi 
perfoliatum

Ni Soil Production of 
IAA, 
siderophores, and 
ACCD

Visioli 
et al. 
(2014)

Serratia 
nematodiphila 
LRE07

Solanum nigrum 
L.

Cd Soil ND Wan et al. 
(2012)

Rahnella sp. JN27 Amaranthus 
hypochondriacus 
and A. 
mangostanus

Cd Soil Production of 
IAA, 
siderophores, 
ACCD, and 
solubilization of P

Yuan et al. 
(2014)

Burkholderia sp. 
SaZR4, Burkholderia 
sp. SaMR10, 
Sphingomonas sp. 
SaMR12, and 
Variovorax sp. 
SaNR1

Sedum alfredii 
Hance

Cd 
and 
Zn

Soil ND Zhang et al. 
(2013)

Endophytes belonged 
to Firmicutes, 
Proteobacteria, and 
Actinobacteria

Pteris vittata and 
P. multifida

As Soil Production of 
IAA

Zhu et al. 
(2014)

Arbuscular mycorrhizal fungi

(continued)
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Table 6.1 (continued)

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Glomus mosseae Trifolium 
subterraneum, 
Lolium perenne

Cd, 
Zn

Soil AMF adsorbed up 
to 0.5 mg Cd per 
gram of mycelia 
equivalent to 
threefold binding 
capacity of 
non-tolerant fungi 
or tenfold higher 
than reported for 
Rhizopus arrhizus 
(commonly used 
as biosorption 
organism)

Joner et al. 
(2000)

Glomus intraradices Helianthus 
annuus

Cr Soil AMF increased 
fivefold root Cr 
concentration

Davies 
et al. 
(2001)

Glomus mosseae, 
Glomus caledonium, 
and Glomus 
claroideum

Sorghum vulgare Cu Soil RM increased 
Cu-sorption from 
2.3 to 13.8 mg Cu 
g−1 dry mycelium

Glomus mosseae Trifolium pratense 
L

Zn Soil 22% of total Zn 
plant uptake 
linked to ERM

Chen et al. 
(2003)

Gigaspora rosea and 
Glomus mosseae

Zea mays and 
Sorghum vulgare

Cu Soil GRSP produced 
by G. rosea 
hyphae bound up 
to 28 mg Cu g−1 
and G. mosseae 
ranged from 1.0 
to 1.6 mg Cu g−1

Gonzalez-
Chavez 
et al. 
(2004)

Mixed spores of 
mycorrhizal fungal 
species isolated from 
orchard soil

Kummerowia 
striata, Ixeris 
denticulata, 
Lolium perenne, 
Trifolium repens, 
and Echinochloa 
crus-galli

Pb Soil AMF inoculation 
increased the Pb 
root concentration 
from 7.6% to 
57.2%

Chen et al. 
(2005)

Indigenous 
mycorrhizal 
populations from 
polluted soils

Argemone 
subfusiformis, 
Baccharis 
linearis, 
Oenothera affinis, 
Polypogon viridis

Cu, 
Zn

Soil GRSP bound 
from 1.4% to 28% 
of total Cu in soil 
and from 1.4% to 
5.8% of total Zn

Cornejo 
et al. 
(2008)

(continued)
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enzymes, and growth regulators that help in water and nutrient (P, N, & K) uptake, 
osmolyte accumulation, osmotic adjustment, stomatal regulation, and associated 
nitrogen fixation as additional benefits to host plants (Ma et al. 2011, 2016b). Thus, 
inoculating plants with endophytes could be an excellent strategy to enhance the 
phytoremediation of HM-contaminated sites. Endophytes applied to enhance HM 
phytoremediation with associated benefits have been recently reviewed by several 
researchers (Afzal et al. 2014; Ma et al. 2016b).

Arbuscular mycorrhizal fungi (AMF: colonize plant roots) have been also 
reported to protect their host plants against heavy metal toxicity through their mobi-
lization from soil and thus help in phytoremediation (Marques et al. 2009; Meier 
et al. 2012; Khan et al. 2014). The possible mechanisms by which AMF protect their 
host plants through metal mobilization from soil include:

 (a) Immobilization by chelation;
 (b) Binding of metals to biopolymers in the cell wall;
 (c) Superficial immobilization in the plasmatic membrane once metals cross the 

cell wall;
 (d) Membrane transportation that mobilizes metals from the soil to the cytosol;
 (e) Intracellular chelation through MTs, organic acids, and amino acids;
 (f) Export of metals from cytosol by membrane transporters;
 (g) Sequestration of metals into vacuoles;
 (h) Transportation of metals by means of fungal hyphae;
 (i) Storage of metals in fungal spores; and
 (j) Exportation by the fungus and access into the plant cells, involving both active and 

passive transportation into the mycorrhizae (Meier et al. 2012; Cabral et al. 2015).

They confer resistance against drought, high salt, and toxic metal concentration 
and improve nutrient supply and soil physical properties (Khan et al. 2014). The 
exact mechanism of plant protection is still not fully understood, and further 
research is required to explore their role in the phytoremediation.

Table 6.1 (continued)

Plant growth-promoting rhizobacteria (PGPR)

Bacterial strain(s) Host plant
Heavy 
metal Medium Beneficial effects References

Indigenous 
mycorrhizal 
populations from 
polluted soils

Degraded 
ecosystem with 
presence of 
Sesleria caerulea

Pb, 
Zn

Soil GRSP bound Pb 
attained until 
23.4 mg g−1, 
which represents 
about 16% of 
total soil Pb

Vodnik 
et al. 
(2008)
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6.4  Microbe-Assisted Phytoremediation: Concepts 
and Mechanisms

Most plants growing in polluted environments are often characterized by relatively 
low growth caused by toxic effects of accumulated substances or their degradation 
products (Glick 2003). However, the negative effect of the environment can be alle-
viated by soil microorganisms. The soil is an environment settled by a wide range 
of genetically diverse microorganisms, which play crucial roles in nutrient cycling 
and in soil-forming processes (Ahemad and Khan 2013). They include both bacte-
ria, which are the most numerous (9 × 107 in one gram of typical soil), and fungi 
(2 × 105) (Alexander 1991). Microorganisms inhabiting metalliferous soils often 
exhibit tolerance to high concentrations of heavy metals (HMs) in the environment. 
Many studies have confirmed that interactions between plants and metallo-tolerant 
microorganisms facilitate the recultivation of HM-polluted areas (e.g., Chen et al. 
2014; Ma et al. 2015; Złoch et al. 2017). This synergism can accelerate the process 
of remediation by phytostabilization or phytoextraction of HMs but can also increase 
plant growth and development under adverse environmental conditions (Khan et al. 
2009). The functioning of plant–microorganism associations in HM-contaminated 
soils depends on both the microorganisms and the plant host (Egamberdieva et al. 
2016). The plant roots secrete exudates that are the source of nutrients for microor-
ganisms and also increase the solubility of macro- and microelements affecting the 
activity of microorganisms associated with plant roots (Iqbal and Ahemad 2015). 
Plant-associated microorganisms can play significant roles in nutrient cycling, 
improving soil structure, detoxifying harmful contaminants, modulating plant 
defense responses to stress factors, and assisting in biological control of phyto-
pathogens and plant growth (Elsgaard et al. 2001; Filip 2002; Giller et al. 1998).

To generalize, the activity of microorganisms inhabiting the roots (endophytes) 
or rhizosphere can increase the capacity of metalliferous soil phytoremediation as 
follows:

 1. Directly: Plant-associated microorganisms directly increase the uptake and 
translocation of metals (facilitation of phytoextraction) or reduce the mobility/
availability of metals within the rhizosphere (phytostabilization).

 2. Indirectly: Microorganisms increase plant tolerance to HMs and/or promote 
plant biomass production in order to remove/stabilize contaminants. A general 
outline of plant–microbe–metal interactions for the phytoremediation of heavy 
metal-contaminated soils is shown in Fig. 6.1.

6.4.1  Direct Mechanisms

In most metalliferous soils, HMs are strongly adsorbed onto soil particles and are 
therefore hardly available for plant roots during phytoextraction (Gamalero and 
Glick 2012). Microorganisms can increase their solubility and availability via (a) 
auto- and heterotrophic leaching (associated with redox reaction), (b) secretion of 
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organic acids and biosurfactants, and (c) release of siderophores (Gadd 2004; 
Wenzel 2008; Li et al. 2012). These processes can lead to the dissolution of mini-
mally soluble metal–mineral compounds (including phosphates, sulfates, and more 
complex ores) as well as metal desorption from the surface of clay minerals or 
organic matter (Gadd 2004). Microorganisms can acidify the environment by releas-
ing H+ through the transmembrane H+-ATPase, maintaining the membrane poten-
tial or as a result of carbon dioxide accumulation generated during respiratory 
processes, which leads to the release of free metal cations from their complexes 
with anions via ion exchange occurring between H+ and metals (Gadd 2004). In 
most cases, autotrophic leaching of metals is performed by acidophilic bacteria, 
which assimilate carbon dioxide and produce energy from Fe2+ oxidation or sulfur 
compound reduction (Rawlings 1997; Schippers and Sand 1999). Moreover, many 
studies have confirmed that rhizosphere bacteria such as Thiobacillus thiooxidans 
are interesting in the context of phytoextraction because they reduce rhizosphere pH 
through the conversion of reduced sulfur into sulfate, improving the availability of 
Cu, for example, to plants (Rawlings and Silver 1995; Shi et al. 2011). In recent 
years, much attention has been paid to the phenomenon of low-molecular-weight 
organic acids (LMWOAs, compounds with molecular weights ≤300 Da and con-
taining one or more carboxylic groups) being secreted by plant-associated 

Fig. 6.1 Outline mechanism of plant–microbe–metal interactions for microbe phytoremediation 
of heavy metal-contaminated sites

V. K. Deb et al.
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microorganisms and their potential role in the regulation of HM solubility and 
mobilization of mineral compounds within the rhizosphere (Rajkumar et al. 2012).

Chelators are mainly known to enhance the solubility of HMs and include citric, 
lactic, malic, oxalic, malonic, 5-ketogluconic, tartaric, succinic, and formic acids 
(Panhwar et al. 2013). Commonly synthesized oxalates and citrates are known for 
their ability to form stable complexes with many HMs; furthermore, citrates are 
highly mobile and highly resistant to degradation (Francis et al. 1992). Saravanan 
et al. (2007) observed that during secretion of 5-ketogluconic acid by an endophytic 
bacterium of Gluconacetobacter diazotrophicus, various Zn2+ sources (e.g., ZnO, 
ZnCO3, or Zn3(PO4)2) are dissolved, which increases the pool of Zn2+ readily avail-
able for roots. Moreover, Han et al. (2006) revealed stimulatory effects of acetic and 
malic acid on the Cd2+ accumulation in the roots of corn (Zea mays L.). Similar 
observations were noticed in the case of, for example, increased uptake of Cd2+ and 
Zn2+ by Sedum alfredii due to secretion of formic, acetic, tartaric, succinic, and 
oxalic acids by rhizosphere bacteria (Li et al. 2010) as well as stimulation of Cd2+ 
uptake by wheat in the presence of citric acid (Panfili et al. 2009). Regarding syn-
thesis of LMWOAs, particularly oxalate, by fungal strains, it has also been sug-
gested that the release of metal ions via enhanced mineral weathering plays an 
important role and leads to the uptake of HMs by plants and microorganisms (Jones 
1998; Gadd and Sayer 2000). Such an ability was noted for Beauveria caledonica, 
Aspergillus niger, Penicillium bilaiae, or Oidiodendron maius in the case of cad-
mium, copper, lead, nickel, or zinc mineral solubilization (Martino et  al. 2003; 
Fomina et al. 2005; Arwidsson et al. 2010). Another important class of metabolites 
with great potential to increase metal mobility and stimulate the phytoremediation 
process is the microbial surface-active substances called biosurfactants (Rajkumar 
et al. 2012). Biosurfactants are amphiphilic molecules consisting of long nonpolar 
parts (hydrophobic) and polar/ionic (hydrophilic) heads. Their hydrophilic parts 
consist of mono-, oligo-, or polysaccharides, peptides, and proteins, while their 
hydrophobic parts usually contain saturated, unsaturated, and hydroxylated fatty 
acids or fatty alcohols. Siderophores are low-molecular-weight organic compounds 
(500–1500 Da) with high specificity and affinity for Fe3+ chelation (Miethke and 
Marahiel 2007), which release iron from minerals or organic matter in order to 
facilitate iron uptake when its availability in the environment is limited (Li et al. 
2012). Despite the substantial diversity of chemical structures of siderophores (over 
500 diverse siderophores described to date), they can be divided into several groups 
depending on the presence of metal-binding ligands: (a) hydroxamates, (b) catecho-
lates, (c) phenolates, (d) carboxylates, and (e) mixed (Essen et al. 2006; Saha et al. 
2013; Wang et al. 2014; Pluhacek et al. 2016). While the key role of siderophores in 
iron homeostasis in microorganisms has been well known for over 60 years, there is 
increasing evidence for the activation of siderophore synthesis by bacteria in the 
presence of toxic metals, which indicates their potential role in HM homeostasis 
(Schalk et al. 2011; Złoch et al. 2016). It was suggested that siderophores may form 
stable complexes with ions such as Ag+, Zn2+, Cu2+, Co2+, Cr2+, Mn2+, Cd2+, Pb2+, 
Ni2+, Hg2+, Sn2+, Al3+, In3+, Eu3+, Ga3+, Tb3+, and Tl+. Enhanced siderophore synthe-
sis by bacteria (so-called siderophore-producing bacteria, SPB) can protect them 
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from the toxic effects of HMs by, for example, extracellular sequestration, thereby 
preventing metals from entering into the cells (Saha et al. 2013). Similar observa-
tions were noted for fungi; however, the relatively weak ability of fungal sidero-
phores (mainly hexadentate hydroxamate) to chelate HMs other than Fe(III) 
(Enyedy et al. 2004; Farkas et al. 2008) makes their potential in HM bioremediation 
rather limited (Pocsi 2011). On the other hand, increased siderophore synthesis can 
improve the phytoextraction capacity of plants by increasing the mobility of metals 
and thus their availability for roots (Glick 2003; Rajkumar et al. 2010).

6.4.2  Indirect Mechanisms

The most important mechanisms, and those confirmed so far in the scientific litera-
ture, are (a) the synthesis of phytohormones and enzymes (primarily indole-3-ace-
tic acid [IAA], 1-aminocyclopropane-1-carboxylate [ACC] deaminase), (b) 
increased nutrient uptake (nitrogen fixation, phosphorus, and iron mobilization), 
and (c) tolerance to biotic (pathogen control) and abiotic (drought, salinity, con-
tamination) stress conditions (Hrynkiewicz and Baum 2012; Ma et al. 2016b). The 
specific response of nitrogen-fixing legumes in response to Cd, like an overproduc-
tion of reactive oxygen species (ROS) in the nodules and its mitigation by PGPB 
(e.g., by the release of siderophores), was reviewed by Gomez-Sagasti and Marino 
(2015). IAA is one of the most important phytohormones and regulates many phys-
iological and morphological functions of plants (Glick 2012). In addition to stimu-
lation of root growth, alleviating salt stress, participating in plant–pathogen 
interactions, and eliciting induced systemic resistance (ISR) against various dis-
eases, IAA is primarily involved in stimulating the proliferation of lateral roots. 
IAA-synthesizing microorganisms can indirectly increase the extraction of metals 
and nutrient supplementation of plants by inducing root proliferation and increas-
ing their uptake surface (Glick 2010). Apart from IAA, soil microorganisms dem-
onstrate the ability to synthesize other phytohormones (cytokinins, gibberellins). 
However, fungi are also known for their ability to secrete compounds similar to 
phytohormones such as auxins, cytokinins, gibberellic acids, or ethylene (Chanclud 
and Morel 2016). Ethylene is a crucial phytohormone that regulates plant cell elon-
gation and metabolism (Ping and Boland 2004), and its overproduction induced by 
stress factors, such as HMs, may inhibit processes involved in plant development 
(i.e., root elongation, lateral root growth, and formation of root hairs) (Mayak et al. 
2004). Microbial ACC deaminase causes the hydrolysis of 1-aminocyclopropane-
1-carboxylic acid (an ethylene precursor) to α-ketobutyric acid and ammonia, 
which can be used as a source of carbon and nitrogen by microorganisms. Thus, 
inoculation of plants with strains synthesizing ACC deaminase indirectly affects 
root growth and proliferation and positively influences the plant biomass and effi-
ciency of HM phytoremediation (Gleba et al. 1999; Agostini et al. 2003; Arshad 
et  al. 2007). ACC deaminase- containing bacteria are relatively common in soil 
(typically free-living pseudomonads) (Glick 2005, 2014), while among fungi, this 
activity is less frequently observed (although it has been reported in Penicillium 
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citrinum and Trichoderma asperellum T203) (Jia et al. 2000; Viterbo et al. 2010) 
and has not been investigated in detail. The presence of elevated amounts of HMs 
often affects the supplementation of plant roots with Fe, P, Mg, or Ca, leading to 
plant growth retardation (Ouzounidou et al. 2006; Parida et al. 2003). Under such 
conditions, plant- associated microorganisms facilitate the uptake of nutrients by 
increasing their availability for plant roots (Rajkumar et  al. 2012). Examples 
include the bacteria reported by Nautiyal et al. (2000), which demonstrate the abil-
ity to increase P availability for plants through phosphate precipitation by acidifi-
cation of the soil solution, complexation, secretion of organic acids, and 
ion-exchange reactions or through mineralization of organic phosphorus com-
pounds secreting acid phosphatase (van der Hiejden et  al. 2008). Among 
P-solubilizing microorganisms, fungal strains belonging to Aspergillus and 
Penicillium are known for their strong ability to release P from insoluble inorganic 
compounds, primarily by producing organic acids and preventing the precipitation 
of P with metals (Jones 1998; Mendes et al. 2014). A similar effect is observed for 
iron, which is present in the Earth’s crust in large quantities; however, iron is found 
mostly as insoluble hydroxides and oxyhydroxides that are not readily available to 
plants (Budzikiewicz 2010; Rajkumar et al. 2010). Moreover, plants growing in 
metalliferous soils are very often exposed to iron deficiency, which produces a 
decreased photosynthesis rate and consequently a decline in their growth and 
development (Nagajyoti et al. 2010a, b). In such cases, inoculation of plants with 
SPB can be a promising method to mitigate iron deficiency (Iqbal and Ahemad 
2015). Many studies have confirmed that SPB successfully increased chlorophyll 
concentration and improved other plant growth parameters in the presence of HM 
contamination in the soils by facilitating iron uptake (Burd et  al. 1998, 2000, 
Carrillo-Castaneda et al. 2003, Barzanti et al. 2007). It has also been observed that 
the synthesis of siderophores may stimulate plant growth in metalliferous areas via 
the following activities: (a) involvement in maintaining an appropriate level of IAA 
through binding of HMs, thereby reducing the inhibitory effect of metals on the 
IAA biosynthesis pathways, and through decreased production of reactive oxygen 
species (ROS), which can degrade IAA molecules; (b) mitigation of oxidative 
stress by stimulation of peroxidase activity; and (c) phytopathogen control via che-
lation of iron ions within the rhizosphere and decreasing the availability of iron for 
pathogens (Dimkpa et al. 2008; Rajkumar et al. 2009).

6.5  Microbe-Assisted Phytoremediation of Heavy Metal- 
Contaminated Sites

It has been well demonstrated that the inherent ability of endophytic bacteria may 
help host plants adapt to unfavorable soil conditions and enhance the efficiency of 
phytoremediation by promoting plant growth, alleviating metal stress, reducing 
metal phytotoxicity, and altering metal bioavailability in soil and metal transloca-
tion in plant (Ma et al. 2011; Ozyigit and Dogan 2015). Overall, the plant-associated 
microbes promote phytoremediation process in metal-polluted soils by two distinct 
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means, i.e., enhancement of plant metal tolerance and growth and alteration of 
metal accumulation in plants, as discussed in above sections. Some important stud-
ies on the phytoremediation of heavy metal-contaminated soils assisted by plant 
growth-promoting rhizobacteria, endophytes, and arbuscular mycorrhizal fungi 
have been summarized in Table 6.1.

6.6  Challenges and Future Perspectives

The success of phytoextraction depends on interactions among soil, metals, and 
plants. Many plants are not capable of gaining sufficient biomass for noticeable 
rates of remediation when elevated levels of pollutants are present (Harvey et al. 
2002; Chaudhry et al. 2005). The remediation process of contaminated soils is lim-
ited and slowed because of their poor nutrient nature. Soil microbes are thought to 
exert positive effects on plant health via mutualistic relationships between them. 
However, microbes are sensitive to pollution, and depletion of microbial popula-
tions, both in terms of diversity and biomass, often occurs in such contaminated 
soils (Shi et al. 2002). Biotic or abiotic stress through a small change in the physi-
cochemical–biological properties of rhizosphere soils can cause a dramatic effect 
on plant–microbe interaction. Further, isolation and characterization of suitable 
plant-associated beneficial microbes is a time-consuming process. It also requires 
the analysis of more than thousands of isolates, and thus identification of specific 
biomarkers may help to select the effective plant–microbe interactions for microbe- 
assisted phytoremediation (Rajkumar et al. 2012). Further, to ameliorate metal tox-
icity, plant growth promotion, and metal sequestration, extensive research efforts 
are also required to explore novel microbial diversity, their distribution, and func-
tions in the autochthonous and allochthonous soil habitats for microbe-assisted phy-
toremediation of HM-contaminated sites.

6.7  Conclusions and Recommendations

 (a) HM pollution in the environment and associated toxicity in living beings is of 
serious eco-environmental concern.

 (b) Inoculation of plants with associated microbes (such as PGPRs, endophytes, 
and arbuscular mycorrhizal fungi) exhibiting multiple traits could be an excel-
lent strategy to enhance metal detoxification in the rhizosphere. A clear-cut 
understanding of plant–microbe–metal–soil interactions is crucial for microbe- 
assisted phytoremediation of HM-contaminated soils.

 (c) The effectiveness of co-inoculation of PGPB and AMF in response to multiple 
biotic and/or abiotic stresses must be assessed for better applicability at field.

 (d) Identification of functional genes of beneficial microbes responsible for growth 
enhancement and metal detoxification should be identified.
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 (e) Trials for the commercial production of bioinoculants for use in metal decon-
tamination should be performed to make a positive remark toward their field 
applicability.

 (f) Genetic engineering of metal-accumulating plants and associated microbes 
with required traits could be a very useful strategy for the enhanced phytoreme-
diation, but associated risks should also be considered before field application.

 (g) A detailed and accurate characterization of target metal(loid)-contaminated 
soils is needed before the inoculation of microbes, as well as adequate strategies 
to enhance inoculant performance by using efficient carrier materials.

 (h) The complexity and heterogeneity of soils contaminated with multiple metals 
and organic compounds requires the design of integrated phytoremediation sys-
tems that combine different processes and approaches.

 (i) Field trials are required to document time and cost data to provide recommen-
dations and convince regulators, decision-makers, and the general public about 
the low-cost applicability of microbe-assisted phytoremediation of heavy 
metal-contaminated sites and for better acceptance in remediation industries.

Conclusively, microbe-assisted phytoremediation technology holds great prom-
ise in gaining the sustainable agricultural production in conjunction with phytore-
mediation of heavy metal-contaminated sites for environmental sustainability.
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7Bioprospecting and Biotechnological 
Applications of Microbial Endophytes

Sneh Sharma, Varsha Rani, Raj Saini, and Madan L. Verma

Abstract
Endophytes are a family of microbes which grow inter/intracellularly in the tis-
sues of higher plants without causing any kind of harm to the host plant in which 
they reside. Endophytic microbes are representing a potential source of natural 
bioactive compounds which are highly useful in agriculture, medicine and indus-
tries, such as antioxidants, anticancerous agents, antidiabetic, antibiotics, bio-
logical control agents and others. A broad variety of bioactive secondary 
metabolites are being provided by the endophytes with unique structural proper-
ties, including steroids, phenolic acids, alkaloids, flavonoids, benzopyranones, 
terpenoids, quinines, xanthones, tetralones, etc. These bioactive secondary 
metabolites find a wider range of applications as immunosuppressants, antibiot-
ics, agrochemicals, antioxidants, anticancerous agents and antiparasitic. Novel 
antimicrobial metabolite discovery from the endophytes is an alternative way to 
overcome the problem of drug resistance in human and plant pathogens. Novel 
compound production via the process of biotransformation by endophytes is an 
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interesting phenomenon, providing a number of advantages over the chemical 
synthesis as well as enhancing the productivity of the desired products.

Endophytes have the ability to produce similar secondary bioactive metabo-
lites as produced by their host plants, thus promoting good yield and growth, and 
enable host plant to tolerate the abiotic as well as biotic stress conditions and 
disease resistance. This field is attracting a lot of interest, and therefore it can be 
utilised for novel natural products in medicinal, food and agricultural industries. 
This chapter is dealing with the endophytic microorganisms, their applications 
and phytochemicals produced via endophytes.

Keywords
Microorganisms · Plants · Interactions · Biotransformation · Metabolites · 
Bioactive

7.1  Introduction

Plants are the major source of medicinal bioactive compounds against various forms 
of ailments. These products have been exploited for human use for centuries 
(Subbulakshmi et al. 2012). The term endophytes includes a suite of microorgan-
isms or an endosymbiotic group of microorganisms that grow in inter- and/or intra-
cellular locations of plants without causing symptoms of disease on the plants 
(Pimentel et al. 2011; Singh and Dubey 2015). They exhibit complex interactions 
like mutualism, antagonism and parasitism with their host plants (Nair and 
Padmavathy 2014). De Bary (1866) provided the first definition of an endophyte as 
“any organism that lives within plant tissues or these are plant-colonizing microor-
ganisms”. Endophytes provide protection and survival conditions to enhance host 
growth and also improve the tolerance ability against biotic and abiotic stresses and 
enhance the resistance to insects and pests by stimulating immune responses 
(Ek-Ramos et  al. 2019). They produce novel bioactive compounds such as alka-
loids, phenolic acids, quinines and tannins for use in industry, agriculture and medi-
cine (Strobel 2003; Strobel and Daisy 2003).

Endophytic microorganisms are important prolific producers of natural bioactive 
compounds and play a significant role in the drug discovery and various develop-
mental processes (Zhang et al. 2018). The rich diversity of endophytic microbes, 
their metabolite production and their adaptation to various environmental stresses is 
continuously explored for isolation of novel bioactive compounds to reduce agro-
chemical usage in food and drug production (Singh et  al. 2017). The symbiotic 
nature of endophytic microbes indicates that bioactive compounds are less toxic to 
the cell and these compounds do not harm the host system and may not adversely 
affect human cells (Chutulo and Chalanaavar 2018).
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Endophytic fungi have been reported first time in grasses (De Bary 1866) and in 
leaves, bark, roots and xylem of almost all plant species (Petrini 1991). Endophytes 
are associated with plants in various forms, including bacteria and fungi which live 
asymptomatically inside the plant tissues (Golinska et al. 2015). Hawksworth and 
Rossman in 1987 reported approximately 1 million fungal species, and only 100,000 
have been described yet. More than 200 genera of bacterial species have been 
reported such as Agrobacterium, Bacillus, Brevibacterium, Pseudomonas and 
Xanthomonas (Sun et al. 2013). The presence of actinomycetes that belong to the 
phylum Actinobacteria and possess mycelium like fungus and form spores was 
reported by Chaudhary et al. (2013) and Barka et al. (2016). Streptomyces is most 
commonly isolated as endophytic actinomycetes and known to produce bioactive 
metabolites that act as antimicrobial and anticancer compounds (Berdy 2012; 
Golinska et  al. 2015). Many important microbial metabolites such as paclitaxel 
extracted from Kitasatospora sp. associated with Taxus baccata and tyrosol from 
Emblica officinalis are reported to inhibit foodborne microbes (Zhao et al. 2011; 
Gangwar et  al. 2014). Fungal endophytes produced large numbers of anticancer 
agents against cell lines, and it was recorded that more than 60% of the anticancer 
compounds are natural products or their derivatives (Rajamanikyam et al. 2017).

Endophytic mycoplasma species are also considered as plant endophytes which 
show endobiotic bacterial–algal interactions with Bryopsis pennata and B. hypnoi-
des, and this suggests close association of endophytic bacterial communities with 
the algal host (Hollants et  al. 2011). Thus, endophytic microorganisms play an 
important role for the production of natural bioactive compounds, with promising 
potential in human health and drug discovery (Lam 2007).

Endophytes represent a subset of microorganisms that are found in specific/par-
ticular nitches and proved as a reservoir of bioactive compounds, if explored prop-
erly (Kapoor et al. 2019). Now it is the time to evaluate and elucidate the significance 
of these microorganisms applied on biotechnological processes for the production 
of bioactive compounds to combat various pathogens associated with health sector 
and other possible medicinal uses. Their diversity and adaptability to extreme stress 
conditions make them excellent novel metabolite source for environment-friendly 
and sustainable food and drug production (Ek-Ramos et al. 2019).

This chapter discusses the interaction between the microorganism and plant sys-
tem with special attention to biodiversity and phytochemistry of the endophytes. 
Screening, isolation and applications of endophytes at commercial level are dis-
cussed in detail.

7.2  Biodiversity and Phytochemistry of Endophytes

Microbial endophytes provide protection and adaptation to the host plant in which 
they are residing, under the stressed conditions by producing plethora of substances 
(Adhikari and Pandey 2018; Rani 2016). Medicinal plants have been one of the best, 
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cost-effective, easily available and unique sources of drugs since ancient times. 
Nature is a hub of various kinds of organisms, blessing us with favourable climatic 
conditions and a very rich flora. There are various plant species and varieties of 
plants growing in the different climatic conditions in different regions of the world, 
producing several bioactive compounds (Alsheikh et al. 2009). Medicinal plants are 
highly useful for curing several health-related ailments. Bioactive molecules which 
are produced by medicinal plants are being used in Ayurvedic system of medicines 
to treat various life-threatening diseases (Alsheikh et al. 2009). But continuous use 
of such medicinal plants leads to reduction in the population of that particular plant 
and name of such plant species included in the red book (Ahmedullah and Nayar 
1999). Extensive use of a particular plant can lead to its extinction, so this problem 
of extensive use of plants can be solved via using endophytes instead of plants. 
Endophytes include a suit of microorganisms growing inter−/intracellularly inside 
the tissues of higher plants producing bioactive natural compounds. Substances pro-
duced by the endophytes residing inside the medicinal plants are highly useful in 
agriculture, industry and medicine (Rani 2016). It has been proved that endophytes 
are rich source of natural bioactive compounds with various biological and pharma-
cological activities (Kogel et al. 2006). Every plant growing on Earth acts as a host 
for one or many endophytic microorganisms (Strobel et al. 2002). Endophytes act 
as a selection system for microorganisms in producing the bioactive compounds 

Fig. 7.1 Applications of endophytes
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having lower toxicity towards higher organisms (Rani 2016). Bioactive compounds 
produced from endophytes are being utilised by the plants protecting themselves 
from human pathogens, and some of these compounds can be utilised for novel drug 
discovery. Natural products such as alkaloids, terpenoids, steroids, flavonoids, etc., 
have been reported from the endophytes. Natural bioactive compounds produced 
from endophytes are antimicrobial, antifungal, antibiotics, insecticidal, antioxi-
dants, antidiabetic, anticancerous, immunosuppressive agents, etc. (Ezra et al. 2004; 
Yu et al. 2010; Huang et al. 2007; Berkodia et al. 2018). Enzymes, produced by the 
endophytes, provide resistance to the plant against the pathogens, and endophytes 
trigger the plant growth hormones, thus playing an important role in plant growth 
and development. Endophytes enable the plants to tolerate the salt stress and 
drought-like conditions. The eco-friendly nature of the endophytes makes them 
suitable to be used in pharmaceutical industries as well as for the sustainable agri-
culture production, as shown in Fig. 7.1 (Berkodia et al. 2018).

Crude extracts of Alternaria alternata have been reported to contain several bio-
active compounds, responsible for the antimicrobial activity, and can be utilised for 
controlling the antimicrobial infections (Jagadevi and Vidyasagar 2018). The 
medicinal plant Achillea millefolium found in the Western Himalayas had been 
explored for the presence of endophytic fungi Aspergillus niger, Aspergillus terreus 
and Aspergillus flavus, respectively. These strains of genus Aspergillus showed 
potential antioxidant potential and some phytochemical constituents (Satari et al. 
2018). Pinus roxburghii which is commonly a timber plant having medicinal prop-
erties has been explored for the endophytes, and endophytes present in Pinus rox-
burghii showed the presence of various bioactive secondary metabolites (Sharma 
and Baunthiyal 2018). Several novel antibiotics have been reported from the endo-
phytes (Zou et al. 2000; Shiono et al. 2005; Gu et al. 2007; Losgen et al. 2008). 
Anticancer chemicals, such as Hsp90 inhibitors (Turbyville et al. 2006), camptoth-
ecin (Amna et al. 2006), paclitaxel (Stierle et al. 1993) and sequoiatones A and B 
(Stierle et al. 1999), have been reported from the endophytes.

Endophytes residing in the plant tissues influence the volatile compounds pro-
duction by the host plant (Mucciarelli et  al. 2007). Acremonium strictum, a root 
endophyte, has been found to modify the volatile profile of the host plant and thus 
affects the selection of host as well as the oviposition behaviour of polygamous 
moth (Jallow et al. 2008). Endophyte, Xylaria sp., has been found to produce lac-
tones which have the potential to function as an antimicrobial drug (Jimenez- 
Romero et al. 2008). Endophytes can also perform stereoselective biotransformation 
of certain chemicals in spite of producing different bioactive compounds, thus aid-
ing in the process of drug modification (Borges et al. 2007). Current agricultural 
practices are using a wide range of bactericides, fungicides and pesticides globally 
which is affecting our health adversely. So, there is need to reduce the use of these 
harmful chemicals. Volatile organic compounds from microorganisms, like fungi 
and bacteria, respectively, are very dynamic and complex and are able to modulate 
the physiology of microbes and plants by regulating the genomic, metabolomic and 
proteomic status. So microbial volatile compounds can be utilised as a cost- effective, 
eco-friendly and sustainable strategy in the agricultural practices. Microbial volatile 
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organic compounds can play a very important role in the signalling process. 
Important signalling roles for the ecological interactions between bacteria and 
plants, fungi and plants, plant and plants and arthropods and plants, respectively, 
can be performed by microbial volatile compounds (Kanchiswam et  al. 2015). 
Metabolism of the host plant can be affected by endophytes, as they are expected to 
improve the quality of the crop especially those crops which have organoleptic 
products such as wine grape. Fruit flesh cells of grape were treated with endophytic 
fungal strains, and metabolites were analysed by using high-pressure liquid chro-
matography. Quantities of detected metabolites after treating with the endophytic 
fungal strains were found to be increased from 6 to 17, and 1 to 11 novel metabolites 
have been introduced into the grape wine metabolome. Thus, it can be concluded 
from this study that introduction of fungal endophytes into grape wine can improve 
the grape quality and its characteristics and novel metabolites can also be intro-
duced in the grape wine (Huang et al. 2018).

7.3  Screening and Isolation Techniques of Endophytes

There is rich microbial diversity within the intracellular and intercellular spaces of 
plant tissues which not only enhances the ability of plants to cope with various types 
of abiotic and biotic stresses but also constitutes an important source of compounds 
of biotechnological relevance (Gouda et al. 2016). Isolation of endophytic microor-
ganisms from plants is an important step to explore their prospects as sources of 
enzymes, secondary metabolites and bioactive molecules of industrial and medical 
importance and for applications as bio-inoculants in agriculture sector (Abdalla and 
McGaw 2018). Various culture-based techniques are generally used for isolation of 
microorganisms from endophytic plants, whereas culture-independent techniques 
allow studying the diversity of both culturable and non-culturable endophytic com-
munities and the variations that occur due to various environmental fluctuations 
(Chen et  al. 2019b). The various factors regulating the isolation of endophytes 
depend on the plant itself, environmental conditions, agricultural practices, the iso-
lation techniques and also the microbes being isolated (Fuchs et al. 2017; Golinska 
et al. 2015; Verma et al. 2014).

7.4  Selection of Plant and Collection of Plant Materials

Plant selection for isolation of endophytes should be based on their economic 
importance. Healthy living plants are selected taking into consideration their loca-
tion and age. As endophytes show some degree of tissue preference (Manjunatha 
et al. 2019), different plant tissues should be screened for more number of endo-
phytic strains. Old and clean leaves from branches reported to harbour more endo-
phytic diversity (Praptiwi et al. 2018), including branches and side roots, may be cut 
and collected for woody plants, and whole plant may be uprooted for herbaceous 
plants.

S. Sharma et al.



197

Plant tissues such as nodules, leaves, twigs, stem, roots, rhizomes, fruits and 
seeds are home to different microbial endophytes (Gupta et al. 2019; Kandel et al. 
2017) and may be used for their isolation. The nodules of Mimosa pudica were used 
to isolate non-rhizobial endophytes with plant growth-promoting traits (Sánchez- 
Cruz et al. 2019). Investigators prefer unique locations and strategies for selection 
of plants for isolation of endophyte (Abdalla and McGaw 2018) like plants occur-
ring in areas with a great natural biodiversity, plants growing in saline and acidic 
soils (Szymańska et al. 2018; Postma et al. 2007), plants growing in unique environ-
ments such as hot and cold areas (Li et al. 2012; Massimo et al. 2015; Hassan et al. 
2018), traditional medicinal plants (Jia et al. 2016) and plants existing in particular 
geographic region, i.e. endemic plants (Ferreira et al. 2017).

7.5  Pretreatment of Plant Tissue Sample for Isolation 
of Endophytes

The freshly collected plant samples are processed without delay or can be stored at 
4 °C for isolation within 24–48 h of collection or preserved at −80 °C if the samples 
are to be processed after 1 or 2 weeks to 1 month. The collected plant samples need 
to be washed thoroughly with tap water to remove adhering soil particles and debris 
(Hassan et al. 2018). After washing the freshly collected samples with the running 
tap, Potshangbam et al. (2017) also soaked the samples for 10 min in distilled water 
containing a few drops of Tween 80.

7.5.1  Surface Sterilisation of Plant Tissues

Besides being a time-consuming process, the surface sterilisation of host plant tis-
sues is essential to study endophytes. Prior to the isolation of endophytes, this cru-
cial step ensures the removal of epiphytic microbes from plant samples. In general, 
optimisation of the sterilisation procedure should be carried out for different plant 
tissues, especially time given for sterilisation, since the sensitivity to the sterilants 
may vary with the age, species and part of the host plant (Qin et al. 2011). Solutions 
of various sterilising agents including mercuric chloride, ethanol, sodium hypochlo-
rite, hydrogen peroxide, sodium thiosulphate, hydrochloric acid, etc., in different 
concentrations, have been used for surface sterilisation, in a sequential manner for 
the purpose of surface sterilisation of plant samples; the time period given for treat-
ment may vary depending on the tissue being treated (Ramalakshmi et al. 2018; 
Mufti et al. 2015). The rinsing with sterile distilled water is given in between the 
sequence and at the end of the treatment for complete removal of the sterilants. 
Variations in the selection of sterilants can be found in different studies related to 
the isolation of endophytes from different plants (Waheeda and Shyam 2017).

Leaves were reported to be treated for surface sterilisation by the following solu-
tion sequence—distilled water for 1  min, ethanol 70% for 1  min, sodium 
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hypochlorite 2.5–3% for 3–4 min and ethanol 70% for 30 s—and finally washed in 
sterile distilled water for 5–10 times (Hassan et  al. 2018; da Silva Ribeiro et  al. 
2018).

For surface sterilisation, root tissues were treated with 70% ethanol (1–3 min) 
and 5% aqueous solution of sodium hypochlorite (1 min), followed by 70% ethanol 
(2 min) and then with 0.1% mercury chloride (1 min), and rinsed with sterile dis-
tilled water (Strobel et al. 2002). T. wallichiana roots were immersed in 99% etha-
nol for 1 min, followed by 5% sodium hypochlorite for 5 min, and then washed 4–5 
times in sterilised water (Adhikari and Pandey 2019). The treatment procedure for 
peanut roots includes using 75% ethanol for 3 min, sodium hypochlorite 3% for 
6 min and ethanol 75% for 30 s and then rinsing six times with water (Chen et al. 
2019a; Gao et al. 2017).

The leaves, stems and roots of Oryza sativa L. and Zea mays, after cutting into 
small segments and washing twice with sterile distilled water, were immersed in 
ethanol 80% for different time periods of 1 min, 2 min and 3 min, respectively. This 
was followed by treatment with NaOCl 4% and alcohol 70% for 1 min giving rins-
ing in between and at the end with sterile distilled water (Potshangbam et al. 2017). 
Ullah et al. (2018) conducted surface disinfection of plant tissues of Withania coag-
ulans and Olea ferruginea with 70% ethanol for 5 min and 0.1% HgCl2 for 1–2 min, 
whereas Sánchez-Cruz et al. (2019) used 70% ethanol and 2% sodium hypochlorite 
for 10 and 20  min, respectively, for surface sterilisation of nodules of Mimosa 
pudica. The surface sterilisation of stems of Bixa orellana L. plants was conducted 
by immersing stem segments of 1 cm firstly in 75% ethanol for 1 min, followed by 
4% sodium hypochlorite for 2 min and then again in 75% ethanol for 30 s.

7.5.2  Checking the Effectiveness of Surface Sterilisation

A sterility check measure of the plant samples ensures the effectiveness of the sur-
face sterilisation procedure. For this purpose, an aliquot from the final rinse water is 
plated onto the media specific for the growth of bacteria, actinomycetes and fungi 
and incubated; absence of any microbial growth indicates the effectiveness of the 
protocol and confirms that the subsequent isolates will be true endophytes (Hassan 
et al. 2018; da Silva Ribeiro et al. 2018).

The validation of surface sterilisation procedure can also be done by imprint 
method where a surface-sterilised plant sample imprint is made by gently pressing 
the tissue on the media and incubating to check for removal of microbial epiphytes 
(Greenfield et al. 2015).
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7.6  Isolation of Endophytes

The growth of endophytes under laboratory conditions is highly dependent on the 
media composition and incubation conditions. Endophytic microorganisms include 
prokaryotes like bacteria, archaea, actinomycetes and eukaryotic microorganisms 
like fungi (Compant et al. 2019). The right selection of culture media makes it pos-
sible to isolate the maximum diversity of culturable endophytes. Different culture 
media, often selective, are initially prepared for isolation of a particular group of 
endophytes. Addition of a certain amount of plant extracts into the isolation medium 
has also been found effective as reported by Qin et al. (2011).

7.6.1  Media for Isolation of Endophytic Bacteria

The commonly used media for isolation of bacterial endophytes comprise of the 
following complex media: Luria–Bertani agar, nutrient agar, 869 medium, trypti-
case soy agar (TSA), casein–starch medium, peptone yeast extract agar and minimal 
media: 284+ C medium and M1 to M10 minimal media (Sánchez-Cruz et al. 2019; 
Liu et al. 2017; Eevers et al. 2015).

7.6.2  Media for Isolation of Endophytic Actinobacteria

Different media have been assessed by researchers for selective isolation of actino-
mycetes such as Gause’s synthetic agar, tap water-yeast extract (TWYE) agar, 
starch–casein agar, sodium propionate agar, International Streptomyces Project 
(ISP) medium 5 agar, trehalose–proline agar, MOPS–amino acid agar, CMC agar, 
humic acid vitamin agar, glycerol–asparagine agar and chitin medium (Hassan et al. 
2018; Chen et al. 2019b; Singh et al. 2018). The starch–casein and sodium propio-
nate media cultures have been reported to yield maximum number and highest 
diversity of endophytic actinobacteria, followed by ISP 5 medium (Chen et  al. 
2019b). Various inhibitors including cycloheximide, nalidixic acid, nystatin and 
K2Cr2O7 can be used for selective isolation of endophytic actinomycete at the rate 
of 50 mg/L, 25–50 mg/L, 50 mg/L and 25 mg/L, singly or in combination in the 
media (Chen et al. 2019b).

7.6.3  Media for Isolation of Endophytic Fungi

Investigators have tested various media for isolation of endophytic fungi from plants 
including potato dextrose agar, water agar, Sabouraud dextrose agar with chloram-
phenicol, corn meal agar, malt extract agar, Czapek–Dox agar and oatmeal agar 
with or without inhibitors such as penicillin G, streptomycin sulphate, tetracycline 
and ampicillin for suppressing the growth of bacteria (Adhikari and Pandey 2019; 
Potshangbam et al. 2017; Garcia et al. 2012).
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After preparation of the media, the surface-sterilised plant samples are dissected 
or ground into small pieces or pulverised aseptically. Chen et  al. (2019a) used 
phosphate- buffered saline (PBS) for mashing surface-sterilised roots. In another 
study (da Silva Ribeiro et al. 2018), surface-sterilised leaf fragments of Pachystachys 
lutea were crushed in 1 mL of an aqueous solution of 0.01% Tween 80. The isola-
tion can be carried in different ways (Zhao et al. 2011; Potshangbam et al. 2017). 
Small pieces (0.1 g) of sample are homogeneously dispersed on the freshly prepared 
isolation medium in Petri dishes which are then incubated at 28 °C (for bacteria) 
and 25  °C (for fungi). In another method, tenfold serial dilutions of the ground 
sample (1 g) in 9 mL sterile water are prepared up to 10−3 thorough stirring. Aliquots 
of 0.1 or 1.0 mL are plated into Petri plates containing the isolation media and then 
incubated. The growth of bacterial and fungal colonies is monitored during the incu-
bation period up to 1–2 weeks. Isolation of endophytic actinomycetes may require 
incubation at 28 °C for 2–8 weeks (Chen et al. 2019b). The next way is to prepare 
thin slices of plant samples after removing the outer cover carefully and thereafter 
make direct impression of these sterilised tissues on the plates containing the fungal 
isolation media and incubate until the growth is observed (Hassan et al. 2018) plated 
surface-sterilised leaves of Oxalis corniculata L., cut into small pieces (0.5–1.0 cm) 
onto starch nitrate agar media supplemented with fungal inhibitor (nystatin, 25 μg/
mL) for isolation of actinomycetes.

7.7  Screening of Endophytes for Different Biological 
Activities of Biotechnological Importance

Screening of endophytes is of major significance as it enables selection of microbes 
with desired trait(s) which can ultimately be used at the production level in indus-
tries. Table 7.1 gives an overview of the various biological activities of biotechno-
logical relevance screened in the endophytic microorganisms by different 
investigators. Here follows some plate-based/qualitative screening of microbial 
activities of agricultural and industrial importance.

7.7.1  Antagonistic Activity

Antagonistic activity of the endophytes against plant pathogenic bacteria and fungi 
highlights their potential for biological control and indicates their contribution to 
their ecological adaptation within the host plant tissues.

7.7.1.1  Antibacterial Activity
Antibacterial activity of a bacterial strain can be tested by cup-plate assay/cylinder- 
plate assay. Chen et al. (2019a, b) tested endophytic bacterial strain isolated from 
peanut roots against peanut pathogenic bacteria by this assay. In this method, 50 mL 
of nutrient broth inoculated with pathogenic bacterium after 24  h incubation at 
30 °C was added to cooled, melted nutrient agar, mixed rapidly and poured into 
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Petri dishes. After the agar cools down, a sterilised cylinder is placed at the centre 
of Petri dish, and then 200 μL broth (108 cfu/mL) of the test strain is added into the 
cylinder. Sterile water served as control. The plates were then incubated and the 
presence of inhibition zone around the cylinder indicated antibacterial activity, and 
the diameter of inhibition zone was measured. Antimicrobial activity of extracts of 
the endophytic actinomycetes grown in broth was evaluated by disc diffusion 
method by Waheeda and Shyam (2017) where filter paper discs impregnated with an 
ethyl acetate extracts were used.

7.7.1.2  Antifungal Activity
Dual culture plate assay can be used to check the antifungal activity of the endo-
phytes (Sánchez-Cruz et  al. 2019). The plate coculture assay was carried out to 
evaluate the antifungal activity of a bacterial strain against various peanut patho-
genic fungi including Aspergillus tenuissima, A. flavus, A. niger, Fusarium oxyspo-
rum, F. moniliforme, Rhizoctonia solani, Rhizopus sp. and Ralstonia solanacearum. 
In this method, 6 mm mycelial bits of 4–6-day-old culture of each pathogenic fun-
gus were placed at the centre of potato dextrose agar plates, and the endophytic 
bacterium was inoculated on the same plate about 25–30 mm apart from the centre 
and kept for incubation until the control plate containing only fungus had grown to 
the whole plate. A zone of inhibition between the endophytic bacterium and the test 
fungus indicated antifungal activity, the width of which was measured from the 
edges of both the fungal and bacterial colonies. The ratio of inhibition was deter-
mined according to Fokkema which is equal to C−T/C where C refers to diameter 
of the pathogenic fungus in the control plate and T is the diameter of fungus on the 
plate, where both the endophyte and the pathogen were inoculated. The inhibition 
ratio can be used to calculate the inhibition percentage (Chen et  al. 2019a, b; 
Potshangbam et al. 2017; Hassan et al. 2018).

Fig. 7.2 Qualitative screening of bacterial isolates for amylase, siderophore production and phos-
phate solubilisation. (a) Amylase activity on starch agar. (b) Siderophore production on CAS 
medium. (c) Phosphate solubilisation on Pikovskaya’s agar
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7.7.1.3  Chitinase Production
Since chitin is a major component of fungal cell walls and biocontrol of phytopatho-
gens by fungal cell wall-degrading enzymes depends on chitinase production by the 
endophytic isolates (Golinska et al. 2015). Basal chitinase detection medium com-
prising of colloidal chitin, MgSO4∙7H2O, (NH4)2SO4, KH2PO4, citric acid monohy-
drate, Tween 80 and agar along with pH indicator bromocresol purple is used for 
this assay; pH of the medium is adjusted to 4.7 (Agrawal and Kotasthane 2012). 
Plates are inoculated with fresh cultures of fungal/bacterial endophytes and incu-
bated at 28 °C for 5 days. The presence of colour change from yellow to purple 
colour around the colony indicates positive chitinase activity.

7.7.1.4  Siderophore Production (Qualitative Detection)
Endophytic microorganisms synthesise siderophores which have high affinity for 
ferric iron (Sánchez-Cruz et al. 2019; Liaqat and Eltem 2016). The different types 
of siderophores can enhance plant growth and yield by increasing the uptake of iron. 
They act as a potential biocontrol agent against phytopathogens and thus can act as 
substitute for hazardous pesticides (Saha et al. 2016). The fresh cultures of endo-
phytic bacterial isolates are spot inoculated on chrome azurol sulphonate (CAS) 
agar medium, and in case of fungi, mycelia disc of one isolate per plate is placed 
and incubated at 28 °C for 7–10 days for detection of siderophore production as 
described by Schwyn and Neilands (1987). The orange halos around the bacterial 
colonies or fungal colonies indicating the production of siderophores are measured 
(Fig. 7.2b). Zone of siderophore production is determined by subtracting the diam-
eter of bacterial/fungal colony from the diameter of total zone inclusive of the 
colony.

7.7.1.5  Tolerance of Endophytes to Heavy Metals
Endophytes also occur widely in heavy metal-contaminated environments. Some 
endophytes reduce phytotoxicity, improve plant growth and enhance the phytore-
mediation effectiveness of host plants which can be source of bioremediation of 
heavy metals (Shen et al. 2013).

Li et al. (2016) screened fresh cultures of 62 fungal endophytes by placing three 
fungal discs, diameter 4.4 mm, of each isolate on fresh PDA plate containing differ-
ent heavy metals, such as lead, zinc and cadmium as Pb(NO3)2, ZnSO4·7H2O or 
CdSO4·8H2O. The concentration of heavy metals in the medium was 9.66 mmol/L 
(Pb), 46.15  mmol/L (Zn) and Cd 1.00  mmol/L (Cd). PDA without heavy metal 
served as control. The plates were incubated at 25 °C, and diameter of the fungal 
colony was measured every other day up to 6 days to assess the effect of heavy met-
als on microbial growth.

7.7.1.6  Indole Acetic Acid Production (Qualitative Assay)
Endophytes can produce phytohormone indole acetic acid (IAA) to promote plant 
growth (Ali et  al. 2019). Luria–Bertani broth incorporated with l-tryptophan 
(5.0 mM), sodium dodecyl sulphate (0.05%) and glycerol (1.0%) can be used for 
screening potential bacterial/fungal isolates for qualitative IAA production 
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(Potshangbam et al. 2017). They overlaid sterile nitrocellulose membrane discs of 
8.2 cm on the above-mentioned medium that was inoculated with the endophyte and 
incubated inversely at 28 °C until the desired growth was observed; the membrane 
disc was taken out and treated with Salkowski reagent. There was a characteristic 
red halo zone within the nitrocellulose membrane immediately surrounding the 
colony which indicated IAA production by endophytic cultures. Production of IAA 
can be determined quantitatively by colorimetric estimation at 530  nm using 
Salkowski reagent (Liaqat and Eltem 2016).

7.7.1.7  Phosphate Solubilisation and Phytase Activity (Plate Assay)
Inorganic phosphate solubilisation through microorganisms is one of the main 
mechanisms involved in the availability of soluble phosphorus to plants and hence 
promotes their growth. The endophytic isolates are screened for phosphate solubili-
sation on Pikovskaya’s agar with tricalcium phosphate as the inorganic form of 
phosphate which has a milky white opaque appearance in solidified state (Adhikari 
and Pandey 2019; Ali et  al. 2018). The spot inoculation of each culture on 
Pikovskaya’s agar plates is carried out and incubation is done at 28 °C for 5 days. 
The appearance of a clear zone around the colonies is an indicator of phosphate 
solubilisation by the endophytes (Fig. 7.2c). The solubilisation zone is determined 
by subtracting the diameter of bacterial colony from the diameter of total zone.

To release inorganic phosphate from various phosphate-containing organic com-
pounds, the enzyme phytase plays a key role as it hydrolyses phytate. Production of 
phytases by the endophytic isolates can be determined by the method of Richardson 
and Hadobas (1997) where the isolates are inoculated on phytase-screening medium 
in Petri plates and phytase activity is determined by subtracting the diameter of 
bacterial colony from the diameter of total zone after incubation at 28 °C for 3 days. 
Adhikari and Pandey (2019) screened endophytic fungal isolates from Taxus walli-
chiana Zucc. roots for their ability to hydrolyse phytate. They used phytase- 
screening medium containing two different substrates – calcium phytate and sodium 
phytate – and incubated at different temperatures 5, 15, 25 and 35 °C, for an incuba-
tion period of 7 days. The isolates positive for phytase enzyme produced a clear 
zone, due to the hydrolysis of calcium and sodium phytate, around the colony.

7.7.1.8  Growth on Nitrogen-Free Media
Bacteria are the only microorganisms having capacity of biological nitrogen fixa-
tion (BNF) which serves as the primary source of fixed nitrogen in land-based agri-
culture systems. The endophytic bacterial isolates have been reported to play an 
important role in BNF (Oses et al. 2018) and can be screened for this activity by 
their growth on nitrogen-free media such as Burk’s nitrogen-free media, Norris glu-
cose nitrogen-free media, Dobereiner’s semisolid N-free bromothymol blue media 
and Jensen’s media after 48 h of incubation at 28 °C which is a qualitative indicator 
of nitrogen fixation (Shabanamol et al. 2018; Potshangbam et al. 2017).
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7.7.1.9  Hydrogen Cyanide (HCN) Production
HCN production by the endophytic bacteria is an important trait that is involved in 
inhibiting fungal growth (Verma et  al. 2018). The method of Castric is used for 
screening of endophytic bacterial isolates for HCN production (Vyas and Kaur 
2019). In this method, one bacterial culture is streaked per plate on trypticase soy 
agar or nutrient agar amended with 4.4 g/L glycine. The discs of Whatman filter 
paper No. 1 are soaked in a solution of 2% Na2CO3 prepared in 0.5% picric acid 
solution. A single treated disc is then placed inside the lid of the Petri dishes streaked 
with the cultures which are further sealed with parafilm and incubated at 28 °C for 
4 days in an inverted position. Development of orange to brown colour indicates 
HCN production. Potshangbam et al. (2017) followed a modified protocol of Miller 
and Higgins for HCN production by endophytic fungal isolates where treated strips 
of Whatman filter paper were placed on PDA slants inoculated with the fungal cul-
tures, closing the lids tightly with parafilm and incubating for 7–14  days. The 
change in the colour of filter paper strips from the yellow colour to brown or reddish 
brown was scored as HCN production.

7.7.1.10  Ammonia Production
Production of ammonia is another important plant growth-promoting trait of the 
endophytes (Rohini et al. 2018; Ullah et al. 2018). Bacterial endophyte with broad- 
spectrum antifungal activity against phytopathogens of grapevine and fungal endo-
phytes associated with medicinal plant Asclepias sinaica were screened for the 
production of ammonia by Andreolli et al. (2019) and Fouda et al. (2015), respec-
tively. For this purpose, they inoculated respective fresh cultures in peptone water 
(10 mL) taken in tubes and incubated at 28 °C for 48–72 h in shaking conditions. 
The tubes positive for ammonia production lead to the development of faint yellow 
to dark brown colour after the addition of 0.5 mL Nessler’s reagent.

7.7.1.11  Screening for Herbicidal Activity
Microorganisms have been reported to produce metabolites that aid in the biological 
control of weeds and can prove to be environmentally friendly alternates to the 
chemical herbicides (Saad 2019; van Lenteren et al. 2018; Mallik 2001). To screen 
the herbicidal activity of endophytic actinomycetes isolated from leaves, stem and 
roots of six different plants, Singh et al. (2018) used surface-sterilised seeds (treated 
with 2–3 min in 3% solution of hydrogen peroxide and rinsed with sterilised dis-
tilled water) of Parthenium hysterophorus, Bidens biternata and Ageratum conyzoi-
des (6–8 of each per plate). These seeds were then placed on either sides of the 
culture of endophytic actinomycete streaked in the form of a strip on media plate, 
which had incubated earlier at 27 °C for 1–2 weeks to allow the growth of actino-
mycetes and diffusion of metabolites in the medium, and also on uninoculated con-
trol plates. Plates were incubated in the dark at 28 °C for 4 days. Seed germination 
was monitored. Saad (2019) also assessed the herbicidal activities of endophytic 
fungi and its secondary metabolites.
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7.7.1.12  ACC Deaminase
The endophytic bacteria can improve plant tolerance against various biotic and abi-
otic stresses by the production of 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase (Afridi et al. 2019; Lumactud and Fulthorpe 2018). The qualitative assay 
used to screen bacterial strains checks for the utilisation of ACC as a nitrogen source 
(Glick et al. 1995). For this purpose, the bacterial cells (endophytic bacterial iso-
lates grown in trypticase soy broth, 5 mL with shaking at 120 rpm for 24 h at 28 °C) 
obtained by centrifugation at 3000 g for 5 min were washed twice and resuspended 
in Tris–HCl (0.1 M; pH 7.5) by Afridi et al. (2019). Then plates containing Dworkin 
and Foster media supplemented with and without ACC were spot inoculated with 
the cultures and plates with ammonium sulphate as the N source served as a positive 
control. After 3 days of incubation at 28  °C, the growth on ACC-supplemented 
plates was examined and compared to positive and negative controls.

7.8  Screening for Enzyme Production

Endophytes produce numerous extracellular enzymes such as amylases, cellulases, 
lipases, pectinases, laccases and proteases (Khan et al. 2017). These enzymes may 
play the key role in providing protection against phytopathogens and meet nutri-
tional needs from the host plants (Fouda et al. 2015; Sunitha et al. 2013). These 
enzymes have applications in food processing, the leather industry, manufacturing 
of detergents, pharmaceuticals, medical therapy and the field of molecular biology 
(Santos et al. 2019; Corrêa et al. 2014).

7.8.1  Proteases

Proteases have extensive applications and are used in laundry, food, leather, brew-
ing, photography and other industries (Delgado-García et al. 2019). Endophytes can 
be a potential source of this enzyme (Dorra et al. 2018). Pure fungal or bacterial 
endophytic isolates can be screened for protease enzyme production by inoculating 
on skim milk agar and incubating at 28  °C until the colony is observed. Visible 
clearance around the colony qualitatively indicates protease activity (López et al. 
2018).

7.8.2  Cellulases

To select endophytes with cellulolytic activity in the extracellular medium, all iso-
lates are inoculated in minimal medium and supplemented with 5 g/L yeast extract 
and 1% carboxymethylcellulose (CMC). CMC plates are incubated for 7 days at 
28 °C and then visualised with 0.1% Congo red dye. Enzyme production is indi-
cated by halo formation (da Silva Ribeiro et al. 2018; Sánchez-Cruz et al. 2019).
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7.8.3  Pectinases

Pectinases have massive industrial applications, and endophytes can serve a good 
source of these enzymes (Singh et al. 2019; Khan et al. 2018). Pectinolytic activity 
of the endophytic fungi was determined by growing them in pectin agar medium 
containing 1% pectin (Uzma et al. 2016; Fouda et al. 2015). A clear zone around the 
fungal colony on flooding the plates with 1% hexadecyltrimethyl ammonium bro-
mide aqueous solution after incubation confirms the pectinase activity of the 
isolate.

7.8.4  Lipases

The microbial lipases find numerous applications in processes of biotechnological 
and industrial importance including food, pharmaceutical, paper and oleochemical 
industries (Naik et al. 2019). For screening lipase activity of the endophytic fungi, 
Sunitha et al. (2013) and Bezerra et al. (2015) used peptone agar medium and PDA, 
respectively, supplemented with Tween 20 that was sterilised separately and added 
at the rate of 1% in the medium. After the incubation of 7 days at 28 °C, the pres-
ence of precipitates around the colony indicated positive lipase activity; the visible 
precipitates are a result of formation of Ca2+salts of the lauric acid released by the 
enzyme.

7.8.5  Amylases

Microbes are a preferred source of amylases, and screening of bacterial and fungal 
endophytes for these extracellular enzymes is a crucial step in their commercial 
production and applications (Khan et al. 2017; Sindhu et al. 2017). The protocol for 
screening involves the spot inoculation of endophytic bacterial or fungal cultures on 
agar medium supplemented with soluble starch (Santos et al. 2019; Potshangbam 
et al. 2017). Endophytes hydrolyse starch showing zone of hydrolysis around the 
colonies when flooded with iodine solution (Fig. 7.2a).

7.9  Natural Products from Endophytic Microbes

Endophytes have been acknowledged as a source of materials and products with 
high potential (Table 7.2) as compared to the plants in pharmaceutical and agro-
chemical areas and also capable of producing various bioactive compounds of bio-
technological application (Sato and Kumagai 2013).
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Table 7.2 Bioactive compounds produced by endophytic microbes

S. No.
Source of 
endophytes

Bioactive 
compounds Applications References

1. Fusarium species Xularosides, 
munumbicins

Antifungal 
activity

Jalgaonwala et al. 
(2011)

2. Hypericum 
perforatum

Hypericin Antibacterial 
activity

Joseph and Priya (2011)

3. Chloridum sp. Javanicin Antibacterial 
activity

Jalgaonwala et al. 
(2011)

4. Cladosporium sp. Cardiac 
glycosides, 
phenolic 
compounds

Antiviral activity Selvi and 
Balagengatharathilagam 
(2014)

5. Boesenbergia 
rotunda

Munumbicins Antibacterial 
activity

Golinska et al. (2015)

6. Streptomyces sp. Munumbicins Antibacterial 
activity

Kumar et al. (2014)

7. Xylaria sp. Phenolic 
compounds

Antibacterial 
activity

Selvi and 
Balagengatharathilagam 
(2014)

8. Cytonaema sp. Cytonic acids A 
and B

Against hepatitis 
virus

Bhardwaj and Agrawal 
(2014)

9. Pseudomonas 
viridiflava

Ecomycin Antifungal 
activity

Miller et al. (1998)

10. Streptomyces 
caespitosus

Mitomycin C Chemotherapeutic 
agent

Danshiitsoodol et al. 
(2006)

11. Streptomyces sp. Coronamycin Antimalarial 
activity

Ezra et al. (2004)

12. Streptomyces 
NRRL 30562

Munumbicin Antibacterial 
activity

Castillo et al. (2002)

13. Bacillus 
thuringiensis

β-exotoxin Insecticidal 
activity

Espinasse et al. (2002)

14. Streptomyces sp. Xiamycin Anti-HIV activity Ding et al. (2010)
15. Bacillus subtilis Subtilin Antibacterial 

activity
Stein (2005)

16. Staphylococcus 
aureus

EtOAc (ethyl 
acetate)

Antibiotic and 
anticancer 
activities

Handayani et al. (2018)

17. Streptomyces sp. 
strain BO-07

Biphenyls Anticancer 
activity

Taechowisan et al. 
(2017)

18. Bacillus sp. Lipopeptides, 
polysaccharides

Antimicrobial and 
antitumour 
activity

Villarreal-Delgado et al. 
(2018)

19. Bacillus subtilis 
and B. 
amyloliquefaciens

Lipopeptides Antifungal 
activity

Gond et al. (2015)

20. Actinomycetes Anthracyclines, 
quinoxalines

Antitumour 
agents

Cardoso-Filho (2018)

(continued)
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7.9.1  Endophytic Microbial Products as Antibiotics

Antibiotics are natural products made by microorganisms as secondary metabolites 
that are active against other microorganisms (Demain 1981). The majority of endo-
phytic bacteria are a source of different kinds of antibiotics. Ecomycin and pseudo-
mycin are some of the antibiotics produced by Pseudomonas viridiflava (Christina 
et al. 2013). Ecomycin represents a family of lipopeptides and is used for the treat-
ment of respiratory, urinary tract and gut infections. It incorporates common amino 
acids like alanine, serine, glycine and threonine (Miller et  al. 1998) and some 
unusual amino acids such as homoserine and β-hydroxyaspartic acid.

The pseudomycins are active against plant and human pathogenic fungi as 
Cryptococcus albicans, C. neoformans and Ceratocystis ulmi (Ballio et al. 1994; 
Harrison et al. 1991). Streptomyces sp. strain NRRL 30562, an endophyte of snake 
vine plant, produced munumbicins with a broad-spectrum biological activity against 
several human diseases. Kakadumycin, a novel antibiotic produced by endophytic 
Streptomyces sp. strain NRRL 30566, is isolated from a fern-leaved Grevillea 
pteridifolia tree. Kakadumycin A and echinomycin are chemically related but differ 
due to their spectral qualities and biological activities (Castillo et al. 2003).

Three endophytic bacteria CER5, CER6 and CER11 were isolated from the roots 
of Capsicum annum and showed biological activity against pathogenic bacteria 
(Syed et al. 2017).

7.9.2  As Antimicrobial Compounds

The discovery of antimicrobial metabolites from endophytes is an alternative option 
to overcome the increasing levels of drug resistance (Ferlay et al. 2010; Taechowisan 
et al. 2012). Streptomyces sp. is involved in the production of bioactive metabolite 
xiamycin against anti-HIV activity (Ding et  al. 2010). These compounds can be 
used as drugs by humankind and also represent broad-spectrum activity against 
foodborne and food-spoilage microorganisms such as E. coli, S. aureus, Aspergillus 
niger, etc.

Cryptocin produced by endophytic fungus Cryptosporiopsis quercina is isolated 
from the inner bark of Tripterygium wilfordii that inhibit the growth of Pyricularia 
oryzae and other plant pathogens (Li et al. 2000). Antimicrobial activity was also 

Table 7.2 (continued)

S. No.
Source of 
endophytes

Bioactive 
compounds Applications References

21. Penicillium sp. Octadecanoic acid Antidiabetic 
activity

Murugan et al. (2017)

22. Alternaria sp. Cetene, 
1,2-benzenedicarb- 
oxylic acid

Antioxidant 
activity and 
antimicrobial 
activity

Elgorban and Abdel- 
Wahab (2018)
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shown by Citrus nobilis fruit against Colletotrichum truncatum, Fusarium oxyspo-
rum and Geotrichum candidum (Hong-Thao et al. 2016). Endophytic bacteria syn-
thesise various nanoparticles which play a significant role for the treatment of 
various types of cancer which emerge as novel antimicrobial compounds in the 
research area of pharmaceutical engineering (Sunkar and Nachiyar 2012). Silver 
nanoparticles have antibacterial properties against HIV-1, hepatitis B virus and her-
pes virus (Sun et al. 2005; Taylor et al. 2005; Baram-Pinto et al. 2009).

Endophytic fungi isolated from leaf, bark and roots of mangrove Sonneratia alba 
Sm showed antimicrobial and cytotoxic activities against tumour cell lines T47D 
(Handayani et al. 2018). An endophytic fungus Cinnamomum zeylanicum isolated 
from Muscodor albus produced volatile organic compounds used for preserving 
fruits and vegetables during storage (Kapoor et al. 2019).

7.9.3  Endophytes as Anticancer Compounds

Endophytes produce many bioactive compounds which have been identified as anti-
cancer agents (Firakova et al. 2007). Paclitaxel, a bioactive compound, has been 
isolated from Taxus species, and this molecule is the world’s first anticancer drug. 
Endophytic bacteria from ginseng produced ginsenosides that possess anticancer-
ous property (Gao et al. 2015). Bacillus species serves as a source of antitumoural 
EPS for cancer treatment (Chen et al. 2013).

Another bioactive compound torreyanic acid was isolated from Pestalotiopsis 
microspora strain as an anticancer agent (Lee et al. 1996). A large group of sub-
stances known as cytochalasin have been found in endophytic fungal genera such as 
Xylaria, Phoma, Hypoxylon, Chalara, etc. These compounds have antitumour and 
antibiotic activities other than cytotoxicity (Wagenaar et al. 2000).

l-asparaginase has also been introduced to the multidrug chemotherapy in acute 
lymphoblastic leukaemia for the treatment of patients. Endophytic actinomycetes 
are involved in the production of potent antitumour agents like maytansinoids, 
lupinacidin, 6-alkyl salicylic acids and salaceyins A and B (Snipes et  al. 2007; 
Powell and Smith 1980). Another compound naphthomycin A was extracted from 
Streptomyces sp. and was found cytotoxic against human tumour cells P388 and 
A549 (Qin et al. 2011; Li et al. 2010). Similarly, seven new macrolides were reported 
from endophytic fungus P. microspora isolated from fresh fruits of Drepanocarpus 
lunatus. They showed cytotoxicity against human ovarian cancer cell lines (Liu 
et al. 2016).

A Streptomyces sp. strain BO-07 produced endophytic biphenyls against human 
HepG2 and Huh7 liver cell lines (Taechowisan et  al. 2017). Another endophytic 
Streptomyces cavourensis strain YBQ59 was isolated from Cinnamomum cassia 
against human lung adenocarcinoma and resistant cell A549 and H1299 growth (Vu 
et al. 2018). Ek-Ramos et al. in 2019 reported that endophytic genes are associated 
with specific metabolite production that are involved in plant growth promotion and 
have antimicrobial, anticancer and insecticidal activities.
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7.9.4  Endophytes as Antioxidants

Natural antioxidants are found in vegetables, fruits and other plants to provide pro-
tection from harmful free radicals. Compounds like pestacin and isopestacin have 
been isolated from Pestalotiopsis microspora. These compounds displayed antioxi-
dant and antimicrobial activities (Strobel et al. 2002). The antioxidant activity of 
pestacin was found greater than trolox, a vitamin E derivative (Harper et al. 2003). 
Another endophytic Streptomyces species isolated from the plant Alpinia oxyphylla 
produced a compound 2,6-dimethoxy-terephthalic acid, which possesses antioxi-
dant activity (Jasmine and Agastian 2013).

Chutulo and Chalanaavar in 2018 reported antioxidant activity of endophytic 
fungi isolated from Azadirachta indica and suggested that these bioactive com-
pounds have great potential to combat various diseases, to prevent cell damage and 
insects-pests and to target pathogenic microbes.

7.9.5  Endophytes as Antidiabetic Agents

Endophytes have been explored for their antidiabetic activity. A nonpeptidal fungal 
metabolite (l-783, 281) was extracted from an endophytic fungus (Pseudomassaria 
sp.). This compound acts as an insulin to lower blood glucose level (Zhang et al. 
1999).

Immunosuppressive compounds subglutinols A and B have been isolated from 
endophytic fungus Fusarium subglutinam from T. wilfordii (Lee et  al. 1995). 
Another compound, cyclosporine, has also been extracted from endophytic fungus 
Tolypocladium inflatum, which exhibits immunosuppressant activity (Borel and Kis 
1991).

Endophytic Actinomycetes sp. were collected from the roots of Caesalpinia sap-
pan, which produced α-glucosidase inhibitor, a target for antidiabetic treatment 
(Savi et al. 2015; Irawan 2009). Streptomyces species have also displayed a signifi-
cant antidiabetic potential (Pujiyanto et al. 2012; Christhudas et al. 2013).

Murugan et  al. (2017) reported the antidiabetic activity of endophytic fungi, 
Penicillium sp., isolated from Tabebuia argentea and suggested that octadecanoic 
acid is responsible for inducing antidiabetic activity and the compound has the abil-
ity to inhibit all diabetic protein activity.

Elgorban and Abdel-Wahab in 2018 evaluate the potential of endophytic fungi, 
Alternaria sp., isolated from Salvadora persica for the production of bioactive com-
pounds such as cetene and 1,2-benzenedicarboxylic acid which shows antidiabetic 
activity.

7.9.6  Endophytes as Bioinsecticides

Endophytes are found to be used as bioinsecticides and have great potential in anti- 
insecticidal activity. They provide an eco-friendly approach and help in reducing the 
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load of synthetic pesticides. An endophyte, Nodulisporium sp., from the plant 
Bontia daphnoides produced nodulisporic acid that exhibits insecticidal properties 
against the larvae of blowfly, by activating insect glutamate-gated chloride channel 
(Smith et  al. 2000). Two bioactive compounds, 5-hydroxy-2-benzofuron 
(1′-hydroxy-5′-methyl-4′-hexenyl) and 5-hydroxy-2-benzofuron(1′-oxo-5′-methyl- 
4′-hexenyl), have also been isolated from endophytic fungus from Gaultheria pro-
cumbens that display insecticidal properties against spruce budworm (Findlay et al. 
1997). An endophyte Phomopsis oblonga produced insect toxins against the beetle 
Physocnemum brevilinenu from elm tree (Webber 1981). Another endophytic fun-
gus, Muscodor vitigenus, isolated from a liana (Paullina paullinioides) produced 
naphthalene, an active ingredient in common mothballs, which exhibit insect repel-
lent property against wheat stem sawfly (Daisy et al. 2002).

Actinomycetes including Actinomyces, Micromonospora and Streptomyces are 
of great importance as biocontrol agents (Ek-Ramos et al. 2019).

7.10  Conclusion and Future Directions

It has been proved from the studies that endophytes are a rich source of so many 
natural bioactive compounds with higher level of structural diversity as well as a 
wide spectrum of biological activities. Biotransformation of natural products by the 
biocatalysts present inside the endophytes is a very interesting phenomenon. 
Medicinal plants for curing various diseases and health-related problems have been 
in use since ancient times. But continuous use of medicinal plants is leading to 
reduction in their population. So the use of microbial endophytes is the best way to 
cure several ailments in cost-effective, eco-friendly and sustainable way. But there 
is a need to understand the endophytes’ physiology, defensive role, their biochemi-
cal pathways and secondary metabolite production. So, attention should be drawn 
towards this emerging field of research and possible exploitation of the sources 
which are available for their use in various fields like pharmaceutical industry, food 
industry, cosmetics and medical industry.
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Abstract
At present, the major global challenge is to accomplish future food security with-
out interfering with the present environment or ecosystem. The global crop produc-
tion suffers largely due to several pests, insects, or diseases which are being 
controlled widely by the use of detrimental agrochemicals which are now being 
considered to damage our health and ecosystem. Therefore, various other alterna-
tives of biological origin are being looked upon for their application as bio- fertilizer 
or biological control agents such as arbuscular mycorrhizal fungi (AMF), 
Trichoderma spp., plant growth-promoting rhizobacteria (PGPR), and endophytes. 
Moreover, many other probable microorganisms are still being discovered, and 
their ecological roles are being studied as well. Therefore, appropriate selection 
and investigation for applying them effectively with the use of novel technologies 
have huge potential to safeguard our future food and environment. In addition, 
many underlying mechanisms which are previously unknown during interaction 
for crop health improvement can be unveiled by the use of modern technologies 
such as clustered regularly interspaced short palindromic repeats (CRISPR/Cas), 
transcriptomics, proteomics, genomics, etc. Even plant growth- promoting traits are 
being tailored by the use of modern gene engineering techniques which will defi-
nitely improve overall plant health, thereby leading to food security. Thus, this 
chapter presents a brief overview of recent trends in application of various micro-
bial interactions with the twenty-first century technology for crop productivity and 
overall sustainability of our agricultural ecosystem for our future generation.
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8.1  Introduction

In the near future, the population of billions will need ample amount of food grains 
as food. In addition, the major challenges ahead include safeguarding of food from 
any pathogen infection and harmful chemical pesticides. Therefore, the crop produc-
tivity needs to be increased with rise in food demand along with maintaining the 
overall health of the plant as a whole. On the contrary, currently, the conventional 
practices that are being adopted by growers especially in developing and less devel-
oped countries to optimize food production have been the excessive or less concen-
tration of chemicals probably due to ignorance (Gahukar 2014). The indiscriminate 
applications of chemicals that are produced in industries are already reported to 
cause several varieties of pollution to our ecosystem (Youssef and Eissa 2014; Singh 
et al. 2017). In this respect, the feeding of our ever-growing population sustainably 
taking into account the limited resources, reducing the use of inorganic fertilizers, 
maintaining agricultural productivity, biosafety, and novel innovations in agricultural 
practices has been the priority at present. As per the Food and Agriculture Organization 
(FAO 2019), India has recently achieved food grain self-sufficiency but with serious 
concerns in terms of sustainability. Therefore, there is an increased need for innova-
tive farm production in a sustainable manner where suitable alternatives to chemical 
fertilizers that have an ability to enhance crop production by improving plant nutri-
tion, stress tolerance, and protection from plant pathogens attract the growing 
demand (Olanrewaju et al. 2017). Even though the government agencies worldwide 
derive various schemes for growers at socioeconomic levels, there is an ultimate need 
at the ground level, which includes fertility of soil, plant pathogen, and crop produc-
tion. So, for that to happen, a suitable scientific awareness and novel technologies are 
needed for agricultural practices where various other disciplines of biotechnology, 
nano-biotechnology, nanotechnology, microbial technology, etc., may be incorpo-
rated (Srilatha 2011). And, historically, the use of these biotechnological techniques 
has been evidenced since 7000 BC in various fields of food, agricultural, fuel, medi-
cal, or environment technologies (Vitorino and Bessa 2017). Since the microbial 
application has several implications in a wide variety of fields, hence, it seems to be 
the most suitable application without further distressing our natural resources or eco-
systems for future generations to come (Sengupta and Gunri 2015; Singh et al. 2017; 
Woo and Pepe 2018). However, here mostly the perspective of beneficial microbes 
and their roles in alleviation in overall health of plant either by direct or indirect man-
ner and related novel studies are being emphasized.

8.2  Microbe–Plant Interaction

8.2.1  Rhizosphere

The plant rhizosphere consists of numerous microorganisms that inhabit above- or 
underground and possess functional diversity which proves to be beneficial for the 
plants. The root of a plant in rhizosphere is accompanied by various other 
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microorganisms such as plant growth-promoting bacteria (PGPR), rhizobia, 
Trichoderma sp., endophytes, and arbuscular mycorrhizal fungi (AMF). The equi-
librium between these microorganisms and plants promotes better disease-free 
growth and development. Therefore, microbial communities associated with plant 
play a significant role in plant nutrition, plant growth, and carbon or nitrogen cycling 
and during biotic or abiotic stress conditions (Van Der Heijden et al. 2008; Vacheron 
et al. 2015). In ecosystem, crop productivity is largely manipulated by interactions 
between plant and microbes (Emmett et al. 2017). The microbial community com-
positions are distinct when compared to the bulk soil and are supported by the phys-
iochemical environment of the rhizosphere (Mendes et  al. 2014). So far, various 
investigations have undertaken on the association of plant with microbes that signi-
fies the very importance of these microbes in the determination of plant health (Gill 
et al. 2016). But understanding the biological root system and its associated micro-
biota is still at its initial stage largely due to astounding numbers of interactions, 
enormous species diversity, and complex community structure that exists within the 
rhizosphere. Apart from that, there are reports that among microbial communities 
social behaviors are exhibited, viz., cooperation, colonization of ecological niches, 
host infection, resistance to invaders, and invasion by parasites and pathogens 
(Besset-Manzoni et  al. 2018). In addition, remarkable cooperation among the 
microbial communities has been observed which may be mutualistic or altruistic in 
nature where donor or recipient may be positively or negatively affected (West et al. 
2007). The overall global microbial diversity is largely unexplored which is consid-
ered to be one of the largest reservoirs of biodiversity on Earth. Thus, it may prove 
to be an important frontier in biology which requires intensive further investiga-
tions. Hence, for sustainable function of agrosystems, the interactions among sev-
eral organisms are extremely essential factors.

8.2.1.1  Role of Bacteria
Microbial antagonists are finding its way into biological control of several plant 
pathogens which will serve as an alternative to agrochemicals. The rhizosphere 
around plant is being seen as resource for nutritional and water requirements 
which will be helpful in future agricultural practices. The microbes present in 
the rhizosphere have the potential in providing fertility to soil, thereby elevating 
the crop productivity. One of them is the bacteria which are known as plant 
growth- promoting rhizobacteria (PGPR), and it is one of the most abundant 
groups of microorganisms that coexist with algae, actinomycetes, fungi, and 
protozoa in the rhizosphere. The prominent presence of bacterial population in 
the rhizosphere has been expected to be influential on various physiological 
processes of plants as they are present nearest to the plant roots (Barriuso et al. 
2008). These beneficial bacteria belong to the several genera of Acetobacter, 
Acinetobacter, Alcaligenes, Arthrobacter, Achromobacter, Azoarcus, 
Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Derxia, 
Enterobacter, Gluconacetobacter, Herbaspirillum, Klebsiella, Microbacterium, 
Ochrobactrum, Pantoea, Paenibacillus, Pseudomonas, Rhodococcus, Serratia, 
Stenotrophomonas, Zoogloea, etc., and have been subject of extensive research 
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and marked as biological control agents throughout the years (Babalola 2010; 
Spaepen and Vanderleyden 2011; El-Borollosy and Oraby 2012; Oku et  al. 
2014; Lee et al. 2015; Kumar and Verma 2018). The abundance of PGPR in the 
vicinity of plant has a vast role in enhancing potential plant growth in various 
important crops of agricultural importance (Santoyo et al. 2016). These PGPR 
assist in the development of plant by various mechanisms such as triggering of 
plant growth hormones, antioxidant system, siderophore production, and aug-
mentation of nutritional capacity of the plants (Kloepper 2003; Kumar and 
Verma 2018). The ability of siderophore production in bacteria has been corre-
lated with its biocontrol against phytopathogenic fungi (Buysens et al. 1996). 
The siderophore-producing bacterium, Bacillus subtilis CAS15, has been 
reported to promote biocontrol of pathogen F. oxysporum that causes Fusarium 
wilt in pepper plant (Yu et  al. 2011). Therefore, considering the benefits of 
PGPR mediation in agricultural system, it may soon become an alternative strat-
egy against synthetic chemicals that are doing more harm to our ecosystem than 
any good.

8.2.1.2  Role of Fungi
Fungi are a well-known group that are often being associated in agriculture for 
alleviation in crop production, and partially they have been introduced in the pres-
ent agricultural systems. However, the full-fledged application still needs further 
breakthrough due to its low acceptance among actual growers despite it being more 
sustainable for the future agrosystems. One such fungi Trichoderma spp. (teleo-
morph Hypocrea) is asexual fungal genus which is ubiquitous and often predomi-
nant component of the mycoflora in soil, organic matter, litter, and rhizospheric 
ecosystem of almost all climatic zones as saprophytes. The effects of genus 
Trichoderma have been attributed to its biological control activities and during 
various biotic or abiotic stress conditions which belong to species T. asperellum, T. 
atroviride, T. harzianum, T. resseyi, T. virense, and T. longibrachiatum (Alizadeh 
et  al. 2013; Contreras- Cornejo et  al. 2014; Devi et  al. 2017; Mona et  al. 2017; 
Sabbagh et  al. 2017; Saravanakumar et  al. 2017; Téllez-Vargas et  al. 2017). 
Different genus of Trichoderma sp. has long been known to be contributing to crop 
productivity by mediating with several mechanisms which include antibiotic activ-
ities, mycoparasitism, cell wall lytic enzymes, improving health of plant, enhanc-
ing plant growth, and alleviation of defense mechanisms against several pathogens. 
Trichoderma sp. contributes to plant growth by increasing soil fertility (Harman 
2000; Shoresh et al. 2010); they contribute to the release of plant growth regula-
tors, thereby promoting root growth and making nutrient available for uptake 
(Benitez et al. 2004). Moreover, recent investigations revealed that Trichoderma 
sp. are opportunistic, avirulent plant symbionts apart from being parasitic to other 
fungi as well. Trichoderma sp. establishes long-lasting colonizations which are of 
vigorous nature on the root surfaces which leads penetration into the epidermis. 
The fungi also induce resistance against various other pathogens and nematodes 
and bioremediation of heavy metals and environmental pollutants. But the main 
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reason for Trichoderma sp. applications as biopesticides has been the ability of 
these fungi to sense, invade, and obliterate other fungi.

In addition, another fungus such as arbuscular mycorrhizal fungi (AMF) that 
belongs to subphylum Glomeromycotina engages significantly with several plants 
in their development mainly to overcome phosphorous (P) deficiency (Smith and 
Smith 2011). Phosphorous is an important nutrient for growth and overall well- 
being of plant as it is the fundamental component of nucleic acids and phospholip-
ids. Plants require it in the form of inorganic phosphate (Pi) in much higher amount. 
Due to this higher assimilation in soil, an area of Pi depletion zone is observed. So, 
to overcome the situation of Pi limitation, plants involve itself in widespread 
branching by increasing their root lengths and making use of organic acid and 
phosphatase secretions for the solubilization of Pi present in soil. In this mutuality, 
the host plant provides carbohydrate source to their partner which is essential for 
fungal growth, and nutrition is improved in host plant (Luginbuehl and Oldroyd 
2017). The AM fungi have been distinguished for its ability to incur biological 
protection against several soilborne fungal plant pathogens or abiotic stresses 
(Pereira et al. 2015). However, it has been observed that non-host AM plant can 
inhibit AMF colonization and recognition of signals on the surfaces of roots that 
induces hyphal growth and branching are found to be in off condition (Giovannetti 
and Sbrana 1998). Nevertheless, the mycorrhizal colonized plants have conferred 
resistance against a variety of pathogens (Pozo and Azcón-Aguilar 2007; Jung 
et  al. 2012; Cangelosi et  al. 2017). The mechanisms that are employed by AM 
fungi for biocontrol of pathogen involve AMF’s direct effect on pathogen or indi-
rect effect via plant and competition for space and nutrients and morphological 
alterations in the host root tissues (Dalpe 2005; Schouteden et al. 2015). But the 
actual mediation by mycorrhiza and its molecular mechanisms is still not very 
clear. However, despite the several investigations that suggest employment of AMF 
as biological control agents, it is still not viewed practically applicable in actual 
field among growers (Salvioli and Bonfante 2013). Thus, a clear insight into their 
modes of action will lead to definite employment in the near future.

8.3  Biopesticides

Due to population growth, there is ever-increasing demand for more food (Keinan and 
Clark 2012). Therefore, several nations worldwide had undertaken “Green Revolution” 
programs to double up the productions. Despite increase in huge production of food 
crops, there is a constant threat of various insects, pests, and diseases which contrib-
utes to significant loss in yields. To overcome these threats, growers invariably have 
applied chemical-based fertilizers, insecticides, pesticides, fungicides, etc. As a result, 
we were able to achieve enormous production of food crops but at the cost of huge 
ecological impact on our current and future resources. This implied search for the 
innovations in current practices which is causing huge impact on sustainability of 
environment and life for the future. Thus, the phenomenon of integrated pest manage-
ment (IPM) came into existence as an alternative to exploitations that was undertaken 
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during Green Revolution, where application of microbial-based agrochemical was 
considered as environment-friendly and less hazardous to life on Earth as a whole. 
Even though the appropriate products under “biopesticides” are themselves conten-
tious, several strategies from various disciplines are contributing to overall develop-
ment of biopesticides for crop yield and protection from diseases. The preferential 
implication of biopesticide in utilizing them has been associated with its biological 
origin which necessitates contemporary and future demands. The biopesticides 
derived may include bacteria, fungi, entomopathogenic viruses, plant secondary 
metabolites, and nematodes. For instance, biopesticide such as nematophin from 
Xenorhabdus nematophila YL001 has been used in effective inhibition of mycelia 
growth of pathogenic Rhizoctonia solani (Zhang et  al. 2019). Likewise, Bacillus 
thuringiensis (Bt)-derived crystalline proteins have been known to inhibit insect pest 
species like lepidopteran. In that, the determination of target insect gut receptor occurs 
by the binding of Bt crystalline proteins (Kumar 2012). Similarly, fungi, virus, and 
nematodes have shown its ability to act against several pests (Mnyone et al. 2010; 
Prater et al. 2006; Loya and Hower Jr 2002). Therefore, the worldwide use of the 
biopesticide-related products (1400 approx.) has been commercially available that 
accounts for 2.5% of the total pesticide market (Balog et  al. 2017). And they are 
undergoing further research consequently to incorporate them in our agricultural sys-
tems owing to its several benefits.

8.4  Host–Microbe Interaction in Pathogenesis

Since the first evolution of plants 700 million years ago (Heckman et  al. 2001), 
plants have been interacting with epiphytic, symbiotic, and pathogenic microbes. In 
those interactions, pathogenic establishment occurs firstly by accessing the interior 
side of plant cell by direct penetration or attack or by natural openings such as sto-
mata present underside of leaves which functions as gaseous exchange or by 
wounds. Afterward, when it gains entry inside the plant cell, it encounters obstacle 
of cellulose wall on plant cell. The microbe that reaches host plasma by crossing 
cellulose is received with extracellular surface receptors that recognize pathogen- 
associated molecular patterns (PAMPs) by pattern recognition receptor (PRR) 
which triggers pattern or PAMP-triggered immunity (PTI) that inhibits their further 
spread which leads to MAPK cascade in transcription of defense-related genes. But 
the pathogens have developed systems to suppress PTI responses by secreting effec-
tor proteins. In view of the ability evolved in pathogen to contain primary defense, 
the plant then deals with pathogen by effector-triggered immunity (ETI) which is 
more advanced system to detect microbial proteins that were used to sabotage the 
PTI by plant resistance (R) proteins (Chisholm et al. 2006). However, the pathogens 
have so far been able to evolve to get away from PAMP/MAMP-like defenses by 
injecting effector molecules in host cells. Therefore, studying these effectors will 
help understand how one avoids or decreases defense systems in the host.
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8.4.1  Types of Plant Disease Management

8.4.1.1  Chemical Control
The current disease management has been largely dependent on chemical insecti-
cides, pesticides, or fungicides as the main components in integrated pest manage-
ment (IPM). Until now, they are used indiscriminately irrespective of whether it has 
been controlling the disease or not which are posing potential threat to our ecosys-
tem. The most affected are the microbial communities besides soil and groundwater 
pollution which is a serious concern to organisms as a whole. Nowadays, 
environment- friendly management is preferred instead of synthetic or chemical 
based due to its detrimental effects (Shafique et al. 2016). Moreover, the pathogens 
are providing increased resistance to these chemical control strategies (Ma and 
Michailides 2005). Therefore, it is been recommended to phase out the use of any 
chemical-based agrochemicals (EU 2009). Thus, the need for the development of 
novel sustainable alternative technologies is then currently required to control plant 
disease so as to address the future of food security.

8.4.1.2  Biological Control
The major alternative strategy that is to avail at present is to employ organisms that 
possess characteristics of low developmental cost-effectiveness, environment 
friendliness, and effective inhibition of major plant disease-causing pathogens for a 
sustainable agriculture. In that direction, the use of microbes is perceived to be an 
inevitable tool for controlling of plant diseases in the future because it provides very 
first defense-related activities against several pathogens. In that direction, various 
plant-associated microbial populations have been studied extensively. The emphasis 
has been made toward employing biocontrol agents such as rhizospheric or endo-
phytic bacteria, Trichoderma sp., AM fungi, etc. (Kiely et al. 2006; Jung et al. 2012; 
Guzmán-Guzmán et al. 2017). The advantage of utilizing these microbial popula-
tions not only provides disease suppression but also helps in overall development of 
plants. Besides, it provides pollutant-free sustainable agricultural system to our eco-
system. The typical characteristics of mechanisms exhibited by these microbes are 
antibiotic production, well-organized root colonization, competition, mycoparasit-
ism, secondary metabolite production, nutrient acquisitions, etc. (Bonfante and 
Genre 2010; Sharif and Claassen 2011; Gveroska and Ziberoski 2012; Harman 
2000; Khalili et al. 2012). However, despite many advantages in incorporating these 
microbes into our agricultural systems, still further extension in research is needed 
to fully exploit it to level of growers that remains a constant challenge.

8.4.1.3  Resistant Varieties
There has been increase in procreation for resistant varieties as they are considered 
to provide dependable protection against several plant pathogens (Kamthan et al. 
2016). This has been achieved mainly by genetic manipulation of plants by means 
of chromosomal or extrachromosomal DNA modification directly or indirectly, 
resulting into the formation of genetically modified organisms (GMOs) or geneti-
cally modified plants or crops (Zhang et  al. 2016). The approach has gained 
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significant success among growers as they are perfect for providing good-quality 
plant yields and sustenance ability during unfavorable environment (Lopez-
Arredondo et al. 2015). Often the resistant variety is preferred as a means to control 
several diseases of plant because it is more economical and environment-friendly 
when compared with industrially developed agrochemicals (Gupta et  al. 2014). 
However, there has been reluctance in employing it entirely as some plants that 
come under the term of “genetically modified” have to come under the scrutiny of 
various regulatory approvals, ethics, and consumer recognition (Garcia-Ruiz et al. 
2018). For instance, in third world countries like India where technical and other 
infrastructural constraints contribute to significant yield losses to growers due to 
several pests. Therefore, genetically modified pest-resistant crops alleviate the dam-
age incurred upon by the pests, and the introduction of Bacillus thuringiensis (Bt) 
cotton in India has been found to increase not only total output but also in reduction 
of pest-related losses. Furthermore, the yield has been found to be elevated when 
compared to other countries where introduction of genetically modified crops was 
undertaken to substitute chemical pest control (Qaim and Zilberman 2003). Despite 
all the recent achievements, the rise in unscrupulous experimentation has led to the 
foundation of new phenomenon of genetically resistant among organisms due to 
numerous causes, viz., mutations in pathogens toward virulence and sexual and 
asexual recombination events causing unique diseases in both plants and animals 
(Maghari and Ardekani 2011).

8.5  Emerging Biocontrol Strategies

The plant–microbiome interaction where plant has selective approaches toward cer-
tain microbes in rhizosphere or phyllosphere proves to be beneficial for plant growth 
and development (Vorholt 2012). The rhizospheric microbiomes assist directly or 
indirectly in the development of plant by nutrient acquisition or plant pathogen 
inhibition. Thus, it provides novel developmental opportunities in the field of valu-
able interaction between plant and microbiome for modern-day biocontrol method-
ologies (Mueller and Sachs 2015). The low-molecular-weight volatile organic 
compounds (VOCs) are carbon-containing compounds that play a significant role in 
conferring plant with basal immune system known as induced systemic resistance 
(ISR) as opposed to several pathogens (Bailly and Weisskopf 2017). There have 
been suggestions that these VOC-interceded responses are present in plants, bacte-
ria, and fungi (Bailly and Weisskopf 2017; Tyc et  al. 2015; Werner et  al. 2016). 
However, the exact molecular mechanism lays steps for further investigations.

Bacteriophage-based biocontrol against bacterial wilt is another strategy in agri-
cultural systems which is environment-friendly. Bacteriophages (phages) are viruses 
which inhibit bacterial infections by infecting them. The life cycle of bacteriophage 
has been described as lytic or lysogenic. In lytic phage, there is direct destruction of 
host bacterial cell, while the lysogenic phage works by integration of bacterial 
genome into the host without destruction of host bacterial cell (Alvarez and Biosca 
2017). A study by Bhunchoth et  al. (2015) showed that the lytic life cycle of 
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bacteriophage was able to inhibit Ralstonia solanacearum causing bacterial wilt in 
tomato plants. Therefore, it is one of the most promising biological control strate-
gies in an organic way.

The phyllosphere (aerial part of plants)-associated biocontrol is also an impor-
tant aspect because it has been considered to be the habitat for diverse community 
of microbes (Vorholt 2012). The microorganisms of phyllosphere contribute to the 
promotion of plant growth by production of growth hormones, increase in photo-
synthetic activity, and elongation of root structure (Mwajita et  al. 2013). Even 
though the demonstration by phyllosphere communities has resulted into significant 
applications such as biocontrol agents (Michavila et al. 2017), yet it has not received 
much attention as in the case of vegetables and fruit plants (Leff and Fierer (2013). 
Moreover, the cooperation of phyllosphere communities has been complicated 
because of its complete exposure to atmosphere which makes it susceptible to exter-
nal factors, viz., air particulates, light, UV radiation, and biological inoculants 
(Williams et al. 2013; Carvalho and Castillo 2018). There have been reports that 
various isolates from the phyllosphere and rhizosphere of Drosera spatulata Lab. 
were found to be producing siderophores which are known as an alternative for the 
biocontrol of many pathogens (Fu et  al. 2016). In addition, the phyllosphere- 
associated Pseudomonas syringae pv. syringae have demonstrated the ability of 
biocontrol by resisting P. syringae pv. glycinea via indirect siderophore arbitration 
(Wensing et  al. 2010). Hence, the phyllospheric microorganism opens up novel 
frontier for their contribution in overall fitness and development of plant.

8.6  Microbiological Technology Application in Agriculture

The contemporary necessity for microbiological involvement in agriculture is sig-
nificant because it is supportive for attainment of higher productivity with sustain-
ability in agriculture in a number ways. Therefore, the agricultural microbiology has 
its importance concerning the improvement in yield and disease management in 
crops (Pelczar et  al. 1988). Microbiological technology may assist in increasing 
nutrient availability to plants, inhibition of soilborne plant pathogens, solubilization 
of nutrients, the use of microorganism in industries, food and pharmaceutical indus-
try, bioremediation, organic waste recycling, production of antibiotics, nanotechnol-
ogy, probiotics, nitrogen fixation and other bioactive compounds, and many more.

The advent of this microbiological technology helps in unraveling exact complex 
signaling mechanisms that were difficult to understand in the past for phenomenon 
such as of mycoparasitism in case of Trichoderma sp. which has been considered to 
be an effective biocontrol tool against many of plant pathogens. During mycopara-
sitism, morphological changes occur after recognition of pathogen, and killing of 
pathogen occurs via release of hydrolytic enzymes and structure known as appres-
sorium by penetration (Benitez et al. 2004). Initially, receptors present on the cell 
surface lead to internal cascade of signal transduction by transcription of genes 
related to mycoparasitism upon ligand attachment. G-protein-coupled receptors 
(GPCRs) that are heterodimeric in structures send signals to cyclic adenosine 
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monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) which 
mediates in modifiable infections (Omann and Zeilinger 2010). The G-protein 
alpha-subunit gene tga 1 has been found to be involved in an important mechanism 
of mycoparasitism where direct killing by Trichoderma sp. occurs and it is now 
helping in understanding the complicated signaling pathways (Rocha-Ramirez et al. 
2002). In the study of Mukherjee et al. (2003), the MAPK homologue which was 
the product of tmkA gene belonging to YERK1 class was isolated from Trichoderma 
virens, and construction of loss-of-function mutants was performed and sporulated 
in the dark. This resulted into attenuated mycoparasitism on the sclerotia of 
Rhizoctonia solani and Sclerotium rolfsii. Also, in mycoparasitic interactions, novel 
effector proteins are being identified by using computational methods for gene 
expression because effectors are molecules which have the ability to alter cellular 
function of plants in allowance of pathogen to infect the plant (Hogenhout et al. 
2009). So far, approximately 233 putative effector proteins have been studied from 
Trichoderma sp., and the pattern in which these genes are expressed has undergone 
analysis in Trichoderma–Arabidopsis interaction, and observation of upregulating 
genes was grouped into LysM (lysin motif) proteins, CFEM, cerato-platanin, hydro-
phobins, serine proteases, and thioredoxin families (Guzmán-Guzmán et al. 2017) 
(Table  8.1). However, the characterization of LysM encoding genes present in 
Trichoderma genomes still needs further investigations (Mendoza-Mendoza et al. 
2018). The induction of effector proteins occurs when microbes sense the host plant 
(Lanver et al. 2017). The ability to identify effector proteins in fungi has been car-
ried out by latest software like EffectorP where classification is based on protein net 
charge, molecular weight, and sequence length. Also, the content of cysteine, 

Table 8.1 Trichoderma strains and their protein effectors when interacting with host plants

Strain
Effector 
proteins

Mechanism of interaction with 
plants References

T. atroviride Epl1 Induces of defense-related genes Salas-Marina et al. 
(2015)

T. virens Sm1 Induces of defense-related genes Salas-Marina et al. 
(2015)

T. virens Sm2 Role in plant root colonization and 
protection

Crutcher et al. (2015)

T. asperellum TasHyd1 Role in plant root colonization Viterbo and Chet 
(2010)

T. asperellum HBF2-6 Role in plant root colonization, JA 
and SA pathway induction

Huang et al. (2015)

T. 
longibrachiatum

HYTLO1 Growth promotion and defense- 
related responses

Moscatiello et al. 
(2018)

T. harzianum Thph1 and 
Thph2

Activation of defense-related gene Saravanakumar et al. 
(2016)

T. virens TVHYDII1 Role in plant root colonization Guzmán-Guzmán 
et al. (2017)

T. harzianum ThPG1 Role in plant root colonization and 
induction of ISR

Moran-Diez et al. 
(2009)
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serine, and tryptophan is considered for identification purposes (Sperschneider et al. 
2016). Therefore, search for novel effector proteins will pave way for better insight 
into the functioning of plant–beneficial fungi interactions.

In case of mycorrhiza fungi, the major contribution of this association toward 
host plant has been the nutrient acquisition. Since most land plants are associated 
with AMF, the advancement in understanding the regulation of nutrient exchange 
serves better purpose of implementing AMF in actual field. For instance, the recent 
understanding has highlighted signal pathways involved in controlling plant infec-
tion by AMF and transfer of lipids from the plant host to AMF as a major carbon 
source (Wang et al. 2017a, b). The molecular perspective has shown that the AM 
marker gene LePT4 has a preference in its expression which is a mycorrhiza- specific 
phosphate transporter in arbuscule-containing cells of mycorrhiza-colonized roots 
in tomato plant (Fiorilli et  al. 2009). The DELLA proteins are considered to be 
promising in regulation of nutrient signaling during AM associations (Jin et  al. 
2016). In addition, the viral disease is threatening the crops worldwide, and AM 
fungi have been looked upon as a potential biocontrol agent for their eradication 
which is a complex plant–fungus–virus interaction (Hao et al. 2019). The continu-
ous improvement in technologies at avail will let us have better insights of various 
aspects that are involved in AM associations which will definitely become a mile-
stone in setting up sustainable agricultural system for our next generation.

At present, the primary focus is being given to exploit plant microbiome 
which is considered to be the next-generation global agricultural production sys-
tem to meet growing demand in ecological way. In this regard, transgenic 
approaches and the recent discovery of molecular tools such as clustered regu-
larly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome 
editing (GE), metabolomics, transcriptomics, proteomics, genomics, etc., are of 
great significance to investigate molecular interactions in plant–microbe associa-
tions and crop improvement programs (Belhaj et al. 2015; Jansson and Hofmockel 
2018; Jaganathan et al. 2018). The initial discovery of CRISPR/Cas9 gene edit-
ing system in prokaryotes has transformed research in plant and animal biology 
with its genome editing technique (Jinek et al. 2012). Now the mandatory design 
for cloning is being on replacement. Generally, the sophisticated CRISPR-Cas9 
system is an adaptive immune response in microbial organism that utilizes short 
RNA-guided nucleases for degradation of foreign DNA or RNA by either inser-
tion or deletion (Sorek et al. 2011). The CRISPRs are locus that consists of a 
series of short repeating sequences (20–50 bp) that are separated by unique spac-
ers. These short conserved sequences which are proto-spacer adjacent motif 
(PAM) are required for recognizing the target that provides self- and non-self-
identification of sequences. The CRISPR repeat sequences are mostly diverse in 
their nature, and it consists of GAAA (C/G) motif toward 3’ end for binding of 
Cas proteins (Godde and Bickerton 2006). The Cas proteins are specific sets that 
are associated for their interaction with CRIPR loci (Grissa et al. 2007). In short, 
the functioning of CRISPR-Cas9 system in bacteria was firstly observed where 
bacteria incorporate some DNA segments (CRISPR arrays) from the invader. 
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When bacteria is encountered in the future with similar type of invader or that 
particular invader only, then Cas9 nuclease or related enzymes are guided to the 
target sites of invader which complements to 20-nucleotide sequence. The DNA 
endonuclease Cas9 may consist of two nuclease domains, viz., HNH and RuvC, 
for introduction of double-stranded breaks (DSBs) in the target DNA leading to 
inhibition of the invader (Soda et al. 2018). Thus, using these kinds of modern 
techniques such as CRISPR/Cas9 and other intragenic technologies, several 
applications are now possible that involve gene modification system that may be 
considered in various plant-breeding approaches. For instance, Xie et al. (2014) 
demonstrated crop improvement by exact editing of plant genome with the help 
of CRISPR–Cas9 system where they suggested that specifically three guide 
RNAs (gRNAs) could be designed to target more than 90% of rice genes. In 
biotic stress, the citrus canker disease caused by Xanthomonas citri had been 
controlled by using CRISPR/Cas9-targeted editing by altering host disease sus-
ceptible gene CsLOB1 promoter (Peng et  al. 2017). In cucumber, for the first 
time, resistance was provided against Cucumber vein yellowing virus (Ipomovirus) 
and potyviruses Zucchini yellow mosaic virus and Papaya ringspot mosaic virus-
W infection where Cas9/subgenomic RNA (sgRNA) technology was used for 
disrupting the functional aspect of recessive eIF4E (eukaryotic translation initi-
ation factor 4E) gene (Chandrasekaran et al. 2016). In tomato plant, SlMAPK3 
gene has been target by nonhomologous end joining (NHEJ) method which 
revealed its role in protection during abiotic stress condition such as drought 
(Wang et  al. 2017a, b). In addition, many significant improvements in trait of 
major crops have been achieved for quality, yield, and biological pathogen con-
trol (Gupta et al. 2012; Baltes et al. 2015; Kim et al. 2017; Li et al. 2017, 2018; 
Lu et al. 2018; Macovei et al. 2018) (Table 8.2). As of late, there is substantial 
significant increase in employment of microorganisms in agriculture sector, and 
it has been mainly considered for its compounds that are anti-pesticidal, insecti-
cidal, herbicidal, and nematicidal. Moreover, the filamentous ascomycete 
Trichoderma reesei that has been utilized for producing several cellulolytic or 
hemicellulolytic enzymes or recombinant proteins in various biotechnological 
industries (Singh et al. 2015) has undergone genome sequencing in an Illumina-
based whole- genome sequencing approach (Yang et al. 2015). Also, until now, 
the genome editing system of CRISPR-Cas9 has been reported in more than 40 
different species of filamentous fungi or oomycetes (Schuster and Kahmann 
2019). Thus, the rapid development in molecular biology tools has been notewor-
thy due to its high effectiveness and precision which can contribute a lot beyond 
our imagination.
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8.7  Conclusion and Future Perspective

The present agricultural systems suggest that there are many forms of constraints 
present in the form of abiotic or biotic stresses which affect plant growth and devel-
opment, thereby causing significant losses in global food production. The major 
challenges that are encountered by plants are alkalinity, salinity, drought, ion toxic-
ity, nutrient immobilization, and several direct/indirect injuries or diseases caused 
by pests or pathogens. The added burdens of using agro-based chemicals are harm-
ing our ecosystem than any good in longer perspective. Therefore, the focus on vari-
ous other strategies has been developed that suggests application of microbial 
population for the future global food production which will be helpful in maintain-
ing health of environment as well. Along with novel strategies in the integrated 
management that takes microbial consortia into account, the modern-day genome 

Table 8.2 CRISPR/Cas9 technology applications for resistance of various bacterial, fungal, and 
viral diseases in plants

Host plant Pathogen Disease Gene of interest References
Citrus Xanthomonas citri

subsp. Citri
Citrus canker CsLOB1 Jia et al. (2017)

Banana Endogenous banana 
streak virus (eBSV)

Banana streak 
disease

Target sites in 
microbial viral 
genome

Tripathi et al. 
(2019)

Tomato Oidium 
neolycopersici

Powdery 
mildew

SlMlo1 Nekrasov et al. 
(2017)

Lychee Peronophythora 
litchi

Downy blight Pectin 
acetylesterase, 
PAE4 and PAE5

Kong et al. 
(2019)

Tomato Phytophthora 
capsici, 
Pseudomonas 
syringae, 
Xanthomonas spp.

Bacterial speck, 
blight, and spot

SlDMR6-1 gene 
deletion

Thomazella et al. 
(2016)

Cucumber Zucchini yellow 
mosaic virus and 
Papaya ringspot 
mosaic virus-W

Cucumber vein 
yellowing 
virus(CVYV)

eIF4E mutation Chandrasekaran 
et al. (2016)

Cotton, 
legumes, 
tomato

Fusarium oxysporum Fusarium wilt FoSso1 and 
FoSso2

Wang and 
Coleman (2019)

Cassava CBSV Brown streak nCBP-1 and 
nCBP-2

Grape Botrytis cinerea Gray mold WRKY52 Wang et al. 
(2019)

Wheat Blumeria graminis f. 
sp. tritici

Powdery 
mildew

MLO-A1, B1, and 
D1

Wang and 
Coleman (2019)

Rice Xanthomonas oryzae 
pv. oryzae

Bacterial blight Susceptible genes 
OsSWEET14 and 
OsSWEET11

Jiang et al. 
(2013)
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engineering also carries a significant role which was not possible before for estab-
lishing various beneficial traits to our crops that promises to attain a minimum 
threshold in crop productivity in sustainable manner in the near future.
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Abstract
Many anthropogenic activities could magnify the concentrations of nonessential 
heavy metals (HMs) in soil, which, in turns, enter into the food chain and cause 
damage to plant, animal, and/or human population. The soil remediation is done 
in many ways such as conventional ones (physical and chemical methods), which 
are very expensive and damage the natural environment, and phytoremediation, 
which is quite affordable and is a green approach as compared to the conven-
tional methods. Various chelating agents (organic and synthetic) are also used as 
amendments in phytoremediation of heavy metal-contaminated soil, which are 
very useful too. Although the chemical-assisted phytoremediation is useful, it 
has many risks/drawbacks, e.g., low efficiency, leaching of HM-chelator com-
plex into the soil, and accumulation of HMs in plant parts. The microbe-assisted 
phytoremediation is an emerging and better tool for phytoremediation. The risks 
associated with this method are negligible as compared to chemical-assisted phy-
toremediation, and it augments the biological system of plants while removing 
HM.  Hence, microbe-assisted phytoremediation is a better tool for 
phytoremediation.
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9.1  Introduction

There are different definitions of heavy metals in terms of metallurgy, physics, and 
biochemistry, where these could be defined by their densities (3.5 g/cm3 to above 
7 g/cm3; Duffus 2002), higher atomic weight, and/or atomic number. In environ-
mental chemistry, metals and metalloids (showing resemblance with metals) that 
have densities greater than 5 g/cm3 are considered as heavy metals (HMs) (Järup 
2003). However, HMs could be categorized into two forms on the basis of their 
biological roles: essential and nonessential HMs. Most of the essential elements 
from periodic table 4–6 are required in trace amount for certain biological processes 
such as the following: iron and copper (respiratory enzyme complex; Emsley 2011), 
cobalt (coenzyme syntheses and other cell metabolism; Emsley 2011), zinc (all 
enzyme classes), manganese (important component of photosystem II), chromium 
(glucose utilization), nickel (cell growth; Emsley 2011), and cadmium and molyb-
denum (catalysis of redox reactions; Emsley 2011). Some HMs such as arsenic 
(Uthus 1994), lead, and mercury are not required for biological functions of living 
organisms, hence termed as nonessential HMs. Not all HMs are toxic at traces, 
although they are assumed to be highly toxic and damaging to the environment at 
higher concentrations (Duffus 2002).

HMs may find their way into the soil through natural processes, e.g., volcanic 
eruptions and weathering of rocks, and anthropogenic activities such as mining, 
industrial processes, fossil fuels, and pesticides; higher concentration of these HMs 
can adversely affect the environment and biological systems of living organisms 
(Mani and Kumar 2014; Prasad and Strzalka 2002). Heavy metals are nonbiode-
gradable and can persist in soils for centuries, which cause a great concern to our 
ecosystem, ultimately leading a serious risk to living organisms (Iheanacho et al. 
2017). A suitable approach is necessary to make soil reusable and metal-free. Low- 
cost and environment-friendly technologies are prime key for the remediation of 
HM-polluted sites (Mani and Kumar 2014).

Nowadays, various conventional (physical and chemical) methods have been 
used for the remediation of heavy metals, which are highly destructive, costly, and 
difficult to implicate (Gupta et al. 2008; Singh and Prasad 2015). Contrarily, phy-
toremediation is emerging as low-cost, eco-friendly, and easy method for heavy 
metal treatment (Gupta et al. 2008; Singh and Prasad 2015). The conceptual basis 
for phytoremediation, the use of plants to clean contaminated soils, came from iden-
tifying plants that accumulate metals in very high concentration (Ansari et al. 2014; 
Prasad 2004). Specific plants and wild species that accumulate increasing amounts 
of toxic HMs by their roots and transport/translocate them through various plant 
tissues where they can be metabolized, sequestered, and volatilized are used in this 
technique (Ansari et al. 2014; Prasad 2001). Phytoremediation can be done in dif-
ferent ways such as rhizofiltration, phytostabilization, phytovolatilization, phytoex-
traction, and phytodegradation (Fig. 9.1) (Ansari et al. 2014).

C. Kaur et al.



251

9.1.1  Phytoextraction

Phytoextraction, also known as phytoaccumulation, refers to uptake of metals from 
soil by roots to aerial parts of the plants; certain plants accumulate higher concentra-
tion of heavy metals as compared to other plants, and such plants are called hyper- 
accumulators (Lone et  al. 2008; Prasad and Freitas 2000). After grown in the 
contaminated soil, plants are harvested; while they have accumulated heavy metals 
in the vegetative parts, they are incinerated following harvesting (Garbisu and 
Alkorta 2001; Chen et al. 2003) (Fig. 9.1).

9.1.2  Phytostabilization

Involvement of a plant cover to reduce the mobility of various pollutants such as HMs 
is termed as phytostabilization. It primarily aims at confining pollutants to the soil 
surface by stabilizing pollutants in the root or rhizosphere to prevent exposure path-
ways to the new site (Lambrechts et al. 2014). It prevents migration of contaminants 
by wind, water erosion, and direct contact with animals or humans (Mitter et al. 2013). 

Fig. 9.1 Schematic representation of the processes involved in phytoremediation of heavy 
metals
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It inhibits leaching of contaminants vertically, which relieves from the contamination 
of underground water (Etim 2012). Phytostabilization does all these by root absorp-
tion and chemical fixation by various soil amendments (Flathman and Lanza 1998; 
Berti and Cunningham 2000; Schnoor 2000).

9.1.3  Phytovolatilization

Phytovolatilization refers to the uptake of the contaminants by the plant in the solu-
ble form and releasing them in the volatile form into the atmosphere by the aerial 
parts of the plants. It refers to the uptake and transpiration of contaminants, primary 
organic compounds, by plants (Kumar et al. 2017). The contaminant, present in the 
water and/or soil taken up by the plant, passes through the plant, is modified by the 
plant, and is released to the atmosphere (Gupta et al. 2016). The process may be 
enhanced by using transgenic plants with genes overexpressing the enzymes respon-
sible for high transpiration rates and/or by transferring the genes for Se volatiliza-
tion from hyper-accumulating plants to non-accumulating ones (Van Huysen et al. 
2003; Le Duc et al. 2004; Gupta et al. 2016).

9.1.4  Rhizofiltration

Rhizofiltration is a type of phytoremediation that deploys aquatic and hydroponi-
cally cultivated plants for absorption and precipitation of toxic chemicals from pol-
luted effluents (Schmoger et al. 2000). The water is collected from the contaminated 
site and plants are then grown in it, or plants are directly allowed to flourish in the 
site. The roots of Indian mustard (Brassica juncea), sunflower (Helianthus annuus), 
and various grasses effectively remove metal toxins like Pb, Cd, Cu, Ni, Zn, and Cr. 
Arabidopsis halleri, Pistia stratiotes, and Thlaspi caerulescens are some of the 
hyper-accumulators that are suitable for rhizofiltration.

Table 9.1 A brief description of different processes involved in phytoremediation technique

Process Method
Rhizofiltration Transfer of the pollutant from the soil and accumulationin the roots of 

the plants
Phytostabilization Stabilization of heavy metals in soil/root surface and reductionof heavy 

metal mobility
Phytovolatilization Transfer of pollutant from soil to the atmosphere
Phytoextraction Transfer of pollutants from the soil and accumulationin the 

aboveground parts of the plant
Phytodegradation Enhancement of the microbial community and increaseof 

biodegradation in the rhizosphere
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9.1.5  Phytodegradation

Phytodegradation is also known as phyto-transformation; plant performing phyto-
degradation breaks down the contaminant either metabolically inside the plant tis-
sue or outside the plant in the soil by secreting enzymes and root exudates (Arthur 
et al. 2005). It helps in the breakdown of certain organic compounds such as chlori-
nated solvents, ammunition wastes, and herbicides (Table 9.1).

A commonly accepted opinion for efficient phytoremediation of HM polluted 
sites is that it is essential to use plants having high biomass and fast growth rate, 
increased metal tolerance, and metal-accumulating capabilities and that are easily 
cultivable and harvestable (Ansari et  al. 2014). Most of the commonly known 
plants recommended for phytoremediation belong to the families Asteraceae, 
Brassicaceae, Caryophyllaceae, Cyperaceae, Cunouniaceae, Fabaceae, 
Flacourtiaceae, Lamiaceae, Poaceae, Violaceae, and Euphobiaceae because a 
number of species belonging to these families are HM-tolerant metallophytes and 
hyper-accumulators (Prasad and Freitas 2003; Prasad et al. 2001). Among them, 
Brassicaceae has largest number of species that are hyper-accumulators of HMs 
(Prasad and Freitas 2003). However, the plant growth and metal uptake may be 
significantly inhibited in extremely polluted sites even for tolerant species 
(Chibuike and Obiora 2014; Ojuederie and Babalola 2017; Ayangbenro and 
Babalola 2017). There are basically four mechanisms through which HMs employ 
toxicities in plants (Singh et al. 2016), viz.,

 (a) Competition with similar nutrient cations for absorption at root (e.g., competi-
tion of As and Cd with P and Zn, respectively; Chorom et al. 2013);

 (b) Inactivation of plant proteins by HMs by directly interacting with their func-
tional groups (e.g., sulfhydryl (SH) and phosphate (PO4) groups) and rendering 
their activities (Kumar et al. 2017);

 (c) Disruption of the function of specific enzymes by replacing cofactors in their 
prosthetic groups (Ayangbenro and Babalola 2017); and.

 (d) Damage of the macromolecules by generating reactive oxygen species (Shahid 
et al. 2014; Keunen et al. 2011; Singh et al. 2016).

Due to the limited plant species with a high capacity to accumulate metals, espe-
cially metals with low bioavailability in soil, and to produce a large amount of bio-
mass, two alternative approaches, using chelating agents (chelators/chelants) and 
implicating plant growth-promoting rhizobacteria (PGPR), have been used world-
wide to improve the uptake of metals by high-biomass plants (Ali and Shamsuddin 
2010; Jing et al. 2007). Bioavailability of metals in soil solutions could be deter-
mined by the soil properties and types of chelators applied (Singh and Prasad 2015; 
Qi et al. 2017)
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9.2  Chelator-Assisted Phytoremediation

Phytoremediation can be made robust by complimenting with different amend-
ments; one such amendment is the use of chelators (Wang et al. 2017). Chelators or 
chelating agents are the chemical compounds (a polydentate or multiple-bonded 
ligands) whose structure permits to form coordinate bonds with the central metal, 
thus forming stable complex that are soluble in water (Flora and Pachauri 2010). 
The chelators desorb metals in the solubilized form from the soil matrix, which 
move to the rhizosphere and are taken up by the plant roots (Sun et al. 2016). The 
soluble form of the metal can be removed by aerial parts of plants through phytoex-
traction (Lone et al. 2008).

Chelators could be inorganic or organic substances; all biochemical substances 
have the capability to form coordinate bonds with metals; hence, all proteins and 
polysaccharides are very good chelators and/or polydentate ligands for a variety of 
metal ions (Gupta and Diwan 2017). HM toxicity causes stress in plants; hence, 
they produce some amino acids (glutamic acid, glycine, histidine, proline, etc.; Irini 
et al. 2017; Jain and Chen 2018; Kishor et al. 2015; Sharma et al. 2014; Zemanová 
et al. 2013); phytochelators by glutathione, which is a metal-binding peptide (Farooq 
et al. 2016; Hossain et al. 2012; Sharma et al. 2017a, b); and amines (spermine, 
spermidine, putrescine, nicotianamine, etc.; Singh et al. 2016; Takahashi and Kakehi 
2009; Wen et al. 2010), which solubilize metals and are known as natural chelators 
(Wen et al. 2010). Other low-molecular-weight organic acids, such as citric acid 
(CA), lactic acid, malic acid, malonic acid, oxalic acid, succinic acid, and tartaric 
acid, are also produced by plant root exudates and microbial residues, which are 
helpful in chelating heavy metals (Naidu and Harter 1998; Nascimento 2006; 
Wuana et al. 2010; Nworie et al. 2017; Chen et al. 2018). These low-molecular- 
weight organic acids and synthetic chelators (ethylenediaminetetraacetic acid 
(EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), 
ethylenediaminedisuccinic acid (EDDS)) could be amended to the plant roots for 
better remediation of metal-contaminated soil (Mujahid et al. 2013; Ebrahimi 2014; 
Nanthavong and Sampanpanish 2015; Yang et al. 2013).

9.2.1  Citric Acid

Citric acid (C6H7O8) is the first stable compound of citric acid cycle being used as 
anticoagulant because of its calcium-binding property. The chelating feature of cit-
ric acid is employed to the heavy metal uptake by the plants as it has the capability 
of forming coordinate bonds with divalent ions of heavy metals (Wuana et al. 2010). 
Studies of citric acid to enhance the phytoaccumulation ability in Brassica napus 
and Crotalaria juncea have been reported previously (Ehsan et al. 2014; Alidoust 
et al. 2009). They analyzed that the application of CA in the spiked soil helped the 
plant to uptake higher concentration of the Cr in the plant with enhanced antioxidant 
activities. Studies were not only limited to B. napus; in Helianthus annuus, accumu-
lation of metal was also reported as a result of application of citric acid in soil 
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(Turgut et al. 2004). Similar results had been obtained in Tagetes erecta by Sinhal 
et al. (2010), using citric acid and EDTA as amendments. It is not only applicable to 
contaminated soil, but sludge and wastewater can also be made free from heavy 
metals by using citric acid and other organic acids (Dacera and Babel 2006).

Although citric acid is biodegradable and nontoxic chelator, it is not a very effi-
cient heavy metal removal agent as compared to synthetic chelators as reported 
earlier (Qu et al. 2011; Salt et al. 1995; Markovska et al. 2018).

9.2.2  Tartaric Acid

Tartaric acid (C4H6O6) is a low-molecular-weight organic acid that helps in fortify-
ing the HM accumulation by plants. Tartaric acid has been used as amendment 
along with malic and succinic acid in phytoremediation of chromium-contaminated 
soil by maize plants (Ling et al. 2011). There is another example of increasing the 
uptake of Cr(VI) in Spirodela polyrhiza by using tartaric acid, citric acid, and glyc-
erol as amendments (Bala and Thukral 2011). It has also been reported to chelate 
many other HMs such as Zn, Cd, Cr, Pb, and Cu (Ding et al. 2014; Ke et al. 2006; 
Lin et al. 2009; Wuana et al. 2010).

Tartaric acid has been reported to increase the uptake of many HMs as mentioned 
(Bala and Thukral 2011; Ding et al. 2014; Ke et al. 2006; Lin et al. 2009; Ling et al. 
2011; Wuana et al. 2010), but its effectiveness is very low, and as compared to citric 
acid, it is not very effective (Qu et al. 2011).

9.2.3  Oxalic Acid

Oxalic acid (C2H2O4) is a reducing agent with conjugate base C2H2O4−
2. Oxalic 

acid aids leaching of Pb-, Cu-, Zn-, and Cd-contaminated soils (Wuana et  al. 
2010; Ding et al. 2014). Oxalic acid provides self-defense to the plants in many 
aspects (Prasad and Shivay 2017), and apart from that, it is widely used as a che-
lating agent for the removal of HMs from contaminated soil (Prasad and Shivay 
2017). It has been reported to increase the accumulation of various HMs in hyper-
accumulator plants, e.g., Beauveria caledonica, Leersia hexandra, Senecio coro-
natus, Sedum alfredii, and Zea mays (Fomina et al. 2005; Nezami et al. 2016; Tao 
et al. 2016; Wang et al. 2012). The chelating property of oxalic acid lessened the 
chromium toxicity in Hibiscus sabdariffa L. seedlings, and the plants could miti-
gate the oxidative stress as compared to only chromium treatment (Ogunleye 
et al. 2016).

The efficiency of oxalic acid is not as high as compared to citric acid and syn-
thetic chelators (Ogunleye et al. 2016; Tao et al. 2016).
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9.2.4  Synthetic Chelators

Apart from natural chelators, a lot of studies have been done evincing the utility of 
synthetic chelators; heavy metal phytoextraction can be enhanced chemically by 
assisting with various types of synthetic chelators (Liu et al. 2008; Saifullah et al. 
2008). The past couple of decades have been indulged in discerning the vanity of 
synthetic chelators to aggravate the metal uptake, especially lead, followed by cad-
mium and other heavy metals, from contaminated sources (Arabi et al. 2017). The 
synthetic chelators that happen to be of great importance in amending phytoextrac-
tion by hyper-accumulators as well as non-hyper-accumulators (Sheoran et  al. 
2010) are mentioned ahead.

9.2.5  Ethylenediaminetetraacetic Acid (EDTA)

EDTA is an amino-polycarboxylic acid and can form a maximum of six coordinate 
bond with the transition metal ion and main group ions (Beck 2009). It is the most 
widely used chelating agent because of its strong binding ability for different met-
als, consequently increasing the bioavailability of metals in the soil (Gupta et al. 
2008; Liphadzi and Kirkham 2006; Sinhal et al. 2010). It has been used to chelate 
metallic ions and results in desorption of HMs, ultimately increasing the uptake of 
HMs by plants (Lawal and Sauban 2014; Lestan et al. 2008; Li et al. 2018; Shazia 
et al. 2014; Singh and Prasad 2015). EDTA is reported to improve phytoremediation 
better than citric acid applications as reported previously (Markovska et al. 2018; 
Turgut et al. 2004; Zhang et al. 2018).

EDTA is reported to be the most efficient chelator of HM; however, there are 
many concerns raised about using EDTA in phytoremediation technology (Saifullah 
et  al. 2008). Its use at large scale is controversial due to the following reasons 
(Saifullah and Zia-Ur-Rehman 2015):

 1. EDTA can adversely affect the composition of soil (physical and chemical prop-
erties also) and microbial activities in rhizosphere of plants, which may retard 
the growth of plants.

 2. EDTA is a highly soluble compound and is not easily biodegradable; hence, it 
may leach to groundwater and persist in soil for months.

 3. At higher concentrations, EDTA, applied in soil, can cause eutrophication due to 
excessive release of nitrogen.

 4. It can intensify the stimulation of HMs leaching into groundwater.
 5. EDTA can adversely affect soil nutrients because of unspecific co-mobilization 

of macro- and micronutrients.
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9.2.6  Nitrilotriacetic Acid (NTA)

Nitrilotriacetic acid (NTA, C6H9NO6) is a tertiary amino-polycarboxylic acid, which 
forms coordination compounds with metals to form soluble complexes; because of 
this property, it has been used as a chelating agent worldwide (Quartacci et al. 2006; 
Reinoso-Maset et al. 2013). NTA is reported to be highly biodegradable than EDTA 
(Quartacci et  al. 2005; Ruley et  al. 2006), but its degradability is not as high as 
oxalic and citric acid, as reported recently (Freitas and Nascimento 2016). NTA is 
found to increase the HM concentrations in shoots of Indian mustard that too at 
minimal leaching (Quartacci et al. 2006).

Although NTA is biodegradable, its rate of degradation is not as high as low- 
molecular- weight organic acids; hence, it can cause adverse ecological effects by 
leaching in the soil (Freitas and Nascimento 2016; Song et al. 2016).

9.2.7  Diethylenetriaminepentaacetic Acid (DTPA)

Diethylenetriaminepentaacetic acid (DTPA, C14H23N3O10), also known as pentetic 
acid, is used as a chelator for phytoremediation studies of HMs such as Cu, Cd, 
Hg, Ni, Pb, and Zn (Ghasemi et  al. 2017; Liu et  al. 2018; Pastor et  al. 2007; 
Robinson et al. 1999).

DTPA is used as HM chelator; however, it is less effective than EDTA and cost-
lier too (Ghasemi et al. 2017; Liu et al. 2018).

9.2.8  Ethylenediaminedisuccinic Acid (EDDS)

A stereoisomer (S, S) of ethylenediaminedisuccinic acid (EDDS, C10H16N2O8) is 
used as a biodegradable alternative to EDTA in phytoremediation studies of heavy 
metals (Ullmann et al. 2013; Fabbricino et al. 2013; Saifullah and Zia-Ur-Rehman 
2015; Wang et al. 2012). It is found to be highly biodegradable, and it enhanced the 
solubilization and accumulation of various HMs such as Cd, Cu, Hg, Ni, Pb, and Zn 
by various plant varieties (Yan et al. 2010; Yang et al. 2013; Xu and Thomson 2007). 
Xu and Thomson (2007) found it to be a better chelator than EDTA and NTA for 
phytoextraction as well as ex situ washing of HMs.

EDDS is capable of improving phytoremediation of various HMs and highly 
biodegradable too; however, many workers have reported the risk of metal leach-
ing to groundwater level (Fedje et al. 2013; Hauser et al. 2005; Hu et al. 2007; 
Wang et al. 2012; Yan et al. 2010)
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9.3  Microbe-Assisted Phytoremediation

The interaction of plant root exudates and plant-associated microorganisms plays 
an important role in adaptation to metal-contaminated soil, which could be useful 
in phytoremediation technology (Ma et al. 2016; Mishra et al. 2017; Rajkumar 
et al. 2012). Many plant growth-promoting rhizobacteria (PGPR) and arbuscular 
mycorrhizal fungi (AMF) may enhance the biomass of plants and neutralize the 
detrimental effects of HMs on plant growth and nutrition through various mecha-
nisms (Ayangbenro and Babalola 2017; Jambon et al. 2018; Safronova et al. 2011; 
Rajkumar et al. 2012). PGPR and AMF arouse plant growth by producing phyto-
hormones (auxins, cytokinins, gibberellins) and diminish turbulences in the plant 
hormonal status. These microbes also secrete siderophores, phytochelators, 
organic acids, and amines (glutathione, glutamic acid, glycine, histidine, proline, 
spermine, spermidine, putrescine, nicotianamine, etc.), which in turn lessen the 
metal toxicity in plants and enhance metal bioavailability and phytostabilization 
of metals (Ali et al. 2013; Kamaludeen and Ramasamy 2008; Leskó and Simon-
Sarkadi 2002; Farooq et al. 2016; Sharma et al. 2017a, b). Biogeochemical pro-
cesses mediated by microbes (e.g., biological nitrogen fixation and bacterial 
phosphate solubilization or production of siderophores) can alleviate the HM tox-
icity by enhancing nutrient uptake and improving the plant transport systems 
(Alori et al. 2017; Khan et al. 2007; de Souza et al. 2015).

PGPR and AMF may ease the solubility and speciation of HMs in rhizosphere 
via various mechanisms, e.g., (a) intercellular sequestration of HMs by components 
of cell wall or by production of intracellular metal-binding substances (metallothio-
neins, phytochelatins, bacterial siderophores and catecholates, fungal siderophores, 
and hydroxamate siderophores) (Ojuederie and Babalola 2017); (b) blockage of 
HM uptake by altering biochemical pathways (Pal et  al. 2018); (c) biosorption, 
precipitation, or bioaccumulation of HMs in external and intracellular spaces 
(Hrynkiewicz et al. 2014; Mosa et al. 2016); and (d) PGPR and AMF, which can 
alleviate the intracellular concentration of HMs by using specific plasmid-encoded 
efflux systems (Laetitia and Puchooa 2017; Roane and Pepper 2000). PGPR and 
AMF are more efficient in transforming, mobilizing, and solubilizing nutrients and, 
therefore, are the major driving forces for recycling of nutrients present in the soil, 
leading to increased fertility of the soil. However, the increased mobilization of 
HMs can also increase their phytoavailability and toxicity (Violante et  al. 2010; 
Tangahu et al. 2011).

PGPR were initially used for increasing plant yield and growth, supporting nutri-
ent uptake by plants, and providing tolerance to plant diseases. However, in recent 
years, the application of PGPR has been extended to assist phytoremediation of 
HMs also (Ma et al. 2016; Mishra et al. 2017; Laetitia and Puchooa 2017; Mosa 
et al. 2016; Alori et al. 2017). Recently, many workers (Xun et al. 2015; Dong et al. 
2014) found that applying PGPR (Serratia marcescens BC-3) and AMF (Glomus 
intraradices), in pot experiments, could improve the biomass of plant, activities of 
antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), and soil 
enzymes (urease, sucrase, and dehydrogenase) and degraded total petroleum 
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hydrocarbon. Many PGPR and AMF isolates, such as Bacillus cereus, B. subtilis, 
Planomicrobium chinense, Pseudomonas fluorescens, P. aeruginosa, P. stutzeri, 
Providencia vermicola, Rhizophagus irregularis, and Amanita strobiliformis, had 
been used for phytoremediation of HMs (Ag, Cd, Cu, Ni, Pb, and Zn) worldwide 
(Zaidi et al. 2006; Khan and Bano 2016; Sharma et al. 2017a, b; González-Guerrero 
et al. 2008; Han et al. 2015; Hložková et al. 2016).

9.4  Conclusion

There are many ways to remediate heavy metal-contaminated soils, and among 
them, phytoremediation is a low-cost, green approach to save the environment. 
There are many drawbacks of using organic and synthetic chelators as mentioned 
earlier; however, the use of PGPR and AMF could augment the phytoremediation 
process without adversely affecting the plants. Hence, microbe-assisted phytoreme-
diation is recommended over chelator-assisted one.
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Abstract
Rapid unplanned urbanization and population leads to the generation of large 
amount of waste in India. Municipal solid waste is generated from various human 
activities like domestic and industrial. Huge amount of waste generation due to 
lack of efficient and effective management causes various diseases and environ-
mental contamination. Municipal solid waste management (SWM) is nowadays 
a big issue not only due to environment and health issue but also to generation of 
large quantities of waste. Developments of an integrated effective management 
system have the understanding of amount of waste generated, availability of 
resources, and environmental condition of society. SWM is a discipline that con-
cerns in controlling the generation, storage, collection, transportation, disposal, 
and processing of solid waste in a way that has no effects on economy, health, 
and environment and suits with public attitudes.
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10.1  Introduction

Solid waste means any unwanted or useless solid materials that are generated by 
community activities, and about 70% of total solid waste is comprised by municipal 
solid waste (MSW). MSW is generated by everyday human activity in residential 
setting, educational institutions, and commercial complexes. It includes wet, dry, 
and hazardous household wastes. Rapid development, rising urbanization, and 
changing lifestyle are the main culprits behind the generation of enormous amount 
of biodegradable and nonbiodegradable waste. In spite of the production of huge 
quantity and great variability of waste, the practices of waste management are still 
outdated, and this has resulted in heaps of waste everywhere in cities and towns 
(Gupta et al. 2015). It is pertinent to note that in India only 22–28% of the collected 
MSW is processed and treated, while the rest is discarded at different dump sites. 
With time, these wastes lead to emission of greenhouse gases and leach in soil, 
causing groundwater, environmental, and health problems (Shazwin and Nakagoshi 
2010; Srivastava et al. 2014). Segregation of waste at the generator site is of fore-
most important, but in our country, people often dumps mixed waste, which makes 
management more difficult. There is requirement of more sustainable practices as 
the present system includes only collection and dumping without treatment (Kumar 
et al. 2017). However, in the last 4 years, due to various programs by the Govt. of 
India, such as Swachh Bharat Mission (SBM) and concept of smart cities, MSWM 
had made people more aware about the magnitude of problem. These schemes had 
provided an atmosphere and also funds to concentrate more on the problem, but 
still, a large gap remains between policy and implementation (NITI Aayog 2015). In 
the year 2000 and then again in 2016, very strict rules were framed, but implementa-
tion on ground level is still lacking. The role of the informal sector has not been duly 
recognized, and there is requirement to incorporate them in recycling of waste by 
providing them better working condition. The need of the hour is to include inte-
grated solid waste management strategy by the promotion of waste segregation, 
waste recycling, compost production, and waste to power generation (MoUD 2014; 
Nandan et al. 2017). This present study evaluates the current status and identifies 
challenges, barriers, and opportunities associated with improving waste manage-
ment in India.

10.2  Generation of Municipal Solid Waste in India

10.2.1  Sources and Composition of Municipal Solid Waste

Municipal solid waste comprises highly bio degradable wastes (food waste, textiles, 
newspapers, garden waste, street sweepings, paper packaging material), moderately 
biodegradable waste (disposable napkins, disposable tableware, sanitary refuse), 
and nondegradable waste (rubber, plastic, metal, ceramics, glass, ash, electronic) 
from residential, institutional, commercial, and industrial sources (Fig. 10.1). It also 
includes hazardous household wastes such as paints, broken compact fluorescent 
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lamp (CFL) and bulbs, nail polish remover, thermometers, insecticides, and batter-
ies. (Bhat et al. 2018). Composition of MSW depends on per capita income, degree 
of urbanization and industrialization, socioeconomic status, geographical region, 
and cultural habits (Kumar and Kaushal 2015).

In our country, MSW contain less hazardous and more organic material than 
developed countries like Canada, the USA, and other European countries. Also, in 
India, MSW contains less paper, plastic, and metal contents than western countries 
due to recycling of these materials. The constituents of MSW comprise mainly 
organic fraction (40–60%) having a lot of moisture and inert such as ash and sweep-
ings (30–50%) followed by recyclables, viz., paper, plastics, glass, and metals. Food 
is the most important consumable item, and it contributes a lot to the organic frac-
tion (Kaushal et al. 2012). Carbon/nitrogen (C/N) ratio in MSW ranges from 20 to 
30 with calorific value of about 1700–1800 Kcal/Kg. During 1996–2011, constitu-
ents of MSW have changed considerably with increase in the proportion of high 
calorific value waste as shown in the Planning Commission Report 2014, Govt. of 
India. Major rise occur in plastic waste, which is of chief concern due to its 

Household 
waste

Institutional and 
commercial waste

Street 
sweeping 

waste

Slaughter 
house 
waste

Horticulture 
and Dairy 

Waste

Sanitation 
waste

Fig. 10.1 Sources of municipal solid waste

Table 10.1 Change in the composition of municipal solid waste across the country

Year Composition (%)
Biodegradable Paper Plastic/rubber Metal Glass Rags Others Inert

1996 42.21 3.63 6.60 0.49 0.60 Nil Nil 45.13
2005 47.43 8.13 9.22 0.50 1.01 4.49 4.016 25.16
2011 42.51 9.63 10.11 0.63 0.96 Nil Nil 17.00

Source: Planning Commission Report (2014), Govt. of India
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nonbiodegradable nature (Table  10.1). Categorization of wastes is necessary to 
know changing trends in the composition of wastes as appropriate technologies 
could be selected for the treatment of waste on the basis of this (Pamnani and 
Srinivasarao 2014).

10.2.2  Municipal Solid Waste Generation Rate in Different Cities 
of India

Rapid explosion in population and urbanization had resulted in substantial increase 
in the quantity of waste generation (Table 10.2) and also resulted in change in its 
composition (Nguyen et  al. 2011). After independence, there has been a marked 
change in the lifestyle of people which resulted in an eightfold increase in the gen-
eration of waste. From 1947 to 1997, waste generation has increased from 6 million 
tons to 48 million tons (Sharholy et al. 2006). According to Annepu (2012), waste 
generation in 2001 was 31.6 million tons that increased to 47.3 million tons in 2011 
with an increase of 50% in 10 years. It has been estimated that in 2041 the waste 
generation will show a fivefold increase, and it will be 161 million ton (Table 10.3). 
Presently, there has been an increase in per capita waste generation from 1% to 
1.33%. Depending upon economic status and density of population per capita gen-
eration, it varies from 200 g/day in small town and villages to 800 g/day in metro 
cities (Pattnaik and Reddy 2010; Siddiqqui 2018).

The Central Pollution Control Board (CPCB) along with the Environment 
Protection Training and Research Institute (EPTRI), National Environmental 
Engineering Research Institute (NEERI), and Central Institute of Plastics 
Engineering & Technology (CIPET) presented a report on production of waste from 
1999 to 2011 by conducting a survey in 35 metro cities and 24 state capitals. 
According to this report in 2011, the national capital (New Delhi) produced maxi-
mum amount of solid waste (6800 ton/day) (Table 10.4) followed by Mumbai (6500 
ton/day) and Chennai (4500 ton/day) (Kumar et al. 2009). Of the total waste pro-
duced, only 70% is collected, while the rest of the 30% spreads in every nook and 
corner of cities (Ghosh and Kansal 2014). The CPCB (2017) presented the recent 
status amount of waste generated, collected, processed, and landfilled in Indian 
states and UT after so much funding and campaigning under SBM (Table 10.5). In 
this report, Maharashtra topped the list with 21,860 tons of solid waste generated 
per day, followed by Uttar Pradesh (15,190 tons/day) and Delhi (9620 tons/day). Of 

Table 10.2 Per head generation of waste in Indian cities

S. no. Population
Per capita generation (g/
day)

1 Cities with population less than 2 lakh 200–300
2 Cities with population of 2–5 lakh 300–350
3 Cities with population of 5–10 lakh 350–400
4 Cities with population more than 10 lakh 400–800

Source: CPCB (2012)
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the total waste generated, only 20% is treated, while the rest goes in landfills or lost 
in urban environment.

10.3  Solid Waste Management Practice in India

Basic principle of SWM: 4Rs (refuse, reduce, recycle, reuse) (Fig. 10.2).
Refuse: Buy only those things that are needed and don’t buy those things that are 

not needed.
Reduce: Minimize the amount of waste generated by yourself by changing your 

lifestyle.
Reuse: Use the things for maximum time and make secondary use of the things.
Recycle: Develop the habit of segregation by giving recyclable material to 

kabadiwallahs, and convert biodegradable waste into manure and other useful prod-
ucts for reuse.

10.3.1  Collection

Collection of waste from house to house is a very tedious process because of the 
varied behavior of the public. People use their own intelligence for the segregation, 
and it will create a problem to the professional. Waste is collected from different 
site, door to door, and transferred to disposal site for further processing. Collection 
of waste is a very complex and costly process. Waste separation at the point of 
source into three categories, i.e. biodegradable, recyclable, and nonrecyclable, 
reduced the cost. Proper planning and better management is effective in collection 
and reduction of cost.

10.3.2  Segregation

Segregation of waste is challenge for all, and it is unorganized (Advani and Somani 
2018). The whole process becomes so easy once the process of segregation becomes 
part of each person’s daily life.

Table 10.3 Future calculation of waste generation up to 2041

S. 
no. Year

Population (in 
millions)

Generation/individual (kg/
day)

Waste generated (metric 
tons/day)

1 2001 197.3 0.439 31.63
2 2011 260.1 0.498 47.30
3 2021 342.8 0.569 71.15
4 2031 451.8 0.649 107.01
5 2036 518.6 0.693 131.24
6 2041 595.4 0.741 160.96

Source: Annepu (2012)
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Table 10.4 Waste generated (tons/day) by metro cities/state capital from 1999 to 2011 (CPCB 
2012)

S. no. Name of city
Municipal solid waste (tons/day)
1999–2000a 2004–2005b 2010–2011c

1 Agartala – 77 102
2 Agra – 654 520
3 Ahmedabad 1683 1302 2300
4 Aizawl – 57 107
5 Allahabad – 509 350
6 Amritsar – 438 550
7 Asansol – 207 210
8 Bangalore 2000 1669 3700
9 Bhopal 546 574 350
10 Bhubaneshwar – 234 400
11 Chandigarh – 326 264
12 Chennai 3124 3036 4500
13 Coimbatore 350 530 700
14 Daman – 15 25
15 Dehradun – 131 220
16 Delhi 4000 5922 6800
17 Dhanbad – 77 150
18 Faridabad – 448 700
19 Gandhinagar – 44 97
20 Gangtok – 13 26
21 Guwahati – 166 204
22 Hyderabad 1566 2187 4200
23 Imphal – 43 120
24 Indore 350 557 720
25 Itanagar – 12 102
26 Jabalpur – 216 400
27 Jaipur 580 904 310
28 Jammu – 215 300
29 Jamshedpur – 338 28
30 Kanpur 1200 1100 1600
31 Kavaratti – 3 2
32 Kochi 347 400 15
33 Kohima – 13 45
34 Kolkata 3692 2653 3670
35 Lucknow 1010 475 1200
36 Ludhiana 400 735 850
37 Madurai 370 275 450
38 Meerut – 490 52
39 Mumbai 5355 5320 6500
40 Nagpur 443 504 650
41 Nashik – 200 350
42 Panjim 330 32 25

(continued)
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10.3.3  Transportation

Solid wastes after collection are transported to the dumping/disposal site by open 
van and truck/compactor trucks. Industrial solid waste collection and transportation 
is done by private contractor to disposal site.

10.3.4  Disposal

10.3.4.1  Open Dumping
It is the easiest and commonly used methods by underdeveloped and developing 
countries like India. MSW are dumped outside the city in low-lying area without 
taking care of the environment. Open dumping does not need equipment and exper-
tise and is of low cost. But once done, the remediation of that place is a costly affair. 
It is impossible to revert contamination of groundwater to healthy condition. 
Methane gas is released out from biodegradation in anaerobic condition, a major 
cause of global warming. Again, burning of waste at dump site creates respiratory 
problems due to release of fine particles. This unscientific way of disposal creates 
problem during rainy season and flooding, which causes various diseases and leads 
to contamination of groundwater.

Table 10.4 (continued)

S. no. Name of city
Municipal solid waste (tons/day)
1999–2000a 2004–2005b 2010–2011c

43 Patna – 511 220
44 Pondicherry – 130 250
45 Port Blair 700 76 45
46 Pune – 1175 1300
47 Raipur – 184 224
48 Rajkot – 207 230
49 Ranchi – 208 140
50 Shillong – 45 97
51 Shimla – 39 50
52 Silvassa – 16 35
53 Srinagar – 428 550
54 Surat 900 1000 1200
55 Thiruvananthapuram – 171 250
56 Vadodara 400 357 600
57 Varanasi 412 425 450
58 Vijayawada – 374 600
59 Visakhapatnam 300 584 334

Total MSW 30,057 39,031 50,592

Municipal solid waste study conducted by CPCB through:
aEPTRI (1999–2000)
bNEERI-NAGPUR (2004–2005)
cCIPET during 2010–2011
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Table 10.5 Solid waste generated, collected, and processed in Indian states and Union territories 
(UT) (CPCB (2017), CPCB (2015–2016) report)

S. 
no. States and UT

Waste 
generated 
(TPD)

Collected 
(TPD) Processed (TPD)

Landfilled 
(TPD)

1 Andaman and 
Nicobar Islands

70 70 5 –

2 Andhra Pradesh 6440 6331 500 143
3 Arunachal 13 11 Nil Nil
4 Assam 7920 6336 200 Nil
5 Bihar 1670 0 0 No
6 Chandigarh 370 360 Nil 230
7 Chhattisgarh 2245.25 2036.97 828.18 1290.97
8 Daman and Diu 85 85 0 –
9 Delhi 9620 8300 3240 5060
10 Goa 450 400 182 –
11 Gujarat 10,480 10,480 2565 7730
12 Haryana 4837.35 3102.51 188 2163.18
13 Himachal Pradesh 276 207 125 150
14 Jharkhand 3570 3570 65 3505
15 Jammu and 

Kashmir
1634.5 1388.7 3.45 425

16 Karnataka 8842 7716 3584 3946
17 Kerala 1339 655 390 –
18 Nagaland 344 193 – –
19 Lakshadweep 21 – – –
20 Madhya Pradesh 6678 Nil Nil Nil
21 Maharashtra 21867.27 21867.21 6993.2 14993.67
22 Manipur 176 125 – –
23 Mizoram 552 276 0 –
24 Meghalaya 187 156 36 122
25 Orissa 2574.7 2283.9 30 –
26 Punjab 4456.2 4435 3.72 3214
27 Puducherry 513 513 10 503
28 Rajasthan 5037 2491 490 –
29 Sikkim 49 49 0.3 –
30 Tamil Nadu 230 210 – 207
31 Telangana 6628 6625 3175 3050
32 Tripura 414 368.2 250.4 164.4
33 Uttarakhand 917 917 No MSW 

treatment facility 
existing

No sanitary 
landfill site

34 Uttar Pradesh 15,192 11,394 1857 –
35 West Bengal 9500 8075 851 575

Total 135198.27 111027.55 25572.25 47415.62
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10.3.4.2  Landfilling
Landfilling is an engineered structure designed for disposal of waste to avoid envi-
ronment contamination and for public health. Landfill site should help in waste 
compaction, protection of environment, and control of public health. In this process, 
MSW is deposited in landfill where decomposition takes place by various physical, 
chemical, and biological processes in the absence of oxygen. Biogas and leachate 
are two main by-products of landfilling. Landfill site when designed and constructed 
scientifically with technological specification can reduce environmental pollution. 
They are also designed according to the type of waste generated (hazardous, non-
hazardous, and inert waste) and checked periodically for their performance. An 
effective and safe landfill site has been planned by administrative and municipal 
solid waste management system. Major landfill sites present in various states of 
India are shown in Table 10.6.

10.3.4.3  Biological Treatment of Organic Waste
It is a fast process of decomposition of organic matter in warm moist by microor-
ganism in aerobic and anaerobic condition. It is the simplest, eco-friendly, efficient, 
and cost-effective method of handling MSW. Composting can occur naturally, and 
it will take 6  months to degrade waste. This is known as passive composting. 
Compositing process is enhanced by heat, moisture, and temperature to provide a 
suitable condition, and then, it will complete the degradation process within 
3 months. Compost (humus) is formed as end product of composting, which is rich 
in nutrients and used as slow release fertilizer. Using compost helps in soil erosion 
and increases the fertility of soil. CPCB Annual Report 2017 reported working com-
posting plant all over India as shown in Table 10.7.

Fig. 10.2 4 Rs principles
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10.3.4.3.1 Aerobic Compositing
It is a process of composting that occurs in the presence of air, humid, and warm 
environments with the presence of microorganisms.

10.3.4.3.2 Vermicomposting
It is a kind of compositing where the environment is suitable for survival and repro-
duction of red worm and earthworm. Earthworm feeds on semi-decomposed matter 
and excretes natural organic substance that looks like tiny soil, which is rich in 
nutrients. Vermicomposting is done in controlled environment, i.e., temperature, 
moisture, and types of organic matter (Kumar and Pandit 2013). It is found that 
compost formed is free of pathogen, but if the initial matter is rich in pathogen, 
some of the pathogen is left behind in the compost. It is the simplest technology 

Table 10.6 Landfill site for 
disposal of solid waste in vari-
ous states of India

States
Number of landfill 
sites constructed

Number of landfill 
sites working

Andhra Pradesh 01 01
Chandigarh 01 01
Goa 06 04
Gujarat 11 03
Haryana 00 10
Karnataka 52 157
Nagaland 01 01
Madhya Pradesh 10 03
Maharashtra 04 04
Tamil Nadu 12 11
West Bengal 06 07
Tripura 01 01

Source: CPCB (Annual Report 2016–2017)

Table 10.7 Number of composting/vermicomposting plants in India

State
Number of plants 
working State

Number of plants 
working

Andaman and 
Nicobar

02 Karnataka 140

Andhra Pradesh∗ 39 Gujarat 23
Assam 01 Maharashtra 73
Chandigarh 01 Madhya 

Pradesh
20

Chhattisgarh 03 Punjab 01
Goa 09 Tamil Nadu 895
Haryana 04 Uttar Pradesh∗ 15
Uttarakhand 01 West Bengal 10
Sikkim 02 Puducherry 01

Source: CPCB (Annual Report 2016–2017)

S. Saini et al.
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with low cost that can be used for treatment of urban and rural waste. But segrega-
tion of organic waste is the prerequisite of vermicomposting.

Novel technology of waste management by black soldier flies not only reduces 
the volume of waste but also provides business to the fish-growing people. The lar-
vae feed on organic matter and reduce the volume of dry mass by 40–50%. At pre-
pupae stage, its body is rich in protein and fats, so it is a good feed for fishes (https://
sswm.info/sites/default/files/reference_attachments/EAWAG%20SANDEC%20
2008%20Module%206%20Solid%20Waste%20Management%20Lecture.pdf).

10.3.4.3.3 Anaerobic Digestion
It is the formation of methane from organic matter by use of microorganism in the 
absence of air. Indian waste is rich in organic matter, and this process generates 
methane and manure enriched in nutrients. It is the most important and sustainable 
methods of treatment of biodegradable waste. It is commonly known as biometha-
nation. Biogas is stabilized and generated and is used as fuel for electricity genera-
tion and household activities. The Govt. of India in rural as well as in urban areas 
encourages people to utilize municipal, animal, and agricultural waste for biogas 
production.

10.3.4.4  Incineration
It is the process where energy is produced from waste and then processed in air at 
high temperature of 850  °C.  Along with energy, carbon dioxide, incombustible 
material, and solid residue with water (bottom ash) are produced. Ash produced can 
be solidify and used to form concrete to control the migration of contaminants. It 
helps in reducing volume and weight of waste (Durgekar 2016). Energy released 
can be used for electricity generation, process steam, and hot water for public heater. 
Incineration is mostly done in hospital for medical waste where it helps in the 
breakdown of hazardous organic waste and nonmetallic waste and eradication of 
bacteria and virus. It is not successful as calorific value of Indian waste is low (low 
energy and high moisture) (Patel and Baredar 2016). Developing countries includ-
ing India have many problems to start with full equipment-operated incineration 
system because of financial constraints such as infrastructure, maintenance, and 
pollution control equipment. In many countries like Singapore and Bangkok, fully 
functional incinerator plant used 90% of MSW generated (UNEP-IETC et al. 1996). 
Gas emission (CO2, SO2, dust, particulate matter, oxides of nitrogen, etc.) by incin-
erator creates major problems to human health and environment.

10.3.4.5  Thermal Treatment
The use of high temperature to degrade the waste is known as thermal treatment. It 
is done by incineration, gasification, and pyrolysis. Municipal solid wastes in India 
commonly contain large amount of organic matter with high moisture content and 
low calorific value that ranges 800–1100 kcal/kg, which makes its unsuitable for 
incineration (Kansal 2002).
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 1. Pyrolysis is a process where carbonaceous material is converted into gas, tar, 
ash, coke, and char by thermal process.

 2. Gasification is used in the treatment of solid waste, which is able to decrease the 
pollution and increase the recovery of heat. It is done at temperature range of 
900–1400 °C in limited supply of oxygen. Mostly, gasifiers are used to burn agro 
biomass, and only few number of gasifier is installed in India (see Table 10.8).

10.4  Roles of Public and Private Partnership

In our country, regulation of solid waste is considered as the sole accountability of 
urban local bodies (ULBs) due to the public and local nature of service. Due to 
increased urbanization, there is a marked rise in the magnitude of waste generated, 
and it also consists of lots of nonbiodegradable material. So, there is a gap between 
the requirement of infrastructure and services for management of waste and the 
capability of ULBs to provide the same. To overcome this shortfall, state and local 
government are increasingly adopting private contractor for collection, transporta-
tion, and disposal of waste. There are various forms of partnership among ULBs, 
private sector, and community at various places of country. These partnerships have 
been categorized mainly into four types. First category involves the management of 
MSW by ULBs alone as in cities like Jabalpur, Bokaro, and Tiruchirappalli. Second 
category includes partnership between ULBs and private sector for processing of 
waste, as in Hyderabad and Rajkot. In Guwahati, ULBs have engagement with both 
private and informal sector for the execution of waste management practices. In 

Table 10.8 Number of biogas plants in India

State Number of plants working State Number of plants working
Andhra Pradesh 10-RDF and 7-BG Maharashtra 03-RDF, 34-BG
Chandigarh 01-RDF and 1-BG Gujarat 1-BG
Goa 01 Karnataka 13-BG
Madhya Pradesh 01-RDF, 01-BG Pondicherry 01-RDF, 02-BG
Tamil Nadu 07-RDF, 39-BG Punjab 08
Uttar Pradesh 04-RDF West Bengal 01

Source: CPCB (Annual Report 2016–2017); RDF refuse-derived fuels; BG biogas

Table 10.9 Forms of Public Private Partnership adopted by various ULBs for MSWM

Forms of partnership

ULB (at their 
own) ULB and private sector ULB and community

ULB, private 
sector, and 
community

Cities 
involved

Bokaro, 
Trichy, 
Munger, 
Patna

Hyderabad, Rajkot, 
Chennai (from 1995), 
Bengaluru, Ahmedabad

Chennai (1989–
1995), Namakkal, 
Trivandrum

Guwahati

Source: Collected from SWM tool kit, case studies, CDPs, etc.
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some cities like Chennai and Trivandrum, local communities manage the waste of 
their own areas as well as of the vicinity. Here, ULBs along with small help group 
(SHG) or NGOs undertake the waste management activities. In Mumbai, 
Brihanmumbai Municipal Corporation has launched advanced locality management 
scheme in which members of locality are provided with subsidies and technical help 
for construction of composting facilities (Chatri and Aziz 2012) (Table 10.9).

In India, now, many private companies are in partnership with municipal bodies 
due to realization of business opportunity in MSWM, and under Public Private 
Partnership (PPP) mode, many projects are running. Some Indian companies 
involved are ESSEL Infra, Zen Global Finance Ltd., Hanjer Biotech, Excel 
Industries, Enkem Engineers Ltd., SELCO international Ltd., etc. Recently, some 
international companies have also jumped in Indian market for MSWM such as 
Lunde, TBW, and BTA of Germany, EISU of UK, Entac of Austria, and Nellemen 
and Nielsen of Denmark (Joshi and Ahmed 2016). Figure 10.3 shows the number of 
private projects undertaken by ULBs in some states of India. Karnataka has under-
taken seven projects, while Rajasthan and Tamil Nadu have five and four projects, 
respectively, in partnership with private sector. Gujarat and Maharashtra has only 
one project each under PPP (Chatri and Aziz 2012). However, the concept of inte-
grated solid waste management (Fig. 10.4) is still in nascent stage and is adopted by 
a few cities only. There is need for more states to come forward and adopt PPP mode 
for efficient management of MSW.

0 1 2 3 4 5 6 7

Karnataka

Rajasthan

Tamil Nadu

U�rakhand

Delhi

Andhra Pradesh

West Bengal

Maharashtra

Gujarat

Chandigarh

Assam Number of projects

Fig. 10.3 SWM projects taken by some states under Public Private Partnership (PPP India 
Database, Chatri and Aziz 2012)
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10.5  Role Played by Rag Pickers and Health Risks

In our country, the role played by rag pickers is very important due to apathy on the 
part of generator for the segregation of waste resulting in its dumping in outskirts of 
cities and towns. Most of the rag pickers are migrants from rural areas who have 
come in cities in search of employment. They live under extremely unhygienic con-
ditions in the suburbs of cities. These people wander from one dump/landfill site to 
another for collecting, sorting, and recycling waste such as newspaper, plastic items, 
glass bottles, carton, gatta, and metal scrap and sell it to waste dealers to generate 
income (Kumar et al. 2004). An adult rag picker collects on an average 40 kg of 
waste per day, which includes 5–15 kg of plastic and 10–15 kg of paper and card-
boards in addition to small amount of metal and glass (Syamala Devi et al. 2014). 
Thus, rag picker contributes significantly toward recovery of recyclable materials, 
saves about 14% of municipal budget annually, and decreases landfill load up to 
20% (Chintan NGO report, Pappu et al. 2007). They make a significant contribution 
to the environmental management while putting their own health at risk. They suffer 
from many diseases such as tuberculosis, asthma, bronchitis, pneumonia, dysentery, 
and anemia (Syamala Devi et al. 2013). They often get infection by coming in con-
tact with human and animal excreta, sputum, and dead animals. Cuts from sharp 
metal objects, syringes, blades, and broken bottles are more, common thus exposing 
them to tetanus and other infections. Injuries from medical waste are more danger-
ous because rag pickers may get infected by HIV, hepatitis B and C, and other bacte-
rial infections by contaminated syringe and needles. They are often bitten by 

Fig. 10.4 Hierarchy of sustainable solid waste management
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mosquitoes, snakes, and rodents. They also suffer poisoning from various chemi-
cals, heavy metals, and pesticides (Sarkar 2003).

Considering the worth of their work steps should be taken to improve their living 
and working condition, efforts should be made to organize them in cooperatives 
with the help of NGOs. They should be allowed to collect waste directly from 
households instead of searching at dump sites (MoUD 2014). Besides giving them 
due recognition in society, it will help in providing better working condition along 
with reducing occupational health hazards. Cities like Pune, Rajkot, and Mysuru 
helped in organizing waste pickers with the help of NGOs, provided them with bet-
ter working condition, and integrated their contribution with formal solid waste 
management system (Ahluwalia and Patel 2018). In Pune, rag pickers’ cooperatives 
called SWaCH receives uniforms, identity cards, equipment, and also sheds for sort-
ing recyclable from dry waste (SWaCH website 2012). Other Indian cities can adopt 
Pune’s way of managing their waste by incorporating informal sector.

10.6  Swachh Bharat Mission

Four years ago, on second October 2014, Gandhi Jayanti Prime Minister Narendra 
Modi launched the Swachh Bharat Mission (SBM) for urban areas (NITI Aayog 
2015). It is India’s biggest cleanliness drive with the motive to eliminate open def-
ecation, management of MSW in scientific manner, eradication of manual scaveng-
ing, and generation of health awareness. The scheme was started with a target of 
80% of SWM with an increase of 2% per year by providing financial assistance and 
by ensuring information, education, and communication (IEC). “Smart City 
Mission” was initiated on 25th June 2015, and from 2016 onward, a city ranking 
inspection system for cities and towns called Swachh Survekshan was started to 
review city’s performance under SBM. It surveys ULB documentation, independent 
observation, and verification along with citizen feedback. It is the first-ever largest 
survey in the world impacting around 40 core people. On fifth June 2017, “Har din 
do bin” campaign was launched to encourage 100% source segregation of waste 
into wet and dry in green and blue bins. Star rating framework was initiated on 20th 
January 2018 to ensure no visible garbage, reduction in waste generation, and 
enhancement in waste processing in all cities and towns. Compost Banao Compost 
Apnao scheme was started to encourage stakeholders to make compost from wet 
waste. Besides these, an ICT-based Grievance Redressal System called Swachhata 

Table 10.10 Solid waste management scenario (SBM reporting, MoUD 2017)

MSW generation 1.45 lakh tons/day
MSW processed 33,215 tons/day (23%)
Total number of wards with 100% door to door 
collection

57,475 (68%)

Landfilled (crude dumping) 1.22 lakh tons/day (72%)
Waste to compost production 13.11 lakh TPA (tons/annum)
Waste to energy production 88.4 MW
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App was launched to enable people to sort out their grievances by concerned 
Municipal Corporation (Singh 2018).

10.6.1  Achievements Under SBM

• Under SBM, 68% urban wards have 100% collection of MSW from the genera-
tor, and this collection increased to 83% till 2018.

• MSW processing capacity increased from 24% (in 2017) to 34% (in 2018) 
(Table 10.10).

• To manage city compost, new waste to compost plants are constructed. Presently, 
145 plants are operating, while 150 plants are under construction (Table 10.11).

• As per SBM, 7 plants are operating under waste to energy generation, and 56 
plants with a power generation capacity of 415  MW are under construction 
(Table 10.12).

• Under SBM, 7365 cores were allocated for SWM.
• Cleanliness has become a drive like never before.

10.6.2  Areas Lacking Behind Under SBM

• Segregation of waste is the biggest challenge, and this will be the game changer 
whenever implemented properly. Mostly, mixed waste ends in the dump site, and 
people are not segregating in true spirit. Under SWM 2016 Rules, it is mandatory 
to segregate waste into dry, wet, and domestic hazardous waste.

Table 10.11 Waste to com-
post production (SBM report-
ing, MoUD 2017)

Waste to compost potential—54 lakh TPA
Number of functional plants 145
Input capacity of functional plants (TPA) 62.3 lakh
Total production of city compost (TPA) 13.11 lakhs
Number of plants under construction 150
Input capacity of plant under construction 
(TPA)

33.48 lakh

Table 10.12 Waste to energy 
production (SBM reporting, 
MoUD 2017)

Waste to energy potential—51 MW
Number of functional plants 7
Production capacity of functional 
plants (MW)

88.4

Number of plants under 
construction

56

Production capacity of plant under 
construction (MW)

415
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• Although so much campaign and incentives are given for production of city com-
post, neither the fertilizer companies nor the farmers are interested in city 
compost.

• Waste to energy plants can treat only nonbiodegradable, nonrecyclable, high 
calorific value waste, but only a limited amount of waste fit in this category as the 
waste coming from these plants is of mixed quality. So these plants have more 
capacity to treat waste than what they are doing.

• Out of allocated funds for SWM, only 2126.24 cores (28%) have been 
dispersed.

• Although so much investment has been done for public awareness, impact on 
ground level is very poor.

• To achieve better ranking under Swachh Survekshan, municipalities commence 
the activities a few months before the survey.

• SBM have focused much on prevention of open defecation, and attention on 
SWM is missed out.

Although the steps taken by the government under SBM to achieve cleanliness 
are laudable, people in India consider SWM as the job of municipal authorities only. 
SBM can be achieved only when all the stakeholders including the waste generators 
consider it their responsibility to manage waste.

10.7  Solid Waste Management Rules, 2016

In our country, before 2000, there is no specific rule regarding collection, segrega-
tion, transportation, processing, and disposal of waste. Often, waste was dumped in 
the periphery of cities where slums and unauthorized colonies got established for 
picking up recyclable waste that poses serious threat to public health. So, in the year 
1996, a Public Interest Litigation was filed in the Supreme Court. This resulted in an 
appointment of a committee under MoEF to frame rules for waste management, and 
for the first time, Municipal Solid Waste (Management and Handling) Rules 2000 
came into existence (MoEF 2000). But these rules did not bring improvement in 
solid waste management, so Solid Waste Management (SWM) Rules 2016 were 
proposed by MoEF&CC to improve the present scenario (MoEF&CC 2016).

10.7.1  Rules and Legal Provisions Under SWM Rules 2016 
(MoEF&CC 2017, Yadav 2017)

• These rules for the first time clearly define the duties of MSW generator. These 
rules emphasize the duty of producer to separate out the waste into wet, dry, and 
special waste.

• The area under application of MSW rules was broadened by including residential 
and nonresidential properties, places of pilgrims, railways, airport, ports, defense, 
hospitals, hotels, educational institutions, sport complexes, etc. under its range.

10 Effective and Sustainable Solid Waste Management in India: A Challenge
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• It introduced the concept of integrated solid waste management system by 
increasing PP partnership under Swachh Bharat Mission. Under this, concept of 
5Rs was introduced such as reduce, reuse, recover, recycle, refine, and remanu-
facture for better management practices.

• It includes provisions of instant fines on those throwing waste in open places and 
not doing segregation.

• Street vendors have to keep bins for collecting the waste generated whole day 
and not to litter it on roads.

• Manufacturers of sanitary napkins and diapers should provide a wrapper for their 
disposal, and these must be disposed of in dry waste bin.

• All biodegradable waste must be treated by composting or biomethanation. 
Ministry of Chemical and Fertilizer was directed to provide assistance in devel-
oping market for compost.

• Ministry of New and Renewable Energy Resources should help in the improve-
ment of infrastructure for developing new energy plants from waste by providing 
financial assistance.

• It is mandatory on the part of municipal authority to send annual reporting on 
MSW operation to the Ministry of Urban Development (MoUD).

• Secretary of State Urban Development, municipal administrator, local bodies, 
and village Panchayats have to make a waste management strategy by consulting 
all the stakeholders including rag pickers, self-help groups, and NGOs.

• The Ministry of Urban Development along with State Urban Development 
should prepare a state policy and provide technical guidelines and training to 
local bodies and other stakeholders.

• CPCB will annually review the execution of rules and then submit an Annual 
Report on performance of states and UT under these rules.

10.8  Conclusion

Segregation of waste, collection of waste from door to door, various treatment tech-
nologies, and limitation of land resource and lack of scientific method of waste 
disposal are major challenges for the management of solid waste. The first initiative 
is waste segregation/separation at source place, which reduced the cost of waste 
management system, and that amount can be used in other processing unit. Landfill 
site constructed should have longer life span and reduce environmental impacts. 
Law should be followed strictly so that every citizen can realize the responsibility 
of waste management. Municipal bin should collect dry and wet waste in separate 
bins. Strong transportation and setting of transfer station are also the requirement of 
today’s SWM.  Implementation of integrated solid waste management system as 
shown in Fig. 10.5 somehow helps in the management of this problem.
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11Rhizospheric Treatment 
of Hydrocarbons Containing Wastewater
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and Basant Yadav

Abstract
Hydrocarbons have a global attention as some of harmful contaminants due to 
their potential in causing fatal disease to mankind. In India, their usage is being 
continuously increasing to meet the needs of growing population from last few 
decades. Hydrocarbon discharge from various anthropogenic activities (viz., pet-
rochemical industries, gasification, incineration) are primarily causing the detri-
mental effect onto the soil health and groundwater. Therefore, several 
methodologies and hybrid technologies are being developed for the remediation 
of these hydrocarbons, including physical, chemical, and biological processes. 
But, the remediation processes employing microorganisms and plants have been 
considered as environmental friendly as well as cost-effective techniques. 
Moreover, several efforts have been made in improving the effectiveness of these 
technologies. This chapter provides an understanding of remediation techniques 
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by highlighting the multidisciplinary aspects. These approaches can be  effectively 
deployed for the soil and groundwater remediation. Further, an approach of 
exploring the experimental outcomes in combination with the numerical model-
ing has been discussed which is a beneficial tool for making the technology 
transfer feasible from laboratory to field scale applications effectively as well as 
in cost-effective manner.

Keywords
Hydrocarbon pollutants · Plant-assisted bioremediation · Wastewater · Concurrent 
treatment

11.1  Introduction

With holding the second largest populated country in the world, still India is among 
the fast-growing economics of the globe. In India, agriculture is the primary sup-
portive sector followed by the industry as secondary supportive sector for economic 
growth. With over a half of the country’s population is living underneath the poverty 
level and lacking access to the basic facilities (Gupta and Sharma 2018), the policy 
makers and stakeholders are simultaneously adopting various schemes and policies 
to affirm the basic needs such as food, health, education, and livelihood to uphold 
the rising demand. Therefore, governments continuously encourage foreign direct 
investment (FDI) to boost their economy so that the provision of basic facilities 
could be ensured (Kuntluru et al. 2012). This scenario attracts the global manufac-
turer to relocate their industries in the land of the country. Currently, India imports 
84% of the petroleum products, and in accordance with the Directorate General of 
Commercial Intelligence and Statistics (2015), during the financial year April 2018 
to March 2019, the country imported around 46.6 million tons of crude oil. Several 
chemical industries have been established efficaciously all over the country that 
may release of numerous chemicals in the environment via transportation, process-
ing, and storage. These contaminants generated via the leakage of petrochemicals 
further lead to the groundwater and soil pollution (Goswami et  al. 2019a, b; 
Kushwaha et al. 2017; Seeger et al. 2011; Gupta 2020).

11.2  Hydrocarbon in Environment

Hydrocarbon contamination of soil and water is a ubiquitous problem all over the 
world, and remediation of these polluted resources is needed to eliminate risk to 
human and to the environment. Common anthropogenic sources of hydrocarbon 
contamination include the transportation and mishandling of petrochemical prod-
ucts and disposal and land application of petrochemicals from different sources and 
industrial sites (Goswami et al. 2017a, b; Sathe et al. 2020). According to Directorate 
General of Commercial Intelligence and Statistics (DGCIS), Government of India, 
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there is increasing growth of the petrochemical industries and the exports and 
imports of the petrochemical products. Many researchers and agencies categorized 
hydrocarbon as a toxic and hazardous chemical for the ecosystem and human 
(Goswami et al. 2019c). United States Environmental Protection Agency (USEPA) 
refers hydrocarbons as toxic chemicals and are recommended for the bioremedia-
tion of all polluted sites (USEPA 1995). Similarly, USGS studies a long-term and 
interdisciplinary projects for the hydrocarbon-polluted sites. For examples, USGS 
sponsored a research project for crude oil-contaminated soil-water site near Bemidji, 
Minnesota (Delin et al. 1998).

When released to land, these contaminants can migrate downward through 
unsaturated zone, and consequently, light phase aqueous hydrocarbons float and 
move on top of the water table, while dense phase move downward through the 
water table and penetrate into the saturated zone (Dobson et al. 2007). The variable 
environment conditions like temperatures, soil moisture, nutrient supply, and water 
table fluctuation pose distribution pattern of the hydrocarbon plumes in the soil- 
water system. Therefore, the hydrocarbon spills present a significant threat to envi-
ronment as they can result in extensive pollution from small spillages.

11.3  Decontamination Techniques

Over the past few decades, the hydrocarbon pollution is among the major problem, 
globally (Nedwell 1999; Goswami et al. 2018a). The current practice for remediat-
ing hydrocarbon-polluted sites relies heavily on encapsulation or isolation (capping, 
barriers); neither of which addresses the issue of decontamination. Cleaning these 
sites via immobilization or extraction by physiochemical techniques can be prohibi-
tively expensive and is often appropriate only for small sites where rapid and com-
plete removal is required (Kumar et  al. 2019; Kushwaha et  al. 2019; Bind et  al. 
2018; Goswami et al. 2017c). Costly methods, such as ex situ treatment and soil 
washing, have an adverse effect on the biological diversity (Gupta and Joshi 2017; 
Gupta and Yadav 2017c; Gupta et al. 2018d), soil structure, and fertility (Yadav and 
Hassanizadeh 2011).

For the safe drinking water production and the equilibrium of the natural resources 
with better ecosystem services, many technological approaches are applied in the last 
few decades (Gupt et al. 2018; Kumar et al. 2016; Kushwaha et al. 2015). The research 
studies are applied for the remediation of hydrocarbon- contaminated site by different 
process or integration of process such as pump-and- treat, in situ biodegradation, phy-
toremediation, soil washing, surfactant and co-solvent flushing, air stripping, and 
thermal entrapments (Bento et al. 2005). The physicochemical and other relative tech-
niques are very economic and not feasible to its cleanup. Hence, amidst all the reme-
diation techniques, bioremediation is the cost-efficient and sustainable technique for 
the eradicating the hydrocarbon contamination (Goswami et al. 2020). However, the 
devoid of operational facilities and interdisciplinary knowledge gaps on the research 
topics, literature seriously lacks the information of contamination sites particularly in 
India (Yadav et al. 2019; Gupta et al. 2020).
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The other promising treatment options are through biological processes like bio-
remediation (Gupta et al. 2017), phytoremediation (Kushwaha et al. 2018; Susarla 
et al. 2002), and wetlands (Farhadian et al. 2008). Bioremediation is a developing 
cost-effective technique and causes no harm to the contaminated ecosystem as com-
pared to the above-mentioned traditional chemical and physical methods since the 
biodegradation of hydrocarbons depends on the indigenous microorganisms stimu-
lated by the pollutant (Borah et al. 2019; Goswami et al. 2018b). Various bioreme-
diation techniques are developed to clean up residual BTEX from polluted soils, 
marine shorelines, and surface and groundwater systems under a broad range of 
environmental conditions (Gupta et al. 2018b). These techniques are readily utilized 
as a complementary polishing method after deploying the established techniques for 
the substantial removal of pure phase contamination. BTEX compounds get biode-
graded in their aqueous phase by naturally occurring microorganisms in the subsur-
face environment, but the process is quite slow (Gupta et  al. 2019). Therefore, 
engineered/enhanced bioremediation is practiced using additives to the natural envi-
ronmental media. This involves the addition of seeded cultures, bioaugmentation or 
addition of nutrients, and biostimulation. The key role in the success of bioremedia-
tion in contaminated soil-water systems is played by microorganisms and various 
site-specific environmental parameters (Abhishek et  al. 2018a, b). Use of plants 
may provide a multi-synchronous environment favorable for metabolism of micro-
organisms by increasing O2 diffusion and root exudates, subsequently enhancing the 
rate of biodegradation in contaminated root zone (Gupta and Yadav 2017a, b; Gupta 
et al. 2018a, b, c; Gupta et al. 2019). Therefore, many researchers strongly recom-
mended the urgent needs for knowledge development on the advance and interdis-
ciplinary approaches of the remediation technology specially rhizoremediation/
concurrent treatments (Goswami et al. 2018b; Ouyang 2002). To clean up by reme-
diation using biological agents, three main strategies have been used: (a) stimula-
tion of microorganism by providing the addition of substrate, (b) incubation of 
active organisms, and (c) integration with plant species. Rhizoremediation of petro-
leum contaminants is a phytoremediation process that depends on interactions 
among plants, microbes, and soils (Basu et al. 2015). During the rhizoremediation/
plant-assisted biostimulation, some processes promote the remediation of a wide 
range of chemical at toxic site. Such processes are (1) modification of the physical 
and chemical properties of sites, (2) uses of nutrient organic carbon by releasing 
root exudates, (3) the aeration by transferring the oxygen to root zones, (4) retarda-
tion of the movements of chemicals by PRBs, (5) enhancement of the plant enzy-
matic transformation (Susarla et al. 2002).

The zone or electron acceptor-based application of the microbe diversity can 
result to more effective and efficiency rhizodegradation. The sub-surface zones rep-
resent the unique ecological niches due to their specific environment condition like 
separation of nutrient contents in different zones. Generally, the microbes are asso-
ciated with thermodynamically favorable electron acceptors. Therefore, each zone 
process of electron acceptors inhibits the specific adaptive microorganisms. Various 
molecular surveys of microbial communities in various anoxic environmental, char-
acteristic degrader ecotypes become evident for the particular environment and 
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electron acceptor process (Kleinsteuber et  al. 2008). The rhizosphere soil has 
10–100 times more microbes than unvegetated (Imfeld et al. 2009). Plants influence 
xenobiotic biodegradation by increasing in microbial cell numbers and microbial 
activation that occurs in rhizospheres as a result of growth on carbon substrate pro-
vided by rhizodegradation. Plant microbes’ interaction increased the mineralization 
process and immobilization process resulting in enzymatic enhancements. The deep 
fibrous root systems of plants may improve the aeration in soil by removing water 
through transports and by alternation of soil structure through agglomeration. The 
decay of dead root hair and fine root serves as an important source of the carbon for 
growth of rhizospheric microorganisms (Susarla et  al. 2002). Plants also secrete 
surfactants which reduce the surface tension and solubilize contaminants in soil 
water. Therefore, bioavailability in different zones is increasing due to reduction in 
the toxicity. The constructed wetlands are the examples to stimulate the combined 
effects of the biostimulation, bioaugmentation, and phytoremediation. Some spe-
cialized plant species play a very important role in phytostimulation under wetland 
condition, which removes almost 100% of pollutants from soil-water system. 
Microbial growth kinetics meets to mass transfer kinetics and enzymatic kinetics 
which results as the ultimate biodegradation of substrate. Many researchers investi-
gate batch experiment and column experiment using different plant species and 
reported different kinetics models. These are zero order kinetics models, first-order 
kinetics models, Monod’s kinetics, etc. Mathematical modeling of plant-assisted 
bioremediation is helpful for the bioremediation technology, proposed schemes, 
policy, and managements of contaminant site (Narayanan et al. 1998a, b). Therefore, 
a better understanding is needed for plant-assisted bioremediation of hydrocarbon- 
contaminated soil-water system that is presented here with special emphasis on the 
rhizoremediation strategies and their kinetics and mathematical approaches for two- 
dimensional and three-dimensional modeling. That will help in the policy frame-
work and  recommendations for the cost-effective remediation technologies. It is 
also powerful for the common platform to address and respond to dialogue, priority 
setting, and policy formulation for the better managements of cleanup technology. 
Models in the rhizoremediation during fate and transports of hydrocarbons are sum-
marized as follows with governing equation and mechanisms in Fig. 11.1.

11.4  Concurrent Treatment Facilities

This low-tech in situ approach of concurrent treatments is more attractive for biore-
mediation of hydrocarbon-polluted soils as it offers site restoration, partial decon-
tamination, and maintenance of the biological activity, which is visually unobtrusive, 
and there is the possibility of clean water production (Van Gestel et al. 2003). Due 
to the enormous potential for its cost and environmental savings (Gupta et al. 2017), 
there is a significant interest in this technology that is in its early stage of develop-
ment, and very little information is available related to site cleanup from start to 
finish. Effective implementation of concurrent treatments requires a thorough 
understanding of the soil-plant-atmospheric continuum processes which is currently 
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poorly understood and makes this technology expensive and inefficient despite the 
tremendous potential mentioned above. Most of the current research deals with the 
effect of microorganisms on soil and water, wherein the hydrocarbon-contaminated 
effluent or sewage sludge is applied to the cropped soil and the plants grown on such 
sites are analyzed experimentally to determine their capacity to remove hydrocar-
bons from the root zone. These studies simply correlate the hydrocarbon contami-
nant concentration in growing media with its presence in the plant biomass for a 
particular soil-water-plant system without hypothesizing how the fate and trans-
ports actually take place. This lack of understanding hinders the efforts of research-
ers in their quest to develop concurrent treatments from contaminated soil-water 
system. Techniques are used separately for treating wastewater and contaminated 
water. Therefore, innovative concurrent method for treating both the resources in 
symbiosis way is urgently needed. Moreover, isolated experimental and modeling 
works are mostly performed for both experimental and numerical methods, which 
are needed to be studied together. Similarly, there is limited scientific information 
on the impacts of the rhizospheric treatment during the fate and transports of the 
hydrocarbon in the soil-water system. Other than this, one remaining hurdle for 
commercial implementation of such treatment has been the disposal of the produced 
contaminated biomass, which is addressed rarely by the researchers so far. Therefore, 
the focus of this chapter is to generate the interdisciplinary and multidisciplinary 
aspects of effectiveness and the mechanisms of the highly complex soil-water-plant- 
atmospheric continuum processes during the concurrent treatments of wastewater 
and hydrocarbon-polluted soil-water resources from start (laboratory investigation) 
to finish (modeling approaches and field application). The specific research topics 
include interdisciplinary aspects as listed in Box 11.1.

1. Moisture based geo-chemical mechanisms of 

the hydrocarbons transports

− ∇. ( )∇ − = 0

+ + − − =

3. Sorptionmechanisms 

= − +

4. Plants Uptakesmechanisms 

= −

5. Biodegradation Kinetics mechanisms 

=
( + − )

( + )

6. Contamination Evaporation (Volatilization) 

mechanisms 

2. Multi-dimensional advective-dispersive mechanisms 

Fig. 11.1 Describes the summery of governing equation and the mechanisms of the rhizospheric 
treatments of the hydrocarbons polluted soil-water
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11.5  Numerical Modeling

The modeling involves the simultaneous movement of soil water and hydrocarbons 
through soil-water-plant system by coupling of the moisture flow equation with the 
contaminant transport equation in the presence of sink terms as mentioned in Eqs. 
(1) and (2). Similarly, the degradation pattern of the hydrocarbons can be used to 
numerically simulate the movement of water and hydrocarbon transport through the 
heterogeneous variably saturated zone (Gupta and Yadav 2019). The modeling 
involves the simultaneous movement of soil water and pollutant movement through 
soil-water-plant system by coupling of the moisture flow equation with the contami-
nant transport equation in the presence of sink terms. The transient moisture dynam-
ics in variably saturated porous media is expressed by a parabolic partial differential 
equation popularly known as Richards’ equation which is derived by integrating the 
Darcy’s law with the equation of continuity. This equation is in its three- dimensional 
mixed form which is coupled by non-uniform sink function for water by plants:
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Box 11.1 Interdisciplinary and multidisciplinary aspects of treatment facilities
A. Contaminant hydrology and biochemical engineering.

A1—the mechanisms governing the concurrent treatment process.
A2—plants and chelating agent’s for hydrocarbon removal from polluted 

sites.
B. Mass transfer (analytical tool) and mass balance (modeling tool).

B1—gas chromatography-mass spectrometry (GC-MS) for quantitative 
measurement of organic matter and metal dynamics in plant biomass 
and root zone.

B2—magnetic resonance imaging (MRI) for in situ measurement of plant 
growth and dynamic root density distribution.

B3—metal distribution in the soil solution and plant biomass using flame 
atomic absorption spectrophotometer.

C. Use of mathematical modeling in vadose zone processes.
C1—simulating water and contaminant dynamics in vadose zone and their 

uptake by plant.
Biomass using a realistic approach.
C2—validating of the developed model using experimental data obtained 

in B1, B2, and B3.
D. Technology comparison in cleanup processing.

D1—valorization of plant-enhanced decontamination during rhizospheric 
treatment for different techniques.

D2—economic evaluation of rhizospheric treatment against traditional 
techniques.
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where θ is the volumetric water content defined in the volume of water per unit 
volume of soil and h is the pressure head. S(t, h) is a sink function that represents the 
water extraction by surface vegetation, z is the depth of root zone measured positive 
upwards, K is the hydraulic conductivity of the soil, and t is the time. This equation 
is highly nonlinear for unsaturated flow, since hydraulic conductivity K and the 
volumetric water content are nonlinear functions of the dependent variable h, the 
soil moisture pressure head. To solve this equation, explicit expressions for the soil 
constructive relationship between the dependent variable h and the nonlinear terms 
K and θ are required.

The classical convection dispersion equation is used for contaminant transport in 
multidimensions taking the contaminant extraction term (Kumari et al. 2019). The 
Fick’s law coupled with the mass balance equation yields a modified form of 
advective- dispersive equation.
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Yadav and Hassanizadeh (2011) described the general expression for the solute 
biodegradation in soil-water system, in which only microbial densities and the con-
taminant concentration determine the degradation kinetics.
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where μmax is the maximum growth rate, C is the contamination concentration at 
time t, C0 is the initial contamination concentration, X0 is the contamination required 
to produce initial microbial density, and Ks is the half saturation constant.

The equilibrium adsorption isotherms founded in the case of hydrocarbons in 
soil-water system is mostly Langmuir equilibrium adsorption isotherms. The 
Langmuir equation is

 

S
S K C

K Ceq
max L eq

L eq

=
+1  

(4)

where Seq is the concentration of adsorbed viruses and Ceq is the concentration of 
free viruses after apparent equilibrium has been reached. Smax is the maximum 
adsorbed concentration when all active surface sites are occupied; KL is a constant 
related to the bonding energy. The movement of water and hydrocarbons in soils is 
generally better described with multidimensional non-equilibrium models than with 
more commonly used one-dimensional and/or equilibrium models. Furthermore, 
such equations are solved for the validation of the different field data set. Therefore, 
it plays very important role for the contamination fate and transport modeling 
including hydrocarbon contamination in the vadose zone and/or also saturated zone.
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11.6  Rhizospheric Treatment Facilities: Solar/Wind-Based 
Design

Rhizosphere deliberates as the “ecological remediation unit” for treating contami-
nated soils, possessing huge amount of microbes particularly bacteria, fungi, and 
rhizobacteria (symbiont with the plant roots). This approach gives how and in what 
extent the extreme environmental variations of soil moisture content, temperature, 
and water table dynamics could affect the biodegradation of hydrocarbon contami-
nants in variably saturated soils. Direct practical importance for remediating 
hydrocarbon- polluted natural resources is very high for Indian climatic conditions. 
A successful transformation of this cost-effective technology of bioremediation 
from laboratory to the field would have a significant impact on science and indus-
trial application, not only in India but also for countries having the similar environ-
mental conditions. An improved understanding of bioremediation processes that 
control biodegradation of organic contaminants is required to effectively implement 
this environmental-friendly technology for decontaminating the polluted sites 
(Mustapha et al. 2018). Such remediation technologies are convenient for the pol-
luted site where the handling of petrochemical substances is established such as oil 
refineries and port and costal area. The produced database and knowledge gained in 
this chapter can be used to encourage petrochemical and hydrocarbon production 
industries and other environmental agencies for remediating hydrocarbon- 
contaminated soil-water systems. If the application of bioremediation from the lab 
to the field proves to be efficient, this would have a positive impact on sustainability 
and the marketing of petrochemical of the country. At the same time, soil-water 
systems are referring under vulnerability due to such activities. Therefore, the tech-
nological supports to the commercial or industrial activities become the millstones 

Fig. 11.2 Rhizospheric treatment: solar/wind-driven aeration of hybrid CW (VF + HFF)
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for the sustainable developments. In this regard, a new treatment facility (Fig. 11.2) 
has been designed for treatment of wastewater containing hydrocarbon pollutants. 
The treatment system consisted of influent tank having a capacity of 200 L made of 
high-density polyethylene plastic containers located between source and aeration 
tank. The aeration tank having the capacity of 400 L is located next to influent tank 
and peristaltic pumps used to pump the influent into the hybrid CWs. The hybrid 
CW was composed of two parts: (1) a vertical flow (VF) CW planted with Canna 
generalis and (2) a horizontal flow filter (HFF) CW. Aeration of root zone enhances 
the biodegradation of hydrocarbon in VF chamber where motor of aeration can be 
driven by solar/wind system.

11.7  Summary and Recommendations

In India, the increase in the demand of hydrocarbons and its utilization cause the 
devastating effects to the ecosystems due to occurrence of mishandling episodes 
and lack of infrastructure, which in turn requires the development of engineered 
technologies in their remediation. Rhizospheric treatment alone with the conven-
tional methods seems to be effective and reliable in this respect. However, appropri-
ate innovations are needed to upgrade the literature for direct practical implication 
of the technique according to Indian climatic conditions. Some recommendations 
are as follows:

 1. Use of nano-biomaterials and biochar to enhance the rhizospheric degradation of 
hydrocarbon is a new direction of research and application (Ranjan et al. 2018).

 2. Solar/wind-driven aeration may accelerate the aerobic biodegradation of petro-
chemical in root zone; however to maintain optimal aeration, it is important to 
investigate the other operational parameters.

 3. In situ aerobic heating, i.e., providing optimal heated water using PV system, can 
be an effective approach.

 4. Modeling of root zone mechanisms is needed to understand the accurate root 
uptake and pollutant distribution in subsurface.

Acknowledgments Supports from Remwasol Remediation Technologies Pvt. Ltd. is well 
acknowledged.

References

Abhishek A, Gupta PK, Yadav BK, Amandeep A, Tomar AS, Kataria S, Kumar S (2018a) 
Phytoremediation of toluene polluted groundwater under nutrient loading using constructed 
wetlands. Poster presentation (B33G-2766) in AGU Fall Meeting 2018 held in Washington 
D.C. USA during 10–14 Dec., 2018

P. K. Gupta et al.



299

Abhishek A, Yadav BK, Gupta PK (2018b) Morphological variations in unsaturated porous media 
due to LNAPL contamination. Poster in Japan Geoscience Union (JpGU) Chiba-city, Japan, 
May 20–24 2018

Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwa-
ter in pot-scale wetlands. Environ Sci Pollut Res 22(24):20041–20049

Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of 
soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. 
Bioresour Technol 96(9):1049–1055. https://doi.org/10.1016/j.biortech.2004.09.008

Bind A, Goswami L, Prakash V (2018) Comparative analysis of floating and submerged macro-
phytes for heavy metal (copper, chromium, arsenic and lead) removal: sorbent preparation, 
characterization, regeneration and cost estimation. Geol Ecol Landscapes 2(2):61–72

Borah SN, Sen S, Goswami L, Bora A, Pakshirajan K, Deka S (2019) Rice based distillers dried 
grains with solubles as a low cost substrate for the production of a novel rhamnolipid biosur-
factant having anti-biofilm activity against Candida tropicalis. Colloids Surf B: Biointerfaces 
182:110358

Delin GN, Essaid HI, Cozzarelli IM, Lahvis MH, Bekins BA (1998) Ground water contamination 
by crude oil near Bemidji, Minnesota (No. 084-98). US Geological Survey

Directorate General of Commercial Intelligence and Statistics. Government of India. Ministry of 
Commerce and Industry (2015) Annual report

Dobson R, Schroth MH, Zeyer J (2007) Effect of water-table fluctuation on dissolution and biodeg-
radation of a multi-component, light nonaqueous-phase liquid. J Contam Hydrol 94:235–248

Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaro-
matic pollutants in groundwater: a review. Bioresour Technol 99(13):5296–5308. https://doi.
org/10.1016/j.biortech.2007.10.025

Goswami L, Kumar RV, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017a) Simultaneous 
polycyclic aromatic hydrocarbon degradation and lipid accumulation by Rhodococcus opacus 
for potential biodiesel production. J Water Process Eng 17:1–10

Goswami L, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017b) Simultaneous heavy metal 
removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 
Biotech 7(1):37

Goswami L, Namboodiri MT, Kumar RV, Pakshirajan K, Pugazhenthi G (2017c) Biodiesel pro-
duction potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewa-
ter. Renew Energy 105:400–406

Goswami L, Kumar RV, Borah SN, Manikandan NA, Pakshirajan K, Pugazhenthi G (2018a) 
Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal 
from wastewater: a review. J Water Process Eng 26:314–328

Goswami L, Manikandan NA, Dolman B, Pakshirajan K, Pugazhenthi G (2018b) Biological treat-
ment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the ole-
aginous bacterium Rhodococcus opacus. J Clean Prod 196:1282–1291

Goswami L, Kumar RV, Arul Manikandan N, Pakshirajan K, Pugazhenthi G (2019a) Anthracene 
biodegradation by Oleaginous Rhodococcus opacus for biodiesel production and its character-
ization. Polycycl Aromat Compd 39(3):207–219

Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019b) A novel integrated biodegradation- 
microfiltration system for sustainable wastewater treatment and energy recovery. J Hazard 
Mater 365:707–715

Goswami L, Manikandan NA, Taube JCR, Pakshirajan K, Pugazhenthi G (2019c) Novel waste- 
derived biochar from biomass gasification effluent: preparation, characterization, cost estima-
tion, and application in polycyclic aromatic hydrocarbon biodegradation and lipid accumulation 
by Rhodococcus opacus. Environ Sci Pollut Res 26(24):25154–25166

Goswami L, Pakshirajan K, Pugazhenthi G (2020) Utilization of biochar immobilized polyure-
thane foam as the potential packing material in an up-flow packed bed bioreactor for enhanced 
biological treatment of biomass gasification wastewater by Rhodococcus opacus. J Clean Prod

Gupt CB, Yamsani SK, Prakash A, Medhi CR, Sreedeep S (2018) Appropriate liquid-to-solid ratio 
for sorption studies of bentonite. J Environ Eng 145(2):04018138

11 Rhizospheric Treatment of Hydrocarbons Containing Wastewater

https://doi.org/10.1016/j.biortech.2004.09.008
https://doi.org/10.1016/j.biortech.2007.10.025
https://doi.org/10.1016/j.biortech.2007.10.025


300

Gupta PK (2020) Fate, transport, and bioremediation of biodiesel and blended biodiesel in subsur-
face environment: a review. J Environ Eng 146(1):03119001

Gupta PK, Joshi P (2017) Assessing groundwater resource vulnerability by coupling GIS based 
DRASTIC and solute transport model in Ajmer District, Rajasthan. J Geol S India (Springer). 
https://doi.org/10.1007/s12594-018-0958-y

Gupta PK, Sharma D (2018) Assessments of hydrological and hydro-chemical vulnerability of 
groundwater in semi-arid regions of Rajasthan, India. Sustain Water Res Manag:1–15. https://
doi.org/10.1007/s40899-018-0260-6

Gupta PK, Yadav BK (2017a) Bioremediation of non-aqueous phase liquids (NAPLS) polluted soil 
and water resources. Chapter 8, environmental pollutants and their bioremediation approaches, 
ISBN 9781138628892. CRC Press, Taylor and Francis Group, Florida, USA

Gupta PK, Yadav BK (2017b). Role of climatic variability on fate and transport of LNAPL pollut-
ants in subsurface. Session H060: Groundwater Response to Climate Change and Variability, 
AGU Fall Meeting 2017, New Orleans, USA

Gupta PK, Yadav BK (2017c) Effects of climatic variation on dissolution of LNAPL pollutants in 
subsurface environment. In: Chapter 8: Climate change resource conservation and sustainabil-
ity strategies, ISBN 9789384871086. DBH Publishers and Distributors, New Delhi

Gupta PK, Yadav BK (2019) Subsurface processes controlling reuse potential of treated wastewa-
ter under climate change conditions. In: Water conservation, recycling and reuse: issues and 
challenges. Springer, Singapore, pp 147–170

Gupta PK, Yadav BK, Hassanizadeh SM (2017) Engineered bioremediation of LNAPL pol-
luted soil-water resources under changing climatic conditions. Proceedings of International 
Conference on Modeling of environmental and water resources systems (ICMEWRS-2017), 
HBTU Kanpur, 24–26th March, 2017 (ISBN 978-93-85926-53-2)

Gupta PK, Abhishek, Yadav BK (2018a) Impact of hydrocarbon pollutants on partially saturated 
soil media in batch system: morphological analysis using SEM techniques. Chapter 5, Water 
Quality Management; Water Science and Technology Library, ISBN: 978-981-10-5794-6, Vol. 
79, Springer

Gupta PK, Ranjan S, Kumar D (2018b) Groundwater pollution by emerging industrial pollutants 
and its remediation techniques. Chapter 2, In Recent advances in environmental management, 
CRC Press Taylor & Francis Group, ISBN 9780815383147, Vol 1

Gupta P.K., Ranjan S., Kumar D., (2018c). Groundwater pollution by emerging industrial pol-
lutants and its remediation techniques. Chapter 2, In recent advances in environmental man-
agement, CRC Press Taylor & Francis Group: Routledge/Boca Raton, ISBN 9780815383147, 
Vol 1

Gupta PK, Yadav B, Yadav BK (2018d) Transport of LNAPL and biofilm growth in subsurface 
under dynamic groundwater conditions. C001723-Oral presentation in Japan Geoscience 
Union (JpGU) Chiba-city, Japan, May 20–24 2018

Gupta PK, Yadav B, Yadav BK (2019) Assessment of LNAPL in subsurface under fluctuating 
groundwater table using 2D sand tank experiments. ASCE J Environ Eng 145. https://doi.
org/10.1061/(ASCE)EE.1943-7870.0001560

Gupta PK, Yadav B, Kumar A, Singh RP (2020) India’s Major subsurface pollutants under future 
climatic scenarios: challenges and remedial solutions. In: Contemporary environmental issues 
and challenges in era of climate change. Springer, Singapore, pp 119–140

Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of 
organic chemicals removal in constructed wetlands. Chemosphere 74(3):349–362. https://doi.
org/10.1016/j.chemosphere.2008.09.062

Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular char-
acterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. 
FEMS Microbiol Ecol 66:143–157

Kumar RV, Goswami L, Pakshirajan K, Pugazhenthi G (2016) Dairy wastewater treatment using a 
novel low cost tubular ceramic membrane and membrane fouling mechanism using pore block-
ing models. J Water Process Eng 13:168–175

P. K. Gupta et al.

https://doi.org/10.1007/s12594-018-0958-y
https://doi.org/10.1007/s40899-018-0260-6
https://doi.org/10.1007/s40899-018-0260-6
https://agu.confex.com/agu/fm17/preliminaryview.cgi/Paper220494.html
https://agu.confex.com/agu/fm17/preliminaryview.cgi/Paper220494.html
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001560
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001560
https://doi.org/10.1016/j.chemosphere.2008.09.062
https://doi.org/10.1016/j.chemosphere.2008.09.062


301

Kumar M, Goswami L, Singh AK, Sikandar M (2019) Valorization of coal fired-fly ash for potential 
heavy metal removal from the single and multi-contaminated system. Heliyon 5(10):e02562

Kumari B, Gupta PK, Kumar D (2019) In-situ observation and nitrate-N load assessment in 
Madhubani District, Bihar, India. J Geol Soc India (Springer) 93(1):113–118. https://doi.
org/10.1007/s12594-019-1130-z

Kuntluru S, Muppani VR, Khan MAA (2012) Foreign direct investment and export performance of 
pharmaceutical firms in India: An empirical approach. Int J Econ Financ 4(5):216–226

Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mech-
anisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51

Kushwaha A, Rani R, Kumar S, Thomas T, David AA, Ahmed M (2017) A new insight to adsorp-
tion and accumulation of high lead concentration by exopolymer and whole cells of lead- 
resistant bacterium Acinetobacter junii L.  Pb1 isolated from coal mine dump. Environ Sci 
Pollut Res 24(11):10652–10661

Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and 
toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ 
Saf 147:1035–1045

Kushwaha A, Rani R, Patra JK (2019) Adsorption kinetics and molecular interactions of lead [Pb 
(II)] with natural clay and humic acid. Int J Environ Sci Technol:1–12

Mustapha IH, Gupta PK, Yadav BK, van Bruggen JJA, Lens PNL (2018) Performance evalua-
tion of duplex constructed wetlands for the treatment of diesel contaminated wastewater. 
Chemosphere 205:166–177. https://doi.org/10.1016/j.chemosphere.2018.04.036

Narayanan M, Tracy JC, Davis LC, Erickson LE (1998a) Modeling the fate of toluene in a chamber 
with alfalfa plants 1. Theory and modeling concepts. J Hazardous Substance Res 1:1–30

Narayanan M, Tracy JC, Davis LC, Erickson LE (1998b) Modeling the fate of toluene in a cham-
ber with alfalfa plants 2. Numerical results and comparison study. J Hazardous Substance Res 1

Nedwell DB (1999) Effect of low temperature on microbial growth lowered affinity for substrates 
limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

Ouyang Y (2002) Phytoremediation: modeling plant uptake and contaminant transport in 
the soil–plant–atmosphere continuum. J Hydrol 266(1-2):66–82. https://doi.org/10.1016/
S0022-1694(02)00116-6

Ranjan S, Gupta PK, Yadav BK (2018) Application of nano-materials in subsurface remediation 
techniques—challenges and future prospects. In: Chapter 6, Recent advances in environmental 
management, CRC Press Taylor & Francis Group, ISBN 9780815383147, Vol 1

Sathe SS, Goswami L, Mahanta C, Devi LM (2020) Integrated factors controlling arsenic mobili-
zation in an alluvial floodplain. Environ Technol Innov 17:100525

Seeger EM, Kuschk P, Fazekas H, Grathwohl P, Kaestner M (2011) Bioremediation of benzene-, 
MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. 
Environ Pollut 159(12):3769–3776. https://doi.org/10.1016/j.envpol.2011.07.019

Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution 
to organic chemical contamination. Ecol Eng 18(5):647–658. https://doi.org/10.1016/
S0925-8574(02)00026-5

USEPA (U.S. Environmental Protection Agency) (1995) Light nonaqueous phase liquids. Office of 
solid waste and emergency response, Washington, DC. EPA/540/S-95/500

Van Gestel K, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel 
oil-contaminated soil by composting with biowaste. Environ Pollut 125(3):361–368. https://
doi.org/10.1016/S0269-7491(03)00109-X

Yadav BK, Hassanizadeh SM (2011) An overview of biodegradation of LNAPLs in coastal 
(semi)-arid environment. Water Air Soil Pollut 220:225–239. https://doi.org/10.1007/
s11270-011-0749-1

Yadav B, Gupta PK, Patidar N, Himanshu SK (2019) Ensemble modelling framework for ground-
water level prediction in urban areas of India. Sci Total Environ:135539

11 Rhizospheric Treatment of Hydrocarbons Containing Wastewater

https://doi.org/10.1007/s12594-019-1130-z
https://doi.org/10.1007/s12594-019-1130-z
https://doi.org/10.1016/j.chemosphere.2018.04.036
https://doi.org/10.1016/S0022-1694(02)00116-6
https://doi.org/10.1016/S0022-1694(02)00116-6
https://doi.org/10.1016/j.envpol.2011.07.019
https://doi.org/10.1016/S0925-8574(02)00026-5
https://doi.org/10.1016/S0925-8574(02)00026-5
https://doi.org/10.1016/S0269-7491(03)00109-X
https://doi.org/10.1016/S0269-7491(03)00109-X
https://doi.org/10.1007/s11270-011-0749-1
https://doi.org/10.1007/s11270-011-0749-1


303© Springer Nature Singapore Pte Ltd. 2020
P. K. Arora (ed.), Microbial Technology for Health and Environment, 
Microorganisms for Sustainability 22, 
https://doi.org/10.1007/978-981-15-2679-4_12

D. Paul (*) 
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
e-mail: dpaul@amity.edu

12Metabolism of Nitroaromatic 
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Abstract
Nitroaromatic compounds are mainly man-made compounds having diverse 
functions in industry and otherwise. These are toxic compounds, and their com-
plete mineralization by natural or engineered microbes is desirable via aerobic, 
anaerobic, or dual pathways. Bacterial chemotaxis has been shown to improve 
degradation rates and also result in biofilm formation, which in turn assists 
breakdown of the toxic compounds. These properties may be harnessed for engi-
neering bugs for enhanced and varied degradation of NACs. The microbial diver-
sity of unculturable microbes may be tapped for discovering “new” genes for 
mineralization of xenobiotic and persistent/recalcitrant compounds.
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12.1  Nitroaromatic Compounds: Synthesis and Applications

Nitroaromatic compounds (NACs) are mainly man-made and applied for the manu-
facture of explosives (TNT, RDX, etc.), as pesticides/insecticides (Ju and Parales 
2010), and in industries, e.g., tannery, polyurethane foams, rubber photographic 
chemicals, azo dyes, varnishes, and pharmaceuticals (derivatives of phenothiazines, 
substituted nitrobenzenes, chloromycetin). The natural formation of nitroaromatic 
compounds may occur in both air and water conditions. In cities or small towns, 
hydrocarbons are released due to complete burning and incomplete burning of fossil 
fuels and thereafter become substrates for generating nitrobenzene(s), nitrotoluene(s), 
and nitro-polyaromatic hydrocarbons (nitro-PAHs) after nitration with nitrogen 
dioxide (Ju and Parales 2010). In aquatic environment, nitration and halogenations 
are sunlight catalyzed with the formation of 2- and 4-nitrophenol, chlorophenol, and 
bromophenol (Ju and Parales 2010).

Currently, two mechanisms are known for the production of biogenic nitroaro-
matic compounds (NACs). Oxygenases and haloperoxidases (under  unnatural/
stress) are known to catalyze the addition of nitro moieties to aromatic compounds. 
The other mechanism of formation of biogenic nitroaromatic compounds is via an 
electrophilic interaction of a nitronium cation that may directly help in attaching a 
nitro group to the aromatic ring (Ju and Parales 2010). NACs are also biologically 
active metabolites existing in plants and fungal species (e.g., alkaloids) although the 
reason for their presence is largely unknown. Table 12.1 includes some of the natu-
rally and artificially produced NACs and their applications in various areas.

Man-made or synthetic NACs include picric acid, TNT, lidocaine, and dinoseb 
and are primarily produced by nitration at para, meta, and/or ortho positions of the 
aromatic ring. The Zincke nitration is where sodium nitrite reacts with phenols to 
replace Br with a NO2 group (Raiford and LeRosen 1944), and Wolfenstein-Bӧters 
reaction is where benzene can be converted to 1,3,5-trinitrobenzene (Davis et al. 
1921). TNT was generally synthesized via sequential nitrification of toluene (Ju and 
Parales 2010). Aromatic amines, e.g., anilines used by the chemical industry, are 
manufactured by catalytically reducing NACs (Ju and Parales 2010).

12.2  Toxicity and Health Issues of Nitroaromatic Compounds

Several of the NACs are considered as “priority pollutants” and listed by the US 
Environmental Protection Agency (USEPA), and most of them are toxic and even 
mutagenic and capable of causing cancers on long exposures. The properties of 
NACs that are preferable for use as pesticides or other industrial application make 
them dangerous to mankind and animals. Ames test using Salmonella and E. coli 
tester strains has been popularly used to detect the potential of NACs to cause muta-
tion that consequently leads to DNA damage through deletions, transversions, and 
transitions (Purohit and Basu 2000).

Several nitroaromatic compounds pose a threat to the environment and to all liv-
ing beings, e.g., benzene, naphthalene, polycyclic aromatic hydrocarbons, and 
biphenyls (Kovacic and Somanathan 2014). The toxicity is mainly due to formation 
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of electron transfer, reactive oxygen species, and oxidative stress. Different classes 
of nitroaromatic compounds are known to affect human population via various 
mechanisms, and this has been briefly described below.

12.2.1  Nitrobenzenes

Nitrobenzenes, commonly used as pesticides, drugs, ammunition, or explosives, 
intermediates of chemical synthesis of industrial products, are known to be potential 

Table 12.1 List of synthetic or naturally occurring nitroaromatic and chloro-nitroaromatic com-
pounds, their applications, and effects on human beings

Name of compound Application
Natural/
synthetic Effects

TNT, DNT (tri-, dinitrotoluene) Explosive Synthetic Adverse
RDX 
(cyclotrimethylenetrinitramine)

Explosive Synthetic Adverse

HMX 
(cyclotetramethylenetetranitramine)

Explosive Synthetic Adverse

p-Nitrophenol Tannery Natural Mineralized by 
microbes but 
otherwise adverse 
effect

4-Nitrocatechol Useful metabolic 
marker for the 
presence of functional 
cytochrome P450 
2E1 in mammalian 
cell microsomes

Natural Mineralized by 
microbes but 
otherwise adverse 
effect

Nitrobenzoates Dye industry Synthetic Allergic skin 
reaction, eye 
damage

3-Methyl-4-nitrophenol, 
m-nitrophenol

Diesel exhaust 
particles, pesticides

Synthetic Adverse

Nitrobenzene or halonitrobenzenes Pharmaceuticals Synthetic Cancer inducing
Chloronitrobenzenes Precursor for useful 

compounds
Synthetic Hazardous

Lidocaine Local anesthetic Synthetic Useful
Anilines Drugs, rubber, 

polyurethane foams, 
azo dyes, photographic 
chemicals, varnishes

Synthetic Disorientation, 
dizziness

4-Nitropyrene Diesel and gasoline 
engine exhausts

Natural Carcinogenicity

p-Nitrochlorobenzene Pesticides and dyes Synthetic Coughing and 
wheezing

1-Nitronaphthalene Industrially important 
chemical

Synthetic Not significant

Chloramphenicol Antibiotic Natural Beneficial to 
human
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carcinogens due to nitro group reduction via two or more mechanisms leading to 
formation of reactive oxygen species or causing oxidative stress. When mice were 
exposed for a long time (2  years) to o-nitrotoluene, alterations in ras, p53, and 
β-catenin genes were observed in hemangiosarcomas leading to mutagenesis (Hong 
et al. 2003). The toxicity of 2,4,6-trinitrotoluene (TNT), a well-known explosive, 
covalently binds proteins and DNA in its reduced forms and also perturbs enzymatic 
redox cycling and/or serves as redox-cycling substrates for single ET as shown 
experimentally (Šarlauskas et al. 2004). Upon chronic exposure to TNT, there has 
been DNA damage in testes in rats and reduced semen secretion in Chinese workers 
(Homma-Takeda et al. 2002; Li et al. 1993)

12.2.2  Nitrobenzanthrones (NBA)

Nitrobenzanthrones (NBA), consisting of four fused aromatic rings, e.g., 
3- nitrobenzanthrone (3-NBA), occur in diesel exhausts and in airborne particles that 
exhibit significant mutagenic activity and serve as potent carcinogens, which cause 
tumors in the lungs of rodents and cause damage via H2O2 formation in human cells 
(Murata et al. 2006).

4-Nitrobiphenyl (NBP) is a bladder carcinogen of dogs and has mutagenic prop-
erties. When enzymatically reduced, the intermediate N-hydroxylaminobiphenyl is 
also reported as a mutagen, and the major product 4-aminobiphenyl (ABP) is a blad-
der carcinogen (Culp et al. 1997; Kovacic and Somanathan 2014).

Nitrated derivatives of polyaromatic hydrocarbons (PAHs) are reported as air-
borne pollutants (e.g., 1-nitropyrene and 1,3- and 1,8-dinitropyrene) that mainly 
arise from combustion of diesel in engines. Diesel engine emission poses as an 
important contaminant and the exhaust releases particles that are potent air pollut-
ants. Oxidative attack of some nitroaromatic molecules on DNA and formation of 
DNA adduct molecules are important in cancer formation, for example, 3-NBA and 
nitropyrenes (Kovacic and Somanathan 2014).

12.3  Degradation of Nitroaromatics

Enormous use of NACs in explosives, dyes, agricides, etc. and their release in the envi-
ronment via groundwater, soil, and streams/water bodies have flamed up strong criti-
cism and aroused concerns due to their potential health hazards. The costs for 
conventional cleanup have been estimated to be enormous and might not be sustainable 
and environment friendly either, and therefore, biological means of cleanup are being 
considered and researched upon. Nitroaromatic compounds are comparatively more 
recalcitrant to biodegradation than their analogs, which are not nitrated (Alexander and 
Lustigman 1966). To understand biodegradation, a few concepts are very important, 
i.e., mineralization, co-metabolism, and transformation. Mineralization (complete 
degradation) refers to catabolism of the pollutant/substrate to its elements and is the 
preferred over the other types of degradation for developing bioremediation technolo-
gies. Once a compound is mineralized, it yields energy in the biological system and 
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may be incorporated into various biomolecules to increase cellular biomass (Alexander 
1981). Since energy is generated during the catabolism of NACs, the reaction is a self-
sustainable process and proceeds continuously when the contaminant exists in proper 
concentration, also providing a selective pressure to promote the proliferation and 
growth of the degrading organism over others. In contrast to mineralization, there is 
another process called co- metabolism, where enzymes involved in the breakdown of 
some growth-inducing substrate (primary substrate) nonspecifically transform another 
contaminant/substrate (Alexander 1981). Few co-metabolized compounds may pro-
vide nutrition and energy, but only as long as the primary substrate exists and therefore, 
(i) need for some primary contaminant and (ii) lack of selective pressure created by 
primary substrate,entails co-metabolic bioremediation more expensive and labor inten-
siveas compared to mineralization. The stark difference between mineralization (com-
plete degradation) and transformation is the difference in the products, which in the 
former case are harmless minerals and biomass, whereas, in the latter case, the prod-
ucts are essentially organic derivatives of the contaminant that may be more toxic than 
before or nontoxic (preferred for bioremediation). Polynitroaromatic compounds are 
partially biodegraded or transformed to generate amino-nitro products and are not min-
eralized further (Kaplan 1992); however, para-nitrophenol is degraded by several bac-
teria and is easily mineralized (Prakash et al. 1996;

Samanta et al. 2000; Chauhan et al. 2000; Pandey et al. 2002). Table 12.1 lists 
nitroaromatics that undergo mineralization, co-metabolization, or transformation 
via biological agents.

12.3.1  Aerobic or Anaerobic Degradation Pathways

Microbes evolved various strategies for dispensing nitro group(s) during conversion 
of NACs to simplified forms. Nitro group(s) present in the compound may be con-
verted to NO2

− after dioxygenation of its aromatic ring to an intermediate (dihy-
droxy compound) and monooxygenation to another intermediate (epoxide and/or 
hydride-Meisenheimer complex) (Nishino et al. 2000). Partial reduction to hydrox-
ylaminobenzenes generates ammonia. The hydroxylaminobenzenes are processed 
by mutases and rearranged to o-aminophenols by few microbes. Alternately, 
hydroxylamino intermediate(s) may be transformed to catechol upon the release of 
the ammonium moiety. Few common interpretations about biodegradation of differ-
ent types of NACs have been outlined below:

Mononitrophenols, e.g., (2-nitrophenol (2NP), 4-nitrophenol (4NP), 4-chloro- 
2-nitrophenol (4C2NP)) get hydroxylated to replace the NO2 group consequently 
releasing (NO2

−) resulting in ortho−/para-dihydroxybenzene (Nishino et al. 2000) 
(Fig. 12.1). Few organ phosphate pesticides, such as parathion and methyl- parathion, 
are transformed to p-nitrophenol and then hydroxylated. Para-nitroanisole is 
O-demethylated to p-nitrophenol and then hydroxylated. Flavoprotein monooxy-
genases may be involved in monooxygenation and all the monooxygenation reac-
tions in some cases giving rise toquinone(s) (Kadiyala and Spain 1998).

Sometimes, microbial enzymes catalyze dioxygenation reaction to produce 
dihydroxy intermediates, which further attacked dioxygenases as in 2-nitrotoluene 
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(2NT), NB, 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT), 
2,6- dinitrophenol, 1,3-dinitrobenzene, and 3-nitrobenzoic acid (3-NBA) (Nishino 
et al. 2000). The dihydroxy-nitro cyclohexadienes (intermediates) formed upon 
dioxygenase activity of nitro groups are unstable and re-aromatize after elimination 
of nitrites to produce catechols. Microbes aerobically convert 2,4-dinitrophenol and 
2,4,6-trinitrophenol to unstable hydride-Meisenheimer complex and release the first 
nitrite (Nishino et al. 2000; Behrend and Heesche-Wagner 1999) (Fig. 12.1).

Anaerobic pathways include microaerobic or partial aerobic conditions. 
Rhodobacter capsulatus converts 2,4-dinitrophenol to o-amino-p-nitrophenol under 
anaerobic and/or microaerobic environment in the presence of light using suitable 
nitro reductases. Subsequently, o-amino-p-nitrophenol is degraded via a constitu-
tive activity requiring light, O2, and other sources of carbon and nitrogen. Nitro 
group is partially reduced to NO2

− via the hydroxylamino derivative following a 
well-known chemical reaction.

Hydroxylamino moieties may be transformed by hydroxylaminolyase to corre-
sponding catechols and dissemination of ammonium moiety. Mutases catalyze the 
intramolecular rearrangement of hydroxylaminophenol to o-aminophenol, e.g., 
2-chloro-5-nitrophenol, p-chloronitrobenzene, and m-nitrophenol (Nishino et  al. 
2000; Blasco and Castillo 1997; Meulenberg and de Bont 1995).

Fig. 12.1 The aerobic degradation of few NACs following various pathways. (Adapted from 
Chauhan et al. (2000), Johnson et al. (2002), and Liu et al. (2009))

D. Paul



309

12.3.2  Anaerobic-Aerobic Dual Systems

Biodegradation of nitrobenzene has been carried out using a dual system consisting 
of aerobic microbes, followed by anaerobic ones (Dickel et al. 1993). Nitrobenzene 
may be completely degraded by aerobic microbial processes, but there are problems 
that may be ameliorated via an anaerobic process by reducing nitrobenzene to ani-
line and subsequently converting it via aerobic reactions. Anaerobic phase would be 
using glucose as carbon source (C source) and hydrogen donor. For the intermedi-
ates released during TNT biodegradation, a similar two-stage system has been tried 
(Fig. 12.2). Hydroxytoluenes or amino toluenes may be eliminated quickly under 
aerobic conditions (Funk et al. 1993; Rieger and Knackmuss 1995).

12.3.3  Fungal Degradation, Phytoremediation, and Composting 
of NACs

The degradation mechanism of several microorganisms is based on the breakdown 
of any aromatic nitro group to an amino moiety. However, white-rot fungi produce 
extracellular ligninolytic enzymes that oxidatively transform and/or mineralize 
xenobiotics such as TNT, polychlorinated biphenyls (PCBs), polyaromatic hydro-
carbons (PAHs), chlorinated phenols, and pesticides, e.g., DDT. This process is an 

Fig. 12.2 Anaerobic degradation of TNT following various pathways
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example of co-metabolism where carbohydrates are utilized as growth-promoting 
substrates for the fungi. Therefore, white-rot fungi have been fruitfully used as tools 
for bioremediation of persistent toxicants from contaminated sites. TNT and related 
compounds have been successfully treated by Phanerochaete chrysosporium (syn. 
Sporotrichum pulverulentum) and is a favorite model for research (Alexander and 
Lustigman 1966; Alexander 1981; An et al. 1994).

TNT is first reduced to mono-amino-dinitrotoluene and then transformed to 
azoxy, azo, and hydrazo intermediates. Primary metabolites (Hydroxy-Azo-DiNitro 
Toluenes and Azo DiNitro Toluenes) are rearranged to aminophenols (Bamberger 
rearrangement). A condensation reaction of nitroso and hydroxylamino intermedi-
ates generates azoxy compounds. Other researchers have proposed a combination of 
fungi with bacteria in bioremediation systems in which the fungi detoxify or modify 
the xenobiotic compound such that the bacterial population that may be mineralized 
by bacteria (Barr and Aust 1994).

The rapid disappearance of contaminants, e.g., TNT in aquatic environment 
dominated by specific plant species, has provoked researchers to consider phytore-
mediation as an option for removal of NACs using water and terrestrial plant sys-
tems. The researchers focused on deciphering plant metabolism and learning about 
mechanisms for phytoremediation including remediation by microbe in the phyllo-
sphere and rhizosphere and alterations made by the plant body rendering the 

Fig. 12.3 The “green liver” model of phytoremediation for removal of xenobiotics in three 
stages: transformation, conjugation, and sequestration

D. Paul



311

environment conducive for decontamination (pH, redox changes, etc.). For certain 
cases, indirect mechanisms are more significant for decontamination, and therefore, 
one might use “plant-assisted” remediation. The green liver model (Fig. 12.3) is 
often used to correctly justifies the treatment of xenobiotics as, unlike microbes, 
plants do not exhibit a vast range of enzymatic pathways to break down given 
metabolites; instead, it recognizes foreign matter as toxins and degrades or trans-
forms them, and this detoxification mechanism is common to the human liver; 
hence, the jargon “green liver” prevails (Klein and Scheunert 1982; Sandermann 
1994). The theory was introduced because it was observed that plants exposed to 
herbicides readily metabolized it in three stages: transformation, conjugation, and 
sequestration (Fig. 12.3).

 (a) Transformation: It includes reduction, oxidation, and hydrolysis reactions. 
Oxygenases or hydroxylases are involved.

 (b) Conjugation: Compounds released after transformation are conjugated with 
plants’ organic molecule (glucose, malonate), which leads to reduction in toxic-
ity (Singh and Jain 2003).

 (c) Sequestration: The storage of conjugate in plant organelles such as vacuoles, or 
are “bound” as xenobiotic conjugates and incorporated into biopolymers such 
as lignin where they are no longer capable of interfering with cell function.

Composting (humification) has been of great interest for environmental waste 
management as it greatly reduces weight and volume and results in less hazardous 
and often a useful biofertilizer. In the case of NACs, ex situ physicochemical treat-
ment of incineration has proven to be costly and undesirable although it is accepted 
in case of TNT contamination. However, the ex situ technique of composting at lab 
and pilot scale has been successfully applied to various contaminants and xenobiot-
ics (herbicides, chlorophenols, etc.). Synthetic musk fragrances (fragrances in cos-
metics, soaps, lotions, washing powder, etc.) contain NACs that have significant 
environmental consequences and are classified as persistent organic pollutants 
(POPs), e.g., musk xylene, which is similar to TNT, and musk ketone, which is 
similar to 2,4-DNT. The presence of such toxicants in human milk, adipose tissue, 
and food items has been alarmingly recognized especially as musk xylene is sus-
pected to be a carcinogen. They accumulate in agricultural systems via sewage 
sludge, so controlled composting is believed to be a possible treatment for decon-
tamination. Soil/sludge is mixed with degradable organic matter and sufficient 
moisture to start composting (Sandermann 1994; Williams et al. 1992). Composting 
proceeds via the following phases in which the microbial community also changes 
sequentially: mesophilic phase (up to 45  °C), thermophilic phase (45–60  °C, 
<80 °C), cooling phase (45–20 °C), and maturation span (~20 °C). A highly diverse 
microbial population is active during the mesophilic phase, followed by the second 
phase (shortest), in which spore-forming bacteria, e.g., Bacillus sp., and thermo-
philic fungi dominate and highest amount of degradation occurs during this phase. 
Finally, fungi emerge as dominant species because spores withstand high 
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temperatures and fungal enzymes degrade lignin-cellulosic parts to derive energy. 
Rise in temperature to about 80  °C deactivates microbial processes and inhibits 
composting (Garg et  al. 1991, Griest et  al. 1993). Important factors influencing 
composting include aeration, pH, moisture, and C/N content of the substrate.

Although composting is an aerobic press, in the case of TNT contamination, 
anaerobic/aerobic composting systems have been shown to be highly efficient. 
Aerating the compost by injecting air or by turning over the compost pile favors 
composting. Structure of composting material mainly assists aeration and may 
sometimes create anaerobic micro-pockets. Light material, such as wood chips and 
straw, inhibits compression of the compost (Bruns-Nagel et al. 2000).

The compost pH varies from 5.5 to 8.0; however, in case of anaerobic pre-phase, 
pH drops below 4.0 but returns to optimal range once aerobic treatment com-
mences. The optimal moisture tolerated by bacteria in compost is ~50–60%. 
Moisture over this limit creates anaerobic conditions. The C/N ratio for an efficient 
composting process is 26–35.32 Higher N2 concentrations give rise to ammonia 
that elevates pH, but lower nitrogen slows cellular growth and increases organic 
acids to elevate pH, and both conditions impede composting. Composting is of five 
major types: (1) in-vessel static piles, (2) static piles, (3) mechanically agitated in-
vessel (MAIV) composting, (4) windrow composting, and (5) anaerobic/aerobic 
composting.

Different contaminants show varying rates of decomposition, e.g., some petro-
leum hydrocarbons can be mineralized, and some co-metabolized to less dangerous 
forms and are incorporated into humus. Doyle et al. (1986) tried to compost radio-
labeled14 C-TNT,14 C-RDX,14 and C-HMX using different conditions and achieved 
varying degrees of degradation by increasing the amount of soil. Craig et al. (1995) 
showed better results on windrow composting of TNT, RDX, and HMX, proving 
that composting is successful for removing dangerous NACs from soil and may be 
successfully applied in case of significantly polluted soils because it may be used as 
an ex situ or in situ technique and not very cost-intensive or labor-intensive. On the 
other hand, phytoremediation may be applied to mildly polluted large areas that are 
abandoned due to pollution and can be used to reclaim them, although weather con-
ditions and risks due to introduction of non-native species persist. This technique is 
not cost- or labor-intensive like composting, unlike using bioreactors for 
treatment.

12.4  Evolution of New Pathways Via Genetic Changes

Although synthetic NACs have been introduced in nature for a short period of time, 
bacteria capable of breaking down these chemicals have been isolated from polluted 
sites suggesting that they are capable of adaptation by evolving new enzymes and 
pathways to endure and survive the selective stress created by the contaminants 
(Kivisaar 2009). The contaminated sites are therefore good resources to fish out 
strains with excellent properties for bioremediation.
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It has been observed that genes encoding enzymes for catabolizing aromatic 
compounds may be associated with transposons carried by plasmids showing con-
jugation and genomic islands, to promote dissemination via horizontal transfer 
(Nojiri et al. 2004; Juhas et al. 2009). Bacteria oppose stress of starvation, desicca-
tion, and unsuitable pH and/or temperature, where stress and starvation lead to (1) 
genetic changes and further transposition of mobile elements (Kivisaar 2003; 
Robleto et al. 2007) and (2) errors in DNA synthesis and mechanism of duplication 
(Kivisaar 2009; Tark et al. 2005).

Error-prone DNA polymerase or homologues of Pol-V may be coded by natu-
rally occurring conjugative plasmids, and they may also have a contribution for 
manifestation of bacterial metabolic diversity (Permina et al. 2002; Tark et al. 2005). 
Few NACs, e.g., nitrobenzene, dinitrotoluenes, and nitrophenols, are powerful car-
cinogens (Kulkarni and Chaudhari 2007; Kivisaar 2009) and have the potential to 
induce mutations at higher concentrations (badly contaminated environment).

Bacterial evolution to use NACs as nutrients is exemplified by the 
2,4- dinitrotoluene (2,4-DNT) pathway of Burkholderia cepacia R34. In this organ-
ism, the sequence of genes contained in the 27-kb DNA segment coding for 2,4- 
DNT pathway indicates that pathway gene(s) depict three points of ancestry 
(Johnson et al. 2002): (a) initial dioxygenase (DNT dioxygenase), catalyzing the 
first denitrification of the intermediate, that may have originated from naphthalene 
catabolic pathway; (b) second denitrification (by 4-methyl-5-nitrocatechol mono-
oxygenase) from chloroaromatic degradation pathway; (c) third gene from amino 
acid pathway. Open reading frames having unknown function in 2,4-DNT degrada-
tion in Burkholderia cepacia R34 and the presence of several point mutations and 
transposon in the region advocate an intermediate phase during evolution of the 
pathway by incorporating genetic material with divergent ancestry (Johnson et al. 
2002; Kivisaar 2009) via horizontal transfer and movement of transposable 
elements.

In a recently hypothesized concept about evolution depending on the proximity 
of proteins (O’Loughlin et al. 2006; Tokuriki and Tawfik 2009), it is suggested that 
protein evolves by directed evolution to perform a new role via “enzyme promiscu-
ity” resulting in unique enzymes that break down newly introduced synthetic com-
pounds (Aharoni et al. 2005; Afriat et al. 2006). The concept of “promiscuity” also 
plays significant roles during the development of novel regulators that respond to 
effectors (Cases and de Lorenzo 2005). XylR, a transcriptional activator in the tolu-
ene degradation pathway, is encoded by TOL plasmid pWW0 and acquires a new 
role by responding to both 2,4-DNT and its monosubstituted precursor molecules 
and to the dissimilar isomeric compound m-nitrotoluene and various chlorophenols 
(Galvão et al. 2007). The mutations leading to such a change were based on amino 
acid substitutions at the surface of proteins leading to conformational shifts affect-
ing binding of effector and modulating transmission of signal between XylR 
domains (Galvão et al. 2007).

Ju et al. (2009) demonstrated that the functioning of the regulator NtdR (nitro-
toluene responsive) was contributed by five mutations in NagR-like ancestor regula-
tor. NtdR and NagR differed by 5 amino acids, located at position numbers 74, 169, 
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189, 227, and 232 (Lessner et al. 2003); however, NagR recognized 5 out of the 63 
tested compounds, namely, salicylate, gentisate, 4-hydroxybenzoate, 4-isopropyl-
benzoate, and methyl salicylate, and, especially, does not interact with the NACs. 
On the other hand, NtdR, could activate 2-nitrotoluene degradation pathway genes 
in the presence of NACs, and a broad range of aromatic acids and their analogues, 
that may not be metabolized by Acidovorax sp. strain JS42 (exhibiting 2-nitrotolu-
ene pathway).

12.5  Bacterial Metabolism of Chloro-Nitroaromatics

Chlorinated nitroaromatic compounds (CNAs) such as chloronitrobenzenes, chloro-
nitrophenols, and chloronitrobenzoic acids enter our environment via agricultural 
practices, industrial discharges, or improper waste disposal and are known to be 
hematotoxic, immunotoxic, splenotoxic, genotoxic, hepatotoxic, nephrotoxic, and 
carcinogenic (Travlos et al. 1996; Li et al. 1999). 4-Chloronitrobenzene undergoes 
three types of transformation in mammals: (a) nitro group reduction, (b) glutathione 
conjugation for chloride displacement, and (c) hydroxylation of ring. The toxic 
nature renders many of the CNAs as priority pollutants as listed by the USEPA.

There are several methods including advanced oxidation processes (AOPs) to 
remove CNAs from industrial wastewater, which relies on nonspecific oxidation by 
hydroxyl radical (OH∗) (Vilhunen and Sillanpää 2010). AOPs also treat wastewater 
using UV rays, H2O2, UV-H2O2, photo-Fenton, ozonation, catalytic ozonation 
(Vilhunen and Sillanpää 2010), and the combination of these techniques. However, 
the main drawback of physicochemical techniques is their unsuitability for in situ 
biological application, and they are not cost-effective. CNA degradation is signifi-
cantly affected by the position of chloro- and nitro-substitution on the benzene ring. 
The compounds, which have nitro groups at the ortho or meta positions, are pre-
dicted to be more difficult to degrade, as compared to the compounds having nitro 
groups at para positions (Arora et al. 2012). 4C2NP is more difficult to degrade than 
2-chloro-4-nitrophenol (2C4NP) (Arora et al. 2012). Bacteria that utilize 2C4NP 
could not catabolize 4C2NP due to altered position of Cl and NO2 groups (Pandey 
et al. 2011). The underlying reason for this phenomenon is that the enzymes, which 
catalyze reaction at the para positions, do not function at the meta or ortho position 
and vice versa (Arora et al. 2012). Degradation of CNAs with Cl and NO2 moieties 
at different positions is acted upon by specified set of enzymes. The nitro group 
makes the benzene ring more recalcitrant than chloro group (Arora et al. 2012).

The enzymes mediating 2C4NP degradation in strain OCNB-1 were determined 
to be aniline dioxygenase, nitrobenzene reductase, and catechol-1,2-dioxygenase. A 
100-kb plasmid carried gene(s) for degrading 4C2NP in P. putida strain ZWL73 and 
Comamonas sp. CNB-1. Some CNAs showed multiple routes of degradation, e.g., 
pentachloronitrobenzene (PCNB), which gives rise to metabolites with or without 
sulfur, many of which can be detected in soils contaminated with PCNB. Several 
reports on bioremediation of CNAs have proven the utility of rhizoremediation 
(Comamonas sp. CNB-1 associated with alfalfa roots), bioaugmentation (P. putida 
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ZWL73, Rhodococcus imtechensis RKJ300), and decontamination via membrane 
bioreactor followed by bacterial growth.

12.6  Bioavailability and Biodegradation via Microbes

Chemotaxis (chemo, chemical; taxis, movement) is the swimming of microbes with 
the aid of their flagella toward or away from a particular chemical. If microbial cells 
migrate toward a substance, the progression is called positive chemotaxis, while 
cellular motion in reverse direction is known as negative chemotaxis (Pandey and 
Jain 2002). Many microbial isolates have been applied for degrading NPs and 
CNPs, out of which few are capable of moving and show chemotaxis positive (Arora 
et al. 2012, 2014). Such strains are exemplified by Burkholderia sp. SJ98, which 
utilizes 4-nitrophenol, 2-chloro-4-nitrophenol, and 3-methyl-4-nitrophenol as the 
only C source and energy resource, and exhibited positive chemotaxis toward the 
above-said compounds (Bhushan et  al. 2000, Samanta et  al. 2000, Pandey et  al. 
2012). Bacillus subtilis PA-2 exhibited chemotaxis away from 4-chloro-2- 
nitrophenol, 4-nitrophenol, and 2,6-dichloro-4-nitrophenol (Arora et al. 2015).

The optimal environment for a bacterium is one in which energy generation is 
maximum, such as when there is a balance between the amount of electron donor 
and electron acceptor available (Taylor and Zhulin 1998). Since the chemoeffectors 
that attract bacteria (chemo-attractants) are often electron donors bacteria consume, 
metabolism of the chemo-attractant in the cell produces a gradient of electron 
acceptors to which the bacteria can also respond.

Positive chemotaxis helps microbes to sense a chemical that it can metabolize 
(either as nutrient) or co-metabolize by moving up a gradient of concentration of the 
particular chemical (here, NACs or CNAs) such that it avoids toxic levels and at the 
same time can continue feeding until the chemical persists in the environment. 
However, negative chemotaxis is a survival strategy shown when the organism feels 
engendered by toxic levels of the chemical in question and avoids it by moving 
away (Pandey et al. 2002, Arora et al. 2015).

The first step in bioremediation is the bioavailability of the substrate to the 
microbes, expedited by positive chemotaxis. Non-bioavailability or unavailability 
of organic pollutants for microbial cells significantly limits the efficiency of biore-
mediation of contaminated areas (Head 1998; Stelmack et al. 1999). Soil from con-
taminated sites possesses a separate or nonaqueous-phase liquid such as drops or 
liquid films on the surface of soil. Biodegradation readily occurs when target sub-
strates are soluble in any aqueous phase (Stelmack et  al. 1999, Pandey and Jain 
2002; Law and Aitken 2003). Several pollutants, specially hydrophobic compounds, 
are nearly insoluble and persist superficially adsorbed on the nonaqueous-phase 
liquid (Head 1998; Stelmack et al. 1999; Parales and Haddock 2004). For onset and 
progress of biodegradation, bacteria must be able to access target compounds, by 
either dissolving it in liquid phase or by adhering directly to the interface of water 
and nonaqueous-phase liquid. For gaining access to adsorbed substances, pollutant- 
degrading bacteria may attach to surfaces possibly by forming biofilms.
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12.6.1  Response of Microbes

Molecular mechanisms behind chemotaxis have been explained by three routes: (a) 
Signaling by chemoreceptors across the cell membrane (transmembrane) is the 
superior-most method acquired by bacteria where a ligand binds an external domain 
of a particular receptor that spans the membrane, thereby producing a signal to 
modulate the activity of kinase inside the cell, which results in chemotaxis (Pandey 
et al. 2002; Falke and Hazelbauer 2001). This transmembrane signaling mechanism 
does not depend on catabolism of the pollutant or its non-catabolizable analogues. 
(b) Chemotaxis therefore only depends on alteration in the cells’ energy affected by 
complete metabolism of substrate (Alexandre and Zhulin 2001). This chemotactic 
response is referred to as metabolism dependent, and it is observed in many 
microbes, e.g., Escherichia coli, Rhodobacter sphaeroides, and Azospirillum brasi-
lense (Pandey et al. 2002; Alexandre et al. 2000).

(c) The third mechanism suggests that chemotaxis signals are generated in col-
laboration with transport of effectors into cells. For example, chemotactic move-
ment of Bacillus subtilis and E. coli toward carbohydrates and sugars is attached to 
the transport of the chemo-attractant. In P. putida, the gene pcaK codes for an unes-
sential transporter protein for carrying 4-hydroxybenzoate and is essential for che-
motaxis. Similarly, a permease protein coded by tfdK enables Ralstonia eutropha 
JMP123 to move toward very low levels of 2,4-dichlorophenoxyacetate (2,4-D); 
however, in this case, this gene is not responsible for entering the cells (Hawkins 
and Harwood 2002; Harwood et al. 1994).

12.7  Chemotaxis in Semisolid Medium TNT Chemotaxis 
Recent

There are several methods to study the chemotaxis of bacteria toward and away 
from the cells. The most commonly describes ones are (a) drop plate assay, (b) 
swarm plate assay, and (c) capillary assay.

To study negative chemotaxis, researchers have used various techniques, namely, 
(1) the chemical-in-plug method, (2) chemical-in-pond method, (3) chemical-in- 
plate method, (4) test-tube method, and (5) high-throughput micro-well method. To 
demonstrate negative chemotaxis, the chemical-in-plug method is widely accept-
able (Arora et al. 2015; Tso and Adler 1974).

Here, we describe the most prevalent techniques with suitable diagrammatic 
representations.

For drop plate assay, degradative microbes would be cultured on a suitable 
medium trypticase soy broth, collected at middle logarithmic phase and resus-
pended in minimal medium containing 0.3% Bacto agar to prepare petri plates. 
Some crystals of NACs/CNAs placed in the center of the petri plate would act as 
chemo-repellant, and the samples should be incubated at 30∘C. The response should 
be observed after 6 h of incubation. Chemotaxis would be suggested by the ring 
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formation (clearing zone) around the crystal as cells move away from it; heat-killed 
cells of the same strain may be used as control.

To perform swarm plate assay, p-nitrophenol (conc. 0.3 mM) should be dissolved 
in swarm plate agar medium (minimal medium having 0.16% Bacto agar) prior to 
casting plates. Around 75–100 μL induced and washed cells suspended in minimal 
medium should be gently poured in a petri dish and incubated at around 25 °C. One 
millimolar glucose may be provided to the cell in suspension for energizing them. 
Ring development was viewed 12–16 h after incubation (Fig. 12.4).

To perform capillary assays, special capillary tubes (Drummond Scientific, 
USA) of 1 μL volumetric capacity should be used. The appropriate NAC should be 
added to chemotaxis buffer consisting of 100 mM pot. Phosphate buffer (pH 7.2) 
and 20 mM EDTA to attain concentrations of 10, 20, and 200 mM. Aspartate may 
be used as positive substrate control. Capillaries loaded with the above were inserted 
in cell suspension (106–107 cells/mL in buffer for chemotaxis) taken on a shallow 
cover glass. After 30 min incubation time, cell suspension from the capillaries was 
diluted serially and plated on nutrient agar (NA). Bacterial colonies obtained on the 
plates were counted after overnight cultivation at 30 °C. Suitable positive and nega-
tive controls were maintained. Chemotaxis index (CI) was calculated as follows:

Number of bacterial cells accumulated in the test capillary containing NAC 
divided by that of the control.

Fig. 12.4 Assays of chemotaxis (diagrammatic and actual experiment) against coloured nitroaro-
matic compounds in semisolid medium (drop and swarm plate assay) and in soil using plate and 
tray assays (Adapted from: Pandey et al. 2002; Paul et al. 2006)
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12.7.1  Negative Chemotaxis Assays

 1. Chemical-in-capillary method. Positive chemotaxis is assayed by inserting a 
capillary that was previously dipped in a solution of chemo-attractant into a sus-
pension (the “pond”) of bacterial cells that are motile. Microbes move toward the 
capillary and enter through it. After a given time, the total number of bacteria 
entered into the capillary is detected by counting colony-forming units (CFUs). 
If the chemical is inert, some bacteria nevertheless enter the capillary owing to 
random motility of the bacteria This is the “background” number and is deducted 
from reading as noise. If the given compound behaves as a chemo-repellent, 
fewer than this “background” number will be present inside the capillary. This 
capillary method is helpful in determining chemo-attractants and/or repellents, 
although repelling effects may be too insignificant for detection. Inhibition of 
motility might end up giving the same result as negative chemotaxis; however, 
this may be cross-checked via “motility assay.”

 2. Chemical-in-pond method. The repellent is present in the pond of bacteria, and 
none is put into the capillary. The bacteria then escape into the capillary for “ref-
uge,” and the number accumulated in the capillary is determined as before. 
Without any repellent, some bacteria enter the capillary by random swimming; 
with repellent, the accumulation is larger, and hence, this assay provides a posi-
tive result. (The values are never as strikingly above background as for positive 
chemotaxis in the chemical-in-capillary method.) There is a threshold value for 
repulsion. At high concentrations, loss of motility or viability, or saturation of 
the chemotactic apparatus. The negative chemotactic assay against 4C2NP was 
reported by Arora et  al. (2015) (using Bacillus subtilis strain PA2) using 
chemical- in-plug method. For this bacteria, suspension was prepared as described 
before (106–107 cells/mL chemotaxis buffer). The bacterial solution was poured 
around hard agar plugs composed of minimal media, 2% Bacto agar, and 4C2NP 
(100 mM) or 4NP (100 mM) or dichloro nitrophenol (DCNP) (100 mM). After 
solidifying, the plates were incubated at 30∘C for 6 h, at which time they were 
evaluated for chemotactic response.

A convenient agarose-in-plug bridge method was used to demonstrate chemo-
taxis in the Archaeon Halobacterium salinarum (Yu and Alam 1997). Hot liquid 
agarose solution with chemo-effectors was placed in the center of a microscope 
slide with a bridge that is built by using two plastic strips 16 mm apart. A coverslip 
should be placed on the molten agarose immediately. The agarose plug gets encir-
cled quickly by the bacterial cell suspension. This method has been tried for amino 
acids, but not for NACs.

Leungsakul et al. (2005) observed the chemotaxis toward 2,4,6-trinitrotoluene 
(TNT), 2,5-DNT, 2,3-dinitrotoluene (2,3-DNT), 2,6-DNT, 2,4-DNT, 2-nitrotoluene 
(2NT), 4NT, and 4-methyl-5-nitrocatechol (4-M-5NC). They used drop assay for 
their studies and found that, although there are cases where the substrate is not the 
source of C and nitrogen for the organism, they still can be a chemo-attractant. For 
example, 2,4-DNT in case of B. cepacia R34 and Burkholderia sp. DNT is the C 
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and nitrogen source, but not a good chemo-attractant as 2,5-DNT (not a C/N source). 
Also TNT, 2,3-DNT, 2,5-DNT, 2NT, and 4NT are chemo-attractants, but not carbon 
and energy sources. This implies that the chemotactic machinery of the above 
strains works for other NACs as well apart from the compounds that they degrade 
or serve as intermediates in degradation pathway. The results also suggest that deg-
radation pathway gene(s) are not associated with chemotaxis, so their presence/
absence has no impact.

Organophosphates (OP) degrading Pseudomonas BUR11 isolated from an agri-
cultural site utilized parathion and chlorpyrifos or their intermediates as sole sources 
of carbon along with being positively chemotactic toward them (Pailan and Saha 
2015).

12.7.2  Chemotaxis Through Soil

Chemotaxis of Ralstonia sp. SJ98 toward p-nitrophenol was demonstrated in labo-
ratory using various assays in semisolid medium; two assays were designed for 
demonstrating chemotaxis in soil microcosm, i.e., a small-scale qualitative assay in 
petri plate and another assay was done using a specially designed tray giving quan-
tifiable results on a larger scale. For such experimental strategies, bacterial suspen-
sion was prepared in PO4 buffer saline (PBS) in order to attain an approximated 
density of 1010 cells/mL.

 1. Plate assay: Soil spiked with para-nitrophenol (PNP) was used to prepare concen-
tric zones of soil and Bacto agar in a petri plate such that the organism travels radi-
ally out of the center, through the soil and agar zones (Fig. 12.4). Bright-yellow 
color of PNP changes to colorless indicating depletion of PNP. Positive and nega-
tive controls were maintained. Moisture content of soil was maintained at 40–50% 
of soil’s water holding capacity (WHC) by sprinkling water whenever necessary.

 2. Tray assay: For quantitative soil chemotaxis, a glass tray with three parallel lanes 
was fabricated, containing markings at 1 cm interval (Fig. 12.4). Glass stoppers 
prevented the mixing of agar and soil. As indicated in the diagram, the zones 1 
and 2 constituted of 0.5 mM p-nitrophenol suspended in 0.4% semisolid Bacto 
agar and zone 3 had PNP-spiked soil in all three lanes. The first lane was inocu-
lated with cell suspension of chemotaxis-positive strain Ralstonia sp. SJ98, sec-
ond lane was inoculated with non-chemotactic Burkholderia sp. strain RKJ200, 
and the third lane was kept uninoculated. Both types of bacteria were capable of 
degrading PNP. The yellow color of PNP in zone 1 disappeared, indicating that 
bacteria travelled through agar zone and reached the soil.

CFUs of soil bacteria were determined by spreading proper dilutions of soil 
taken at different time points from each lane (Fig. 12.4). For determining residual 
PNP in samples collected from the start and end at various zones of the soil, high- 
performance liquid chromatography (HPLC) was performed by a method as 
reported earlier (Labana et al. 2005).
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12.7.3  Application of Chemotaxis in Biofilms

Flagella are required for attaching cells to various surfaces and facilitating biofilm 
development (Pratt and Kolter 1999). In addition, biofilm- forming bacteria show 
chemotaxis to move along the surface to grow and spread (Stelmack et al. 1999). 
These biofilms may be useful for degradation of CNAs and NACs. For removal of 
2,4-dichlorophenol (DCP) from wastewater, Kargey and Ekker made use of a perfo-
rated rotating tube biofilm reactor comprising of a mixed biomass of microbes origi-
nating from an activated sludge and was supplemented with DCP-degrading P. 
putida. It was observed that DCP was completely mineralized. Similarly, bacteria 
capable of adhering to polyaromatic hydrocarbons (PAHs) often expedite break-
down of PAHs (Wolfaardt et al. 1995). This phenomenon is exemplified by the two-
ring herbicide called diclofop-methyl, methyl 2-[4-(2,4-dichlorophenoxy)phenoxy] 
pyruvate, which adsorbs onto biofilms formed by microbial exopolymers. The 
microbial community of the biofilm catabolized the diclofop-methyl during a period 
of starvation. Nitroaromatic compounds fall under another group of xenobiotics 
having multiple uses during the synthesis of pharmaceuticals, foams, pesticides, 
and explosives. Due to the nitro side group, these compounds are resistant to bio-
degradation; microbial transformation might lead to harmful metabolic intermedi-
ates (Lendenmann et al. 1998). Lendenmann et al. (1998) used a consortium that 
degraded a mixture of dinitrotoluene (DNT) using fluidized-bed biofilm reactor 
containing 2,4-DNT (40 mg/L) and 2,6-DNT (10 mg/L). Efficiency of degradation 
was more than 98% for 2,4-DNT and ~94% for 2,6-DNT. Degradation of 4,6-dini-
tro-ortho-cresol (an old synthetic pesticides) was reported using batch cultures in a 
fermenter called fixed-bed column reactor.

12.8  Microbial Diversity, Microbial Evolution, 
and Bioremediation Strategies

The unexplored “unculturable” microbial wealth holds a tremendous promise for 
various resources. About 1 g of soil might hold approximately 1000–10,000 
unknown species belonging to prokaryotes, and further diversity is expected within 
each species (Torsvik and Ovreas 2002). Phylogenetically, the “unculturable” 
microorganisms may show some or 100% similarity to the culturable ones while 
possessing a unique physiological conformation making them recalcitrant to stan-
dard culturing techniques (Rondon et al. 1999). Another probability could be that 
the unyielding remaining microbial population might represent novel lineages phy-
logenetically dissimilar in nature and therefore cannot be grown via standard lab 
techniques (Rondon et  al. 1999). Various techniques showed that significant dis-
similarities were observed on comparing the community of contaminated to uncon-
taminated sites, especially with respect to unculturable organisms. In an example, 
experimental plots where oil was spilt (to mimic contamination) were compared to 
that of control sites (uncontaminated) via techniques such as phospholipid fatty acid 

D. Paul



321

analysis (PLFA) along with denaturing gradient gel electrophoresis (DDGE) analy-
sis (MacNaughton et al. 1999). These studies suggested that culturing-based method 
elucidated only small fractions of the entire soil microbial diversity. Therefore, soil 
metagenome continues to be an unexploited reservoir of novel gene(s) and/or gene 
cluster(s) for bioremediation and other applications. The biosynthetic diversity of 
microbes from different environments has been accessed using “metagenomics” 
where operons or genes responsible for the degradation of pollutants are acquired 
from the metagenome. Large-scale projects, e.g., http://www.tigr.org/tdb/MBMO/, 
led by “The Institute for Genomic Research” and “Monterey Bay Coastal Ocean 
Microbial Observatory” are databases that make metagenomic information avail-
able on many unexplored metabolic processes exhibited by microbes. Fang et al. 
(2014) used metagenomics study using six data sets (16 Gb data) to report diversity, 
abundance, and potential biodegradation genes (BDGs) and metabolic pathways of 
recalcitrant pollutants of freshwater and marine sediments, e.g., dichloro-diphenyl- 
trichloro-ethane (DDT), hexachloro-cyclo-hexane (HCH), and atrazine (ATZ). 
Nearly complete catabolic pathways for breakdown of DDT and ATZ were found in 
the sediments.

Such recent approaches help in constructing effective “designer biocatalysts” for 
various biotechnological applications including bioremediation. Exploring the 
microbial diversity leads to the elucidation of (a) effective or new pathways for 
improved catabolism of pollutants, (b) chemotactic or biosurfactant-producing 
strains for better or faster access and solubilization of sparingly soluble or “aged” 
chemicals for degradation, and (c) regulatory operons and gene(s) for construction 
of containment systems for regulated bioremediation. It is the responsibility of bio-
technologists to understand the ethical responsibilities before application of novel 
techniques for biological applications. Also, there should be complete understand-
ing of genetic modifications, and confinement of the introduced constructs should 
be ascertained before releasing designer bugs for bioremediation of contaminated 
sites.
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Abstract
Diverse groups of microorganisms have inhabited this earth, which use different 
types of sources for energy and growth. Industries revolutionize the lifestyle of 
humankind, which affects negatively the ecosystem. Synthetic dyes impart fabu-
lous colors to cloth, food, paper, and cosmetics. Due to their xenobiotic nature, 
they are mostly insurmountable for degradation and also toxic. Most of them are 
washed off during the various processes and mixed in the industrial effluents. 
Microorganisms have enzymatic system for the decolorization of dyes or simply 
they can adsorb them on their surface. Several genera of algae, bacteria, and 
fungi have developed a system to use these unwanted compounds in the water. 
They can also biotransform or degrade them into non-toxic products. Degradation 
of the dyes depends upon their toxicity and chemical structure and the type of 
strain used. Some species were found to be efficient against a variety of dyes at 
a high concentration level. The present review describes the diversity of three 
genera Chlorella, Pseudomonas, and Aspergillus of thallophytes for the degrada-
tion and decolorization of various dyes in industrial effluents and also the use of 
integrated approach of different consortia or other treatments for their applica-
tion in wastewater treatment plants.
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13.1  Introduction

Dyes are synthetic or natural compounds used to color or change the shade of any 
substance. From the beginning natural dyes from plants were used, but the invention 
of synthetic dyes by the British chemist William Perkin (1856) from coal tar revolu-
tionized the chemical industry. During the next few decades, production of synthetic 
dyes has been popularized due to their use in every sector of industries. Dyes are 
used in food products, paper and textile industry, tanning, cosmetics, pharmaceutical, 
etc. Commercial products use colors to attract the customers. Due to their high usage, 
they are concentrated in our environment as xenobiotic compounds. The major share 
of production goes to textile industry which uses more than 10,000 types of dyes, and 
most are used as excess levels with 1000 tonnes per annum. About 10–25% is lost at 
some stage in the dyeing process, and approximately 2–20% is discharged as efflu-
ents in water and soil (Carmen and Daniel 2012). They are highly toxic, if not dis-
posed properly as most of them are washed off in the effluents of these industries and 
reach the water and soil bodies. Dyes and by-products cause environmental, esthetic, 
and health problems. Dyes can be categorized as disperse, basic, acid, direct, and 
reactive dyes (Asgher 2012). The breakdown of chromophore groups (azo or anthra-
quinone) from dyes leads to the formation of toxic compounds (Katheresan et al. 
2018). They break down in the form of several carcinogenic or mutagenic forms 
(aromatic compounds, benzidine, naphthalene, etc.) and cause serious health prob-
lems in the food chain. With the time, xenobiotic compounds accumulate in Mother 
Nature and become problematic for every type of organism. They are mostly 
degraded or adsorbed by microorganisms, but sometimes become recalcitrant in 
nature because of insolubility, absence of transporting enzymes, and non-accessibil-
ity as substrates (Godheja et al. 2016).

The thallophytes are a group of non-mobile organisms which included algae, 
bacteria, fungi, and lichens. This group of organisms inhabited the earth in almost 
all types of conditions like hot springs, volcanoes, and Arctic and Antarctic regions. 
A variety of microorganisms can tolerate these conditions as well as adapt them-
selves for their survival. The xenobiotics or industrial effluents make the natural 
water bodies more acidic and also disturb the growth of biota. Some species of the 
group were found capable of removing the color from industrial effluents by adsorp-
tion or biodegradation or biotransformation or mineralization (Chang et al. 2001a). 
As compared to chemicophysical treatments, biological degradation of dyes is 
always cost-effective and also can remove the toxic amines in the effluents, and 
further the combination of both treatments can produce better results (Hai et  al. 
2007). The exploration of the diversity and deciphering the underlying mechanism 
of adaptability will be helpful to make the positive planning to transform the worst 
environmental conditions (Rampelotto 2010). In the present chapter, we have sum-
marized three different genera, Chlorella (algae), Pseudomonas (bacteria), and 
Aspergillus (fungi), implicated in the natural degradation of dyes in industrial efflu-
ents and the underlying mechanism of decolorization.
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13.2  Algae

Algae are a group of aquatic microorganisms having photosynthetic machinery and 
ca. 50,000 species adapted to various ecological conditions (Xu et al. 2006). They 
come under the group of thallophytes as due to undifferentiated roots, stems, and 
leaves. The major commercially available groups of microalga are Chlorophyta, 
Dinophyta, Haptophyta, Rhodophyta, and Stramenopiles (Heimann and Huerlimann 
2015). The microalgal genera studied for the biotreatment of industrial wastewater 
are Spirogyra, Oscillatoria, Spirulina, Scenedesmus, Cosmarium, etc. (Fazal et al. 
2018) Among these groups, Chlorella taxa have been majorly investigated for the 
treatment of various types of industrial effluents (Banat et al. 1997; Munoza and 
Guieysse 2006; Safi et al. 2014).

13.2.1  Chlorella

The genus is spherical shaped single cell green algae. It is widely used in the field 
of productions of biofuels, cosmetics, food, and pigments and wastewater treat-
ments (de Andrade and de Andrade 2017). Industrial wastewater contains dyes and 
nutrients used by algal community for their growth, which can be used as a sustain-
able approach for biodiesel production and bioremediation (Fazal et al. 2018). The 
two species, i.e., C. vulgaris and C. pyrenoidosa, were well documented by various 
authors for the treatment of effluents of textile industry (Table 13.1).

The first report of degradation of azo dyes by Chlorella was given by Jinqi and 
Houtian (1992). They tested 30 azo compounds for the decolorization process and 
found removal percentage in the range of 5–100%. The most easily degradable dye 
was Direct Blue 71 (100%), and Methyl Red was not decolorized from the medium. 
The azoreductase enzyme was found to be responsible for the bioconversion of 
aniline intermediate into carbon dioxide. The same type of degradation product was 
confirmed by Acuner and Dilek (2004) while studying C. vulgaris for the decolor-
ization of Tectilon Yellow 2G. Sinha et al. (2016) reported the degradation of many 
industrial pollutants by C. pyrenoidosa NCIM 2738-based photobioreactor. The 
organism was able to decolorize the dye completely within 2.16 days and also 
improved the water quality.

The dyes can be degraded into simpler products, or simply they can be adsorbed 
by the microalgae. Adsorption capacity of microalgae can vary for different dyes and 
their initial concentration (Aksu and Tezer 2005). The initial pH of the solution was 
a determining factor for the proper biosorption of the dyes, and it can also vary with 
the specific dyes. Aksu and Tezer (2005) found that the highest uptake of vinyl sul-
phone-type reactive dyes occurred at pH 2.0 by dried C. vulgaris, while Daneshvar 
et al. (2007) demonstrated that basic pH was more favorable for the decolorization of 
Malachite Green. Similar results were observed by Tsai and Chen (2010) by altering 
the pH from 3.0 to 11.0. To attain the highest uptake of cationic dyes, the surface 
should acquire more negative charge which is only possible at this pH. The func-
tional groups, i.e., hydroxyl and carbonyl groups, present on the surface of 
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Table 13.1 Removal of different dyes by Chlorella species

Sr. 
no.

Chlorella 
species

Dyes 
(concentration)

Mechanism 
(enzyme(s))

Removal 
time 
(percentage) By-product References

1. C. 
pyrenoidosa
C. vulgaris

Azo dyes Biodegradation 
(azoreductase)
–

(5–100%) Aromatic 
amines, 
CO2

Jinqi and 
Houtian 
(1992)

2. C. 
ellipsoidea
C. kessleri
C. vulgaris

Tartrazine and 
Ponceau (5–20 
ppm)

6 days 
(40–55%)

Aromatic 
amines

Hanan 
(2008)

3. C. vulgaris Tectilon 
Yellow 2G 
(400 mg L–1)

Bioconversion 200 h (83%) Aniline, 
CO2

Acuner and 
Dilek 
(2004)

Remazol 
Golden Yellow 
(200 mg L–1); 
Remazol Red 
and Black B 
(800 mg L–1);

Biosorption – – Aksu and 
Tezer 
(2005)

G-Red, Orange 
II, and Methyl 
Red (20 ppm); 
basic cationic 
(10 ppm); 
basic fuchsin 
(5 ppm)

Biosorption 
and 
Biodegradation 
(azoreductase)

7 days 
(4–91%)

Aromatic 
amines

El-Sheekh 
et al. 
(2009)

Malachite 
Green (6 mg 
L–1)

Biosorption 90 min 
(91.61%)

– Kousha 
et al. 
(2013)

Congo Red 
(5–25 mg L–1)

Biosorption 
and 
Biodegradation 
(azoreductase)

96 h (83 and 
58 %)

– Hernández-
Zamora 
et al. 
(2015)

4. C. vulgaris 
UMACC 
001

Lanaset Red 
2GA (7.25 mg 
L–1)

Biosorption 10 days 
(48.7%)

– Chu et al. 
(2009)

Supranol Red 
3BW (20 mg 
L–1)

10 days 
(50%)

Lim et al. 
(2010)

5. C. sp. Malachite 
Green (5 ppm)

Decolorization 2.5 h 
(80.7%)

– Daneshvar 
et al. 
(2007)

6. C. 
pyrenoidosa

Thioflavin T 
and Malachite 
Green

Biosorption – – Horník 
et al. 
(2013)

(continued)
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microalgae help them for the biosorption of dyes (Horník et al. 2013). The optimal 
temperature range for the dye uptake by Chlorella lies between 25 and 35 °C; how-
ever, a wide range has little effect on the biosorption (Tsai and Chen 2010).

The continuous lighting conditions used in the case of mixed culture of algae (13 
taxa including Chlorella) removed 80% color within 30 days as compared to 60% 
after 60 days of exposure under simulated field lighting conditions from the pulping 
effluent (Dilek et al. 1999). El-Sheekh et al. (2009) tested C. vulgaris among five 
taxa of microalgae for the removal of basic fuchsin, basic cationic, G-Red, Methyl 
Red, and Orange II. The most susceptible dyes were basic cationic and basic fuch-
sin. C. vulgaris removed 43.7 and 59.12% of Orange II and G-Red dyes. The G-Red 
dye acts as an inducer of the azoreductase enzyme and increases the activity up to 
72.25%. Kousha et al. (2013) compared the biosorption activity for Malachite Green 
of the same species against Scenedesmus quadricauda. They considered the differ-
ent parameters like dye concentration, contact time, algae amount, and pH.  The 
maximum dye removal was done by C. vulgaris (91.61%) as compared to the latter 
one (73.49%). Similarly, Lebron et  al. (2018) recorded maximum elimination of 
Methylene Blue by C. vulgaris (98.20%) as compared to Spirulina maxima 
(94.19%). Recently, Zhao et al. (2018) evaluated the effectiveness of wastewater 
treatment by C. vulgaris, C. zofingiensis, and Scenedesmus sp. in terms of the activ-
ity of photosystem II, nutrient loading, and lipid productivity. C. zofingiensis shows 
higher absorption capability, productivity, and efficiency as compared to the other 
two species, even in worse environmental conditions.

The immobilized form of microalgae has more advantages over the free cell 
suspension for the elimination of heavy metals and xenobiotics in wastewater (Luan 
et al. 2006). Chu et al. (2009) investigated the immobilized C. vulgaris UMACC 
001 (1% κ-carrageenan and 2% sodium alginate) for the treatment of three dyes and 
textile wastewater. The algae immobilized on 2% sodium alginate has higher color 
removal efficiency for the textile wastewater and dyes. The immobilized form is 
more stable, easy to harvest, and protected from the direct exposure to toxicity as 

Table 13.1 (continued)

Sr. 
no.

Chlorella 
species

Dyes 
(concentration)

Mechanism 
(enzyme(s))

Removal 
time 
(percentage) By-product References

Textile 
wastewater and 
Methylene 
Blue dye 
(10–60 mg 
L–1)

60 min 
(40–90%)

– Pathak 
et al. 
(2015)

Methylene 
Blue dye 
(100 mg L–1)

(98.20%) – Lebron 
et al. 
(2018)

7. C. 
pyrenoidosa 
NCIM 2738

Direct Red-31 
dye (40 mg 
L–1)

Biodegradation 
(azoreductase)

2.16 days 
(100%)

Aromatic 
amines

Sinha et al. 
(2016)
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compared to free cells. Later, Gao et al. (2011) also found the same results for the 
removal of nonylphenol using the same type of matrix. Horník et al. (2013) investi-
gated the biosorption capacity of dried biomass of C. pyrenoidosa immobilized in 
polyurethane foam. The process of sorption of cationic dyes (Thioflavin T and 
Malachite Green) depends upon the preliminary concentration of dyes, flow rate of 
solution through the column, bed height, and biomass concentration. The simple or 
modified polyurethane-based adsorbent has been reported as an efficient sorbent for 
the elimination of dyes from wastewater (Sultan 2017).

Apart from the treatment of dyes, the genus has been also directly tested for the 
exclusion of xenobiotics directly from the textile wastewater. The organism utilizes 
textile wastewater for its growth and also removes the color in the range of 41.8–
50.0% as reported by Lim et al. (2010). It also reduces phosphate, nitrate content, 
BOD, and COD from the effluents. The dried biomass was found more efficient as 
a biosorbent than wet algal biomass, due to its high binding affinity and large sur-
face area. It can be cultured in the wastewater for color and COD removal and bio-
mass production (El-Kassas and Mohamed 2014; Pathak et  al. 2015; Tao et  al. 
2017). The integrated approach for the treatment of wastewater and production of 
biomass, lipids, biofuels, bioelectricity, etc. is the promising application of Chlorella 
in the industry (Logroño et al. 2017; Wang et al. 2017; Fazal et al. 2018). Malla 
et al. (2015) tested C. minutissima for biodiesel production and nutrient removal 
from primary and tertiary treated wastewater. The species removed TDS (90–98%), 
N (70–80%), P (60–70%), and K (45–50%) from the wastewater within 12 days. 
Zheng et al. (2017) demonstrated the enhanced production of biofuel by using kelp 
waste extracts combined with acetate in C. sorokiniana.

Seo et al. (2015) used oxidized dye wastewater composed of Methylene Blue and 
Methyl Orange for the harvesting of algae. The exposed amine groups of oxidized 
dyes act as amine-based coagulants. Daneshvar et al. (2018) investigated the feasi-
bility of cultivation of C. vulgaris in a combination of aquaculture and pulp efflu-
ents. The carbohydrate, lipid, and protein percentage was very much high in the 
microalgae from the wastewater as compared to Bold’s Basal Medium (BBM) solu-
tion. Another aspect of the use of microalgae and textile dyeing sludge was proved 
by Peng et al. (2015), as the combination of the duo improved char catalytic effect 
and increased the combustion process for the decomposition of textile dyeing sludge 
residue at high temperature (530–800 °C).

Undoubtedly, the discharge of the dyes into the aquatic ecosystem causes serious 
threats for the growth of many microorganisms. Toxicity studies of many dyes on 
Chlorella have been done by many workers (Hanan 2008; Qian et  al. 2008; 
Hernández-Zamora et al. 2014; Kanhere et al. 2014; Xu et al. 2015). The deterio-
rated metabolic activity, growth rate, respiration, and photosynthesis efficiency of 
C. vulgaris were observed due to the direct exposure of Congo Red (Hernández-
Zamora et al. 2014). After the bioremoval of the effluents by the species, the influ-
ents were less toxic to the primary consumer (Daphnia magna) of the aquatic 
ecosystem (Hernández-Zamora et al. 2015). Kanhere et al. (2014) observed geno-
toxic and cytotoxic effects of Malachite Green on C. pyrenoidosa in the form of 
altered cell morphology, high oxidative stress, DNA damage, and cell death. The 
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growth was inhibited in a dosage-dependent manner, and D. magna ingest the dye 
even at very low concentrations. Thus, there would be the same type of negative 
effects on the other aquatic organisms.

13.3  Bacteria

The prominent genera of bacteria explored by different workers are Aeromonas, 
Bacillus, Escherichia, Eubacterium, Citrobacter, Pseudomonas, Sphingomonas, 
and Staphylococcus (Rafii et al. 1990; Bumpus 1995; Banat et al. 1997; Keck et al. 
1997; Sugiura et  al. 1999; Nakanishi et  al. 2001; Coughlin et  al. 2003). Several 
anaerobic bacteria produce azoreductase for the degradation of dyes and produced 
metabolites. Biochemical and molecular characterization has shown that the enzyme 
presumably a flavin reductase or FMN-dependent NADH-azoreductase or tetra-
meric NADPH-dependent flavoprotein, as found from Sphingomonas, Escherichia, 
and Staphylococcus, respectively (Nakanishi et al. 2001; Suzuki et al. 2001; Chen 
et al. 2005). Bacteria can degrade the xenobiotic compounds in either aerobic or 
anaerobic or both conditions. Many strains of Pseudomonas have degraded them 
into non-hazardous products and simultaneously utilized the dyes for their growth 
(Pandey and Upadhyay 2006). The next section of the chapter reviews the diversity 
of different species/strains of Pseudomonas capable of degrading dyes in industrial 
effluents (Table 13.2).

13.3.1  Pseudomonas

Several workers have isolated the azoreductase enzyme from different species of 
bacteria implicated in the deterioration of azo dyes (Michaels and Lewis 1985; 
Zhipei and Huifang 1991; Yatome et al. 1990; Hu 1994; Bumpus 1995; Banat et al. 
1997). The bacteria utilize them as a source of carbon and nitrogen. However, in the 
case of RP2B dye, it only acts as an inducer rather than as a growth substrate in the 
case of P. luteola (Hu 1998). The enzyme was found to be substrate specific, and the 
susceptibility of the bacterial attack depends on the substitution of the chemical and 
charged group at specific positions (Zimmermann et al. 1982; Yatome et al. 1990; 
Ben Mansour et  al. 2009a). The degradation reaction of azo dyes into aromatic 
amines was fully catalyzed by the enzyme under anaerobic conditions, but to pro-
duce complete inorganic compounds, aerobic conditions are needed (Zhipei and 
Huifang 1991; Idaka et al. 1987a, b).

Zimmermann et  al. (1982) isolated oxygen-insensitive azoreductase from 
Pseudomonas KF46, able to degrade the aromatic amines and complete mineraliza-
tion of carboxy-Orange II.  Nachiyar and Rajkumar (2004, 2005) proposed the 
mechanism of systematic elimination of Navitan Fast Blue S5R by the oxygen-
insensitive enzyme, purified from P. aeruginosa. The intermediate metabolites of 
the dye may have undergone further oxidative deamination/decarboxylation and 
further enter the TCA cycle to release carbon dioxide. One of the intermediates 
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formed in this study, i.e., metalinic acid, was further degraded into aniline and 
β-ketoadipic acid (Nachiyar et al. 2007). Işik and Sponza (2003) used aerobic and 
anaerobic conditions to study the color removal efficiency of Pseudomonas sp. 
They found that decolorization of Direct Black 38 and Congo Red was 83% and 
100% under anaerobic incubation while 74% and 76% under microaerophilic con-
ditions. The aerobic degradation occurs by the action of lignin peroxidase, tyrosi-
nase, and laccase as reported by Kalme et al. (2007b) in P. desmolyticum NCIM 
2112. Further, they purified laccase enzyme from the species and demonstrated the 
asymmetric breakdown of azo bond and that the specificity depends on the position 
of amino, hydroxyl, and sulfonic group in a dye. The decolorization rate is less 
when hydroxyl group and sulfonic group are at meta position or charged carboxyl 
group at ortho position to the azo bond (Nigam et al. 1996; Chen 2006; Kalme et al. 
2007b, 2009). The presence of electron-withdrawing groups or absence of charged 
groups also enhances the rate of decolorization as stated by Hsueh and Chen (2007, 
2008) in P. luteola. The toxicity of dyes depends on the type of azo bond, molecular 
structure, functional groups, and types of intermediates or degraded products. The 
lesser the toxicity of the dye, the easier will be the decolorization. Chen (2002) 
tested the toxicity of three reactive dyes against P. luteola (Acid Yellow, Black B, 
and Red 22). The Reactive Red 22 was easily decolorized, while Reactive Black B 
was highly toxic as it contains two azo bonds. As in this study decolorization is not 
growth-associated, the viability of the cells is the important criterion for the metab-
olism and expression of enzymes. Alternatively the cells can go for biosorption 
rather than decolorization.

Various authors have also isolated the laccase enzyme from different strains/spe-
cies of Pseudomonas and showed its applicability in the elimination of synthetic 
dyes in industrial effluents (Telke et al. 2009; Kuddus et al. 2013; Wang et al. 2012). 
Phugare et al. (2011) purified a highly active enzyme, i.e., veratryl alcohol oxidase, 
from P. aeruginosa BCH. The enzyme has specificity for wide varieties of sub-
strates and decolorizes seven dyes (Methyl Orange, Rubine 3GP, Congo Red, 
Remazol Black, Red HE7B, Red HE8B, and Red HE3B) in the range of 85–100%. 
One of the dyes, i.e., Remazol Black, was decolorized completely within 6 h and 
degraded into 7-diazenyl-naphathalene-1-ol and naphthalene-1,2,7-triol. Kalyani 
et  al. (2011) reported a heme-containing peroxidase enzyme isolated from 
Pseudomonas sp. for the symmetric cleavage of Methyl Orange into N,N-dimethyl- 
1,4-benzenediamine and an intermediate 4-aminobenzenesulfonic acid. The inter-
mediate formed was further degraded into aniline.

Toxicity analysis of the decolorized dyes should be done either by elucidating 
the structure of the degraded products by FTIR, GC-MS, HPLC, and NMR tech-
niques or by using different organisms or cell lines. Several authors have checked 
the genotoxicity/cytoxicity/mutagenic potential of the metabolites formed by 
Pseudomonas during the remediation of industrial effluents (Adedayo et al. 2004; 
Pandey and Upadhyay 2006; Kalme et al. 2007a; Kalyani et al. 2009). Perei et al. 
(2001) isolated an aerobic bacterium called P. paucimobilis from the contaminated 
sites for the effective degradation of mutagenic metabolite sulfanilic acid. During 
the degradation of Orange 52, Violet 7, and Acid Yellow 17 by P. putida mt-2, 
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genotoxic metabolites were found high in static cultures as compared to shaken 
conditions (Ben Mansour et al. 2007). Later on the authors demonstrated that the 
amines were mutagenic formed under static conditions, which later on vanished 
during shaken incubation. Further, the metabolite 4′-aminoacetanilide exhibited 
maximum mutagenicity, while 5-acetamido-2-amino-1-hydroxy-3,6-naphthalene 
disulfonic acid shows less effect due to presence of sulfonic groups (Ben Mansour 
et al. 2009b). Telke et al. (2012) tested the toxicity assays of p-dihydroperoxyben-
zene, 2-hydroxy-7-aminonaphthol-3-sulfonic acid, and 3,6-dihydroxy benzoic acid, 
metabolites formed during biodegradation of Direct Brown MR by Pseudomonas 
sp. LBC1. The textile effluents and the dye were more toxic to Vigna radiata and 
Sorghum bicolor as compared to the biodegraded metabolites.

In the case of Methyl Orange, there wasn’t any kind of removal under aerobic 
conditions by P. putida mt-2 (Thao et al. 2013). So an immobilized bacterial system 
can solve the problem for oxygen-sensitive decolorization by creating miniature 
anoxic environment and complementarily increasing the biomass concentration and 
providing mechanical strength, feasibility of continuous processing, low-cost recov-
ery, and reusability of biocatalyst (Stormo and Crawford 1992; Park and Chang 
2000; Chang et al. 2001a). Puvaneshwari et al. (2002) studied the effective role of 
immobilized P. fluorescens on sodium alginate for the degradation of Direct Blue 
(71%) and Direct Red (82%). Chen and Lin (2007) used silicate/alginate sol-gel 
beads of P. luteola for the decolorization of Reactive Red 22. The rate of decoloriza-
tion of the free cells decreased, while the immobilized system was static after five 
repeated batch cycles. Tuttolomondo et al. (2014) reported the biodegradation of 
Methyl Orange, Benzyl Orange, and Remazol Black by immobilized Pseudomonas 
sp. in sol-gel silica matrices due to higher expression of extracellular enzymes. The 
encapsulation directly protects the bacteria from toxic conditions and consecutively 
increases the production of enzymes involved in degradation. Pseudomonas sp. 
DY1 immobilized in the fungi (A. oryzae) cellular mass shows 96% decolorization 
in the batch cycle, still after 16 days. Inhibition test confirmed that the activity of the 
pellets was mainly due to the bacteria, demonstrating their stable and long-term 
usability for the dye treatment (Yang et al. 2011a, b). Recently, Roy et al. (2018) 
used immobilized Pseudomonas sp. in fly ash for the biodegradation of Reactive 
Yellow. The highest removal percentage (98.72%) was recorded in Pseudomonas 
sp. on fly ash as compared to sorption by fly ash (88.51%) and degradation by spe-
cies (92.62%).

The activated carbon in combination with P. luteola was found to be very much 
effective for the adsorption and biodegradation of Reactive Red 22 (Lin and Leu 
2008). Selvakumar et al. (2010) use electro-oxidation and bio-oxidation by P. aeru-
ginosa for the removal of color from textile effluent having Procion Blue 2G dye. 
Later the treated effluents have been treated with photo-oxidation to remove the 
bacteria, so that water can be recycled. Similarly, Srinivasan et al. (2011) combined 
the sonolysis pretreatment with post-biological treatment by the mutant strain of P. 
putida in the case of Tectilon Yellow 2G.

The studies on the optimization of the conditions like temperature, pH, presence 
of organic compounds, carbon and nitrogen source, concentration range of dyes, 
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and aerobic or anaerobic or both conditions are very much necessary, depending on 
the nature of the dye to be treated by Pseudomonas. Yu et al. (2001) observed that 
presence of nitrate at concentration 1000 mg/L inhibits the process completely, 
while increase in the temperature from 10 to 35 °C enhances the decolorization rate 
of Pseudomonas strain GM3. Chang et al. (2001b) found that tryptone and yeast 
extract enhances the decolorization process of Reactive Red 22, while retarded by 
the added glucose concentration and dissolved oxygen. The activity of azoreductase 
enzyme isolated from cell-free extract also depends upon the growth phase of bac-
teria. Lodato et al. (2007) proved that depletion of dye can be achieved irrespective 
of the initial concentration by changing the aerobic-anaerobic operating conditions. 
In the aerobic conditions, growth of Pseudomonas sp. OX1 can be achieved, while 
in the anaerobic conditions, depletion of dye takes place. Similarly, Lin et al. (2010) 
observed complete mineralization of Reactive Blue 13 by Pseudomonas sp. L1 in 
the same conditions. Joe et al. (2011) investigated the optimal conditions needed for 
Remazol Black B dye by P. aeruginosa CR-25. The maximum rate of removal 
occurs at 37 °C, pH7 with supplementation of peptone, yeast extract, glucose and 
fructose as nitrogen and carbon sources under static conditions. The same results 
have been observed under the above-said conditions by other workers using differ-
ent species of Pseudomonas (Kalyani et  al. 2008; Telke et  al. 2009; Thao et  al. 
2013). Kumar Garg et al. (2012) showed that supplementation of ammonium sulfate 
(0.1%, w/v) and glucose (0.4% w/v) improved the decolorization of Orange 
II.  Mishra and Maiti (2018) demonstrated that yeast extract has positive effect, 
while peptone and glucose have negative effect on the decolorization of Reactive 
Red 21 by P. aeruginosa 23N1. This may be due to the fact that species must have 
utilized peptone and glucose as primary sources of nitrogen and carbon rather than 
the dye molecule. Recently, Hashem et al. (2018) isolated a pH-tolerant P. aerugi-
nosa KY284155 with high decolorization rate for Remazol Black B. With the addi-
tion of iron, magnesium, and yeast extract in the medium, the degradation rate was 
further accelerated. The heavy metals and salts at high concentrations in the medium 
have inhibitory effects on the decolorization of dyes (Gopinath et al. 2011). Some 
strains of P. aeruginosa were very effective in the degradation of reactive azo dyes 
even in the presence of heavy metals like lead, zinc, cadmium, and chromium 
(Maqbool et al. 2016; Hafeez et al. 2018).

The majority of the studies done in Pseudomonas were related to biodegradation 
of the dyes, but few authors have also studied the adsorption phenomena for the 
management of industrial effluents. Du et al. (2012) compared the adsorption capac-
ity of live and heat-treated Pseudomonas sp. strain DY1 biomass for Acid Black 
172. The heat-treated cells have high adsorption due to increased permeability and 
denatured intracellular proteins. Deepa et al. (2013) showed that 4 to 9 pH and 1 to 
1000 mM NaCl concentrations have insignificant effect on the adsorption rate of 
Direct Red by P. putida. Later on, Arunarani et al. (2013) proved the same type of 
effect on the adsorption of Acid Blue 93 and Basic Violet 3 by the same taxa due to 
pH and salts. Liu et al. (2017) extracted a biosurfactant from P. taiwanensis L1011 
and utilized it to accelerate the chemical and biological decolorization of Congo 
Red and Amaranth, respectively. Recently, Iqbal et  al. (2018) developed a novel 
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biosorbent using P. aeruginosa USM-AR2 cells immobilized on mesoporous rice 
husk ash silica (RHA-SiO2).

There is a lot of variability for the potential of degradation of dyes within the 
different genera of bacteria. Hu (1996) compared the adsorption efficiency of 
Aeromonas, Bacillus, Escherichia, Pseudomonas, and Staphylococcus for four 
reactive azo dyes. The dead biomass of the three genera exhibits higher adsorption 
capacity in the order of Aeromonas > Pseudomonas > Escherichia. Nachiyar and 
Rajkumar (2003) tested three species (P. aeruginosa, P. fluorescens, and P. putida) 
for the decolorization of Navitan Fast Blue S5R and found that P. aeruginosa exhib-
ited maximum efficiency (72–92%) within 72 h. Silveira et al. (2009) compared 4 
species (P. oleovorans, P. putida, P. cepacia, and P. aeruginosa) for the efficiency of 
decolorization of 14 commercial textile dyes. Among them, P. aeruginosa and P. 
oleovorans were more capable to decolorize ten textile dyes. The mixed consortia 
of Pseudomonas, Acinetobacter, Escherichia, Enterobacter, Aspergillus, and 
Actinobacteria were also found to significantly decolorize or degrade different 
kinds of azo dyes (Kadam et al. 2011; Yang et al. 2011a, b; Patel et al. 2012; Khan 
et al. 2014; Isaac et al. 2015; Kuppusamy et al. 2017; Sathishkumar et al. 2017).

Pseudomonas genus was also studied for the biotreatment of triphenylmethane 
dyes, used extensively as biological or dermatological agent, and in various pro-
cesses in the food, medical, and textile industry (Sarnaik and Kanekar 1995, 1999; 
Yatome et al. 1981, 1990; Lin et al. 2004; Wu et al. 2009). Malachite Green and 
Crystal Violet dyes were extensively studied by several researchers (El-Naggar 
et al. 2004; Chen et al. 2007; Li et al. 2009; Huan et al. 2010; Kalyani et al. 2012; 
Chaturvedi et al. 2013). Enhancement of degradation of triphenylmethane dyes can 
be attained by adding glucose and sucrose as cosubstrates and heavy metals in the 
medium (Oranusi and Ogugbue 2005). Kalyani et al. (2012) showed that aminopy-
rine N-demethylase, MG reductase, and laccase enzymes were induced in P. aeru-
ginosa NCIM 2074 and degraded Malachite Green into a non-toxic product. The 
same category of enzymes was also found to degrade heavy amounts of the dye 
(1800 mg/L) in P. mendocina (Chaturvedi et al. 2013). Li et al. (2009) isolated a 
strain of Pseudomonas sp. MDB-1 from water of an aquatic hatchery, capable of 
degrading various triphenylmethane dyes. Later on, tmr2 gene encoding the enzyme 
(triphenylmethane reductase) was also fully characterized responsible for the bio-
degradation (Huan et al. 2010; Li et al. 2009). Zabłocka-Godlewska et al. (2014) 
compared SDz3 and Sz6 strains of P. fluorescens for the biodegradation of mixture 
containing triphenylmethane (Brilliant Green) and azo (Evans Blue) dyes. The 
strain Sz6 was able to degrade the dyes faster in shaken/semistatic conditions, and 
maximum removal (95.4%) was achieved in the case of Brilliant Green.

Various species of Pseudomonas were also reported for the removal of other 
xenobiotic compounds used for the preparation of dyes. The compounds include 
phenol by P. putida DSM 548, Pseudomonas CF600, and P. stutzeri (Sá and 
Boaventura 2001; Moharikar and Purohit 2003; Pazarlioğlu and Telefoncu 2005; 
Nowak and Mrozik 2018; Singh et al. 2018); 4-aminophenol by Pseudomonas ST-4 
(Afzal Khan et al. 2006); pyridine by Pseudomonas sp. PI2 (Mohan et al. 2003); 
naphthalene and p-cresol by P. putida and P. gessardii LZ-E (Huang et al. 2016a, b; 
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Izmalkova et al. 2013; Surkatti and El-Naas 2014); chloroanilines by P. putida T57 
(Nitisakulkan et al. 2014); polycyclic aromatic hydrocarbons by P. stutzeri (Álvarez 
et  al. 2015); polynuclear aromatic hydrocarbons by P. plecoglossicida PB1 and 
Pseudomonas sp. PB2 (Nwinyi et al. 2016); and phenanthrene by P. stutzeri JP1 and 
P. mendocina NR802 (Mangwani et al. 2014; Kong et al. 2017).

13.4  Fungi

Many genera of fungi were also explored for the color removal from industrial efflu-
ents, especially actinomycetes and basidiomycetes (Chivukula and Renganathan 
1995; McMullan et al. 2001). These organisms produce extracellular enzymes (lac-
case, peroxidases, and azoreductase) to catalyze dealkylation, oxidation, and 
hydroxylation reactions for the metabolism of dyes (Goszczynski et al. 1994). Most 
of the work was done for white rot fungus (Phanerochaete), as they are capable to 
degrade the majority of the azo dyes (Bumpus 1995; Banat et al. 1997; Cripps et al. 
1990). The other fungal genera reported for the biodegradation of xenobiotic com-
pounds are Streptomyces, Lenzites, Coriolopsis, Neurospora, Penicillium, Pleurotus, 
Trichoderma, and Trametes (Paszczynski et al. 1992; Chao and Lee 1994; Knapp 
and Newby 1999; Saparrat et al. 2014; He et al. 2018; Naraian et al. 2018; Pandey 
et al. 2018). The brown rot fungus (Aspergillus) has also shown potential to biode-
grade a variety of toxic xenobiotic compounds and for the biotreatment of wastewa-
ter (Ali et al. 2010; Abd El-Rahim et al. 2017; Gomaa et al. 2011). Recently, Ning 
et al. (2018) reported biodegradation of 15 dyes by Aspergillus flavus A5p1  in a 
range of 61.7–100.0%. So there is always a need to explore the different strains/
species of the Aspergillus for the degradations of the wide varieties of dyes 
(Table 13.3).

13.4.1  Aspergillus

The genus is composed of 340 species, widespread in diverse habitats, and reported 
as a pathogen, spoils food materials, and produces mycotoxins (Bennett and Klich 
2003; Houbraken et al. 2016). They reproduce by asexual reproduction via conidio-
phores. The key to identify or classify various species of the genus is based on the 
size, color, and arrangement of asexual spores of conidiophores. Some species are 
associated with serious health problems like allergic bronchopulmonary aspergil-
losis, liver cancer (consumption of food containing mycotoxins), etc. (Hedayati 
et  al. 2007). Most of the species are also used to produce beneficial products 
(enzymes, food fermenters, antibiotics, etc.) in biotechnology industry (Samson 
et al. 2014). To mention some of the species with beneficial/harmful effects are A. 
flavus (aflatoxin), A. fumigatus (cellulose, xylanase), A. niger (homologous or het-
erologous proteins), A. oryzae, A. sojae (food fermentation), A. tamari (Japanese 
soya sauces), and A. terreus (lovastatin, terrein) (Park et al. 2017). The present sec-
tion reviews the diversity found within the Aspergillus species for the elimination of 
hazardous dyes from the industrial effluents (Table 13.3).
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Initial studies for the wastewater treatment were mainly focused on the white rot 
fungus group, as they have lignin-degrading enzymes for the oxidation of organic 
compounds (Bumpus and Aust 1987). Aspergillus genus (brown rot fungi) was also 
explored for the removal of dyes in the industrial effluents. Ryu and Weon (1992) 
analyzed four species of Aspergillus (six strains) and one species of Phanerochaete 
(two strains) for the biodegradation of three azo dyes and stated that the former 
genus was much more effective in the process. Mainly two processes for the treat-
ment of dyes in the solution or synthetic effluents were studied extensively, either 
biosorption or biodegradation (Conatao and Corso 1996; Fu and Viraraghavan 2000, 
2002a; Sumathi and Manju 2000; Zope et al. 2007; Esmaeili and Kalantari 2011; 
Almeida and Corso 2014). The biosorption of dyes was influenced by their chemi-
cal structure and functional group on the surface of fungus (Fu and Viraraghavan 
2002b, 2003). Parshetti et al. (2007) observed faster adsorption rate in A. ochraceus 
in the shaking conditions. The treatment of Aspergillus species with immobilization 
beads, autoclaving, and specific compounds also accelerates the process of decolor-
ization (Wang and Hu 2007; Wang et al. 2008; Patel and Suresh 2008). Yang et al. 
(2011a, b) demonstrated higher biosorption capacity in the CDAB (cetyldimethyl-
ammonium bromide) modified biomass of A. oryzae. The same type of result was 
seen by Huang et al. (2016a, b) while investigating the effect of heavy salts, metals, 
and SDS on the adsorption kinetics of chemically modified (cetyltrimethylammo-
nium bromide) A. versicolor. They found a close relationship between low pH (2.0) 
and heavy metals on the biosorption rate. The chemical modification increases the 
surface area and functional groups. Naskar and Majumder (2017) used response 
surface methodology for A. niger and demonstrated that adsorption rate depends 
upon the concentration of biomass, temperature, and pH of the solution. Further, 
they also revealed that amine and carboxyl groups play an important role in dye 
sorption along with electrostatic interactions. The same type of phenomena was 
observed by the authors using different dyes and the same species (Xiong et  al. 
2010; Mahmoud et al. 2017). The high temperature and low pH range (1–3) in the 
solution speed up the uptake of the dyes, as the biosorption is mostly endothermic 
(Akar et al. 2009). This type of condition increases the kinetic energy and diffusion 
rate (Ramya et  al. 2007; Aksu and Karabayır 2008; Abdallah and Taha 2012). 
Contradictory to this, other authors reported optimal temperature (28–30 °C) and 
pH (5) as much more favorable condition for the biodegradation of azo dyes (Ali 
et al. 2007a, b; Ameen and Alshehrei 2017; Sharma et al. 2009) by four Aspergillus 
spp. The nutritional condition needs to be standardized as sources of nitrogen and 
carbon in the medium, as they are also a detrimental factor for the rate of dye 
removal (Kaushik and Malik 2010, 2011). Gomaa et al. (2017) demonstrated the 
role of calcium chloride as stress response in A. niger and high removal efficiency 
for commercial dye Malachite Green.

The live fungal strains were extensively studied for the decolorization of dyes 
from industrial effluents; however, some workers used pellets and dead biomass for 
the process and found promising results as compared to the living strains (Abdallah 
and Taha 2012; Abdel Ghany and Al Abboud 2014; Lu et al. 2017). The formation 
of bioflocculants and silver and zinc oxide nanoparticles using different Aspergillus 
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spp. has also the potential for the color removal from industrial effluents (Deng 
et al. 2005; Muthu Kumara Pandian et al. 2016; Kalpana et al. 2018a, b). Copete- 
Pertuz et al. (2019) demonstrated that A. terreus in combination with Trichoderma 
viride can act as a co-inducer for Leptosphaerulina sp. ligninolytic enzyme activity 
and improved removal of Reactive Black 5 dye.

Survey of literature reveals that most of the studies were related to the biosorp-
tion mechanism rather than the degradation. The metabolites formed during 
 degradation process are shown in Table 13.3. The enzymes involved in the biodeg-
radation were laccase, manganese peroxides, and lignin-modifying enzymes, 
which mineralize synthetic lignin of dyes (Ali and El-Mohamedy 2012; Hasanin 
et  al. 2019). Azoreductase is one of the key enzymes found in the degradation 
pathways of the organism. Ameen and Alshehrei (2017) found laccase and azore-
ductase to be involved in the degradation of Reactive Red 120 into sodium 
2- aminobenzenesulfonate. Tamayo-Ramos et al. (2012) characterized three forms 
of laccase-like multicopper oxidase enzymes having high catalytic activity for 
several phenolic compounds and synthetic dyes. The optimization process for the 
high production and activity of laccase enzyme has been done for several 
Aspergillus species. The factors associated are pH, temperature, carbon and nitro-
gen sources, inoculum size, etc. (Jin and Ning 2013; Benghazi et al. 2013; Kumar 
et al. 2016). Recently, Abd El-Rahim et al. (2017) isolated 18 strains belonging to 
6 species from the wastewater sample and evaluated them against 20 azo dyes. 
The most resistant dye was Fast Green azo dye, and easily degradable dyes were 
Direct Violet and Methyl Red. The decolorization process was enhanced by glu-
cose supplementation, and the limiting factor was a nitrogen source, as in its 
absence the strains were unable to produce lignin peroxidase enzyme. The high 
pH has been also shown to be related to the low formation of residual products 
(Ali et al. 2007a, b).

The different Aspergillus species have shown very much diversity in the biodeg-
radation of various dyes. Anastasi et al. (2009) compared five species of mitosporic 
fungi (Penicillium, Cladosporium, and Aspergillus) for the removal of nine indus-
trial and two model dyes. They found that A. ochraceus and A. flavus were efficient 
for the decolorization of all the dyes tested and one species, i.e., A. ochraceus, 
causes over 90% decolorization against simulated effluents. Similarly, other work-
ers found the maximum potential of Aspergillus as compared to Penicillium (Ali 
et al. 2010; Gomaa et al. 2011; Ali and El-Mohamedy 2012). Khalaf (2008) tested 
the effectiveness of Spirogyra sp. (green algae) and A. niger against the reactive dye 
(Synozol) in textile wastewater. The autoclaved biomass of the both species exhib-
ited 88% and 85% dye removal, respectively. Some species have higher absorption 
capacity, but still they lack the ability to degrade them into non-toxic metabolites 
(Almeida and Corso 2014).

The degraded products should be checked for the toxicity assays, as decoloriza-
tion does not always lead to the absence of toxicity, rather forming incomplete toxic 
metabolites (Almeida and Corso 2014). The extracellular enzymes were found to 
degrade triphenylmethane dye by stepwise demethylation into non-toxic 
N-demethylated products (Kumar et  al. 2011, 2012). Andleeb et  al. (2012) 
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investigated the toxicity of degraded products formed during biodegradation of 
Drimarene Blue dye by A. flavus. As compared to dye treatment, the germination 
and morphological characteristics in Lolium perenne were somewhat near to the 
untreated. Similarly, Parshetti et al. (2007) observed that germination of Phaseolus 
mungo was high or near to control in comparison to the Malachite Green 
treatment.

13.5  Conclusion

The treatment of industrial effluents with cost-effective methods is the urgent need 
of the society. The literature shows that aerobic and anaerobic conditions were well 
utilized by algae, bacteria, and fungi for the management of dyes. The effluents also 
serve as a growth substrate or also can be used to extract biomass. The integrated 
approach of remediation as successive treatment along with extraction of enzymes, 
lipids, and biofuels seems to be the best practice for sustainable development. The 
mixed consortium of best strains of algae, bacteria, and fungi should be tested for 
the degradation of toxic dyes. Genetically engineered strains may be used for the 
degradation of toxic amines in the severe environmental conditions. Toxicity assays 
clearly show which strain is best for the future applications to clear the water for 
recycling.
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Abstract
Currently organophosphate compounds constitute one of the largest families of 
chemical compounds that are used for pest control, mainly for better crop yield 
worldwide. Due to their toxicity, persistence, and adverse effects, some organo-
phosphates (like parathion and methyl parathion) were classified and registered 
as extremely hazardous by the World Health Organization (WHO) and US EPA 
(US Environmental Protection agency) and have been banned in many countries. 
Some of the hydrolysis intermediates (such as 4-nitrophenol and trichloropyridi-
nol) of these organophosphates are more toxic and environmentally mobile (due 
to greater water solubility) and therefore more dangerous. However, existing 
reports suggest their illegal, extensive use and application without proper techni-
cal know-how (especially by illiterate farmers in underdeveloped/developing 
countries). Their indiscriminate and extensive application and use are responsi-
ble for possible contamination of several ecosystems and groundwater. 
Continuous and excessive use of organophosphates has been reported to be 
responsible for various ever-ending global problems such as contamination of 
air, water, and terrestrial ecosystems, decline in diversity of productive soil 
microflora, disruption of biogeochemical cycles, and death of nontarget macro-
scopic life forms. Organophosphates have been documented as neurotoxic and 
are potent inhibitors of acetylcholinesterase. They are responsible for serious 
adverse effect on the nervous, excretion, endocrine, reproductive, cardiovascular, 
and respiratory systems of target as well as nontarget organisms including 
humans. Moreover, these compounds are one of the major causes of accidental 
and suicidal deaths in rural population of the world. The situation therefore is of 
huge public interest, and hence, suitable cost-effective bioremediation technique 
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must be developed for the restoration of organophosphate-contaminated environ-
mental niches. Bioremediation of pollutants by biological system has emerged as 
the most effective method for clean up the contaminated sites. In order to imple-
ment bioremediation approach, proper understanding of microbial metabolism 
of these organophosphates compounds is of extreme importance. Microbial 
metabolism of OP compounds can be carried out catabolically (with organophos-
phates serving either as a sole source for C, N, or P) or co-metabolically (in the 
presence of other compounds, mainly carbohydrates). The metabolic conversion 
of organophosphates to CO2 and H2O (i.e., complete mineralization) is carried 
out through three main processes such as degradation, conjugation, and rear-
rangements that involves reactions like oxidation, hydrolysis, and reduction, all 
mediated through the enzyme-mediated pathways. The main enzymes that are 
involved in hydrolysis are phosphotriesterases (PTE) and phosphatase. The three 
major types of PTE are reported so far, such as organophosphate hydrolase 
(OPH), methyl parathion hydrolase (MPH), and organophosphorus acid anhy-
drolase (OPAA) encoded by opd, mpd, and opaA genes, which are either located 
on plasmid or on chromosomal DNA. Since most of the organophosphates are 
less soluble to make it physiologically available for microbes, solubilization is 
carried out either through the secretion of organic acid or by biosurfactants by 
the microbial cells. This is followed by adsorption and or uptake. Most of these 
adsorption and uptake mechanisms remain largely unknown. However, being 
lipophilic and small in size, these organophosphates can be transported to the 
periplasmic space where the metabolic transformation starts. The metabolic 
transformation involves either an initial oxidation or reduction followed by 
hydrolysis to release the toxic functional group and phosphate group. This hydro-
lysis step is most critical as it reduces the toxicity of organophosphates. The 
metabolic transformation of the toxic functional group is most well-studied and 
reported in literature. This is followed by a series of reactions that involves inter-
conversion ultimately leading to ring cleavage reaction that opens up the mole-
cule. Further reactions then convert these intermediates into a product that can 
act as suitable metabolite to be entered into the TCA cycle. The end products 
released from the TCA cycle are CO2 and H2O.  Most of initial reactions are 
mediated in the periplasmic space of the bacterial cell. The interconversion of 
much less toxic metabolites occurs in the cytoplasm. Although many facets of 
organophosphates biodegradation have been excavated, still there remain many 
lacunas. Understanding microbial diversity, ecological aspects, and adaptation 
strategies might cater better prospects to hope for smart technologies.

Keywords
Organophosphates; 4-Nitrophenol · Parathion · Methyl parathion
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14.1  Introduction

The population of human is probably going through zenith phase of development 
and to cater its need steady food supply for all is an absolute requirement. The latter 
is dependent on the continuous increase in food production. Unfortunately, nearly 
15–20% (sometimes up to 33%) of the agricultural production are lost due to pest 
infestation (Puri et al. 2013). For tropical countries, products are damaged due to 
high humidity, temperature, and several conditions that provide highly favorable 
environment for the multiplication of insect pests (Lakshmi 1993; Abhilash and 
Singh 2009). Thus, to protect crops and food from insect attack, insecticides were 
introduced (Kannan et al. 1997). Initially, organochlorine (OC) insecticides were 
used; however, due to their high toxicity, long persistence in the environment, bioac-
cumulation, biomagnifications, and devastatingly ill ecological effects, the majority 
has been replaced by organophosphate insecticides (Aktar et al. 2009). Some com-
mon organophosphate insecticides used worldwide along with their chemical struc-
ture, mode of action, year of introduction, half-life, and toxicity are illustrated in 
Table 14.1.

14.2  Introduction of Organophosphate: Historical 
Perspectives and Current Scenario

The first organophosphate insecticide to be commercialized was Bladan, which con-
tained tetraethyl pyrophosphate (TEPP) and was formulated by German chemist 
Gerhard Schrader in 1937 (Gallo and Lawryk 1991; Kanekar et al. 2004; Ghosh 
2010). Parathion was synthesized in 1944 by same chemist-scientist (Gallo and 
Lawryk 1991) and was introduced in 1947; later on its methyl derivative, methyl 
parathion, was introduced in 1949 (Singh and Walker 2006). Chlorpyrifos was 
introduced in 1965 as acaricide and insecticide (Singh and Walker 2006). Due to its 
broad-spectrum nature, chlorpyrifos was used throughout the world to control a 
variety of chewing and sucking insect pests and mites on a range of economically 
important crops, including citrus fruit, bananas, vegetables, potatoes, coffee, cocoa, 
tea, cotton, wheat, and rice (Thengodkar and Sivakami 2010, Chen et al. 2012).

Currently, more than 140 organophosphates are reported to be used worldwide as 
insecticides, fertilizers, fungicides, weedicides, plant growth factors, and other 
agrochemicals for better crops yield and chemical warfare agents like soman and 
sarin. These organophosphates are used as a component of 100 different types of 
commercially available insecticides, and it has also been estimated that more than 
1500 different types of organophosphates have been synthesized during the period 
of the last century. Presently, organophosphates represent the largest group of chem-
ical insecticides used in plant protection throughout the world after the prohibition 
on use of organochlorine insecticides (Bhagobaty and Malik 2008; Ortiz-Hernandez 
and Sanchez-Salinas 2010).
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14.2.1  Usage of Organophosphates

Historically, organophosphates were used as chemical warfare agents such as Sarin, 
Soman, and VX. About 200,000 tons of these extremely toxic organophosphates 
chemical warfare agents were manufactured and are stored. As per Chemical 
Weapons Convention (CWC) of 1993, these stocks must be destroyed within 10 
years of ratification by the member states (Singh and Walker 2006).

Abhilash and Singh (2009) categorically pointed out the following six sectors 
where organophosphates insecticides are used extensively:

 1. Agriculture—for control of weeds, insects, pests, and rodents mainly
 2. Public health—for control of insect (mainly mosquito and others) vectors that 

spread various diseases (malaria, filariasis, dengue fever, Japanese encephalitis, etc.)
 3. Domestic—for controlling insects (mosquitos, louse, etc.), flies that are common 

in houses and gardens (insects such as spiders that affect ornamental plants), 
ectoparasites (scab mites, blowfly, ticks, and lice) of domestic farmhouse cattle

Table 14.1 Some commonly used organophosphate compounds

Name of OP 
insecticides Structure Mode of action

Year of 
introduction

Half-life in soil 
(days)

Parathion Insecticides 1947 30–180

Methyl parathion Insecticides 1949 25–130

Chlorpyrifos Acaricide/
insecticide

1965 10–120

Malathion Insecticides 1950 1–25

Dimethoate Insecticides 1955 2–40

Monocrotophos Insecticides 1965 40–60

Coumaphos Insecticides 1952 24–1400

Data taken from Singh and Walker (2006); Kanekar et al. (2004)
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 4. Personal—applied in clothing or body for controlling head and body lice, mites, 
other small insects, etc.

 5. Material building—incorporated into paints, plastics, wood (furniture, etc.), and 
other materials as well in building foundation, to prevent insect infestation

 6. Others—control of vegetation in forests and factory sites, fumigation of build-
ings, and ships

14.3  Toxic Organophosphates: A Global Threat of Huge 
Public Interest

Organophosphates act as neurotoxic agents (Shimazu et al. 2001; Ghosh et al. 2010) 
and are mainly potent inhibitors of acetyl cholinesterase (Tago et al. 2006. Chao 
et al. 2008; Ortiz-Hernandez and Sanchez-Salinas 2010). Acetylcholine is a neu-
rotransmitter and acetylcholinesterase constitutes a key enzyme of the nervous sys-
tem. Generally, after completion of nerve impulse transmission, the function of 
acetylcholinesterase is to hydrolyze acetylcholine (neurotransmitter) into choline 
and acetyl-CoA (inactive components), so that these become available for further 
function. Upon irreversible binding of organophosphate to acetylcholinesterase, it 
loses its normal hydrolysis function. This results into accumulation of acetylcholine 
at the junction of the synaptic cleft. Eventually, overstimulation occurs that ulti-
mately leads to paralysis and, under extreme condition, death (Kumar et al. 2010; 
Theriot and Grunden 2011; Chaudhry et al. 1988; Cho et al. 2004; Bhagobaty and 
Malik 2008; Ortiz-Hernandez and Sanchez-Salinas 2010). The failure of nerve 
impulse transmission, due to the organophosphate pesticide poisoning, causes 
health problems such as weakness, headache, excessive sweating, salivation, nau-
sea, vomiting, diarrhea, abdominal pain, and paralysis which can ultimately lead to 
death (under extreme condition) (Kanekar et al. 2004). Some other health disorders 
reported due to organophosphate poisoning are malfunctioning of the endocrinal, 
respiratory, excretory, and cardiovascular systems as well as miscarriage during 
pregnancy, abnormal/retarded fetus development, etc. (Kumar et al. 2010).

Approximately, two million tons of organophosphate pesticides are used per year 
throughout the world. The major consumers are Europe (45%) followed by the USA 
(24%) and the rest of the world (25%). Herbicides are the main category of pesticide 
used globally followed by insecticides and fungicides (Gupta 2004).

14.4  Microbial Bioremediation: Best for Effective 
Environmental Cleanup of Organophosphates

Although several chemical, physical, and physicochemical methods have been devel-
oped for the removal of these toxic chemicals from its contaminated sites, bioreme-
diation is considered to be the best. It is the green process of cleaning the environment 
by using different biological means (i.e., with the help of plants, animals, and micro-
organisms). It offers a more effective, cheap, eco-friendly, and safer alternative 
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process toward cleaning up of toxic and hazardous contaminants/pollutants (Chen 
et al. 2012, 2014). Bioremediation using microorganisms has received huge attention 
in the last one decade. Organophosphate-hydrolyzing enzymes of bacterial origin are 
considered for detoxification (and bioremediation) due to broader substrate specifici-
ties and better kinetics (Dumas et al. 1989; Cheng et al. 1993).

The organophosphate-degrading microorganisms may be used for systematic 
investigation toward development of suitable technology for bioremediation of 
these toxic organophosphate agrochemicals from the contaminated agricultural 
fields (and other adjoining niches). This is a strong need and demand of the day 
toward greener and clean tomorrow.

14.5  Hunting Bacteria for Organophosphates: Key 
for Developing Bioremediation Process

Research works carried out over the past three decades have shown microorganisms 
as the major component of biological diversity on our planet earth with the repre-
sentation of 1030 cells. These huge number of microbes are fundamental compo-
nents toward the successful execution of biogeochemical cycles and all other 
processes that take care of the health of our planet earth (Whitman et  al. 1998). 
Several studies has now unequivocally proven that a successful existence and sur-
vival of most of the other life forms (including macroscopic plants and animals) 
depends on the proper functioning and interaction of the very basic normal micro-
biota that varies from one living system to another (Berg et al. 2014).

Therefore, to understand the fate of organophosphate compounds in the ecosys-
tems, its metabolic transformation must be properly investigated in the laboratory 
under precisely controlled conditions (Fig. 14.1). Since the diversity of bacteria is 
considered huge, lot being unknown and unexplored, this group is supposed to serve 
as the major reservoir of novel gene pool to hunt for. Since less than 1% of the total 
diversity is known, it is best to explore more. Bacterial systems are less complicated 
compared to eukaryotic ones (fungal and plants), and their genetic regulation has 
been well explored and better understood and thus can be better manipulated for 
biotechnological applications and bioremediation purposes. In general bacterial 
enzymes are given more importance than the same from other (plants and animals) 
sources due to the following reasons (Dumas et al. 1989; Cheng et al. 1993; Chen 
et al. 2011; Cycon’ et al. 2011; Arora et al. 2012; Chen et al. 2014):

• They are generally cheaper to produce.
• Their enzyme contents are more predictable and controllable.
• Reliable supplies of raw material of constant composition are more easily 

arranged.
• Plant and animal tissues contain more potentially harmful materials than 

microbes, including phenolic compounds (from plants), endogenous enzyme 
inhibitors, and proteases.
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Fig. 14.1 A brief overview of the current trends in the study of organophosphate (OP) metabolism 
(catabolic) in microorganism, from isolation and hydrolysis product identification to pathway 
reconstruction
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• Their enzyme-based biodegradation and bioremediation are more cost-effective 
and eco-friendly.

• Their enzymes have broad substrate specificity.
• Their enzyme can be used easily with bead-based remediation of toxic 

pollutant.

Although many organophosphate hydrolytic enzymes have been reported, con-
sidering the huge estimated diversity of the microbial world, these represent only 
the tip of hidden, unknown iceberg. From the rich collection, such as organophos-
phate-degrading microbes, much has been excavated in terms of microbial metabo-
lism, biodegradation pathways, evolution, genetic, and molecular mechanisms. 
Still, in order to realize the full potential of organophosphate-degrading bacteria, 
their applications, and development of better strategies for bioremediation of con-
taminated sites, more intensive research is required. This involves isolation of 
organophosphate-degrading microorganisms from different ecological habitat 
(extreme habitats), understanding the detail molecular events of degradation and 
signaling pathways that initiate/activate the organophosphate-degrading genes, and 
development of modern technologies for better field applications (Singh 2009).

14.6  Study of Microbial Metabolism of Organophosphate 
Compounds

In general, the study of microbial metabolism of organophosphate compounds was 
started by Sethunathan and Yoshida (1973), when they reported a bacterial strain 
Flavobacterium sp. ATCC 27551 (now reclassified as (Sphingobium fuliginis), 
which could degrade and utilize diazinon and parathion as the sole carbon source 
and degrade chlorpyrifos co-metabolically followed by Bacillus sp. and 
Pseudomonas sp. (Siddaramappa et  al. 1973); Xanthomonas (Rosenberg and 
Alexander 1979); Arthrobacter sp. (Nelson 1982); and Pseudomonas diminuta MG 
(Serdar et al. 1982; Mulbry et al. 1986). Singh et al. (2004) for first time reported 
the degradation of chlorpyrifos as the sole carbon source by Enterobacter asburiae 
strain B-4, which was followed by Alcaligenes faecalis (Yang et  al. 2005); 
Stenotrophomonas sp. YC-1 (Yang et al. 2006); and Sphingomonas sp. DSP-2 (Li 
et al. 2007a, b). The overall general methodologies followed toward their studies are 
summarized in Fig.  14.2. So far, many bacterial strains have been reported to 
degrade parathion, chlorpyrifos, and other organophosphate compounds either cata-
bolically or co-metabolically. A thorough and extensive list of bacterial spp. reported 
to be involved in the degradation of organophosphate compounds (mainly parathion 
and/or chlorpyrifos) is documented in Table 14.2.
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14.7  General Trend for Organophosphate Metabolism 
in Microorganisms

The process of microbial metabolism of organophosphate compounds takes place 
through multistep pathway each being catalyzed by an enzyme. In most of the cases, 
the general reactions involved are hydrolysis and oxidation and rarely reduction.

All the organophosphate compounds share a similar general pattern for their 
degradation (Fig. 14.2). There are usually three ester bonds and breakdown of any 
one reduces toxicity of the compound. The most important step is the breakdown of 
ester bond with the main group (Z in Fig. 14.2) is bonded. This releases the group 
[4-NP in case of parathion and methyl parathion; 3,5,6-trichloro-2-pyridinol (TCP) 
in case of chlorpyrifos] to be metabolized further through enzyme catalyzed multi-
ple steps. Finally, the ultimate end product enters into the TCA cycle for complete 
metabolic utilization (Singh 2009; Singh and Walker 2006).

14.8  Microbial Metabolism of Organophosphate: A Potential 
Source of C, P, and N for Growing Cells

Most of the studies related to understanding of microbial metabolism of organo-
phosphate compounds started with isolation and degradation of organophosphate 
compounds by microorganisms. Two categories for metabolism studies have been 

Fig. 14.2 General 
pathway for biodegradation 
of organophosphate 
compounds (Singh 2009)
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Table 14.2 List of organophosphate-degrading microorganisms

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Flavobacterium sp. (ATCC 
27551), reclassified as 
Sphingobium fuliginis

Par, Couma (Cat, 
C)
Chlp (Co-met, C)

Paddy field water, 
Philippines

Sethunathan 
and Yoshida 
(1973); 
Kawahara et al. 
(2010)

Pseudomonas sp. Par, 4-NP (Cat, C) Parathion-amended 
soil

Siddaramappa 
et al. (1973)

4 species of Pseudomonas sp. 
(mixed culture)

Par (Co-met C) Agri. wastes Munnecke and 
Hsieh (1974)

Pseudomonas stutzeri Par (Co-met, C) – Daughton and 
Hsieh (1977)

Pseudomonas sp. Par (Cat, P) Soil and sewage Rosenberg and 
Alexander 
(1979)

Xanthomonas sp. Par (Cat, C) Soil and sewage Rosenberg and 
Alexander 
(1979)

Pseudomonas diminuta MG Par, chlp (Cat) American isolate Serdar et al. 
(1982), Mulbry 
et al. (1986)

Arthrobacter sp. Par (Co-met, C) Par-treated soil 
(Gilat, Israel)

Nelson (1982)
Bacillus sp. Par (Co-met)
Pseudomonas sp. (mixed 
culture)

Par, MPar 
(Co-met, C)

MPar-treated soil of 
farmland

Chaudhry et al. 
(1988)

Arthrobacter sp. Chlp (Co-met) Flooded soil treated 
with MPar

Misra et al. 
(1992)

Pseudomonas putida MPar (Cat, C, and 
P)

– Rani and 
Lalithakumari 
(1994)

Flavobacterium balustinum MPar Agri. soils 
(Anantapur, AP, 
India)

Somara and 
Siddavattam 
(1995)

Pseudomonas sp. A3 MPar (Cat, C, and 
P)

Rice field soil Ramanathan 
and 
Lalithakumari 
(1996, 1999)

Micrococcus sp. (M-36 and 
AG-43)

Chlp (Cat) Soil Guha et al. 
(1997)

Bacillus sp. MPar (Cat) Cotton field soil 
(Guntur, AP, India)

Sreenivasulu 
and Aparna 
(2001)

Plesiomonas sp. strain M6 MPar (Co-met) (Nanjing, Jiangsu, 
China)

Zhongli et al. 
(2001)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Burkholderia cepacia, Bacillus 
sp.

MPar Agri. soil Keprasertsupa 
et al. (2001)

Agrobacterium radiobacter 
P230

MPar, Par Soil, domestic yard 
(Brisbane, Australia)

Horne et al. 
(2002a)

Pseudomonas putida KT2442 Par (Cat) – Walker and 
Keasling 
(2002)

Enterobacter, Enterobacter 
asburiae strain B-4 (AJ564997 
and AJ564998)#

Chlp (Co-met and 
Cat, C)

Soils of the UK and 
Australia

Singh et al. 
(2003, 2004)

Pseudomonas 
pseudoalcaligenes

MPar (Co-met) Organophosphate-
treated soil

Ningfeng et al. 
(2004)

Pseudomonas sp. strain 
WBC-3

MPar, 4-NP, Mala, 
Fen, Diazin (Cat, 
C, and N)

– Liu et al. 
(2005)

Chlp, TCP (Cat, 
C)

Soils (che. factory) Yang et al. 
(2005)

7 bacterial species 
(Pseudaminobacter sp., 
Achromobacter sp., Brucella 
sp., Ochrobactrum sp.) 
(AY627033 to AY627039)#

MPar MPar-contam. soil Zhang et al. 
(2005, 2006a, 
b)

Ochrobactrum sp. B2 
(AY661464)#

MPar (Co-met) MPar-polluted soil Qiu et al. 
(2006)

Stenotrophomonas sp. YC-1 
(DQ537219)#

Chlp (Cat, C, and 
P)

Sludge (WW, OP 
pest. manuf.)

Yang et al. 
(2006)

Bacillus laterosporus strain 
DSP

Chlp – Wang et al. 
(2006); Zhang 
et al. (2012a, 
b)

Sphingomonas sp. DSP-2 
(AY994060)#

Chlp (Cat, C) Poll. water (chlp 
manuf. indust., 
Nantong, China

Li et al. 
(2007b)

Klebsiella sp. Chlp Acti. sludge 
(Damascus WW 
Treatment Plant, 
Syria)

Ghanem et al. 
(2007)

Serratia sp. (EF070125)# Chp (Cat, C) Acti. sludge 
(Tiancheng pesti. 
Co., Shandong, 
China)

Xu et al. 
(2007)

Bacillus sp. DM-1 
(DQ201643)#

MPar (Co-met) Organophosphate-
polluted soil

Yang et al. 
(2007)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Acinetobacter radioresistens 
USB-04

MPar, Par (Cat, C) Sedi., WW treat., 
pesti., Shandong, 
China

Fang-Yao et al. 
(2007)

Burkholderia sp. JBA3 Par (Cat) Agri. soil (Korea) Kim et al. 
(2007)

Serratia sp. (AM050059)# MPar, 4-NP (Cat, 
C)

Agri. soil 
(Anantapur, AP, 
India)

Pakala et al. 
(2007)

Delftia sp. XSP-1 MPar, chlp, Fen, 
Phoxim

Sludge collected 
from a pesti. manuf.

Shen et al. 
(2007)

Bacillus firmus strain BY6 Chlp (Cat, C) Coral was collected 
from Teluk Awur 
North Java Sea, 
Indonesia

Sabdono 
(2007)

Pseudomonas stutzeri strain 
HS-D36

Me-Par (Cat, C) Acti. sludge water 
treat. pond pesti. 
facto. in Hubei, 
China

Wang et al. 
(2008)

Arthrobacter sp. L1 MPar (Cat, C, and 
N)

Acti. sludge, enrich. 
tech.

Li et al. 
(2008a, b)

Brachybacterium sp., 
Kytococcus sp., Brevibacterium 
sp., Chromobacterium sp., 
Oceanobacillus sp., Bacillus 
sp. (AB449753, AB449754, 
AB449755, AB449757, 
AB449758, AB449765)

Chlp, Diazin, Ethn 
(Cat, C)

Coral surface (Teluk 
Awur, N. Java Sea, 
Indonesia

Sabdono and 
Radjasa (2008)

Paracoccus sp. strain TRP 
(EF070124)#

Chlp/TCP (Cat, C) Acti. sludge (pesti. 
manuf., Shandong, 
China)

Xu et al. 
(2008)

Pseudomonas aeruginosa 
(NCIM 2074)

Chlp (Cat, C) From NCIM, Pune, 
India

Fulekar and 
Geetha (2008)

Providencia stuartii (MTCC 
8099)

Chlp (Cat, C) Agri. soil (Chittoor, 
AP, India

Rani et al. 
(2008)

Pseudomonas sp. DSP-1 
(DQ482656), DSP-3 
(DQ482655), and DSP-5 
(DQ115539), Sphingomonas 
sp. DSP-2 (AY994060), 
Stenotrophomonas sp. DSP-4 
(DQ482654), Bacillus sp. 
DSP-6 (DQ237947), 
Brevundimonas sp. DSP-7 
(DQ676936)#

Chlp (Cat, C) Water sample of chlp 
indust. Pt. (Nan 
Tong, Jiangsu and 
soil agri. field 
Nanjing, China)

Li et al. 
(2008a, b)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Bacillus pumilus C2A1 Chlp (Cat, C) Soil sample from 
cotton fields at 
NIBGE, Jhang Road, 
Faisalabad, Pakistan

Anwar et al. 
(2009)

Pseudomonas aeruginosa Chlp and TCP 
(Cat, C)

Pesti.-contam. soils 
(Punjab, India)

Lakshmi et al. 
(2009)

Pseudomonas sp., 
Burkholderia, Arthrobacter, 
Pseudomonas, Variovorax, 
Ensifer

Par, Fen, 4-NP, 
MPar (Cat, C)

Rice field soils Min-Kyeong 
et al. (2009)

P. fluorescens, Brucella 
melitensis, Bacillus subtilis, 
Bacillus cereus, Klebsiella sp., 
Serratia sp., P. aeruginosa 
(consortium)

Chlp (Cat, C) Pesti.-contam. soils 
of Punjab

Lakshmi et al. 
(2009)

Burkholderia sp. strain KR100 
(HM101281)#

Chlp-Me, TCP 
(Cat, C)

Korean rice paddy 
soil

Kim and Ahn 
(2009)

Bacillus sp. and Pseudomonas 
sp.

Chlp, MPar, 
phorate, 
dichlorvos

Soil sample Madhuri and 
Rangaswamy 
(2009)

Pseudomonas aeruginosa MPar, Mono MTCC, Chandigarh, 
India

Balamurugan 
et al. (2010)

Stenotrophomonas sp. SMSP-1 
(EU312979)#

Par, MPar, Fen, 
Phoxim
–

Sludge of a WW of 
pesticide manuf.

Shen et al. 
(2010a, b)

Bacillus licheniformis ZHU-1 
(KC197213)#

Chlp (Cat, C) Soil sample from 
Wuqi Farm in 
Shanghai, China

Zhu et al. 
(2010)

Sinorhizobium sp., 
Pseudoxanthomonas sp., 
Streptomyces iakyrus, 
Microbacterium takaoensis, 
Isoptericola dokdonensis 
(GU902282 to GU902303)#

Par (Cat, C) Soil sample Fodale et al. 
(2010)

Spirulina platensis 
(cyanobacteria)

Chlp Obtained from Indian 
Agricultural 
Research Institute, 
Delhi, India

Thengodkar 
and Sivakami 
(2010)

Pseudomonas sp. (aeruginosa/
putida)

Paraoxon (Cat) Soil samples 
Houston, Texas, 
Alvin Texas, League 
City, Texas Sealy, 
Texas Katy, Texas

Iyer et al. 
(2011)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

4 species of Pseudomonas sp., 
2 species of Agrobacterium sp. 
and Bacillus sp. 
(GQ149502-GQ149508)#

Chlp (Cat, C) Soil sample from 
agri. farm of Banaras 
Hindu University, 
Varanasi, India

Maya et al. 
(2011)

Synechocystis sp. strain 
PUPCCC 64 (GQ907237)#

Chlp Rice field of the 
village Dera Bassi of 
Patiala district of 
Punjab state, India

Singh et al. 
(2011)

Pseudomonas sp. strains 
RCC-2, Staphylococcus sp. 
GCC-1, Flavobacterium sp. 
GCC-3, and Streptococcus sp. 
JCC-3

Chlp Soil samples from 
cultivated fields of 
Rajkot, Gujarat, India

Kumar (2011a, 
b)

Acinetobacter sp., 
Pseudomonas putida, Bacillus 
sp., Pseudomonas aeruginosa, 
Citrobacter freundii, 
Stenotrophomonas sp., 
Flavobacterium sp., Proteus 
vulgaris, Pseudomonas sp., 
Acinetobacter sp., Klebsiella 
sp., Proteus sp., and 
Pseudomonas sp. (consortium)

Chlp, MPar 
(Co-Met), 4-NP

Contam. garbage 
dump of Moravia, 
Medellin

Pino et al. 
(2011); Pino 
and Peñuela 
(2011)

Pseudomonas stutzeri, 
Pseudomonas 
Pseudoalcaligenes, 
Pseudomonas maltophilia, 
Pseudomonas vesicularis

Chlp (Cat, C) Pest.-contaminated 
soil in Egypt

Awad et al. 
(2011)

Agrobacterium sp. strain Yw12 
(DQ468100)#

MPar (Cat, C, and 
P)

OP-contaminated 
sludge Huayang 
pesti. manuf., 
Shandong, China

Wang et al. 
(2012)

Enterobacter sp. strain 
Cons002

Par, MPar, phorate 
(Co-met)

Agri. soil Concepcio’n 
et al. (2012)

Bacillus pumilus W1 MPar OP-contaminated soil 
of Khairpur, 
N. Sindh, Pakistan

Ali et al. 
(2012)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Klebsiella sp., (NII 1118), 
Pseudomonas
putida (NII 1117), 
Pseudomonas stutzeri (NII 
1119), Pseudomonas 
aeruginosa (NII 1120) 
(consortium) (HM135446, 
HM135447, HM135448, 
HM135449)#

Chlp (Cat) Chlp-contam. soil 
sample paddy field, 
Kancheepuram, 
Tamil Nadu, India

Sasikala et al. 
(2012)

Pseudomonas putida Chlp (Co-Met) Soil samples 
collected from 
different sites in and 
around Bangalore, 
India, having a 
history of repeated 
application of chlp

Vijayalakshmi 
and Usha 
(2012)

5 species of Pseudomonas sp. 
(individually)

Chlp (Cat, C, and 
P)

Efflu. storage pools 
of facto. producing 
pesti. and from soil 
moisture around 
them

Latifi et al. 
(2012)

Pseudomonas fluorescens, 
Bacillus subtilis, Klebsiella sp.

Chlp, Mono 
(Co-Met)

Pesti.-contam. soil of 
paddy field, 
Annamalai Nagar, 
Tamil Nadu, India

KaviKarunya 
and Reetha 
(2012)

Bacillus stearothermophilus, B. 
circulans, B. macerans

Chlp (Co-Met) Soil from cabbage 
cultivated private 
agri. farm, 
Bangalore, India

Savitha and 
Raman (2012)

Bacillus cereus Chlp,TCP (Cat N) Soil from Jiangsu 
Jinghong Chemical 
Co., Ltd, China

Liu et al. 
(2012)

Four species of Actinobacteria 
(Streptomyces sp.) 
(JQ289350-JQ289353)#

Chlp (Co-Met) Chlp-contam. agri. 
soil from blueberry 
field, Gorbea City in 
southern Chile

Briceño et al. 
(2012)

Stenotrophomonas maltophilia 
strain MHF ENV 20 and MHF 
ENV (HM625746, 
HQ661376)#

Chlp/TCP Soil from banks of 
Surya River, Palghar 
(100 km away from 
Mumbai)

Dubey and 
Fulekar (2012)

Pseudomonas putida MAS-1 Chlp (Co-Met) Indigenous agri. soil 
of Karachi, Pakistan

Ajaz et al. 
(2012)

Pseudomonas sp. WW5 Chlp (Co-Met) – Farhan et al. 
(2012)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Pseudomonas diminuta 
(EMP11c), P. putida 
(EMP12a), P. aeruginosa 
(EMP12b)

OP (Cat, C) Agri. soil from 
Gwalior, Madhya 
Pradesh, India

Sharma et al. 
(2013)

Pseudomonas putida POXN01 MPar Soil sample collected 
from rice field of 
Harlingen (Cameron 
Country, Texas)

Iyer et al. 
(2013)

Sphingobacterium sp. JAS3 
(JQ514560)#

Chlp (Cat, C) Soil collected from a 
paddy field in Vellore 
district, Tamil Nadu 
state, India

Abraham and 
Silambarasan 
(2013)

Naxibacter sp. strain CY6 
(JX987079)#

Chlp, Par, MPar 
(Cat, C, P)

Soil samples from 
pesti.-contam. soil of 
a greenhouse

Kim et al. 
(2013)

Cupriavidus sp. DT-1 
(JQ750642)#

Chlp,TCP (Cat, C) Sludge collected 
from a chlp manuf. 
site in Changzhou, 
Jiangsu Province, 
China

Lu et al. (2013)

Kocuria sp. Chlp Agri. soil of West 
Godavari district of 
AP, India

Neti and 
Zakkula (2013)

Acinetobacter radioresistens, 
Pseudomonas 
frederiksbergensis, Bacillus 
pumilus, Serratia liquefaciens, 
Serratia marcescens, 
Burkholderia gladioli

Chlp, MPar, 
Diazin, Mala, 
Dime

Agri. soil of Beed 
district, Maharashtra, 
India

Hussaini et al. 
(2013)

Nocardia mediterranei Chlp, MPar 
(Co-Met)

– Sukirtha and 
Usharani 
(2013)

Pseudomonas aeruginosa,
Bacillus megaterium,
Staphylococcus aureus

MPar Rhizos. soil 
MP-treated agri. res. 
farm, guava orchad. 
SHIATS and comm. 
farm, Jhunsi, 
Allahabad

Peter et al. 
(2014)

Bacillus subtilis strain C5 
(JN942155)#

MPar Marine sludge (China 
Bohai Sea)

Hao et al. 
(2014)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Pseudomonas aeruginosa, 
Serratia marcescens, and 
Klebsiella oxytoca

Chlp Rice fields in Anaku, 
Omor, and Igbakwu 
towns in Ayamelum 
Local Govt. Area of 
Anambra State, 
Nigeria

Ifediegwu et al. 
(2015)

Bacillus cereus strain LR5 
(JX966388)#

Chlp Soil (treated with 
chlp) was collected 
from Zhejiang 
Academy of Agri. 
Sciences, Hangzhou, 
China

Chen et al. 
(2014)

Pseudomonas sp. strain YF-5 
(KF584917)#

MPar, chlp (Cat, 
C)

Sludge (China) Liu et al. 
(2014)

Pseudomonas sp. BF1–3 
(KJ849233)#

Chlp Balloon flower root Barman et al. 
(2014)

Paenibacillus (Bacillus) 
polymyxa and Azospirillum 
lipoferum

Chlp, chlp-Me, 
Mala

– Romeh and 
Hendawi 
(2014)

Stenotrophomonas sp. G1 
(JN688160)#

Par, chlp, MPar, 
Diazin

Sludge, drain outlet 
(chlorpyrifos 
manufac. Plant, 
China)

Deng et al. 
(2015)

Achromobacter sp. C1 MPar (Cat, C) Agri. soil, Jabalpur, 
India

Mishra (2015)

Mesorhizobium sp. HN3 
(JN119831)#

Chlp, TCP (Cat, 
C)

Chlp-contam. agri. 
soil samples

Jabeen et al. 
(2015)

Cupriavidus taiwanensis 
(JN688161)#

Chlp Sludge from outlet of 
a chlp manuf. in 
Jiangsu Province, 
China

Wang et al. 
(2015)

Bacillus aerius Chlp Soil samples from 
locations of the 
Nandimandalam 
village of YSR 
district Kadapa, AP, 
India

Jayasri et al. 
(2015)

Bacillus thuringiensis strain 
BRC-HZM2 (GQ140344)#

Chlp Samples were 
collected from a facto 
(Fujian Sannong
che. and pest. facto.), 
manuf. OP pesti., 
Sanming, Fujian 
Province, China

Wu et al. 
(2015)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Bacillus aryabhattai SanPs1 MPar (Cat, C) Rhizosphere soil of 
paddy field. 
Burdwan, India

Pailan et al. 
(2015)

Pseudomonas sp. BUR11 MPar (Cat, C) Rhizosphere soil of 
paddy field. 
Burdwan, WB, India

Pailan and 
Saha (2015)

Acinetobacter sp. MemCl4 Chlp (Cat, C) Rhizosphere soil of 
paddy field. Memari, 
WB, India

Pailan et al. 
(2016)

Pseudomonas putida X3 MPar (Cat, C) – Zhang et al. 
(2016)

Pseudomonas sp. R1, R2, and 
R3

Mpar (Cat) Agri. soil, 
Visakhapatnam, AP, 
India

Begum and 
Arundhati 
(2016)

Cupriavidus nantongensis X1 Chlp Isolated from sludge 
collected at drain 
outlet of a 
chlorpyrifos manuf. 
plant

Fang et al. 
(2016)

Staphylococcus warneri 
(CPI2), Pseudomonas
putida (CPI 9), and 
Stenotrophomonas maltophilia 
(CPI 15) (consortium)

Chlp Soil from different 
agric. areas in Kerala, 
India

John et al. 
(2016)

Xanthomonas sp. 4R3-M1, 
Pseudomonas sp. 4H1-M3, and 
Rhizobium sp. 4H1-M1

Chlp 
(catabolically as a 
sole source of C 
and N)

Sugarcane farms in 
the Mackay, 
Burdekin, and Tully 
areas in Queensland, 
Australia

Rayu et al. 
(2018)

Fungi
Penicillium waksmani Par Flooded sulfate soil Rao and 

Sethunathan 
(1974)

Trichoderma harzianum, 
Penicillium vermiculatum, and 
Mucor sp.

Chlp Forest sample Jones and 
Hastings 
(1981)

Phanerochaete chrysosporium Chlp (Cat, N) US Dept. of agri. 
Forest Products 
Laboratory, Madison, 
WI

Bumpus et al. 
(1993)

Aspergillus terreus, 
Trichoderma harzianum

Chlp A clay soil taken 
from the Botanical 
Garden of Assiut 
University, Assiut, 
Egypt

Omar (1998)

(continued)
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Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Coriolus versicolor, 
Hypholoma fasciculare

Chlp – Bending et al. 
(2002)

Aspergillus sp., Trichoderma 
sp.

Chlp Soil pre-treated with 
chlp, China

Liu et al. 
(2003)

Fusarium sp. LK (WZ-I) Chlp – Wang et al. 
(2005); Xie 
et al. (2010)

Verticillium sp. (DQ153250)## Chlp (Cat, C) Samples from farm 
soil, tree rhizos. soil, 
sedi. of a sewer, 
sludge, and piggery 
soil from Huajiachi 
Campus, Zhejiang 
University, 
Hangzhou, China

Yu et al. (2006)

Trichosporon sp. (EF091819)## Chlp,TCP Acti. sludge from 
Tiancheng
pesti. Co., Shandong, 
China

Xu et al. 
(2007)

Verticillium sp. DSP Chlp Soil samples 
collected from farm 
field at Huajiachi 
Campus, Zhejiang 
University, 
Hangzhou, China

Fang et al. 
(2008)

Trichoderma viride MPar MTCC, Chandigarh, 
India

Balamurugan 
et al. (2010)

Aspergillus niger AN400 MPar (Co-Met, C) – Marinho et al. 
(2011)

Acremonium sp. strain GFRC-1 Chlp (Cat, C) From agri. soils Kulshrestha 
and Kumari 
(2011)

Cladosporium cladosporioides 
Hu-01

Chlp (Cat, C) – Chen et al. 
(2012)

Aspergillus terreus JAS1 
(JQ361749)##

Chlp (Co-Met, C) Paddy field 
chlp-contam. soil 
sample from Vellore, 
Tamil Nadu, India

Silambarasan 
and Abraham 
(2013)

Aspergillus sp. F1 (JQ898687), 
Penicillium sp. F2 and F3 
(JQ898688, JQ898689), 
Eurotium sp. F4 (JQ898690), 
and Emericella sp. F5 
(JQ898691)##

Chlp, TCP Soil of Agri. farm of 
Banaras Hindu 
University, Varanasi 
(25o 18′ N, 83o 3′ E)

Maya et al. 
(2012)

(continued)
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addressed in literature. This includes the following: the first includes the catabolic 
utilization/biodegradation studies, where, organophosphate compound has been 
used as the sole source of C, and the second includes co-metabolic utilization/bio-
degradation studies, where another C compound (along with organophosphate com-
pound) has been used as sources of C for growth (Singh 2009). The metabolic 
conversion of organophosphate compounds has been proposed to occur through 
pathways, each having multiple steps. In this chapter, parathion has been considered 
as a representative compound.

Till date, three different pathways for metabolic conversion of parathion have 
been reported as shown in Fig. 14.3 (Singh and Walker 2006). The first pathway 
involves an initial oxidative step to generate paraoxon which is hydrolyzed to gener-
ate 4-NP and diethyl thiophosphoric acid (DETP). For the second pathway, the first 
step is hydrolysis, leading to the formation of 4-NP and DETP.  While the third 
pathway is reductive one facilitated under anaerobic condition [although some  
oxygen-insensitive reductase from Bacillus (Yang et al. 2007) and Anabaena sp. 
PCC7120 (Barton et al. 2004) has been reported]. The reactions involve reduction 

Table 14.2 (continued)

Name of strain

Organophosphate 
compound (Cat/
Co-Met utilization 
as C/P source) Isolation (from) site References

Trichoderma harzianum, 
Rhizopus nodosus

Chlp, Ethn (Cat, 
C)

Chlp- and Ethn-
contam. soil

Harish et al. 
(2013)

Fusarium sp. CR10 
(JX915255); Fusarium 
oxysporum CR9 (JX915246); 
Fusarium sp. GR4 and CR13 
(JX915247); Gibberella 
moniliformis CR11, GR1, GR3, 
and CR4 (JX915252, 
JX915251, and JX915250); 
Dipodascaceae sp. GR2 and 
CR12 (JX915245); 
Chaetomium globosum CR1 
and CR14 (JX915254)##

Chlp Soil (treated with 
chlp) was collected 
from Zhejiang 
Academy of Agri. 
Sciences, Hangzhou, 
China

Chen et al. 
(2014)

Isaria farinosa Chlp Chlp-contam. soil 
samples from Idukki, 
Kerala, India

Karolin et al. 
(2015)

Penicillium citrinum, Fusarium 
proliferatum

MPar Isolated from the 
ascidian Didemnum 
ligulum

Rodrigues 
et al. (2016)

Abbreviation: Acti activated, agri agriculture, Che chemical, Cat catabolic, C carbon, chlp chlor-
pyrifos, Couma coumaphos, Co-met co-metabolic, contam contaminated, Diazin diazinon, Efflu 
effluent, Ethn ethion, facto factory, Fen fenitrothion, Mpar methyl parathion, Par parathion, pesti 
pesticides, Mala malathion, manuf manufacturer, Mono monocrotophos, N nitrogen, P phospho-
rus, poll polluted, res research, rhizos rhizosphere, sedi sediment, WW wastewater, # 16S rRNA 
gene sequence, ## 18S rRNA gene sequence
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of nitro group to amine (leading to formation of 4-aminoparathion), which up on 
further hydrolysis releases 4-aminophenol (4-AP) and DETP. In most of the litera-
tures, the metabolisms of the main functional leaving groups are discussed. The fate 
of DETP, being common to all, is not followed.

It is clear from available literature that the second pathway (the hydrolysis one) 
is the most widely reported one. The 4-NP that is generated is reported to be utilized 
via two pathways: one that operates through formation of 4-NC and BT is more 
prevalent among Gram-positive bacteria [Bacillus sphaericus JS905 (Kadiyala and 
Spain 1998) and Rhodococcus opacus SAO101 (Kitagawa et al. 2004)], while the 
second that operates through formation of PBQ and HQ is more common among the 
Gram negatives [Moraxella sp. (Spain and Gibson 1991) and Pseudomonas sp. 

Fig. 14.3 Pathway of parathion biodegradation (Singh and Walker 2006)
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strain WBC-3 (Zhang et al. 2009)]. However, in Pseudomonas sp. 1–7, both the 
pathways have been reported to be operative (Zhang et al. 2012b).

Very few reports on the degradation of parathion to paraoxon before hydrolysis 
of phosphotriester bond (i.e., the first pathway) were reported, except that from a 
mixed bacterial culture (Mastumura and Boush 1968; Tomlin 2000).

The third pathway has mainly been reported from a mixed bacterial consortium 
(by Munnecke and Hsieh 1976) under anaerobic environment. This pathway was 
also reported from aerobically growing Bacillus sp. (Sharmila et al. 1989 and Yang 
et al. 2007) and Anabaena sp. PCC7120 (Barton et al. 2004). The presence of pos-
sible involvement of oxygen-insensitive reductases is suggested for conversion in 
the aerobic bacteria (Barton et  al. 2004). Very recently, Pailan and Saha (2015) 
reported evidence of two possible pathways (first, through 4-NP formation and, 
second, through 4-aminoparathion and 4-aminophenol) operative in Pseudomonas 
sp. strain BUR11. Through analytical techniques and growth-dependent experimen-
tal evidences, they reported on this aspect.

14.9  Overall Process of Organophosphate Metabolism

Several enzymes are reported to participate in the process of metabolism of organo-
phosphate compounds. These can be broadly categorized into two major groups, 
namely, phase I and phase II enzymes. Phase I enzymes participate in reactions that 
makes the molecule much more polar, water-soluble, and amenable for enzymes of 
phase II to act. It may also be pointed that microbes can solubilize organophosphate 
by organic acid secretion and also by biosurfactants (Monteiro et al. 2007). In gen-
eral, increase in solubility reduces half-life of the compounds rapidly. The major 
processes involved in metabolism are biodegradation, conjugation, and rearrange-
ments. These include many chemical reaction types such as oxidation, reduction, 
dealkylation, ring cleavage, oxygenase, and peroxidize mechanisms.

Interaction of toxic organophosphate compound with microorganisms can pro-
ceed through three processes:

 1. Transformation reaction leading to detoxification of parent organophosphate 
compound

 2. Direct degradation and mineralization through catabolic pathway
 3. Maintenance of cellular homeostasis

These three processes can occur together or in isolation depending up on what 
kind of genetic information the organism is equipped with.

Most of the literature has worked up on the second issue (Singh and Walker 2006; 
Pailan and Saha 2015). While, Longkumar et al. (2014) showed existence glutathi-
one S-transferase mediated detoxification system in Acinetobacter baumannii strain 
DS002. The enzyme was reported to be involved in a dealkylation reaction that even-
tually reduced the toxicity of parent methyl parathion. There is a huge lacuna as far 

S. Pailan et al.



383

as the third issue is concerned. This issue is particularly true for those strain that do 
not have the capacity to degrade organophosphates but can tolerate them.

14.10  Quantitative Study of Microbial Metabolism

Most of the studies in literature have addressed the quantitative aspect of metabo-
lism study by any one of the following two ways (Peter et al. 2014; Pailan and Saha 
2015; Fang et al. 2016):

 1. By monitoring gradual decrease in the amount of parent organophosphate com-
pound in the growth medium (due to microbial metabolism) with respect to time

 2. By monitoring gradual increase in the amount of hydrolytic intermediates fol-
lowed by their subsequent decrease, indicating their utilization and metabolic 
conversion

As case study, for example, for metabolic study of parathion, the decrease in the 
residual amount of parathion in microbial culture inoculated test growth flask can be 
compared with blank (i.e., where no microbial inoculants are added) with respect to 
time as shown in Fig. 14.4a.

Another way of monitoring the metabolism is by quantifying the amounts of 
major hydrolytic intermediates produced as a result of the degradation of parent 
compound. As evident from Fig. 14.4b, by studying the fate of four major hydroly-
sis intermediates of parent organophosphate compound, parathion, one can con-
clude that the bacterial culture in the question can metabolically utilize parent 
organophosphate compound with concomitant formation of the first intermediate 
(4-nitrophenol, which accumulates in culture medium initially) followed by its 
gradual utilization (as its amount decreases) and then by formation of other interme-
diates (p-benzoquinone, hydroquinone, and benzenetriol). The temporal trend of the 
graph indicated the utilization of all the intermediates (as they decrease gradually).

Quantification of organophosphate compounds and its other hydrolytic interme-
diates can be carried out by HPLC technique. As evident from Fig. 14.5, compounds 
can be identified by comparing retention time of the test samples to that for authen-
tic standards (from a well-known source like Sigma Aldrich). For quantification, 
specific peak area as well as height of the analytes from the test sample (extracted 
at different time intervals) is compared to that of the standard (for which standard 
curves are generated).

14.11  Identifying the Intermediate Compounds Produced 
Due to Metabolic Breakdown of Organophosphate

The reliable techniques to detect and identify different hydrolytic intermedites of 
organophosphate compound (e.g. parathion) are TLC, GC screening, GC-MS and 
LC-MS/MS followed by NIST (National Institute of Standard Technology) library 
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Fig. 14.4 Parathion degradation profile of BUR11. (a) Parathion degradation profile by the strain 
BUR11 and (b) fate of intermediates during parathion degradation by the strain BUR11 (Pailan 
and Saha 2015)

S. Pailan et al.
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search. For the preliminary identification of hydrolytic intermediates during organo-
phosphate (e.g., parathion) degradation, TLC is performed. Compounds were identi-
fied (Fig. 14.6) by comparing Rf value of the test samples to that for authentic standards 
(from Sigma Aldrich).

Through GC screening and library match, also the preliminary idea of hydrolytic 
intermediates can be obtained. However, for confirmed results, separation by 
GC-MS and/or LC-MS/MS techniques followed by the identification of intermedi-
ate compounds by comparing their mass spectrum profiles to that of the NIST 
library are universally accepted (Fig. 14.7)

Fig. 14.5 Parathion degradation by a bacterial strain. The elution profile of each sample is shown 
as individual chromatograms. 0 h control sample (a), 0 h test sample (b), 24 h test sample (c), 72 
h test sample (d), 120 h test sample (e), and elution profiles of standards (f, g, h). X-, Y-, and 
Z-labeled peak denotes parathion, 4-NP, and 4-NC, respectively
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14.12  Factors That Affect Organophosphate Degradation

Several factors have been reported to affect the process of organophosphate degra-
dation (both in soil and in laboratory batch cultures). These are as follows:

14.12.1  Substrate Concentration

Biodegradation of a particular pollutant depends upon the concentration of pollutant 
occurring in the contaminated site. Usually, a concentration which is too high may 
be toxic for the microbes, while lower concentration may not be sufficient to induce 
the microbial enzyme system involved in the degradation process (Block et al. 1993; 
Morra 1996). It has been reported that with the increasing concentration of organo-
phosphate pesticides, there is a decrease in the microbial population (Shan et al. 
2006). A dosage of 4 l/hac of chlorpyrifos was recorded to be inhibitory to the total 
soil microbial population (Pandey and Singh 2004). The average half-life of chlor-
pyrifos was reported to be increased with the increasing chlorpyrifos concentration 
of the soil (Hua et al. 2009).

Fig. 14.6 Identification of metabolites of parathion degradation by TLC. Authentic standards 1, 
parathion; 2, 4-NP; 3, PBQ; 4, HQ; 5, 4-NC; 6, BT; 7, 4-AP. And 8 and 9 correspond to 72 and 120 
h extract of parathion-grown culture, indicating the detection of 4-NP, PBQ, HQ, and BT during 
the course of degradation (Pailan and Saha, 2015)
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14.12.2  pH

It is one of the most important factors for the degradation of organophosphate com-
pounds in soil and other habitats. Majority of the organophosphate pesticides are 
subject to base catalyzed hydrolysis at higher alkaline pH, around 8 (Greenhalgh 
et al. 1980). The degradation of chlorpyrifos was reported to be slow in acid soil (pH 
4.7) and high in alkaline soil (pH 7.7–8.4), by Singh et al. 2003. Biodegradation of 
chlorpyrifos by Bacillus laterosporus DSP was reported to be enhanced by increas-
ing the pH from 7 to 9 (Wang et al. 2006; Zhang et al. 2012b). A study of the effect 
of pH on biodegradation of malathion and dimethoate by Pseudomonas frederiks-
bergensis indicated decrease in half-life (almost by twofold) with increasing pH 
from neutral to pH 8 (Al-Qurainy and Abdel-Megeed 2009). For fungal culture, 
Fusarium sp. LK, biodegradation of chlorpyrifos was reported in the range of pH 
6.5–9 (Wang et al. 2005).

14.12.3  Inoculum Size

The population of microorganisms involved in degradation is also reported to be an 
important factor. Inoculum size ranging from 106 to 108 cells/g of soil was suggested 
to be sufficient for bioremediation of pesticides from their contaminated sites 
(Comeau et al. 1993). Biodegradation of fenamiphos and chlorpyrifos was reported 
to be influenced by inoculum size, while no degradation of chlorpyrifos by 
Enterobacter sp. was recorded below an inoculum concentration of 103 cells/g of 

Fig. 14.7 GC-MS spectra obtained from the bacterial culture extract of parathion-grown broth 
culture. (a) 4-NP and (b) 4-NC were found as major compounds as hydrolysis products). The 
compounds were identified and confirmed from the NIST library
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soil. When soil was supplied with less than 105 cells/g of soil, no biodegradation of 
fenamiphos was recorded (Singh and Walker 2006).

14.12.4  Bioavailability/Solubility

For proper biodegradation, it is very essential that the pollutant be available/made 
available to the degrading microorganism(s). In general, many organophosphate 
compounds have less water solubility, and this factor has been reported to be respon-
sible for its decreased degradation (Alexander 1999). Many hydrophobic organo-
phosphate pesticides become entrapped in the nanopores of the organic matter of 
the soil and thus are not available for biodegradation at all. Addition of suitable 
material that solubilizes the pollutant or selection of biosurfactant-producing micro-
organisms has been reported to make these hydrophobic molecules available for 
biodegradation. The biosurfactants desorb the hydrophobic chemicals so as to make 
them available for degradation (Aronstein et al. 1991; Brown and Jaffe 2006; Zhu 
and Zhou 2008).

Biosurfactants are anionic or neutral (some are cationic) rhamnolipids, glycolip-
ids, lipopeptides, phospholipids, fatty acids, particulate compounds, etc. which are 
of microbial origin and are used for solubilization of hydrophobic pollutants, with 
the aim of making it bioavailable and more suitable for biodegradation (Monteiro 
et al. 2007).

14.13  Chemotaxis and Metabolism of Organophosphate 
Insecticides

The movement of bacteria either toward or away from a chemical gradient is called 
bacterial chemotaxis. Chemotaxis is a natural phenomenon and is reported from 
diverse groups of bacteria. A chemical compound that affects the bacterium’s move-
ment is called the chemoeffector (stimulant). Chemicals that attract bacteria are 
called chemoattractants, and chemicals that repel them are called chemorepellents. 
Chemotaxis can be classified into two types, namely, metabolism dependent and 
metabolism independent (Pandey and Jain 2002; Baker et al. 2005). Till date several 
assays have been developed to check the chemotactic activity of a bacterium. These 
are swarm plate assay, drop plate assay, agarose-plug assay, etc. (Bhushan et  al. 
2000; Samanta et al. 2000; Pandey et al. 2002; Bhushan et al. 2004). As far as che-
motaxis to pesticides/insecticides are concerned, survey of literature revealed 
reports pertaining only to two bacteria, namely, Pseudomonas sp. strain ADP (Liu 
and Parales 2009) and Ralstonia eutropha JMP134 (Hawkins and Harwood 2002). 
Both of them are reported to exhibit chemotaxis-mediated biodegradation of atra-
zine and 2,4-dichlorophenoxyacetate herbicides, respectively. There is hardly any 
literature on chemotaxis of bacteria toward organophosphate compounds except by 
Pseudomonas sp. strain WBC-3 (Zhang et al. 2008) and by Pseudomonas putida 
DLL-1. However, the latter publication is only available in Chinese language, and 
its English version is currently not available (Wen et al. 2007).
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Recently, Pseudomonas sp. strain BUR11 was reported to exhibit positive che-
motaxis toward two OP compounds, namely, parathion and chlorpyrifos (as well as 
their degraded intermediate products 4-NP, 4-AP, and TCP). Through a series of 
plate-based qualitative assays (drop plate & swarm plate) and quantitative assay, the 
chemotactic response was confirmed for the strain BUR11 (Figs. 14.8 and 14.9). 
However, the authors could not conclude whether this chemotactic response was 
metabolism dependent or independent. The study concluded on the importance of 
genetic analyses for better understanding of this chemotactic process; nevertheless, 
this was one of the unique confirmed reports of chemotactic response of bacterium 
toward organophosphate compounds in recent times (Pailan and Saha 2015).

14.14  Discovery of Organophosphate-Degrading Enzyme

Organophosphate-degrading enzyme was first described by Mazur in 1946 when he 
discovered the hydrolysis of diisopropyl fluorophosphate (DFP) by enzymes found 
in rabbit and human tissue extracts (Mazur 1946). For the first time, DFPase and 
sarinase enzymes were found to degrade organophosphate compounds. Later, the 
DFPase activities of several bacterial isolates for organophosphate degradation 
were described by Attaway et al. (1987). In 1992, the Nomenclature Committee of 
the International Union of Biochemistry and Molecular Biology listed them in the 
category of phosphoric triester hydrolases. These enzymes were further categorized 
into two subgroups based on their substrate specificities. The first subgroup is the 
organophosphorus hydrolases (also referred to as paraoxonase and phosphotriester-
ase; PTE) that prefer the substrates paraoxon and P-esters, which have P–O and P–S 
bond. The second subgroup is diisopropyl fluorophosphates (also including 

Fig. 14.8 (a) Drop plate assay and (b) swarm plate assay. Qualitative chemotactic response of 
BUR11 toward parathion, chlorpyrifos, 4-NP, 4-AP, and TCP (Pailan and Saha 2015)
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organophosphorus acid anhydrolase, OPAA), which are most active against organo-
phosphate compounds with P–F or P–CN bonds (Cheng and DeFrank 2000).

14.14.1  Mechanism of Enzymatic Degradation of Insecticides

In case of insecticide degradation, three main enzymes are involved under two 
metabolism systems. The first metabolism system includes enzymes like hydro-
lases, esterases, and the mixed function oxidases (MFO), and the second system 
includes the glutathione S-transferases (GST) system (Li et  al. 2007a). Several 
enzymes that catalyze metabolic reactions including hydrolysis, oxidation, addition 
of an oxygen to a double bond, oxidation of an amino group (NH2) to a nitro group, 
addition of a hydroxyl group to a benzene ring, dehalogenation, reduction of a nitro 
group (NO2) to an amino group, replacement of a sulfur with an oxygen, metabo-
lism of side chains, and ring cleavage are required to degrade toxic insecticide into 
nontoxic intermediates (Ramakrishnan et al. 2011).

Fig. 14.9 Quantitative capillary assay. Quantitation of the chemotactic response and determina-
tion of the optimal response concentration for BUR11 chemotaxis toward different test compounds 
using capillary assays (Pailan and Saha 2015)
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In most of the microorganisms, insecticides can be metabolized by a three-phase 
process. In phase I metabolism, the initial properties of parent compounds are trans-
formed through oxidation, reduction, and hydrolysis to produce a more water-soluble 
and usually a less toxic product than parent. The second phase (phase II) involves 
conjugation of a pesticide or insecticide metabolite to a sugar or amino acid, which 
increases the water solubility and reduces toxicity, compared to the parent pesticide/
insoluble metabolite. The third phase (phase III) involves conversion of phase II 
metabolites into secondary conjugates, which are also nontoxic. To carry out these 
processes, microorganisms like fungi and bacteria produce several intracellular or 
extra cellular enzymes including hydrolytic enzymes, peroxidases, oxygenases, etc. to 
accomplish the complete mineralization of toxic insecticides (Van Eerd et al. 2003).

14.14.2  Enzymes and Gene(s) Involved in Organophosphate 
Compounds Degradation

The organophosphate compounds are tri-esters of phosphates and their derivatives. 
Therefore, the most common enzyme that might be involved in their degradation is 
the esterase. Esterases are also categorized as hydrolases [enzyme that hydrolyzes a 
broad range of aliphatic, aromatic esters and organophosphates, Park and Kamble 
(2001)]. Various types of hydrolases involved in the degradation of organophos-
phate insecticides are as follows:

14.14.2.1  Phosphotriesterase (PTE)
Till date, the most well-addressed and discussed organophosphate-degrading 
enzyme is phosphotriesterases (PTE; Theriot and Grunden 2011). It is a metalloen-
zyme that hydrolyzes a variety of toxic organophosphate compounds (mainly those 
that act as nerve agents). PTE was first isolated from Pseudomonas diminuta MG 
(Serdar et al. 1982) and Flavobacterium sp. (Sethunathan and Yoshida 1973). This 
enzyme shows a highly catalytic activity toward various organophosphate insecti-
cides. The PTE was further subcategorized into three groups on the basis of insecti-
cide it acted upon (i.e., based on substrate). These are:

 A. Organophosphorus hydrolase (OPH)
 B. Methyl parathion hydrolase (MPH)
 C. Organophosphorus acid anhydrolase (OPAA)

These three are encoded by opd, mpd, and opaA genes, respectively.

 A. Organophosphorus Hydrolase (OPH)
Many of the enzymes known to hydrolyze organophosphorus esters are referred 
as organophosphorus hydrolase [OPH; EC 3.1.8.1]. OPH is the most widely 
studied bacterial enzyme in OP degradation, exhibiting high catalytic activity 
and wide range of organophosphate substrate specificity (oxon and thion) (Yang 
et al. 2006; Ortiz-Hernandez and Sanchez-Salinas 2010). It is a zinc-containing 
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homodimeric membrane protein reported from Flavobacterium sp. strain ATCC 
27551 and Pseudomonas diminuta MG (Sethunathan and Yoshida 1973; Serdar 
et al. 1982). It can hydrolyze organophosphate compounds at a rate approaching 
the diffusion limits (Horne et  al. 2002a). The gene (opd) coding for OPH 
enzymes has been reported to be plasmid borne. The first opd gene (within a 
66kb plasmid, pCMS1) was reported from Pseudomonas diminuta (Sethunathan 
and Yoshida 1973; Serdar et  al. 1982; Mulbry et al. 1986; Singh and Walker 
2006). Similar opd gene has been identified from various Pseudomonas strain 
by using Southern hybridization analysis (Chaudhry et al. 1988). Flavobacterium 
sp. strain ATCC 27551 and Pseudomonas diminuta MG contain identical opd 
genes as well as the OPHs purified from these have identical or very similar in 
amino acid sequences (Serdar et al. 1982; Mulbry and Karns 1989; Siddavattam 
et al. 2003), but it is not clear how this has occurred as the genes are on very 
different plasmids (Harper et al. 1988). Omburo et al. 1992 isolated an opd gene 
encoding a 40 kDa homodimer parathion hydrolase, containing divalent zinc 
ions as a cofactor. Horne et al. (2002a) suggested that PTE is a 384-amino-acid 
protein with a molecular mass of approximately 35 kDa when it is cleaved from 
its signal peptide. The two native Zn2+ ions of this enzyme can be substituted 
with either Co2+, Ni2+, Cd2+, or Mn2+ with/without the restoration of catalytic 
activity. Recent findings have shown that two metal atoms are closely associated 
and the water molecule that attacks the phosphoryl center is bound directly to 
the binuclear metal center (Benning et al. 1995; Vanhooke et al. 1996).

 B. Methyl Parathion Hydrolase (MPH)
Singh (2009) reported that MPH is present in several phylogenetically unrelated 
bacteria and is active against several organophosphate compounds but has a nar-
rower substrate range than OPH. The crystal structure of the MPH (which is a 
member of the β-lactamase superfamily) from Pseudomonas sp. WBC-3 has 
been solved by Dong et al. (2005). MPH is a dimer in which each subunit has a 
mixed-hybrid, binuclear zinc center. MPH is not similar to any other PTEs, even 
though several PTEs can degrade methyl parathion. The MPH is coded by mpd 
gene. Molecular studies and phylogenetic analyses confirmed that mpd genes 
have evolved separately from opd genes. Unlike opd genes, most of the known 
mpd genes have been isolated from one country (China), indicating that the 
environment has an influence on mpd evolution (Singh 2009). Whole-genome 
sequence analysis also suggests that mpd and β-lactamase gene homologues are 
present in other bacteria, such as Methylibium petroleiphilum (locus tag NC 
008825), Azoarcus sp. (locus tag AM 406670), Leptothrix cholodnii (locus tag 
CP 00001013), Chromobacterium violaceum (locus tag AE O16825), and 
Sinorhizobium meliloti 1021 (locus tag AE 006469). Interestingly, an AHL lac-
tonase (N-acyl homoserine lactone) from Bacillus thuringiensis also belongs to 
the β-lactamase superfamily. AHL lactonase has some promiscuous PTE activi-
ties, so it is possible that OPH and MPH have evolved from different lactonase 
enzymes (Afriat et al. 2006).
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 C. Organophosphorus Acid Anhydrolase (OPAA)
Another organophosphate-degrading enzyme that has received considerable 
attention is OPAA [encoded by opaA (organophosphorus acid anhydrolase) 
gene], first isolated from halophilic species Alteromonas undina and Alteromonas 
haloplanktis (Cheng et al. 1993, 1999). This enzyme belongs to the dipeptidase 
family and does not share enzyme or gene-sequence homology either with OPH 
or MPH. This indicates that the organophosphate-degrading function of OPAA 
might have evolved from different progenitors (Singh 2009). OPAAs from the 
species of Alteromonas sp. JD6.5, Alteromonas undina, and Alteromonas halo-
planktis are structurally and functionally similar to each other. They share a 
molecular weight between 50 and 60 kDa, having an optimum pH from 7.5 to 8.5 
and temperature optima ranging from 40 °C to 55 °C, and require Mn2+ for their 
maximum catalytic activity (Cheng et al. 1997). OPAAs are highly active and 
more specific to OP nerve agents than OPHs. The amino acid sequence of OPPA 
of Alteromonas sp. JD 6.5 shares 49% and 31% similarity with dipeptidase or 
prolidase and aminopeptidase of E. coli (Theriot and Grunden 2011).
Since the property of organophosphate degradation is gene mediated, the same 
can be used to develop novel strains for in situ application purpose by genetic 
engineering process. In most of the cases, the genes are defined to be located 
either in plasmids or in chromosomes (Concepcio’n et  al. 2012). In this way, 
many authors reported organophosphate degradation property using recombinant 
bacterial strains (Yang et al. 2005; Xu et al. 2007). Very recently, Farivar et al. 
(2017) reported construction of a recombinant organophosphate-degrading 
Pseudomonas plecoglossicida strains with opd gene from Flavobacterium sp. 
ATCC 27551 using the pUC57 plasmid.
A thorough list of organophosphate-degrading enzymes, genes, and source 
microorganisms from which the enzymes were isolated so far is summarized in 
Table 14.3.

14.14.2.2  Other Enzymes Involved in Insecticide Degradation
Survey of literature suggested some other enzymes having organophosphate-
degrading activities. These are as follows:

14.14.2.2.1 Oxidoreductase
Oxidoreductases are a broad group of enzymes that carry out transfer of electrons 
from one molecule (the reductant or electron donor) to another (the oxidant or elec-
tron acceptor). Many of these enzymes require additional cofactors, to act as either 
electron donors, electron acceptors, or both. These enzymes have applications in 
bioremediation. There are the enzymes that catalyze an oxidation/reduction reaction 
by including the molecular oxygen (O2) as electron acceptor. In these reactions, 
oxygen is reduced into water (H2O) or hydrogen peroxide (H2O2). The oxidases are 
a subclass of the oxidoreductases. These enzymes not only catalyze oxidation 
reduction reaction of toxic compounds but also catalyze the oxidation reaction of 
various pesticides, insecticides, as well as herbicides (Scott et al. 2008).
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Table 14.3 List of organophosphate-degrading enzymes, genes, and their source microorganisms

Organisms
Encoding genes 
(accession no.) Degrading enzyme References

Pseudomonas diminuta opd (M29593) OPH Serdar et al. 
(1982)

Flavobacterium sp. opd (M22863) OPH Harper et al. 
(1988)

Pseudomonas diminuta 
MG,

opd (M20392) Phosphodiesterase McDaniel et al. 
(1988)

Flavobacterium sp. strain 
ATCC 27551

opd (M29593) Parathion hydrolase gene Mulbry and 
Karns (1989)

Flavobacterium sp. 
ATCC27551

opd (AJ421424) 
(M20392)

OPH Mulbry and 
Karns (1989)

Escherichia coli, Bacillus 
cereus

ND Phosphonatase Chen et al. 
(1990)

Nocardia sp. adpB ADPase Mulbry (1992)
Mycobacterium sp. or 
Nocardia sp. strain B-1

opaA 
(AAA25371)

– Mulbry (1992)

Pseudomonas spp. glpA and B C-P lyase Penaloza-
Vazquez et al. 
(1995)

Burkholderia caryophylli pehA PEH Dotson et al. 
(1996)

Alteromonas sp. JD6.5 opaA OPAA Cheng et al. 
(1996)

Alteromonas undina
Alteromonas haloplanktis
ATCC 23821

opaA (U29240)
Prolidase gene 
(U56398)

OPAA-2
OPAA

Cheng et al. 
(1996, 1997)

Nocardioides sp. strain 
C190

trzN s-triazine hydrolase Mulbry et al. 
(2002)

Burkholderia sp. strain 
NF100

opd/mpd Fenitrothion-hydrolyzing 
enzyme

Hayatsu et al. 
(2000)

Plesiomonas sp. M6 mpd (AF338729) MPH Zhongli et al. 
(2001)

Moraxella sp. oph OPH Shimazu et al. 
(2001)

Agrobacterium radiobacter opdA 
(AY043245)

OPDA Horne et al. 
(2002a)

Pseudomonas monteilii hocA HOCA (hydrolysis of 
coroxon)

Horne et al. 
(2002b)

Flavobacterium balustinum opd (AJ426431) Parathion hydrolase Siddavattam 
et al. (2003)

Flavobacterium sp. ATCC 
27551

opd (AJ421424) – Siddavattam 
et al. (2003)

Delftia acidovorans pdeA gene 
(AF548455)

Phosphodiesterase 
(PdeA)

Tehara and 
Keasling (2003)

Escherichia coli pepA AMPP (aminopeptidase 
P)

Jao et al. (2004)

(continued)
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Table 14.3 (continued)

Organisms
Encoding genes 
(accession no.) Degrading enzyme References

Pseudomonas 
pseudoalcaligenes

ophc2 
(AJ605330)

OPHC2 Ningfeng et al. 
(2004)

Pseudomonas sp. WBC-3 mpd (AY251554) MPH Liu et al. (2005)
Brucella melitensis mp-7
(AY331581)

mpd (AY627039) MPH Zhang et al. 
(2005, 2006a, b)

Achromobacter 
xylosoxidans mp-2 
(AY331576)

mpd (AY627034) MPH Zhang et al. 
(2005, 2006a, b)

Pseudaminobacter sp. mp-1 
(AY331575) strain no. 
AF072542

mpd (AY627033) MPH Zhang et al. 
(2005, 2006a, b)

Pseudaminobacter 
salicylatoxidans 
(AY331575), strain no 
AF072542

mpd (AY627033) MPH Zhang et al. 
(2005)

Ochrobactrum tritici mp-3, 
mp-4, mp-5, mp-6 
(AY331577, AY331578, 
AY331579, AY331580), 
strain no. AF508089

mpd (AY627035, 
AY627036, 
AY627037, 
AY627038)

MPH Zhang et al. 
(2005)

Burkholderia sp. FDS-1 
(AY550913)

mpd2/opd 
(DQ173274,
AY646835)

MPH Zhang et al. 
(2006a, b)

Stenotrophomonas sp. strain 
YC-1 (DQ537219)

mpd 
(DQ677027)

MPH Yang et al. 
(2006)

Burkholderia sp. NF100 fedA, fedB Fenitrothion hydrolase 
gene (OPH)

Tago et al. 
(2006)

Flavobacterium sp. MTCC 
2495

mpd (AY766084) OPH Kumar et al. 
(2006)

Pseudomonas putida DLL-1 mpd MPH Liu et al. (2005)
Pseudomonas 
pseudoalcaligenes

ophc2 OPH Chu et al. 
(2006)

Sphingomonas sp. DSP-2 
(AY994060)

mpd 
(DQ356953)

MPH Li et al. (2007a, 
b)

Sphingomonas sp. CDS-1 mpd MPH Jiang et al. 
(2007)

Burkholderia sp. JBA3 ophB 
(EF495210)

OPH Taesung et al. 
(2007)

Arthrobacter sp. L1 mpd (EF055988) MPH Li et al. (2008a, 
b)

Pseudomonas sp. (DSP-1, 
DSP-3), Sphingomonas sp. 
DSP-2, Stenotrophomonas 
sp. DSP-4

mpd MPH Li et al. (2008a, 
b)

Pseudomonas stutzeri strain 
HS-D36

mpd MPH Wang et al. 
(2008)

(continued)
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14.14.2.2.2 Mixed Function Oxidase (MFO)
In the reaction catalyzed by the MFO (EC 1.14.14.1), an atom of one molecule of 
oxygen is incorporated into the substrate, while the other is reduced to water. For this 
reason, the MFO requires nicotinamide-adenine dinucleotide phosphate (NADPH) 
and O2 for its operation. It is an enzyme system comprising of two enzymes, cyto-
chrome P450 and NADPH-cytochrome P450 reductase; both are membrane 

Table 14.3 (continued)

Organisms
Encoding genes 
(accession no.) Degrading enzyme References

Pseudomonas stutzeri strain 
HS-D36

mpd (EF515812) MPH Guo et al. 
(2009)

Ochrobactrum sp. Yw18 mpd 
(DQ843607)

MPH Singh (2009)

Ochrobactrum sp. M231 mpd (EU596456) Tian et al. 
(2010)

Stenotrophomonas sp. 
SMSP-1 (EU312979)

ophc2 
(EU651813)

OPHC2 Shen et al. 
(2010a, b)

Lactobacillus brevis 
(WCP902)

opd B – Islam et al. 
(2010)

Pseudomonas sp. Carboxyl 
esterase gene

Carboxyl esterase Goda et al. 
(2010)

Sphingomonas sp. JK1 opd (EU709764) OPH Kumar and 
D’Souza (2010)

Burkholderia cepacia mpd B 
(DQ001540)

MPH Ekkhunnatham 
et al. (2012)

Bacillus pumilus W1 opd A OPH Ali et al. (2012)
Stenotrophomonas 
maltophilia MHF ENV20

mpd OPH Dubey and 
Fulekar (2012)

Kocuria sp. opd OPH Neti and 
Zakkula (2013)

Pseudomonas sp. strain 
YF-5

mpd MPH Liu et al. (2014)

Sphingomonas sp. strain 
TDK1 and Sphingobium sp. 
strain TCM1

Haloalkylphosphorus 
hydrolases (TDK-HAD, 
TCM -HAD)

Abe et al. 
(2014)

Pseudomonas sp. BF1-3 
(KJ849233)

ophB OphB Barman et al. 
(2014)

Acinetobacter sp. AbOPH gene OPH Chen et al. 
(2015)

Sphingomonas sp. DC-6 dmhA Amidohydrolase 
(DmhA)

Chen et al. 
(2016)

Reports from fungi
Pleurotus ostreatus
Chaetomium thermophilum

Laccase Amitai et al. 
(1998)

Aspergillus niger opd A-OPH Liu et al. (2001)
Penicillium lilacinum opd OPH Liu et al. (2004)
Cladosporium 
cladosporioides Hu-01

– CHP (chlorpyrifos 
hydrolase)

Gao et al. 
(2012)
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proteins. They are also known as cytochrome P-450-dependent monooxygenase or 
P450 system. The genes encoding the different isozymes comprise a superfamily of 
over 200 genes grouped into 36 families based on their sequence similarity. 
Cytochrome P450 enzymes are active in the metabolism of a wide variety of xenobi-
otics (Khaled et al. 2012). The cytochrome P450 family is a large, well-characterized 
group of monooxygenase enzymes that have long been recognized for their potential 
in many industrial processes, particularly due to their ability to oxidize or hydroxyl-
ate substrates in an enantiospecific manner using molecular oxygen (Urlacher et al. 
2004). Many cytochrome P450 enzymes have a broad substrate range and have been 
shown to catalyze biochemically recalcitrant reactions such as the oxidation or 
hydroxylation of nonactivated carbon atoms. These properties are ideal for the reme-
diation of environmentally persistent pesticide residues. Over 200 subfamilies of 
P450 enzymes have been found across various prokaryotes and eukaryotes. MFOs 
metabolize a wide range of compounds such as OPs, carbamates, pyrethroids, DDT, 
inhibitors of the chitin synthesis, juvenile hormone mimics, etc. (Alzahrani 2009).

14.14.2.2.3 Glutathione S-Transferase (GST)
The GSTs (EC 2.5.1.18) are a group of enzymes that catalyze the conjugation of 
hydrophobic components with reduced glutathione. In this reaction, the thiol group 
of glutathione reacts with an electrophilic place in the target compound to form a 
conjugate which can be metabolized or excreted. GSTs are involved in many cel-
lular physiological activities such as detoxification of endogenous and xenobiotic 
compounds, intracellular transport, biosynthesis of hormones, and protection 
against oxidative stress (Sheehan et  al. 2001; Hayes et  al. 2005; Oakley 2005). 
Broadly, GSTs are divided into four major families: (a) cytosolic GSTs, (b) mito-
chondrial GSTs, (c) microsomal GSTs, and (d) bacterial fosfomycin resistance pro-
teins (Armstrong 1997; Hayes et al. 2005). A very recent report by Longkumar et al. 
(2014) revealed that GST was involved in dealkylation of methyl parathion (OP 
compound) by a bacterial strain Acinetobacter baumannii DS002. Unlike in other 
organophosphate-degrading bacterial strains, in the genome of Acinetobacter bau-
mannii DS002, there is no conserved gene encoding an organophosphate-degrading 
enzyme. The absence of such opd gene and the induction of a GST-like protein in 
the presence of organophosphate insecticides suggested the existence of a novel 
organophosphate-degrading pathway in Acinetobacter baumannii DS002. 
Longkumar and his colleagues also discovered the existence of multiple gst genes 
in Acinetobacter baumannii DS002 and observed the expression of these gst genes 
and involvement of resulting GST enzyme in dealkylation of methyl parathion that 
eventually reduces toxicity of the parent compound (Longkumar et al. 2014).
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14.15  Role of OPH in Phosphate Acquisition 
from Organophosphate Compounds

Among the PTEs, OPH (a metalloenzyme requiring Zn as cofactor) is the most 
well-studied and characterized enzyme as far as structural and catalytic properties 
are concerned (Omburo et al. 1992; Kuo and Raushel 1994). It is best studied from 
Brevundimonas diminuta (recently reclassified as Sphingopyxis wildii) (Parthasarathy 
et al. 2017a). It located in the periplasmic space as multi-protein complexes, and it 
interacts with several systems like phosphate-specific transport (Pst) system, ABC 
transporters, and efflux pump AcrZ/TolC.  It is reported to anchor to periplasmic 
face of the inner membrane through a diacylglycerol linked to the invariant cysteine 
residue. This enzyme also contains a signal peptide with a conserved cysteine resi-
due at the junction of its cleavage site. The signal peptide contains a characteristic 
Tat motif which is common for proteins that are translocated across the inner mem-
brane in a prefolded state (Parthasarathy et al. 2016). Based on bioinformatic analy-
ses, the c-terminal of OPH has been predicted to be in the cytoplasmic side 
(Parthasarathy et al. 2017a, b). Apart from triesterase activity, this enzyme has also 
been shown to possess lactonase activity. Due to that, OPH has been hypothesized 
to have evolved from lactonases (whose function s for quorum quenching) for the 
uptake of phosphate from the surrounding environment (Afriat-Jurnou et al. 2012).

It seems PTEs located in the periplasmic space converts organic organophos-
phate (that enters into the periplasmic space through after crossing the outer mem-
brane) into phosphodiesters which ultimately gets converted into inorganic 
phosphate by the combined action of phosphodiesterase and phosphatase. OPH has 
been postulated to be involved in phosphate acquisition from organophosphate 
compounds through its interaction with components of the outer membrane (such as 
ABC-type transporters, TolC, etc.) known to be involved in phosphate transport in 
bacterial cells (Parthasarathy et al. 2016). Although these studies provide some idea 
toward the utilization of phosphotriesterases as the sole source of phosphate (at least 
in Sphingopyxis wildii), there is a huge lacuna as far as the transport processes oper-
ate in this organism.

14.16  Concluding Remarks

In spite of advances in cultivation methods, the total number of culturable microbes 
recoverable from any environmental niche is very low compared to what exists nat-
urally. The wealth of information, regarding organophosphate metabolism that we 
have gained from existing diversity, is only the tip of the iceberg as we are far from 
knowing the exact boundaries of microbial diversity on earth. Moreover, a lot more 
studies has to be carried out with anaerobic microbes and their metabolic studies 
with respect to organophosphate compounds. Compared to aerobic metabolism, 
during anaerobic process more substrates are needed to be metabolized to provide 
equitable amount of ATP, and prospect of cleaning xenobiotic substrate is more 
through anaerobic degradation than aerobic degradation. Thus, more systematic 
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studies for exploration of organophosphate biodegradation by anaerobic microor-
ganisms should be made. This will not only increase our bio-resource in terms of 
novel microbes, gene, and enzyme pool for biotechnological aspect of the environ-
mental cleanup process but also may lead to complete understanding of the overall 
degradation process and their links with other ecological processes on our planet 
earth. Microbial metabolism of organophosphate compounds in the environment is 
a complex, less understood process that depends upon the community diversity of 
the microflora residing in the habitat, energy, and nutrient flow as well as stress 
response metabolism of microbes. Unfortunately due to lack of our understanding 
toward holistic system wide understanding of complex interaction between degrad-
ing microbes, their genes, enzymes and multivariate environmental factors along 
with the complex microbial community (de Lorenzo 2008). Very recently, in order 
to understand the relationships in holistic manner, metagenomic approach was 
undertaken and it has shown promising results (Jeffries et al. 2018). The results of 
such approach highlighted the value holistic system-wide metagenomic approaches 
as a tool to predict microbial degradation in the context of the ecology of contami-
nated habitats. As pointed earlier, understanding the adaptation strategies taken by 
a microorganism to tolerate organophosphate toxicity and maintain cellular homeo-
stasis will help us to understand the metabolism in a better way. Another huge 
lacuna is the process of signaling which facilitates the degradation process. Future 
studies will incorporate similar approaches to enrich our understanding the 
relationship.
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