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1 Introduction

Integral transforms have been recognized [1] to be introduced by Leonhard Euler
(1707–1783) for the solution of second-order linear differential equations, as pre-
sented in his acclaimed compendium Institutiones Calculi Integralis [2]. In general
terms, his proposition introduces the integral transformation of a function f (x) in the
form [1]:

F(n) =
x1∫

x0

K (x, n) f (x)dx (1)
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with the aid of a transformation kernel K(x, n), yielding a transformed dependent
variable F(n) that involves a parameter n, which should in principle be a posteri-
ori obtainable from a simpler transformed algebraic (or differential) problem, upon
integral transformation of the original ordinary (or partial) differential system. Then,
an inverse transformation is required to recover the original function f (x) from the
transformed one, F(n). If additional independent variables are considered in Eq. (1),
multiple integral transformations, with respect to each variable, can be adopted to
reduce the original differential system by eliminating these variables in the result-
ing integral transformed system. The choices of kernels and integration bounds in
Eq. (1), and consequently of the required inverse transformation, have been histori-
cally identified with the names of their particular proposers, such as the best-known
Laplace and Fourier transforms.

The finite Fourier transform, of major relevance in the present context, can be
said to have been introduced in a series of papers by Joseph Baptiste Fourier (1768–
1830) and consolidated in his famous heat conduction treatise of 1822 [3]. It can be
interpreted that from the application of separation of variables to the linear transient
heat conduction equation in Cartesian coordinates, Fourier reached the eigenvalue
problem, later ongeneralized as the so-calledSturm–Liouville problem, that naturally
provided the transformation kernel and inverse formulae in terms of the associated
eigenfunctions, essentially sines and cosines in the particular case of heat conduction
in a slab. A number of contributions followed that dealt with the proposition of
integral transforms of linear partial differential equations in different coordinates
systems, such as the Hankel and Legendre transforms, respectively, for cylindrical
and spherical geometries. In the popular book by Academician Nikolai Sergeevich
Koshlyakov (1891–1958), published with the translated title of “Basic Differential
Equations of Mathematical Physics” [4], the finite integral transform technique was
formalized to handle nonhomogeneous problems, already in terms of eigenfunction
expansions obtained from the generalized Sturm–Liouville problem. A number of
classical works have then followed, such as in [5–17], expanding and consolidating
this knowledge from the mathematical point of view and providing exact analytical
solutions to various physical applications, notably in heat and mass diffusion, as
systematically illustrated for seven different classes of problems [17].

Despite the usefulness of exact analytical solutions for such linear diffusion prob-
lems, the limitation of the classical integral transform approach was soon recognized
when dealing with a priori non-transformable problems, such as in the case of time-
dependent equation and/or boundary conditions coefficients [18, 19], yielding cou-
pled infinite transformed ordinary differential systems with variable coefficients, of
unknownanalytical treatment.Approximate analytical solutionswere yetmade avail-
able in [18, 19] by considering only the diagonal of the coupled transformed system,
until a hybrid numerical–analytical framework was introduced in [20] for the solu-
tion of a moving boundary mass diffusion problem, combining the integral transform
method with the error-controlled numerical solution of ordinary differential systems.
This hybrid approach was coined as the Generalized Integral Transform Technique
(GITT) [20], following the terminology previously proposed for the approximate
solution of non-transformable linear problems [18, 19]. In a natural development
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sequence, the GITT was then gradually extended to handle different classes of prob-
lems, including the first considered class of non-transformable linear problems with
time-dependent coefficients [21]. It would not take long until this methodology was
challenged to handle irregular geometries [22] and nonlinear formulations [23], fol-
lowed by the solution of the boundary layer and Navier–Stokes formulations of heat
and fluid flow problems [24, 25]. The various applications and extensions that were
then pursued through the GITT, led to the first compilation of such developments
as a monograph [26] and to a couple of invited articles [27, 28], that allowed for a
broader dissemination of the methodology among the thermal sciences community.

During the participation as a keynote lecturer at the International Heat Transfer
Conference in Brighton, UK [27], the first author had the unique opportunity of being
properly introduced toProf.BrianSpalding,who thenkindly commentedon theGITT
development and provided suggestions for future work. The possibility of obtaining
independent reference benchmark results in different classes of problems was one of
the positive aspects, as pointed out by Prof. Spalding, to be further pursued, and he
also referred us to some of the test cases that were then being tackled by the CHAM
development team, such as the IAHR diverging channel test case [29], that would
have numerical results compiled in electronic format through Phoenics version 2.2.1
in 1996. The handling by GITT of the suggested test case dealing with the Navier–
Stokes formulation in an irregular domain was then pursued and first provided in
[30], and later on presented as a dedicated article [31].

Since then, the GITT hybrid approach has been further extended and widely
applied in different physical contexts, as compiled in various sources up to recent
reviews [32–39]. The present chapter provides a general description of the method-
ology, that is, here focused on the solution of diffusion, convection–diffusion, and
conjugated problems in irregular domains and/or heterogeneous media. In terms
of formalism, first general solutions are provided for nonlinear diffusion problems,
either considering linear or nonlinear eigenvalue problems. Second, convection–dif-
fusion problems are discussed, either as a direct application of the previous formal
solution of diffusion problems in the total transformation scheme or by skipping
the integral transformation along the coordinate of predominant convective effects,
through the so-called partial transformation scheme. Alternatively, the total transfor-
mation of convection–diffusion problems adopting convective eigenvalue problems
is also described. Third, the treatment of eigenvalue problems by GITT is briefly
reviewed, including the direct integral transformation for irregular domains, fol-
lowed by the description of a single domain reformulation strategy, which markedly
facilitates the handling of both heterogeneous domains and irregular regions, includ-
ing the class of conjugated heat transfer problems here emphasized. Finally, selected
test cases for laminar flow and convection in corrugated channels and conjugated
heat transfer are described. The GITT approach results are examined in terms of
convergence rates and critically compared to results from general-purpose numerical
computer codes. The chapter is concluded with a discussion on the progress achieved
within the last fifty years and on the next steps toward the full establishment of this
computational–analytical (CAFD) approach in heat and fluid flow.
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2 Diffusion Problems

Let us consider a fairly general nonlinear transient diffusion problem for the poten-
tial T (x, t), defined in the arbitrary region V, with all equation and boundary condi-
tions coefficients written as functions of the independent and dependent variables,
including the respective nonlinear source terms, P(x, t, T ) and φ(x, t, T ), given as

w(x, t, T )
∂ T (x, t)

∂ t
= ∇.k(x, t, T )∇T − d(x, t, T )T + P(x, t, T ), in x ∈ V, t > 0 (2a)

with initial and boundary conditions

T (x, 0) = f (x), x ∈ V (2b)

α(x, t, T )T (x, t) + β(x, t, T )k(x, t, T )
∂ T

∂ n
= φ(x, t, T ), x ∈ S, t > 0 (2c)

where α and β are the nonlinear boundary condition coefficients that allow for recov-
ering the three most usual kinds of boundary conditions, and n is the outward-drawn
normal vector to surface S. Although more general situations could be considered,
such as accounting for elliptic- and hyperbolic-type formulations, through appro-
priate t-operators, and including coupled multiple potentials [38], Eq. (2a) provides
enough information to fully illustrate the methodology.

The most usual formal integral transform solution of problem (2b) involves the
selection of a linear eigenvalue problem, which offers the basis for the eigenfunction
expansion that represents the potential, as introduced in [23]. This is in fact equivalent
to rewriting problem (2c) with characteristic linear coefficients that have only x
dependence, i.e. w(x), k(x), d(x), α(x), and β(x), while the nonlinear source terms
then incorporate the remaining nonlinear portions of the equation and boundary
conditions operators. This more traditional approach is thoroughly documented in
previous reviews [32–39], and therefore is not repeated here. Instead, a more general
formalism is presented, as introduced in [40], which adopts a nonlinear eigenvalue
problem,with all the nonlinear coefficients present in the formulation. Thus, consider
the following nonlinear eigenvalue problem:

∇.k(x, t, T )∇ψi (x; t) + [
μ2
i (t)w(x, t, T ) − d(x, t, T )

]
ψi (x; t) = 0, x ∈ V

(3a)

with boundary conditions

α(x, t, T )ψi (x; t) + β(x, t, T )k(x, t, T )
∂ψi (x; t)

∂n
= 0, x ∈ S (3b)

The solution for the associated time-dependent eigenfunctions,ψi(x; t), and eigen-
values, μi(t), has been presented in [40], as will be discussed in what follows. Thus,



Integral Transform Benchmarks of Diffusion … 723

the following integral transform pair is defined from problem (3a):

T̄i (t) =
∫

V

w(x, t, T ) ψi (x; t)T(x, t) dv, transform (4a)

T(x, t) =
∞∑
i=1

1

Ni (t)
ψi (x; t)T̄i (t), inverse (4b)

with the normalization integral given as

Ni (t) =
∫

V

w(x, t, T )ψ2
i (x; t)dv (4c)

After application of the integral transformation procedure through the operator∫
V (−)ψi (x; t)dv , the resulting ODE system for the transformed potentials, Ti (t),

is written as

dT̄i (t)

dt
+

∞∑
j=1

Ai, j (t, T̄)T̄ j (t) = ḡi (t, T̄), t > 0, i, j = 1, 2 . . . (5a)

with initial conditions

T̄i (0) = f̄i (5b)

where

Ai, j (t, T̄) = δi jμ
2
i (t) + A∗

i, j (t, T̄) (5c)

A∗
i, j (t, T̄) = − 1

N j (t)

∫

V

∂

∂t
[w(x, t, T )ψi (x; t) ]ψ j (x; t)dv (5d)

ḡi (t, T̄) =
∫

V

ψi (x; t) P(x, t, T )dv +
∫

S

φ(x, t, T )

(
ψi (x; t) − k(x, t, T )

∂ψi

∂n

α(x, t, T ) + β(x, t, T )

)
ds

(5e)

f̄i = ∫V w(x, 0, T (x, 0))ψ̃i (x; 0) f (x)dv (5f)

This more general solution path provides a formal solution that encompasses
the usual formalism with a linear eigenvalue problem and has been shown to result
in improved convergence rates [40, 41]. On the other hand, it has the drawback
of requiring that the eigenvalue problem be solved simultaneously with the trans-
formed ODE system, yielding time-dependent transformed potentials, eigenvalues,
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and eigenfunctions. The GITT solution of the nonlinear eigenvalue problem (3) has
been presented in [40], and will be later on reviewed, by considering an auxiliary
linear eigenvalue problem of known solution to offer an eigenfunction expansion for
the nonlinear eigenfunctions, leading, upon integral transformation, to a nonlinear
algebraic eigenvalue problem that needs to be solved simultaneously with the ODE
system (5). Alternatively, the algebraic eigenvalue problem can be differentiatedwith
respect to the t variable and solved as a larger coupled ODE system jointly with the
transformed potentials, Eq. (5a).

It should be noted that the above formal solution derivation did not account for
the employment of a filtering solution, either explicit or implicit, so as to reduce the
importance of the source terms in the convergence behavior,which essentially leads to
the same system (2) but with redefined source terms and initial conditions. Also, only
the total transformation scheme of theGITT has been so far described, when all space
variables in the position vector x are eliminated through integral transformation.
Alternatively, one may also consider the partial transformation scheme [42, 43],
when one of the spatial variables is left out of the transformation process, thus
leading to a transformed partial differential system with only time and one spatial
coordinate as independent variables, as will be briefly described in the next section
for convection–diffusion problems.

3 Convection–Diffusion Problems

Now consider an also fairly general convection–diffusion problem, which is essen-
tially the nonlinear formulation of Eq. (2a) plus a nonlinear convective term, defined
for a nonlinear velocity vector u(x, t, T ):

w(x, t, T )
∂ T (x, t)

∂ t
+ u(x, t, T ).∇T = ∇.k(x, t, T )∇T − d(x, t, T )T + P(x, t, T ), in x ∈ V, t > 0

(6)

with similar initial and boundary conditions as in Eq. (2b, 2c).
The most usual formalism in dealing with the integral transformation of Eq. (6),

similarly to the above diffusion problem (2), is to consider a linear diffusive eigen-
value problem with space dependent coefficients only, while incorporating the above
nonlinear convection term and the remaining nonlinear terms, into the nonlinear
source term, as introduced in [44] and widely employed throughout the develop-
ment of the GITT approach. In addition, one may again merge the convection term,
u(x, t, T ).∇T, into the nonlinear equation source term, P(x, t, T ), in Eq. (6), while
keeping the remaining nonlinear coefficients in the equation to be transformed, thus
being accounted for by the nonlinear diffusive eigenvalue problem. This derivation
is not repeated here, since it is essentially a direct application of the methodology in
Sect. 2. However, two alternative solution paths for convection–diffusion problems
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are here described, that have also been successfully employed in different classes of
applications.

3.1 Partial Transformation

In the treatment of transient convection–diffusion problems with a preferential con-
vective direction, one possible approachwith relativemerits is to consider the integral
transformation in all but this one space coordinate, yielding an infinite coupled system
of partial differential equations for the transformed potentials, to be solved numeri-
cally. This partial integral transformation scheme offers an interesting combination of
advantages between the eigenfunction expansion approach and the selected numer-
ical method for handling the coupled system of one-dimensional partial differential
equations that results from the transformation procedure. To illustrate this procedure,
a transient convection–diffusion problem is considered, separating the preferential
direction that is not to be integral transformed. The vector x = {x1, x2, x3} is then
formed by the space coordinates that will be eliminated through integral transforma-
tion, here denoted by x∗ = {x1, x2} , as well as by the space variable to be retained
in the transformed partial differential system, here denoted by x3. In addition, a lin-
ear eigenvalue problem is here preferred, by selecting characteristic x* dependent
coefficients and incorporating the remaining terms in the source terms, including the
nonlinear convection term and all the remaining nonlinear terms. The problem to be
solved is now written in the following form:

w(x∗)
∂ T (x, t)

∂ t
= ∇∗ · (

k(x∗)∇∗T (x, t)
) − d(x∗)T (x, t) + P(x∗, x3, t, T ), x ∈ V, t > 0 (7a)

where the operator ∇∗ refers only to the coordinates to be integral transformed, x*,
and with initial and boundary conditions given, respectively, by

T (x, 0) = f (x), x ∈ V ;
[
α(x∗) + β(x∗)k(x∗)

∂

∂ n∗
]
T (x, t) = φ(x∗, x3, t, T ), x∗ ∈ S∗, t > 0

(7b,c)[
λ(x3) + (−1)l+1γ (x3)

∂

∂ x3

]
T (x, t) = ϕ(x∗, x3, t, T ), x3 ∈ S3 = {x3,l }, l = 0, 1, t > 0 (7.d)

where n* denotes the outward-drawn normal to the surface S* formed by the coordi-
nates x* and S3 refers to the boundary values of the coordinate x3. The coefficients in
Eq. (7a) inherently carry the information to the auxiliary eigenvalue problem that will
be chosen for the eigenfunction expansion, and all the remaining terms from this rear-
rangement are collected into the source terms, P(x∗, x3, t, T ) and φ(x∗, x3, t, T ),

including the existing nonlinear terms and diffusion and/or convection terms with
respect to the dimensional variable x3. By performing the integral transformation of
Eq. (7a) with respect to the selected space coordinates x∗ = {x1, x2}, one obtains the
following transformed system dependent on the remaining variables t and x3:
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∂ T̄i (x3, t)

∂t
+ μ2

i T̄i (x3, t) = ḡi (x3, t,T), i = 1, 2, . . . , x3 ∈ V3, t > 0, (8a)

ḡi (x3, t,T) =
∫

V ∗
ψi (x

∗)P(x∗, x3, t,T)dv∗ +
∫

S∗
φ(x∗, x3, t, T )

⎡
⎣ψi (x∗) − k(x∗)

∂ψi (x
∗)

∂n∗
α(x∗) + β(x∗)

⎤
⎦ds∗

(8b)

T̄i (x3, 0) = f̄i (x3) ≡
∫

V ∗

w(x∗)ψi (x∗) f (x)dv∗ (8c)

[
λ(x3) + (−1)l+1γ (x3)

∂

∂ x3

]
T̄i (x3, t) = ϕ ï (x3, t,T) ≡

∫

v∗
w(x∗)ψi (x

∗)ϕ(x∗, x3, t,T)dv∗,

x3 ∈ S3 = {x3,l }, l = 0, 1, t > 0 (8d,e)

Equation (8a–e) form an infinite coupled system of nonlinear partial differential
equations for the transformed potentials, T̄i (x3, t). After truncation to a sufficiently
large finite order, this PDE system can be numerically solved. For instance, the
Mathematica system provides the routine NDSolve, which implements the Method
of Lines in the numerical solution of this problem, under automatic absolute and
relative error control.

3.2 Convective Eigenvalue Problems

Quite recently, an alternative solutionwas proposed adopting a convective eigenvalue
problem, again either linear or nonlinear, that through a coefficient transformation
could allow to rewrite Eq. (6) as a generalized diffusion problem [45]. Consider that
the convective term coefficient vector u can be represented in the three-dimensional
situation by the three components {ux, uy, uz}, here illustrating the transformation
in the Cartesian coordinates system, x = {x, y, z}. Then, Eq. (6) can be rewritten in
the generalized diffusive form as

w∗(x, t, T )
∂T (x, t)

∂t
= 1

k̂x (x, t, T )

∂

∂x
[k̂x(x, t, T )

∂T (x, t)
∂x

]

+ 1

k̂y(x, t, T )

∂

∂y
[k̂y(x, t, T )

∂T (x, t)
∂y

]

+ 1

k̂z(x, t, T )

∂

∂z
[k̂z(x, t, T )

∂T (x, t)
∂z

]
−d∗(x, t, T )T (x, t)

+P∗(x, t, T ), x ∈ V, t > 0 (9a)

where
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w∗(x, t, T ) = w(x, t, T )/k(x, t, T ); d∗(x, t, T ) = d(x, t, T )/k(x, t, T );
P∗(x, t, T ) = P(x, t, T )/k(x, t, T ); u∗(x, t, T ) = 1

k(x, t, T )
[u(x, t, T ) − ∇k(x, t, T )];

k̂(x, t, T ) = k̂x (x, t, T )k̂y(x, t, T )k̂z(x, t, T )

k̂x (x, t, T ) = e−
∫
u∗
x (x,t,T )dx ; k̂y(x, t, T ) = e−

∫
u∗
y (x,t,T )dy ; k̂z(x, t, T ) = e−

∫
u∗
z (x,t,T )dz

(9b-i)

In the special simpler case when the transformed diffusion coefficients
are functions of only the corresponding space coordinate, or k̂x (x, t, T ) =
k̂x (x), k̂y(x, t, T ) = k̂y(y); k̂z(x, t, T ) = k̂z(z), with the consequent restric-
tions on the related coefficients k and u, a diffusion formulation is constructed which
leads to a self-adjoint eigenvalue problem [45].Alternatively, onemay seek an adjoint
eigenvalue problem that allows for the construction of a biorthogonal eigenfunctions
set. This convective eigenvalue problem solution path was recently implemented in
the analysis of conjugated heat transfer problems, also with significant convergence
rates improvement [46].

4 Vector Eigenfunction Expansion

Although flow problems governed either by the boundary layer or full Navier–Stokes
equations formulations can be cast into the general form of Eq. (6), with correspond-
ing initial and boundary conditions, their GITT treatment deserves some special
considerations that are here briefly reviewed, while the most recent developments
are pointed out.

As mentioned before, the first GITT solution of the boundary layer equations was
proposed in [24], in the primitive variables formulation; while the Navier–Stokes
equationswerefirst solvedbyGITT in [25], but preferring instead the streamfunction-
only formulation, which eliminates the pressure field and automatically satisfies the
continuity equation, while introducing a fourth-order differential eigenvalue prob-
lem. A number of contributions then followed extending the applicability of the
GITT to different classes of flow problems, also considering the GITT solution
for the Navier–Stokes equations in the primitive variables formulation [47], includ-
ing, for instance, transient problems, compressible flow, three-dimensional formula-
tions, variable physical properties, non-Newtonian fluids, porous and partially porous
media, irregular regions, MHD flows, among others, as reviewed in [39].

Recently, a unified framework was proposed, based on a vector eigenfunction
expansion [48], which includes the streamfunction formulation treatment as a spe-
cial case, while generalizing the GITT in dealing with heterogeneous media and
three-dimensional flow problems. The vector eigenfunction expansion represents all
velocity components with one set of transformed potentials and an appropriately
chosen vector eigenfunction basis, while the velocity vector field can be interpreted
as the result of the influence of an infinite number of vortices disturbing a base
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flow. Consider the transient Navier–Stokes equations for incompressible flow, in
dimensionless vector form:

∇ · u = 0, x ∈ V (10a)

∂u
∂t

+ ∇ · (u ⊗ u) = −∇ p + 1

Re
∇2u + b, x ∈ V (10b)

where V represents the domain occupied by the Newtonian fluid, u is the dimension-
less velocity vector, p is the dimensionless pressure field, Re is the Reynolds number,
b is a volumetric source term.

Thefirst step in theGITT solution, as usual, is the proposition of a filtering solution
to reduce the importance of source terms, specially to homogenize the boundary
conditions, in the form:

u(x, t) = û(x, t) + uf(x; t) (11)

The vector eigenfunction expansion for the filtered velocity field is then proposed
as

û(x, t) =
∞∑
i=1

ūi (t)
(
∇ × �̃i

)
(12)

where Eq. (12) warrants mass conservation, as in the streamfunction-only formula-
tion, dropping the need to further deal with Eq. (10a). A self-adjoint fourth-order
vector eigenvalue problem, extracted from the analytical solution for the limiting
linear situation of Re → 0 (Stoke’s flow), is given by [49]:

∇2
(
∇ × ∇ × �̃i

)
+ λ2

i

(
∇ × ∇ × �̃i

)
= 0 (13)

The orthogonality property of the eigenfunction from Eq. (13) allows for the
proposition of a transformed velocity, in the form:

ūi (t) =
∫

V

(
∇ × �̃i

)
· û(x, t)dv (14)

Equations (12) and (14) thus provide the inverse-transform pair required for the
integral transformation process, following the same formalism as in the usual applica-
tion of the GITT above described. The integral transformation of the Navier–Stokes
equations, with the curl of the solution of Eq. (13) as kernel, then proceeds, leading
to the transformed problem below, as detailed in [49]:
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dūi
dt

+ λ2
i

Re
ūi (t) +

∞∑
k=1

∞∑
j=1

Ai jk ū j (t)ūk(t) +
∞∑
j=1

Bi j (t)ū j (t) = ḡ j (t) (15a)

with integral coefficients given by

Ai jk = −
∫

V

∇
(
∇ × �̃i

)
·
[(

∇ × �̃ j

)
⊗

(
∇ × �̃k

)]
dv (15b)

Bi j (t) = −
∫

V

∇
(
∇ × �̃i

)
·
[(

∇ × �̃ j

)
⊗ uf + uf ⊗

(
∇ × �̃ j

)]
dv (15c)

ḡi (t) =
∫

V

(
∇ × �̃i

)
·
{
b + 1

Re
∇2uf − ∂uf

∂t
− ∇ · (uf ⊗ uf)

}
(15d)

It is noteworthy that the automatic elimination of the pressure gradient term from
the transformed problem is achieved through the use of the proper integral transform
kernel, thus dropping the need to directly deal with the pressure term. Notwithstand-
ing, the pressure field can be determined a posteriori from the original Navier–Stokes
equations, once the velocity field is known.

5 Eigenvalue Problems and Irregular Domains

As seen in the previous sections, the accurate solution of the associated eigenvalue
problems is a crucial step in the application of the GITT approach. Except for those
simpler cases in which an exact analytical solution is available for the Sturm–Liou-
ville problem, it is necessary to implement a more general and automatic proce-
dure for its computational–analytical solution. The GITT itself can be used for this
purpose, including the treatment of nonlinear eigenvalue problems and irregular
domains, as now reviewed. Thus, consider the nonlinear eigenvalue problem defined
in region V and boundary surface S:

Lψ(x; t) = μ2(t)w(x, t, T )ψ(x; t), x ∈ V (16a)

Bψ(x; t) = 0, x ∈ S (16b)

where the operators L and B are given by

L = −∇ · (k(x, t, T )∇) + d(x, t, T ) (16c)

B = α(x, t, T ) + β(x, t, T )k(x, t, T )
∂

∂n
(16d)
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The problem given by Eq. (16a–d) can be rewritten as

L̂ψ(x; t) =
(
L̂ − L

)
ψ(x; t) + μ2(t)w(x, t, T )ψ(x; t), x ∈ V (17a)

B̂ψ(x; t) = (B̂ − B)ψ(x; t), x ∈ S (17b)

where L̂ and B̂ are simpler operators with linear coefficients that define an auxiliary
eigenvalue problem of known solution for the eigenvalues, λ, and corresponding
eigenfunctions, 
(x), given by

L̂
(x) = λ2ŵ(x)
(x), x ∈ V (18a)

B̂
(x) = 0, x ∈ S (18b)

where

L̂ = −∇ ·
(
k̂(x)∇

)
+ d̂(x) (18c)

B̂ = α̂(x) + β̂(x)k̂(x)
∂

∂n
(18d)

Problem (18) thus allows definition of the following integral transform pair:

ψ̄i (t) =
∫

V

ŵ(x)
̃i (x)ψ(x; t)dv, transform (19a)

ψ(x; t) =
∞∑
i=1


̃i (x)ψ̄i (t), inverse (19b)

where the normalized auxiliary eigenfunctions and corresponding norms are given
by


̃i (x) = 
i (x)√
N
i

,with N
i =
∫

V

ŵ(x)
2
i (x)dv (19c, d)

Problem (17) is now operated on with
∫
V 
̃i (x)(·)dv, to yield the transformed

nonlinear algebraic system, truncated to the Mth order, in matrix form, as

(A(t) + C)
{
%̄(t)

} = µ2(t)B(t)
{
%̄(t)

}
(20a)

with the elements of theM xM matrices and vector µ(t) given by
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ai j (t) = −
∫

S

γi (B̂ − B)
̃ j (x)ds −
∫

V


̃i (x)(L̂ − L)
̃ j (x)dv (20b)

ci j = λ2
i δi j (20c)

bi j (t) =
∫

V

w(x, t, T )
̃i (x)
̃ j (x)dv (20d)

µ(t) = {μ1(t), μ2(t), . . . , μM(t)} (20e)

γi = 
̃i (x) − k̂(x) ∂
̃i (x)
∂n

α̂(x) + β̂(x)
(20f)

The nonlinear algebraic eigenvalue problem, Eq. (20a–f), should now be solved
simultaneouslywith the transformed system, Eq. (5a–f), or the equivalent for convec-
tion–diffusion problems, yielding the time evolution of the transformed potentials,
eigenvalues and eigenfunctions. For linear eigenvalue problems, system (18) is solved
only once, prior to the numerical solution of the transformed system (5).

The expressions here derived are valid for any arbitrary region V and corre-
sponding surface S, and essentially require the evaluation of the volume and surface
integrals defined in the transformed coefficients and source terms of the transformed
ODE system, Eq. (5d–f), and in the coefficients of the transformed eigenvalue prob-
lem, Eq. (20b, d). In the more general situation of complex geometric configurations,
domain decomposition techniques can be handy in the automatic computational eval-
uation of such integral transformations. However, in a fairly wide class of problems
for which the domain bounding surfaces, in one coordinate, can successively be
expressed as functions of the remaining space variables, the volume integral can be
organized so as to permit a direct integration of the irregular region [50, 51], includ-
ing the generalization to nonlinear moving boundaries, i.e. V (t) and S(t) [52]. For
instance, considering such a region in the Cartesian coordinates system, the bounding
surfaces in each spatial coordinate, may be written as

x0(t) ≤ x ≤ x1(t), y0(x, t) ≤ y ≤ y1(x, t), z0(x, y, t) ≤ z ≤ z1(x, y, t)
(21a)

Then, the auxiliary eigenfunction (or directly the original eigenfunction or the
potential), can be expressed as an eigenfunction expansion of the product of one-
dimensional eigenfunctions in each coordinate, as


̃n(x; t) = X̃ j (x; t)Ỹk(y; x, t)Z̃m(z; x, y, t) (21b)

and the corresponding integral transform pair, in terms of this auxiliary eigenfunction
basis, would be



732 R. M. Cotta et al.

ψ̄n(t) =
∫

V (t)

ŵ(x)
̃n(x; t)ψ(x; t)dv, transform (21c)

ψ(x; t) =
∞∑
n=1


̃n(x; t)ψ̄n(t), inverse (21d)

while the volume integrals are undertaken in the appropriate sequence as

∫

V (t)

(−)
̃n(x; t)dv ≡
x1(t)∫

x0(t)

{
y1(x,t)∫

y0(x,t)

[
z1(x,y,t)∫

z0(x,y,t)

(−)Z̃m (z; x, y, t)dz]Ỹk (y; x, t)dy}X̃ j (x; t)dx (21e)

The special case of boundary surfaces mapped as functions of the space coor-
dinates, as discussed above, is particular advantageous in the analytical or semi-
analytical evaluation of the transformation integrals [53], and an appropriate choice
of the positioning of the coordinates system may allow for this direct integration
in many situations. In any case, as discussed above, domain decomposition with
numerical or semi-analytical integration provides a more general-purpose algorithm
for determination of the transformed coefficients and source terms [42, 54].

6 Single Domain Formulation

In dealingwith heterogeneousmedia, either defined in regular or irregular subregions,
the derivation task of the integral transform process can become tedious, especially
for multiple regions. Besides, the computational task itself can become cumbersome,
since many transformed subregions will lead to a large coupled transformed system
to be numerically solved for. Therefore, a single domain formulation strategy was
proposed in [55], originally aimed at solving conjugated heat transfer problemswhen
solid and fluid subregions would require separate integral transformations or solv-
ing coupled eigenvalue problems. The strategy is based in rewriting the diffusion or
convection–diffusion equations for each subdomain, with their respective physical
properties and source terms, as one single formulation for the whole region, with
spatially variable coefficients and functions that vary abruptly at the interfaces of
the subregions, representing the original heterogeneities. This approach was then
employed in various classes of conjugated heat transfer problems [56–58], heat con-
duction applications [59], natural convection in partially porous media [60], and
convective mass transfer problems [61].

To illustrate the single domain formulation strategy, consider a nonlinear diffusion
problem, defined in a multi-region configuration that is formed by nV subregions of
volumes Vl, l = 1, 2, …, nV , with potential and flux continuity at the interfaces, as
illustrated in Fig. 1a, in the form
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Fig. 1 a Diffusion or convection–diffusion problem in a complex multidimensional configuration
with nV sub-regions; b Single domain representation keeping the original overall domain

wl(x, t, Tl)
∂Tl(x, t)

∂t
= ∇ · [kl(x, t, Tl)∇Tl(x, t)] − dl(x, t, Tl)Tl(x, t)

+Pl(x, t, Tl), x ∈ Vl , t > 0, l = 1, 2, . . . , nV (22a)

with initial, interface and boundary conditions given, respectively, by

Tl(x, 0) = fl(x), x ∈ Vl (22b)

Tl (x, t) = Tm(x, t); kl (x, t, Tl )
∂Tl (x, t)

∂n
= km(x, t, Tm)

∂Tm(x, t)
∂n

, x ∈ Sl,m , t > 0

(22c, d)[
αl(x, t, Tl) + βl(x, t, Tl)kl(x, t, Tl)

∂

∂ n

]
Tl(x, t) = φl(x, t, Tl), x ∈ Sl , t > 0

(22e)

where n denotes the outward-drawn normal to the interfaces among the different
subregions, Sl,m, and at the external surfaces, Sl.

The idea in the single domain reformulation is, as illustrated in Fig. 1.b, to merge
all the Eq. (22a) into one single equation, for the whole region V, and to represent the
various properties and source terms in each subregion as one single set of nonlinear
space variable coefficients accounting for the abrupt variations at the interfaces.
Then, problem (22) is simply rewritten in identical form to problem (1), with the
appropriate reformulation of the coefficients, thus requiring only a single integral
transformation process, yielding a single transformed ODE system, and carrying the
information on the domain heterogeneity to the associated single region eigenvalue
problem with spatially variable coefficients.

7 Test Cases

The chosen test cases to illustrate the hybrid GITTmethodology are closely related to
the suggestions of Prof. Spalding, which motivated the present review. First, laminar
flow inside a corrugated microchannel is analyzed [62], followed by the convective
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heat transfer analysis. This flow problem has been previously analyzed through the
GITT methodology [63], but recently it has been observed that the domain singular-
ity at the corrugated duct inlet could introduce some numerical disturbances, which
are here corrected for. Also, the heat transfer problem was also previously consid-
ered, including upstream and downstream axial diffusion effects, but employing an
analytical approximate velocity field representation for very low Reynolds numbers
[64]. More recently, the substrate conjugation in the micro-system thermal behavior
was also accounted for [37, 65], again by considering a simplified velocity field for
lowReynolds number. Here, the full set of Navier–Stokes equations for the fluid flow
are solved for and employed in the solution of the corresponding energy equation
for the fluid. Second, the analysis of conjugate heat transfer problems is considered
to illustrate the single domain reformulation approach in dealing with heteroge-
neous and irregular regions. A multi-stream perfused substrate configuration with
channels of polygonal cross section is then considered and handled through the par-
tial transformation scheme [58]. The adoption of a convective eigenvalue problem
in handling conjugated heat transfer is also demonstrated, considering a transient
two-dimensional formulation in the total transformation scheme [66].

7.1 Steady Heat Transfer and Fluid Flow in Corrugated
Channel

The first test case deals with the steady forced convection heat transfer in a wavy wall
channel. The geometrical duct configuration and the physical aspects of this problem
are similar to that analyzed in the work of Wang and Chen [62]. Thus, we consider
incompressible laminar flow of a Newtonian fluid within a wavy irregular channel in
simultaneous hydrodynamic and thermal developments, with fully developed veloc-
ity and uniform temperature profiles at the inlet. Viscous dissipation is disregarded
and constant physical properties are imposed. The channel walls are maintained at
a uniform dimensional temperature T*

w. Figure 2 shows a schematic representation
of the problem and the respective boundary conditions. This problem is governed
by the continuity, Navier–Stokes and energy equations in two dimensions, which in
terms of the streamfunction-only formulation is written in dimensionless form as

∂ψ

∂y

(
∂3ψ

∂x3
+ ∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+ ∂3ψ

∂y3

)
= 1

Re

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+ ∂4ψ

∂y4

)

(23a)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= 1

Re Pr

(
∂2T

∂x2
+ ∂2T

∂y2

)
(23b)

subjected to the following inlet, outlet, and boundary conditions:
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Fig. 2 Geometric configuration and boundary conditions for the problem of forced convection heat
transfer within a wavy walls channel

ψ(0, y) = k1 + 3

2

(
y − y3

3

)
+ 1; ∂ψ(0, y)

∂x
= 0; T (0, y) = 1 (23c–e)

∂ω(xout , y)

∂x
= ∂3ψ(xout , y)

∂x3
+ ∂3ψ(xout , y)

∂x∂y2
= 0; ∂ψ(xout , y)

∂x
= 0; ∂T (xout , y)

∂x
= 0

(23f–h)

ψ(x,−y1(x)) = k1; ∂ψ(x,−y1(x))

∂n
= 0; T (x,−y1(x)) = 0 (23i–k)

ψ(x, y2(x)) = k2; ∂ψ(x, y2(x))

∂n
= 0; T (x, y2(x)) = 0 (23l–n)

wheren, k1, and k2 represent the outward-drawnnormal vector to the channelwall and
the values of the streamfunction at the duct walls, respectively, which are associated
through the overall mass balance with the volumetric flow rate per unit length Q,
as k2 = Q+k1. In the streamfunction-only formulation the continuity equation is
automatically satisfied, and the velocity components are related to the streamfunction
through its definition:

u = ∂ψ

∂y
; v = −∂ψ

∂x
(24a, b)

Also, the following dimensionless groups were employed in Eqs. (22a–e) to (23a–
n):

x = x∗

b
; y = y∗

b
; y1(x) = y∗

1(x
∗)

b
; y2(x) = y∗

2(x
∗)

b
;

u = u∗

u0
; v = v∗

u0
; T = T ∗ − T ∗

w

T ∗
0 − T ∗

w

; Re = u0b

ν
; Pr = ν

α
(25a–h)
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where b is the half-spacing between the plates at the straight sections, u0 is the
average velocity at the channel inlet, y1(x) and y2(x) are the functions that describe
the wall contours, Re and Pr are the Reynolds and Prandtl numbers, respectively.

The functions that define the channel walls are here taken as

y2(x) = −y1(x) =
⎧⎨
⎩
1, for 0 ≤ x ≤ xs
1 + α sin[π(x − xs)], for xs ≤ x ≤ xl
1, for xl ≤ x ≤ xout

(26)

where α = a/b is the dimensionless channel amplitude, and xs = x*s /b and xl =
x*l /b are the dimensionless lengths for the beginning and the end of the wavy walls,
respectively, and xout = x*out /b is the dimensionless channel length, which is taken
equal to 20. The geometry selected for illustration has the parameters xs = 3 and xl
= 15, yielding six complete sinusoidal waves in the corrugated part of the channel.

In order to avoid incorrect solutions stemming from the discontinuity of the deriva-
tives of the function defined in Eq. (26), an approximate continuous unit step function
is introduced to smooth the transition between the straight and sinusoidal sections
of the channel depicted in Fig. 2. The modified geometry is then given by

y2(x) = −y1(x) = 1 + α sin[π(x − xs)][Us(x, xs) −Us(x, x1)] (27a)

with a continuous approximate unit step written as,

Us
(
x, x ′) = 1

1 + exp[−β(x − x ′)]
(27b)

where β is an adjustable parameter.
Simplifying Eq. (13) for two-dimensional problems in the Cartesian coordinate

system, there is only one component of �̃i different from zero, resulting in a scalar
eigenvalue problem [49]. For that case, the curl of the vector base automatically repro-
duces the streamfunction-only formulation [48]. Therefore, the problem defined by
Eqs. (23a–n) is solved via the GITT approach by eliminating the transversal coor-
dinate through integral transformation, considering a biharmonic-type fourth-order
eigenvalue problem for the flowproblem and a classical Sturm–Liouville problem for
the temperature problem, both yielding x-variable eigenvalues and eigenfunctions
due to the irregular contours of the wavy walls.

7.2 Conjugated Heat Transfer

The second application is aimed at illustrating the single domain reformulation, the
partial transformation scheme, and the convective eigenvalue problem alternative
in handling conjugated heat transfer. Consider the thermally developing flow inside
one or multiple straight channels of arbitrarily irregular cross section, perfusing a
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rectangular prismatic substrate. The single domain dimensionless formulation for
the energy balance is given by

W (X, Y )
∂θ

∂τ
+U (X, Y )

∂θ

∂X
= K (X, Y )

Pe2
∂2θ

∂X2 + ∂

∂Y

(
K (X, Y )

∂θ

∂Y

)
+ ∂

∂Z

(
K (X, Y )

∂θ

∂Z

)
,

0 < X < LX , 0 < Y < LY , 0 < Z < LZ , τ > 0 (28a)

where

U (X,Y ) =
{
U f (X,Y ), in fluid region
0, in solid region

; K (X,Y ) =
{
1, in fluid region
ks/k f , in solid region

(28b, c)

W (X,Y ) =
{
1, in fluid region
ws/w f , in solid region

(28d)

with the following dimensionless groups:

X = x/Lre f

RePr
= x

Lre f Pe
; Y = y

Lre f
; Z = z

Lre f
;

U = u

4uav

; θ = T − Tin
Tw − Tin

; K = k

k f
; W = w

w f
Re = uav4Lre f

ν
;

Pr = ν

α
; Pe = Re Pr = uav4Lre f

α
; α = k f

w f
; τ = αt

L2
re f

(28e)

where x is the longitudinal coordinate, y and z are the transversal space coordinates
(height and width, respectively). In order to more closely illustrate the conjugated
heat transfer application, two examples are analyzed. The first example considers
multiple parallel fluid streams perfusing a substrate through channels with polygo-
nal cross sections, illustrating the handling of arbitrary geometries and the partial
integral transformation procedure, while the second one considers heat and fluid
flow inside parallel plates, illustrating the total integral transformation procedure and
the convergence gains achieved with the convective eigenvalue problem alternative
previously discussed.

7.2.1 Multiple Irregular Regions

The transversal view of the multi-stream perfused substrate with parallel channels
of irregular cross section is illustrated in Fig. 3.

The substrate and fluid inlet region is assumed to be at the dimensionless temper-
ature θin = 0, the outlet surface is considered adiabatic, and the four lateral surfaces
are considered at the prescribed dimensionless temperature θw = 1. In order to obtain
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Fig. 3 Schematic representation of the multi-stream perfused substrate cross section

the velocity field inside the fluid flow regions, u f (Y, Z), the single domain formu-
lation was also employed for the momentum equation in the longitudinal direction
(X ), assuming that the flow is fully developed and governed by

∂

∂Y

(
ν(Y, Z)

∂u f (Y, Z)

∂Y

)
+ ∂

∂Z

(
ν(Y, Z)

∂u f (Y, Z)

∂Z

)
− C(Y, Z)

ρ(Y, Z)
= 0 (29a)

with

C(Y, Z) =
{ dp

dX = �p/LX , in the fluid region
0, in the solid region

;

ν(Y, Z) =
{

ν f , in the fluid region
νs → ∞, in the solid region

(29b, c)

ρ(Y, Z) =
{

ρ f , in the fluid region
ρs, in the solid region

(29d)

where ν f and ρ f stand for the kinematic viscosity and density of the fluid, and νs

and ρs for the solid. For νs it suffices to choose a sufficiently large value, when
the value for ρs will no longer affect the final result and the calculated velocities
in the solid region will recover the no slip condition, as physically expected. The
dimensionless velocity is calculated from Uf = uf /uav. The solution of problem
(29a) is readily handled through GITT based upon an eigenvalue problem with space
variable coefficients, as detailed in [58]. The energy equation is solved through
the partial transformation scheme, described in Sect. 3.1, in which the longitudinal
variable, X, is not integral transformed, leading to a PDE system to be numerically
solved, as described in [58].

7.2.2 Convective Eigenvalue Problem

Consider a laminar incompressible internal flowbetween parallel plates, as illustrated
in Fig. 4. In this case, the lateral coordinate Z can be neglected in Eq. (28a), and
the space variable coefficients are function of the Y-coordinate only, leading to a 2D
transient problem.
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Fig. 4 Schematic representation of the transient conjugated heat transfer example

The flow is considered fully developed, with known parabolic velocity profile,
the inlet surface and the external walls are considered at a prescribed dimensionless
temperature θin = θw = 0, and the initial condition is taken as θ0 = 1. Adopting
the procedure described in Sect. 3.2, the energy equation can be rewritten in the
following generalized diffusive form:

Ŵ
∂θ

∂τ
= K̂Y

Pe2
∂

∂X

(
K̂X

∂θ

∂X

)
+ K̂X

∂

∂Y

(
K̂Y

∂θ

∂Y

)
, 0 < Y < LY , 0 < X < LX , τ > 0

(30a)

K̂X (X,Y ) = e− ∫
Pe2U ∗

X dX ; K̂Y (Y ) = e− ∫
U ∗

Y dY (30b, c)

U ∗
X = U (Y )

K (Y )
; U ∗

Y = − 1

K (Y )

dK (Y )

dY
; Ŵ (X,Y ) = W (Y )K̂x (X,Y )K̂Y (Y )

K (Y )
(30d–f)

Separation of variables is then applied to problem (28a), yielding the following
non-classical eigenvalue problem:

K̂Y

Pe2
∂

∂X

(
K̂X

∂ψ

∂X

)
+ K̂X

∂

∂Y

(
K̂Y

∂ψ

∂Y

)
+ μ2

i ψ = 0, 0 < Y < LY , 0 < X < LX

(31)

with boundary conditions analogous to the original problem.This eigenvalue problem
is non-self-adjoint, meaning the eigenfunctions ψi (X,Y ), i = 1, 2, 3 . . . , do not
follow the same orthogonality property as for the classical Sturm–Liouville problem.
Also, the corresponding eigenvalues spectrum is not known a priori and eventually
complex quantities may be present. This eigenvalue problem does not allow for
explicit analytic solution, but the integral transforms procedure described in Sect. 5
can be employed in its solution. The solution to problem (30) can be written as
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θ(X,Y, τ ) =
∞∑
i=1

Aiψi (X,Y )e−β2
i t (32)

where the expansion coefficients Ai must be determined from the initial condition.
Hence, operating on Eq. (30a) with

∫ 1
0

∫ L∗
0 ψ j (X,Y )(·)dXdY at τ = 0 yields the

following system:

LY∫

0

LX∫

0

ψ j (X,Y )dXdY =
∞∑
i=1

Ai

LY∫

0

LX∫

0

ψi (X,Y )ψ j (X,Y )dXdY ,

i = 1, 2, 3 . . . , j = 1, 2, 3 . . .

(33)

which, after truncated to a finite order N, can be solved for the coefficients Ai , and
the expansion given by Eq. (33) can be readily used to calculate the dimensionless
temperature θ at any position (X,Y ) and time τ .

8 Results and Discussion

8.1 Steady Heat Transfer and Fluid Flow in Corrugated
Channel

Numerical results are presented for the forced convection heat transfer problem in
the wavy walls channel described in Sect. 7.1. For the sake of reporting numerical
results, it is considered the case of Re = 400, Pr = 6.93, and α = 0.1. Results for the
streamfunction and isotherms along thewavywalls channel are presented. In Fig. 5.a,
the streamfunction isolines show that recirculation zones are present in almost all
cavities along the duct walls. Figure 5b shows the isotherms, and it can be noticed
that the temperature distribution is affected mainly in the vicinity of the channel
walls and it remains practically unchanged in the central regions of the channel.

Figure 6 shows the comparison of the presentGITT resultswith those generated by
using the software COMSOLMultiphysics, and one may observe a good agreement
between the two sets of results. Figure 6a shows the results for the product of the

skin-friction coefficient by the Reynolds number, CfRe = −
(

∂u
∂y + ∂v

∂x

)∣∣∣
y=y2(x)

,

and one can readily observe the oscillatory behavior for this parameter along the
channel. In Fig. 6.b, it is shown the axial velocity component at the centerline, Uc,
and it is also noted the expected oscillatory behavior accompanying the distribution
of peaks and valleys along the channel, slightly increasing until the flat outlet region
of the duct is reached. Finally, Fig. 6.c shows the distribution of the local Nusselt
number, Nu, along the channel. One can observe that the Nusselt number increases
in the constricted regions and decreases in the diverging ones. This behavior can be
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Fig. 5 Patterns of a streamlines and b isotherms for Re = 400, Pr = 6.93, and α = 0.1

explained due to an increase in the average flow velocity and temperature gradients
in such constricted areas.

8.2 Conjugated Heat Transfer

Numerical results are now presented for the conjugated heat transfer examples
described in Sect. 7.2. As test case, an application with water as the working fluid
and acrylic as the channel substrate is here considered, leading to the adopted
dimensionless values ks/k f = 0.25 and ws/w f = 0.35.

8.2.1 Multiple Irregular Regions

The flexibility of the single domain approach in handling arbitrary domains is
here illustrated by considering the multi-stream perfused substrate with the five
microchannels shown in Fig. 7, which can be modeled as a single domain by prop-
erly defining the space variable coefficients so as to capture the five microchannels
geometries. The wall and fluid temperature profiles are plotted in Fig. 7a, b in steady-
state regime (τ → ∞) for Pe = 1, comparing the GITT and COMSOL solutions for
different longitudinal positions, (a) along Z , at Y = 0.2, and (b) along Y at Z = 0.
Both across the thickness of the micro-system and along its width, taking just half of
the width due to symmetry, one may observe the perfect adherence to the graphical
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Fig. 6 Parameters related to the velocity and temperature fields for Re = 400, Pr = 6.93, and α =
0.1: a Product CfRe; b centerline axial velocity; c local Nusselt number

Fig. 7 Comparisons between GITT and COMSOL solutions for the fluid and wall temperature
profiles: a along Z, at Y = 0.2, and b along Y at Z = 0, for different longitudinal positions (X ),
for the multiple irregular regions situation



Integral Transform Benchmarks of Diffusion … 743

Table 1 Convergence
behavior of the steady-state
temperature profile along Y
with respect to the truncation
order of the expansion (N ),
with fixed M = 120 terms in
the eigenvalue problem
solution (multiple irregular
regions), at X = 0.1

N θ(0.1, Y, 0, τ → ∞)

Y = 0.1 Y = 0.2 Y = 0.3

N = 75 0.5151 0.3703 0.5010

N = 85 0.5147 0.3700 0.5007

N = 95 0.5150 0.3699 0.5013

N = 105 0.5146 0.3695 0.5025

N = 115 0.5145 0.3688 0.5022

Table 2 Convergence
behavior of the steady-state
temperature profile along Y
with respect to the truncation
order of the expansion (N ),
with fixed M = 120 terms in
the eigenvalue problem
solution (multiple irregular
regions), at X = 0.2

N θ(0.2, Y, 0, τ → ∞)

Y = 0.1 Y = 0.2 Y = 0.3

N = 75 0.7504 0.6424 0.7382

N = 85 0.7505 0.6421 0.7384

N = 95 0.7505 0.6421 0.7386

N = 105 0.7502 0.6418 0.7393

N = 115 0.7501 0.6411 0.7391

scale between the two sets of temperature results. Clearly, the transitions between the
solid and fluid regions are accurately accounted for by the single domain formulation
and its corresponding eigenfunctions.

Besides the remarkable adherence between the hybrid and numerical solutions
observed in Figs. 7, Tables 1 and 2 illustrate the convergence behavior of the GITT
solution with respect to the number of terms employed in the temperature field
expansion, N, where it can be observed a convergence of three significant digits to
within the truncation orders considered. In these results, the eigenvalue problem was
also solved using GITT, as described in Sect. 5, keeping the truncation order constant
withM = 120 terms.

8.2.2 Convective Eigenvalue Problem

In order to demonstrate the convergence rate gains in adopting the convective eigen-
value problem formulation, three representative situations are considered in the anal-
ysis, with Pe= 1, 10, and 100. In all cases, it was employedM= 75 as the truncation
order in the eigenvalue problem solution via GITT (Sect. 5). Figure 8a–c graphically
illustrate the convergence behaviors for Pe= 1, 10, and 100, respectively, by present-
ing some transversal temperature profiles calculated with different truncation orders
(N = 3, 6, 9) together with purely numerical solutions calculated with COMSOL
(automatically generated mesh with the “extremely fine” option), demonstrating that
a truncation order as small as N = 9 is enough to provide curves fully converged to
the graph scale and in full agreement with the numerical solutions.
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Fig. 8 Transversal temperature profiles at. XPe = 0.01, 0.02, 0.03 and 0.05 and τ = 0.01, cal-
culated employing the convective eigenvalue problem and the truncation orders N = 3 (green
dots-dashes), N = 6 (blue dashes), N = 9 (solid black), and COMSOL (red dots). a Pe = 1, b Pe
= 10, c Pe = 100

Table 3 Convergence behavior of the calculated temperatures at XPe = 0.05, τ = 0.01, for Pe
= 1, employing the convective eigenvalue problem

Y = 0.2 Y = 0.3 Y = 0.4 Y = 0.6 Y = 0.7 Y = 0.8

N = 3 0.256079 0.252575 0.256287 0.328441 0.330669 0.269604

N = 6 0.257835 0.259193 0.263403 0.304034 0.307831 0.284545

N = 9 0.257596 0.259685 0.264093 0.310626 0.316237 0.290713

N = 12 0.259063 0.260886 0.265352 0.310019 0.315476 0.290549

N = 15 0.259085 0.260927 0.265346 0.309965 0.315517 0.290559

N = 18 0.259077 0.260928 0.265353 0.309960 0.315529 0.290546

N = 21 0.259077 0.260928 0.265353 0.309961 0.315527 0.290547

N = 24 0.259077 0.260928 0.265353 0.309964 0.315531 0.290551
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Table 4 Convergence behavior of the calculated temperatures at XPe = 0.05, τ = 0.01, for Pe =
10, employing the convective eigenvalue problem

Y = 0.2 Y = 0.3 Y = 0.4 Y = 0.6 Y = 0.7 Y = 0.8

N = 3 0.210106 0.217457 0.234580 0.323458 0.328714 0.272011

N = 6 0.211044 0.223159 0.241558 0.302504 0.307638 0.284495

N = 9 0.210796 0.223583 0.242205 0.309022 0.316087 0.290680

N = 12 0.212114 0.224704 0.243447 0.308494 0.315314 0.290522

N = 15 0.212132 0.224737 0.243437 0.308459 0.315344 0.290520

N = 18 0.212124 0.224738 0.243443 0.308454 0.315355 0.290508

N = 21 0.212125 0.224737 0.243444 0.308457 0.315358 0.290512

N = 24 0.212125 0.224737 0.243444 0.308458 0.315358 0.290512

Table 5 Convergence behavior of the calculated temperatures at XPe = 0.05, τ = 0.01, for Pe =
100, employing the convective eigenvalue problem

Y = 0.2 Y = 0.3 Y = 0.4 Y = 0.6 Y = 0.7 Y = 0.8

N = 3 0.003741 0.021366 0.084100 0.296500 0.295620 0.280568

N = 6 0.008122 0.029257 0.087402 0.289878 0.316661 0.288770

N = 9 0.008837 0.028693 0.086863 0.292425 0.314506 0.290178

N = 12 0.008819 0.028761 0.087426 0.292684 0.313462 0.290293

N = 15 0.008837 0.028817 0.087474 0.292616 0.313595 0.290154

N = 18 0.008853 0.028836 0.087467 0.292643 0.313572 0.290172

N = 21 0.008854 0.028835 0.087468 0.292644 0.313575 0.290177

N = 24 0.008853 0.028835 0.087469 0.292644 0.313574 0.290177

Tables 3, 4, 5 further illustrate the convergence behavior, by presenting the results
in tabular form for Pe = 1, 10, and 100, respectively, demonstrating that with only
N = 18 terms, a full convergence of five to six significant digits is observed at the
selected positions, despite the increase in the Péclet number, clearly demonstrating
the importance of incorporating the convective term into the eigenvalue problem.

9 Closing Remarks

Fifty years ago, roughly by the late 60s and early 70s, the classical integral transform
method for the solution of linear diffusion problems reached a maturity level that
is evident from the seminal contributions published in this period, as here reviewed
[10–14]. Also around this period, the limitations on the classical approach were
faced, in the pioneering works of Ozisik and Murray [18] and Mikhailov [19], that



746 R. M. Cotta et al.

provided the first approximate analytical solutions for non-transformable linear prob-
lems, and would plant the seeds for the development of the hybrid numerical–ana-
lytical approach [20–28], nowadays known as the Generalized Integral Transform
Technique, GITT, that has been extended to various classes of linear and nonlinear
diffusion and convection–diffusion problems along about thirty years, as here briefly
described. Also, fifty years ago, Prof. Spalding and his collaborators were breeding a
sequence of academic contributions on the finite volume method, that would lead to
the very first version of the Phoenics code, launched in 1981, inaugurating the era of
modern CFD & HT. This achievement was soon followed by developments on other
classical numerical approaches that also led to the establishment of general-purpose
computational tools based on the finite element, finite differences, and boundary ele-
ment methods. The need for independent benchmarks of classical heat and fluid flow
test cases, toward the verification and critical comparison of competing numerical
schemes, was the original motivation in the parallel development of the hybrid GITT
approach along this period. The analytical nature behind the GITT, which concen-
trates most of the numerical work in one single independent variable, has proved
to offer error-controlled solutions with mild computational costs that, once derived
and implemented for a certain class of problems, become an interesting alternative
path for computational simulation, especially when associated with very computer
intensive tasks such as optimization, inverse problem analysis, and simulation under
uncertainty.

More recently, with the aid of mixed symbolic-numerical systems [67], the con-
struction of a Unified Integral Transforms (UNIT) algorithm has been advanced [42,
54], offering both an automatic symbolic-numerical open source solver and a devel-
opment platform for researchers and practitioners interested in this class of hybrid
methods for partial differential equations. In parallel to the attempt of offering a
more general-purpose hybrid simulation tool, the method has been advanced through
both mathematical and computational novel aspects, as here partially described, to
challenge applications from now on that, even nowadays pose difficulties to the well-
established numerical methods, such as in dealing with the wide classes of unstable
nonlinear problems and multiscale phenomena.
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