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Nomenclature

Ak, AP Coefficients in Discretised Equations
D Mass Diffusivity
F Volume Fraction
Fr Froude Number
Fst Surface Tension Force
g Gravity Acceleration
k Thermal Conductivity
Kn Knudsen Number
Pc Peclet Number
p Pressure
q Continuum-Preserving Stress/Pressure
R Residual or Gas Constant
Re Reynolds Number
Ra Rayleigh Number
t Time
ui Velocity in xi , i = 1, 2, 3 direction
V Volume
�V Total Velocity Vector
We Weber Number
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Greek Symbols

α,β Under-Relaxation Factors
γ Second viscosity coefficient
μ Dynamic viscosity
ρ Density
σ Surface Tension Coefficient or Stress
τ Stress

Suffixes

a Refers to Heavier Fluid
b Refers to Lighter Fluid or to Boundary Node
cont Refers to continuum
disc Refers to discretised space
f Refers to CV Face Location
i In i-direction
m Refers to mass conservation or to mixture
n Normal to the Interface
sm Refers to Smoothing
th Thermodynamic
xi Refers to xi , i = 1, 2, 3 directions

Superscripts

l Iteration Number
o Refers to old time
ui , u f,i Refers to Momentum Equation
− Refers to Multidimensional Average
′ Refers to Correction

Acronyms and Short Forms

CV Control Volume
CFD Computational Fluid Dynamics
F( ) Function of
LS Level-Set Method
V OF Volume of Fluid Method
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1 Introduction

1.1 Navier–Stokes Equations

In the study of transport in moving fluids, the fundamental laws of motion (conserva-
tion of mass and Newton’s second law of motion) are applied to an elemental fluid.
Two approaches are possible: (a) Particle approach and (b) Continuum approach.

In the particle approach, the fluid is assumed to consist of particles (molecules,
atoms) and the laws are applied to study particle motion. Fluid motion is then
described by statistically averaged motion of a group of particles. For most appli-
cations arising in engineering and the environment, however, this approach is too
cumbersome1 because the significant dimensions of the flow are considerably big-
ger than the mean free path length between molecules. In the continuum approach,
therefore, statistical averaging is assumed to have been already performed and the
fundamental laws are applied to portions of fluid (or control volumes) that contain
a large number of particles. The information lost in averaging must, however, be
recovered. This is done by invoking some further auxiliary laws and by empirical
specifications of transport properties such as viscosity (μ), thermal conductivity (k)
and mass diffusivity (D). The transport properties are typically determined from
experiments. Notionally, the continuum approach is very attractive because one can
now speak of temperature, pressure or velocity at a point and relate them to what is
measured by most practical instruments.

Guidance for deciding whether particle or continuum approach is to be used can
be had fromKnudsen number Kn = l /L, where l is the mean free path length between
molecules and L is a characteristic dimension (say, the radius of a pipe) of the flow.
When Kn is very small (<10−4), continuum approach is considered valid. In macro-
engineering and environmental flows, therefore, continuum approach is adopted.

Control Volume (CV): The CV may be defined as a region in space across the
boundaries of which matter, energy and momentummay flow, and it is a region within
which source or sink of the same quantities may prevail. Further, it is a region on
which external forces may act.

The Navier–Stokes equations are derived by applying the law of conservation of
mass and Newton’s second law of motion to a CV shown in Fig. 1. The CV having
dimensions�x1,�x2 and�x3 is located at (x1, x2, x3) from a fixed origin. The state-
ments of the laws yield algebraic equations of mass and momentum conservation.
These statements are then converted to partial differential equations by letting �x1,
�x2 and �x3 → 0 followed by invoking the mathematical definition of a derivative
in a continuum. Thus,

1This can be appreciated from the Avogadro’s number which specifies that at normal temperature
and pressure, a gas will contain 6.022 × 1026 molecules per kmol. Thus in air, for example, there
will be 1016 molecules per mm3.
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Fig. 1 Eulerian specifications of the control volume (CV)

∂(ρm)

∂t
+ ∂(ρm u f j )

∂x j
= 0 (1)

∂(ρm ui )

∂t
+ ∂

∂x j
(ρm u f j ui ) = ∂σxi

∂xi
+ ∂

∂x j

{
τi j (1 − δi j )

} + ρm Bi (2)

τi j = μ

[
∂ui
∂x j

+ ∂u j

∂xi

]
(3)

whereρm is fluid (ormixture) density,u f j areCV face velocities,u j are representative
CV velocities and Bi are volumetric body forces such as Buoyancy or Centrifugal
or Coriolis force. Equation 3 expresses Stokes’s law connecting surface stress τi j to
the co-planar strain rate via fluid property μ. Finally, σxi are total surface-normal
(tensile) stresses and are modelled as [27]

σxi ≡ − p + σ
′
xi = − (p − q) + τi i = − (p − q) + 2 μ

∂ui
∂xi

= − (p − q) + 2 μ � . �V f (4)

where pressure p is compressive, normal stress τi i are tensile and σ
′
is called the

deviatoric stress. The significance of the newly introduced quantity q in its definition
requires further elaboration.
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1.2 Stokes’s Continuum Condition

In Date [6], a quantity p is defined2 as

p ≡ − 1

3
(σx1 + σx2 + σx3) (5)

Now, an often overlooked requirement of the Stokes’s relations (with or without
variable properties and in the absence of relaxation processes at the molecular level
[27]) is that p must equal the point value of pressure p and the latter, in turn, must
equal thermodynamic pressure pth. Thus, using Eq.4, it follows that

p = p = pth = (p − q) − 2

3
μ � . �V f (6)

Now, to obey the above equality, q must be appropriately chosen in continuum as
well as in discretised space. We now consider the following three cases:

1. Case 1: ( �V = 0) In this hydrostatic case,

p = p − q (7)

But in this case, p can only vary linearly with x1, x2, x3 and, therefore, the point
value of p exactly equals its space averaged value p in both continuum and
discretised space and hence

q = qcont = qdisc = 0 → exactly (8)

2. Case 2: (μ = 0 or � . V f = 0)

Clearly when μ = 0 (inviscid flow) or � . V f = ∂u f i/∂xi = 0 (constant density
incompressible flow) p = p (Eq. 6) in a continuum, and hence qcont = 0 exactly.3

But, in this case, since fluid motion is considered, p can vary arbitrarily with
x1, x2, x3 and, therefore, pmay not equal p in a discrete space. To understand this
matter, consider a case in which pressure varies arbitrarily in x1 direction whereas
its variation in x2 and x3 directions is constant or linear (as in a hydrostatic case).
Such a variation is shown in Fig. 2. Now consider a point P. According to Stokes’s
requirement, pP must equal pP in a continuum. But, in a discretised space, the
values of pressure are available at points E and W only, and if these points are

2In [27], symbol σ = (
∑3

i=1 σxi )/3 is used. Here, p = −σ is preferred. Both p and q are newly
introduced to serve a pedagogic purpose.
3It is important to recognise that in discretised CFD, the incompressible condition (� . V f = 0) is
defined in terms of CV face velocities u f i as shown in Fig. 1. In fact, when this definition is explicitly
implemented, there results the SIMPLE staggered grid procedure of Patankar and Spalding [19].
Further, u f i must satisfy momentum equations. In a continuum, u f i and ui fields coincide but in a
discretised space, it is important to distinguish them. This will become apparent in the next section.
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Fig. 2 1D variation of
pressure and Stokes’s
requirement
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equi-distant from P then pP = 0.5 (pW + pE ). Now, this pP will not equal pP
as seen from the figure and, therefore, the requirement of the Stokes’s relations is
not met.
However, without violating the continuum requirement, we may set

q = qcont = qdisc = λ (p − p) (9)

where λ is an arbitrary constant. In most textbooks, where continuum is assumed,
λ is trivially set to zero because p = p (Eq. 6) in a continuum.

3. Case 3: (μ �= 0 or � . V f �= 0)

This case represents either compressible flow where density is a state function of
both temperature and pressure or an incompressible flow with density dependent
on temperature or any other scalar (e.g. void or volume fraction). Thus, in this
case, Stokes’s requirement will be satisfied (see Eq.6) if we set

q = λ (p − p) + γ � . V f → γ = −2

3
μ (10)

where γ is the well-known second viscosity coefficient whose value is routinely
set to −(2/3)μ even in a continuum. It is instructive to note the reason for this
setting. Because, if this was not done then by combining Eqs. 10 and 6, it can be
shown that

(1 − λ) (p − p) � . V f =
(

γ + 2

3
μ

)
(� . V f )

2 (11)

Clearly, this equation suggests that the system will experience dissipation (or
reversible work done at finite rate since � . V f is associated with the rate of
volume change) even in an isothermal flow [27, 36]. This is, of course, highly
improbable.4

4In passing we note that in all three cases, it can be verified that the quantity q is invariant under
rotation of the coordinate system or interchange of axes. This property ensures isotropy [27].
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Fig. 3 Consequences of violating Stokes’s condition a isolated spherical mass of fluid [27],
b insulated piston cylinder

1.3 Thermodynamic Explanations

This improbability has been explained by Schlichting [27] by considering the case
of an isolated spherical mass of isothermal fluid subjected to uniform normal stress
σ = −p (see Fig. 3a). Now, if γ is not set to −(2/3)μ, the sphere will undergo radial
oscillations of compression and expansion. Here, however, we consider an alternative
arrangement that will yield one further interpretation.

Figure 3b shows the piston-cylinder arrangement typically used in undergraduate
thermodynamics. The system fluid is held in a leakproof adiabatic cylinder at tem-
perature T and pressure p. The system is in equilibrium. Now, suppose the unlikely
circumstance in which external pressure p exceeds system pressure p. It is obvious
that the piston will move downwards compressing the fluid. But, if we now require
that the temperature of the fluid must remain constant at T (this is analogous the
Schlichting’s isothermal flow), then clearly, from first law of thermodynamics, no
change in internal energy �U is permitted in an adiabatic cylinder, and hence there
can only be two consequences.

1. The pistonwill instantly bounce back to its original position to restore equilibrium.
The process may repeat resulting in oscillations of the piston in time. However,
in a steady-state problem, these oscillations will manifest as spatially zig-zag
pressure.

2. Alternatively, to maintain constant internal energy, some fluidmust somehow leak
out although the piston is leakproof.

It is obvious that both these occurrences are improbable but are nonetheless
encountered in discretised CFD when Stokes’s continuum condition (6) is violated
as will be shown in Sects. 2 and 3. Incidentally, the second circumstance above is a
new interpretation associated with the violation of the Stokes’s condition.
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Thus, as shown in Eq. 10, the Stokes’s relations for normal stress require modifi-
cations even in a continuum when compressible flow is considered (requiring intro-
duction of the so-called second viscosity coefficient) and a physical explanation for
this modification is found from Thermodynamics. Now, the same interpretation can
be afforded to λ (p − p) part of q in Eqs. 9 or 10. This term represents a necessary
modification in a discretised space. This is an important departure from the forms of
normal stress expressions given in standard textbooks on fluid mechanics.

1.4 Appropriate Forms of N-S Equations

Finally, from the above discussion, it is clear that theNavier–Stokes equationswritten
out for finite-volume discretisation should preferably read as

∂(ρm)

∂t
+ ∂(ρm u f j )

∂x j
= 0 (12)

∂(ρm ui )

∂t
+ ∂

∂x j
(ρm u f j ui ) = − ∂(p − q)

∂xi
+ ∂

∂x j

{
τi j

} + ρm Bi (13)

where, in the most general case, q stands for

q = λ (p − p) − 2

3
μ × � . �V f (14)

Of course, λ = 0 in a continuum but finite5 in a discretised space. Note, however,
that in the latter, as mesh size is reduced, p → p, and hence qdisc → qcont. Also, it is
important to note that since p must equal point value of pressure p in a continuum
(see Eq.6), the former must essentially correspond to the hydrostatic or spatially
linear variation of pressure (in a local sense) irrespective of the flow considered.
Mathematically, therefore, we may define p as

p = −1

3

3∑

i=1

σxi = 1

3

3∑

i=1

pxi (15)

where pxi are each a solution6 to
∂2 p

∂x2i
= 0 (16)

Thismanner of evaluationof p canbe implementedonboth structured andunstruc-
tured meshes [4–7, 22, 23] in discretised CFD.

5Analysis of the discretised equations presented in the next section shows that λ = 0.5.
6Equation 16 is validated in Eqs. 39–43 for a two-dimensional flow.
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2 Computations on Colocated Grids

2.1 Pressure-Correction Equation on Colocated Grids

Since it has been known that in the SIMPLE algorithm [19], zig-zag pressure predic-
tion is avoided by the use of staggered grid arrangement of pressure and the velocity
variables (see Fig. 4a), it is obvious that the pressure-correction equation applicable
to colocated grids must mimic the main features of the staggered grid practice. Thus,
we begin by stating that in a fully implicit iterative procedure, the cell-face velocity
will be calculated from

ul+1
f i = α

APu f i

[
∑

k

Aku
l+1
f i,k − �V

∂ pl+1

∂xi

]

+ (1 − α) ulf i (17)

where APu f i = ∑
Ak + ρ0m �V/�t . Now, this velocity fieldmust satisfymass con-

servation equation (1). Thus

∂(ρl+1
m )

∂t
+ ∂(ρl+1

m ul+1
f i )

∂xi
= 0 (18)

After substituting Eq.17 in Eq.18, we make use of following representations:

ul+1
f i = ulf i + u

′
f i and pl+1 = pl + p

′
m (19)

The above operations result7 in

∂

∂xi

[

ρl+1
m Di

∂ p
′
m

∂xi

]

= ∂(ρl+1
m )

∂t
+ ∂(ρl+1

m ulf i )

∂xi

− ∂

∂xi

[
ρl+1
m Di Ru f i

] → Di = α �V

Apu f i
(20)

where Ru f i is the residual per unit volume and is given by

Ru f i = APu f i ulf i − ∑
Akulf i,k

�V
+ ∂ pl

∂xi
(21)

7In deriving Eq.20, it is assumed that
∑

Ak u
′
f i,k = 0. This is consistent with the staggered grid

practice [19].
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Fig. 4 a Staggered grid arrangement of variables and associated CVs, b colocated grids—cell faces
are midway between the adjacent nodes

2.2 Analysis of Discretised Equation

To understand further developments of this paper, following comments are now
pertinent:

1. On both staggered and colocated grids, the pressure is stored at node P and the
mass conservation equation is solved over the control volume surrounding node
P. Therefore, with reference to Fig. 4b, the discretised version of Eq. 20 in two
dimensions will read as

AP p
′
m,P = AE p

′
m,E + AW p

′
m,W + AN p

′
m,N + AS p

′
m,S

− ṁ P + ṁR (22)

where

AE = ρl+1
m α �x22
APu f 1

|e, AW = ρl+1
m α �x22
APu f 1

|w

AN = ρl+1
m α �x21
APu f 2

|n, AS = ρl+1
m α �x21
APu f 2

|s
AP = AE + AW + AN + AS (23)

Further, the mass source ṁ P and residual source ṁR will be given by

ṁ P = (ρl+1
m ulf 1 |e − ρl+1

m ulf 1 |w) �x2

+ (ρl+1
m ulf 2 |n − ρl+1

m ulf 2 |s) �x1

+ (ρl+1
m,P − ρom,P)

�V

�t
(24)

ṁR = AE Ru f 1 �x1|e − AW Ru f 1 �x1|w
+ AN Ru f 2 �x2|n − AS Ru f 2 �x2|s (25)
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2. On staggered grids, momentum equations are solved at the cell faces and, there-
fore, residuals Ru f 1 and Ru f 2 must vanish at full convergence rendering ṁR = 0.
Although this state of affairs will prevail only at convergence, one may ignore ṁR

even during iterative solution. Thus, effectively, Eq.20 applicable to staggered
grid arrangement is

∂

∂xi

[

ρl+1
m Di

∂ p
′
m

∂xi

]

= ∂(ρl+1
m )

∂t
+ ∂(ρl+1

m ulf i )

∂xi
(26)

The above equation is solved with the boundary condition [19]

∂ p
′
m

∂n
|b = 0 (27)

If the boundary pressure pb is specified then, of course, p
′
m,b = 0.

3. When computing on colocated grid, however, cell-face velocities must be evalu-
ated by interpolation to complete evaluation of ṁ P because only nodal velocities
ui,P are computed through momentum equations. Thus, ṁ P in Eq.24 is evaluated
as

ṁ P = (ρl+1
m ul1 |e − ρl+1

m ul1 |w) �x2
+ (ρl+1

m ul2 |n − ρl+1
m ul2 |s) �x1

+ ( ρl+1
m,P − ρom,P )

�V

�t
(28)

where themeanvelocitiesui are evaluated byone-dimensional averaging although
multidimensional averaging can also be preferred. Thus, since the cell faces are
midway between the nodes, we may write

u1,e = 1

2
(u1,P + u1,E ) u1,w = 1

2
(u1,P + u1,W )

u2,n = 1

2
(u2,P + u2,N ) u2,s = 1

2
(u2,P + u2,S) (29)



52 A. W. Date

Replacing u f 1,e by u1,e, etc. in the above manner, of course, does not guarantee
that ṁ P will vanish even at convergence.8

4. Similarly, to evaluate ṁR from Eq.25, we reconsider Eq. 21 for cell-face location
e, for example, and write it as

Ru f 1,e = APu f 1 ulf 1 − ∑
Ak ulf 1,k

�V
|e + ∂ pl

∂x1
|e (33)

In this equation, the net-momentum-transfer terms are now multidimensionally
averaged. This is necessary because when computing on colocated grids, coeffi-
cients Ak are not available at the cell-face locations. Thus, again using Eq.21, we
have

APu f 1 ulf 1 − ∑
Ak ulf 1,k

�V
|e = Ru f 1,e − ∂ pl

∂x1
|e (34)

Effectively, therefore

Ru f 1,e = Ru f 1,e − ∂ pl

∂x1
|e + ∂ pl

∂x1
|e (35)

5. Multidimensionally averaged Ru f 1,e is evaluated as

8Incidentally, in the literature, several different types of interpolations have been proposed. Some
of these are given below by way of example.

• Rhie and Chow [24] (1D Pressure gradient interpolation)

u f 1,e = u1,e − �V

APu

[
∂ p

∂x1
|e − ∂ p

∂x1
|e

]

where
∂ p

∂x1
|e = 1

2

[
∂ p

∂x1
|P + ∂ p

∂x1
|E

]
(30)

• Peric [8] (1D Mom-Outflow interpolation)

u f 1,e = 1

2

[∑
Ak u1,k
APu1

|P +
∑

Ak u1,k
APu1

|E
]

− �V

APu

∂ p

∂x1
|e (31)

• Thiart [34] (Power Law Scheme [20])

u f 1,e = θ u1,P + (1 − θ) u1,E where

θ(Pce) = [Pce − 1 + max(0,−Pce)] /Pce

+ max
{
0, (1 − 0.1|Pce|)5

}
/Pce (32)

where cell-face Reynolds/Peclet number Pce = (ρm u f 1�x1/μ)e.
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Ru f 1,e = 1

2

[
1

2
(Ru1,P + Ru1,E ) + �x2,n Ru1,se + �x2,s Ru1,ne

�x2,n + �x2,s

]

Ru1,se = 1

4
(Ru1,P + Ru1,E + Ru1,S + Ru1,SE )

Ru1,ne = 1

4
(Ru1,P + Ru1,E + Ru1,N + Ru1,NE ) (36)

This representation shows that effectively residuals at nodal locations P, E, N,
S, NE and SE only are involved. These residuals will, of course, vanish at full
convergence becausemomentumequations are being solved at the nodal positions.
Therefore, effectively Ru f 1,e = 0 at convergence and Eq.35 can be written as

Ru f 1,e = ∂ pl

∂x1
|e − ∂ pl

∂x1
|e (37)

6. Now, to evaluate multidimensionally averaged pressure gradient in the above
equation, we write

∂ pl

∂x1
|e = 1

2

[
1

2

(
∂ pl

∂x1
|P + ∂ pl

∂x1
|E

)

+ �x2,n ∂ pl/∂x1 |se + �x2,s ∂ pl/∂x1 |ne
�x2,n + �x2,s

]

= 1

4

[
plE − plW

�x1,e + �x1,w
+ plEE − plP

�x1,e + �x1,w

]

+ 1

4

�x2,s
�x2,n + �x2,s

[
plE + plN E − plP − plN

�x1,e

]

+ 1

4

�x2,n
�x2,n + �x2,s

[
plE + plSE − plP − plS

�x1,e

]
(38)

To simplify the above evaluation further, following definitions are introduced
allowing for the non-uniform grid spacing:

pl x1,P ≡ �x1,w plE + �x1,e plW
�x1,w + �x1,e

(solution to
∂2 pl

∂x21
|P = 0) (39)

pl x2,P ≡ �x2,s plN + �x2,n plS
�x2,s + �x2,n

(solution to
∂2 pl

∂x22
|P = 0) (40)

pl P = 1

2
(pl x1,P + pl x2,P) (41)
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pl x1,E ≡ �x1,e plEE + �x1,ee plP
�x1,e + �x1,ee

(solution to
∂2 pl

∂x21
|E = 0) (42)

pl x2,E ≡ �x2,s plN E + �x2,n plSE
�x2,s + �x2,n

(solution to
∂2 pl

∂x22
|E = 0) (43)

pl E = 1

2
(pl x1,E + pl x2,E ) (44)

Substituting the above definitions9 in Eq.38 and replacing plEE (Eq. 42) and plW
(Eq. 39), respectively, in favour of plE and plP , it can be shown that

∂ pl

∂x1
|e = 1

2

[
plE − plP
�x1,e

+ plE − plP
�x1,e

]

= 1

2

∂( pl + pl )

∂x1
|e (45)

and, therefore, from Eq.37

Ru f 1,e = ∂ pl

∂x1
|e − 1

2

∂( pl + pl )

∂x1
|e = 1

2

∂(pl − pl)

∂x1
|e = ∂ p

′
sm

∂x1
|e (46)

where

p
′
sm = 1

2
(pl − pl) (Smoothing Pressure Correction) (47)

Note that the analysis of the discretised equations has yielded a value λ = 0.5
and q = p

′
sm (see Eq.9).

7. Repeating items 4, 5 and 6 at other cell faces, it can be shown that

Ru f 1,w,e = ∂ p
′
sm

∂x1
|w,e Ru f 2,s,n = ∂ p

′
sm

∂x2
|s,n (48)

Thus, substituting the above equations in Eq.25, it follows that

ṁR = AE
∂ p

′
sm

∂x1
�x1|e − AW

∂ p
′
sm

∂x1
�x1|w

+ AN
∂ p

′
sm

∂x2
�x2|n − AS

∂ p
′
sm

∂x2
�x2|s (49)

8. In evaluating coefficients AE, AW, AN and AS, we need AP coefficients at the cell
faces (see Eq.23). But, these can be evaluated by one-dimensional averaging as

9Equations 39–43 justify the assertion made in Eqs. 15 and 16 for a two-dimensional flow.
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APu f 1
e = 1

2
(APu1

P + APu1
E ) APu f 1

w = 1

2
(APu1

P + APu1
W )

APu f 2
n = 1

2
(APu2

P + APu2
N ) APu f 2

s = 1

2
(APu2

P + APu2
S ) (50)

where the AP coefficients at the nodal locations P, N, E, S, W are known on
colocated grids.

9. The above derivations show that Eqs. 24 and 25 can be replaced by Eqs. 28 and 49,
respectively. Thus, the mass-conserving pressure-correction Eq.20 appropriate
for colocated grids can effectively be written as

∂

∂xi

[

ρl+1
m Di

∂ p
′
m

∂xi

]

= ∂(ρl+1
m )

∂t
+ ∂(ρl+1

m uli )

∂xi

− ∂

∂xi

[

ρl+1
m Di

∂ p
′
sm

∂xi

]

(51)

2.2.1 Further Simplification

It is possible to further simplify Eq.51. To understand this simplification, consider,
for example, the grid disposition near the west boundary as shown in Fig. 5. When
computing at the near-boundarynodeP(2, j), the pressure gradient∂ p/∂x1 |P must be
evaluated in the momentum equation for velocity u1,P . This will require knowledge
of boundary pressure pb = p (1, j). On colocated grids, this pressure is not known
and, therefore, is evaluated by linear extrapolation from interior flow points. Thus,

pb = LbE

L PE
pP − LbP

L PE
pE (52)

where L denotes length. The same procedure is adopted at Nb and Sb. Now, assuming
that the pressure variationnear a boundary is locally linear in both x1 and x2 directions,
it follows that

pb − pb = pP − pP or p
′
sm,b = p

′
sm,P (53)

and, therefore,
∂ p

′
sm

∂x1
|b = ∂ p

′
sm

∂n
|b = 0 (54)

The same condition is also applicable to p
′
m (see Eq.27). Now, Eq.51 shows that

multipliers of gradients of p
′
m and p

′
sm are identical and since the boundary conditions

for these two variables are also identical, wemay write the mass-conserving pressure
correction in the following form:
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∂

∂xi

[

ρl+1
m Di

∂ p
′

∂xi

]

= ∂(ρl+1
m )

∂t
+ ∂(ρl+1

m uli )

∂xi
(55)

where p
′
is called total pressure correction and is expressed as

p
′ = p

′
m + p

′
sm (56)

Here, p
′
sm , of course, is evaluated from Eq.47. Following Eqs. 54 and 27, Eq.55

must be solved with boundary condition

∂ p
′

∂x1
|b = ∂ p

′

∂n
|b = 0 (57)

The discretised form of Eq.55 is

AP p
′
P = AE p

′
E + AW p

′
W + AN p

′
N + AS p

′
s − ṁ P (58)

where ṁ P is given by Eq.28.
Finally, note that Eq.55 has similarity with the staggered grid equation (26). Both

are Poisson’s equations with similar boundary conditions (57) and (27).

2.2.2 Modification for Compressible Flow

So far it has been assumed that ρm = constant as in incompressible flow. However,
in compressible flow ρm is connected to pressure p via equation of state such as
p = ρm Rg T . Thus,

Fig. 5 West boundary I = 1

E

2 , j

2 , j + 1

3 , j

2 , j − 1

Nb

b

Sb

1 , j P

N

S

i = 1
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ρl+1
m = ρlm + ρ

′
m = ρlm + p

′
m

Rg T
= ρlm + p

′ − p
′
sm

Rg T
(59)

With this substitution, Eq.55 will read as

∂

∂xi

[

ρlm Di
∂ p

′

∂xi
−U ∗

i

p
′

RgT

]

= ∂(ρlm)

∂t
+ ∂

∂xi

[

ρlm uli −U ∗
i

p
′
sm

RgT

]

(60)

U ∗
i = uli − Di

∂ p
′
sm

∂xi
(61)

The left-hand side of Eq.60 contains diffusion (Di∂ p
′
/∂xi ) as well as convection

(U ∗
i p

′
/RgT ) terms. Thus, for compressible flow, the pressure-correction equation

is a transport equation for p
′
and not a Poisson’s equation. Also, note that ifU ∗

i = 0,
the incompressible form (see Eq.51) is recovered.

2.2.3 Overall Calculation Procedure on Colocated Grids

The sequence of calculations on colocated grids is as follows:

1. At a given time step, guess pressure field pl . This may be the pressure field from
the previous time step.

2. Solve momentum equations once for each ui with problem-dependent boundary
conditions. Thus

APui uli,P =
∑

Aui
k uli,k − �V

∂ pl

∂xi
|P + ρom,p �V

�t
uoi,P (62)

where APui = ∑
Aui
k + ρ0m �V/�t .

3. Using the uli distribution, solve Eq.55 (or, 60) with boundary condition (57) to
yield the total pressure correction p

′
i, j field. This implies iterative solution of

Eq.58. The number of iterations typically may not exceed 10.
4. Recover mass-conserving pressure correction via Eq.56. Thus

p
′
m,P = p

′
P − p

′
sm,P = p

′
P − 1

2
(plP − plP) (63)

where plP is evaluated from Eqs. 15 and 16. Using this p
′
m field, the mass conser-

vation error is evaluated from10

Rmass,P = AP p
′
m,P − (AEp

′
m,E + AWp

′
m,W + ANp

′
m,N + ASp

′
m,S) (64)

10This is unlike the staggered grid practice in which the mass error is estimated from discretised
version of Eq.1.
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5. Correct pressure and velocity fields according to

pl+1
P = plP + β p

′
m,P where 0 < β < 1 (65)

ul+1
i,P = uli,P − Di

∂ p
′
m

∂xi
|P (66)

6. Using this new velocity field, solve discretised forms of scalar transport equations
relevant to the problem at hand.

7. Evaluate residuals R� of momentum and scalar (�) equations. The mass residual
Rm evaluated fromEq.64.Whenmaximum residual as per the L2-norm is<10−5,
convergence is declared.

8. If this convergence criterion is not satisfied, treat pl+1 = pl ,ul+1
i = uli and�l+1 =

�l and return to step 2.
9. To execute the next time step, set uoi = ul+1

i , �o = �l+1 and return to step 1.

2.3 Some Illustrative Problems

In all problems, computations are carried out with (λ = 0.5) and without (λ = 0)
application of smoothing pressure correction.

2.3.1 Essentially Parabolic Flows

We consider 2D laminar developing flow between two parallel plates 2b apart (Dh =
4b). Although the flow is parabolic, here it is treated as being governed by 2D elliptic
equations.

(a) uin = u (b) uin

u = 3
2 1− (yb )

2
,

Fig. 6 Entrance region flow between parallel plates
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Fig. 7 Natural convection in horizontal concentric annulus [4]

Figure 6a shows predicted axial variation of wall pressure for the case when the
fluid enters the channel with uniform axial velocity uin = u. As the boundary layers
develop along the channel walls, the true pressure variation is expected to be non-
linear with x in the entrance region but, at large x, it is expected to be linear because
the flow is now fully developed. It is seen that with λ = 0, the predicted pressure is
zig-zag near the entrance, whereas at large x, pressure zig-zagness disappears.

In contrast, Fig. 6b shows predictions for the case in which the fluid enters with
fully developed parabolic axial velocity profile. Then, it is expected that true axial
pressure variation will be linear right from the x = 0. Figure 6b confirms this expec-
tation even when λ = 0.

2.3.2 Essentially Elliptic Flows

Natural Convection: Figure 7 (left) shows concentric cylinders in which the inner
cylinder (dia Di ) is hotter (Th) than the outer (Tc) one (dia Do). The annulus gapwidth
L = (Do − Di )/2. Figure 7 (right) shows predicted pressure variation along the hor-
izontal plane in the presence of natural convection. Here again, since the true pressure
variation is non-linear, the predicted pressure with λ = 0 shows zig-zagness. But,
with smoothing pressure correction (λ = 0.5), zig-zagness disappears. The annulus
natural convection flow is fully elliptic that involves simultaneous solution of the
energy equation along with the flow equations. Further, the domain of computation
is mapped by unstructured grid of triangular elements [4].

Mixed Convection: We now consider the problem of mixed convection flow in a
right-angled corner. As shown in Fig. 8 (top), flow enters the domain of computation
at the north boundary, turns anticlockwise around the corner and leaves through the
east boundary. For this problem, an exact solution is developed by Shih and Ren
[28] by specifying artificial boundary conditions. The unique feature of the exact
solution is that the pressure variation in Y -direction is linear at all constant X-planes.
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Fig. 8 Mixed convection in a corner—artificial boundary conditions

Figure 8 (left) shows comparison of predicted and exact profiles of velocity (u and
v). Similar comparison for pressure is shown in Fig. 8 (right). It is seen that since the
exact pressure variation is linear in Y, no zig-zagness is predicted for both λ = 0 and
0.5.

2.3.3 Compressible Flow in 2D Plane Nozzle

Figure 9 (top) shows the computational domain of a 2D convergent-divergent plane
nozzle. The bottom boundary represents the axis (centreline) of the nozzle whereas
the top boundary is a wall. The flow enters the left boundary and leaves through the
right boundary. The total nozzle length L = 11.56 cm and the throat is midway. The
half-heights of the nozzle at entry, throat and exit are 3.52 cm, 1.37 cm and 2.46
cm, respectively. The inlet Mach number is Min = 0.232 and the exit static pressure
is p / p0 = 0.1135 where p0 is the stagnation pressure. The stagnation enthalpy
is assumed constant. For these specifications, experimental data are available [16].
This flow has been computed by Karki and Patankar [13] using curvilinear grids and
Upwind Difference Scheme (UDS) for the convective terms and assuming μ = 0
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(that is, Euler equations are solved). Here, the flow is computed using unstructured
mesh and Total Variation Diminishing (TVD) scheme [14, 17] again with μ = 0.

At inflow plane, since Min is known, uin, Tin and pin are specified using stan-
dard isentropic relationships [10]. In the exit plane, except for pressure (which
is fixed), all other variables are linearly extrapolated from the near-exit boundary
node values. At the upper nozzle wall, tangency condition is applied. The pressure
distribution is determined by discretising a compressible flow version of the total
pressure-correction equation (60). For velocities, equations for u1, u2 are solved and
temperature is recovered from definition of stagnation enthalpy. Finally, density is
determined using equation of state p = ρm Rg T . Computations are performed using
570 elements.

Figure 9 (middle) shows the predicted variations of pressure (dashed line) and
Mach numbers (solid line) at the upper wall and the centreline. The experimental
data (open circles) for pressure have been read from a figure in [13]. It is seen
that the agreement between experiment and predictions is satisfactory. Note that
the predicted Mach number at the upper wall passes through M = 1 exactly at the
throat (X/L = 0.5) and reaches supersonic state M = 2.01 at exit. At the centreline,
however, M = 1 location is downstream of the throat. Finally, Fig. 9 (bottom) shows
the iso-Mach contours. Notice that the iso-Mach lines are slanted which have been
found to be in agreement with computations of [13].

2.4 Main Findings

The above examples confirm our theoretical deductions (see Sect. 1.2) on importance
of including simple algebraic smoothing pressure correction p

′
sm on colocated grids

to avoid prediction of zig-zag pressure. The efficacy of the smoothing correction has
been shown in respect of

1. Incompressible as well as compressible flows.
2. Problems governed by parabolic and elliptic equations.
3. Problems with/without body forces.
4. Structured as well as unstructured grids.
5. Applicability to any boundary condition.

Several other applications of more complex flows can be found in [7, 11, 22, 23,
30] by way of example.



62 A. W. Date
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Fig. 9 2D plane nozzle: computational domain (top), variation of p andM (middle), Mach number
contours 0.2 (0.1) 2.0 (bottom)
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3 Interfacial Flows—Volume Error

3.1 Single-Fluid Formalism

In interfacial unsteady flows of two immiscible fluids, a problem of loss of fluid
volume/mass is encountered when computing in discretised space. This problem is
particularly severe when the density ratio of the two fluids is large (as, for example,
in air and water). Such interfacial problems are often solved by employing single-
fluid formalism in which the flow of two fluids is treated as that of a single fluid
whose properties change abruptly across the interface. In such flows, the governing
equations are [17]

∂u f, j

∂x j
= � . �V f = 0 (Volume Conservation) (67)

∂(ρm ui )

∂t
+ ∂

∂x j
(ρm u f, j ui ) = ∂

∂x j

[
μm

∂ui
∂x j

]
− ∂ p

∂xi

+ ρm gi + Fst,i + ∂

∂x j

[
μm

∂u j

∂xi

]
(68)

∂ρm

∂t
+ ∂

∂x j
(ρm u f, j ) = 0 (Mass Conservation) (69)

The above equations are special in that the pressure is determined from the con-
tinuity equations (67) (or volume conservation equation) but the superficial density
ρm is determined from the conserved scalar equation (69) (or mass conservation
equation). Thus, the equations carry characteristics of both an incompressible flow
and a compressible flow. As such, incorporation of qdisc becomes important. Then,
following from Eq.10 and combining Eqs. 67 and 69, it can be shown that

p
′
sm = qdisc = 1

2
(p − p) + γ � . V f

= 1

2
(p − p) − γ

ρm

{
∂ρm

∂t
+ u f, j

∂ρm

∂x j

}

= 1

2
(p − p) − γ

D

Dt
(ln ρm) (70)

Notice that the last term will become significant (in the neighbourhood of the
interface in discretised CFD) when density ratio of the two fluids is large. Most
authors (see, for example [9, 25, 31–33]) instead of solving Eq.69, solve an equation
for Volume Fraction F of the heavier fluid a (say). F is defined as

F ≡ ρm − ρb

ρa − ρb
(71)
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, t=0.015t=0.0125t=0.0075t=0

, t=0.0175 t=0.02 t=0.0225 t=0.025

Fig. 10 Splashing of a water drop on a surface: F = 0.5 contours (left), pressure and velocity
vectors (right)

where suffix b stands for the lighter fluid.11 The interface is now notionally identified
with F = 0.5. The predicted smeared (about F = 0.5) F-distribution at a time step
is then corrected to conserve volume in the two-fluid CVs (in which 0 < F < 1.0
as shown in Fig. 13-left) on the basis of geometric considerations. The correction
procedures become extremely complex in 3D flows [25]. Other authors identify the
interface with Level Set (usually zero) and define a level-set distance function [31].
The level-set equation is same as the F-equation but the correction procedure is
invoked such that | � · F | = 1. In both procedures, apart from the additional work
requirement, volume/mass balance errors arise [33].

Use of smoothing pressure correction indicated inEq.70, on the other hand, is very
simple to implement and avoids volume/mass errors (within discretisation errors).
To illustrate this, we consider few problems12 with and without effects of surface
tension.

3.2 Problems with Fst = 0

3.2.1 Splashing of a Drop on a Liquid Surface

Consider a two-dimensional rectangular enclosure (Fig. 10) of 7mm×14mmdimen-
sions. The enclosure is filled with water to a height of 8.75mm. Initially, a cylindrical

11Incidentally, the superficial viscosity is now evaluated as μm = F μa + (1 − F) μb.
12In all problems, the convective terms are discretised using a Total Variation Diminishing
(TVD) scheme [14] to minimise interface smearing around F = 0.5. Implementation details are
given in [17].
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Fig. 11 Collapse of a water column

water drop of radius rd = 1.4mm is placed above the water surface in air at the centre
plane x1 = 3.5 mm and height x2 = 10.55 mm. For t > 0, the drop falls under the
action of gravity (g = 9.81 m/s2) and splashes on the water surface creating ripples
and merges with the body of water.

Computations are performed with 64 × 128 grid without exploiting symmetry.
50 iterations per time step (10−5 s) are required with p

′
under-relaxed for obtain-

ing convergence. Computations are continued up to t = 0.025s and the interface
profiles (F = 0.5) are shown in Fig. 10 (left). The present results had maximum vol-
ume error13 0.002% at the last time step used in the computations. Notice also the
smooth pressure prediction and the velocity vectors in Fig. 10 (right). Velocities in air
have higher magnitude than in water. These motions cause development of pressure
variations that deviate from pure hydrostatic pressure variation.

13Volume error is defined as

Error (t) =
(∑

Fi, j �Vi, j
)

/
(∑

F0
i, j �Vi, j

)
(72)

where F0 is the initial F-distribution at t = 0 and �Vi, j is the volume of the cell surrounding node
(i, j).
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3.2.2 Collapse of a Water Column

Figure 11 (top) shows the problem configuration and the domain of computation.
Initially, water (fluid a) column H = 2 m high and L = 1 m wide is kept at rest by
means of a dam. Fluid b is air. At t = 0, the dam breaks resulting in collapse of water
column followed by horizontal spread of water. Computations are performed with
40(x1) × 22(x2) uniform grid. Taking g = 9.81, fixed time step �τ = 0.001 is used
where τ = t × (2 × g/L)0.5. Computations are carried out till τ = 3. At this time,
the maximum error in volume balance was found to be 0.432%.

Figure 11 (middle) shows the F = 0.5 contours at τ = 0.9, 1.4, 2.0 and 3.0. These
contours mimic those computed by Jun and Spalding [12] using the explicit van Leer
scheme [35]. Thus, the TVD scheme [14] used in present computations succeeds in
sharp interface capturing. The time variations of horizontal spread X and of vertical
fall Y (solid lines) are compared in Fig. 11 (bottom) with experimental data (open
circles) of Martin and Moyce [15]. The comparison is reasonable notwithstanding
the experimental difficulties mentioned by them.

3.2.3 Sloshing in a Tank

Figure 12 (top) shows the problemspecification.The tank (40 × 25 cm) ismovedwith
a horizontal displacement x1 (t) = A {sin (2 π f1 t) − sin (2 π f2 t)} where A =
7.5 × 10−3, f1 = 1.598 Hz and f2 = 1.307 Hz. Computations are performed with
60 × 60 cells and time step�t = 0.001 s. On all boundaries, u1(t) = dx1/dt, u2 = 0
was specified at each time step. Nearly 500 iterations per step are required to obtain
convergence. The pressure-correction equation was under-relaxed in the first 100

40  CM

20
  C

M

12
  C

M

OSCILLATIONS   X 1 =  F ( t )

g
FLUID  a

FLUID  b
AIR

WATER

, , ,

, , ,

Fig. 12 Sloshing in a tank (top), interface (F = 0.5) locations (middle), pressure contours and
velocity vectors (bottom) arrow size: 1 cm = 13 cm/s
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time steps to procure convergence. At t = 2.004 s, the volume error (see Eq.72) was
0.45%.

In Fig. 12 (middle), the predicted interface profiles (lines) are compared with
experimental data (dots) as read frompaper byAndrillon andAlessandrini [1]. Again,
the agreement is seen to be reasonable. Figure 12 (bottom) shows dimensionless
pressure p∗ = (p − pmin)/(pmax − pmin) contours and velocity vectors at different
times. The velocity in the air greatly exceeds that in thewater. Thefluid re-circulations
due to interface movement accord with the expectation and the pressure contours are
indeed smooth.

3.3 Problems with Finite Fst

In computation ofmany interfacial flows involvingmerger and splits of the interfaces,
the surface tension force Fst is included in the momentum equations. The force acts
tangent to the interface. However, the interface within a control volume is taken to
be locally spherical. As such, the net force acts normal to the interface while the net
forces normal to the interface normal cancel out. Thus, the net force per unit volume
in direction i is given by [17]

Fst,i = − σ κ
∂F

∂xi
= − σ κ

∂F∗

∂xi
(73)

where F∗ ≡ 0.5

{
1 + (F − 0.5)

|(F − 0.5)|
}

(74)

where F is the volume fraction of the heavier fluid a and κ is the interface curvature.
The replacement ofF by F∗ simply ensures that the surface tension force is evaluated
at the interface (F = 0.5) only even when the F-distribution is smeared. Of course,
F∗
b = 0 and F∗

a = 1.

3.3.1 Geometric Evaluation of κ

Most authors usingVOFor LSmethods, evaluateκ from reconstructedF-distribution
as

κ = − 1

A

[
1

A

∂F

∂xi

∂A

∂xi
− ∂2F

∂x2i

]
summation (75)

where A =
√

(
∂F

∂x1
)2 + (

∂F

∂x2
)2 + (

∂F

∂x3
)2 (76)

Following comments are now considered pertinent:
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1. Evaluation of κ according to Eq.75 is complex and is known to introduce discreti-
sation errors. This has been shown by Takahira et al. [33] where a computation
of a static bubble surrounded by static liquid generates spurious velocities.

2. Further, it is important to point out that many authors [2, 9, 26] study effect
of surface tension coefficient σ by keeping the density and viscosity values of
two fluids unchanged.14 As such, Fst,i calculated using Eq.75 produces different
magnitudes of the force (see Eq.73) for the same fluid pair. However, in the
literature, no real two fluid pairs having same values of density and viscosity but
different values of σ are found (see, for example [21]).

3. The source of the difficulty mentioned above, however, can be traced to non-
dimensionalisation of momentum equation (68). Many authors (see [33], for
example) use reference velocity U, reference length L and reference properties
ρa and μa to non-dimensionalise equation (68). The dimensionless equation then
reads

∂ρ∗
m u∗

i

∂t∗
+ ∂ρ∗

m u∗
f, j u

∗
i

∂x∗
j

= 1

Re

∂

∂x∗
j

[

μ∗
m

∂u∗
i

∂x∗
j

]

− ∂ p∗

∂x∗
i

+ ρ∗
m g∗

i − κ∗

We

∂F∗

∂x∗
i

+ 1

Re

∂

∂x∗
j

[
μ∗
m

∂u∗
j

∂x∗
i

]
(77)

where the dimensionless terms are

Re = ρa U L

μa
Reynolds number (78)

g∗ = g L

U 2
Froude number (79)

κ∗ = κ L Dimensionless Curvature (80)

We = ρa U 2 L

σ
Weber number (81)

ρ∗
m,μ∗

m = ρm

ρa
,
μm

μa
Dimensionless properties (82)

u∗
i , p

∗ = ui
U

,
p

ρa U 2
Dimensionless Velocity and Pressure (83)

x∗
i , t

∗ = xi
L

,
t

L/U
Dimensionless coordinates and Time (84)

Equation 77 thus shows that since κ∗ is evaluated geometrically from
F-distribution, theWeber number (We) now appears to be an independent param-
eter of the flow system. This interpretation leads to investigation of effect of sur-
face tension coefficient σ (or We) for the same fluid pair. In the discussion below,
we show that this is misleading and that Weber number is not an independent
parameter of the flow system.

14This ignores the fact that σ is essentially a property of a specified fluid pair (a, b).
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Fig. 13 Illustrative F-distribution and interface normal (left), zero-thickness CV surrounding an
interface (right)

3.3.2 Fluid Dynamic Evaluation of κ

In view of the last comment, we consider an alternative approach to evaluation of
κ and Fst,i . Thus, we assume that the interface is a surface of zero thickness having
no physical properties as shown in Fig. 13 (right). Then, taking the dot product of
momentum equation (68) (along with Eq.73) with interface normal �n will result in

∂

∂n
(p − τnn) = −σ κ

∂F∗

∂n
→ τnn = 2 μ

∂Vn

∂n
(85)

and Vn is the velocity normal to the interface. Note that the unsteady, convective
and gravity terms disappear because the interface has zero thickness and no mass.
However, invoking the Stokes’s continuum requirement (with q = 0 for a control
volume of zero thickness normal to the interface), we have

p − τnn = p = − σn (86)

where σn is total normal stress. Hence, Eq.85 will read as

d p

d n
= −σ κ

d F∗

d n
(87)

This equation is same as the familiar Young–Laplace equation for the equilibrium
of a static bubble in a static fluid in which τnn = 0 [29]. Here, τnn is finite. Now, upon
discretisation along the normal to the interface, it follows that (see Fig. 13 (right))

σ κ = − d p/d n

d F∗/d n
= − pb − pa

F∗
b − F∗

a

= − pb − pa
0 − 1

= pb − pa (88)

and hence
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Fst,i = − (pb − pa)
∂F

∂xi
(89)

ThisFluidDynamic expressionwithmean pressure difference (pb − pa) on either
side of the interface is again a new result. On both structured and unstructured grids,
the difference of average pressures can be evaluated in the following Eq.15:

σ κ = (pb − pa)P = 1

3

3∑

i=1

(pb − pa)xi ,P (90)

(pb − pa)xi ,P = solution of
∂2

∂x2i

[
p (1 − 2 F∗)

]
P = 0 (91)

This manner of evaluation ensures that σ κ is calculated at the interface (F = 0.5)
only.

Thus, Eq. 89 evaluates the surface tension force directly from flow variables with-
out evaluating the interface curvature. As such, the remarkable feature of this expres-
sion is that it does not require knowledge of surface tension coefficient σ.

3.3.3 Bursting of an Air Bubble Through Water

To demonstrate validity of two different methods of evaluating the surface tension
force, we consider the bubble-burst problem (see Fig. 14). This problem has been
solved by Takahira et al. [33] using the level-set method using 60 × 60 × 120 grid
and the surface tension force is evaluated from geometric considerations (which

4
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FLUID B − AIR

SPHERICAL  AIR  BUBBLE
RADIUS  =  1

CENTER LOCATION =  ( 3,  3  , 2.8  )

X

Y

Z

g

Fig. 14 Bursting of a bubble
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, ,

(a) (b) (c)

Fig. 15 Interface evolutions during bursting: a geometric evaluation of Fst , b fluid dynamic eval-
uation of Fst , c Fst = 0

requires knowledge of the value of σ). Here, in order to save computer time, the
same problem is solved on coarser grid of dimensions 30 × 30 × 60. Maximum of
50 iterations per time step (�τ = 0.001) are required to procure convergence. The
reference velocityUref, properties ρa,μa and surface tension coefficient σ are chosen
such that

Re = ρa Uref D

μa
= 474 We = ρa U 2

ref D

σ
= 1.0

Fr = U 2
ref

g D
= 0.64

ρb

ρa
= 0.001

μb

μa
= 0.01

The problem has been computed in three different ways as follows:

1. Fst from Eqs. 73, 75 and 76 → Fig. 15a.
2. Fst from Eqs. 89, 90 and 91 → Fig. 15b.
3. Ignoring surface tension force. That is, Fst = 0 → Fig. 15c.

Figure15a, b show that predictions with both types of evaluations of Fst are nearly
identical. The predictions also accord with the fine grid solutions obtained by [33]
although the burst heights at large times are somewhat smaller due to coarseness
of the grid used here. Nonetheless the formation of ripples on the liquid surface is
clearly seen at τ = 0.4 and 0.72. Likewise, at τ = 1.4 and 1.68, formation of a neck
in the entrained liquid suggests that a detached liquid drop is about to form.

Since predictionswith both types of evaluations are nearly identical, computations
are repeatedwith Fst = 0 (seeFig. 15c). It is seen that the burst heights are nowgreater
indicating that the absence of surface tension force fails to minimise the interface
surface during bursting, as expected.

Finally, the time variation of volume error (see Eq.72) evaluated on coarse grid is
found to increase with time in an oscillatorymanner [18]. At τ = 1.68, themaximum
error with fluid dynamic evaluation of Fst is 0.078%. The same was found to be
0.093% with geometric evaluation. These errors are much smaller than the ones
reported by Takahira et al. [33] on a finer grid.
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Incidentally, solution to the problem of merger of two asymmetrically placed air
bubbles rising in a box of square cross-section filled with water has been reported
in [18]. These solutions further support the deduction that Weber number is not an
independent parameter of the system.

4 Conclusions

1. Continuum requirement of Stokes’s stress laws is obeyed to

a. eliminate problemof zig-zagness pressure prediction in computation of incom-
pressible flow on colocated grids.

b. eliminate (within discretisation errors) the problem of loss of mass/volume at
large times encountered in computation of unsteady interfacial flows.

c. evaluate surface tension force in interfacial flows using dynamic flow variables
and without requiring knowledge of surface tension coefficient σ.

2. Thermodynamic explanation for validity of Stokes’s continuum requirement is
presented with new interpretations that follow from its violations.
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