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Genetically Encoded Biosensors and Their 4
Applications in the Development
of Microbial Cell Factories

Yaokang Wu, Guocheng Du, Jian Chen, and Long Liu

Abstract

The genetically encoded biosensors, which could transform the input of specific
metabolic concentrations into output of gene expression levels, have been devel-
oped by hacking the sensing and regulatory systems of the cell such as allosteric
transcription factors (aTFs) and riboswitches. In this chapter, we first introduce
the classification and functional mechanism of genetically encoded biosensor.
Furthermore, the applications of biosensor in the development of microbial cell
factories including high-throughput screening and dynamic metabolic engineer-
ing are reviewed. Finally, the future perspectives on biosensors and their
applications are discussed.
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More and more microbial cell factories have been constructed for the production of
valuable products such as biofuels, chemicals, materials, and nutraceuticals using
renewable biomass sources (Cordova and Alper 2016; Liu et al. 2017a, b; Luo et al.
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2019; Zhou et al. 2018), and this process has been further facilitated by the
development of synthetic biology (Ng et al. 2015). Microorganisms have the ability
to sense the change of a wide range of metabolites and modulate related pathways
accordingly. This process is achieved by their sensing and regulatory systems such
as allosteric transcription factors (aTFs) and riboswitches. With the aid of synthetic
biology, the genetically encoded biosensors, which were designed and built by
engineering the native sensing and regulatory systems of cells, have been widely
applied in the high-throughput screening and metabolic regulation of the microbial
strains (Koch et al. 2019; Michener et al. 2012). In this chapter, we focused on the
constructions and applications of biosensors derived from allosteric transcription
factors (aTFs) and riboswitches, and divided them into two categories, namely the
protein-based biosensors and the RNA-based biosensors. Other types of biosensors,
including the Forster resonance energy transfer (FRET)-based and two-component
regulatory system (TCRS)-based biosensors that have not been used widespread in
the development of microbial cell factories, will not be discussed here (refer to
reviews (Greenwald et al. 2018; Ravikumar et al. 2017)).

4.1 The Classification of Genetically Encoded Biosensors
4.1.1 Protein-Based Biosensors

4.1.1.1 The Functional Mechanism of Protein-Based Biosensors

The protein-based biosensors were usually constructed by engineering aTFs, which
could interact with specific small ligand molecules and change the activity of
corresponding promoters (Fig. 4.1a) (Table 4.1) (De Paepe et al. 2017). The aTF
typically consists of two function domains, namely the N-terminal ligand-binding
domain (LBD) and the C-terminal DNA-binding domain (DBD). The binding of
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Fig. 4.1 The functional mechanism and fundamental characteristics of protein-based biosensors.
(a) The two function domains of protein-based biosensors. (b) The four general patterns of the
aTF-mediated transcriptional regulation. (¢) The fundamental characteristics of protein-based
biosensors
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aTF on the transcription factor binding site (TFBS) of the promoter will increase or
decrease the affinity of RNA polymerase (RNAP) to it, and the conformation
changes of aTF induced by specific ligand will affect its binding to the promoter
thus building a relationship between ligand concentration and promoter activity
(Wan et al. 2019). Among the four general patterns of the aTF-mediated transcrip-
tional regulation, patterns 3 and 4 were most employed due to the positive correla-
tion between the input and output (Fig. 4.1b) (Mannan et al. 2017).

The two fundamental characteristics, namely responsive curve and specificity,
were often used for the evaluation of the protein-based biosensor (Fig. 4.1c)
(De Paepe et al. 2017). The responsive curve represents the relation between the
input of ligand concentration and the output of promoter strength, which can be
obtained by fitting the input and output into the Hill function as shown below:

x"
Y = Ymin + (ymax - ymin)m (41)

where y is relative expression activity of the promoter (y,i, and y,.x are the
minimum/maximum activities), x is the ligand concentration, K is the threshold,
and n is the cooperativity (Meyer et al. 2019). And many important parameters of the
biosensor could be acquired from the curve including basal, maximum, operational
range, dynamic range, threshold, and sensitivity (Fig. 4.1c). Specificity determines
the responsive of the biosensor to different ligand molecules.

4.1.1.2 Designing and Tuning Protein-Based Biosensors

In order to build a protein-based biosensor with favorable responsive curve in a host,
specific aTF should be expressed properly, and applicable synthetic promoter needs
to be designed and constructed. Sometimes, molecular modification on the aTF may
be implemented to improve or change the specificity of biosensor (De Paepe et al.
2017). That is to say, the tuning of protein-based biosensor mainly focuses on aTF
level and promoter level.

Tuning at aTF Level

To construct a protein-based biosensor responsive to a specific molecule,
corresponding aTF must be chosen by consulting literatures or retrieving the
databases such as RegulonDB (Gama-Castro et al. 2011), BRENDA (Placzek
etal. 2017), and RegPrecise (Rodionov et al. 2013). Besides, transcriptome sequenc-
ing and analysis can also be used to identify specific aTF (Li et al. 2019). However,
there may not be aTF in nature which responds to certain molecules. So the
engineered aTFs responded to new non-natural ligands must be constructed, which
could be achieved by the combination of rational design and directed evolution
(Koch et al. 2019; Libis et al. 2016). For example, five amino acid positions located
in the effector binding pocket (P8, T24, H80, Y82, and H93) of the L-arabinose-
responsive aTF AraC were selected for simultaneous saturation mutagenesis, and the
mutants that responded to mevalonate, triacetic acid lactone, and ectoine, respec-
tively, were obtained by fluorescence-activated cell sorting (FACS)-mediated
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negative—positive dual screening (Chen et al. 2015; Tang et al. 2013; Tang and
Cirino 2011). The computational design method is often used to reduce the design
space. As an example, the Rosetta software was used in combination with
single-residue saturation mutagenesis and error-prone PCR (epPCR)-based random
mutagenesis for the construction of Lacl mutants responding to fucose, gentiobiose,
lactitol, and sucralose, respectively (Taylor et al. 2016). In addition, chimeric aTFs
have also been built by fusing DBD and LBD from different proteins, and it is worth
mentioning that the LBD could come from proteins other than aTF as long as it has
demonstrable binding affinity to the ligand. For instance, benzoate-responsive aTFs
were constructed by connecting benzoate LBDs to different DBDs with optimized
linkers (Juarez et al. 2018).

The fundamental characteristics of the protein-based biosensors can also be
optimized by introducing molecular modification into or tuning the expression
level of the aTF. For example, the specificity of aTFMphR (that is derepressed by
several naturally produced and semisynthetic macrolide antibiotics including eryth-
romycin (ErA), josamycin, oleandomycin, narbomycin, methymycin, and
pikromycin) to erythromycin was enhanced through epPCR and FACS; and its
sensitivity was improved by introducing random mutagenesis to ribosome binding
site (RBS) fortuning its expression level (Kasey et al. 2018).

Tuning at Promoter Level

To build a protein-based biosensor in a host, synthetic responsive promoters need to
be designed and constructed by inserting the TFBS into the promoter of this strain
because the native promoter regulated by the aTF may lose its activity there. For
example, FA/acyl-CoA-responsive promoters were built by inserting the TFBS of
aTF FadR into a phage lambda promoter and a phage T7 promoter, respectively, and
TFBS of Lacl was added into the constructed synthetic promoters to eliminate leaky
expression (Zhang et al. 2012). In addition, the fundamental characteristics could be
modulated by changing the starting engineered promoter or the position and num-
bers of the TFBS. As an example, Siewers and coworkers have constructed several
malonyl-CoA biosensors in Saccharomyces cerevisiae by inserting the TFBS of aTF
FapR (FapO) into five native promoters, and improved the dynamic range and
reduced the basal by adjusting the position and numbers of FapO (Dabirian et al.
2019b).

4.1.2 RNA-Based Biosensors

4.1.2.1 The Functional Mechanism of RNA-Based Biosensors

The RNA-based biosensors could be constructed by engineering the cis-acting
metabolite-responsive riboswitches, which consist of ligand-binding (aptamer)
domains that could bind with specific ligand when its abundance exceeds a threshold
and expression platform that control the gene expression by interacting with various
gene expression apparatus (Table 4.2) (Serganov and Patel 2007). In the natural
world, riboswitches responsive to numerous small molecules including ion, purines,
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Fig. 4.2 The functional mechanism of riboswitch

and their derivatives, amino acids, phosphorylated sugar, and so on have been found,
and they could modulate gene expression by controlling transcription, translation,
mRNA stability, and splicing (Fig. 4.2) (Serganov and Nudler 2013). Because the
regulations on genes expression are achieved by modulating the secondary structure
of mRNAs, RNA-based biosensors possess faster responses compared with the
protein-based biosensors. In addition, they have a good transplantable character on
account of the protein-free control process (Topp et al. 2010). For example, the
glucosamine-6-phosphate riboswitch of B. subtilis was directly used for high-
throughput screening of N-acetylglucosamine high-producing strain in
S. cerevisiae (Lee and Oh 2015). The RNA-based biosensors also function in a
dose-dependent manner, hence their fundamental characteristics for evaluation are
the same as the protein-based biosensors mentioned above (Chang et al. 2012).
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4.1.2.2 Designing and Tuning RNA-Based Biosensors

Duo to functional mechanism of riboswitches, the RNA-based biosensors are easily
to be designed and built by adding the natural or engineered riboswitches into
mRNAs (usually on 5’ untranslated region (UTR)), and the responsive
characteristics could be tuned by modifying their sequences in aptamer region or
expression platform and getting the mutants using high-throughput screening (Jang
and Jung 2018; Page et al. 2018).

The dynamic range of the RNA-based biosensors can be improved by changing
their promoter or RBS, and the anti-RBS sequence on the riboswitch also needs to be
modified if it functions in an RBS sequestering manner. For example, RBS sequence
on expression platform of the pyrimido[4,5-d]pyrimidine-2,4-diamine (PPDA)
riboswitch was exchanged with the E. coli consensus RBS sequence (AGGAGG)
for enhanced maximum of the biosensor firstly, and then high-throughput fluores-
cence-activated cell sorting (FACS)-based selection/counter selection methodology
was used to identify anti-RBS sequences that give riboswitches with optimal OFF
and ON states. Introducing these modifications improved the maximal expression
and dynamic range of the biosensor by 8.2-folds and 80-folds, respectively (Kent
and Dixon 2019). As an another example, Jiang et al. improved the dynamic range of
a L-tryptophan riboswitch-based biosensor by changing its promoter and copy
number (Jang and Jung 2018). To modulate the operational range of the
riboswitch-based biosensor, the aptamer region can be modified to change the
affinity between ligand and riboswitch. For instance, the dose-response curve of a
L-tryptophan riboswitch-based biosensor was shifted toward higher ligand
concentrations by exchanging a low affinity aptamer (Jang and Jung 2018).

The ligand specificity of the RNA-based biosensors may be enhanced or changed
by modifying the aptamer regions (Robinson et al. 2014). For instance, the specially
responsive ligand of the natural adenine riboswitch was turned to ammeline or
azacytosine by introducing site-directed mutagenesis at U47 and US51 sites on the
aptamer region that are responsible for the interaction with the ligand molecule
(Dixon et al. 2010). In addition, “non-natural” synthetic riboswitches could be
designed and constructed using corresponding aptamers found in the natural world
or built artificially (Darmostuk et al. 2014; Kinghorn et al. 2017; Sun and Zu 2015).
For example, an L-tryptophan riboswitch was built by selecting the N, sequences
connecting L-tryptophan aptamer region that had been reported previously with RBS
and dual selection module (tetA-sgfp) in vivo (Yang et al. 2013). In addition, a
statistical thermodynamic model has been proposed for the aptamer-based artificial
riboswitch design (Espah Borujeni et al. 2016). In another example, self-cleaving
ribozyme-based artificial riboswitches have been built by linking the thiM aptamer
domain from E. coli into stem III of a fast-cleaving hammerhead ribozyme (HHR)
(Wieland et al. 2009).

It is worth mentioning that new artificial RNA aptamers that bind to specific
ligands could be easily constructed using the technology called systematic evolution
of ligands by exponential enrichment (SELEX) in vitro (Darmostuk et al. 2014), and
then the new aptamers will be used for the building of corresponding riboswitches
(Jang et al. 2017). Alternatively, riboswitches responsive to new ligand can be also
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constructed by directly introducing a random-sequence library into the aptamer
domain of a native or ready-made riboswitch and then conducting multiple rounds
of dual genetic selection and FACS screening in vivo. Using this method, theophyl-
line riboswitch that possesses a 2.3-fold dynamic range was obtained from the native
ThiM#2 riboswitch (Page et al. 2018).

4.2 The Application of Genetically Encoded Biosensors
4.2.1 The Application in High-Throughput Screening

Because the metabolic networks and their regulations are very complex in the cell,
high-throughput screening (HTS) is often used to obtain the best producer from the
mutant libraries of enzymes or pathways (Lim et al. 2018). The genetically encoded
biosensors could couple the target products’ concentrations with expression levels of
the reporters, and then the best producer can be obtained by adaptive evolution
or FACS.

4.2.1.1 Screening by Adaptive Evolution

To carry out adaptive evolution, appropriate reporter needs to be chosen to link cell
growth with product concentration. For the biosensors whose expression levels are
positive correlation to the concentrations of ligands, resistance maker could be used.
For example, a tetracycline resistance protein TetA was used as the reporter of the
aTF-based biosensor for directed evolution of a heterologous biosynthetic pathway
of I-butanol in E. coli (Dietrich et al. 2013). As the biosensors whose expression
levels possess negative correlation with the ligand concentrations, negative selection
marker needs to be used. For example, cytosine deaminase that has a cytotoxicity
was used as the reporter of the GIcN6P riboswitch-based biosensor for the screening
of the best mutant of the key pathway enzyme GFA1 for N-acetylglucosamine
(GIcNACc) synthesis in S. cerevisiae (Lee and Oh 2015).

4.2.1.2 Screening by Fluorescence-Activated Cell Sorting

The genetically encoded biosensors could also be applied for FACS by using
fluorescence protein as the reporter. For instance, the yellow fluorescence protein
(YFP) was acted as the reporter of a lysine biosensor in C. glutamicum, and then
FACS was conducted for screening of pyruvate carboxylase variants created by
error-prone PCR that enable improved L-lysine production from glucose (Kortmann
et al. 2019).

4.2.2 The Application in Dynamic Metabolic Engineering
The genetically encoded biosensors also have wide applications in dynamic meta-

bolic engineering, which is capable of dynamically coordinating the metabolic flux
in a feedback manner and can avoid the adverse effects on cells caused by metabolic
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modification such as metabolic imbalance and accumulation of intermediate
products (Lalwani et al. 2018; Shen et al. 2019; Xu 2018). Here, we divide these
applications into three categories according to the regulation processes, namely
dynamic pathway activation, dynamic pathway repression, and dynamic dual control
(simultaneous activation and repression).

4.2.2.1 Dynamic Pathway Activation

Dynamic pathway activation can be used to redirect the flux from the native
metabolism toward the target product by introducing a biosensor responsive to
prevalent intermediate at the key branch points in the metabolic networks of the
cell. For example, amalonyl-CoA biosensor was employed to alter the metabolic flux
from central carbon metabolism into a heterologous 3-hydroxypropionic acid (3-HP)
synthetic pathway by controlling the expression of the malonyl-CoA reductase
derived from Chloroflexus aurantiacus, which enabled the dynamic switching
between growth phase and production (David et al. 2016).

4.2.2.2 Dynamic Pathway Repression

The competitive pathways of target product were often knocked-outed to force more
metabolic flux into the pathway of interest, while sometimes these competitive
pathways may be necessary for the cell growth. In this situation, dynamic repression
can be employed to redirect the flux toward target product. For instance, the lysine-
OFF riboswitch was used to control the expression of citrate synthase (gltA), which
is the key metabolic point of tricarboxylic acid (TCA) cycle, in a L-lysine-producing
C. glutamicum strain, thus dynamically channel flux from central carbon metabolism
into L-lysine synthesis (Zhou and Zeng 2015a). Similarly, a GIcN6P-OFF riboswitch
was set as an intermediate metabolite biosensor that dynamically repressed the
competitive pathways, namely peptidoglycan synthesis pathway and glycolysis
pathway, in a GlcNAc-producing B. subtilis strain (Niu et al. 2018).

4.2.2.3 Dynamic Dual Control

To achieve the better and more precise control of the metabolic networks in a
microbial cell factory, dynamic activation and repression on multiple targets simul-
taneously, which is widespread in the natural world, may be needed. This process
can be realized by designing and building biosensors that possess opposite regula-
tion effects. Xu et al. have constructed malonyl-CoA activating and repressing
biosensors regulated by the aTF FapR, and controlled the malonyl-CoA source
pathway (ACC) and the malonyl-CoA sink pathway (FAS) by the malonyl-CoA
activating and repressing biosensors, respectively, which avoided the accumulation
of intermediate product malonyl-CoA and balanced metabolism between cell growth
and target product fatty acids formation (Xu et al. 2014). In another example, lysine-
ON riboswitches were built by engineering a native lysine-OFF riboswitch from
E. coli, and lysine-ON and lysine-OFF riboswitches were applied for the control of
lysine transport protein and the key competitive pathway, namely TCA cycle,
respectively (Zhou and Zeng 2015a).
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Except for the double sensor mediated dynamically dual control, single
biosensor-based dual control, which could be achieved by coupling the biosensor
with some regulation tools acted as NOT gates, have also been reported. Yan and
coworkers have presented a bifunctional dynamic control system based on biosensor
and antisense RNA (as RNA), which can be used to upregulate and downregulate
multiple genes simultaneously, and applied this system to achieve the dynamic flux
distribution between native metabolism and the muconic acid biosynthetic pathway
(Yang et al. 2018). In addition, the CRISPRi based NOT gate was also coupled with
a biosensor to achieve the autonomous dual-control of metabolic flux in Bacillus
subtilis (Wu et al. 2020).

4.3 Conclusions and Perspectives

Genetically encoded biosensors have been widely applied in the construction of
efficient microbial cell factories. However, the building process of novel biosensors
responsive to specific macular, which is the premise of all subsequent operations, is
still time-consuming. Hence the computer-aided methods need to be further explored
for accelerating biosensor design in the future. In addition, the biosensors-mediated
feedback and dynamic regulation of the metabolic networks can be combined with
the rising co-culture engineering strategy, which has been proved to be more
advantageous in the synthesis of many products (Jones and Wang 2018), to achieve
the coordination control of population dynamics. Furthermore, biosensors may also
be used in the regulation of engineering spatial organization of metabolic enzymes,
which can enhance flux into interested pathway and reduce their interactions with
cellular background metabolism (Lee et al. 2012), for the reconstruction of the cell
metabolism in space and time dimensions simultaneously.
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