
Highway Gradient Effects on Hybrid
Electric Vehicle Performance

Mohammad Waseem, A. F. Sherwani and Mohd Suhaib

Abstract In the current era, the public is receiving much devotion to hybrid
electric vehicles as the subsequent technology pattern in the road transport sector.
Three-wheeler ‘battery’ vehicles are extensively used for intracity transport facility
in Indian cities. These vehicles are known as smart e-vehicle and have the potential
to mitigate the carbon emissions of conventional vehicles. The driving range of
three-wheeler e-vehicle is greatly affected by the gradient of terrain/highway. The
projected research emphasis the highway gradient effects on a three-wheeler
e-vehicle performance. Next, to examine the effects of road gradient on the
three-wheeler e-vehicle, the dynamics motion equations are modelled and derived.
Appropriate three-wheeler e-vehicle design parameters and constants are taken from
the literature survey. Finally, simulations of the dynamic vehicle model are per-
formed in the MATLAB® simulation tool to compute road gradient effect of zero
degrees, three degrees, six degrees, nine degrees, twelve degrees and fifteen
degrees, respectively.

Keywords Vehicle dynamics � MATLAB® � Three-wheeler electric vehicle �
Road gradient � Hybrid vehicles

1 Introduction

The transportation sector is contributing to several environmental issues such as
water, land and air pollutions [1]. Globally, conventional fuel-powered vehicles are
the major source of pollution issues and climate change [2–5]. According to the
international energy agency report, the road transport sector is responsible to
increase global CO2 emission by 71% during 1990–2014 [6]. In India, 18% of CO2

emissions are produced by road transportation itself [7, 8]. The most widely used
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technology in the existing transportation system is the internal combustion engine
(ICE). The combustion of fossil fuel in ICE results in harmful gases to the envi-
ronment. Emissions of carbon contain product from ICE vehicles which are dom-
inating environmental and pollution issues [9, 10].

The automobile industry is undergoing a revolution in designing new electrical
platforms for vehicles to counter the sophistication involved with engine and carbon
emission issues. Therefore, the alternate engine technology is needed to revamp the
ICE vehicles. Electric vehicles are the alternate in place of ICE technology. Electric
propulsion system not only diminishes the pollution issue but also conveys preci-
sion accuracy of power and easy vehicle handling. Hybrid electric vehicles are
investigated by the automobile zone to lessen the application of ignition engine with
integrating of electric motor/machine system, i.e. electric propulsion system. The
proposed technology by the automobile sector has lessened carbon emissions in the
transportation sector as compared to the conventional engine [11, 12].

Bäckryd et al. proposed multidisciplinary optimization technique to improve the
design of vehicle structure [13]. Abdullah et al. propose a model updating approach
to improve the dynamic properties of go-kart chassis structure [14]. Janarthanan
develops a simulation model of a heavy tracked vehicle to demonstrate the transient
analysis of longitudinal dynamics [15]. Vibration effect and analysis for passenger
electric vehicle with four-wheel drive structure is proposed in [16–18]. Wang et al.
propose a particle swarm optimization strategy to design a four-wheeled indepen-
dently actuated vehicle [19]. Various aspects of parallel, series hybrid architecture
e-vehicles are developed in the current literature, but no one has reported highway/
road gradient effects on the three-wheeler e-vehicle performance [20, 21]. Work
presented above suggests that hybrid electric vehicles are perceived as ‘the vehicles
of future’. In this research, highway/road gradient effects on the three-wheeler
e-vehicle performance are analysed.

2 Three-Wheeler e-Vehicle Active Model

To examine the forces at work of the three-wheeler electric vehicle, the autonomy
of the vehicle model is presented as follows: X-direction as the longitudinal, Y-
direction as the side, Z-direction as vertical, rolling around the X-direction, pitching
around the Y-direction, yawing around the Z-direction. Each wheel of the electric
vehicle is a sub-module and has the freedom to turn around the wheel axle [22].
Figure 1 demonstrates the model of the proposed three-wheeler e-vehicle dynamic.

Figure 2 shows the stress acting on each wheel in the X-direction, Y-direction
and Z-direction, respectively. The stress acting on each wheel is assumed by
manifestation FU (V, W), where the subscript U is X, Y and Z, which represents the
force acting in the X-direction, Y-direction and Z-direction, respectively. V = 1
means front wheel of the vehicle; V = 2 means rear wheel of the vehicle; W = 1
means the wheel on left side of vehicle; W = 2 means the wheel on right side of
vehicle; a is the distance from the vehicle centre of gravity to the front wheel axle;
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b is the distance from the vehicle centre of gravity to the rear axle; h is the height
between the vehicle centre of gravity and ground level; B is the gap between back
wheels centres of the three-wheeler hybrid e-vehicle; and L is the wheelbase.

3 Longitudinal Motion of the Three-Wheeler e-Vehicle

Considering the motion of the three-wheeled vehicle in the longitudinal direction,
the stress acts on each wheel in X-direction only. The movement deployment of the
three-wheeler e-vehicle in a moving way is estimated by the sum of all forces acting
in that specific course [23]. According to the Newton laws, the dynamic movement
of the three-wheeled vehicle in the longitudinal direction is governed by Eq. (1).

Fig. 1 A dynamic layout
diagram of the three-wheeler
e-vehicle

Fig. 2 Forces acting on all
wheels of the three-wheeler
e-vehicle
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kM _VX ¼
X1
W¼1

FXð1;WÞþ
X2
W¼1

FXð2;WÞ �
X

FResistive ð1Þ

kM _VX ¼ FXð1; 1ÞþFXð2; 1ÞþFXð2; 2Þ �
X

FResistive ð2Þ

where M is the estimated mass of the e-vehicle, k is a factor of rotating mass, VX is
velocity in X-direction and FResistive is the sum of all resistance force acting the
three-wheeled vehicle.

Figure 3 shows all the forces and moments that act on the three-wheeler
e-vehicle in the longitudinal direction of the highway with a positive gradient (a).
The external resistive agents on the three-wheeler e-vehicle in the longitudinal
direction are as follows: the drag force due to air (Fdrag), the rolling resistance force
(Froll) and resistance to the gradient (Fgrad). FTF is the tractive effort that acts on the
front wheel and equal to the stress (FX (1,1)). Similarly, FTR is the tractive effort
that acts on the rear ‘left’ and ‘right’ wheels and equivalent to the summation of
tensions (FX (2,1) + (FX (2,2)). The electrical actuating system provides the nec-
essary total tractive effort (FTractive). Hence, Eq. (2) of three-wheeled vehicle
movement can be expressed as Eq. (3).
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Fig. 3 Free body diagram of three-wheeler e-vehicle on a gradient
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kM
dVX

dt
¼ FTF þFTRð Þ �

X
FResistive ð3Þ

kM
dVX

dt
¼ FTractive �

X
FResistive ð4Þ

FTractive ¼ kM
dVX

dt
þ

X
FResistive ð5Þ

The tractive effort and active opposing pull that act on the three-wheeler
e-vehicle in the longitudinal direction is governed by Eq. (6) (please see Eq. (5)).

FTractive ¼ kM
dVX

dt
þMg sin aþMglr cos aþ

1
2
qAfCDV

2
X ð6Þ

where g is gravitation acceleration, a is highway/road gradient, µr is coefficient of
friction, q is the air density, Af is the front area of the vehicle, CD is drag coefficient
and VX is the speed of the vehicle.

The vertical normal load acting on the front and rear wheel locations are gov-
erned from the Eqs. (7) and (8).

FZF ¼ Mgb cos a
L

� h
L

FTractive � lrMg cos a 1� rw
h

� �� �
ð7Þ

FZR ¼ Mga cos a
L

þ h
L

FTractive � lrMg cos a 1� rw
h

� �� �
ð8Þ

4 Selection of Parameters for Three-Wheeler e-Vehicle

Design and development of e-vehicle depend on the mechanical parameters and
coefficients associated with the aesthetic and technical look of the vehicle. Hence,
parameters determine the overall technical and aesthetic behaviour of a vehicle.
Therefore, design parameters associated with the tractive effort (FTractive), the
normal loads (FZF, FZR) and applied torque (Ttractive), etc. have been taken from
literature and connected work (Table 1).

5 Simulation Result

Three-wheeler hybrid e-vehicle model dynamics performance is simulated and
estimated for six different road gradient conditions. To examine the active perfor-
mance of the e-vehicle model, simulation has been performed in the MATLAB®

tool for each highway/road gradient. Thereafter, effort, active load and the applied
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torque of three-wheeler e-vehicle model are computed for zero degrees, three
degrees, six degrees, nine degrees, twelve degrees and fifteen degrees gradient of
highway/road. Figure 4 shows the variation in the computed torque for the highway
gradient of six degrees.

Simulated results are further post-processed by estimating the average value of
the applied torque, the active load on the front and rear wheels supporting point, to
forecast the road gradient effects on three-wheeler e-vehicle the active performance
accurately. Mean values of applied torque on the rear wheels are 108.3317,
173.5099, 238.4582, 302.9987, 366.9543 and 430.1498 (Nm) for highway with
gradient order zero degrees, three degrees, six degrees, nine degrees, twelve degrees
and fifteen degrees, respectively, to attain 25 km/h of vehicle speed as shown in
Fig. 5.

The mean estimated evaluates of dynamic load that acts on the front wheel
support are 2.6188, 2.5802, 2.5343, 2.4814, 2.4215 and 2.3548 kN for highway
with gradient order of zero degrees, three degrees, six degrees, nine degrees, twelve

Table 1 Three-wheeler
hybrid e-vehicle mechanical
parameters and coefficient

Name of parameters Modelling
value

SI unit

Friction coefficient (µr) [24, 25] 0.80

Drag coefficient (CD) [26] 0.30

Mass factor (k) [27, 28] 1.05

Air density (q) [27] 1.20 kg/m3

The front area (Af) 1.65 m2

Vehicle speed (VX) 24.000 km/h

vehicle weight (M) 725.0 kg

Wheel diameter (dw) 0.508 m

Wheelbase (L) 2.100 m

Vehicle C.G. height (h) 0.275 m
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Fig. 4 Torque applied to the
wheel of three-wheeler
e-vehicle
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degrees and fifteen degrees, respectively, to reach 25 km/h of vehicle speed as
shown in Fig. 6. Mean computed evaluates of the dynamic load that acts on the rear
wheel support are 2.2862, 2.3181, 2.3438, 2.3632, 2.3763 and 2.3830 kN for
highway with gradient order of zero degrees, three degrees, six degrees, nine
degrees, twelve degrees and fifteen degrees to reach 25 km/h of vehicle speed.

6 Discussion and Limitation

The mathematical dynamic modelling of the three-wheeler e-vehicle is presented.
After that, the dynamics motion equations of the tractive effort, the torque applied
the rear axle, the load that acts on the front and rear wheel are simulated in
MATLAB® tool. Thereafter, the appropriate mechanical designing constraints and
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constants from the literature investigation are determined and assigned in the coded
equations. Thereafter, simulations of the dynamic e-vehicle have been performed
for 10 s in the MATLAB® programming tool for highway with gradient order of
zero degrees, three degrees, six degrees, nine degrees, twelve degrees and fifteen
degrees, respectively. Next, for each road gradient condition, simulation output
values of applied torque, normal active load that acts on the front and rear wheels
support are computed and recorded. Finally, highway/road gradient effects on the
three-wheeler e-vehicle active performance are analysed. Time to refuel is the most
crucial factor for slow penetration of three-wheeler e-vehicles as slow charging
takes 7–8 h. Public awareness is also one of the important factors to adopt e-vehicle
in the developing country India. The government of India should start new policy
and rules towards sustainable development goals.

7 Conclusion

Active dynamics model of three-wheeler e-vehicle with six degrees of freedom is
presented. The active performance of the three-wheeler e-vehicle is simulated for
the highway/road gradient order of zero degrees, three degrees, six degrees, nine
degrees, twelve degrees and fifteen degrees in MATLAB® tool. Simulation results
show that higher torque is required to form the electric propulsion system for the
inclined road as compared to the flat road. The simulated results signify that the
applied torque on the three-wheeler e-vehicle is 430 Nm for the road gradient of
fifteen degrees, while the estimated torque on the e-vehicle is 108 Nm for the
gradient of zero degrees. Hence, the power required from the electric motor is more
times more for fifteen degrees inclined road as compared to the plane surface road.
The percentage increment in the numerical magnitude of the load that acts on the
e-vehicle is 4.2% for road gradient of fifteen degrees as compared to zero degrees
gradient of the road. Hence, the gradient of the road is a significant factor that
affects the dynamic performance of the three-wheeler hybrid vehicle.
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