
Chapter 6
Conclusion and Future Work

The works presented as part of this book are novel and yet limited in terms of their
applicability to real-world enterprises. There is ample scope for further exploration of
the problems identified as part of this research. The algorithms and results presented
in this book can be further modified and adapted for better application to enterprises.
This chapter is divided into two sections. Section6.1 presents a brief summary of
our research contributions in this book. Section6.2 presents some exciting future
research directions that can be explored to benefit the GORE community.

6.1 Summary of the Work

In this book, we present a collection of novel solutions that aims to improve the
state-of-the-art as far as enterprise modelling and requirements analysis is consid-
ered in goal-oriented requirements engineering. We address an enterprise modelling
scenario that had not been considered by the community previously. We highlight
the importance of goal modelling in enterprise hierarchies and particularly underline
the importance of an ontology integration framework for such goal model hierar-
chies (also referred to as requirement refinement hierarchies). We present one such
framework for integrating the ontologies between adjacent level goal models and
measuring the degree of correlation that exists between them. We also establish the
fact that goal model hierarchies are not merely a hypothetical concept and they really
manifest themselves in real world event logs. The relevance of this research stems
from the fact that we could mine adjacent and non-adjacent hierarchic structures
from real-world data.

Apart from enterprise modelling, we have also contributed to the GORE commu-
nity by enhancing the existing state-of-the-art in terms of requirements analysis. We
have identified that very limited research had been done to perform model checking
on goal models. We have proposed a new heuristic called the Semantic Implosion
Algorithm and simulated it to compare its performance with an existing heuristic that

© Springer Nature Singapore Pte Ltd. 2020
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation
Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_6

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_6&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_6

132 6 Conclusion and Future Work

was proposed by Fuxman [1]. The new heuristic has been shown to outperform the
existing heuristic by a factor of almost 1017. Thus, our proposed solution is much
more efficient and scalable when it comes to performing model checks. We have
also implemented our proposed algorithm by developing a tool, called i∗ToNuSMV.
The tool accepts goal models in the textual GRL (tGRL) notation and temporal
properties in CTL. The underlying model checker that has been integrated into our
tool is NuSMV. Analysts can now feed goal models into the i∗ToNuSMV tool and
check them against temporal compliance rules. NuSMV generates counter-examples
whenever a CTL property is not satisfied by the goal model.

Finally, we underline the importance of going beyond the structural features and
orderings, and analysing the semantics of goal model configurations. The AFSR
framework proposed therein enables the modeller to annotate goals with their asso-
ciated semantics. The framework has a semantic reconciliation machinery that can
evaluate the semantics of any goal as obtained from its subgoals. These derived and
intended semantics can then be compared to perform semantic analyses like entail-
ment and consistency checks. AFSR does not stop here; it goes beyond conflict detec-
tion by suggesting re-factored solutions that are conflict-free. This framework can
be deployed for real-world goal model maintenance and their adoption in evolving
requirement settings. However, exploring the entire space of goal model configu-
rations for identifying the optimal solution manually seems to be quite impractical
and erroneous. Human effort often leads to suboptimal solutions. We have shown
how this situation can be tackled by mapping the goal model maintenance problem
to the state space search problem. Establishing the admissibility and consistency of
our heuristic path cost function has allowed us to deploy A∗ search over the space of
goal model configurations, thereby, guaranteeing the optimal solution.

6.2 Future Research Directions

In this section, we try to shed some light on the future research directions emanating
from the works presented in this book. A greater insight into the impact of enter-
prise hierarchies on goal modelling techniques can be derived from the work on goal
model hierarchies. We observe from the data mining exercise on real-world data that
employees within an organization need not necessarily follow the structure of the
hierarchy. We have mined non-adjacent hierarchic correlations from the data as well.
The proposed framework for requirement refinement hierarchies works with adja-
cent level hierarchies only. This framework can be extended to non-adjacent levels
as well, thereby, developing a system to measure the correlation of the entire require-
ment refinement hierarchy. The works on requirements analysis can be extended as
discussed in the following sections.

6.2 Future Research Directions 133

6.2.1 Extracting Business Compliant Finite State Models

The i∗ToNuSMV tool is evolving quite rapidly. Version 2.02 of the i∗ToNuSMV tool
supports multi-actor goal models having inter-actor dependencies. It also supports
model checking with CTL constraints. However, we have been working on a major
release that will derive constrained finite state machines from a goal model. This
implies that instead of feeding a goal model as input and then checking a temporal
constraint on the derived FSM, we will provide the constraint along with the goal
model as input and the derived FSM will already satisfy the given constraint.

6.2.1.1 Assumptions

The different types of CTL constraints have been studied in detail and this paper
works with a finite subset of such constraints in the framework. The primary goal
is to generate a compliant finite state model by pruning transitions from the finite
state model generated by i∗ToNuSMV ver2.02. The proposed guidelines have the
following four assumptions:

A-1 Since FSMs are derived for fulfilment of goals, the framework works with
only AG and EG temporal operators for the violation of goal fulfilment. Exam-
ple:AG(V109!=FU).

A-2 TwoCTL predicates can be connected throughBoolean connectives likeAND
and OR. This framework allows the user to define only two predicates at a
time and connect them by theAND or OR operator. Example: AG(V109!=FU
AND V102!=FU).

A-3 Another type of CTL constraint that is addressed is implication (→). Any two
constraint can have implication between them. The implication operator has
been restricted to only single level of nesting. Example: AG(V101=CNF →
AF(V102=FU AND V103!=FU)).

A-4 The goal tree level for an actor has been assumed to be 3 to reduce the problem
complexity.

6.2.1.2 CTL Properties Handled

This section briefly explains each of the CTL constraints that were addressed in [2]
and how the corresponding finite state models are derived.

1. EG(V#! = FU) for AND-decomposition. These types of properties are safety
properties that prevent something bad from happening. Ensuring this property on
a goal with AND-decomposition requires the pruning of CNF → FU transitions
for some subset of the child nodes.

134 6 Conclusion and Future Work

2. EG(V#! = FU) for OR − decomposition. The same type of safety property on
a goal with OR-decomposition has different consequences. Ensuring such a prop-
erty requires the pruning of CNF → FU transitions for all the child nodes.

3. EG(V#! = FUANDV#! = FU).CTLpropertieswhich havemultiple CTLpred-
icates connectedwith booleanANDconnectives can be ensured by satisfying each
predicate separately. The solution space is a Cartesian product of models gener-
ated from each CTL predicate—denoted by M × N .

4. EG(V#! = FUORV#! = FU). CTL properties having multiple CTL predicates
connected with boolean OR connectives can be ensured by satisfying either of
the predicates or both. The solution space is much larger and denoted by M +
N + (M × N).

5. AG(V#! = FU → V#! = FU). These type of CTL properties (defined with the
implication operator →) specify an ordering over the fulfilment of goals. Thus,
all those invalid states need to be pruned from the FSM that violate this property.
State transitions to or from these invalid states are correspondingly removed.

6. EG(V#! = FU) for AND-OR-decompositions. Ensuring such safety properties
for multilevel goal models with OR-decompositions nested under an AND-
decomposition requires the pruning of CNF → FU transitions for all OR-
children. This needs to be done for any subset of the AND-children of the root
node.

7. EG(V#! = FU) for OR-AND-decomposition. If the root goal is
OR-decomposed followed by eachOR-child undergoing anAND-decomposition,
then these types of CTL properties can be ensured by pruning CNF → FU tran-
sitions for any subset of AND-children for each of the OR-child of the root goal.

The above seven types of CTL properties have been addressed in the newly pro-
posed version 3.0 of the i∗ToNuSMV framework. For amore detailed understanding
of how each of theseCTLproperty classes is ensuredwithin a goalmodel, readers can
refer to [2]. Figure6.1 demonstrates the workflow of the i∗ToNuSMV 3.0 frame-
work.

6.2.1.3 Demonstration with Case Study

In this section, the working of the i∗ToNuSMV 3.0 deployment interface is demon-
strated with the help of a simple real-life case study. Figure6.2 shows a simple goal
model that captures the requirements for Access Locker. It requires two tasks to
be performed—VerifyCodeTrue verifies whether the user access code entered
is true and GiveAccess finally gives the access of the locker to the user pro-
vided the code entered is true. An intuitive CTL property associated with this goal
model is also shown in the figure. AG(V103!=FU → V104!=FU) implies that
the task GiveAccess cannot be performed until the task VerifyCodeTrue is
successfully completed.

The i∗ToNuSMV 2.02 tool, which implements the Semantic Implosion Algo-
rithm (SIA), generates a finite state model irrespective of the CTL property associ-

6.2 Future Research Directions 135

An i* goal model
represented using tGRL

nota on

Model elements mapped to
variable names

CTL property specified using
variable names

Solu on model(s)
generated

Verify a solu on
model against

some constraint?

Choose solu on model and
specify the CTL property and
run NuSMV model checker

Check output

STOP

Verify
another
model?

YES

YES

NO

NO

Fig. 6.1 The workflow of the i∗ToNuSMV 3.0 deployment framework

Fig. 6.2 A simple goal
model for accessing a locker

CTL: AG(V103!=FU -> V104!=FU)

AccessLocker (V102)

VerifyCodeTrue
(V103)

GiveAccess
(V104)

ated with the goal model. Since the goal model in Fig. 6.2 has a two child AND-
decomposition, the corresponding FSM has a 2-dimensional lattice structure for
capturing all possible execution sequences to fulfil the root goal. The derived FSM
is shown in Fig. 6.3.

The research guidelines proposed in [2] have been implemented in i∗ToNuSMV
3.0. It is an extension of the Semantic Implosion Algorithm that takes the finite state
model generated by SIA and prunes those transitions which violate the given CTL
property. The pruned finite state model for the given goal model and CTL property
(refer to Fig. 6.2) is shown in Fig. 6.4.

136 6 Conclusion and Future Work

V102:CNF, V103:CNF,V104:NC V102:CNF, V103:NC,V104:CNF

V104:CNF->FU
V104:NC->CNF

V103:NC->CNF

V102:CNF,
V103:FU,V104:NC

V102:CNF, V103:CNF,V104:CNF

V102:CNF, V103:FU,V104:CNF
V102:CNF, V103:CNF,V104:FU

V102:CNF, V103:FU,V104:FU

V104:CNF->FU V103:CNF->FU

V102:CNF->FU

V102:CNF, V103:NC,V104:FU

V102:NC V102:CNF, V103:NC, V104:NC
V102:NC->CNF

V103:NC->CNF V104:NC->CNF

V103:CNF->FU

V104:NC->CNF
V103:CNF->FU

V104:CNF->FU V103:NC->CNF

V102:FU, V103:FU,V104:FU

Fig. 6.3 FSM generated by i∗ToNuSMV 2.02

6.2.1.4 URL

The i∗ToNuSMV 3.0 framework can be downloaded from the following link: https://
github.com/istarToNuSMV/i-ToNuSMV3.0. The User Manual and use case exam-
ples have been shown on the webpage.

6.2.1.5 Experimental Results

In this section, some experimental results have been documented that were obtained
after performing extensive simulations with the existing (version 2.02) and newly
proposed (version 3.0) versions of the i∗ToNuSMV framework. Arbitrary goal
models were designed with varying complexity in terms of the number of actors,
the number of goals, the number of AND/OR-decompositions and the complexity
of the associated CTL constraints. The simulations did not bring out any anomalous
behaviour. Data were collected with respect to the number of transitions in the final
output FSM and the execution time.

The bar chart of Fig. 6.5 shows a comparative analysis between SIA (implemented
in version 2.02) and Complaint-SIA (implemented in version 3.0). i∗ToNuSMV 2.02
does not generate a compliant FSM like i∗ToNuSMV 3.0. Thus, the FSM generated
by version 2.02 includes all possible execution sequences between sets of states. The
complaint-FSM generated by version 3.0 will have fewer number of transitions as

https://github.com/istarToNuSMV/i-ToNuSMV3.0
https://github.com/istarToNuSMV/i-ToNuSMV3.0

6.2 Future Research Directions 137

V102:CNF, V103:CNF,V104:NC V102:CNF, V103:NC,V104:CNF

V104:NC->CNF
V103:NC->CNF

V102:CNF,
V103:FU,V104:NC

V102:CNF, V103:CNF,V104:CNF

V102:CNF, V103:FU,V104:CNF

V102:CNF, V103:FU,V104:FU

V104:CNF->FU

V102:CNF->FU

V102:NC V102:CNF, V103:NC, V104:NC
V102:NC->CNF

V103:NC->CNF V104:NC->CNF

V103:CNF->FU

V104:NC->CNF
V103:CNF->FU

V102:FU, V103:FU,V104:FU

Fig. 6.4 FSM generated by i∗ToNuSMV 3.0

all CTL properties used in these simulations, impose some sort of ordering between
events. This results in the final FSM having only a subset of the transitions included
by SIA. The degree (or %) of reduction in state space is dependent on several factors
rather than only one.

The line plot shown in Fig. 6.6 compares the execution time of SIA andComplaint-
SIA—both measured in milliseconds. With the same set of simulation parameters,
it is observed that i∗ToNuSMV 3.0 takes much more time than i∗ToNuSMV 2.02 to
generate the finite state models. This is also quite logical as version 3.0 implements
some additional checks and tasks after SIA is executed (as in version 2.02). Basically,
version 3.0 takes the FSM generated by SIA and individually scans and prunes
transitions to satisfy the given CTL property. Also, as discussed in [2], there may be
multiple strategies for pruning different subsets of transitions in order to satisfy the
CTL property. i∗ToNuSMV 3.0 executes each such strategy and generates a unique
finite state model (pruned and compliant) for each of these strategies. This is the
reason why version 3.0 takes much longer to reach completion.

138 6 Conclusion and Future Work

0
20
40
60
80

100
120
140
160
180
200

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
, A

N
D

G
,O

R,
N

O
T

G
,N

O
T,

AN
D

G
, -

>
G

,->
G

,->
G

,->
G

,->
G

,->
G

,N
O

T
G

,N
O

T
G

,N
O

T,
AN

D
G

,N
O

T
G

,N
O

T
G

,A
N

D

0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 2 1 2

1 0 1 1 3 2 2 2 2 1 1 1 3 2 2 2 2 5 3 3 4

3 3 4 5 7 7 6 6 8 3 4 5 7 8 6 9 10 11 12 13 14

SIA Compliant SIA
N

o.
 o

f S
ta

te

Tr
an

si
on

s

in
 F

SM

Type of CTL
operator used

No. of OR-
decomposi ons

No. of goals

No. of AND-
decomposi ons

Fig. 6.5 Number of state transitions in the final FSM

1

10

100

1000

10000

100000

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
,N

O
T

G
, A

N
D,

N
O

T
G

,O
R,

N
O

T
G

,A
N

D,
N

O
T

G
, -

>
G

,->
G

,- >
G,

- >
G,

- >
G,

- >
G

,N
O

T
G

,N
O

T
G

,N
O

T,
AN

D
G

,N
O

T
G

,N
O

T
G

,A
N

D,
N

O
T

0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 2 1 1

1 0 1 1 3 2 2 2 2 1 1 1 3 2 2 2 2 5 3 3 2

3 3 4 5 7 7 6 6 8 3 4 5 7 8 6 9 10 11 12 13 14

Ex
ec

u
on

 T
im

e
(in

 m
ill

is
ec

on
ds

)

SIA Compliant SIA

Type of CTL
operators used

No. of OR-
decomposi ons

No. of AND-
decomposi ons

No. of goals

Fig. 6.6 Execution time for deriving the final FSMs

6.2 Future Research Directions 139

6.2.1.6 Conclusion and Future Work

In [2] the authors only presented some use cases to demonstrate howCTL compliance
can be ensured in finite state models. They also documented an algorithm for the
process. However, a proper deployment framework implementing the guidelines was
missing. This paper builds on the guidelines proposed in [2] and presents a proper
deployment interface for i∗ToNuSMV 3.0. It provides the URL for downloading and
installing the framework and the different features supported by the interface (with
the help of a case study). It alsomeasures and compares the performance of the newly
built version with the existing version of the i∗ToNuSMV tool (also see Table6.1).

This work presents a tool to generate finite state models from goal models that
already satisfy some given CTL constraint. Finite state models can be more readily
transformed into code. Thus, this research takes an important step towards the devel-
opment of business compliant applications directly from goal models. Most business
compliance rules have some sort of temporal ordering over events and can be repre-
sented with temporal logics efficiently. However, the proposed solution has several
assumptions which needs to be relaxed for making the framework more complete.

One of the more important limitations of the proposed solution is that only one
temporal property (in CTL) can be specified along with the goal model specification.
Future versions of the i∗ToNuSMV framework will aim to allow users to specify
multiple CTL properties over a single goal model specification. Another limitation of
the new version is the extra processing time that is required. The additional pruning
mechanism requires extensive checking of the finite state model generated by SIA.
Currently, research efforts are being channelized to develop an efficient version of
the Semantic Implosion Algorithm that will generate compliant FSMs in a more
efficient manner.

Table 6.1 Feature comparison between verions 2.02 and 3.0

Features i∗ToNuSMV 2.02 i∗ToNuSMV 3.0

Input specification i∗goal model defined using
tGRL

i∗goal model defined using
tGRL and a CTL property

Number of FSM generated 1 1 or more than one

Compliant FSM FSM may or may not be
compliant to any temporal
property

FSM compliant with a given
CTL property

Solution space Comparatively large Reduced solution space

Number of NuSMV input 1 One for each of the FSM
generated

Verification NuSMV model checker
verifies property on single
finite state model

NuSMV model checker can
separately verify each of the
solution models

140 6 Conclusion and Future Work

6.2.2 The CARGo Tool

The AFSR framework has been presented along with an implementation roadmap
that uses A∗ search. This research direction has several avenues that can be further
explored tomake itmore applicable to enterprises. For instance, we haveworkedwith
functional semantic annotations only. Research can be directed to incorporate non-
functional semantics associated with softgoals. Non-functional semantic analyses
can enrich the mechanism for choosing between multiple strategies of goal satisfac-
tion. Also, the most imminent research scope is to build a proper tool interface that
implements the AFSR framework.

The CARGo prototype [3] is built on the AFSR framework. It makes the use of a
data structure, as illustrated in the following section, for representing and modifying
goal models. Algorithm1 shows the main procedure of the prototype and how this
data structure is used.

6.2.2.1 Semantically Annotated i∗ Networks (SAi∗ Nets)

SAi∗ Nets are a non-linear data structure representation of goal models that have
been developed for the CARGo tool prototype. It is similar to an adjacency list (a list
of linked lists) where each list captures the strategic rational model of a specific actor.
Every list is headed by an actor_nodewhich specifies the particular actor. Each goal
model element within the actor’s goal tree is represented using tree_nodes that have
the node structure shown in Fig. 6.7. A sample abstracted SAi∗ Net representation
is shown in Fig. 6.8. All computations and modifications proposed by the AFSR
framework, for identification and removal of annotation conflicts, is implemented on
the SAi∗ Net. The final conflict-free SAi∗ Nets are translated to textual goal model
descriptions for end-user readability. Each tree_node has the following fields:

• val: An integer used to identify each goal model element uniquely.
• str: Name of the element.
• type: Integer values are used to identify decomposition type of the tree_node—0
for OR-decompositions, 1 for AND-decompositions and 2 for leaf nodes.

val str type gtr *IE *CE *parent *children *depends_on *next

IE_node CE_node parent_
queue node

child_queue
node

dependency_
queue node

tree_node

Fig. 6.7 tree_node structure

6.2 Future Research Directions 141

-101 A1

-102 A2

P1 C11 C12

P2 C21 C22

P1

C11 C12

P2

C21 C22

Actor A1 Actor A2

tree_nodes

Fig. 6.8 Abstracted view of an example SAi∗ Net

• gtr: Integers used to identify goal, task or resource.
• *IE: List of immediate annotations as first-order logic predicates.
• *CE: List of cumulative annotations as evaluated by SRA.
• *parent: A pointer to its parent queue. For root nodes, this field is NULL.
• *children: A pointer to its child list. For leaf nodes, this list is empty.
• *depends_on: A pointer to the list of dependencies associated with that tree_node.
For an independent node, this list is empty.

• *next: A pointer to the next tree_node in the actor’s goal model.

6.2.2.2 Platform Used

The back end code is generated in the C language. The front end design is developed
in JAVA.

6.2.2.3 URL of the CARGo Prototype

The CARGo tool can be freely downloaded from the following URL:
https://github.com/CARGoTool/CARGoV1.0.

https://github.com/CARGoTool/CARGoV1.0

142 6 Conclusion and Future Work

Algorithm 1 CARGo_tool
Input: i∗ model with immediate annotations in textual format.
Output: Conflict-free i∗ model variant in textual format.
Data Structure: SAi∗ network and a conflict_list.
1: procedure main
2: Build SAi∗ network from given input i∗ model
3: Compute CE of each node by traversing SAi∗ network

in bottom-up approach
4: Traverse SAi∗ network either in top-down or in

bottom-up approach according to given user choice
and generate the conflict_list.

5: do
6: Extract node from the conflict_list.
7: Perform ERA or CRA as per the type of conflict
8: Apply SRA to update the SAi∗ network and con-

flict list.
9: while conflict_list is not empty
10: Generate i∗ model representation of the conflict free

SAi∗ network in textual format
11: end procedure

6.2.2.4 Benefits of the CARGo Tool

The annotation of goal model artefacts within a goal model is not one of the major
contributions of this tool. It is somewhat similar to the annotation mechanism sup-
ported by jUCMNav for GRL. In fact, we work with tGRL goal models. The main
benefit of the tool is in the domain of goal model maintenance in changing busi-
ness environments. The tool helps with the adaptation of goal models when business
requirements change. Changing requirements cause a change in the relative contexts
of the goal model artefacts. The CARGo tool identifies the conflicts arising out of
these changes in contexts. Conflict resolution is performed by refactoring the goal
model and creating a goal model variant that is conflict-free. Existing goal mod-
elling analysis techniques can be applied to all goal model variants as well. Thus, the
CARGo tool helps in the evolution of goalmodels in changing business environments.

6.2.2.5 Conclusion

The CARGo tool is sound as the output is always a conflict-free goal model. It is also
partially completewith the exception of softgoals and softgoal contexts. The number
of iterations for conflict resolution is nondeterministic as it depends on the number
and type of conflicts observed in the initial goal model.

6.2 Future Research Directions 143

6.2.3 Building Mobile Applications from Goal Model
Specifications

This section elaborates the generalized framework of the GRL2APK tool. Figure6.9
illustrates the framework and Sect. 6.2.3.1 explains the role of the individual com-
ponents. The framework is generic and does not depend on any specific technology;
it is, however, limited to only structural NFRs. The following sections elaborate on
the workflow of the GRL2APK tool and a real-life use case illustrating how the tool
can be used to generate Android applications.

6.2.3.1 Architecture of the New Framework

The overall architecture of the GRL2APK framework is depicted in Fig. 6.9. In
this framework, we propose an integration of different components and services that
allows enterprise architects to build applicationswhile having the flexibility to choose
the operationalizations of the specified NFRs. This framework has four underlying
assumptions:

1. The code modules of the functional requirements are stored in a cloud repository.
2. The desired NFRs have to be specified by the enterprise architects within the goal

modeldescription.Systemdevelopersonlyneedtochoosethe“operationalization”
of the desired NFRs.

3. NFR catalogs for high-level NFRs have been developed by specialized require-
ment engineers and stored in a cloud repository for reuse.

4. The functional codes for implementing the operationalizations of structuralNFRs
have also been stored in the code repository.

The proposed GRL2APK framework has the following components:

• Goal Model Specifier: The first module provides an interface to the enterprise
architects to design the goal model based on the end-user requirements. Enterprise
architects can use any goal requirements language to capture such models. We
suggest the Extended tGRL (or, XtGRL) language.

• Component Extractor: The goal model is then passed through this module to go
through the XtGRL grammar artefacts as specified by the enterprise architects.
The module scans through the input model and extracts all the high-level NFRs
and functional goal decompositions that have been specified.

• NFR Fetcher: After extraction of the specified high-level NFRs, the NFR Fetcher
module is invoked. This module fetches the NFR catalogs of all those high-level
NFRs that have been identified in the previous phase. It is based on assumption (3).
It is a 1-to-1 mapping that allows this module to fetch the required NFR catalogs.

• NFRRepository: This repository stores two types of information—theNFR cata-
logs for high-levelNFRs and aNFRconflict database that identifies conflicts across
NFRs and their operationalizations. Such a repository can be stored on a local
server or in some cloud repository like Google Firebase or Amazon AWS. NFR

144 6 Conclusion and Future Work

NFR Fetcher – Fetches NFR
catalogs from the repository

NFR
RepositoryGoal Model

Specifier

Goal Model Component
Extractor

High-level
NFRs

NFR Catalogs

Code
Repository

Goal Model
Decomposi ons

Workflow Engine – Synthesizes the
Workflow Architecture

Workflow
Consistency Checker – Checks

for NFR inconsistencies and
modifies workflow

Consistent
Signatures

APK Generator –
Fetches Code from the

Code Repository

Code
Signatures

End-User
APK

1

2 3.a

3.b

4

5.a
5.b

6.a
6.b7.a

8

9

10.a

10.b

11

7.b

Fig. 6.9 The proposed framework for app orchestration from goal models using selective compo-
sition of NFRs

catalogs are static in nature as they only capture the decomposition of high-level
NFRs into low-level operationalizations. The NFR conflict database is dynamic
and needs to be updated based on available NFR operationalizations and also on
the particular application vertical where the framework is being deployed.

• Workflow Engine: The goal decompositions (from Step-2) and the NFR Catalogs
(from Step-3) are fed into the Workflow Engine that provides an interface where
the system developer has to choose between different operationalizations and code
signatures for both functional and non-functional requirements.

• Consistency Checker: The developer may choose operationalization strategies
that conflict with other high-level NFRs. This module alerts the developer of the

6.2 Future Research Directions 145

existence of such conflicts. The developer, however, has the choice to prioritize a
particular operationalization, thereby, ascertaining the satisfaction of theNFR. The
Workflowfile is correspondingly updated and the consistent set of Code Signatures
are also identified.

• APKGenerator: This is the final phase of the framework that takes the consistent
set of Code Signatures and the Workflow to generate an APK file for end-users.
By the time the framework reaches this phase, all operationalizations of specified
high-level NFRs have been decided and all conflicts (if any) have been resolved
with the help of developer prioritization.

• CodeRepository: This repository stores two types of codes—Functional Require-
ment (FR) Codes and NFR Codes. FR Codes are used to implement specific func-
tionalities represented by goals and tasks. NFR codes are used to capture opera-
tionalizations of structural high-level NFRs.

The FR codes within the Code repository may be developed by software devel-
opers (who may or may not specialize in Requirements Engineering). The NFR
Repository and theNFRcodes are typically created, updated andmanagedby require-
ment engineers who are well-trained and experts in NFR management. The Code
repository may be built incrementally—the greater the availability of FR and NFR
code components, the richer is the quality of the App generated by the GRL2APK
framework. The GRL2APK approach is aimed at driving towards the automation
of app generation based on the availability of integrable code components within a
code repository. However, validation of the app being generated with respect to the
requirements captured in the original goal model still remains a necessity.

The GRL2APK tool is built on the newly proposed framework with the help of
mainly four technologies: Acceleo (a platform for code generation),Google Firebase
(cloud storage for NFR catalogue repository), Amazon AWS S3 (cloud storage for
functional code repository) and Java Services (used at the back end for consistency
checking and app generation). We will elaborate on each of these technologies and
how they have been used for building the GRL2APK tool (Fig. 6.10).

6.2.3.2 Components of the GRL2APK Tool

The GRL2APK tool provides a guideline (only) as to how the different components
of theGRL2APK framework (shown in Fig. 6.9) can be realized using state-of-the-art
technologies. System developers can choose among alternate available technologies
for realizing any of the components.

• Acceleo [4]: We provide as input a goal model written in XtGRL to the Acceleo
platformof theEclipse tool.Acceleo is anEclipse-based product created and devel-
oped by the Eclipse StrategicMember Obeo. Acceleo usesModel to Text language
(MTL) to extract the component of a model. It supports Java services behind the
scene to process these kinds of domain-specific languages. Acceleo extracts the

146 6 Conclusion and Future Work

XtGRL Goal
Model

Google’s Firebase
Cloud Storage for NFR
Catalogue Repository

Specified High-
level NFR

Downloaded
NFR Catalogs

Goal Decomposi on
Trees

List of
Actors

Inter-Actor
Dependencies

Goals of
each Actor

Amazon AWS S3 Cloud
Storage for Code

Repository

Acceleo Fetch Engine

XtGRL DSL
Grammar

Innova on/Contribu on

Reused Technology

Input / Output

Cloud Repositories

Extracted Components of Goal Model

Data Resources Fetched / Created

1

2

3 4

8

1

1

Acceleo
MTL parser

Java Workflow
Engine

7

5

Acceleo Consistency
Checker

Acceleo Android
Project Developer

Android Studio for
APK Genera on

Code
Signatures

Consistent Code
Signatures

Consistent
Workflow

910

6.a

6.b

6.c

6.d

Fig. 6.10 The implementation framework with the process steps numbered in black circles

necessary information from the input requirements model. It also gives the provi-
sion to write Java services to accomplish specific tasks.

Acceleo Modules: The Component Extractor and NFR Fetcher modules in
Fig. 6.9 are implemented using this technology. We call it the Acceleo MTL
Parser and Acceleo Fetch Engine, respectively, in Fig. 6.10.

• Google Firebase [5, 6]: One of the vital assumptions of the proposed framework
is to access NFR catalogs from a cloud repository as per the specified high-level
NFRs. We use Google Firebase cloud service where we can store any kind of
files. A dozen of Google Firebase cloud storage APIs provide flexibility to access
specific NFR catalogs as specified in the requirements model. Another important
aspect of the Google Firebase cloud storage is that we can authenticate every user
of the application with ease.

Firebase Module: The NFR Fetcher (shown in Fig. 6.9) uses Google Fire-
base APIs to download NFR catalogs from the NFR Repository. This component
is called Acceleo Fetch Engine in Fig. 6.10.

6.2 Future Research Directions 147

• Amazon AWS S3 [7]: AWS S3 is one of the leading object storage cloud services
that allows accessing, storing and analysing any amount of data securely from
anywhere. We have chosen S3 as the functional code repository. Amazon claims
the durability of AWS S3 is about 99.99%. Several APIs are available to access
functional codes stored in AWS S3 using Java services in Acceleo platform and
integrate them with the other modules. Alternatively, Google Cloud, Microsoft
AZURE or other cloud services could also be used for these repositories.

AWS Module: The APK Generator (Fig. 6.9) uses AWS S3 APIs to integrate the
functional code corresponding to the given goal model and chosen NFR opera-
tionalizations. We call it the Acceleo Android Project Developer in
Fig. 6.10.

• Java Services: Finally we use several Java services to generate Android source
codes from extracted components of the requirementsmodel andNFR components
of theNFRcatalogs.We also integrate necessary files and dependencies ofAndroid
libraries and generate .APKfile (AndroidApplication Package) with Java services.

Java Modules: The Consistency Checker, Workflow Engine and APK Genera-
tor heavily use Java Services. The corresponding modules in Fig. 6.10 are called
Acceleo Consistency Checker, Java Workflow Engine and
Acceleo Android Project Developer, respectively.

6.2.3.3 Workflow of the GRL2APK Tool

Input: Goal model specification capturing functional and high-level non-functional
requirements, a cloud repository for NFR catalogs and another cloud repository stor-
ing functional code.

Output: An Android .APK file implementing the operationalizations of structural
NFRs as selected by the developer.

Process Steps: (see Fig. 6.10)

Step1 Goalmodel specification and theXtGRLCFG is fed into theAcceleoMTL
Parser.

Step2 MTL modules and Java services in the Acceleo MTL Parser process
the goal model and extract the necessary components—high-level NFRs
and goal decomposition trees.

Step3 According to the “demands”of the softgoals within the goal model, specific
NFR catalogs (stored in the Google Firebase cloud storage) are accessed
by the Acceleo Fetch Engine.

Step4 Google Firebase APIs are used to download those catalogs.

148 6 Conclusion and Future Work

Step5 NFRCatalogs andGoalDecompositions are fed into theJava Workflow
Engine.

Step6 The framework iteratively derives a set of Code Signatures that are conflict-
free as follows:

(a) The developer selects his desired Code Signatures for FRs and NFR
operationalizations.

(b) TheNFRoperationalizations are checked for conflicts in theAcceleo
Consistency Checker.

(c) In case of anNFRconflict, the developer is prompted to choose another
set of operationalizations. The corresponding Code Signatures are
collected and the process is repeated.

(d) If there is no conflict, then theJava Workflow Enginegenerates
theConsistentWorkflow andCode Signatures for generating theAPK.

Step7 The Consistent Workflow and Code Signatures are fed into the Acceleo
Android Project Developer.

Step8 TheAcceleo Android Project DeveloperusesAmazonAWS
S3 APIs to access the code repository and download the actual code com-
ponents.

Step9 TheAcceleo Android Project Developer creates theAndroid
Studio project for APK generation while making necessary changes to the
root AndroidManifest.xml file.

Step10 The Android project created in Step-9 is fed into Android Studio for
compilation and building of the APK file.

6.2.3.4 Generating a Remote Healthcare Android App

We have considered remote healthcare system for our case study. It refers to the
ongoing healthcare project “A Framework for Healthcare Services using Mobile and
Sensor cloud Technologies”under the Information Technology Research Academy
ITRA.1 The project coordinators agreed to share their code repositories that would
help in the generation of Android applications using our proposed framework. We
modelled a part of the system consisting of some functional goals and some NFRs
like Security and Data-space Performance. In this section, we present in
detail how the framework is executed in a real-life scenario. The necessary screen-
shots for every phase has been provided for better visualization.

The XtGRL Goal Model

In this section,we create a scenariowhere an actor Patientwants to submit hismedical
details. The corresponding goal ProvideMedicalDetails “demands” the high-level
NFRs Security and Data-space Performance. The input XtGRL goal model is as
follows:

1Project URL: https://itra.medialabasia.in/?p=632.

https://itra.medialabasia.in/?p=632

6.2 Future Research Directions 149

grl Health Care{
actor Patient{

goal SeekHealth care{
decompositionType =’and’;
decomposedBy ProvideMedicalDetails,
SendReports,GetMedicine;

}
goal ProvideMedicalDetails{

demands Security;
demands Data-space Performance;

}
softGoal Security;
softGoal Data-space Performance;

}}

NFR Catalogs

Themore important functional requirement in the goalmodel, with respect to the pro-
posed framework, is the ProvideMedicalDetails goal. This goal “demands”
two different high-level NFRs—Security and Data-space Performance.
The NFR catalogs corresponding to these two high-level NFRs are as follows:

nfrl catalog{
nfr__SGoal Security{

decompositionType=or;
decomposedBy AES_Encryption, DES_Encryption;

}
op_SGoal AES_Encryption;
op_SGoal DES_Encryption;

}
nfrl catalog{

nfr_SGoal Data-space Performance{
decompositionType=or;
decomposedBy PPM, LZ, CM;

}
op_SGoal PPM;
op_SGoal LZ;
op_SGoal CM;

}

Workflow Engine Interface

Once the NFR catalogs are downloaded, the Workflow Engine allows the developer
to decide the control flow between different goals and tasks as well as the implemen-
tation code signatures for both functional and non-functional requirements.

150 6 Conclusion and Future Work

Consistency Checker

Once the Code Signatures are selected by the developer, the Consistency Checker
module checks the chosen signatures against a NFR conflict database (that is stored
in the NFR repository). In case of conflicts, the module shows a prompt as seen in
Fig. 6.11. The value of 30% is derived from the conflict database. If there are no
conflicts between the chosen operationalizations (for example, in our case study,
Lempel Ziv (LZ) for Data-space Performance and AES_Encryption for Security),
then the Workflow Engine creates the workflow file as shown in Fig. 6.12.

APK Generator

The APK Generator can now download the code modules based on the code signa-
tures that are mentioned in the workflow file (Fig. 6.12). The workflow file captures
the order of execution of goals (or tasks), which in this case study turns out to be
provideMedicalDetails(), followed by send_reports() and get_medicine(). Thework-

Fig. 6.11 Conflict identified between operationalization PPM (for Data-space performance) and
DES_Encryption (for security)

Fig. 6.12 Workflow generated for LZ (for Data-space performance) and AES_Encryption (for
security)

6.2 Future Research Directions 151

flow also captures the order in which the NFR operationalizations have to be applied.
The provideMedicalDetails() module passes the patient data (accepted as argument)
to the LZ() code module for compression. The compressed data is then passed to
AES_Encryption() module for encrypting before storage.

Figure6.13 shows a screenshot of the app that is generated with the help of
Android Studio for the above case study. Figure6.14 shows how the data are
stored in the Patient database. For illustration purposes, we included two dummy
operationalizations—No_Encryption() and No_Compression()—to show the proper
functioning of the GRL2APK framework based on developer’s choice. A careful
inspection of Fig. 6.14 shows amedical record of patient “ajit pal”which is being sub-
mitted from the app interface shown in Fig. 6.13. The selection of No_Encryption()
and No_Compression() by the developer resulted in storing this data in the database
as-is. Another patient data on the lower side of Fig. 6.14 shows how the data has
been stored after applying LZ() compression followed by AES_Encryption(). Thus,
depending on the developer’s choice of NFR operationalizations, the generated app
behaves differently.

Fig. 6.13 Screenshot of the
app

152 6 Conclusion and Future Work

Fig. 6.14 Screenshot of patient database

References

1. FuxmanAD (2001) Formal analysis of early requirements specifications.MS thesis, Department
of Computer Science. University of Toronto, Canada

2. Deb N, Chaki N, Roy M, Bhaumik A., Pal S Extracting business compliant finite state mod-
els from i* models. In: Advanced computing and systems for security (ACSS), advances in
intelligent systems and computing, vol. 995. Springer, Singapore. ISBN: 978-981-13-8962-7

3. Deb N, Mallik M, Roychowdhury A, Chaki N Cargo: a prototype for contextual annotation
and reconciliation of goal models. In: Accepted in the 27th international IEEE requirements
engineering conference (RE)

4. Musset J, Juliot É, Lacrampe S, Piers W, Brun C, Goubet L, Lussaud Y, Allilaire F (2006)
Acceleo user guide, vol. 2

5. Moroney L (2017) Moroney, Anglin, definitive guide to firebase. Springer. https://doi.org/10.
1007/978-1-4842-2943-9

6. Stonehem B (2016) Google android firebase: learning the basics, vol. 1. First Rank Publishing
7. AWS (2016) Amazon simple storage service developer’s guide. https://s3.cn-north-1.

amazonaws.com.cn/aws-dam-prod/china/pdf/s3-dg.pdf

https://doi.org/10.1007/978-1-4842-2943-9
https://doi.org/10.1007/978-1-4842-2943-9
https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/s3-dg.pdf
https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/s3-dg.pdf

	6 Conclusion and Future Work
	6.1 Summary of the Work
	6.2 Future Research Directions
	6.2.1 Extracting Business Compliant Finite State Models
	6.2.2 The CARGo Tool
	6.2.3 Building Mobile Applications from Goal Model Specifications

	References

