
Chapter 4
Model Checking with i∗

Hierarchic correlation between adjacent levels of a goalmodel hierarchy only ensures
the synchronization between different levels of the enterprise hierarchy. It does not
ensure the compliance of goal models to business compliance rules. Model checkers
or verifiers can do this type of analysis. Model checking is a method for formally
verifying finite state concurrent systems represented by extended finite state models.
Industry standard model checking tools—like SPIN [1], NuSMV [2]—accept these
extended finite state models (E-FSM) as input. The input models are defined by a set
of state transitions that characterize the possible execution traces that the system can
generate. The model checking tools are also fed with specifications about the system,
expressed using temporal logic. Efficient symbolic algorithms are used to traverse
the model defined by the system and check if the specification holds or not. Thus,
either a positive acknowledgement is generated, if the specification is satisfied, or a
counterexample is produced, if the specification is violated. Figure4.1 illustrates the
general working mechanism of model checkers.

Requirement models capture the requirement specifications of the system and
have the same impact as design models have on the coding phase [3]. Requirement
models are generated in the requirements analysis phase of software development.
This is the first phase of developing a software or system, irrespective of the particular
development life cycle model being followed—Waterfall, Spiral, Prototype or Agile.
Requirement models can help enterprise architects and developers by allowing them
to performdifferent kinds of analysis on the systembeing developed.Model checking
against a given set of temporal properties (see Fig. 4.1) is also an important type of
analysis that may be performed on goal-oriented requirement models.

Even after a system has been deployed, its environment keeps changing. This
results in the user requirements to change as well. The system has to adapt to the
ever-changing user needs during runtime. Before incorporating the newly evolved
requirements into the existing framework, developers and architects need to ensure
that the changing requirements do not result in conflicting/inconsistent states within
the system. Thus, some kind of model checking needs to be done on the changed
requirements to ensure that the system will remain consistent after the changes take

© Springer Nature Singapore Pte Ltd. 2020
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation
Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_4&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_4

46 4 Model Checking with i∗

Fig. 4.1 Block diagram of standard model verifiers

Fig. 4.2 Problem with i∗ model verification

effect. This may be done with industrial model checkers, if they are fed with the
updated requirement models and the evolved requirement specifications as shown in
Fig. 4.1.

i∗ is a goal-oriented requirements modelling notation that models requirements
with the help of actors and their goals, tasks and resources. Inter-actor dependencies
are also captured by the i∗ framework. An inherent attribute of the i* notation (and
goal models in general) is that it is sequence agnostic and does not capture any sort
of partial ordering between the goals and tasks. In the absence of sequencing infor-
mation, standard industrial model checkers cannot verify i∗ models against temporal
property specifications as shown in Fig. 4.2. Model checkers accept extended finite
state models (E-FSM) as input for verifying temporal properties. Process models,
sequence diagrams or activity diagrams, capture some ordering of states within the
system and, hence, E-FSM(s) can be easily derived from these models. The process
of extracting E-FSM(s) from i∗ models is far more complex as i∗ models do not
capture state transitions within the system. This is the underlying research question
being addressed in this chapter and is the main motivation behind this research.

4 Model Checking with i∗ 47

Formal Tropos introduces the concept of actor instances and how dependencies,
assertions, possibilities and invariants can exist in either of three states—Not Cre-
ated, Created Not Fulfilled and Fulfilled [4, 5]. Formal Tropos associates the Tropos
methodology to a formal specification language that allows the specification of con-
straints, invariants, pre- and post-conditions, thereby capturing the semantics of the
i∗ graphical models. We extend this notion to i∗ model constructs in general and state
that every goal, task or resource also exists in either of these three states. Everymodel
construct makes two state transitions to reach theFulfilled state from theNot Created
state. The Naïve Algorithm uses a brute-force method to generate all possible finite
state models that can be obtained by permuting the state transitions of individual
model constructs. This results in an explosion within the finite state model space.

It is interesting to observe that, although an i∗ model is sequence agnostic, yet
there exists some features or model constructs within the i∗ model that provide a tem-
poral insight into the underlying requirements of the enterprise. For instance, every
dependency has a cause-effect property in the sense that it is only when a dependee
satisfies a requirement of the depender does the dependency become fulfilled. The
Semantic Implosion Algorithm identifies these untapped temporal characteristics and
tries to contain the rate of growth of the finite state model space corresponding to
an i∗ model. Simulation results reveal that the Semantic Implosion Algorithm indeed
outperforms the Naïve algorithm and provides a drastic improvement over the brute-
force method.

The rest of the chapter is structured as follows. The next section (Sect. 4.1) details
out theNaïveAlgorithm and the Semantic ImplosionAlgorithm. The drawbacks of the
Naïve Algorithm are identified and the Semantic Implosion Algorithm is proposed as
a solution to these drawbacks. Section4.2 describes a detailed simulation where both
the algorithms are applied to the same classes of i∗ models and their performances
are observed, compared and contrasted. Section4.3 presents the i∗ToNuSMV tool
that we have developed for implementing the Semantic Implosion Algorithm and
performing model checks on i∗ models. concludes the paper. This is followed by the
version history and web links of the tool in Sects. 4.4 and 4.5, respectively. Finally,
we conclude the chapter in Sect. 4.6.

4.1 Developing Finite State Models from an i∗ Model

The main research motivation is to analyse an i* model and derive a finite state
model (FSM) that captures all the finite execution sequences that satisfy the given i∗
model. Without identifying a partial ordering of the operations within the enterprise,
it becomes very difficult to check and verify temporal properties and compliance
rules on the system. The underlying challenge of this work lies in the fact that i*
models are sequence agnostic. Being complementary to the notion of FSMs, which
define an ordering of states through which the system can go through, the conversion
process cannot yield a unique execution trace corresponding to a given i∗ model. The
idea here is to generate all the possible execution traces that satisfy the requirement

48 4 Model Checking with i∗

specifications captured in the given i∗ model. The algorithms presented in this article
produce a finite state model space, as output, which defines this set of plausible finite
state sequences. Once the finite state model space is obtained, we can apply model
checking and generate a subset of this model space which satisfies all the compliance
rules necessary for the operation of the enterprise. This final set of pruned finite state
sequences can then be reverted back to the enterprise owner in order to verify the
requirements.

In the following algorithms we are considering the more detailed strategic ratio-
nale (SR) diagramof an i*model. The SR-diagram ismuchmore comprehensive than
its strategic dependency (SD) counterpart and encompasses all the dependency infor-
mation that are captured in the SD-diagram. In fact, an SD-diagram only represents
the inter-actor dependencies but does not depict which particular model construct of
the depender is dependent on which particular model construct of the dependee. The
SR model is much more elaborate in this sense.

4.1.1 The Naïve Algorithm

The most intuitive solution that has been given by the GORE community uses the
notion that every i∗ model element can exist in either of three possible states—Not
Created (NC), Created Not Fulfilled (CNF), and Fulfilled (F). All the goals, tasks
and resources that appear in the SR model are initially in the Not Created (NC)
state and every model construct must make two transitions to reach the Fulfilled (F)
state while transitioning through the intermediate Created Not Fulfilled (CNF) state.
Unlike Formal Tropos [5], we do not consider multiple instances of goals, tasks or
resources. We assume single instances and derive a finite state model corresponding
to the given i∗ model. We obtain sequences of states by considering all possible
permutations of the model elements and the states in which they exist.

Let us demonstrate the above concept with an example. Consider the simplest
possible SR-diagram with one actor consisting of only one goal G. This is shown in
Fig. 4.3a. The goal G can be in either of three states—Not Created denoted by G(N),
Created Not Fulfilled denoted by G(C) and Fulfilled denoted by G(F). These three
states give rise to 3! finite state sequences as shown in Fig. 4.3b–g. However, out
all these six finite state models, only Fig. 4.3b is semantically correct. All the other
finite state models are semantically inconsistent as a model element can go through
its possible states in exactly one possible sequence—G(N) → G(C) → G(F). We call
this sequence the default sequence, and must be satisfied by all model elements.
Now, let us increase the complexity by incorporating one more model element in
the SR-diagram, i.e., let there exist two model elements in the SR-diagram. These
two model elements can belong to the same actor or to two different actors. In either
case, the complexity analysis remains the same.

Let A1 and A2 be two different actors, each with a single goal node G1 and
G2, respectively. Since each goal can be in either of three states, the total num-
ber of possible combined states is 32 (=9). However, since both G1 and G2 must

4.1 Developing Finite State Models from an i∗ Model 49

Fig. 4.3 a Actor A with a
single goal G; b The only
semantically correct finite
state sequence; c–g Other
possible finite state
sequences that can be
derived by permuting the
state space but which are
semantically incorrect

A Goal G

(b)

(a)

(c)

(d) (e)

(f) (g)

Fig. 4.4 a Actors A1 and A2
with goals G1 and G2,
respectively; b The State
Sequence Graph over the set
of 32 = 9 possible states

A1 Goal G1
A2 Goal G2

(a)

(b)

individually satisfy the default sequence, it becomes interesting to enumerate the
valid state transition sequences that do not violate the default sequence of individ-
ual model elements. We draw a State Sequence Graph that captures all possible
valid state transition sequences from the source node—denoted by (G1(N) G2(N))—
to the destination node—denoted by (G1(F)G2(F)). Figure4.4b illustrates the State
Sequence Graph for these two goals.

The State SequenceGraph has all the nine possible combined state representations
as vertices. These vertices are connected in the form of a lattice as all state transitions
do not satisfy the default sequence. Each path in the State Sequence Graph, from the
source node (G1(N)G2(N)) to the destinationnode (G1(F) G2(F)), defines a semantically
valid sequence of state transitions. In other words, each such path represents a finite
state sequence corresponding to the given i∗ model. Thus, with two model elements,
we obtain six different finite state sequences that satisfy the default sequences of the
individual model elements.

50 4 Model Checking with i∗

4.1.1.1 State Sequence Graph

A State Sequence Graph, GSS , can be defined as a 2-tuple 〈V,E〉where V represents
the set of vertices and E represents a set of directed edges such that

1. Each vertex vi ∈V is an n-tuple (Ḡ1, Ḡ2, . . . , Ḡn) that represents the state of each
of the n model elements that appear in the SR model.

2. Each directed edge eij ∈ E is directed from vertex vi to vertex vj such that vi →
vj satisfies the default sequence for any one of the n model elements represented
in every vertex. This implies that vi → vj represents either of the following:

(a) SomegoalGi goes from theNC state to theCNF state, denoted by (Ḡ1…Gi(N)

…Ḡn) → (Ḡ1…Gi(C)…Ḡn), or
(b) SomegoalGi goes from theCNF state to theF state, denotedby (Ḡ1…Gi(C)…

Ḡn) → (Ḡ1…Gi(F)…Ḡn).

3. The number of vertices in the vertex set V is 3n, i.e., |V|=3n.
4. Eachpath from the source vertex (G1(N)…Gn(N)) to the sink vertex (G1(F)…Gn(F))

represents a valid ordering of state transitions that satisfies the default sequence
of the individual model elements, i.e., every unique path (G1(N)…Gn(N)) →
→ (G1(F)...Gn(F)) represents a finite state model.

The next level of complexity involves three differentmodel elements. The analysis
remains the same irrespective of how these three model elements are distributed
between actors. Let G1, G2 and G3 be the three goals modelled in the SR-diagram.
As mentioned above, since each goal can be in either of three states, this particular
situationwill result in a state spacewith 33(=27) combined states. TheState Sequence
Graph can be obtained as shown before. A detailed reachability analysis yields 90
different paths that exist between the source vertex (G1(N)G2(N)G3(N)) and the sink
vertex (G1(F)G2(F)G3(F)). Each of these paths represents a sequence of valid state
transitions such that none of the three goals G1, G2, and G3 violate the default
sequence. Thus, with three model elements in the SR-diagram we get 90 possible
finite state sequences that correspond to the given i* model.

4.1.1.2 Counting Multidimensional Lattice Paths

In general, it is interesting to observe how the number of pathswithin a State Sequence
Graph increases in accordance to the number of model elements (k) within an i∗
model. It is intuitive from the above case studies that the growth of thestate space
size can be represented as an exponential function f (k) = 3k . This is because each
model element can exist in either of three states. On the other hand, the function
representing the growth of the finite state model space is far more complex. Before
going into the details of evaluating an upper bound for the finite state model space,
we need to keep in mind that every model element is initially in theNot Created state
and it needs two transitions to reach the Fulfilled state. Thus, the distance covered
by each model element is always 2.

4.1 Developing Finite State Models from an i∗ Model 51

Consider the case where k = 2. Since each model element needs to cover a dis-
tance of 2, we can consider P1(N)P2(N) and P1(F)P2(F) as the Least Upper Bound and
the Greatest Lower Bound of a 2 × 2 lattice. In general, the number of paths within
a n1×n2 lattice is given by

LP =
(
n1 + n2

n1

)
= (n1 + n2)!

n1!n2! (4.1)

So for a 2 × 2 lattice structure, we have

LP =
(
2 + 2

2

)
= (2 + 2)!

2! 2! = 4!
2! 2! = 24

4
= 6.

This is exactly what we obtain from our example of Fig. 4.4.
When k = 3, we can represent the set of all possible state sequences from

P1(N)P2(N)P3(N) to P1(F)P2(F)P3(F) as a 3-dimensional cubic lattice with each dimen-
sion having distance 2. In general, the number of paths in a 3-dimensional cubic
lattice with dimensions (n1, n2, n3) is given by

LP =
(
n1 + n2 + n3
n1, n2, n3

)
= (n1 + n2 + n3)!

n1!n2!n3! (4.2)

So for a 3-dimensional cubic lattice with dimensions (2, 2, 2), we have-

LP =
(
2 + 2 + 2

2, 2, 2

)
= (2 + 2 + 2)!

2! 2! 2! = 6!
2! 2! 2! = 720

8
= 90.

Again, this is exactly what we obtain from our previous case study.
To generalize an upper bound on the growth function of the finite state model

space, we need to realize that for k different model elements in the i∗ model we need
a k-dimensional hypercube lattice. The number of paths in such a k-dimensional
hypercube lattice with dimensions (n1, n2, …, nk) is given by

LP =
(
n1 + n2 + · · · + nk

n1, n2, . . . , nk

)
= (n1 + n2 + · · · + nk)!

n1!n2! . . . nk ! = (
∑k

i=1 ni)!∏k
i=1(ni!)

(4.3)

Irrespective of the number of model elements in the i∗ model, since each model
element travels a distance of 2 to become fulfilled, we have the condition ∀k

i=1,

ni = 2. The total number of paths is, thus, given by

LP = (
∑k

i=1 2)!∏k
i=1(2!)

= (2 ∗ ∑k
i=1 1)!∏k

i=1(2)
= (2k)!

2k
. (4.4)

52 4 Model Checking with i∗

4.1.1.3 The Naïve Algorithm

Input: SR-diagram of the i* model of an enterprise
Output: The set of plausible finite state sequences that can be derived from the given
i* model
Data Structure: A List that stores all the model elements appearing in the SR model

Step-1: Select actor Aj and populate List with all the model elements that appear
within the actor boundary of Aj.

Step-2: Repeat Step-1 for all actors andproceed to create theState SequenceGraph.
Step-3: Initialize the vertex set V with the vertex (P1(N)…Pn(N)) representing all

model elements in the Not Created state.
Step-4: Select a vertex vi from the vertex set V.
Step-5: Create a new vertex v′

i at a distance of 1 from vi such that

(a) Some model element Pk makes a transition from Not Created
to Created Not Fulfilled state, i.e., (P̄1…Pk(N)…P̄n) →
(P̄1…Pk(C)…P̄n), OR

(b) Some model element Pk makes a transition from Created Not
Fulfilled to Fulfilled state, i.e., (P̄1…Pk(C)…P̄n) → (P̄1…
Pk(F)…P̄n).

Step-6: If v′
i /∈ V, then V = V ∪ v′

i .
Step-7: Repeat Steps 4–6 till the vertex set V is not filled, i.e., while |V| < 3n.
Step-8: Select any two vertices vi,vj from the vertex set V that are separated by a

distance of 1.
Step-9: Set up a directed edge from vi to vj if and only if vi → vj satisfies the

default sequence for any one of the n model elements.
Step-10: Repeat Steps 8–9 till we obtain the n-dimensional hypercube lattice struc-

ture (State Sequence Graph) for the SR model.
Step-11: Each path from the vertex (P1(N)…Pn(N)) to the vertex (P1(F)…Pn(F))

represents a finite state sequence that corresponds to the given SRmodel.
Step-12: Stop.

4.1.1.4 Simulation Results: The Hyperexponential Explosion

Equation4.4 of Sect. 4.1.1.2 can be used to generate a data set and observe how the
state space and the finite state model space grows with increasing number of model
elements in the i∗ model. Table4.1 represents such a data set with the number of
model elements increasing from 5 to 85 in steps of 5. Data thus obtained have been
plotted on a graph and the trends are observed. Figure 4.5 depicts the rate of growth
for both the state space and the finite state model space with respect to the number
of model elements appearing in the given i* model.

Interpretation of the graph is quite interesting. Both the growth curves plotted in
Fig. 4.5 appear to be somewhat linear in nature, although they are not straight lines.

4.1 Developing Finite State Models from an i∗ Model 53

Table 4.1 Rate of growth of space w.r.t. the number of model elements

No. of process elements State space Finite state model space

5 243 113400

10 59049 2.37588E+15

15 14348907 8.09487E+27

20 3486784401 7.78117E+41

25 8.47289E+11 9.06411E+56

30 2.05891E+14 7.74952E+72

35 5.00315E+16 3.48622E+89

40 1.21577E+19 6.5092E+106

45 2.95431E+21 4.2227E+124

50 7.17898E+23 8.289E+142

55 1.74449E+26 4.4083E+161

60 4.23912E+28 5.8022E+180

65 1.03011E+31 1.7528E+200

70 2.50316E+33 1.1403E+220

75 6.08267E+35 1.5123E+240

80 1.47809E+38 3.8999E+260

85 3.59175E+40 1.876E+281

1
1E+21
1E+42
1E+63
1E+84

1E+105
1E+126
1E+147
1E+168
1E+189
1E+210
1E+231
1E+252
1E+273

0 20 40 60 80 100

Number of model elements in i* model

State Space FSMS-N

Fig. 4.5 Graph depicting the rate of growth of the state space and finite state model space with
respect to the number of model elements in the i* model for the Naïve Algorithm

54 4 Model Checking with i∗

A careful analysis of the graph reveals that the vertical axis is a logarithmic scale
where the values represent exponentially increasing integers. These values range
from 1 to 1.876E + 281. Thus, although the curves appear to be somewhat linear,
they represent exponential growth functions on the logarithmic scale. In fact, the
state space growth function, as represented by the blue curve, actually represents the
growth function f (k) = 3k . The growth function of the finite state model space, as
represented by Eq.4.4, is shown by the red curve.

Themost significant inference that can be drawn from the graph is that the gradient
of the blue curve ismuch less compared to that of the red curve.Thegradient of a linear
curve on a logarithmic scale signifies the rate of growth of the exponential function.
This implies that although both the state space and the finite state model space grow
exponentially, the rate of growth of the finite state model space is significantly large
compared to that of the state space. In fact, the values in Table4.1 reveal that, in
every step, the state space grows by an approximate factor in the range (102, 103),
whereas the finite state model space grows by an approximate factor in the range
(1019, 1020). This is really huge in terms of the rate of growth.

This extremely rapid growth in size of the finite state model space, caused by the
Naïve Algorithm, results in a hyperexponential explosion. The growth curve of the
finite statemodel space is so steep that it reaches infinitely large values for quite small
number of model elements in the i* model. This implies that the finite state model
space becomes quite unmanageable in real time when we are looking at the i* model
of an entire enterprise. Thus, it becomes necessary to tackle this explosion in the
finite state model space. One of the means to control this undesirable explosion is to
extract partial sequence information that remains embedded within an i* model and
perform some pruning activities while the finite state models are being generated.
The Semantic Implosion Algorithm is proposed in the next section with this same
intent. The proposed solution provides a significant improvement in terms of the rate
of growth of the finite state model space.

4.1.2 The Semantic Implosion Algorithm (SIA)

The motive here is to prevent the hyperexponential explosion of the finite state model
space that is caused by theNaïve Algorithm. Although theNaïve Algorithm generates
all possible finite execution traces that can be derived from an i* model, some sort
of pruning can be done on this model space. The simplest means of doing this is
to feed the derived FSM into some standard model checker like NuSMV and check
the model against user-defined temporal compliance rules, specified using CTL or
LTL. However, since this needs to be done on the entire finite state model space, the
time complexity of the entire process becomes unmanageable even when machine-
automated.

It is desirable to prevent the hyperexponential explosion from occurring in the first
place.We propose the Semantic Implosion Algorithm, or SIA, that tries to achieve this
and proves to be successful to a good extent. SIA is based on the underlying hypothesis

4.1 Developing Finite State Models from an i∗ Model 55

that although an i∗ model is sequence agnostic, there exists some embedded temporal
information that can be extracted and exploited to reduce the plausible space of finite
state models. Temporal compliance rules may be further defined to reduce the size
of the finite state model space.

Every model element Pi residing within the SR-diagram of an actor is uniquely
identified using a system variable Vi. Every system variable Vi can have either of
three values—0, 1, or 2—representing the Not Created (Pi(N)), Created Not
Fulfilled (Pi(C)) and Fulfilled (Pi(F)) states, respectively. Every time a new
model element Pj is encountered, a corresponding system variable Vj is created and
initialized to 0 representing the Not Created state. This is reflected in the finite state
model of the enterprise with a transition from the current state to a new state where
the corresponding system variable Vj becomes a member of the state variable list.

The algorithm proceeds to explore the children of a chosen model element Pi.
Before doing so, the corresponding system variable Vi is changed from 0 to 1 and
pushed onto a stack. This is reflected in the finite state model with a state transition
from the current state to a new state that reflects the fact that Pi has been created
but not fulfilled. A model element is said to be Fulfilled when either it has no
children (we have reached the actor boundary) or all its child model elements have
been individually fulfilled.When this happens, the system variable Vi, corresponding
to the model element Pi, is popped from the stack and updated with the value 2.A
corresponding state transition is incorporated in the finite state model that reflects
the fact that model element Pi has been fulfilled. Figure4.6 illustrates the finite state
model corresponding to a single model element and how the corresponding system
variable is incorporated and updated along each transition.

However, it is interesting to note how the child model elements of a particular
parent are processed. The processing differs for task decompositions and means-end
decompositions. A task decomposition is an AND-decomposition and demands that
all the childmodel elements be fulfilled in order to declare that the parent has also been
fulfilled. A means-end decomposition, on the other hand, is an OR-decomposition
and provides alternate strategies to fulfil the parent model element. Let us elaborate
on the consequences of these two decompositions.

A task decomposition requires that all the child model elements be fulfilled before
changing the state of the parent model element to the fulfilled state. However, since
an i∗ model is sequence agnostic, the child model elements may be fulfilled in any
random order. System variables associated with the child model elements should not
defy the default sequence defined in Sect. 4.1.1. Let a model element Pj be decom-

Fig. 4.6 a Actor A1 with
goal G1; b The
corresponding finite state
model

(a)

A1

Goal G1

V1

V1

V1

(b)

56 4 Model Checking with i∗

posed by a task decomposition to a set of model elements 〈P1,P2, . . . ,Pm〉. The
system variables associated with these model elements are V1, V2, …, Vm, respec-
tively.Wedefine a state transition from the current statewithVj = 1 to a new statewith
the state variables Vj = 1, ∀m

r=1, Vr = 0. There exists several execution sequences of
the decomposed model elements that finally results in a state with the state variables,
Vj = 1, ∀m

r=1, Vr = 2. The set of all possible execution sequences can be defined using
a lattice structure, similar to the one shown in Fig. 4.4. Since all child model elements
are fulfilled, we define another state transition in the finite state model that reflects
the fact that the parent model element is also fulfilled, i.e., the new state has state
variables Vj=2. The finite state model corresponding to such a task decomposition is
shown in Fig. 4.7.

The interpretation of the figure is quite interesting. The lattice structure represents
the set of all possible execution sequences that result in the successful fulfilment of the
task decomposition. As seen in Sect. 4.1.1, the number of paths in a lattice structure
for two model elements is 6. All of these 6 paths represent valid execution sequences
or state transitions. Each path gives rise to a different finite execution sequence. This

Fig. 4.7 a Actor A1 with
goals G1, G2 and G3
connected through a task
decomposition; b The
corresponding set of all
possible finite state models
captured in a state sequence
graph

(a)

(b)

V3 V2

V1

V2, V3

V3 V2 V3
V2

V2 V3
V2 V3

V2 V3

V1

A
Goal G1

Goal G2 Goal G3

V1

4.1 Developing Finite State Models from an i∗ Model 57

implies that the task decomposition shown in Fig. 4.7 gives rise to 6 possible finite
state sequences. The Naïve Algorithm, on the other hand, would generate a lattice
structure with three model elements and the number of possible finite state sequences
would become 90. This is a significant reduction in the finite state model space. In
fact, the significant observation here is that a lattice structure will be generated only
where task decompositions take place. In other words, only task decompositions will
increase the size of the finite state model space.

A means-end decomposition is easier to handle. OR-decompositions, in gen-
eral, do not increase the size of the finite state model space. Rather, if a particular
model element Pj decomposes via a means-end decomposition into k model ele-
ments 〈P1,P2, . . . ,Pk〉, then we introduce k different transitions from the current
state (Vj = 1) to k unique new states, each representing one of the k alternate means
(Vj = 1, Vp = 0,∀k

p=1). An OR-decomposition is characterized by the fact that ful-
filling any one of the alternate means implies fulfilling the parent model element.
Thus, each of these k new states will make two transitions (labelled by Vp:0→1 and
Vp:1→2) to reach their respective fulfilment states. Each alternate means will have a
separate fulfilment state labelled by Vj = 1, Vp = 2, ∀k

p=1. All the k fulfilment states
will converge to a final state that represents the fulfilment of the parentmodel element
Pj and is labelled by Vj = 2. The structure obtained is similar to the longitudinal
lines on the globe of the earth. Figure4.8 illustrates this further.

4.1.2.1 Some Interesting Features

1. Decompositions can be nested. This implies that decompositions can occur within
other decompositions. One particular decomposition link may be further blown
up with a second decomposition. For instance, means-end decompositions may
be followed by a task decomposition along one means-end link and a means-
end decomposition along some other means-end link. Figure4.9 illustrates this
scenario. This nesting of decompositions does not require any modifications on
the algorithm. The corresponding finite state model is built accordingly where the
state subsequences of the lower level decomposition is mereologically connected
to the finite state model of the higher level decomposition.

2. It is interesting to note what happens if we reach a model element G3, located at
the actor boundary of actor A1, that is dependent on some model element G4 that
is located at the actor boundary of actor A2 (refer Fig. 4.10a).
In this situation, we first proceed to complete the finite state models of the individ-
ual actors. We assume that the dependency between model elements G3 and G4

will be satisfied and pop out the system variable V3 from the stack to set its value
to 2. At the same time, we introduce a temporary transition in the corresponding
finite state model that changes the state of G3 from Created Not Fulfilled (CNF)
to Fulfilled (F). This is shown in Fig. 4.10b. Such an assumption is necessary to
proceed with the construction of the finite state model of individual actors.
We need to maintain a list of all such dependencies. A Global List is main-
tained that stores 2-tuples of the form 〈dependervariable, dependeevariable〉.

58 4 Model Checking with i∗

Fig. 4.8 a Actor A1 with
goals G1, G2, G3 and G4
connected through a
means-end decomposition; b
The corresponding finite
state model

(a)

(b)

V1: 0 1

V2 0
V3 0

V4 0

V2: 0 1 V3: 0 1 V4: 0 1

V2: 1 2 V3: 1 2 V4: 1 2

V1: 1 2 V1: 1 2
V1: 1 2

A Goal G1

Goal G2 Goal G3

Goal G4

V1

Once the finite state models of the individual actors have been built, the elements
of the Global List are accessed. The above dependency has an entry of the form
〈V13, V24〉 and is interpreted as model element G3 within actor A1 depending on
actor A2 for model element G4. The temporary transition in the finite state model
of actor A1 representing the change V3: 1 → 2 is replaced by two new transitions
that connect the finite state models of actors A1 (FSM1) and A2 (FSM2). The first
transition is established from the state in FSM1 having label V3 = 1 to the state
in FSM2 having label V4 = 2. The second transition is placed from the state in
FSM2 having label V4 = 2 to the state in FSM1 having label V3 = 2. 〈V13, V24〉
is removed from the Global List. Figure4.10c illustrates this process.

3. Dependency resolution causes state transitions to be set up between states belong-
ing to the finite state models of the depender and the dependee. If the depender
and dependee have M and N possible finite state sequences in their models,
respectively, then we get M × N combination of sequences for interlinking the
finite state models of the depender and dependee. The dependency resolution is
reflected in all the M × N combinations.

4.1 Developing Finite State Models from an i∗ Model 59

Fig. 4.9 The state sequence
graph corresponding to a
nested decomposition. A
higher level means-end
decomposition contains
another means-end
decomposition along the
leftmost link and a task
decomposition along the
rightmost link

Let n be the total number of model elements occurring in the SR-diagram of the
enterprise. The terminating condition of the Semantic Implosion Algorithm is given
by the constraint, ∀n

j=1, Vj = 2, the stack is empty and theGlobal Dependency List is
empty. The algorithm initiates with the root model elements at the actor boundaries.
State transitions are defined in the corresponding finite state model as and when
model elements are discovered, explored and fulfilled. Let us look into the Semantic
Implosion Algorithm now.

4.1.2.2 The Semantic Implosion Algorithm

Input: SR-diagram of the i* model of an enterprise.
Output: The finite state model that can be derived from the given i* model containing
the set of plausible finite state sequences.
Data Structure: A Local Stack for each actor that stores model elements of the actor
and a Global List to keep track of dependencies between actors.

Step-1: For every model element Pi that is not at the end of a task decomposition
ormeans-end link, assign a system variable Vi = 0. Perform aDepth-First
Scan of the SR-diagram of each actor starting at these boundary model
elements.

60 4 Model Checking with i∗

(a)

A1

Goal G3

SR-diagram of
A2

Goal G4

SR-diagram of

V3

Finite State
Model of SR1

V4

(b)

V3 V4

(c)

V3

A1 (SR1) A2 (SR2)

Finite State
Model of SR2

Finite State
Model of SR1

Finite State
Model of SR2

Fig. 4.10 a Goal G3 of actor A1 dependant on Goal G4 of actor A2; b Temporary transition from
G3(C) to G3(F) introduced; c Resolution of the dependency by replacing the temporary transition
with two permanent transitions

Step-2: For anymodel elementPj with Vj = 0, set Vj = 1 and push it onto theLocal
Stack. Reflect this transition in the finite state model by plotting a transition
from theNot Created state to theCreated Not Fulfilled state.
Label this transition Vj:0→1.

Step-3: Discover all model elements 〈P1,P2, . . . ,Pq〉 that stem from the element
Pj and are connected toPj with task decomposition ormeans-end links. For
each such elementPk , initialize a systemvariable Vk such that∀q

k=1Vk = 0.

(a) If Pj is at an actor boundary with no elements stemming from it and
with no dependencies to other actors, pop Vj from the Stack and set
Vj = 2. Set up a corresponding transition in the finite state model
from the Created Not Fulfilled state to the Fulfilled
state. Label this transition Vj:1→2.

(b) If Pj is dependent on some other actor for fulfilment, then pop Vj

and insert it into the Global List with value Vj = 2. Insert a tem-

4.1 Developing Finite State Models from an i∗ Model 61

porary transition between states Created Not Fulfilled and
Fulfilled for element Pj. No need to label this transition as it is
a temporary transition.

(c) If Pj undergoes a task decomposition then we obtain several differ-
ent finite state sequences for the task decomposition by permuting
the order of execution of the child model elements. Each such per-
mutation can be considered to be a valid execution trace and can be
attached to the overall finite state model to obtain the unique finite
state model for that actor.

(d) If Pj undergoes a means-end decomposition then we obtain multi-
ple transitions from the current node in the same finite state model.
Each transition represents an alternate strategy and is triggered by
the corresponding guard condition. All the alternate state transitions
emanating from the parent model element must converge at a state
that represents that the parent model element has been fulfilled.

Step-4: Repeat Steps 2–3 for all siblings of Pj in all the finite state models gen-
erated for actor Ai.

Step-5: Repeat Steps 1–4 until the Local Stack is empty. This leaves us with the
set of plausible finite state models of an actor Ai.

Step-6: Repeat Steps 1–5 to extract all the possible finite state models of all the
actors in the i* model.

Step-7: Remove elements of the form 〈Vik , Vjl〉 from the Global List.
Step-8: Remove the temporary transitions corresponding to Vik from the finite

state model of actor Ai.
Step-9: Insert transitions from the Pk -Created Not Fulfilled state in the

finite state model of actor Ai to the Pl-Fulfilled state in the finite
state model of actor Aj. Label these transitions Vk :1→1.

Step-10: Insert another set of transitions from the Pl-Fulfilled state to the Pk -
Fulfil- ed state between the finite state models of actors Ai and Aj.
Label these transitions Vk :1→2.

Step-11: Repeat Steps 7–10 until theGlobal List is empty and all the dependencies
have been resolved.

Step-12: Stop.

4.1.3 Soundness and Completeness

Both the Naïve Algorithm and the Semantic Implosion Algorithm are complete
because given a goal model both the algorithms are capable of generating a finite
state model which include all the possible state transitions for valid execution traces.
However, it is not wise to say that the Naïve Algorithm is sound because the gener-
ated finite state model also contains invalid state transitions. The Semantic Implosion
Algorithm, on the hand, is sound because it contains all the valid transitions within
the finite state model.

62 4 Model Checking with i∗

4.2 Complexity Analysis

Let us perform some analytics on comparing and contrasting the heuristics of the
Naïve Algorithm and the Semantic Implosion Algorithm. The two metrics that are
used for this analysis are the State Space (SS) and the Finite State Model Space
(FSMS). However, since both algorithms share the concept of every model element
going through 3 states, the SS metric will be the same for both algorithms and is
defined by the function f(k) = 3k , where k represents the number ofmodel elements in
the given SR-model. The FSMSmetric is farmore crucial in contrasting the heuristics
that underline the two algorithms.

Figure4.5 of Sect. 4.1.1.4 clearly illustrates thehyperexponential explosion caused
by the Naïve Algorithm in the finite state model space. This is mainly due to the fact
that the Naïve Algorithm considers all possible orderings of the model elements
while ensuring the default sequence of each individual model element. A careful
understanding of the Semantic Implosion Algorithm reveals that, while the finite state
models of individual actors are being built, the finite state model space increases only
when the following conditions hold:

1. Whenever a nested Task Decomposition is encountered. Suppose a goal/task is
decomposed to k different model elements. Since an i∗ model is sequence agnos-
tic, these k model elements can be executed in any order. The set of all possible
execution traces is given by a k-dimensional hypercube lattice with each dimen-
sion having distance 2. As discussed in Sect. 4.1.1.2, the finite state model space
increases by a factor of (2k)!

2k as given by Eq.4.4. This implies that if the finite
state model space already has p execution traces, a Task Decomposition into q
model elements causes the size of the finite state model space to become p. (2q)!2q .
In general, if the SR-diagram of an actor within the i* model has DT task decom-
positions, and the number of possible alternate execution sequences generated by
each of these task decompositions be given by #Seq1, #Seq2, …, #SeqDT , then the
finite state model space size is given by the following relation:

S =
DT∏
i=1

#Seqi (4.5)

2. Whenever a dependency is being resolved.Dependency resolution results inmerg-
ing the finite state model space of the depender and the dependee. If the finite
state model spaces of actors Ai and Aj contain M and N finite state sequences,
respectively, and there exists at least one dependency between these actors, then
irrespective of the number of dependencies betweenAi andAj, the size of the finite
state model space changes from M + N to M × N . Again, if actor Aj requires
dependency resolution with actor Ak , and actor Ak has L finite state models, then
the combined finite state model space has size L × M × N .

3. Let there be n actors participating in an i∗ model. Let the size of the finite state
model spaces of the individual actors be given by S1, S2, . . . , Sn, respectively.

4.2 Complexity Analysis 63

Assuming that all the actors are interconnected with dependencies, the finite state
model space (FSMS) for the entire enterprise is given by the following equation:

FSMS =
n∏

i=1

Si (4.6)

Both Dependency Resolution and nested Task Decomposition conditions are rep-
resented using the cartesian product relation. So, performance analysis of the two
heuristics boils down to two basic steps. The first step involves observing the growth
of the finite state model space for each individual actor. The second step is to observe
the growth of the finite state model space for the entire enterprise.

4.2.1 Actor Internal Analytics

It is very difficult to predict the distributionofmodel elementswithin theSR-diagrams
of individual actors. Since this is the first step of behaviour analysis, we are con-
cerned with the growth of the finite state model space for individual actors within an
i* model. In order to generate a consistent data set, we assume a uniform distribution
of model elements. We increase the number of model elements occurring within
the SR-diagram of an actor in the i∗ model, in steps of 5. Without loss of unifor-
mity, we assume that for every 5 model element within an actor, there exists a task
decomposition of 4 elements. This assumption is necessary as wewant to estimate an
upper bound on the growth function and the number of finite state sequences grows
significantly with Task Decompositions as opposed to Means-End Decompositions.

We know that the Naïve Algorithm causes the finite state model space to grow
according to Eq.4.4, i.e., FSMS-N = (2k1)!

2k1
, where k1 is the number of model elements

in the i∗ model. The Semantic Implosion Algorithm grows only on the basis of
task decompositions. The number of possible execution sequences generated by
a 4-element task decomposition is obtained by substituting k = 4 in Eq.4.4, i.e.,
(2×4)!
24 = 8!

16 = 2520. Since every 4-element task decomposition increases the finite
state model space size by a factor of 2520, applying the cartesian product relation,
we obtain the growth function of the Semantic Implosion Algorithm to be given
by FSMS-S = 2520k2 , where k2 is the number of 4-element task decompositions
occurring within the SR-diagram of an actor. Table4.2 reflects such a data set.

The performance ratio parameter in Table4.2 represents the reduction in finite
state model space, obtained by the Semantic Implosion Algorithm, with respect to
the Naïve Algorithm. The smaller the ratio the greater is the reduction in finite state
model space achieved by the Semantic Implosion Algorithm. As the values in this
column reflect, the reduction rate is not constant and increases from Θ(10−9) to
Θ(10−17). This is also evident from the graph plotted for this data.

The graph plotted on the basis of this data is shown in Fig. 4.11. It is interesting to
analyse the graph. The vertical axis is again a logarithmic scale of integers. The almost

64 4 Model Checking with i∗

Table 4.2 Actor internal analytics

No. of process
elements (k1)

No. of task
decompositions
(k2)

Naïve algorithm SI algorithm Performance ratio

FSMS-N = (2k1)!
2k1

FSMS-S = 2520k2 (FSMS-S
FSMS-N)

5 1 113400 2520 0.0222

10 2 2.37588E+15 6350400 2.67286E−9

15 3 8.09487E+27 1.6E+10 1.97656E−18

20 4 7.78117E+41 4.03E+13 5.17917E−29

25 5 9.06411E+56 1.02E+17 1.12532E−40

30 6 7.74952E+72 2.56E+20 3.30343E−53

35 7 3.48622E+89 6.45E+23 1.85041E−66

40 8 6.5092E+106 1.63E+27 2.50415E−80

45 9 4.2227E+124 4.1E+30 9.70943E−95

50 10 8.289E+142 1.03E+34 1.24261E−109

55 11 4.4083E+161 2.6E+37 5.89796E−125

60 12 5.8022E+180 6.56E+40 1.1306E−140

65 13 1.7528E+200 1.65E+44 9.41351E−157

70 14 1.1403E+220 4.16E+47 3.64816E−173

75 15 1.5123E+240 1.05E+51 6.94306E−190

80 16 3.8999E+260 2.64E+54 6.7694E−207

85 17 1.876E+281 6.67E+57 3.55544E−224

1
1E+21
1E+42
1E+63
1E+84

1E+105
1E+126
1E+147
1E+168
1E+189
1E+210
1E+231
1E+252
1E+273

0 20 40 60 80 100

Number of model elements in i* model

State Space FSMS-N FSMS-S

Fig. 4.11 Behaviour analysis with respect to the finite state model space of individual actors for
the Naïve Algorithm (FSMS-N) and the Semantic Implosion Algorithm (FSMS-S) as the number of
model elements in the i∗ model varies

4.2 Complexity Analysis 65

linear curves plotted on this scale represent exponential functions. The gradient of
these approximately linear curves represent the rate of growth of the corresponding
exponential function. The following observations can be concluded from the graph:

1. The blue curve depicts the growth of the state space and is consistent for both
scenarios, given by 3k . As both algorithms have the same underlying basis that
every model element goes through three states, the state space growth remains
the same for both the algorithms.

2. The green curve represent the behaviour of the Semantic Implosion Algorithm.
The two lines with triangle and diamond annotations are very close to each other
and have almost similar gradients. This implies that the rate of growth of the finite
state model space, as observed from the Semantic Implosion Algorithm, is almost
similar to the rate of growth of the state space.

3. The red curve depicts the finite state model space growth of the Naïve Algorithm.
The slope of this line is much greater than those of the green and blue lines. This
represents the hyperexponential explosion that is a characteristic of the Naïve
Algorithm.

4. A closer look at the FSMS values in Table4.2 reveals the fact that the FSMS
metric increases by a factor in the range of (1019, 1020), for the Naïve Algorithm,
whereas, for the Semantic Implosion Algorithm, the FSMS metric increases by a
factor of 103.

From the above data set—Table4.2 and Fig. 4.11—it is evident that the Semantic
Implosion Algorithm provides a huge improvement with respect to the rate of growth
of the finite state model space for individual actors in comparison to the Naïve Algo-
rithm. This is the significant contribution of the heuristic proposed in the Semantic
Implosion Algorithm.

4.2.2 Inter-Actor Analytics

These analytics provide an insight into how Actor Internal Analytics scales up and
impacts the growth rate of the finite state model space with respect to the entire
i∗ model representing an enterprise. There are two events that impact Inter-Actor
Analytics as follows:

1. Density of Actors participating in the i∗ model, and
2. Distribution of Model Elements within the SR-diagram of the actors.

Let us individually analyse how these two parameters effect the growth rate of the
finite state model space.

66 4 Model Checking with i∗

4.2.2.1 Variation of Actor Density

In order to simulate a data set, we assume a uniform density of five model elements
within individual actors and evaluate the rate of growth of the finite state model
space. Similar to the data in Table4.1, we assume that every actor has a 4-element
task decomposition. The Naïve Algorithm does not take the semantics of the model
elements into consideration and, thus, the finite state model space size can be eval-
uated by replacing k = 5 in Eq.4.4. The finite state model space size of every actor
is obtained as

∀i, Si = (2 × 5)!
25

= 10!
32

= 113400.

Replacing this value of Si in Eq.4.6, we get the finite state model space for the
entire enterprise (FSMS-N) as

FSMS-N = (113400)n (4.7)

The Semantic ImplosionAlgorithm, on the other hand, causes the finite statemodel
space of individual actors to grow only when task decompositions are encountered.
Since we assume a 4-element task decomposition to exist in each actor, the finite
state model space(Si) of all the actors remains constant and is given by replacing
k = 4 in Eq.4.4. Thus,

∀i, Si = (2 × 4)!
24

= 8!
16

= 2520.

Since uniform distribution of model elements has been assumed, replacing this
value of Si in Eq.4.6 gives the finite state model space for the entire enterprise
(FSMS-S) as generated by the Semantic Implosion Algorithm. Thus,

FSMS-S = (2520)n (4.8)

In order to generate a simulated data set, we restrict the number of model elements
in each actor to 5 and increase the density of actors (n) within the i∗ model of the
enterprise from 5 to 55 in steps of 5. The data set is obtained by replacing these
values of n in Eqs. 4.7 and 4.8. Table4.3 represents such a data set. The performance
ratio column represents the relative decrease in the finite state model space that is
obtained by the Semantic Implosion Algorithm. Figure4.12 shows the corresponding
graph structure that is obtained by plotting this data.

Interpretation of the graph is quite intuitive. The blue curve represents the growth
function of the Naïve Algorithm. In this data set, it represents the exponential func-
tion (113400)n. The red curve plots the growth function of the Semantic Implosion
Algorithm and represents the exponential (2520)n.With the vertical axis representing
a logarithmic scale of integers, the two functions are mapped as nearly linear curves
with different gradients. The gradient of the blue curve is greater than the gradient

4.2 Complexity Analysis 67

Table 4.3 Inter-actor analytics obtained by varying actor density

No. of actors (n) Naïve algorithm SI algorithm Performance ratio

FSMS-N = (113400)n FSMS-S = (2520)n (FSMS-S
FSMS-N)

5 1.87528E+25 1.01626E+17 5.41924E−9

10 3.51666E+50 1.03277E+34 2.93679E−17

15 6.59471E+75 1.04956E+51 1.59152E−25

20 1.23669E+101 1.06662E+68 8.62479E−34

25 2.31914E+126 1.08396E+85 4.67397E−42

30 4.34902E+151 1.10158E+102 2.53294E−50

35 8.15562E+176 1.11949E+119 1.37266E−58

40 1.52940E+202 1.13768E+136 7.43872E−67

45 2.86805E+227 1.15618E+153 4.03124E−75

50 5.37840E+252 1.17497E+170 2.18461E−83

55 1.00860E+278 1.19407E+187 1.18388E−91

1
1E+20
1E+40
1E+60
1E+80

1E+100
1E+120
1E+140
1E+160
1E+180
1E+200
1E+220
1E+240
1E+260

0 10 20 30 40 50 60
Number of Actors in the en re i* model

FSMS-N FSMS-S

Fig. 4.12 Behaviour analysis with respect to the finite state model space of the entire enterprise
for the Naïve Algorithm (FSMS-N) and the Semantic Implosion Algorithm (FSMS-S) as the density
of actors in the i∗ model varies

of the red curve. This implies that the Naïve Algorithm increases the size of the finite
state model space more rapidly as compared to the Semantic Implosion Algorithm.
This is evident from the growth functions Eqs. 4.7 and 4.8 itself. However, this is an
overly simplified data set with uniform distribution and semantics.

68 4 Model Checking with i∗

4.2.2.2 Variation of the Distribution of Model Elements

In this particular simulation, we fix the number of actors involved in the enterprise
model to five. Keeping the number of actors fixed, the distribution of model elements
peractor is increased from 5 to 25 in steps of 5. Assuming uniform distribution across
all the actors in the i∗ model, every actor generates it’s finite state model space with
the same size. The space size changes with varying model element distribution. Let
the size of the finite state model spaces of the individual actors be given by S1,
S2, . . . , S5, respectively, for some model element distribution k.

The Naïve Algorithm combines Eqs. 4.4 and 4.6 to give a function representing
the growth of the finite state model space as follows:

FSMS-N =
(

(2k1)!
2k1

)5

,∀k1, k1 ∈ {5, 10, 15, 20, 25}. (4.9)

The Semantic Implosion Algorithm expands the finite state model space for Task
Decompositions only. Our underlying assumption that there exists a 4-element Task
Decomposition for every group of 5 elements dictates the growth function of the
finite state model space as follows:

FSMS-S =
(

(2k2)!
2k2

)5

, k2 = k1 ÷ 5,∀k1, k1 ∈ {5, 10, 15, 20, 25}. (4.10)

The data generated from Eqs. (4.9) and 4.10 is shown in Table4.4. The number of
actors has been fixed to be 5. The performance ratio values represent the improvement
in finite state model space that is achieved by the Semantic Implosion Algorithm.
The smaller the value, the greater is the gain in performance achieved by the SIA
heuristics. The rapid rate of increase in performance reflects the benefits of using the
improved heuristics of the Semantic Implosion Algorithm. Figure4.13 represents the
graph corresponding to this data.

Table 4.4 Inter-actor analytics obtained by varying the distribution of goals

No. of process
elements (k1)

Naïve algorithm SI algorithm Performance ratio

FSMS-N = (
(2k1)!
2k1

)5 FSMS-S = (
(2k2)!
2k2

)5,
k2 = k1 ÷ 5

(FSMS-S
FSMS-N)

5 1.87528E+25 1.01626E+17 5.41924E−9

10 7.57046E+76 1.03277E+34 1.36421E−43

15 3.47576E+139 1.04956E+51 3.01966E−89

20 2.85249E+209 1.06663E+68 3.73929E−142

25 6.11823E+284 1.08399E+85 1.77174E−200

4.2 Complexity Analysis 69

1
1E+21
1E+42
1E+63
1E+84

1E+105
1E+126
1E+147
1E+168
1E+189
1E+210
1E+231
1E+252
1E+273

0 5 10 15 20 25 30

Per Actor Model Element Distribu on in i* model

FSMS-N FSMS-S

Fig. 4.13 Behaviour analysis with respect to the finite state model space of the entire enterprise for
the Naïve Algorithm (FSMS-N) and the Semantic Implosion Algorithm (FSMS-S) as the distribution
of model elements within actors in the i∗ model varies

The interpretation of the graph is quite similar to the previous graphs. The vertical
axis represents a logarithmic scale of integers. Both the exponential functions, given
by Eqs. 4.9 and 4.10, appear as straight lines. However, the gradients of the two lines
are widely different. This implies that the rate of growth of FSMS-N (represented by
the blue curve) is much greater than that of FSMS-S (represented by the red curve).

4.2.3 SIA Analytics

The analytics provided in Tables4.2, 4.3, and 4.4, and the corresponding graphs
shown in Figs. 4.11, 4.12, and 4.13, all point in the same direction. The obvious
conclusion from these data sets is that the Semantic Implosion Algorithm provides a
huge improvement over the more simple Naïve Algorithm. This improvement is in
the context of the finite state model space and clearly establishes the superiority of
the SI-heuristics in comparison to the Naïve-heuristics.

The above conclusion triggers an urge to take an insight into the behaviour of
the Semantic Implosion Algorithm when both the parameters—Actor Density and
Model Element Distribution—are varied simultaneously. Table4.5 presents such a
data set. The data is generated by varying the distribution of model elements in
individual actors from 5 to 25 peractor, in steps of 5. The finite state model space
size is obtained using the following equation:

FSMS-A =
(

(2k2)!
2k2

)A

, k2 = k1 ÷ 5 (4.11)

70 4 Model Checking with i∗

Table 4.5 Inter-actor analytics obtained by varying both actor density and distribution of goals for
the Semantic Implosion Algorithm

No. of process
elements (k1)

SI algorithm

FSMS-5 FSMS-10 FSMS-15

5 1.01626E+17 1.03277E+34 1.04956E+81

10 1.03277E+34 1.06662E+68 1.10158E+102

15 1.04956E+51 1.10157E+102 1.15617E+153

20 1.06663E+68 1.13769E+136 1.21349E+204

25 1.08399E+85 1.17503E+170 1.38069E+255

1
1E+19
1E+38
1E+57
1E+76
1E+95

1E+114
1E+133
1E+152
1E+171
1E+190
1E+209
1E+228
1E+247

0 5 10 15 20 25 30
Number of Model Elements in i* model

FSMS-5 FSMS-10 FSMS-15

Fig. 4.14 Behaviour analysis of the Semantic Implosion Algorithm (w.r.t. the finite state model
space) as the distribution of model elements within actors and the actor density in the i∗ model are
both varied

Here, A represents the number of actors in the i∗ model of the enterprise. k2 is
obtained from k1 based on the assumption that we have a 4-element task decompo-
sition for every group of 5 model elements. Maintaining the uniformity of model
element distribution across all the actors, we obtain the data set for 5, 10 and 15
actors, represented by FSMS-5, FSMS-10 and FSMS-15, respectively. The graph
obtained from the data set in Table4.5 is shown in Fig. 4.14.

The graph is fairly simple to analyse and interpret. The vertical axis is again a
logarithmic scale. Each of the individual curves (green, red, and blue) appears to be
linear but represent exponential growth functions. The fact that the finite state model
space size will increase with greater number of actors has already been observed in
Fig. 4.12. Hence, as the number of actors increase, the curves are positioned higher.
It can also be concluded from Fig. 4.13 that for a fixed actor density, the finite state
model space size increases with increasing density of model elements. Hence, the
positive gradient in each of the three approximately linear curves.

4.2 Complexity Analysis 71

Themore important observation here is that the nearly linear curves are not parallel
to each other. The gradient of the lines increase with increasing actor density, i.e., the
green curve is steeper than the red curve which, in turn, is steeper than the blue plot.
The gradient of these approximately linear curves represent the rate of growth of
the exponential functions that capture the growth of the respective finite state model
spaces. This means that as the actor density increases, the finite state model space
increases even more rapidly.

4.3 The i∗ToNuSMV Tool

Unlike dataflow and workflow models, goal models do not capture sequences of
activities within the system or enterprise being designed. This makes it difficult for
analysts to check the correctness of these models in the requirements phase itself.
Since goal models have their own motivation, quite distinct from those of process
models or workflow models, researchers have come up with completely different
analysis techniques that provide new insights into the system or enterprise being
developed.

Horkoff and Yu [6] have documented an exhaustive survey of the existing goal
model analysis techniques and how requirement analysts can select from these alter-
natives basedondifferent criteria and attributes.Applyingmodel checking techniques
to goal models (like i∗) has been considered by researchers from the community. The
main research problem here is that model checkers accept extended finite state mod-
els as input. Finite state models capture some sort of sequential information that
represents the possible state transitions that a system can go through. Since goal
models are sequence agnostic they cannot be adapted and fed into model checkers
directly. We aim to provide a significant contribution in this direction by proposing
the i∗ToNuSMV tool.

The i∗ToNuSMV tool addresses this issue and performs model transformation of
the given i∗ model. Figure4.15 illustrates the architecture of the proposed solution.
The FSM Building module generates a finite state model corresponding to the given
i∗ model and the NUSMV Mapper module maps the generated finite state model to
the NuSMV input language. The output of the i∗ToNuSMV tool can be fed directly
into the NuSMV model verifier and can be checked against temporal properties,
behavioural characteristics or compliance rules written using LTL, or CTL.

4.3.1 i∗ToNuSMV Input

The i∗ToNuSMV prototype does not provide a graphical interface for drawing i∗
models. Rather, it takes a textual representation of the i∗-SR-diagram as input.We use
the tGRL notation as our input language. This may help in the integration of tool with
the jUCMNav framework. For the i∗ model shown in Fig. 4.16, the corresponding
tGRL representation is as follows:

72 4 Model Checking with i∗

Fig. 4.15 The i∗ToNuSMV tool

Doctor

Pa ent
EMR (R1)

Provide Treatment on
symptoms + EMR (T2)

Consult
Specialist (T3)

Provide Treatment on
symptoms only (T1)

Provide
Healthcare (G1)

Obtain
Symptoms (G2)

Fig. 4.16 An i∗ model of a single actor Doctor

grl test_model
{ actor Doctor{

goal ProvideHealthcare{decompositionType=or;}
task Symptoms_Treat{decompositionType=and;}
task Symptoms_EMR_Treat{decompositionType=and;}

goal ObtainSymptoms{}
resource PatientEMR{}
task ConsultSpecialist{}

Symptoms_Treat decomposedBy ObtainSymptoms;
Symptoms_EMR_Treat decomposedByObtainSymptoms,PatientEMR,

ConsultSpecialist;
ProvideHealthcare decomposedBy Symptoms_Treat,Symptoms_EMR_Treat;

}
}

4.3 The i∗ToNuSMV Tool 73

4.3.2 The Preprocessing Module

We perform a simplified lexical analysis of this textual input by tokenizing the text
(using filtokn.exe) and then identifying keywords, operators and user-defined model
artefacts (using recognit.exe). We proceed to identify the tree structure of the model
artefacts (using modlroot.exe) and begin our model transformation process from the
root of this tree structure.

4.3.3 The Model Transformation Module

After obtaining the desired tree structure,we proceed to generate the finite statemodel
corresponding to the given SR-diagram. We use the Semantic Implosion Algorithm
(SIA) [7] for converting the given i∗ model to a finite state model. The algorithm,
as proposed by the authors, proposes a methodology for exploiting the semantics
of SR-diagrams and creating a finite state model with minimum number of state
transitions.

SIA uses the notion of each model artefact going through three states—Not_
Created (NC), Created_Not_Fulfilled (CNF), and Fulfilled (F)—as proposed by
Fuxman in [5]. SIA controls an explosion of the state transition space by mapping k-
elementmeans-end decompositions to k-conditional branch structures and k-element
task decompositions to k-dimensional hypercube lattices. A detailed illustration of
the algorithm and the significant improvement achieved w.r.t. the state transitional
space complexity, has been documented in the original article [7]. This model trans-
formation is achieved in the i∗ToNuSMV tool by executing the extract.exe binary.

4.3.4 The Mapper Module

The mapper module takes the extended finite state model produced by the Semantic
Implosion Algorithm andmaps it to the input language of the NuSMVmodel verifier.
We assign identifiers with all goals, tasks and resources that appear in the given SR-
diagram. Each such identifier can have three possible values—NC, CNF, FU—
corresponding to the three states mentioned in the previous section. All identifiers
are initialized to the NC value which marks the initial state of our finite state model.
The final state of the state model is denoted by any state where the root node has the
value FU. The state transitions of the finite state model are captured using next()
value assignments in the NuSMV input language. The mapper.exe binary does this
mapping and generates an NuSMV input model as the final output.

74 4 Model Checking with i∗

4.3.5 i∗ToNuSMV Output

The particular example shown in Fig. 4.16 generates a finite state model STT.opm
and the corresponding NuSMV input model NUSMV_input.smv. Var.opm is a text
file that contains the list of state variables that have been assigned to all the goals,
tasks and resources. For the above example, Var.opm gets populated as shown below.

Also, according to the Semantic Implosion Algorithm, every state variable is ini-
tialized to zero, which represents the Not Created state of the entity. As the finite
state model is built, every state variable makes two transitions. A 0→1 transition
implies that the entity represented by that state variable goes from the Not Created
state to the Created Not Fulfilled state. A 1→2 transition, on the other hand, implies
that the represented entity goes from the Created Not Fulfilled state to the Fulfilled
state. A sample finite state model for the healthcare example is shown in Table4.7.
The state variables used in the finite state model are in accordance with Table4.6.

The same set of state variables are used to build the NuSMV input models. The
NuSMV model corresponding to the finite state model shown in Table4.7 is as
follows:

MODULE main
VAR
V101 : NC, CNF, FU;
V102 : NC, CNF, FU;

All state variables are declared with enumerations NC (Not Created), CNF (Cre-
ated Not Fulfilled), and FU (Fulfilled). Once all variables are declared, all the state
variables are initialized to NC.

ASSIGN
init(V101) := NC;
init(V102) := NC;

After the declaration and initialization of state variables, we proceed to define
the transition of state variables as captured in the finite state model of Table4.7. For
instance, rows 1, 6 and 15 of the finite state model represent transitions for state
variable V101. We read these three lines of the finite state model and create the next
state value for the NuSMV model as follows:

Table 4.6 State variable
listing of entities

Variable name Entity

V101 ProvideHealthcare

V102 Symptoms_Treat

V103 Symptoms_EMR_Treat

V105 ObtainSymptoms

V108 PatientEMR

V109 ConsultSpecialist

4.3 The i∗ToNuSMV Tool 75

Table 4.7 Finite state model recorded in STT.opm

Present state Event Next state

V101 = 0 V101:0→1 V101 = 1,V102 = 0,V103 = 0

V101 = 1,V102 = 0,V103 = 0 V102:0→1 V101 = 1,V102 = 1,V103 =
0,V105 = 0

V101 = 1,V102 = 1,V103 = 0,V105 = 0 V105:0→1 V101 = 1,V102 = 1,V103 =
0,V105 = 1

V101 = 1,V102 = = 1,V103 = = 0,
V105 = 1

V105:1→2 V101 = 1,V102 = 1,V103 =
0,V105 = 2

V101 = 1,V102 = 1,V103 = 0,V105 = 2 V102:1→2 V101 = 1,V102 = 2,V103 = 0

V101 = 1,V102 = 2,V103 = 0 V101:1→2 V101 = 2

V101 = 1,V102 = 0,V103 = 0 V103:0→1 V101 = 1,V102 = 0,V103 =
1,V105 = 0,V108 = 0,V109 = 0

V101 = 1,V102 = 0,V103 = 1,V105 =
0,V108 = 0,V109 = 0

V105:0→1 V101 = 1,V102 = 0,V103 =
1,V105 = 1,V108 = 0,V109 = 0

V101 = 1,V102 = 0,V103 = 1,V105 =
1,V108 = 0,V109 = 0

V105:1→2 V101 = 1,V102 = 0,V103 =
1,V105 = 2,V108 = 0,V109 = 0

V101 = 1,V102 = 0,V103 = 1,V105 =
2,V108 = 0,V109 = 0

V108:0→1 V101 = 1,V102 = 0,V103 =
1,V105 = 2,V108 = 1,V109 = 0

V101 = 1,V102 = 0,V103 = 1,V105 =
2,V108 = 1,V109 = 0

V108:1→2 V101 = 1,V102 = 0,V103 =
1,V105 = 2,V108 = 2,V109 = 0

V101 = 1,V102 = 0,V103 = 1,V105 =
2,V108 = 2,V109 = 0

V109:0→1 V101 = 1,V102 = 0,V103 = =
1,V105 = 2,V108 = 2,V109 = 1

V101 = 1,V102 = 0,V103 = 1,V105 =
2,V108 = 2,V109 = 1

V109:1→2 V101 = 1,V102 = 0,V103 =
1,V105 = 2,V108 = 2,V109 = 2

V101 = 1,V102 = 0,V103 = 1,V105 =
2,V108 = 2,V109 = 2

V103:1→2 V101 = 1,V102 = 0,V103 = 2

V101 = 1,V102 = 0,V103 = 2 V101:1→2 V101 = 2

next(V101) :=
case
V101=CNF & V102=NC & V103=FU : FU;
V101=CNF & V102=FU & V103=NC : FU;
V101=NC : CNF;
TRUE: V101;
esac;

This is done for all the state variables appearing in Table4.6. The complete
NuSMV model corresponding to the finite state model of Table4.7 is obtained in
NUSMV_input.smv.

76 4 Model Checking with i∗

4.3.6 The i∗ToNuSMV Algorithm

An algorithm for the entire process may be specified as follows:
Input: Textual representation of an i∗ model SR-diagram.
Output: An extended finite state model and the corresponding NuSMV input model.

Algorithm:

Step-1: Tokenize the input text file using filtokn.exe and separate all tokens.
Step-2: Identify all the tokens and distinguish the keywords, user-defined variables

and operators, separately, using recognit.exe.
Step-3: Identify the root model element fromwhich the Semantic Implosion Algo-

rithm will begin execution by using modlroot.exe. Associate state vari-
ables/identifierswith eachgoal, task and resource appearing in the i∗ model.

Step-4: Run theSemantic ImplosionAlgorithmby executing the extract.exebinary.
This code generates the extended finite statemodel that can be derived from
the i∗ model.

Step-5: Finally this finite state model is mapped to an NuSMV input model with
the mapper.exe executable.

Step-6: cleanup.exe is used to clear the working directory before loading and con-
verting the next i∗ model.

4.3.7 Platforms Used

The front end of the tool has been developed in the Microsoft Visual Basic envi-
ronment. The 64-bit binaries have been generated using the Eclipse and Pelles C
platforms.

4.3.8 Application Scenario

Let us consider the remote healthcare example illustrated in Fig. 4.16. A remote
healthcare enterprise may want to comply to a temporal constraint that a Doctor
will provide long term treatment only after it receives a Symptoms Message from the
patient through the ObtainSymptoms goal. This implies that in the task decomposi-
tion of Symptoms_EMR_Treat, ObtainSymptoms must be Fulfilled before resource
PatientEMR is acquired and task ConsultSpecialist is performed. This can be cap-
tured as a system property specified in CTL. The state variables listed in Table4.6
can be used to define this property as follows:

AG((V 103 = CNF ∧ V 105 = FU ∧ ¬(V 108 = FU ∨ V 109 = FU))

→ F(V 105 = FU ∧ V 108 = FU ∧ V 109 = FU))

4.3 The i∗ToNuSMV Tool 77

This property can be fed into the NuSMV model checker and verified against
the NUSMV_input.smv input model generated by the i∗ToNuSMV prototype. The
NuSMV input model passes the model verification test if and only if all execution
paths in the corresponding finite state model satisfy the condition that V 105 is ful-
filled before V 108 and V 109 are fulfilled. Otherwise, the CTL property is violated
and NuSMV generates counterexamples.

4.4 i∗ToNuSMV Version Manager

The tool has evolved through several versions as described below:

• i∗ToNuSMV Version 1.01: Beta prototype that supported only 3-level goal mod-
els. Multi-actor scenarios were also not supported.

• i∗ToNuSMV Version 1.02: This version accepts an i* model in non-standardized
textual format and only converts it to the corresponding finite state machine and
NuSMV input model. Model checking is not supported.

• i∗ToNuSMVVersion 1.03: The NuSMVmodel verifier is integrated into the tool.
Users can now verify CTL specifications on the NuSMV model being generated.

• i∗ToNuSMV Version 1.04: Bug fix. Previous version was path dependent. User
was compelled to instal the tool in path C:Äù\istarToNuSMV. Path dependency
removed.

• i∗ToNuSMV Version 2.01: MAJOR UPGRADE. The input language of the tool
has been changed from the previous non-standardized textual input to tGRL [8].
Supports multi-actor scenarios nut not inter-actor dependencies.

• i∗ToNuSMV Version 2.02:: MAJOR UPGRADE. Inter-actor dependencies have
been implemented.One finite state machine for the entire goal model is generated
rather than peractor finite state machines as in the previous versions.

4.5 Contact and URL

The i∗ToNuSMV tool can be freely downloaded from the following
URL—http://cucse.org/faculty/tools/. The URL also contains a user manual of the
i∗ToNuSMV prototype in pdf format and can be downloaded from the link pro-
vided at the end of the page. For any further queries, please mail the authors at
novarun.db@gmail.com.

http://cucse.org/faculty/tools/

78 4 Model Checking with i∗

4.6 Conclusion

Model checking tools, typically check a model against certain temporal properties.
The need to bridge the gap between i* models and any other model with partial
ordering is evident. Although model transformations have existed in the industry
for quite some time, no work has been done to derive finite state models from i*
models. This paper first illustrates and presents a Naïve Algorithm for extracting
sequences from i* model constructs. Simulation results demonstrate how this causes
a hyperexponential explosion in the finite state model space. The Semantic Implosion
Algorithm provides an improvement to counter this explosion.

Detailed simulations have been done by applying both the algorithms to similar
types of i* models and the results show that the Semantic Implosion Algorithm
provides a significant improvement over the Naïve Algorithm. Typically, the finite
state model space grows in the order of 1020 for the Naïve Algorithm, whereas, for
the Semantic Implosion Algorithm, the growth rate is restricted to the order of 103.
Although this may not be the best approach to extract a minimal set of plausible
finite execution sequences, it definitely provides a significant improvement over the
Naïve Algorithm.

The set of possible finite execution traces, that correspond to a given i∗ model,
can be further pruned by feeding them into a model checking tool like NuSMV and
checking them against certain enterprise-specific temporal properties or compliance
rules. All models that generate counter-examples may be discarded. This is one of
the biggest advantages of having a model that captures ordering of states. Also, once
the set of valid finite state models have been obtained, we can map them to BPMN
models, Petri Nets, or evenUMLmodels. This helps enterprise architects by allowing
the automated generation of code snippets, thereby, reducing the efforts required to
build the enterprise. Thus, once the requirements have been finalized and modelled
by the architects, the development of the enterprise becomes fully automated. This
ensures greater consistency and correctness and reduces the risks of failure.

The i∗ToNuSMV tool is a research prototype that takes a tGRL representation of
an SR-model as input. The tool can also be extended to any goalmodelling framework
due to the generic nature of the model transforming Semantic Implosion Algorithm.
A detailed working of the i∗ToNuSMV tool with a multi-actor scenario having inter-
actor dependencies is illustrated in the User Manual and Tutorial Video on the tool
page.1 Appropriate screenshots of the tool interface have also been provided.

1http://cucse.org/faculty/tools/.

http://cucse.org/faculty/tools/

References 79

References

1. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23(5):279–295. https://
doi.org/10.1109/32.588521

2. Cimatti A, Clarke EM, Giunchiglia F, Roveri M (1999) NUSMV: a new symbolic model verifier.
In: Proceedings of the 11th international conference on computer aided verification (CAV), pp
495–499. http://dl.acm.org/citation.cfm?id=647768.733923

3. Lapouchnian A (2005) Goal-oriented requirements engineering: an overview of the current
research, Depth Report. University of Toronto. Canada, Toronto

4. Fuxman A, Pistore M, Mylopoulos J, Traverso P (2001) Model checking early requirements
specifications in tropos. In: Proceedings of the 5th international symposium on requirements
engineering (RE), pp 174–181. https://doi.org/10.1109/ISRE.2001.948557

5. FuxmanAD (2001) Formal analysis of early requirements specifications,MS thesis. Department
of Computer Science. University of Toronto, Canada

6. Horkoff J, Yu E (2011) Analyzing goal models—different approaches and how to choose among
them. In: Proceedings of the 2011 ACM symposium on applied computing (SAC), pp 75–682.
https://doi.org/10.1145/1982185.1982334

7. Deb N, Chaki N, Ghose A (2016) Extracting finite state models from i∗ models. J Syst Softw,
SI: COMPSAC, Elsevier 121:265–280. https://doi.org/10.1016/j.jss.2016.03.038

8. Abdelzad V, Amyot D, Alwidian SA, Lethbridge T (978) A textual syntax with tool support for
the goal-oriented requirement language. In: iStar, vol 978, pp 61–66. http://ceur-ws.org/Vol-
1402/paper6.pdf

https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
http://dl.acm.org/citation.cfm?id=647768.733923
https://doi.org/10.1109/ISRE.2001.948557
https://doi.org/10.1145/1982185.1982334
https://doi.org/10.1016/j.jss.2016.03.038
http://ceur-ws.org/Vol-1402/paper6.pdf
http://ceur-ws.org/Vol-1402/paper6.pdf

	4 Model Checking with i*
	4.1 Developing Finite State Models from an i* Model
	4.1.1 The Naïve Algorithm
	4.1.2 The Semantic Implosion Algorithm (SIA)
	4.1.3 Soundness and Completeness

	4.2 Complexity Analysis
	4.2.1 Actor Internal Analytics
	4.2.2 Inter-Actor Analytics
	4.2.3 SIA Analytics

	4.3 The i*ToNuSMV Tool
	4.3.1 i*ToNuSMV Input
	4.3.2 The Preprocessing Module
	4.3.3 The Model Transformation Module
	4.3.4 The Mapper Module
	4.3.5 i*ToNuSMV Output
	4.3.6 The i*ToNuSMV Algorithm
	4.3.7 Platforms Used
	4.3.8 Application Scenario

	4.4 i*ToNuSMV Version Manager
	4.5 Contact and URL
	4.6 Conclusion
	References

